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Abstract. Restricted normal cones are of interest, for instance, in the theory of
local error bounds, where they have recently been used to characterize the exis-
tence of a constrained Lipschitzian error bound. In this paper, we establish rela-
tions between two concepts for restricted normals. The first of these concepts was
introduced in the late 1990s by Studniarski, the second more than ten years later
by Bauschke et al. Under assumptions, suitable for the use in the theory of error
bounds, we explain that the two concepts are the same. Furthermore, we develop
several formulas that simplify the computation of restricted normals.
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1 Introduction

Mordukhovich’s normal cone is one of the fundamental tools of variational anal-
ysis [15,16]. It is used to develop concepts of generalized differentiation of non-
smooth and even set-valued mappings [14], and as such, normal cones are used
to characterize generalized concepts for the regularity of a mapping, like metric
regularity [12,13] or metric subregularity [10,11]. In [17], restricted normal cones
were introduced as a certain generalization of Mordukhovich’s normal cone, and
they are used in order to formulate sufficient conditions for a minimizer of an
optimization problem to be weak-sharp [6]. The latter can be interpreted as a
special kind of a (constrained) local error bound, which is the subject of inter-
est in [8], where restricted normal cones play an important role. The usefulness
of error bounds in mathematical programming is outlined, for example, in the
latter three papers and references therein, and it is not the goal of this paper to
deal with their applications. Instead, we focus on restricted normal cones and, in
particular, aim at the development of formulas that simplify their computation.
This proves to be a challenging task that has not been solved in [8,17]. A related
concept for restricted normal cones is introduced and studied in [1,2,3], without
reference to [17], however. We will see below in Sect. 2 that the restricted normal
cone from [17] coincides with the one from [2], and this allows to obtain various
new statements, related to [8,17]. Furthermore, we will develop some new results,
complementing those in [2]. One such result (Proposition 1) allows for a simple
computation of the restricted normal cone under an outer semicontinuity assump-
tion. Subsequently, in Proposition 2, we will use the switching index condition [9]
to guarantee the outer semicontinuity assumption. At this point, we want to men-
tion the papers [4,7], where the switching index condition played a role, too. The
rest of the paper is organized as follows. Section 2 contains a definition of the



restricted normal cone and the relations between existing concepts, mentioned in
the paragraph above. A simplified representation of the cone is given in Lemma 1
under assumptions suitable for the use in [8]. The two propositions, mentioned
above, are presented in Section 3.
Our notation follows standard textbooks [15,16], cone(A) refers to the conic hull

of a set A, and u A→ y means that u converges to y with u ∈ A. Other notations are
explained in the text as needed.

2 Restricted Normal Cones

For a set Ω ⊂Rn, a closed subset M ⊂Ω , and a point ū ∈M, let us introduce the
normal cone to M relative to Ω at ū as

NM(ū; Ω) := Limsup
u Ω→ū

(cone(u−PM(u))) ,

where Limsup denotes the outer limit in the sense of Painlevé-Kuratowski [16],
and where PM : Rn ⇒Rn is the (set-valued) projection onto the closed set M. We
will often merely speak about the restricted normal cone, and by this we mean
NM(ū;Ω).
The outer limit of a set-valued mapping is always closed [16, Proposition 4.4],
and the outer limit of a cone-valued mapping is a cone [16, Exercise 4.14]. Thus,
NM(ū;Ω) is a closed cone, and it can be easily checked that

NM(ū;Ω) =

{
v
∣∣∣∣∃uk Ω→ ū,∃tk↘ 0,∃{yk} ⊂M : yk ∈ PM(uk)∀k, uk− yk

tk
→ v

}
holds true. In other words, NM(ū;Ω) is the restricted normal cone from [8,17],
and it agrees with Mordukhovich’s normal cone NM(ū), when Ω =Rn. By routine
computations, one can show

NM(ū;Ω) =

{
v
∣∣∣∣∃uk M→ ū,∃tk↘ 0,∃{yk} ⊂Ω : yk ∈ P−1

M (uk)∀k, yk−uk

tk
→ v

}
,

i.e., we have

NM(ū;Ω) = Limsup
u M→ū

(
cone

(
(Ω −u)

⋂(
P−1

M (u)−u
)))

. (1)

