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We investigate how crowdsourced delivery platforms with both contracted and ad-hoc couriers can effec-

tively manage their workforce to meet delivery demands amidst uncertainties. Our objective is to minimize

the hiring costs of contracted couriers and the crowdsourcing costs of ad-hoc couriers while considering the

uncertain availability and behavior of the latter. Due to the complication of calibrating these uncertainties

through data-driven approaches, we instead introduce a basic reduced information model to estimate the

upper bound of the crowdsourcing cost and a generalized reduced information model to obtain a tighter

bound. Subsequently, we formulate a robust satisficing model associated with the generalized reduced infor-

mation model and show that a binary search algorithm can tackle the model exactly by solving a modest

number of convex optimization problems. Our numerical tests using Solomon’s data sets show that reduced

information models provide decent approximations for practical delivery scenarios. Simulation tests further

demonstrate that the robust satisficing model has better out-of-sample performance than the empirical opti-

mization model that minimizes the total cost under historical scenarios.

Key words : Workforce management, crowdsourced delivery, uncertain ad-hoc couriers, data-driven robust

satisficing

1. Introduction

The rapid expansion of e-commerce has stimulated e-retailers and local businesses to enhance

their logistics operations and deliver goods promptly and reliably in a cost-effective way. As a

result, many have turned to crowdsourced delivery, which involves independent individuals using

their own vehicles to deliver goods. For instance, Amazon launched the Amazon Flex program

in 2015, which utilizes crowdsourced couriers for last-mile deliveries. Similarly, Walmart piloted

crowdsourced delivery in two US cities in 2018 under the name Spark Delivery. Many third-party

logistics companies that rely on crowdsourced delivery have also emerged, such as Postmates, Uber
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Eats, and Deliv. These platforms vary in terms of payment methods, target markets, and the types

of items delivered. Leveraging crowdsourced delivery resources allows platforms to swiftly adjust

their delivery capacity to cope with fluctuating demand while also providing cost advantages.

The use of independent couriers for crowdsourced delivery poses challenges due to their unknown

availability and job bidding behavior. To mitigate the adverse effects caused by this type of uncer-

tainty, many platforms have opted for a hybrid workforce model that combines ad-hoc crowdsourced

couriers with pre-hired couriers, such as employees or crowdsourced couriers who agree to work for

a certain period with a guaranteed minimum payment (Yildiz and Savelsbergh 2019, Ulmer and

Savelsbergh 2020). In the Amazon Flex program, for instance, deliveries are organized into blocks

lasting from 2 to 6 hours, and crowdsourced couriers search for available delivery blocks through

the platform’s app, make requests for interested offers, and receive confirmation from Amazon.

When couriers’ block times are approaching, they go to the pick-up sites, load packages, and deliver

them to customers. A hybrid model enables platforms to manage their workforce more effectively

to provide reliable customer service. Nevertheless, the employment decision of pre-hired couriers

presents a challenge as future customer orders remain uncertain to the platform. Over-hiring couri-

ers incurs unnecessary costs for the platform, while under-hiring may require the hiring of ad-hoc

couriers at premium prices to ensure timely delivery.

In this study, we present a robust satisficing framework for addressing delivery platforms’ work-

force management problem, with the aim of maximizing the robustness of achieving cost targets

under uncertainty. Our approach distinguishes between two types of couriers: contracted couriers,

who are hired before the planning horizon, and ad-hoc couriers, who are hired during the opera-

tional stage. The proposed framework accounts for the uncertainty of ad-hoc couriers’ availability

and job bidding behavior, as well as the cost associated with hiring ad-hoc couriers when neces-

sary. By formulating the problem as a robust satisficing model, our framework provides a tool for

decision-making that enables platforms to effectively manage their workforce resources and balance

their cost objectives with service quality requirements.

Literature review

The field of crowdsourced last-mile delivery has garnered increasing attention recently. Alnaggar

et al. (2021) analyze the current industry status of crowdsourced delivery platforms based on

matching mechanisms, target markets, and compensation schemes. They indicate that for a cen-

tralized system with an hourly compensation scheme, a significant challenge is forecasting delivery

needs and the number of couriers required to fulfill them. Although platforms can provide on-

demand delivery blocks in case contracted couriers are insufficient, there is a higher level of risk

involved since the availability of on-demand couriers is not guaranteed. Savelsbergh and Ulmer
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(2022) identify the challenges and opportunities in crowdsourced delivery planning and operations.

The tactical challenge is ensuring that the required crowdsourced delivery capacity is available,

while the operational question is how to adjust delivery capacity if the anticipated capacity is not

materialized or if demand exceeds expectations. Besides uncertain availability, couriers’ behavior

is also uncertain, as they may accept or reject a delivery task and deviate from planned routes

(Liu et al. 2021). To reduce uncertainties in delivery capacity, the authors suggest that planners

determine a set of delivery shifts and offer them to couriers for commitment before the operational

period begins. Additionally, a dynamic compensation mechanism can be designed to adjust the

availability of ad-hoc couriers.

Behrendt et al. (2022) study the crowdsourced same-day delivery problem, deciding the fleet

sizing of contracted couriers, pricing of ad-hoc couriers in the planning stage, and order alloca-

tion in the operational phase. They assume that order and ad-hoc courier arrivals follow Poisson

processes and focus on evaluating the benefits of utilizing a hybrid workforce and various order

allocation policies. Goyal et al. (2023) address a multistage problem involving the determination

of contracted courier fleet sizes at each warehouse in the first stage, followed by assignment and

routing decisions for both contracted and ad-hoc couriers once orders and ad-hoc couriers have

arrived. They formulate the problem as a multistage stochastic integer program and develop an

approximate dynamic programming method. These two studies assume that contracted couriers

are available for the entire planning horizon once hired. In contrast, our work determines fleet sizes

for each work shift, accounting for varying uncertainty in each period.

