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Abstract

Optimizing interpretable policies for Markov Decision Processes (MDPs)
can be computationally intractable for large-scale MDPs, e.g., for mono-
tone policies, the optimal interpretable policy depends on the initial
state distribution, precluding standard dynamic programming tech-
niques. Previous work has proposed Monotone Policy Iteration (MPI)
to produce a feasible solution for warm starting a Mixed Integer Lin-
ear Program (MILP) that finds an optimal monotone policy. However,
this prior work did not investigate the convergence and optimality of
this algorithm, nor did they investigate the impact of state ordering
rules, i.e., the order in which policy improvement steps are performed
in MPI. In this study, we analytically characterize the convergence and
optimality of the MPI algorithm, introduce a modified MPI (MMPI)
algorithm, and show that our algorithm improves upon the MPI al-
gorithm. To test MMPI numerically, we conduct experiments in two
settings: 1) perturbations of a machine maintenance problem wherein
the optimal policy is guaranteed to be monotone or near-monotone and
2) randomly generated MDPs. We propose and investigate 19 state
ordering rules for MMPI based on each state’s value function, initial
probability, and stationary distribution. Computational results reveal a
trade-off between computational time and optimality gap; in the struc-
tured machine maintenance setting, the fastest state ordering rules still
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yield high quality policies while the trade-off is more pronounced in
the random MDP setting. Across both settings, the random state or-
dering rule performs the best in terms of optimality gap (less than
approximately 5% on average) at the expense of computational time.

1 Introduction

The Markov Decision Process (MDP) is a versatile modeling framework for
formulating and solving sequential decision problems under uncertainty. MDPs
have been formulated for a broad range of decision-making problems across
many industries, including healthcare, manufacturing, supply chain, and en-
ergy (Boucherie and van Dijk, 2017). Subsequently, these models play an
important role in improving the quality of decisions made across these indus-
tries. Furthermore, for high-stakes applications such as healthcare and criminal
justice, the interpretability and intuitiveness of the resulting MDP-generated
decision policy can play an important role in how the policy is implemented
or whether it is implemented at all (Rudin, 2019; Rudin et al, 2022; McNealey
et al, 2023).

While previous studies on the design of interpretable policies for MDPs
vary in their definition of interpretable policies, many of these studies have
shown that determining optimal interpretable policies can be computationally
intractable for large-scale MDPs. For example, Petrik and Luss (2016) found
that their problem reduces to a POMDP, and is NP-hard. Grand-Clément et al
(2021) find that their problem reduces to the problem of finding an optimal
classification tree, which implies that it is NP-hard. Garcia et al (2022) find
that the total number of monotone policies grows as a binomial when either the
state or action is fixed, but can grow at a larger rate if the two are dependent.
Moreover, in both Garcia et al (2022) and Grand-Clément et al (2021), the
authors find that the optimal interpretable policies are dependent on the initial
state distribution, precluding the use of standard value iteration and policy
iteration algorithms.

This research focuses on extending the work by Garcia et al (2022) on de-
veloping algorithms for optimizing over monotone policies. In this prior work,
the authors formulate the problem as a Mixed Integer Linear Program (MILP)
and propose a Monotone Policy Iteration (MPI) algorithm to produce a fea-
sible solution to warm start the MILP, thereby reducing the computational
effort needed to solve the problem. Because the optimal monotone policy is de-
pendent on the initial state distribution, they performed policy improvement
steps within MPI in decreasing order of initial state probabilities. However,
they did not consider other state orderings for policy improvement, nor did
they consider how this order can affect computational time or the optimality
of the resulting policy. As such, we conduct an analysis of the convergence
and optimality properties of the MPI algorithm, propose a Modified Mono-
tone Policy Iteration (MMPI) algorithm to overcome shortcomings of MPI,
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and design various state ordering rules in the MMPI algorithm. We show an-
alytically that the MMPI algorithm possesses improved properties compared
to the MPI algorithm and quantify through computational experiments how
each ordering strategy affects the efficiency of the algorithm.

1.1 Literature Review

This research is most related to analysis of interpretable policies in MDPs and
analysis of the policy iteration algorithm for MDPs.

Interpretable Policies for MDPs. Two of the most common types
of interpretable policies for MDPs include ordering-based policies and tree-
structured policies (McNealey et al, 2023). In ordering-based policies, the
policy must obey an ordering or partial ordering over the states and/or ac-
tions. Common examples of ordering-based policies include threshold policies
(Hu and Defourny, 2022; Alagoz et al, 2004; Shechter et al, 2008; Chen et al,
2018) and monotone policies (Kim et al, 2012; Kotas and Ghate, 2016; Garcia
et al, 2022), with the latter being the focus of this work. Example applications
include inventory management (Perera and Sethi, 2023), healthcare treatment
planning (McNealey et al, 2023), and maintenance optimization problems (see
§3.1). Early work on monotone policies for MDPs (Albright, 1979; Serfozo,
1976) and partially observable MDPs (Albright and Winston, 1979; Lovejoy,
1987) focused on identifying sufficient conditions which guarantee the exis-
tence of an optimal policy that is monotone. When an optimal monotone policy
exists, standard methods (e.g., backward induction, policy iteration) can be
used to solve for this policy. In general, however, the optimal policy may not
be monotone; in such cases, optimizing the performance of an MDP over the
monotone policies can be challenging. In recent work, Garcia et al (2022) for-
mulate an exact solution method using MILP for solving this problem. To
reduce the computational effort required for solving this problem, the authors
present the MPI algorithm which modifies the classic policy iteration algorithm
to generate a monotone policy, which can be used as an initial feasible solution
(i.e., a warm start) to the MILP. We extend this prior research by analyzing
how to prioritize states in each iteration of the algorithm via state ordering
rules. Our analytical study shows that the ordering rule can play a role in
both the convergence and optimality of the algorithm. Further, our numerical
study demonstrates which types of ordering rules have superior performance.

Tree-structured policies for MDPs seek to exploit the inherently in-
terpretable structure of decision trees. While several papers explore tree-
structured policies for different types of sequential decision problems (Bravo
and Shaposhnik, 2020; Ciocan and Mǐsić, 2022; Amram et al, 2022), the work
by Grand-Clément et al (2021) focuses strictly on MDPs. In their work, Grand-
Clément et al (2021) show that the problem of optimizing over tree-structured
policies for a single decision epoch is NP-hard. As such, they design a value
iteration algorithm for computing optimal MDP policies to only visit decision
tree policies, ensuring that the resulting policy is a decision tree. While the
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authors also recognize that the order over which states are visited in their al-
gorithm plays an important role, they do not provide much guidance on how to
select this ordering rule. As such, the findings of this research could potentially
be applied to their setting as well.

Policy Iteration. Policy iteration is a classic dynamic programming algo-
rithm for solving finite state infinite-horizon MDPs (Puterman, 2014, Ch. 6.4).
The algorithm alternates between a policy evaluation and policy improvement
step. The finite convergence and optimality of this algorithm were analyzed in
Puterman and Brumelle (1979). Prior works have also made efforts to enhance
the policy iteration algorithm. For example, Hastings and Mello (1973) and
Grinold (1973) extend the work of MacQueen (1967) in developing action elim-
ination procedures which speed up policy iteration. When sufficient conditions
for the existence of an optimal monotone policy are met, White (1981) studies
a variant of policy iteration in which policies are restricted to be monotone
for the two-action case and Puterman (2014, Ch. 6.11.2) describes a similar
algorithm for general action sets.

In recent years, modifications to policy iteration have been proposed for
more complex variants of MDPs, such as certain types of reinforcement learn-
ing problems (Hu et al, 2018; Yu and Bertsekas, 2013; Topin et al, 2021;
Bertsimas et al, 2022), approximate dynamic programming problems (Powell,
2016; McKenna et al, 2020), and robust MDPs (Satia and Lave, 1973; Li and
Si, 2010; Kaufman and Schaefer, 2012; Sinha and Ghate, 2016). Notably, in
all of these past works, there is an implicit or explicit assumption that the
MDP under study satisfies the rectangularity property. That is, the action
chosen in one state does not restrict the action that can be taken in another
state. As such, the policy improvement step can be performed state-by-state,
regardless of the order. In contrast, monotone policies (Garcia et al, 2022) and
certain tree-structured policies (Grand-Clément et al, 2021) do not satisfy this
assumption. This paper thus extends the policy iteration literature by provid-
ing analytical and numerical results for a class of MDP policies wherein the
rectangularity property is not satisfied.

1.2 Contributions

Overall, the contributions of this work are as follows:
1. We examine the MPI algorithm proposed by Garcia et al (2022) and pro-

vide analytical results relating to the convergence and optimality of the
algorithm. In particular, we prove that the algorithm does not always con-
verge, and when it does converge, it may not be to the optimal monotone
policy.

2. We propose a modified MPI (MMPI) algorithm which is guaranteed to
converge to a policy with expected total discounted reward higher or
equal to that of the policy returned by the MPI algorithm under certain
conditions on the state ordering rule.

3. We formulate a scalable machine maintenance problem that is guaranteed
to have an optimal monotone policy. This problem can be used as a test
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bed for future analysis of monotone policies in MDPs or, more broadly,
interpretable policies for MDPs.

4. We investigate variations of the MMPI algorithm on both machine main-
tenance MDPs and randomly generated MDPs to quantify the impact of
the order by which to prioritize states in (a) the computation time re-
quired to converge to a feasible monotone policy and (b) the quality of
the feasible monotone policy (i.e., the optimality gap). We discover state
ordering rules in the MMPI algorithm that outperform the decreasing ini-
tial state probability method proposed by Garcia et al (2022) as well as
the other ordering rules analyzed. We also propose hypotheses for why
these ordering rules outperform others.

The remainder of this manuscript is organized as follows. In §2, we provide
a technical background on MDPs, describe the problem of optimizing over
monotone policies, and analyze the MPI and MMPI algorithms. In §3, we
formulate a machine maintenance problem with stochastic repair options and
show that it is guaranteed to have an optimal policy that is monotone. Next,
we perform a computational study in §4 to explore the best-performing MMPI
algorithm, using the machine maintenance problem of §3 as a testbed. We
investigate the robustness of these results on randomly generated MDPs in §5.
Finally, we provide concluding remarks in §6.

2 Methodology

In this section, we begin in §2.1 by providing a a brief technical introduction to
discrete-time infinite horizon MDPs with finite state and action sets. In §2.2, we
define monotone policies and provide known methods for obtaining an optimal
or near-optimal monotone policy, including the MMPI algorithm. Finally, in
§2.3, we analyze the convergence and optimality of the MMPI algorithm.

2.1 Markov Decision Processes

Formally, discrete-time infinite horizon MDPs with finite states and actions are
defined by a tuple (T ,S,A, r, P, γ), where T = {1, ...,∞} is a set of discrete
decision epochs, S = {1, ..., S} is a finite set of states that the system may
occupy during the decision process, α is a distribution over the initial states,
A = {1, ..., A} is a finite set of actions and As ⊂ A is the set of actions
that can be taken when the system occupies state s ∈ S, P is the stationary
transition probability matrix specifying P (s′|s, a) = P(st+1 = s′|st = s, at =
a), r : S × A → R is a reward function with r(s, a) denoting the immediate
reward obtained when the action a is taken while the system is in state s, and
γ ∈ [0, 1) is a discount factor applied to future rewards.

The decision process occurs as follows. First, the system is initialized ac-
cording to a probability distribution α, with components α(s) = P(s1 = s).
Then, for every decision epoch t ∈ T , the decision-maker observes the system
state st and performs an action at, incurring reward r(st, at). Next, the system
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evolves stochastically to state st+1 according to the transition probability ma-
trix P . The decision-maker’s goal is to optimize a deterministic Markov policy
π : S → A that maximizes her expected total discounted reward in this deci-
sion process. Letting Π denote the set of all such policies, the optimal policy
π∗ satisfies

Jπ∗
(α) = max

π∈Π
Jπ(α), (1)

where the expected total discounted reward for any policy π under initial state
distribution α is given by

Jπ(α) = E

[ ∞∑
t=1

γt−1r(st, π(st))
∣∣∣s1 ∼ α

]
. (2)

Notably, Jπ∗
(α) =

∑
s∈S α(s)v∗(s), where the optimal value functions v∗(s)

specify the solution to the Bellman equations

v∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)v∗(s′)

}
for all s ∈ S. (3)

Many solution methods exist for solving (3), including linear programming,
value iteration, and policy iteration. The policy iteration algorithm is described
in Chapter 6.4 of Puterman (2014). We study a modification of this algorithm
in our analysis of optimal monotone policies, which we describe next.

2.2 Monotone Policies

In this section, we describe monotone policies and algorithms for obtaining an
optimal monotone policy for MDPs. First, we define monotone policies.

Definition 1 (Monotone Policy) Suppose that the state space S and action space
A are totally ordered sets. Then, a policy π is a monotone policy if s ≥ s′ implies
that π(s) ≥ π(s′).

Practically speaking, a monotone policy specifies actions that increase in
severity with the state. Letting ΠM ⊂ Π denote the set of all monotone policies,
an optimal monotone policy πM ∈ ΠM satisfies

JπM

(α) = max
π∈ΠM

Jπ(α). (4)

An exact MILP solution to (4) is given by Garcia et al (2022). Letting Ms,a

denote large constants for each s ∈ S and a ∈ A, this formulation is given by:

max
v,x

∑
s∈S

α(s)v(s) (5a)
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subject to: v(s) ≤ r(s, a) + γ
∑
s′∈S

P (s′|s, a)v(s′) +Ms,a (1− x(s, a))

for all s ∈ S, a ∈ A (5b)

x(s, a) ≤
∑
a′≥a

x(s+ 1, a′) for all s ∈ S \ S, a ∈ A (5c)

x(s, a) ∈ {0, 1} for all s ∈ S, a ∈ A. (5d)

Given any optimal solution (ṽ, x̃) of (5), an optimal monotone policy is
given by setting πM (s) = a wherever x̃(s, a) = 1. The dual formulation of
formulation (5) is given by

max
x,y

∑
s∈S

∑
a∈A

r(s, a)y(s, a) (6a)

subject to:
∑
a∈A

y(s, a)− γ
∑
s′∈S

∑
a′∈A

P (s|s′, a′)y(s′, a′) = α(s) for all s ∈ S

(6b)∑
a∈A

x(s, a) = 1 for all s ∈ S (6c)

y(s, a) ≤ Ms,ax(s, a) for all s ∈ S, a ∈ A (6d)

x(s, a) ≤
∑
a′≥a

x(s+ 1, a′) for all s ∈ S \ S, a ∈ A (6e)

y(s, a) ≥ 0 for all s ∈ S, a ∈ A (6f)

x(s, a) ∈ {0, 1} for all s ∈ S, a ∈ A. (6g)

Note that the dual formulation (6) is derived by incorporating the binary
variables x into the standard dual formulation for solving infinite horizon
MDPs via linear programming (Puterman, 2014). That is, x(s, a) = 0 implies
that the state-action occupancy measure y(s, a) = 0, and otherwise, y(s, a) >
0.