But this means, in turn, that the restricted normal cone above also coincides with
the one from [1,2,3], at least for our specific setting where M ⊂ Ω . Elementary
calculus rules for NM(ū;Ω) can thus be extracted from [2]. That paper also con-
tains formulas for the computation of NM(ū;Ω) for some special cases, e.g., when
Ω is a subspace or M is convex. In the next section, we want to find formulas,
complementing the ones just mentioned, for the case where Ω is closed convex,
and M is merely closed. The key to this is the subsequent lemma, which involves
the mappings R,Nprox

M , N̂M : Rn ⇒ Rn, defined as

R(u) :=
{

∅ if u /∈M,
cone(Ω −u) if u ∈M,

(2)

Nprox
M (u) := cone

(
P−1

M (u)−u
)
, (3)

N̂M(u) :=
{

v
∣∣∣v>(y−u)≤ o(‖y−u‖) for y ∈M

}
. (4)



The set Nprox
M (u) is the proximal normal cone to M at u ∈ M, and N̂M(u) is the

regular normal cone to M at u ∈M, cf. [5,16]. The two sets are empty, if u /∈M.

Lemma 1. For a closed convex set Ω ⊂Rn, a closed subset M ⊂Ω , and a point
ū ∈M, it holds that

NM(ū;Ω) = Limsup
u M→ū

(
R(u)

⋂
Nprox

M (u)
)

= Limsup
u M→ū

(
R(u)

⋂
N̂M(u)

)
⊂ Limsup

u M→ū

(R(u))
⋂

NM(ū).

Proof. Thanks to (1), we observe by [2, Lemma 1.5] that NM(ū;Ω) is contained
in the outer limit of R∩Nprox

M . The converse inclusion follows by direct compu-
tations, relying on (1)–(3), and convexity of Ω .
Since Nprox

M (u) ⊂ N̂M(u) is always true, the outer limit of R∩Nprox
M is subset of

the outer limit of R∩ N̂M . The proof for the converse inclusion is more tech-
nical. Essentially, it relies on convexity of Ω , and an application of [15, Theo-
rem 1.6, Step 2]. We omit further details for brevity. The remaining upper estimate
for NM(ū;Ω) is a consequence of [16, formula 4(7)] and [2, Proposition 2.3]. ut

In the language of [5], and with [5, Proposition 2.55] in mind, the value of R
agrees for u ∈M with the radial cone to Ω at u, if Ω is closed convex, and then,
its closure coincides with the usual tangent cone to Ω at u [16]. Thus, Lemma 1
says that the restricted normal cone can be identified with an outer limit of the
intersection of the radial cone to Ω and the proximal normal cone to M. This
observation complements [2, formulas (61a)–(61c) and Proposition 5.4]. In turn,
the representation of NM(ū;Ω) as an outer limit of the intersection of the radial
cone to Ω and the regular normal cone to M is new, and we will exploit this in the
next section. Fig. 1 illustrates that the upper estimate for NM(ū;Ω) in the lemma
can be sharp. There, M is the boundary of a convex polyhedral set Ω (colored in
gray). The directions v1,v2 belong to the intersection of the outer limits, but not
to NM(ū;Ω). The shaded area corresponds to the outer limit (relative to M) of R.

ū M

Ω

v1

v2

Fig. 1. Inclusion in Lemma 1 is sharp: v1,v2 /∈ NM(ū;Ω).



3 Computation of the Restricted Normal Cone

Even under the assumptions of Lemma 1, the computation of the restricted normal
cone can be a challenging task. This is due to the fact that NM(ū;Ω) is an outer
limit of a nontrivial intersection of two sets. Therefore, a condition that allows to
get rid of the outer limit can be beneficial, and this will be the outer semicontinuity
of R∩ N̂M relative to the set M at ū. Recall [16] that the latter means validity of

Limsup
u M→ū

(
R(u)

⋂
N̂M(u)

)
= R(ū)

⋂
N̂M(ū). (5)

As already mentioned in Sect. 2, the outer limit of a mapping is always closed.
Hence, the latter semicontinuity condition implies that R(ū)∩ N̂M(ū) is closed. It
is known that N̂M(ū) is always closed, but the set R(ū) = cone(Ω − ū) may not
be closed for an arbitrary closed convex set Ω – just consider Ω as the unit ball,
and a point ū on its boundary.
The following is the main result of this section. It allows for direct computation
of NM(ū;Ω) without having to explicitly evaluate an outer limit.