The works of Ulmer and Savelsbergh (2020) and Behrendt et al. (2023) are highly relevant to our

paper. Specifically, Ulmer and Savelsbergh (2020) address the workforce scheduling problem for

contracted couriers, determining the optimal number of shifts and their start time and duration.

The authors consider stochastic arrivals of orders and ad-hoc couriers, as well as the duration an

ad-hoc courier is willing to work. Their objective is to minimize working hours while ensuring a min-

imum percentage of orders are fulfilled. The authors employ continuous approximation and value

function approximation methods, utilizing scenarios to represent realizations of random variables.

Behrendt et al. (2023) propose a prescriptive machine learning method for a similar problem. They

leverage the sample average approximation (SAA) method offline to generate solutions for various

instances, then use a machine learning model to produce online solutions for new demand and

ad-hoc courier arrival forecasts. Their objective is to minimize courier payments and penalty costs

for late deliveries. We note that besides the uncertain availability, our work also considers ad-hoc

couriers’ uncertain job bidding behavior. Moreover, we do not assume any probability information

of random variables and use a data-driven robust optimization method to mitigate the impact of

distributional ambiguity on the risk-based objective function.
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Many studies on crowdsourced delivery have focused solely on addressing operational-level allo-

cation and routing problems without considering tactical decisions. For example, Archetti et al.

(2016) address the vehicle routing problem (VRP) with occasional drivers, referring to drivers

who are willing to make deliveries with a detour on their way to their destination. Dayarian and

Savelsbergh (2020) investigate a same-day delivery problem that involves dynamically arriving

online orders and in-store customers who, in addition to shopping, also deliver online orders as a

supplement to company drivers. The authors propose rolling horizon dispatching approaches, with

and without incorporating probabilistic information about future arrivals of orders and in-store

customers. Similarly, Torres et al. (2022) tackle the VRP with stochastic crowd vehicles and cus-

tomer presence, formulating the problem as a two-stage stochastic model and developing a column

generation heuristic for solving large-size instances.

To the best of our knowledge, we are the first to use a data-driven decision framework to make

tactical and operational planning decisions for the crowdsourced delivery problem with a hybrid

workforce, considering ad-hoc couriers’ uncertain availability and job bidding behavior. Our work

is built upon the recent development of data-driven robust optimization, which aims to address

issues in optimization under uncertainty. One prominent issue is the Optimizer’s curse (Smith and

Winkler 2006), a phenomenon that inferior results are always expected in the out-of-sample test if

one uses the empirical distribution from training data to solve an optimization problem. A similar

issue also appears in SAA (Birge and Louveaux 2011) through which the objective estimated

in stochastic optimization is optimistically biased. Although the bias can be reduced with more

samples, it would be prohibitive to do so in a data-driven setting where data is collected over time.

Data-driven robust optimization approach has been developed recently to address this issue

(Bertsimas et al. 2018, Mohajerin Esfahani and Kuhn 2018, Gao and Kleywegt 2023). This method

can effectively mitigate the risk of uncertainty by optimizing the worst-case objective within an

ambiguity set that includes probability distributions of certain properties, such as having moment

information matching the empirical distribution or being close to it based on specific distance

metrics. Notably, Mohajerin Esfahani and Kuhn (2018) and Gao and Kleywegt (2023) propose

the ambiguity set based on the Wasserstein distance that enjoys statistical guarantee to capture

the true distribution. Nonetheless, the practical issue of determining the radius of the Wasserstein

ambiguity set has been acknowledged. Instead of relying on the theoretical value of the statistical

guarantee, cross-validation is often required to tune the radius parameter for better out-of-sample

performance.

More recently, Long et al. (2022) propose the robust satisficing model, which is based on target-

oriented optimization instead of conventional utility maximization. Contrary to robust optimization

that specifies an ambiguity set of probability distributions, the robust satisficing model has no
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restriction on the distributions and minimizes the uncertainty risk of not achieving a specific target.

Targets play an important role in the human decision process, especially in complex environments

full of uncertainty and risks (Simon 1955, Mao 1970, Chen and Tang 2022). In articulating prefer-

ences, the robust satisficing model requires the decision-maker to set performance targets, which

are more interpretable and practical to specify. The idea of robust satisficing has been emerging

recently in both theoretical developments (Chen et al. 2022, Liu et al. 2023, Sim et al. 2021) and

practical applications (Goh and Hall 2013, Zhang et al. 2021, Zhou et al. 2022).

Our contributions

We propose using the robust satisficing framework to address the workforce management prob-

lem, which involves hiring contracted couriers for each work shift before the planning horizon.

Whenever the contracted couriers are insufficient during the operational stage, the platform hires

ad-hoc couriers based on their bidding for delivery jobs. Because the bidding strategy of ad-hoc

couriers is unknown, it would be prohibitive to precisely determine the expected crowdsourcing

costs associated with the delivery workforce in the planning horizon. The robust satisficing model

aims to meet the specified expected cost target and perform as well as possible under distributional

ambiguity. The contributions of our work are summarized as follows.

1. To characterize the empirical distribution of the crowdsourcing costs using historical bidding

records made by the ad-hoc couriers, we first propose a basic reduced information model

that evaluates the upper bound of the crowdsourcing cost. We prove that the bound is tight

under the single payment value bidding scheme. We further introduce a generalized reduced

information model to obtain a tighter bound on the crowdsourcing cost that would improve

with the number of breakpoints.

2. Based on the basic reduced information model, we propose a data-driven robust satisficing

model that incorporates a time additive Wasserstein metric to characterize distributional

ambiguity in the workforce management problem. We can reformulate the proposed robust

satisficing model as a single deterministic tractable convex optimization problem. We also

extend this to the generalized reduced information model and demonstrate that a binary

search algorithm can be applied to tackle the robust satisficing model exactly via solving a

modest number of convex optimization problems.