Critically, we remark that formulations (5) and (6) may be computationally
intractable for large-scale MDPs. As such, Garcia et al (2022) design the MPI
algorithm, which is detailed in Algorithm 1, to generate a feasible monotone
policy that can be used to warm-start their MILP formulation. We now briefly
describe the MPI algorithm.

The MPI algorithm is initialized with a state ordering rule {σn}n≥1 where
the mapping σn : S → S generates a strict ordering over the states. That is,
σn describes the order in which states are visited in the policy improvement
procedure in iteration n of the algorithm. For example, σn(1) = 3 implies that
in iteration n, state 3 is visited first. Note that the state ordering rule σn

does not have to be known for all n ≥ 1 in advance, but can be computed at
each iteration. In addition to {σn}n≥1, MPI also requires an initial state value
function v0 and a termination threshold ϵ > 0. Then, in each iteration n, MPI
loops through the states in the order given by σn. For each state s = σn(i),
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Algorithm 1 Monotone Policy Iteration

Require: {σn}n≥1, v0, ϵ > 0, n = 0
Ensure: σn : {1, ..., S} → {1, ..., S} is a one-to-one mapping for each n
1: while n = 0 or ∥vn − vn−1∥ > ϵ do
2: n ⇐ n+ 1
3: S̄ ⇐ ∅
4: for i = 1 to S do
5: s ⇐ σn(i)
6: S− ⇐ {s′ ∈ S̄ : s′ < s}
7: S+ ⇐ {s′ ∈ S̄ : s′ > s}
8: if S− = ∅ then
9: Amin(s) ⇐ 1

10: else
11: Amin(s) ⇐ πn(maxS−)
12: end if
13: if S+ = ∅ then
14: Amax(s) ⇐ A
15: else
16: Amax(s) ⇐ πn(minS+)
17: end if
18: An(s) ⇐ {a ∈ A : Amin(s) ≤ a ≤ Amax(s)}
19: πn(s) ⇐ argmaxa∈An(s) r(s, a) + γ

∑
s′∈S P (s′|s, a)vn−1(s

′)

20: S̄ ⇐ S̄ ∪ {s}
21: end for
22: Perform policy evaluation on πn to obtain vn

23: end while
24: return π ⇐ πn

for i = 1, . . . , S, the algorithm uses two sets, S− and S+, to keep track of the
states previously visited in iteration n. Specifically, previously visited states
having a lower state index are stored in the set S− and those with a higher
state index are stored in the set S+. Using these sets, the algorithm constructs
a set of feasible actions An(s), i.e., actions available to be assigned to πn(s)
which ensure that the resulting policy πn is monotone. In particular, the set
An(s) is defined as {a ∈ A : Amin(s) ≤ a ≤ Amax(s)}, where Amin(s) denotes
the action with the smallest index allowed to be chosen for πn(s), and Amax(s)
denotes the action with the largest index allowed to be chosen for πn(s). For
example, if s − 1 ∈ S−, i.e., state s − 1 has been previously visited in the
current iteration, then Amin(s) = πn(s − 1) since πn(s) ≥ πn(s − 1) in order
for πn to be monotone. Then, πn(s) is assigned according to the action which
maximizes the Bellman update operator applied to the value function from the
previous iteration, vn−1, over the set of feasible actions An(s). MPI terminates
when the distance between subsequent value functions exceeds the specified
termination threshold ϵ, i.e., when ∥vn − vn−1∥ > ϵ. In the next section, we
provide an analytical characterization of this algorithm.
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2.3 Analysis of Monotone Policy Iteration

While Garcia et al (2022) utilize the MPI algorithm, they do not analyze the
properties of this algorithm. In this section, we provide several results relating
to the convergence and optimality of MPI.

Proposition 1 Suppose that there exists an integer n∗ such that for all n ≥ n∗,

πn−1(s) ∈ An(s) for all s ∈ S, (7)

i.e., for each state, the policy found in the previous iteration of MPI is in the set of
available actions in the current iteration. Then, MPI will converge in finitely many
iterations. Otherwise, MPI may not converge.

Proof First, we show the case where the algorithm is guaranteed to converge. Con-
sider any n > n∗ and let πn−1 and πn be successive policies generated by Algorithm
1. Let πn satisfy

πn(s) ∈ argmax
a∈An(s)

r(s, a) + γ
∑
s′∈S

P (s′|s, a)vn−1(s
′)

 .

Then, by assumption, πn−1(s) ∈ An(s) for all s ∈ S and

rπn
+ γPπn

vn−1 ≥ rπn−1
+ γPπn−1

vn−1 = vn−1

where the right hand side of the inequality comes from the policy evaluation step.
Rearranging terms yields

rπn
≥ (I − γPπn

)vn−1 ⇒ vn = (I − γPπn
)−1rπn

≥ vn−1,

where (I−γPπn
)−1 exists for 0 ≤ γ < 1 since γPπn

is a bounded linear transformation
with spectral norm < 1. Thus, the values vn of successive policies generated by MPI
are nondecreasing. Since there are finitely many deterministic stationary monotone
policies, we will eventually have vn = vn−1 after a finite number of iterations which
satisfies the termination criteria.

Now, suppose that instead, equation (7) does not hold. We construct an MDP
to show that in this case, the algorithm may not converge. Consider the MDP in
Figure 1and let the inputs to MPI be v0 = (0, 10, 0) and state ordering rule

σn =

{
{1, 2, 3} if n odd

{2, 1, 3} if n even.

Then, the first iteration of MPI yields π1 = (2, 2, 2). Then, the algorithm gives

πn =

{
(2, 2, 2) if n odd

(1, 1, 1) if n even,

with corresponding value functions

vn =

{
(0, 10, 0) if n odd

(10, 0, 0) if n even.

We can verify that equation (7) does not hold: for n ≥ 2 and s ∈ {σn(2), σn(3)},
πn−1(s) /∈ An(s). Thus, the algorithm does not converge for any

ϵ <
∥∥∥[0 10 0

]⊤ −
[
10 0 0

]⊤∥∥∥ .
□
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Figure 1 An MDP for which the MPI algorithm may not converge or may not converge to the
optimal monotone policy. The solid (dashed) lines represent transitions corresponding to action
1 (action 2) which occur with probability 1, and are labeled with the corresponding rewards.

Proposition 1 implies important practical considerations for using the MPI
algorithm: it may be necessary to specify stronger termination criteria, such as
a maximum number of iterations or a tie-breaking rule on the policy to avoid
cycling. We now show that even when MPI converges, it is not guaranteed to
converge to an optimal monotone policy.

Proposition 2 The MPI algorithm is not guaranteed to converge to an optimal
monotone policy.

Proof We show this proof by counterexample. Consider the MDP in Figure 1. If
the initial distribution is α = (0.75, 0.25, 0), then there exists a unique optimal
monotone policy πM = (2, 2, 2) with expected total discounted reward JπM

(α) =
0.75(10)+0.25(0) = 7.5. Suppose that MPI is carried out with σn = {2, 1, 3}, n ≥ 1.
Starting with σ(1) = 2, we have π1(2) = 1. Now, for σ(2) = 1, we have S̄ = {2},
which gives S− = ∅ and S+ = {2}. Then Amin(1) = 1 and Amax(1) = π1(2) = 1,
which gives π1(1) = 1. Following the same calculations for n = 2, we have π2 = π1,
and MPI converges to the policy π1 = (1, 1, 1) with expected total discounted reward
Jπ1

(α) = 0.75(0) + 0.25(10) = 2.5, which is sub-optimal as Jπ1

< JπM

. Hence, MPI
may not always converge to an optimal monotone policy. □

In the following result, we identify conditions under which the policy re-
sulting from the MPI algorithm is near-optimal. We first define the notion of
a δ-optimal monotone policy.

Definition 2 (δ-optimal monotone policy) We say that a monotone policy π is a
δ-optimal monotone policy if

Jπ(α) ≥ (1− δ)JπM

(α). (8)



Springer Nature 2021 LATEX template

Modified Monotone Policy Iteration for Interpretable Policies 11

Proposition 3 Suppose that JπM

(α) ̸= 0 and define

ṽn(s) =
∣∣vM (s)− vn(s)

∣∣ ∀s ∈ S, n ∈ Z+.

Let {σn}n≥1 be a convergent sequence of state ordering rules which induces a sequence

of nonnegative numbers {δn}n≥1 satisfying δn → 0+ and δn ≥ ṽn(s) for all s ∈
S, n ∈ Z+. Then, there exists a positive integer N < ∞ such that Algorithm 1 will

converge after N iterations to a
(

δN

J πM (α)

)
-optimal monotone policy.

Proof First, we show that MPI converges. For all s ∈ S and n ≥ 0, we have

0 ≤
∣∣vn(s)− vn−1(s)

∣∣ =∣∣vn(s)− vM (s) + vM (s)− vn−1(s)
∣∣

≤
∣∣vn(s)− vM (s)

∣∣+ ∣∣vM (s)− vn−1(s)
∣∣ (9)

≤δn + δn−1, (10)

where (9) uses the triangle inequality and (10) uses the definition of ṽn(s) along with
the fact that δn ≥ ṽn(s) for all s ∈ S. Since δn → 0+, we have δn + δn−1 → 0+, and
by the sandwich theorem, we have |vn(s) − vn−1(s)| → 0+. Since this holds for all
s ∈ S, the positivity properties of norms imply that ∥vn − vn−1∥ → 0+. Thus, by
definition of convergence, for every ϵ we can find an N ≥ 1 such that for every n ≥ N,
∥vn − vn−1∥ < ϵ, and the termination criteria in the MPI algorithm is satisfied.

Next, we show that the resulting policy πN , with associated value function vN ,
is a δN -optimal monotone policy. We have

JπM

(α)− Jπ(α) =
∑
s∈S

α(s)(vM (s)− vN (s))

≤
∑
s∈S

α(s)|vM (s)− vN (s)|

≤
∑
s∈S

α(s)δN = δN .

Re-arranging terms yields

JπN (α) ≥
(
1− δN

JπM

(α)

)
JπM

(α).

Thus, πN is a
(

δN

J πM (α)

)
-optimal monotone policy. □

We now identify conditions on the existence of a state ordering rule such
that MPI converges to an optimal monotone policy. We remark that Lemma
4 is similar to Lemma 3 in Mansour and Singh (1999).

Lemma 4 Let π and π̄ be two policies (with corresponding value functions vπ and
vπ̄, respectively) whose actions differ in only one state s̄, i.e., π(s) = π̄(s) for s ̸=
s̄ ∈ S. Suppose that

vπ(s̄) = r(s̄, π(s̄))+γ
∑
s′∈S

P (s′|s̄, π(s̄))vπ(s′) < r(s̄, π̄(s̄))+γ
∑
s′∈S

P (s′|s̄, π̄(s̄))vπ(s′).

Then, vπ(s) < vπ̄(s) for all s ∈ S.
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Proof For s ̸= s̄, we can continually expand vπ to get

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

P (s′|s, π(s))vπ(s′) (11)

= r(s, π̄(s)) + γ
∑
s′∈S

P (s′|s, π̄(s))vπ(s′) (12)

= r(s, π̄(s)) + γ
∑
s′∈S

P (s′|s, π̄(s))
(
r(s′, π(s′)) + γ

∑
s′′∈S

P (s′′|s′, π(s′))vπ(s′′)
)

< r(s, π̄(s)) + γ
∑
s′∈S

P (s′|s, π̄(s))
(
r(s′, π̄(s′)) + γ

∑
s′′∈S

P (s′′|s′, π̄(s′))vπ(s′′)
)

...

= vπ̄(s).

The same reasoning applies for s̄ with strict inequality in (12). Thus, vπ(s) < vπ̄(s)
for all s ∈ S. □

Lemma 5 Suppose we have an optimal monotone policy πM with corresponding
value function vM . For any s ∈ S and a ∈ A, define the policy

π′
s,a(s

′) :=

{
πM (s′), s′ ̸= s

a, s′ = s,

and let the set A′(s) =
{
a ∈ A : π′

s,a ∈ ΠM
}
, i.e., the set of all actions where π′

s,a

is monotone. Then, πM satisfies

πM (s) ∈ argmax
a∈A′(s)

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)vM (s′)

}
, (13)

for all s ∈ S.

Proof First, note that since πM is an optimal monotone policy, for all π ∈ ΠM with
corresponding value function vπ, we have

JπM

(α) ≥ Jπ(α)

⇔
∑
s∈S

α(s)vM (s) ≥
∑
s∈S

α(s)vπ(s).

This implies that for any π ∈ ΠM , there exists at least one s ∈ S for which
vM (s) ≥ vπ(s).

Now suppose for the purpose of contradiction that πM is an optimal mono-
tone policy but there exists an s̄ ∈ S for which πM (s̄) /∈ argmaxa∈A′(s̄){r(s̄, a) +
γ
∑

s′∈S P (s′|s̄, a)vM (s′)}. Then, there must exist an a′ ∈ A′(s̄) such that

r(s̄, πM (s̄)) + γ
∑
s′∈S

P (s′|s̄, πM (s̄))vM (s′) < r(s̄, a′) + γ
∑
s′∈S

P (s′|s̄, a′)vM (s′).