Proposition 1. In the setting of Lemma 1, assume that R∩ N̂M is outer semicon-
tinuous relative to M at ū, i.e., (5) is satisfied. Then, it holds that

NM(ū;Ω) =
{

v ∈ N̂M(ū) |∃τ > 0 : ū+ tv ∈Ω ∀t ∈ [0,τ]
}
. (6)

In particular, if R and N̂M are both outer semicontinuous relative to M at ū, then
so too is R∩ N̂M , and it is further true that NM(ū) = N̂M(ū).

Proof. The equality in (6) is nothing else than NM(ū;Ω) = R(ū)∩ N̂M(ū). But
then, thanks to Lemma 1 and (5), this equality is evidently fulfilled. If R and N̂M
are both outer semicontinuous relative to M at ū, then we have

R(ū)
⋂

N̂M(ū)⊂ Limsup
u M→ū

(
R(u)

⋂
N̂M(u)

)
⊂ Limsup

u M→ū

(R(u))
⋂

Limsup
u M→ū

(N̂M(u))

= R(ū)
⋂

N̂M(ū),

which implies (5), hence, outer semicontinuity of R∩ N̂M . The remaining equality
follows by [16, Corollary 6.29], recalling that M is closed. ut

Since M is a closed set, the equality NM(ū) = N̂M(ū) corresponds [16] to the
Clarke regularity of the set M at ū, and this is equivalent to outer semicontinuity
of N̂M . In presence of outer semicontinuity of R and N̂M , the proposition implies
that the inclusion in Lemma 1 holds as equation, and this complements [2, Propo-
sition 5.5]. At this place, the reader should be aware that outer semicontinuity of
R relative to M can only be guaranteed in quite special circumstances. For in-
stance, it can never hold, when ū is located at the (relative) boundary of Ω , and
M contains a sequence uk→ ū that belongs to the (relative) interior of Ω . Another
even more simple illustration for the absence of outer semicontinuity of R relative
to M is given in Fig. 1. In special cases, however, it is possible to guarantee such
outer semicontinuity, and a sufficient condition for this is the topic in the further
course of this section.



As mentioned above, the set R(ū) need not be closed for arbitrary closed convex
sets Ω , but this is essential for R to be outer semicontinuous at all. For this reason,
we will be dealing with convex polyhedral sets in what follows, i.e., we suppose
that

Ω =
{

u ∈ Rn
∣∣∣a>i u≤ bi ∀i = 1, . . . ,m

}
(7)

holds for some a1, . . . ,am ∈Rn and b1, . . . ,bm ∈R. In this case, [16, Exercise 6.47]
implies that R(ū) coincides locally with Ω− ū. Hence, R(ū) is itself convex poly-
hedral and as such, it is necessarily closed. In accordance with the wording in [9],
we say that the switching index condition holds at ū for M, if there is ε > 0, so
that

a>i ū = bi =⇒ a>i u = bi (8)

for all u ∈M∩ (ū+ εB). We will now show that the combination of (7) and the
switching index condition allows to guarantee outer semicontinuity of R.

Proposition 2. In the setting of Lemma 1, suppose that Ω is given as in (7) for
some a1, . . . ,am ∈ Rn and b1, . . . ,bm ∈ R. If the switching index condition is sat-
isfied at ū for M, then R is outer semicontinuous relative to M at ū.

Proof. Put I0 :=
{

i
∣∣a>i ū = bi }. Then, the switching index condition combined

with [16, Theorem 6.46] yield R(u) =
{

v
∣∣a>i v≤ 0 ∀i ∈ I0

}
for all u ∈M near ū,

and this implies the desired outer semicontinuity of R. ut

It may be possible to consider more general nonpolyhedral convex sets and es-
tablish outer semicontinuity with respect to M again under the switching index
condition. This can be part of our future research.

Conclusion

In this paper, we established relations between existing concepts for restricted
normal cones [2,17] for the first time to the best of our knowledge. Furthermore,
we extended existing results on the computation of NM(ū;Ω). In particular, our
results can be used to compute restricted normals when Ω is a closed convex
set, and M is merely some closed subset of Ω . Under an outer semicontinuity
assumption, the computation of the restricted normal cone simplifies. For this
reason, we adjusted the switching index condition from [9] in order to be able to
guarantee the latter outer semicontinuity assumption, at least for the case where
Ω is a convex polyhedral set. One application of our results is in the theory of
local error bounds, for which the usefulness of restricted normal cones has been
proved in [8,17].
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