3. We provide statistical justifications for the robust satisficing model that are based on target

attainment. For small deviations from the target, we provide a target attainment confidence

guarantee based on the probability bound of the Wasserstein distance. For large shortfalls

from the target, we provide a concise expression of probability guarantee, which does not

depend on the number of breakpoints of the generalized reduced information model.
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4. Numerical tests on Solomon’s data sets show that the basic reduced information model can

provide decent approximations of the crowdsourcing costs for practical delivery problems

when multiple payment values are allowed. The generalized reduced information model further

improves the bounds, controlling all the gaps within 5%. Moreover, simulated tests demon-

strate that the proposed robust satisficing model provides better out-of-sample performance

than the empirical model, especially in the cases of high levels of uncertainty and risk.

Notation. We use boldface lowercase letters for vectors (e.g., θ), and calligraphic letters for sets

(e.g., X ). We use | · | to denote the cardinality of a finite set. We use [N ] to denote the running

index {1,2, . . . ,N} for N ∈N, and [0] = ∅. A random variable ṽ is denoted with a tilde sign such as

ṽ ∼ P,P ∈ P0, where P0 represents the set of all possible distributions. For a multivariate random

variable, we use P0(Z) to represent the set of all distributions for the multivariate random variable

that has support Z ⊆Rn. Specifically, we use z̃ ∼ P, P∈P0(Z) to define z̃ as a multivariate random

variable with support Z and distribution P. We use EP [ṽ] to denote the expectation of a random

variable, ṽ ∼ P, over its distribution. Finally, 0 (1) denotes the vector of all zeros (ones) and ei

denotes the ith basis vector. The dimensions of these vectors should be clear from the context. All

the proofs appear in Appendix A.

2. Workforce management with crowdsourced delivery

We are examining a delivery workforce management platform that operates over a planning hori-

zon of T time periods. Before the planning horizon, the platform creates I different work shifts

to offer to crowdsourced couriers and makes the employment decision of contracted couriers for

each shift. During the operational stage, if the contracted couriers cannot handle all the delivery

jobs, the platform hires ad-hoc couriers based on their bidding for available jobs. As the arrivals

of packages and the ad-hoc couriers’ availability and bidding behaviors are unknown before the

planning horizon, it is challenging for the platform to make the employment decision of contracted

couriers, such that all packages can be delivered on time with a minimal expected cost.

Problem description

For each work shift, i∈ [I], we define Si ⊆ [T ] as the set of periods within the time horizon covered by

the shift. For each period t∈ [T ], we define the vector at ∈ {0,1}I , where ati = 1 if t∈ Si, and ati = 0,

otherwise, for all i∈ [I]. Without loss of generality, we assume that a sufficient number of couriers

have registered to work for each shift because the platform can release the shifts several days or

weeks earlier than the start of the planning horizon. We define x ∈ X ⊆ ZI
+ as the employment

decision, where xi represents the number of contracted couriers hired to work at shift i ∈ [I].

The feasible set X can encapsulate the detailed constraints associated with individual contracted
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couriers. Then, the number of contracted workers at time t ∈ [T ] is a⊤
t x. The compensation to

the contracted courier in the ith, i∈ [I] work shift is wi. Hence, the total compensation for hiring

contracted workers would be w⊤x.

Before the beginning of each period, t∈ [T ], the set of packages has arrived and must be delivered

by the end of the tth period. The delivery workforce management platform would solve a VRP,

which lexicographically minimizes the number of couriers and the total traveling distance while

adhering to delivery time windows and couriers’ capacity constraints. Hence, the solutions to the

VRP provide the number of jobs Jt ∈ Z+, where each job is a set of packages to be delivered by

one courier by the end of the time period. As the employment decision, x is made before customer

orders are realized, there may exist situations where the hired contracted couriers cannot complete

all the delivery tasks. Specifically, at the beginning of period t, there would be potential (Jt −a⊤
t x)

+

jobs that the contracted couriers could not fulfill.

To provide high-quality service to customers, the platform guarantees that all packages realized at

the beginning of a period will be delivered by the end of that period. Hence, the platform considers

another matching mechanism by hiring ad-hoc couriers. Specifically, the platform releases all the

Jt jobs to ad-hoc couriers who would bid for these jobs. In particular, the ad-hoc couriers specify

their desired compensations for each job from a given list of N possible payments, p1, p2, . . . , pN > 0,

with pn ≤ pn+1. Let Kt denote the number of ad-hoc couriers participating in bidding at period

t. We define the corresponding bidding set Bt as the set of tuples (k, j,n) ∈ [Kt]× [Jt]× [N ], with

each tuple (k, j,n) representing courier k has bidden for job j for payment pn. For convenience, we

also define the projection of Bt on the tuples (k, j)∈ [Kt]× [Jt] as follows

B̄t := {(k, j)∈ [Kt]× [Jt] | ∃n∈ [N ] : (k, j,n)∈Bt} .

Assumption 1. We assume that pN is high enough so that we can always find someone to take

up any delivery job for that price. Consequently, we can assume that every job j ∈ [Jt] can be

assigned to an unique bidder kj ∈ [Kt], so that (kj, j)∈ B̄t for all j ∈ [Jt] and |{kj | j ∈ [Jt]}|= Jt.