By Lemma 4, vM (s) < vπ
′

s̄,a′ (s) for all s ∈ S, which is a contradiction. □
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Proposition 6 Suppose we have an input vector v0 to Algorithm 1 which satisfies

v0 ∈

{
v ∈ RS : argmax

a∈A′(s)
r(s, a) + γ

∑
s′∈S

P (s′|s, a)vM (s)

= argmax
a∈A′(s)

r(s, a) + γ
∑
s′∈S

P (s′|s, a)v(s′) for all s ∈ S

}
,

(14)

i.e., the input vector v0 yields the same actions as an optimal monotone value func-
tion vM . Then, under a state ordering rule which guarantees that An(s) = A′(s)
for all s = σn(i), i = 1, . . . , S for n ∈ {1, 2}, the algorithm will converge to a
corresponding optimal monotone policy πM in a maximum of two iterations.

Proof For all s = σn(i), i = 1, . . . , S for n ∈ {1, 2}, the algorithm finds πn(s) =
πM (s) by Lemma 5. Thus, v1 = v2 = vM . If ∥v1−v0∥ ≤ ϵ, we are done. Otherwise,
the algorithm terminates after two iterations for arbitrary ϵ, since ∥v2 − v1∥ = 0.

□

Remark A similar result to Proposition 6 could be derived by assuming that
An(s) ⊆ A′(s). However, MPI is designed such that An(s) = A′(s) and from
numerical testing, we found that typically, An(s) ⊃ A′(s).

Proposition 6 provides sufficient conditions under which MPI converges to
an optimal monotone policy πM after two iterations. Accordingly, if MPI ever
reaches an optimal monotone policy, it will necessarily terminate within two it-
erations if these conditions are met. While these conditions may be challenging
to verify in practice, we note that the result highlights the importance of the
state ordering rule and its interaction with the initial vector v0. Specifically,
it is not enough to have an initial vector which guarantees the preservation of
the actions in an optimal monotone policy — the state ordering rule must also
guarantee that the actions corresponding to πM are not excluded from An(s)
for some s ∈ S during the MPI algorithm. To this end, we show in the follow-
ing result that such a state ordering rule can be derived for an MDP with two
actions.

Corollary 6.1 Suppose we have an MDP with A = 2. Given an optimal monotone
value function vM as an input v0 to MPI, there exists a state ordering rule such that
the algorithm converges to πM in one iteration.

Proof Because there are only two actions in A, there are three cases for the structure
of an optimal monotone policy πM (s):

(i) There exists s̄ such that πM (s) = 1 for s < s̄ and πM (s) = 2 for s ≥ s̄.

(ii) πM (s) = 1 for all s ∈ S.
(iii) πM (s) = 2 for all s ∈ S.
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First, we give a state ordering rule for each case which guarantees that A1(s) ⊆ A′(s)
for all s = σ1(i), i = 1, . . . , S.

In case (i), let σ1(1) = s̄ and σ1(2) = s̄−1. In the first iteration of the algorithm
for i = 1, S− = S+ = ∅, so Amin(s̄) = 1, Amax(s̄) = 2, and A1(s̄) = {a ∈ A : 1 ≤
a ≤ 2} = A. We have π′

s̄,1 ∈ ΠM since πM (s̄− 1) = 1 and πM (s̄+ 1) = 2, so letting

π′
s̄,1(s̄) = 1 results in a policy which is still monotone. Trivially, πM = π′

s̄,2 ∈ ΠM .

Then A′(s̄) = {1, 2} = A and A1(s̄) ⊆ A′(s̄). Similarly, A1(s̄ − 1) ⊆ A′(s̄ − 1).
For i > 2, if σ1(i) < s̄ − 1, we have A1(σ1(i)) = 1 and A′(σ1(i)) = 1, and if
σ1(i) > s̄, we have A1(σ1(i)) = 2 and A′(σ1(i)) = 2. Thus, A1(s) ⊆ A′(s) for all
s = σ1(i), i = 1, . . . , S.

In case (ii), let σ1(1) = S, and in case (iii), let σ1(1) = 1; in both cases, the rest
of the states can be visited in arbitrary order. The proofs for both cases are very
similar to that of case (i) and are thus omitted.

Then, since vM clearly satisfies equation (14), we can apply Proposition 6 for
the desired result. Because v0 = vM , the algorithm terminates after one iteration
for arbitrary ϵ. □

In summary, our analysis of the MPI algorithm shows that although there
exist conditions under which the algorithm converges to an optimal or near-
optimal monotone policy, these conditions may be hard to verify. Furthermore,
even when the algorithm is initialized with a monotone optimal value func-
tion, a state ordering rule which satisfies certain conditions must be used
to guarantee that a monotone optimal policy is returned. In general, MPI
may not converge, and may not converge to an optimal monotone policy. In
the next section, we introduce the MMPI algorithm, which addresses these
shortcomings.

2.4 Modified Monotone Policy Iteration

In this section, we propose the MMPI algorithm (Algorithm 2) and provide
an analysis of its convergence as well as the quality of the returned policy in
comparison to that of the MPI algorithm (Algorithm 1). MMPI uses the same
policy improvement step as MPI (described in §2.2); however, in MMPI, we
terminate when the algorithm revisits a policy that has been seen before in-
stead of terminating based on the distance between subsequent value functions
as in MPI. Furthermore, MMPI keeps track of the best policy seen by the
algorithm (i.e., the policy yielding the highest expected total discounted re-
ward) and returns the best policy seen at termination. Note that unlike MPI,
MMPI takes into account the initial state probabilities α. In Theorem 7, we
show that in contrast to MPI, the MMPI algorithm is guaranteed to converge
in a finite number of iterations.

Theorem 7 The MMPI algorithm converges in a maximum of
(S+A+1

A−1

)
+ 1

iterations.
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Algorithm 2 Modified Monotone Policy Iteration

Require: {σn}n≥1, v0, n = 0, α
Ensure: σn : {1, ..., S} → {1, ..., S} is a one-to-one mapping for each n
1: V ⇐ ∅, Jbest ⇐ −∞
2: do
3: if n > 0 then
4: V ⇐ V ∪ {πn}
5: end if
6: n ⇐ n+ 1
7: S̄ ⇐ ∅
8: for i = 1 to S do
9: s ⇐ σn(i)

10: S− ⇐ {s′ ∈ S̄ : s′ < s}
11: S+ ⇐ {s′ ∈ S̄ : s′ > s}
12: if S− = ∅ then
13: Amin(s) ⇐ 1
14: else
15: Amin(s) ⇐ πn(maxS−)
16: end if
17: if S+ = ∅ then
18: Amax(s) ⇐ A
19: else
20: Amax(s) ⇐ πn(minS+)
21: end if
22: An(s) ⇐ {a ∈ A : Amin(s) ≤ a ≤ Amax(s)}
23: πn(s) ⇐ argmaxa∈An(s) r(s, a) + γ

∑
s′∈S P (s′|s, a)vn−1(s

′)

24: S̄ ⇐ S̄ ∪ {s}
25: end for
26: Perform policy evaluation on πn to obtain vn

27: Jn =
∑

s∈S α(s)vn(s)
28: if Jn > Jbest then
29: πbest = πn

30: Jbest = Jn
31: end if
32: while πn /∈ V
33: return πbest

Proof The algorithm terminates in iteration n if πn has been found by the algorithm
in a previous iteration. We can verify from the policy improvement step that the
algorithm is restricted to finding monotone policies; thus, the algorithm can find a
maximum of

(S+A+1
A−1

)
1 (Garcia et al, 2022) unique monotone policies before revis-

iting a monotone policy. Then, the maximum number of iterations is
(S+A+1

A−1

)
+ 1.

□
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We remark that as MMPI uses the same policy improvement procedure as
MPI, some optimality results from the previous section – namely, Proposition
6 and Corollary 6.1 – are still valid for the MMPI algorithm. In the following
result, we show that MMPI yields a better policy than MPI under certain
conditions. We first define a cyclic state ordering rule.

Definition 3 (Cyclic State Ordering Rule) A state ordering rule {σn}n≥1 is called
cyclic with cycle-length k if for any integer n ≥ 1, there exists an integer k ≥ 1 such
that πn = πn+k implies that πn+m = πn+k+m for any integer m ≥ 1 under the
MPI algorithm.

Proposition 8 Let π1
n and π2

n denote the policies found in iteration n of MPI and
MMPI respectively. Let N1 denote the number of iterations after which MPI termi-
nates if it does; if not, let N1 = ∞. Similarly, let N2 denote the number of iterations
after which MMPI terminates, which is guaranteed to be finite (Theorem 7). Let π̂1

and π̂2 denote the policy returned by MPI (if one exists) and MMPI respectively.

(a) Suppose we carry out the MPI and MMPI algorithms with the same inputs
{σn}n≥1 and v0. If N1 ≤ N2, then J π̂1

(α) ≤ J π̂2

(α).

(b) Suppose we carry out the MPI and MMPI algorithms with the same input v0
and cyclic state-ordering rule {σn}n≥1. Define

π̂1
n =

{
π1
n if n ≤ N1

π̂1 if n > N1.

Similarly, define

π̂2
n =

{
π2
bestn

if n ≤ N2

π̂2 if n > N2,

where π2
bestn

denotes the policy assigned to πbest in iteration n of MMPI. Then,

J π̂2

n(α) ≥ J π̂1

n(α) for all n ≥ 1.

Proof First, we prove part (a). Since we have the same inputs for both algorithms,
the same state ordering rule σn≥1, and the same policy improvement procedure, we

have π̂1 = π1
N1

= π2
N1

. By design, Jπ2

n(α) ≤ J π̂2

(α) for all n ≤ N2. Since N1 ≤ N2,

J π̂1

(α) = Jπ2

N1 (α) ≤ J π̂2

(α).
To prove part (b), we only show the case when N1 > N2 as the N1 ≤ N2 case

follows from similar logic as part (a). Then, when n ≤ N2, the same logic as part (a)
gives that π̂1

n = π̂2
n, so J π̂2

n(α) ≥ J π̂1

n(α). Now, if N2 < n ≤ N1, there must exist an
n′ < N2 such that π̂1

n′ = π̂2
n′ = π̂1

N2

= π̂2
N2

since MMPI terminated at N2, and such

that the cycle-length of the cyclic state ordering rule is k = N2 − n′. We can write
n = N2+m̂k+m where m̂ ∈ Z≥0 is some non-negative integer and 1 ≤ m < k. Then,

π̂1
n = π̂1

N2+m̂k+m = π̂1
N2+m = π̂1

n′+m = π̂2
n′+m.

Now, n′ +m < n′ + k = N2, so J π̂2

n(α) ≥ J π̂2

n′+m(α) = J π̂1

n′+m(α) = J π̂1

n(α). Finally, the
proof for n > N1 follows by letting n = N1 in the proof for N2 < n ≤ N1. □
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Proposition 8 shows that, given the same input and the same cyclic state-
ordering rule, MMPI returns a policy which has an expected total discounted
reward that is at least as high as that of the policy returned by MPI. This
holds even when MPI does not converge and the algorithm must be terminated
by specifying a maximum number of iterations, for example. We remark that
in the MMPI algorithm, we could keep track of value functions instead of
policies, terminating when the algorithm revisits a value function seen before.
This may accelerate the convergence of the algorithm when multiple policies
map to the same value function; however, it may require more memory and
introduce numerical precision issues. In our computational analyses (see §4
and §5), we design several state ordering rules for the MMPI algorithm and
analyze their performance with regard to optimality and computational time.

3 Machine Maintenance with Stochastic Repairs

The problem of identifying an optimal monotone policy — even when the opti-
mal policy is not monotone — is of great practical interest when the underlying
MDP has significant structure suggesting that a monotone policy may perform
well. Our goal in this section is to formulate a problem that exhibits signif-
icant problem structure guaranteeing the existence of an optimal monotone
policy. Then, we ultimately plan to perturb the problem data in our numerical
experiments (see §4) so that the optimal policy is no longer guaranteed to be
monotone, but an optimal monotone policy may still be of practical interest.

Accordingly, we motivate our choice of studying machine maintenance as
an optimization problem with significant structure in §3.1. Next, we formu-
late a scalable single-unit condition-based optimization problem with multiple
stochastic repair options in §3.2. Then, we show in §3.3 that this formulation
is guaranteed to have an optimal monotone policy. Our computational exper-
iments (see §4) involve perturbations of this problem with varying sizes of S
and A.

3.1 Condition-based Maintenance Optimization

Maintenance optimization problems comprise a large class of well-studied prob-
lems with such structure (Osaka, 2002; Wang, 2002; de Jonge and Scarf, 2020).
Specifically, in condition-based maintenance optimization, a decision-maker
monitors the condition of one or more degrading systems over time and must
determine if and when to perform maintenance actions on the system (Jardine
et al, 2006). Notably, the degradation process is often assumed to be irre-
versible and assumed to worsen over time (Elwany et al, 2011). Maintenance
actions often include replacement, which is very costly but resets the system’s
degradation state, and/or repair, which is less costly than replacement but
improves the system’s degradation state by a lesser degree. Due to the sequen-
tial nature of monitoring and repair decisions, condition-based maintenance
problems and their variations are often modeled as an MDP (Kurt and Mail-
lart, 2009; Kurt and Kharoufeh, 2010; Elwany et al, 2011; Ulukus et al, 2012;
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Liu et al, 2017; Zheng and Makis, 2020; Zhang and Zhang, 2023). Moreover,
for many variations of the problem considering only replacement as a repair
option, it the optimal policy may exhibit a control-limit structure, i.e., replace-
ment is optimal once the system’s degradation state exceeds some threshold
(Kurt and Maillart, 2009; Kurt and Kharoufeh, 2010; Ulukus et al, 2012; Liu
et al, 2017). Likewise, variations of the problem which include some repair
actions exhibit optimal monotone policies (Zheng and Makis, 2020).

3.2 Model Formulation

We now formulate a general single-unit condition-based optimization problem
with machine replacement and multiple stochastic repair options. Let st ∈
S = {0, 1, ..., S} denote the condition of the system in time t, with each state
representing increasing levels of degradation. After the decision-maker observes
the system state, she selects a repair option at ∈ A = {0, ..., A}. The repair
actions a = 0 and a = A correspond to no repair and machine replacement,
respectively, whereas all other a ∈ A \ {0, A} correspond to stochastic repair
actions of increasing quality. To be precise, each a ∈ A stochastically repairs
the condition of the machine by Y a

t , where the random variable Y a
t has the

following probability mass function:

P(Y a
t = y) =


1 a = 0, y = 0 or a = A, y = S

2y/(a(a+ 1)) a ̸= 0, A and y = 0, ..., a

0 otherwise.