To ensure Assumption 1 always holds in practice, we can temporarily assign each job j ∈ [Jt] to

a dummy courier at payment pN . Whenever a dummy courier is assigned, we can always replace it

with someone willing to deliver the corresponding job at that price. If no ad-hoc courier is available

to take the job, we can outsource the job to a third-party logistics company at payment pN . In

an extreme case, neither ad-hoc couriers nor third-party logistics companies are available; we can

consider a penalty cost pN occurs, as pN is assumed to be sufficiently high. In fact, this extreme

case can also be regarded as where a dummy courier takes up the job with payment pN .
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After the bids have been gathered, the platform would assign jobs to ad-hoc couriers. For a

realized bidding set Bt, we can obtain the information, Jt, Kt, and B̄t. Subsequently, the planner

decides the employment of ad-hoc couriers with the minimum crowdsourcing cost, ft(x,Bt), where

ft(x,Bt) = min
∑

(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥ Jt −a⊤
t x

skj ≥ 0 ∀(k, j)∈ B̄t,

(1)

in which the first set of constraints ensures that job j ∈ [Jt] is assigned to at most one ad-hoc

courier, and the second set of constraints requires that each ad-courier k ∈ [Kt] is assigned to at

most one job. The third set of constraints requires that all jobs be assigned to contracted or ad-hoc

couriers. Since this is a network flow optimization problem, if a⊤
t x ∈ Z, then there exist binary

optimal solutions for the decision variables skj, (k, j)∈ B̄t such that skj = 1 if courier k’s bid for job

j is accepted, and skj = 0 otherwise. All the remaining jobs are consequently assigned to contracted

couriers.

Note that the considered problem applies to both the one-to-many and many-to-many logistics

systems, as we do not explicitly solve the routing problem. This is because various VRPs have

been well-studied in the literature, and many algorithms can be used by platforms to tackle the

associated VRP and decide the number of jobs and the delivery routes. When applied to the one-to-

many logistics system, both contracted and ad-hoc couriers start their jobs from the depot. After

delivering all the packages included in a job, the ad-hoc courier can directly leave the platform

and does not need to return to the depot. For a contracted courier, returning to the depot or not

depends on the shift s/he is hired. If the current time period is the last one in a shift, the courier

can leave the system without returning to the depot; otherwise, s/he must return to the depot

to perform a job in the subsequent period. In a many-to-many delivery system, at the beginning

of a time period, couriers directly go to customers’ sites to pick up packages and then deliver

them to corresponding destinations. After finishing the last delivery in an assigned job, the ad-hoc

courier leaves the platform. For a contracted courier, if the current time period is the last one in

a shift, s/he can directly leave the system; otherwise, s/he continues to perform another job in

the subsequent period by going from the last customer in the current period to the first customer

assigned in the next period.
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Empirical model

During the planning horizon, we do not know the future arrivals of packages and how ad-hoc

couriers would bid for the jobs. We denote (B̃1, . . . , B̃T ) as the joint random bidding sets for all

time periods, and its true distribution Q⋆, (B̃1, . . . , B̃T )∼Q⋆ is unobservable to the decision-maker.

Hence, it is impossible to determine the true optimum solution in the following ideal optimization

problem.

Z⋆ = min w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)


s.t. x∈X .

(2)

Nevertheless, we have access to Ω historical sample path records of the bidding sets Bω
t , for all

ω ∈ [Ω], t∈ [T ]. Accordingly, we denote Q̂ as the empirical distribution such that

EQ̂

[
B̃t =Bω

t ∀t∈ [T ]
]
=

1

Ω
∀ω ∈ [Ω].

To obtain the decisions for the contracted couriers, x, we can solve the empirical optimization

problem that minimizes the average cost for the planning horizon as follows

Ẑ = min w⊤x+EQ̂

∑
t∈[T ]

ft(x, B̃t)


s.t. x∈X ,

(3)

which is equivalent to the following linear optimization problem,

Ẑ = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
(k,j,n)∈Bω

t

pns
ω
tkj

s.t.
∑

k:(k,j)∈B̄ω
t

sωtkj ≤ 1 ∀j ∈ [Jω
t ], t∈ [T ], ω ∈ [Ω],∑

j:(k,j)∈B̄ω
t

sωtkj ≤ 1 ∀k ∈ [Kω
t ], t∈ [T ], ω ∈ [Ω],∑

(k,j)∈B̄ω
t

sωtkj ≥ Jω
t −a⊤

t x ∀t∈ [T ], ω ∈ [Ω],

sωtkj ≥ 0 ∀(k, j)∈ B̄ω
t , t∈ [T ], ω ∈ [Ω],

x∈X .

(4)

While our work does not address the correlation between the bidding set Bt and the employment

decision x, we acknowledge their potential relationship. For instance, the availability of jobs for ad-

hoc couriers to bid on may be influenced by the number of contracted couriers, while other factors

like the utility of ad-hoc couriers could also impact the bidding set Bt. Despite these potential

correlations, accurately characterizing the relationship between x and Bt presents a challenge due

to the lack of comprehensive literature on the subject. Indeed, any attempt to precisely model
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this interaction is susceptible to modeling errors, further supporting the use of robust optimization

methods to mitigate such errors. Additionally, although modeling decision-dependent uncertainties

might be a viable option, it could render our problem intractable, as single-stage robust models

with decision-dependent uncertainties are already computationally cumbersome (Nohadani and

Sharma 2018, Chen et al. 2023), not to mention that we consider a two-stage model.

3. Basic reduced information model

Apart from being a large-scale linear optimization problem, we are unable to extend Problem (4)

to a data-driven robust optimization model due to the difficulties of characterizing the statistics

associated with the random bidding sets, (B̃1, . . . , B̃T ). As such, we propose a reduced information

model that evaluates an upper bound of the crowdsourcing cost function. Specifically, After the

bids have been gathered at the tth period, we solve the following assignment problem,

min
∑

(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj = 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],

skj ≥ 0 ∀(k, j)∈ B̄t,

(5)

and obtain its optimum binary solution, s∗kj ∈ {0,1}, (k, j)∈ B̄t. Observe that under Assumption 1,

Problem (5) is a feasible assignment problem. Subsequently, we determine the basic reduced infor-

mation vector, zt ∈RN where

ztn =
∑

(k,j):(k,j,n)∈Bt

s∗kj ∀n∈ [N ]. (6)

Speaking intuitively, ztn is the maximum number of ad-hoc couriers, based on the optimal assign-

ment solution of Problem (5), who could be assigned for the jobs for payment pn. Namely, for

payment pn, we only care about the total number of ad-hoc couriers that can be dispatched, and

the reduced information is the job preference a courier has specified for this payment.

Theorem 1. The crowdsourcing cost function with basic reduced information,

gt(x,zt) = min p⊤y

s.t. 1⊤y≥ 1⊤zt −a⊤
t x

0≤ y≤ zt,

(7)

is an upper bound of the crowdsourcing cost function, i.e.,

ft(x,Bt)≤ gt(x,zt).
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Moreover, the bound is tight if there exists an optimal binary solution of Problem (1) such that

skj ≤ s∗kj for all (k, j)∈ B̄t.

The proof is straightforward. We can see that gt(x,zt) corresponds to an assignment, where

the solution s∗ is used to find the cheapest 1⊤zt −a⊤
t x bidders. Such an assignment is a feasible

solution to Problem (1); thus, gt(x,zt) is an upper bound of ft(x,Bt).

The bidding scheme mandated by the platform influences the accuracy of the reduced information

model in evaluating the crowdsourcing cost function. In a single payment value bidding, each ad-

hoc courier, k ∈ [Kt] can bid for any number of jobs but for one payment value rk ∈ {p1, . . . , pN}
for any job assigned by the platform.

Theorem 2 (Single payment value bidding). Under the single payment value bidding

scheme, the basic reduced information model evaluates the crowdsourcing cost exactly, i.e.,

gt(x,zt) = ft(x,Bt) for any number of assignments Jt −a⊤
t x∈ {0,1, . . . , Jt}.

In the proof of Theorem 2, we first show that gt(x,zt) is connected to a minimum-cost net-

work flow problem. From discrete convex analysis, the minimum-cost network flow problem is

an M-convex problem (Murota 1998, Chen and Li 2021), which possesses the property that its

local minimum equals the global minimum. We then prove gt(x,zt) = ft(x,Bt) by mathematical

induction from a⊤
t x= 0 to a⊤

t x= Jt, and each step of induction would utilize the aforementioned

property of the M-convex problem.

Given the historical information Bω
t , for ω ∈ [Ω], t ∈ [T ], by solving Problem (5), we can obtain

the corresponding basic reduced information vector, zω
t , which is used to evaluate the upper bound

of the crowdsourcing cost function. The basic reduced information allows us to characterize the

underlying random variables associated with the delivery workforce management problem. For each

period, t ∈ [T ], the random variable z̃t represents the random basic reduced information vector

associated with the bidding sets. For convenience, we define z̃ := (z̃t)t∈[T ] and its support set is

Z := {(zt)t∈[T ]|zt ∈Zt ∀t∈ [T ]},

Zt = {z ∈RN
+ | 1⊤z ≤ z̄t},

where z̄t is the maximum number of jobs that would ever arrive at the time period t. We denote the

Ω historical realizations of the random variables by zω
t ∈ Zt, ω ∈ [Ω], t ∈ [T ]. Correspondingly, we

define the empirical distribution P̂∈P0(Z), z̃ ∼ P̂ such that for all ω ∈ [Ω], P̂ [z̃t = zω
t ∀t∈ [T ]] = 1

Ω
.

Specifically, with the basic reduced information, we solve the following empirical optimization

problem,

Z̄0 = min w⊤x+EP̂

∑
t∈[T ]

gt(x, z̃t)


s.t. x∈X .

(8)
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which is an upper bound to the empirical optimization problem (3), and it is equivalent to the

following linear optimization problem,

Z̄0 = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

p⊤yω
t

s.t. 1⊤yω
t ≥ 1⊤zω

t −a⊤
t x ∀t∈ [T ], ω ∈ [Ω],

0≤ yω
t ≤ zω

t ∀t∈ [T ], ω ∈ [Ω],

x∈X .

For a bidding platform where multiple payment values are allowed, the basic reduced informa-

tion model may not be exact. Unfortunately, the relative performance gap can be unbounded.

Consider an instance with N = 3, Jt = Kt = 2, p = (ϵ,1,3), for some small ϵ > 0 and Bt =

{(1,1,1), (1,2,2), (2,1,2), (2,2,3)}. Hence, zt = (0,2,0). For a⊤
t x = 1, observe that ft(x,Bt) = ϵ,

while gt(x,zt) = 1, implying that the relative performance gap, gt(x,zt)/ft(x,Bt) = 1/ϵ can be

arbitrarily large. Nevertheless, we can narrow the gap through a more general reduced information

model, which will be discussed in the next section.

4. Generalized reduced information model

We can further improve the basic reduced information model to obtain a tighter bound on the

crowdsourcing cost function. The introduction of the generalized reduced information model is

inspired by the infimal convolution (Chen and Sim 2009), a technique in convex analysis. The

key idea is to split the number of contracted couriers into multiple integer numbers, and each

number corresponds to a breakpoint and a crowdsourcing cost function. Then, we can show that

the convex combination of all the crowdsourcing cost functions would be a tighter bound of the

function ft(x,Bt).

To do so, for each period t ∈ [T ], we consider Lt breakpoints utℓ ∈ [0, z̄t] ∩ Z+, ℓ ∈ [Lt], with

ut1 = 0. Subsequently, we derive an approximation of the crowdsourcing cost function that would

be tight if a⊤
t x= utℓ for some ℓ ∈ [Lt]. In particular, given the bidding information Bt, t ∈ [T ], we

determine the set of generalized reduced information vectors, zℓ
t ∈RN , ℓ∈ [Lt] where

zℓtn =
∑

(k,j):(k,j,n)∈Bt

stℓkj ∀n∈ [N ], ℓ∈ [Lt] (9)
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and

stℓ ∈ arg min
∑

(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥ Jt −utℓ

skj ≥ 0 ∀(k, j)∈ B̄t.

(10)

Observe that since ut1 = 0, z1
t corresponds to the basic reduced information vector. We also note

that whenever utℓ ≥ Jt, we have zℓ
t = 0.