Note that since the machine’s condition cannot be improved beyond 0, the
machine’s condition after repair is given by Zt = max{0, st − Y a

t }. After
repair, the machine operates and experiences Xt shocks, where each shock
degrades the machine’s condition by 1 unit. The random variable Xt is Ge-
ometrically distributed with parameter ρ, i.e., P(Xt = x) = (1 − ρ)xρ for
any non-negative integer x ∈ Z+. Since the machine cannot degrade beyond
condition S, the post-deterioration state is given by st+1 = min{S,Zt +Xt}.
With these dynamics, we determine the transition probabilities by evaluating
P (s′|s, a) = P (s′ = min{S,max{0, s − Y a

t } + Xt}). We illustrate these tran-
sition dynamics in Figure 2, and we model the transition probability matrix
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Figure 2 Illustration of transition dynamics and transition probabilities for the machine main-
tenance problem

with components

P (s′|s, a) =



∑a
y=0(1− ρ)s

′−s+yρ 2y
a(a+1) a < A, a ≤ s, s′ < S∑a

y=0(1− ρ)S−s+y 2y
a(a+1) a < A, a ≤ s, s′ = S∑s−1

y=0(1− ρ)s
′−s+yρ 2y

a(a+1)

+
∑a

y=s(1− ρ)s
′
ρ 2y
a(a+1)

s ≤ a < A, s′ < S∑s−1
y=0(1− ρ)S−s+y 2y

a(a+1)

+
∑a

y=s(1− ρ)S 2y
a(a+1)

s ≤ a < A, s′ = S

(1− ρ)s
′
ρ a = A, s′ < S

(1− ρ)S a = A, s′ = S

0 otherwise.

In every period, the decision-maker incurs a cost given by r(s, a) =
−(c1(s) + c2(a)), where c1(s) is a fixed maintenance cost and c2(a) is a
repair-dependent cost. We assume that c1(s) is increasing in s and c2(a) is
increasing in a. The decision-maker’s objective is to maximize her expected to-
tal discounted reward, or equivalently, minimize her expected total discounted
cost.This objective results in the following value function:

v∗(s) = max
a∈A

{
− (c1(s) + c2(a)) + γ

∑
s′∈S

P (s′|s, a)v(s′)
}

for all s ∈ S.

An optimal policy π∗ ∈ Π identifies a cost-minimizing action in each state.
In the next section, we show that there exists an optimal policy π∗ that is
monotone.
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3.3 Analytical Properties

We now show that there is guaranteed to be an optimal policy that is mono-
tone. That is, there exists π∗ ∈ ΠM . To prove this result, we begin with the
following definitions.

Definition 4 (First-order Stochastic Dominance (Krishnamurthy, 2016)) Let f1
and f2 be any two probability mass functions on S. The distribution f1 has first-
order stochastic dominance on f2 (denoted by f1 ⪰ f2) if

∑
k≥s f1(k) ≥

∑
k≥s f2(k)

for any s ∈ S.

Definition 5 (Supermodular) A function g : S ×A → R is supermodular on S ×A
if g(s+, a+) + g(s−, a−) ≥ g(s+, a−) + g(s−, a+) for any s+, s− ∈ S with s+ ≥ s−

and a+, a− ∈ A with a+ ≥ a−.

These definitions are standard tools in monotone comparative statistics.
We now use these tools to highlight key properties of our machine maintenance
problem.

Proposition 9 The following properties hold.

1. P (·|s+ 1, a) ⪰ P (·|s, a) for any s ≤ S − 1, a ∈ A.

2. P (·|s, a) ⪰ P (·|s, a+ 1) for any a ≤ A− 1, s ∈ S.
3. The optimal value function v∗(s) is non-increasing in s.

Proof The proof for each property proceeds as follows.

1. It suffices to show that
∑

k≥s′ P (k|s+1, a) ≥ P (k|s, a) for any k ∈ S, s ≤ S−1,

and a ∈ A. Equivalently, we must show that P(st+1 ≥ s′|st = s, at = a) is
increasing in s. Take any s ∈ S, s ≤ S − 1, and consider each of the following
cases.

• Case 1: Suppose that a ∈ A, a ≤ A− 1. We have

P(st+1 ≥ s′|st = s, at = a) = P(Zt +Xt = s′|s, a)

=
s′∑

z=0

P(Xt ≥ s′ − z|Zt = z, s, a)P(Zt = z|s, a)

=
s′∑

z=0

P(Xt ≥ s′ − z)P(max{0, s− Y a
t } = z|s, a)

=
s′∑

z=0

(1− ρ)s
′−z+1

(
2(s− z)

a(a+ 1)

)
+ (1− ρ)s

′+1
a∑

y=s+1

2y

a(a+ 1)
. (15)

Notice that the expression in (15) is increasing in s. Thus, P (·|s+ 1, a) ⪰
P (·|s, a) for any s ≤ S − 1, 1 ≤ a ≤ A− 1.

• Case 2: For the case where a = A, we have P(Zt = 0) = 1. Therefore,

P(st+1 ≥ s′|st = s, at = A) = P(Xt ≥ s′) = (1− ρ)s
′+1,

which is equal for all s ∈ S. Thus, P (·|s+1, A) ⪰ P (·|s,A) for any s ≤ S−1.
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• Case 3: Finally, suppose that a = 0, we have P(Zt = s) = 1. Therefore,

P(st+1 ≥ s′|st = s, at = 0) = P(Xt ≥ max{0, s′ − s})

=

{
1 s′ ≤ s

(1− ρ)s
′−s+1 s′ > s

.

Clearly, this expression is increasing in s. Thus, P (·|s+1, a) ⪰ P (·|s, a) for
any s ≤ S − 1, a = 0.

Since P (·|s+1, a) ⪰ P (·|s, a) for all s ≤ S−1 and a ∈ A, the proof is complete.

2. It suffices to show that P(st+1 ≥ s′|st = s, at = a) is non-increasing in a for
any s ∈ S and a ∈ A. Take any s ∈ S and consider the following cases.

• Case 1: Suppose that 1 ≤ a ≤ A − 2. Since (15) is decreasing in a,
P (·|s, a) ⪰ P (·|s, a+ 1) for any 1 ≤ a ≤ A− 2.

• Case 2: Suppose that a = A− 1. Then, we have that

P(st+1 ≥ s′|st = s, at = A) = P(Xt ≥ s′) = (1− ρ)s
′+1

= (1− ρ)s
′+1

 s′∑
z=0

(
2(s− z)

A(A− 1)

)
+

A−1∑
y=s+1

2y

A(A− 1)


≤

s′∑
z=0

(1− ρ)s
′−z+1

(
2(s− z)

A(A− 1)

)
+ (1− ρ)s

′+1
A−1∑

y=s+1

2y

A(A− 1)

= P(st+1 ≥ s′|st = s, at = A− 1).

Thus, P (·|s,A− 1) ⪰ P (·|s,A).
• Case 3: Suppose that a = 0. Then, we have

P(st+1 ≥ s′|st = s, at = 0)

= P(Xt ≥ max{0, s′ − s}) =

{
1 s′ ≤ s

(1− ρ)s
′−s+1 s′ > s

.

If s′ ≤ s, then we have our desired result. Otherwise, if s′ > s, then notice
that

P(st+1 ≥ s′|st = s, at = 1) = P(Xt ≥ s′ − s+ 1|st = s, at = 1)

= (1− ρ)s
′−s+2 ≤ (1− ρ)s

′−s+1 = P(st+1 ≥ s′|st = s, at = 0).

Thus, P (·|s, 0) ⪰ P (·|s, 1).
Since P (·|s+ 1, a) ⪰ P (·|s, a) for all s ∈ S and a ∈ A, the proof is complete.

3. Using induction on the value iteration algorithm, we show that v∗(s) is non-
increasing in s. Let vn(s) denote the value function for iteration n and let πn(s)
denote the optimal action in iteration n, with v0(s) = 0 for all s ∈ S. By
construction, the base case holds. Now, assume that vn(s) is non-increasing in
s for n = 0, 1, ..., t. For n = t+ 1, we have

vt+1(s+ 1) = max
a∈A

r(s+ 1, a) + γ
∑
s′∈S

P (s′|s+ 1, a)vt(s
′)


= r(s+ 1, πt+1(s+ 1)) + γ

∑
s′∈S

P (s′|s+ 1, πt+1(s+ 1))vt(s
′)
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≤ r(s, πt+1(s+ 1)) + γ
∑
s′∈S

P (s′|s, πt+1(s+ 1))vt(s
′) (16)

≤ r(s, πt+1(s)) + γ
∑
s′∈S

P (s′|s, πt+1(s))vt(s
′) (17)

= vt+1(s).

In the preceding equations, inequality (16) follows from the fact that r(s, a)
is non-increasing in s, the fact that P (·|s + 1, a) ⪰ P (·|s, a), and the induc-
tion hypothesis (i.e. vt(s

′) is non-increasing in s′). Inequality (17) follows from
the definition of πt+1(s). Thus, vn(s) is non-increasing in s for all n. Since
limn→∞ vn(s) = v∗(s), we have our desired result.

□

Proposition 9 highlights several important properties of our machine main-
tenance problem. The first property implies that machines in worse condition
are more likely to be in a worse future condition given the same repair action.
The second property implies that machines receiving a higher quality repair
action are more likely to be in better future condition than if the same ma-
chine were to receive a lower quality repair action. Finally, the third property
implies that the cost incurred by performing the optimal action in each state
increases as the machine’s degradation increases. Altogether, these properties
suggest that machines in worse condition should receive higher quality repair
actions compared to machines in better condition. That is, the optimal policy
should be monotone. Indeed, we prove this property in the following result.

Theorem 10 There exists an optimal policy π∗ for the machine maintenance
problem that is monotone. That is, π∗(s) ≤ π∗(s′) for any s ≤ s′.

Proof Topkis’ Theorem (Topkis, 1978) states that there exists an optimal policy
π∗ that is monotone if the function Q(s, a) := r(s, a) + γ

∑
s′∈S P (s′|s, a)v∗(s′) is

supermodular on S × A. Thus, it suffices to show that Q(s, a) is supermodular on
S ×A. To show this result, we first notice that by expanding terms, we have

Q(s+ 1, a+ 1) +Q(s, a) ≥ Q(s+ 1, a) +Q(s, a+ 1)

⇐⇒ − c1(s+ 1)− c1(s)− c2(a+ 1)− c2(a)

γ +
∑
s′∈S

(
P (s′|s+ 1, a+ 1) + P (s′|s, a)

)
v∗(s′)

≥ −c1(s+ 1)− c1(s)− c2(a+ 1)− c2(a)

+ γ
∑
s′∈S

(
P (s′|s+ 1, a) + P (s′|s, a+ 1)

)
v∗(s′)

⇐⇒
∑
s′∈S

(
P (s′|s+ 1, a+ 1) + P (s′|s, a)

)
v∗(s′)

≥
∑
s′∈S

(
P (s′|s+ 1, a) + P (s′|s, a+ 1)

)
v∗(s′).

(18)
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Thus, it suffices to show that (18) holds. Since P (·|s+ 1, a) ⪰ P (·|s, a) and v∗(s′) is
non-increasing in s′, we have∑

s′∈S
P (s′|s, a)v∗(s′) ≥

∑
s′∈S

P (s′|s+ 1, a)v∗(s′). (19)

Similarly, since P (·|s+1, a) ⪰ P (·|s+1, a+1) and v∗(s′) is non-decreasing in s′, we
have ∑

s′∈S
P (s′|s+ 1, a+ 1)v∗(s′) ≥

∑
s′∈S

P (s′|s+ 1, a)v∗(s′). (20)

Adding (19) to (20) gives (18), which completes the proof. □

Since this machine maintenance problem has an optimal policy that is
monotone, random perturbations of the transition probabilities could result in
a machine maintenance problem whose optimal policy is monotone or almost
monotone. As such, we believe that our machine maintenance problem is an
ideal test bed for the numerical testing of Algorithm 1.

4 Computational Experiments - Machine
Maintenance Problem

In this section, we assess the computational performance of various state order-
ings in the MMPI algorithm as applied to the machine maintenance problem
described in §3.2 for varying sizes of S and A. However, instead of imple-
menting the problem exactly as described in §3.2, we perturbed the transition
matrix P . Perturbing P from its nominal values could mean that a monotone
policy is no longer optimal. Regardless, practitioners may still be interested in
generating monotone policies for maintaining this machine due to underlying
problem structure.

4.1 Implementation of the Machine Maintenance
Problem

In our numerical implementation of the machine maintenance problem,
we set r1(s) = 10s and r2(a) = 5a2. For each state space size |S| ∈
{50, 100, 200, 400} and action space size |A| ∈ {20, 40}, we generated 40
instances of the machine maintenance problem with randomly perturbed tran-
sition probabilities and randomly generated initial distributions. To perturb
the transition probabilities, we changed the distribution associated with Y a

t

and Xt. For a ∈ {1, ..., A − 1}, we generated the non-zero probabilities[
P(Y a = a) P(Y a = a− 1) ... P(Y a = 1)

]
according to a Dirichlet distribution

with parameters (a, a − 1, ..., 0). We also randomly generated the parameter
ρs associated with Xt for each s ∈ S according to a uniform distribution with
support [0.4, 0.6]. We set the initial distribution α to be a vector with entries
α(s) = 2(S−s)/(S(S+1)). For each instance, we first found the optimal (non-
monotone) policy using linear programming and recorded the optimal value
functions v∗(s). Then, we carried out MMPI initialized with the optimal value
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functions using different state ordering rules σ, as described in the next sub-
section. The monotone policy resulting from the MMPI algorithm was then
supplied as an initial feasible solution to formulation (6).

4.2 State Ordering Rules

In this section, we describe the state ordering rules σ considered in our numer-
ical experiments. We investigated state ordering rules based on the following
quantities, with the following motivations:

• vn(s): the state value function of state s at iteration n of the MMPI
algorithm. A state ordering rule based on increasing (resp., decreasing)
values of vn(s) prioritizes states that have the least (resp., greatest) value
under policy πn.

• v∗(s) − vn(s): the difference between the value of the optimal (non-
monotone) policy and the state value function at iteration n of the MMPI
algorithm. A state ordering rule based on increasing (resp., decreasing)
quantities of v∗(s) − vn(s) prioritizes states that are closest to (resp.,
furthest from) the optimal state value under policy πn.

• α(s): the initial probability that the machine is in state s. A state ordering
rule based on increasing (resp., decreasing) values of α(s) prioritizes states
that are most likely (resp., least likely) to be the initial state of the MDP.

• τn(s): the stationary distribution at state s of the Markov chain induced
by the policy πn. A state ordering rule based on increasing (resp., de-
creasing) values of τn(s) prioritizes states that are most likely (resp., least
likely) to be occupied under policy πn.

State ordering rules were constructed for each quantity by considering order-
ings from smallest to largest (i.e., increasing) and vice versa (i.e., decreasing).
We also considered select two-factor interactions, i.e., the products of two quan-
tities above, in both the increasing and decreasing cases. All state ordering
rules are summarized in Table 1.

As a “control” state ordering rule, we included state ordering rule σ0,
which randomly permutes the set of states {1, . . . , S} at each iteration of
Algorithm 1, and rule σ1 (resp., σ10), which orders the states by decreasing
(resp., increasing) index. Note that rules σk, k ∈ {1, 4, 10, 13}, are rules whose
state orderings do not change in each iteration of MMPI, while the rest are
rules whose state orderings may change in each iteration of the algorithm.

4.3 Performance Metrics

We evaluated the performance of the MMPI algorithm for each state ordering
rule under the following criteria:

• Optimality gap between the optimal monotone policy and the pol-
icy generated by the MMPI algorithm. We calculate this metric as(
Jπ′

(α)− JπMMPI

(α)
)
× 100/Jπ′

(α) if the solver found an optimal so-

lution to (6) within the time limit and π′ = π∗ (i.e, the optimal MDP
policy from solving (3)) otherwise. For every combination of |S| and |A|,
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Table 1 State ordering rules tested in the MMPI algorithm in computational
experiments. In each entry of the table, the rule number corresponds to the state ordering
rule that orders the states by decreasing (increasing) order of the product of the row title
and column title. Rule 1 (10) orders the states by decreasing (increasing) index, and rule 0
(not shown in the table) corresponds to randomly shuffling the states.

1 vn(s) v∗(s)− vn(s)

1 σ1 (σ10) σ2 (σ11) σ3 (σ12)
α(s) σ4 (σ13) σ5(σ14) σ6 (σ15)
τn(s) σ7 (σ16) σ8 (σ17) σ9 (σ18)

we compute this metric for each instance and report the mean, median,
and standard deviation across all instances.

• Computation time (seconds) of the MMPI algorithm.
• Computation time (seconds) of MILP formulation (6) when warm-started

with the resulting policy from the MMPI algorithm. Any instances that
did not solve formulation (6) within the time limit were noted as such.

All experiments were performed on a computing cluster with Intel Xeon
Gold 6226R 2.7GHz machines using the commercial optimization solver Gurobi
9.5.2. The time limit set in Gurobi for each problem instance was 1800 seconds.

4.4 Results

Our results on the quality of the policies generated and the computation time
taken by the MMPI algorithm using the various state ordering rules are sum-
marized in Figures 3 and 4 for action spaces of size |A| = 20 and |A| = 40,
respectively (see Appendix A for details). In each figure, we highlight the “effi-
cient” state ordering rules on the Pareto frontier of mean computational time
and mean optimality gap computed across all instances. We find that there ex-
ists a small trade-off between the optimality gap of the policies generated and
the running time of the state ordering rules, but that the fastest state order-
ing rules are still able to produce policies with relatively low optimality gaps.
We observe that state ordering rule 0, which was an efficient state ordering
rule across all state and action space sizes, consistently yielded a policy which
was either optimal or very close to optimal (0.1% optimality gap) in instances
where an optimal monotone policy was found by the solver within the time
limit. However, rule 0 also consistently took the longest amount of time, with
mean computation times ranging from approximately three to five times that
of the fastest state ordering rule for |A| = 20 and approximately 11-18 times
for |A| = 40. As state ordering rule 0 randomly shuffles the states, it is able to
explore a larger policy space than other state ordering rules - thereby yielding
a higher quality policy at the expense of a longer computation time.

We also observe that state ordering rules 3 and 12, which orders states
by v∗(s) − vn(s) (the gap between the value of the optimal (possibly non-
monotone) policy and the state value function at iteration n of the MMPI
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Figure 3 Trade-off curve representation of the mean computational time vs. mean optimality
gap for various state ordering rules in the MMPI algorithm for machine maintenance MDPs,
|A| = 20. Blue dots (labeled) represent state ordering rules on the Pareto efficiency frontier.
Red dots (unlabeled) represent state ordering rules that are dominated.

algorithm) in decreasing and increasing order, respectively, consistently ap-
peared on or close to the Pareto frontier. Under the increasing ordering of rule
12, the MMPI algorithm terminated faster to a policy of worse quality than
the decreasing ordering of rule 3. This may be due to the fact that rule 12
prioritizes states which are already close to optimal. Accordingly, from itera-
tion to iteration, states that are already assigned optimal actions keep these
actions while only states that are furthest from optimal may change their as-
signed actions. Similarly, state ordering rules 6 and 15, which order states
by the product of v∗(s) − vn(s) and the initial probabilities α(s) in decreas-
ing and increasing order respectively, also consistently appear on or near the
Pareto frontier, with state ordering rule 15 producing policies with a higher
optimality gap faster than state ordering rule 12. Across all state and action
space sizes, the fastest state ordering rules produced policies with optimality
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Figure 4 Trade-off curve representation of the mean computational time vs. mean optimality
gap for various state ordering rules in the MMPI algorithm for machine maintenance MDPs,
|A| = 40. Blue dots (labeled) represent state ordering rules on the Pareto efficiency frontier.
Red dots (unlabeled) represent state ordering rules that are dominated. State space(s) for which
the monotone optimal policy is unknown for at least one instance (and thus for which the
optimality gap was computed using the optimal policy upper bound) are indicated with a gray
background.

gaps less than approximately 5%, suggesting that using these ordering rules
in the MMPI algorithm, we can find monotone policies of high quality rela-
tively quickly. While any state ordering in standard policy iteration will find
an optimal monotone policy if the optimal policies are monotone, these state
ordering rules may allow for faster convergence than others.

4.5 Computation Time of MILP Formulation with
MMPI Warm-start

Figures 5 and 6 depict the total computation time for the solution procedure,
i.e., the computation time for the MMPI algorithm to generate a warm start
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policy which is then fed into MILP formulation (6), for |A| = 20 and |A| = 40
respectively (see Appendix A for a tabular summary).

Overall, the computation time of MILP formulation (6) for each state or-
dering rule was relatively consistent regardless of the quality of the warm
starting solution from MMPI. For |A| = 20, solving the MILP constituted the
majority of the total computational time for the state ordering rules that com-
pleted the MMPI algorithm relatively quickly; for slower state ordering rules,
completing the MMPI algorithm constituted the majority of the total com-
putational time. Because Gurobi was not able to solve all of the instances for
|A| = 40 within the time limit (see Table 11 in Appendix A), it is difficult to
generalize these results to higher action space sizes.

For |S| = 50, we found that the MMPI algorithm scaled better than the
MILP formulation with increasing action space size given warm-starting poli-
cies of similar quality. State ordering rule 6, for example, had a small increase
in computational time for the MMPI algorithm from 54 seconds on average
for |A| = 20 to 64 seconds on average for |A| = 40, producing policies with
average optimality gaps of 0.07% and 0.09% respectively. When warm-started
with these policies, however, the solver took approximately three times longer
to solve the MILP on average for |A| = 40 than |A| = 20. This underscores
the utility of algorithms such as MMPI in solving for high quality monotone
policies particularly for MDPs with large action sizes when MILP formula-
tions are intractable. In general, we found that the computation time for MILP
formulation (6) increases much faster with action space size than with state
space size. For sequential decision-making problems with structure suggesting
the near-optimality monotone policies (e.g., the machine maintenance problem
studied in this section), our results suggest that certain state ordering rules
can help achieve a policy with very low optimality gap and low running times
compared to the complete solution procedure with the MILP. For example, the
results for the fastest state ordering rules (e.g., rule 12) were much faster than
the MILP and near-optimal rules (e.g., rule 0) produced high-quality policies
with optimality gaps around 0.1%. Accordingly, for such well-performing or-
dering rules, the additional computation time for solving the MILP may not
be worth the improvement in the quality of the policy, especially for large ac-
tion sets. To this end, we next explore the performance of MMPI under these
state ordering for the case where the MDP lacks the type of structure inherent
in machine maintenance problems.

5 Computational Experiments - Random MDPs

In this section, we assess the computational performance of various state or-
derings in the MMPI algorithm on randomly generated MDP instances to
verify the robustness of the results from the machine maintenance application
in §4. In contrast to the machine maintenance setting, random MDPs have no
inherent structure.
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Figure 5 Total computation time for complete solution procedure (MMPI and MILP formu-
lation (6)) for machine maintenance MDPs, |A|=20

5.1 Implementation of Random MDPs

For each state space size |S| ∈ {50, 100, 200} and action space size |A| ∈
{5, 10}, we generated 40 instances of randomly generated MDPs. We chose
these state and action space sizes to keep computational times reasonable;
in preliminary tests, we found that for the same state and action space size,
randomly generated MDPs took much longer to solve than the machine main-
tenance MDPs from §4. For each instance, we randomly generated a stochastic
transition matrix P , initial probabilities α, and rewards from the continuous
uniform distribution Unif [0, 1). Each row of the transition probability matrix
and the vector of initial probabilities were normalized to ensure they summed
to 1.

All instances were tested using MMPI (i.e., Algorithm 2) with a maximum
number of 50 iterations using the same state ordering rules introduced in
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Figure 6 Total computation time for complete solution procedure (MMPI and MILP formu-
lation (6)) for machine maintenance MDPs, |A|=40

§4.2. We evaluated the performance of the MMPI algorithm using the same
performance metrics detailed in §4.3.

5.2 Results

Our results on the quality of the policies generated and the computation time
taken by the MMPI algorithm using the various state ordering rules are sum-
marized in Figures 7 and 8 for action spaces of size |A| = 5 and |A| = 10,
respectively (see Appendix B for details). In each figure, we highlight the state
ordering rules on the Pareto frontier of average running time and average op-
timality gap computed across all instances. As in the machine maintenance
setting of §4, there exists a trade-off between the optimality gap of the poli-
cies generated and the running time of the state ordering rules. In the random
MDP setting, however, this trade-off is more apparent in that the policies
produced by the fastest state ordering rules always have among the highest
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Figure 7 Trade-off curve representation of the mean computational time vs. average optimal-
ity gap for various state ordering rules in the MMPI algorithm for random MDPs, |A| = 5. Blue
dots (labeled) represent state ordering rules on the Pareto efficiency frontier. Red dots (unla-
beled) represent state ordering rules that are dominated. State space(s) for which the monotone
optimal policy is unknown for at least one instance (and thus for which the optimality gap was
computed using the optimal policy upper bound) are indicated with a gray background.

Figure 8 Trade-off curve representation of the mean computational time vs. average optimal-
ity gap for various state ordering rules in the MMPI algorithm for randomMDPs, |A| = 10. Blue
dots (labeled) represent state ordering rules on the Pareto efficiency frontier. Red dots (unla-
beled) represent state ordering rules that are dominated. State space(s) for which the monotone
optimal policy is unknown for at least one instance (and thus for which the optimality gap was
computed using the optimal policy upper bound) are indicated with a gray background.

optimality gaps, as evidenced by the fact that a larger number of state order-
ing rules fell along the Pareto frontier. Note that, in contrast with the machine
maintenance MDPs, it is not guaranteed for random MDPs that there exists
an optimal policy which is monotone or almost monotone. Thus, the fastest
state ordering rules have higher optimality gaps than in the machine mainte-
nance setting, where even the fastest state ordering rules have relatively low
optimality gap; for instances where the solver was not able to find an optimal
monotone policy, the optimality gap - calculated using the upper bound value
of the optimal policy in these instances - was much higher than in the machine
maintenance setting as the optimal policy could be very far from monotone.

Our experiments in the random MDP setting confirm our findings in the
machine maintenance setting in that state ordering rule 0 consistently produces
policies with the lowest optimality gaps across state ordering rules at the
expense of computational time. State ordering rule 0 was able to achieve less
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than approximately a 5% optimality gap on average in instances for which
the solver was able to find an optimal monotone policy within the time limit.
Also in line with our findings from the machine maintenance setting, we found
that state ordering rules 6 and 15 were efficient or nearly efficient for all of the
state and action space sizes tested; in contrast, however, we found that state
ordering rules 3 and 12 were not nearly as consistently efficient. Ordering rules
6, 15, 3, and 12 all consider the quantity v∗(s) − vn(s), but ordering rules 6
and 15 mediate this quantity with the initial probabilities α(s). This suggests
that it provides more benefit to consider α(s) in addition to v∗(s)− vn(s) in a
random MDP setting in which the optimal monotone policy is not guaranteed
to be close to monotone. In particular, ordering rule 6 - which prioritizes states
with larger initial probabilities - was efficient in all of the state and action
space sizes tested. Interestingly, state ordering rules 4 and 13 – the latter of
which was proposed in the MPI algorithm by Garcia et al (2022) – were not
consistently on the Pareto frontier. Rules 4 and 13 prioritize α(s) in decreasing
and increasing order respectively; our results suggest that we can likely improve
upon these rules by considering other quantities such as v∗(s)− vn(s).

We also found that state ordering rules 1 and 10, which respectively order
states by decreasing and increasing indices and stay the same from iteration to
iteration, are among the fastest state ordering rules across all state and action
space sizes. However, comparing state ordering rules with lower computational
times and higher optimality gaps, we find diminishing returns along the Pareto
frontier when attempting to lower the optimality gap through higher com-
putational times. For example, comparing state ordering rule 10 to rule 6, a
decrease in optimality gap of 0.01 corresponds to an increase in computational
time of around 5-9 seconds in instances for which the solver was able to find an
optimal monotone policy within the time limit; to achieve the same decrease in
optimality gap from state ordering rule 6 to rule 0, however, the corresponding
increase in computational time is around 40-110 seconds. Thus, in practice, it
may be worth using state ordering rule 6 despite the relatively small increase
in computational time instead of rule 10 for the improvement in policy quality.