We now extend to a generalized reduced information model by first characterizing the underlying

random variable. As a generalization, we define z̃ := (z̃ℓ
t )t∈[T ],ℓ∈[Lt], where z̃

ℓ
t represents the random

reduced information vector associated with the breakpoint ℓ ∈ [Lt] at the tth period. We consider

breakpoints separable support sets

Z :=
{
(zℓ

t )t∈[T ],ℓ∈[Lt]|zℓ
t ∈Zℓ

t ∀t∈ [T ], ℓ∈ [Lt]
}
,

where

Zℓ
t = {z ∈RN

+ | 1⊤z ≤ z̄tℓ},

and z̄tℓ = z̄t−utℓ ≥ 1. Hence, noting that u1 = 0, with L= 1, the random variable z̃ is a generaliza-

tion over the random basic reduced information vector. Correspondingly, the empirical distribution

is P̂∈P0(Z), z̃ ∼ P̂ such that for all ω ∈ [Ω],

P̂
[
z̃ℓ
t = zℓω

t ∀t∈ [T ], ℓ∈ [Lt]
]
=

1

Ω
,

where zℓω
t ∈Zℓ

t , ℓ ∈ [Lt] is the historical realization of the generalized reduced information associ-

ated with the bidding set Bω
t at t∈ [T ].

Theorem 3. For any x∈X , η,γ ∈RLt
+ such that 1⊤γ = 1 and 1⊤η= a⊤

t x, we have

ft(x,Bt)≤
∑
ℓ∈[Lt]

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t ), (11)

where

ht(γ, η,z) = min p⊤y

s.t. 1⊤y≥ 1⊤zγ− η

0≤ y≤ zγ.

(12)
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Moreover,

EP̂ [gt(x, z̃
1
t )]≥ min EP̂

 ∑
ℓ∈[Lt]

ht(γℓ, ηℓ −utℓγℓ, z̃
ℓ
t )


s.t. 1⊤γ = 1

1⊤η= a⊤
t x

η,γ ∈RLt
+ .

(13)

In the proof of Theorem 3, we first construct function ht(γℓ, ηℓ−utℓγℓ,z
ℓ
t ) and then rewrite it in

the form of γℓht(1, ηℓ/γℓ − utℓ,z
ℓ
t ). Subsequently, we prove that ht(1, η− utℓ,z

ℓ
t )≥ f̄t(η,Bt), where

f̄t(η,Bt) corresponds to the exact crowdsourcing cost when η contracted couriers are available. We

next prove that ft(x,Bt) is upper bounded by the convex combination of functions f̄t(ηℓ/γℓ,Bt),

where the coefficient of each function is γℓ. Then we conclude that ft(x,Bt) is also upper bounded

by the convex combination of functions ht(1, ηℓ/γℓ − utℓ,z
ℓ
t ), each with a coefficient of γℓ. Up to

now, the relationship in (11) is proved. Since the basic reduced information model is a special case

of the generalized information model, the bound (13) naturally holds.

Proposition 1. Let L⊆ [Lt] be a subset of breakpoints and

h̄t(x,L) = min
∑
ℓ∈L

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t )

s.t. 1⊤γ = 1

1⊤η= a⊤
t x

η,γ ∈R|L|
+ ,

then we have the following results:

1. Monotonicity: for any L⊆L′ ⊆ [Lt],

h̄t(x,L′)≤ h̄t(x,L).

2. Tightness: for any x∈X , if utℓ∗ = a⊤
t x for some ℓ∗ ∈L, then the approximation of the crowd-

sourcing cost function would be tight, i.e.,

ft(x,Bt) = h̄(x,L).

The monotonicity property holds naturally because the optimal solution to the optimization

problem h̄(x,L) is a feasible solution to problem h̄(x,L′) if L⊆L′. The function h̄t(γℓ, ηℓ−utℓγℓ,z
ℓ
t )

is exactly the same as the function ft(x,Bt) by setting γℓ∗ = 1, ηℓ∗ = utℓ∗ = a⊤
t x. Thus, Proposition

1 holds. Although this proposition is straightforward, it has important implications. Specifically,

our approximation with the generalized reduced information model would be tight if the set of

breakpoints successfully includes the value of a⊤
t x. Since the possible values of Lt are finite, belong-

ing to the set {0,1, · · · , z̄t}, the approximation would be exact if we let Lt = z̄t. This is because

a⊤
t x< z̄t and the value of a⊤

t x can be included in the set of breakpoints in this case.
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Remark 1. Notice that Proposition 1 holds for any bidding set Bt and reduced information

vectors zℓ
t , ℓ ∈ [Lt]; thus, taking expectation with respect to the empirical distribution P on both

sides would yield the same results.

In the same vein, we can also extend the generalized reduced information model, which solves

the following empirical optimization problem,

Z0 = min w⊤x+EP̂

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )


s.t. 1⊤ηt = a⊤

t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt,γt ∈RLt
+ ∀t∈ [T ],

x∈X ,

(14)

or equivalently

Z0 = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

p⊤yℓω
t

s.t. 1⊤yℓω
t ≥ 1⊤zℓω

t γtℓ − ηtℓ +utℓγtℓ ∀t∈ [T ], ω ∈ [Ω], ℓ∈ [Lt],

0≤ yℓω
t ≤ zℓω

t γtℓ ∀t∈ [T ], ω ∈ [Ω], ℓ∈ [Lt],

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt,γt ∈RLt
+ ∀t∈ [T ],

x∈X .

(15)

Moreover, as the result of Theorem 3, it provides an improvement over the basic information

model of Problem (8), i.e., Ẑ ≤Z0 ≤ Z̄0. The approximation of the empirical average crowdsourcing

cost is exact if there exists an optimal solution x of Problem (4) such that

a⊤
t x∈ {utℓ|ℓ∈ [Lt]} ∀t∈ [T ].

Figure 1 summarizes the relationships among models and shows how we construct the empirical

and robust models progressively. Specifically, the exact crowdsourcing cost ft(x,Bt) is evaluated

in model (1), and its corresponding empirical model for making the employment decisions of con-

tracted couriers, x, is presented in (3). To extend Problem (3) to a data-driven robust model, we

propose two reduced information models. In particular, after solving the assignment problem (5)

and obtaining its optimal solution, we determine the basic reduced information vector zt accord-

ing to Equation (6). Subsequently, we construct the basic reduced information model (7) and its

corresponding empirical model (8). Based on model (7) and the empirical model’s objective value

Z̄0, a robust satisficing model is built, which will be detailed in the next section. Similarly, we

can obtain the generalized reduced information model and its corresponding empirical and robust

models.
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Figure 1 The relationships among models

<latexit sha1_base64="zf9NcMHVCxiAyHlizwovJLn3wnY="></latexit>

Crowdsourcing cost ft(x, Bt)
<latexit sha1_base64="f0BBJskLSyaKu0H/PN8OxD64wow=">AAACH3icbVDJSgNBEK1xjXGLevTSGAS9hBnB5Sjx4jGCcSEJ0tNTSZr0MnT3KGGYr/CqB7/Gm3jN39iJOaixoODxXhWv6sWp4NaF4SiYm19YXFourZRX19Y3Nitb2zdWZ4Zhk2mhzV1MLQqusOm4E3iXGqQyFngbDy7G+u0jGsu1unbDFDuS9hTvckadp+6lTlCQg+jwoVINa+GkyCyIpqAK02o8bAXQTjTLJCrHBLW2FYWp6+TUOM4EFuV2ZjGlbEB72PJQUYm2k08uLsi+ZxLS1ca3cmTC/tzIqbR2KGM/Kanr27/amPxPa2Wue9bJuUozh4p9G3UzQZwm4/dJwg0yJ4YeUGa4v5WwPjWUOR/SL5dY+h8UPjEtJVVJ3mZxkbfHjoyKvF4UZZ9Z9DehWXBzVItOasdXR9Xz+jS9EuzCHhxABKdwDpfQgCYwkPAML/AavAXvwUfw+T06F0x3duBXBaMv/H2iAA==</latexit>

model (1)

<latexit sha1_base64="SZCFKKHESe51bIQ1xri4BdIXDLk="></latexit>

Empirical model (3)
with objective value Ẑ
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Robust satisficing model (19)

5. Data-driven robust models

As we do not know how future uncertainty would evolve, the solution to the empirical optimization

problem may not necessarily perform as well when the actual uncertainty is realized in the future.

This overfitting phenomenon is known as the optimizer’s curse (Smith and Winkler 2006). The

reduced information models allow us to characterize the distribution of the underlying random

variable and formulate robust models to mitigate the uncertainty associated with the data-driven

empirical optimization problem. This section will show how to develop data-driven robust opti-

mization models using the reduced information models. Our numerical tests based on Solomon’s

data sets for VRPs in Section 6 show that the basic reduced information model performs quite well.

Hence, because of its simplicity, we will first focus on the basic reduced information approach for

solving the robust delivery workforce management problem under uncertainty. We will also discuss

extending the result to the generalized reduced information model.

Robust model with basic reduced information

To build a data-driven robust model, we first focus on the basic reduced information model where

the true distribution of the random basic reduced information vector, z̃ ∼ P⋆, P⋆ ∈P0(Z) is unob-

servable to the decision-maker. Because the empirical distribution, P̂, is not the true distribution,

P⋆, the empirical optimization model would often yield inferior solutions in out-of-sample perfor-

mance evaluations. To overcome this issue, Mohajerin Esfahani and Kuhn (2018) and Gao and

Kleywegt (2023) have proposed a data-driven robust optimization model with an ambiguity set

that is characterized by a type-1 Wasserstein metric ∆(P, P̂), which evaluates the statistical dis-

tance between a candidate distribution P from the empirical distribution, P̂. In particular, suppose
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PΩ denotes the distribution that governs the distribution of the independent samples z̃1, . . . , z̃Ω

drawn from P⋆ for which the empirical distribution P̂ is constructed. Then under some light-tall dis-

tribution assumption, PΩ
[
∆(P⋆, P̂)> r

]
would diminish rapidly to zero as the statistical distance

r increases (Fournier and Guillin 2015). The robust optimization problem for the basic reduced

information model is as follows,

Z̄r = min w⊤x+ sup
P∈P0(Z):

∆(P,P̂)≤r

EP

∑
t∈[T ]

gt(x, z̃t)


s.t. x∈X ,

where in practice, the size parameter r is determined via cross-validation to achieve better out-of-

sample performance than the non-robust optimization model.

Instead of restricting the distribution to within the vicinity of the empirical distribution, in

addressing the issues of robustness in data-driven optimization problems, Long et al. (2022) propose

a robust satisficing model specified by a target τ ≥ Z̄0. In particular, the robust satisficing model

for the problem is as follows

κτ = min k

s.t. w⊤x+EP

∑
t∈[T ]

gt(x, z̃t)

≤ τ + k∆(P, P̂) ∀P∈P0(Z)

x∈X , k≥ 0.

(16)

To obtain a tractable model for our robust satisficing problem, we propose the following time

additive Wasserstein metric,

∆(P, P̂) := inf
Q∈P0(Z2)

EQ

∑
t∈[T ]

1

z̄t
||z̃t − ξ̃t||∞

 ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂

 ,

where ∥ · ∥∞ is the L∞-norm.