5.3 Computation Time of MILP Formulation with
MMPI Warm-start

Figures 9 and 10 depict the total computation time for the solution proce-
dure, i.e., the computation time for the MMPI algorithm to generate a warm
start policy then fed into MILP formulation (6), for |A| = 5 and |A| = 10
respectively (see Appendix B for a tabular summary).

We confirm our finding from the machine maintenance setting that the
computation time of MILP formulation (6) for each state ordering rule was
relatively consistent regardless of the quality of the warm starting solution from
MMPI. We found that the solver took much longer to find the optimal policy
in the random MDP setting than the machine maintenance setting; while the
solver found an optimal monotone policy within the time limit for nearly all
instances with |S| = 200, |A| = 20 in the machine maintenance setting, the
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Figure 9 Total computation time for complete solution procedure (MMPI and MILP formu-
lation (6)) for random MDPs, |A|=5

solver was not able to find an optimal monotone policy within the time limit
for nearly all instances with |S| = 200, |A| = 5 in the random MDP setting.
Furthermore, this finding is consistent given a warm-starting policy of similar
quality. In the machine maintenance setting for |S| = 100, |A| = 20, the solver
took around 150 seconds on average to solve the MILP when warm-started
with policies that had a mean optimality gap of 5%; in the random MDP
setting for |S| = 100, |A| = 5, the solver took around 200 seconds on average
to solve the MILP when warm-started with policies that had the same mean
optimality gap of 5%. We also found that the MMPI algorithm was slower in
the random MDP setting than the machine maintenance setting. The fastest
state ordering rule was able to solve instances with |S| = 200, |A| = 40 in
approximately 100 seconds on average in the machine maintenance setting;
in the random MDP setting, the fastest state ordering rule was able to solve
instances with |S| = 200 and only |A| = 10 in approximately the same time
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Figure 10 Total computation time for complete solution procedure (MMPI and MILP for-
mulation (6)) for random MDPs, |A|=10

on average. These findings suggest that the structure inherent in the machine
maintenance setting is advantageous for both the MMPI algorithm and solving
the MILP.

Finally, we confirm our finding that the MMPI algorithm scaled better
than the MILP with increasing action space size when warm-started with
policies of similar quality for |S| = 50. State ordering rule 10, which was
among the fastest state ordering rules for completing the MMPI algorithm,
had a negligible increase in computational time for the MMPI algorithm from
21 seconds on average for |A| = 5 to 23 seconds on average for |A| = 10,
producing policies with average optimality gaps of 14% and 19% respectively.
For the MILP, however, the solver took 25 times longer to solve on average
for |A| = 10 than |A| = 5. It is difficult to generalize this finding to larger
state spaces, however, as the solver was not able to solve any instances for
|S| = 100, |A| = 10 and |S| = 200, |A| = 10 within the time limit.
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6 Conclusions

In this paper, we proposed an MMPI algorithm with better theoretical conver-
gence and optimality properties than the previously proposed MPI algorithm.
We also investigated variations in state ordering rules of the MMPI algorithm
and the effects on the quality of the resulting policy as well as computational
effort required by the MILP when the resulting policy is used as an initial fea-
sible solution. Computational results reveal that choosing a state ordering rule
in the MMPI algorithm involves a trade-off between finding a policy with low
optimality gap and finding a policy quickly. This trade-off is more pronounced
with random MDPs, as even the fastest state ordering rules in the the ma-
chine maintenance setting find high quality policies (less than approximately
5% mean optimality gap). This suggests that in structured problems such as
machine maintenance, one can use MMPI as a heuristic algorithm to solve for
a near-optimal monotone policy in large-scale MDPs relatively quickly. Our re-
sults on random MDPs suggest that both the MMPI algorithm and the MILP
formulation benefit computationally from a structured problem, as randomly
generated MDPs took much longer to solve than machine maintenance MDPs.

While we show promising results in overcoming computational challenges
associated with solving for interpretable policies in sequential decision-making
problems, there are some limitations. Our computational results yield interest-
ing insights, but future research may consider deriving theoretical bounds on
the quality of the solution found or the rate of convergence of the MMPI algo-
rithm using certain state ordering rules, particularly the ones found to perform
well in this paper. Finally, this study focuses entirely on monotone policies,
which comprise an important class of interpretable policies. However, we are
optimistic that our findings can be adapted to other types of interpretable
policies for MDPs such as tree-based policies and more general ordering-based
policies. As such, the extensions of our algorithms and analysis to these other
types of policies would be a promising direction for future research.
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Appendices

A Machine Maintenance Results

In this appendix, we present detailed computational results for machine main-
tenance MDPs. Tables 2 and 3 summarize the quality of the policies generated
using each state ordering rule in the MMPI algorithm. Tables 4 and 5 and
Figures 11 and 12 summarize the computation time for each state ordering
rule in the MMPI algorithm while Tables 6 and 7 summarize the number of
iterations taken. Tables 8 and 9 summarize computation times for solving the
MILP formulation using the policies generated from the MMPI algorithm as
a warm start. Table 10 gives an overview of the computational performance
for the efficient state ordering rules in the MMPI algorithm. Finally, Table 11
shows the percentage of instances for each state and action space size for which
the solver found an optimal solution to the MILP within the time limit.

B Random MDP Results

In this appendix, we present detailed computational results for randomly gen-
erated MDPs. Tables 12 and 13 summarize the quality of the policies generated
using each state ordering rule in the MMPI algorithm. Tables 14 and 15 and
Figures 13 and 14 summarize the computation time for each state ordering
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Table 2 Optimality gap (percentage) achieved by each state ordering rule for machine
maintenance MDPs with action space size |A| = 20

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200 |S| = 400

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 0.1 0.0 0.1 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0
1 11.0 4.2 16.6 4.8 2.3 6.2 3.0 1.0 5.2 2.7 0.8 3.8
2 1.3 1.1 1.2 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.1 0.2
3 0.5 0.3 0.6 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.1
4 1.3 1.1 1.2 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.1 0.2
5 1.3 1.1 1.2 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.1 0.2
6 0.7 0.4 0.9 0.4 0.2 0.4 0.2 0.2 0.3 0.1 0.0 0.1
7 1.3 1.1 1.2 0.7 0.6 0.6 0.5 0.4 0.4 0.1 0.1 0.1
8 5.6 4.0 5.2 3.1 2.2 2.9 1.6 0.9 1.6 0.2 0.2 0.2
9 0.8 0.4 0.8 0.5 0.5 0.3 0.5 0.2 0.7 0.1 0.0 0.1
10 1.3 1.1 1.2 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.1 0.2
11 11.0 4.2 16.6 4.8 2.3 6.2 2.9 1.0 5.2 2.7 0.8 3.8
12 1.2 0.8 1.1 0.7 0.6 0.6 0.4 0.3 0.4 0.1 0.1 0.1
13 11.0 4.2 16.6 4.8 2.3 6.2 3.0 1.0 5.2 2.7 0.8 3.8
14 4.5 3.2 5.4 4.8 2.4 6.2 2.9 1.0 5.2 2.7 0.8 3.8
15 0.9 0.5 0.9 0.6 0.3 0.6 0.2 0.2 0.4 0.3 0.1 0.6
16 7.1 3.8 10.4 3.6 2.2 4.2 1.9 0.9 2.4 0.3 0.1 0.7
17 1.3 1.1 1.2 0.7 0.6 0.6 0.5 0.4 0.4 0.2 0.1 0.2
18 1.6 1.2 1.4 2.9 2.4 2.5 0.4 0.3 0.5 0.3 0.1 0.7

SD=standard deviation

Table 3 Optimality gap (percentage) achieved by each state ordering rule for machine
maintenance MDPs with action space size |A| = 40

State
Ordering
Rule

|S| = 50 |S| = 100∗ |S| = 200∗ |S| = 400∗

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 0.1 0.1 0.1 1.1 1.6 1.2 0.8 1.0 0.5 0.4 0.4 0.2
1 36.4 18.9 35.7 21.0 16.0 14.9 12.7 11.6 7.0 5.3 3.8 4.0
2 3.3 2.8 1.8 5.9 6.1 2.1 3.0 3.0 1.0 1.4 1.4 0.4
3 0.8 0.5 0.7 1.7 1.9 1.3 1.1 1.2 0.6 0.6 0.5 0.3
4 3.3 2.8 1.8 5.9 6.1 2.1 3.0 3.0 1.0 1.4 1.4 0.4
5 3.1 2.9 1.8 4.1 4.4 2.2 3.0 3.0 1.0 1.4 1.4 0.4
6 0.9 0.7 0.6 1.9 2.0 1.3 1.2 1.2 0.9 0.6 0.6 0.3
7 3.3 2.8 1.8 5.9 6.1 2.1 3.1 3.1 1.0 1.4 1.3 0.5
8 16.1 15.1 11.0 16.1 14.8 7.7 7.9 7.3 4.5 2.3 1.7 1.5
9 2.2 1.9 1.9 4.3 4.2 2.2 3.3 3.2 1.2 1.3 1.2 0.4
10 3.3 2.8 1.8 5.9 6.1 2.1 3.0 3.0 1.0 1.4 1.4 0.4
11 36.4 18.9 35.7 21.0 16.0 14.9 12.7 11.6 7.0 5.3 3.8 4.0
12 3.0 2.6 1.8 5.2 5.7 2.1 2.6 2.5 1.0 1.2 1.2 0.3
13 36.4 18.9 35.7 21.0 16.0 14.9 12.7 11.6 7.0 5.3 3.8 4.0
14 7.0 3.8 8.1 10.2 9.5 6.6 12.7 10.9 7.0 5.2 3.8 4.1
15 1.3 1.1 0.9 2.9 3.2 1.9 2.0 2.1 0.7 1.3 1.2 0.5
16 16.9 15.8 11.7 17.0 15.5 10.4 7.4 5.4 5.8 3.0 2.5 1.7
17 3.3 2.8 1.8 5.9 6.1 2.1 3.0 3.0 1.0 1.4 1.4 0.4
18 3.7 3.0 2.8 14.2 12.3 8.0 3.0 2.7 1.1 2.3 1.7 1.3

SD=standard deviation
∗Not all instances solved to optimality within the time limit (1800 seconds)

rule in the MMPI algorithm while Tables 16 and 17 summarize the number of
iterations taken. Table 18 gives an overview of the computational performance
for the efficient state ordering rules in the MMPI algorithm. Tables 19 and
20 summarize computation times for solving the MILP formulation using the
policies generated from the MMPI algorithm as a warm start. Finally, Table
21 shows the percentage of instances for each state and action space size for
which the solver found an optimal solution to the MILP within the time limit.
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Table 4 Computation time characteristics (seconds) for each state ordering rule in the
MMPI algorithm for machine maintenance MDPs with action space size |A| = 20

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200 |S| = 400

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 118 106 66 163 159 93 359 302 223 640 591 331
1 39 39 15 96 96 41 220 203 89 509 499 142
2 23 23 7 57 61 15 88 81 37 182 200 40
3 50 44 22 107 99 34 174 156 65 331 324 133
4 24 24 8 56 59 17 80 76 44 181 192 38
5 25 25 6 66 68 15 119 109 40 267 263 37
6 54 50 20 100 84 53 187 177 98 316 301 126
7 24 23 9 56 58 17 80 80 34 225 219 52
8 42 41 13 114 104 46 251 232 111 625 570 197
9 40 42 11 96 99 23 189 180 51 310 293 79
10 24 26 7 56 60 16 82 73 39 178 191 39
11 35 35 16 88 89 33 213 191 83 423 412 113
12 22 23 8 58 61 12 84 89 29 180 200 52
13 39 39 15 92 92 37 232 216 94 513 497 143
14 35 33 13 69 73 33 145 124 66 247 250 68
15 34 32 17 83 80 27 119 109 44 383 393 94
16 43 43 13 104 94 42 239 227 93 584 564 201
17 23 23 6 56 59 16 83 72 42 171 172 33
18 41 37 17 111 112 32 242 235 102 636 591 233

SD=standard deviation

Table 5 Computation time characteristics (seconds) for each state ordering rule in the
MMPI algorithm for machine maintenance MDPs with action space size |A| = 40

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200 |S| = 400

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 333 336 64 905 1060 218 1948 1962 192 4121 3984 481
1 25 25 12 152 150 41 348 321 130 1409 1395 578
2 31 32 11 120 108 37 132 124 41 345 343 87
3 56 54 28 203 181 122 646 589 273 748 716 362
4 31 33 10 125 113 39 193 191 62 342 337 89
5 21 19 11 81 79 13 266 267 70 696 696 139
6 64 61 26 260 230 121 529 539 236 933 934 300
7 31 32 10 110 105 39 179 176 55 365 362 112
8 33 31 11 161 151 45 470 434 167 1634 1469 699
9 51 50 14 156 160 35 299 278 93 521 508 102
10 30 33 11 120 103 46 180 187 62 318 319 80
11 26 27 11 144 137 40 242 212 84 904 900 285
12 27 26 9 102 103 32 109 104 33 286 292 68
13 26 25 12 154 153 40 335 303 112 1340 1260 574
14 38 39 17 144 137 48 251 266 93 531 559 181
15 27 30 15 153 156 33 154 151 52 820 818 185
16 29 28 13 159 159 41 688 544 439 1556 1415 762
17 31 30 10 121 109 35 365 359 143 469 464 202
18 43 48 17 161 149 57 1121 1039 513 1725 1653 808

SD=standard deviation
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Figure 11 Mean computation time (solid blue line) for MMPI algorithm for machine mainte-
nance MDPs with |A| = 20. Shaded area represents the 95% confidence interval and the dashed
orange line represents the minimum mean time taken among all 19 rules at each state space size
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Figure 12 Mean computation time for MMPI algorithm for machine maintenance MDPs
with |A|=40. Shaded area represents the 95% confidence interval and the dashed orange line
represents the minimum mean time taken among all 19 rules at each state space size
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Table 6 Number of iterations for each state ordering rule in the MMPI algorithm for
machine maintenance MDPs with |A| = 20

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200 |S| = 400

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 18.3 15.0 10.7 13.8 12.5 8.0 15.3 15.0 9.7 15.4 14.5 9.9
1 4.8 5.0 1.2 5.2 4.5 2.2 5.1 5.0 2.0 4.8 4.5 1.5
2 3.0 3.0 0.6 3.1 3.0 0.7 3.2 3.0 0.8 3.2 3.0 0.6
3 6.9 6.0 3.0 6.7 6.0 2.9 6.1 5.0 2.4 7.1 6.0 3.2
4 3.0 3.0 0.6 3.1 3.0 0.7 3.2 3.0 0.8 3.2 3.0 0.6
5 2.9 3.0 0.6 3.1 3.0 0.7 3.2 3.0 0.8 3.2 3.0 0.6
6 6.9 6.0 3.1 7.3 6.0 3.2 7.1 7.0 2.5 6.5 6.0 2.5
7 3.0 3.0 0.6 3.1 3.0 0.7 3.2 3.0 0.8 3.8 4.0 0.9
8 5.0 5.0 1.3 5.4 5.0 2.5 5.3 5.0 2.2 6.0 5.5 1.8
9 5.2 5.0 1.2 5.4 5.0 1.4 5.8 6.0 1.3 5.2 5.0 1.4
10 3.0 3.0 0.6 3.1 3.0 0.7 3.2 3.0 0.8 3.2 3.0 0.6
11 4.8 5.0 1.3 5.2 4.5 2.2 5.1 5.0 2.0 4.8 4.5 1.5
12 2.9 3.0 0.5 3.1 3.0 0.5 3.0 3.0 0.4 3.3 3.0 0.6
13 4.8 5.0 1.2 5.2 4.5 2.2 5.1 5.0 2.0 4.8 4.5 1.5
14 5.0 5.0 1.8 5.2 4.5 2.2 5.3 5.0 2.2 4.8 4.5 1.5
15 4.1 4.0 1.7 4.8 5.0 1.0 3.9 4.0 0.9 5.0 5.0 1.2
16 5.0 5.0 1.4 5.4 5.0 2.4 5.2 5.0 2.0 5.6 5.0 1.8
17 3.0 3.0 0.6 3.1 3.0 0.7 3.2 3.0 0.8 3.2 3.0 0.6
18 5.5 5.0 1.8 5.3 5.0 1.8 5.7 5.5 2.1 6.1 6.0 2.0

SD=standard deviation

Table 7 Number of iterations for each state ordering rule in the MMPI algorithm for
machine maintenance MDPs with |A| = 40

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200 |S| = 400

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 43.8 50.5 10.1 49.8 51.0 5.7 50.0 51.0 5.2 50.0 51.0 4.7
1 3.9 3.5 1.5 7.5 7.0 2.7 6.2 6.0 2.0 7.0 6.5 2.5
2 3.3 3.0 0.8 3.9 4.0 0.5 4.1 4.0 0.9 4.2 4.0 0.8
3 7.8 7.0 3.7 14.8 12.0 8.8 15.6 16.0 8.2 13.6 12.0 6.4
4 3.3 3.0 0.8 3.9 4.0 0.5 4.1 4.0 0.9 4.2 4.0 0.8
5 3.2 3.0 1.3 3.5 4.0 0.6 4.1 4.0 1.0 4.2 4.0 0.8
6 8.3 8.0 3.3 13.9 12.0 6.7 16.9 15.5 7.6 14.7 12.0 7.8
7 3.3 3.0 0.7 3.9 4.0 0.5 4.1 4.0 0.9 4.3 4.0 0.8
8 4.6 4.0 1.5 7.7 7.5 2.8 7.3 7.0 2.3 8.2 8.0 2.9
9 5.7 5.0 1.4 6.0 6.0 1.1 6.9 7.0 1.6 6.0 6.0 1.4
10 3.3 3.0 0.8 3.9 4.0 0.5 4.1 4.0 0.9 4.2 4.0 0.8
11 3.9 3.5 1.5 7.5 7.0 2.5 6.2 6.0 1.9 7.0 6.5 2.6
12 3.2 3.0 0.8 3.8 3.5 1.1 4.0 4.0 1.1 4.0 4.0 1.3
13 3.9 3.5 1.5 7.5 7.0 2.7 6.2 6.0 2.0 7.0 6.5 2.5
14 5.3 5.0 1.9 8.1 7.0 3.9 6.3 6.0 1.9 7.5 7.5 2.6
15 4.2 4.0 1.2 6.5 6.0 1.5 4.2 4.0 1.2 6.6 6.0 1.5
16 4.6 4.0 1.5 7.7 8.0 2.6 6.8 6.0 2.6 7.8 8.0 3.0
17 3.3 3.0 0.7 3.9 4.0 0.5 4.1 4.0 0.9 4.2 4.0 0.8
18 6.4 6.0 1.7 7.6 7.0 2.6 7.3 7.0 2.3 7.6 7.0 2.7

SD=standard deviation
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Table 8 Computation time (seconds) for MILP formulation (6) using warm start policy
from MMPI algorithm under each state ordering rule for machine maintenance MDPs with
action space size |A| = 20

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200 |S| = 400

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 115 70 278 156 113 279 218 231 69 568 591 187
1 91 86 34 146 103 275 155 161 36 372 372 71
2 81 80 25 114 111 28 251 186 376 401 404 57
3 84 86 26 115 112 20 186 185 30 476 479 75
4 82 79 26 114 111 28 252 177 376 402 403 55
5 81 79 25 111 108 29 245 169 379 393 386 53
6 79 79 18 154 108 276 228 189 281 447 442 55
7 76 72 23 115 112 27 256 176 383 407 396 53
8 92 84 35 98 96 20 150 155 38 375 392 91
9 86 85 28 125 130 28 180 169 34 430 426 63
10 76 71 24 113 109 26 254 180 378 402 407 55
11 94 91 37 152 110 275 161 168 35 392 382 60
12 80 82 27 111 106 26 213 172 272 412 409 52
13 85 81 37 147 103 276 153 163 38 369 376 69
14 95 100 44 154 113 277 186 184 33 420 409 55
15 79 82 24 108 102 32 242 162 382 398 394 62
16 95 91 36 144 101 276 155 159 37 395 418 90
17 75 76 23 111 107 26 252 174 380 411 406 59
18 124 81 275 102 100 23 155 162 42 387 406 99

SD=standard deviation

Table 9 Computation time (seconds) for MILP formulation (6) using warm start policy
from MMPI algorithm under each state ordering rule for machine maintenance MDPs with
action space size |A| = 40

State
Ordering
Rule

|S| = 50 |S| = 100∗ |S| = 200∗ |S| = 400∗

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

0 235 210 68 1704 1838 434 2022 1999 82 2486 2435 259
1 290 291 63 1812 1859 280 2047 1994 150 2545 2473 228
2 301 287 110 1677 1843 546 1996 1981 55 2370 2374 77
3 262 265 59 1726 1894 485 2084 2064 97 2681 2650 191
4 299 284 109 1675 1842 545 1984 1983 42 2378 2386 73
5 284 297 53 1837 1837 28 1991 1991 42 2369 2358 91
6 270 257 70 1823 1883 291 2058 2077 277 2644 2618 150
7 295 276 107 1684 1845 542 2005 1990 68 2369 2366 104
8 296 295 60 1790 1862 301 2040 2033 82 2505 2444 267
9 264 251 66 1762 1857 394 1937 1994 380 2386 2382 73
10 300 285 110 1686 1855 541 2000 1998 52 2376 2386 75
11 287 288 63 1809 1859 283 1995 1986 77 2547 2409 293
12 300 297 68 1726 1856 478 1985 1985 76 2373 2329 152
13 290 291 62 1813 1857 279 2007 1977 132 2570 2485 279
14 298 300 85 1792 1878 394 2003 1984 74 2448 2427 152
15 283 303 74 1759 1851 412 1961 1956 48 2422 2378 225
16 302 303 67 1817 1857 277 2154 2035 301 2641 2552 270
17 297 281 107 1679 1843 546 2194 2037 442 2669 2600 301
18 287 284 67 1775 1869 404 2265 2163 390 2664 2621 362

SD=standard deviation
*Not all instances were solved to optimality within the time limit (1800 seconds)
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Table 10 Computational performance of efficient state ordering rules in the MMPI
algorithm for machine maintenance MDPs

State
Ordering
Rule

Optimality Gap (%) MMPI Time (sec)

|A| |S| Mean SD Mean SD

20 50

0 0.1 0.1 118 66
3 0.5 0.6 50 22
9 0.8 0.8 40 11
12 1.2 1.1 22 8
15 0.9 0.9 34 17

20 100

0 0.0 0.1 359 223
3 0.1 0.1 174 65
6 0.5 0.4 80 44
9 0.4 0.4 84 29
12 0.0 0.0 0 0
15 0.0 0.0 0 0
17 0.0 0.0 0 0

20 200

0 0.0 0.1 359 223
3 0.1 0.1 174 65
4 0.5 0.4 80 44
12 0.4 0.4 84 29
15 0.2 0.4 119 44

20 400

0 0.0 0.0 640 331
6 0.1 0.1 316 126
7 0.1 0.1 225 52
9 0.1 0.1 310 79
12 0.1 0.1 180 52
17 0.2 0.2 171 33

50 50

0 0.1 0.1 333 64
3 0.8 0.7 56 28
5 3.1 1.8 21 11
12 3.0 1.8 27 9
15 1.3 0.9 27 15

50 100

0 1.1 1.2 905 218
3 1.7 1.3 203 122
5 4.1 2.2 81 13
15 2.9 1.9 153 33

50 200

0 0.8 0.5 1948 192
3 1.1 0.6 646 273
6 1.2 0.9 529 236
12 2.6 1.0 109 33
15 2.0 0.7 154 52

50 400
0 0.4 0.2 4121 481
3 0.6 0.3 748 362
12 1.2 0.3 286 68

SD=standard deviation
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Table 11 Percentage of instances for which the solver found an optimal solution to (6)
within the time limit for machine maintenance MDPs

State
Ordering
Rule

|A| = 20 |A| = 40

|S| = 50 |S| = 100 |S| = 200 |S| = 400 |S| = 50 |S| = 100 |S| = 200 |S| = 400

0 97.5 97.5 100 100 100 22.5 2.5 0
1 100 97.5 100 100 100 5.0 0 5
2 100 100 95.0 100 100 15.0 0 0
3 100 100 100 100 100 22.5 0 0
4 100 100 95.0 100 100 15.0 0 0
5 100 100 95.0 100 100 2.5 0 0
6 100 97.5 97.5 100 100 15.0 2.5 0
7 100 100 95.0 100 100 15.0 0 0
8 100 100 100 100 100 10.0 0 5
9 100 100 100 100 100 10.0 5 0
10 100 100 95.0 100 100 15.0 0 0
11 100 97.5 100 100 100 7.5 0 0
12 100 100 97.5 100 100 15.0 0 0
13 100 97.5 100 100 100 5.0 0 2.5
14 100 97.5 100 100 100 10.0 0 0
15 100 100 95.0 100 100 10.0 0 2.5
16 100 97.5 100 100 100 2.5 0 0
17 100 100 95.0 100 100 15.0 0 0
18 97.5 100 100 100 100 10.0 0 0

Table 12 Optimality gap (percentage) achieved by each state ordering rule for random
MDPs with action space size |A| = 5

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200∗

Mean Median SD Mean Median SD Mean Median SD

0 5.3 4.7 3.1 34.4 34.2 2.5 37.9 37.9 1.4
1 21.7 22.3 5.6 44.0 44.1 2.7 44.5 44.2 2.0
2 14.3 13.9 6.6 39.9 39.7 3.2 41.5 41.0 2.5
3 8.4 7.9 4.2 35.4 35.6 2.4 38.8 38.7 1.4
4 15.3 15.8 6.4 39.6 39.0 3.1 41.5 41.6 2.2
5 15.1 15.3 6.4 39.7 39.1 3.2 41.9 42.0 2.1
6 11.0 11.2 4.3 36.5 36.8 2.9 39.8 39.8 1.7
7 7.6 7.3 3.9 34.8 34.9 2.4 38.7 38.5 1.8
8 7.7 7.4 4.2 35.1 35.9 2.8 38.8 38.8 1.7
9 6.7 6.5 3.9 35.0 35.2 2.7 38.5 38.5 1.5
10 21.5 20.0 7.5 43.2 42.8 2.9 44.3 44.7 3.0
11 9.4 8.3 5.0 35.1 35.2 2.0 38.3 38.1 1.7
12 19.1 17.3 6.9 42.5 42.2 3.4 43.9 44.2 3.0
13 12.7 12.9 5.0 38.9 39.0 3.0 41.7 41.9 1.9
14 12.6 12.9 5.1 38.7 39.0 3.0 41.6 41.7 1.9
15 12.9 13.2 4.9 38.1 38.5 2.8 41.5 41.2 1.7
16 7.9 6.6 5.3 34.7 34.4 2.6 38.5 38.1 1.9
17 8.2 8.0 5.1 34.7 34.8 2.4 38.2 38.0 1.9
18 8.6 8.3 6.9 34.8 34.8 2.3 38.9 38.8 1.9

SD=standard deviation
∗Not all instances solved to optimality within the time limit (1800 seconds)
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Table 13 Optimality gap (percentage) achieved by each state ordering rule for random
MDPs with action space size |A| = 10

State
Ordering
Rule

|S| = 50 |S| = 100∗ |S| = 200∗

Mean Median SD Mean Median SD Mean Median SD

0 5.3 4.7 3.1 34.4 34.2 2.5 37.9 37.9 1.4
1 21.7 22.3 5.6 44.0 44.1 2.7 44.5 44.2 2.0
2 14.3 13.9 6.6 39.9 39.7 3.2 41.5 41.0 2.5
3 8.4 7.9 4.2 35.4 35.6 2.4 38.8 38.7 1.4
4 15.3 15.8 6.4 39.6 39.0 3.1 41.5 41.6 2.2
5 15.1 15.3 6.4 39.7 39.1 3.2 41.9 42.0 2.1
6 11.0 11.2 4.3 36.5 36.8 2.9 39.8 39.8 1.7
7 7.6 7.3 3.9 34.8 34.9 2.4 38.7 38.5 1.8
8 7.7 7.4 4.2 35.1 35.9 2.8 38.8 38.8 1.7
9 6.7 6.5 3.9 35.0 35.2 2.7 38.5 38.5 1.5
10 21.5 20.0 7.5 43.2 42.8 2.9 44.3 44.7 3.0
11 9.4 8.3 5.0 35.1 35.2 2.0 38.3 38.1 1.7
12 19.1 17.3 6.9 42.5 42.2 3.4 43.9 44.2 3.0
13 12.7 12.9 5.0 38.9 39.0 3.0 41.7 41.9 1.9
14 12.6 12.9 5.1 38.7 39.0 3.0 41.6 41.7 1.9
15 12.9 13.2 4.9 38.1 38.5 2.8 41.5 41.2 1.7
16 7.9 6.6 5.3 34.7 34.4 2.6 38.5 38.1 1.9
17 8.2 8.0 5.1 34.7 34.8 2.4 38.2 38.0 1.9
18 8.6 8.3 6.9 34.8 34.8 2.3 38.9 38.8 1.9

SD=standard deviation
∗Not all instances solved to optimality within the time limit (1800 seconds)

Table 14 Computation time characteristics (seconds) for each state ordering rule in the
MMPI algorithm for random MDPs with |A| = 5

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200

Mean Median SD Mean Median SD Mean Median SD

0 174 173 82 634 604 285 1352 1483 446
1 23 21 5 35 38 15 81 78 13
2 25 26 6 41 37 12 94 97 19
3 68 62 27 155 141 66 275 279 111
4 27 27 10 51 54 19 103 107 19
5 27 27 10 46 45 19 102 108 22
6 52 48 16 97 100 30 212 220 47
7 66 58 34 172 166 87 338 332 132
8 62 60 28 166 136 90 268 261 105
9 78 74 34 201 174 101 302 289 139
10 21 20 4 36 38 17 77 77 15
11 74 70 28 139 128 65 279 253 104
12 24 21 9 40 39 17 84 78 15
13 31 28 10 49 44 20 101 107 21
14 34 30 13 50 52 22 106 110 21
15 40 40 10 75 72 23 136 144 20
16 93 82 55 288 239 164 528 446 320
17 86 81 41 266 226 139 619 575 293
18 83 64 53 175 172 96 373 286 260

SD=standard deviation
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Table 15 Computation time characteristics (seconds) for each state ordering rule in the
MMPI algorithm for random MDPs with |A| = 10

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200

Mean Median SD Mean Median SD Mean Median SD

0 463 496 147 848 929 213 2994 2826 279
1 26 24 9 53 55 9 117 117 34
2 34 35 11 67 64 23 114 113 39
3 241 224 118 376 341 236 1187 1224 542
4 48 38 26 64 66 17 120 120 31
5 35 34 16 72 68 29 160 160 54
6 70 62 31 159 149 53 306 289 131
7 153 114 108 457 389 296 834 731 379
8 215 192 172 436 349 317 876 822 476
9 351 326 223 689 637 340 1027 1090 441
10 23 22 12 53 51 12 104 105 23
11 295 198 231 451 363 246 739 686 370
12 32 26 21 54 53 21 107 112 25
13 62 48 43 73 74 20 127 122 29
14 67 59 33 105 100 31 129 121 34
15 86 75 42 108 114 21 188 186 50
16 440 366 301 700 850 295 2232 2491 866
17 386 372 214 807 927 313 2038 2160 736
18 229 200 130 583 584 310 1484 1734 634

SD=standard deviation

Table 16 Number of iterations for each state ordering rule in the MMPI algorithm for
random MDPs with |A| = 5

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200

Mean Median SD Mean Median SD Mean Median SD

0 20.2 18.5 11.1 34.4 37.0 14.6 40.0 51.0 15.0
1 2.5 2.0 0.6 2.2 2.0 0.4 2.2 2.0 0.4
2 2.7 3.0 0.7 2.4 2.0 0.5 2.6 3.0 0.6
3 7.7 7.0 3.1 9.4 9.0 3.9 9.3 9.0 3.4
4 3.0 3.0 1.1 3.2 3.0 1.0 2.9 3.0 0.8
5 3.0 3.0 1.0 3.0 3.0 1.0 2.9 3.0 0.9
6 5.7 5.0 2.1 5.9 6.0 1.7 6.4 6.0 1.7
7 7.2 7.0 3.6 10.0 9.0 5.4 10.9 10.0 5.2
8 6.8 6.0 3.3 9.7 7.5 6.2 8.6 8.0 4.2
9 8.9 8.0 4.1 11.6 9.0 6.5 11.4 10.0 5.6
10 2.4 2.0 0.5 2.3 2.0 0.5 2.1 2.0 0.4
11 8.1 8.0 3.2 8.7 8.0 4.4 9.2 8.0 4.2
12 2.6 2.0 1.0 2.7 3.0 0.8 2.3 2.0 0.5
13 3.4 3.0 1.1 3.0 3.0 1.1 2.9 3.0 0.8
14 3.6 3.0 1.3 3.1 3.0 1.1 3.0 3.0 0.9
15 4.3 4.0 1.1 4.0 4.0 0.9 3.7 4.0 0.8
16 10.2 9.0 6.1 15.7 13.0 9.1 18.2 17.0 10.9
17 9.6 9.0 4.6 15.6 13.5 8.2 19.9 17.5 10.6
18 9.5 7.0 6.3 11.3 9.5 6.1 12.7 10.0 8.7

SD=standard deviation
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Figure 13 Mean computation time for MMPI algorithm for random MDPs with |A|=5.
Shaded area represents the 95% confidence interval and the dashed orange line represents the
minimum mean time taken among all 19 rules at each state space size
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Figure 14 Mean computation time for MMPI algorithm for random MDPs with |A|=10.
Shaded area represents the 95% confidence interval and the dashed orange line represents the
minimum mean time taken among all 19 rules at each state space size
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Table 17 Number of iterations for each state ordering rule in the MMPI algorithm for
random MDPs with |A| = 10

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200

Mean Median SD Mean Median SD Mean Median SD

0 42.6 51.0 12.8 45.5 51.0 12.1 50.6 51.0 2.5
1 2.5 2.0 0.6 2.6 3.0 0.5 2.5 2.0 0.5
2 3.5 3.0 0.9 3.6 3.0 1.6 3.2 3.0 0.9
3 17.2 16.0 7.9 20.9 18.0 13.0 25.1 23.5 12.9
4 3.8 4.0 1.3 3.4 3.0 1.1 3.1 3.0 0.9
5 4.0 4.0 1.4 3.9 3.0 2.0 3.4 3.0 1.1
6 7.9 7.0 3.2 8.6 8.0 3.3 9.9 9.0 4.8
7 15.8 13.0 11.2 24.7 22.0 15.7 27.1 24.0 14.7
8 16.5 13.0 12.2 22.9 18.0 15.9 28.7 30.0 15.6
9 19.5 18.0 11.3 30.1 28.0 15.8 31.6 32.0 15.3
10 2.6 3.0 0.6 2.4 2.0 0.5 2.4 2.0 0.5
11 18.2 14.5 11.4 23.2 22.0 12.1 26.1 21.5 13.3
12 3.0 3.0 1.2 2.9 3.0 0.9 3.0 3.0 1.0
13 4.0 3.0 1.9 3.6 3.0 1.1 3.4 3.0 1.1
14 4.1 3.0 1.9 3.9 4.0 1.5 3.8 3.0 1.5
15 4.9 4.5 1.5 4.9 5.0 1.3 4.4 4.0 1.1
16 24.0 21.0 15.3 35.6 44.5 16.5 41.2 51.0 15.9
17 21.6 21.0 11.6 39.0 51.0 16.0 42.1 51.0 15.3
18 25.5 22.0 13.7 31.1 30.5 16.0 36.2 43.5 16.4

SD=standard deviation
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Table 18 Computational performance of efficient state ordering rules in the MMPI
algorithm for random MDPs

State
Ordering
Rule

Optimality Gap (%) MMPI Time (sec)

|A| |S| Mean SD Mean SD

5 50

0 3.5 3.2 174 82
2 9.0 5.8 25 6
6 6.0 4.2 52 16
8 5.3 4.0 62 28
9 5.2 4.1 78 34
10 14.1 7.3 21 4
12 13.1 7.3 24 9

5 100

0 2.6 1.6 634 285
1 12.8 5.5 35 15
2 9.8 5.4 41 12
3 4.6 2.7 155 66
6 7.4 3.3 97 30
7 4.1 3.8 172 87
11 6.2 3.6 139 65
13 9.2 3.9 49 20
15 8.7 3.6 75 23

5 200

0 22.0 1.6 1352 446
1 27.1 15.2 81 13
2 25.3 15.2 94 19
6 24.1 15.2 212 47
7 22.7 16.0 338 132
8 23.1 15.7 268 105
10 28.2 14.6 77 15
17 22.5 16.0 619 293

10 50

0 5.3 3.1 463 147
2 14.3 6.6 34 11
6 11.0 4.3 70 31
7 7.6 3.9 153 108
9 6.7 3.9 351 223
10 21.5 7.5 23 12
12 19.1 6.9 32 21
13 12.7 5.0 62 43
14 12.6 5.1 67 33

10 100

0 34.4 2.5 848 213
1 44.0 2.7 53 9
3 35.4 2.4 376 236
4 39.6 3.1 64 17
6 36.5 2.9 159 53
7 34.8 2.4 457 296
8 35.1 2.8 436 317
10 43.2 2.9 53 12
12 42.5 3.4 54 21
13 38.9 3.0 73 20
14 38.7 3.0 105 31
15 38.1 2.8 108 21
16 34.7 2.6 700 295
17 34.7 2.4 807 313
18 34.8 2.3 583 310

10 200

0 37.9 1.4 2994 294
2 41.5 2.5 114 39
4 41.5 2.2 120 31
6 39.8 1.7 306 131
10 44.3 3.0 104 23
11 38.3 1.7 739 370
12 43.9 3.0 107 25
15 41.5 1.7 188 50
17 38.2 1.9 2038 736

SD=standard deviation
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Table 19 Computation time (seconds) for MILP formulation (6) using warm start policy
from MMPI algorithm under each state ordering rule for random MDPs with action space
size |A| = 5

State
Ordering
Rule

|S| = 50 |S| = 100 |S| = 200∗

Mean Median SD Mean Median SD Mean Median SD

0 25 29 10 182 165 70 1841 1876 134
1 33 33 10 252 263 72 1838 1836 15
2 31 32 9 276 299 72 1836 1835 12
3 25 27 8 239 247 61 1865 1855 27
4 30 31 8 285 298 70 1840 1837 14
5 30 30 8 290 297 70 1842 1843 12
6 28 28 9 241 247 68 1850 1849 14
7 25 27 8 183 170 74 1845 1860 92
8 26 28 7 194 183 63 1820 1856 191
9 26 28 8 194 187 60 1867 1861 22
10 32 33 8 263 274 71 1824 1830 43
11 25 27 8 236 223 75 1858 1857 31
12 31 31 8 290 304 74 1835 1835 15
13 29 29 6 269 270 67 1843 1841 14
14 29 28 5 266 267 65 1843 1843 14
15 30 29 5 267 265 65 1838 1837 28
16 25 27 8 201 205 73 1848 1872 161
17 25 27 9 201 189 66 1869 1866 48
18 27 28 11 221 216 88 1835 1877 171

SD=standard deviation
∗Not all instances solved to optimality within the time limit (1800 seconds)

Table 20 Computation time (seconds) for MILP formulation (6) using warm start policy
from MMPI algorithm under each state ordering rule for random MDPs with action space
size |A| = 10

State
Ordering
Rule

|S| = 50 |S| = 100∗ |S| = 200∗

Mean Median SD Mean Median SD Mean Median SD

0 777 522 554 1840 1837 12 1883 1869 46
1 766 535 463 1818 1817 7 1905 1902 42
2 743 450 484 1826 1823 12 1881 1869 36
3 811 663 506 1862 1862 19 1971 1961 71
4 769 641 527 1824 1823 9 1883 1875 32
5 760 579 529 1826 1825 11 1881 1869 39
6 590 384 394 1832 1831 10 1901 1889 33
7 652 365 503 1865 1861 21 1939 1933 55
8 717 530 539 1862 1858 17 1942 1940 45
9 811 545 536 1858 1860 22 1956 1946 50
10 842 565 551 1825 1822 11 1854 850 24
11 796 573 521 1864 1863 23 1944 1933 43
12 915 688 575 1826 1826 10 1855 1850 22
13 1100 776 548 1825 1825 9 1857 1851 23
14 1127 884 546 1833 1833 16 1866 1860 23
15 1134 857 536 1823 1821 9 1884 1876 30
16 972 696 543 1855 1853 18 1935 1935 66
17 862 654 535 1852 1839 37 1953 1945 63
18 540 297 446 1860 1858 18 1946 1936 63

SD=standard deviation
∗Not all instances solved to optimality within the time limit (1800 seconds)
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Table 21 Percentage of instances for which the solver found an optimal solution to (6)
within the time limit for random MDPs

State
Ordering
Rule

|A| = 5 |A| = 10

|S| = 50 |S| = 100 |S| = 200 |S| = 50 |S| = 100 |S| = 200

0 100 100 17.5 87.5 0 0
1 100 100 0 97.5 0 0
2 100 100 0 95.0 0 0
3 100 100 0 90.0 0 0
4 100 100 0 95.0 0 0
5 100 100 0 97.5 0 0
6 100 100 0 100 0 0
7 100 100 7.5 100 0 0
8 100 100 7.5 90.0 0 0
9 100 100 0 90.0 0 0
10 100 100 5.0 92.5 0 0
11 100 100 2.5 90.0 0 0
12 100 100 2.5 87.5 0 0
13 100 100 0 75.0 0 0
14 100 100 0 72.5 0 0
15 100 100 2.5 72.5 0 0
16 100 100 10.0 87.5 0 0
17 100 100 7.5 92.5 0 0
18 100 100 10.0 100 0 0
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