Note that the robust optimization model specifies the size parameter r of the ambiguity set,

whereas the robust satisficing model specifies the target τ . To enhance out-of-sample performance,

these parameters are typically determined via cross-validation, especially in problems with limited

data, such as our crowdsourced delivery problem. We prefer the robust satisficing paradigm because

the target τ provides a balanced trade-off between optimality and robustness. This allows decision-

makers to adjust τ relative to the optimal objective of the empirical model within a defined range

based on their preferences. Additionally, the search space for setting τ in the robust satisficing

model is more intuitive and interpretable compared to adjusting the size parameter r in the robust

optimization model.
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The model (16) considers all possible distributions in P ∈ P0(Z) while simultaneously control-

ling the level of expected target violation under any distribution relative to the distance of this

distribution from the empirical distribution P̂. Since the basic reduced information model is a con-

servative approximation of the actual problem, the objective of the robust satisficing problem κτ

can be associated with how well the actual expected cost, when evaluated on the true unobservable

distribution, would not excessively exceed the threshold τ . As the value of κτ decreases, a smaller

magnitude of expected target violation could arise under any distribution. More discussions about

the robust models, especially understanding them from the perspective of worst-case scenarios, are

provided in Appendix B.

Proposition 2. Under the time additive Wasserstein metric, the robust satisficing problem (16)

is equivalent to the following robust optimization problem

κτ = min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

sup
zt∈Zt

{
gt(x,zt)−

k

z̄t
∥zt −zω

t ∥∞
}
≤ τ

x∈X , k≥ 0.

(17)

Note that the basic reduced crowdsourcing cost function, gt(x,zt) for t ∈ [T ] is determined by

solving the linear optimization problem (7) after the realization of zt. Hence, its optimal recourse

yt is a mapping of zt, and we can model Problem (17) as an adaptive robust optimization problem

as follows:

min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

sup
zt∈Zt

{
p⊤yt(zt)−

k

z̄t
∥zt −zω

t ∥∞
}
≤ τ

1⊤yt(zt)≥ 1⊤zt −a⊤
t x ∀zt ∈Zt, t∈ [T ],

0≤ yt(zt)≤ zt ∀zt ∈Zt, t∈ [T ],

yt :RN →RN ∀t∈ [T ],

x∈X , k≥ 0.

Adaptive robust optimization problems are generally computationally challenging problems. Hence,

these problems are often solved approximately by replacing the recourse decision yt with linear

decision rules or affine recourse adaptations (Ben-Tal et al. 2004, Chen et al. 2020). However,

because the second stage optimization problem (7) does not have complete recourse, such an

approximation may not obtain a feasible solution of the robust satisficing problem (Long et al.

2022) for any reasonable chosen target, τ > Z̄0. Hence, it is surprising that we can model the robust

satisficing problem (17) exactly as the following deterministic optimization problem.
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Theorem 4. The robust satisficing problem (17) is equivalent to the following deterministic

optimization problem

κτ = min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

rωt ≤ τ,

rωt ≥ z̄tϕ
ω
tn +(θω

tn)
⊤
zω
t −a⊤

t xpn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

z̄t ∥θω
tn∥1 ≤ k ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

1ϕω
tn +θω

tn ≥ qn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

ϕω
tn ≥ 0,θω

tn ∈RN ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

rωt ≥ 0 ∀ω ∈ [Ω], t∈ [T ],

x∈X , k≥ 0,

(18)

where the vector qn ∈RN , n∈ [N ] has elements

qnm =

 pm if m∈ [n− 1]

pn otherwise
∀m∈ [N ].

If the empirical optimization problem (8) is solvable, then the robust satisficing problem is also

feasible for all τ ≥ Z̄0, and κτ ∈ [0, κ̄], where

κ̄= (1⊤p)max
t∈[T ]

{z̄t}.

We note that although Problem (7) has relatively complete recourse, the lack of complete recourse

condition still makes it challenging to solve the adaptive robust optimization problem. A prevalent

strategy to tackle the data-driven adaptive robust optimization problems with the Wasserstein

distance metric is finding approximation solutions using the affine recourse adaptations (Chen

et al. 2020). However, to ensure that such an approximation also encapsulates the solution of the

empirical optimal model, the robust optimization problem must satisfy the condition of complete

recourse. This requirement is more demanding than the relatively complete recourse condition

(Long et al. 2022). For example, Bertsimas et al. (2019) show that approximations can still result in

infeasibilities, even when the relatively complete recourse condition is met. Fortunately, our reduced

information models manage to circumvent the demand for the complete recourse condition by

exploiting their inherent structures to derive exact solutions without using approximation methods.

The proof of Theorem 4 mainly utilizes the duality results in robust optimization, coupled with

an investigation into the structure of our problem. Specifically, the feasible region of gt(x,zt) is

the intersection of a box region and a hyperplane; thus, the number of extreme points is finite.

Whereas it is computationally prohibited to traverse all the extreme points to find the optimal
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solution because the time complexity of the traversal algorithm is O(2N). However, by delving into

the duality of gt(x,zt), we will only need to evaluate a few affine functions with a time complexity

of O(N). This pivotal observation facilitates the derivation of the exact reformulation as presented

in (18).

Although the basic robust satisficing model is feasible for any τ ≥ Z̄0, since Z̄0 ≥ Ẑ, it would not

be feasible for τ ∈ [Ẑ, Z̄0), which can be an issue if Z̄0 is significantly larger than Ẑ. To reduce the

conservativeness, we have to consider solving the generalized reduced information model that would

achieve Z0 = Ẑ. A computationally viable approach is to use the optimal solution of Problem (4),

x and consider Lt = 2 breakpoints with ut2 = a⊤
t x ∀t∈ [T ]. Based on Theorem 3, we have Z0 = Ẑ.

Next, we show how to extend the robust satisficing model to incorporate the generalized reduced

information.

Robust model with generalized reduced information

We now extend to the generalized reduced information model with z̃ = (z̃ℓ
t )t∈[T ],ℓ∈[Lt]. To obtain a

computationally tractable model, we consider the following γ-weighted time-additive Wasserstein

metric,

∆γ(P, P̂) := inf
Q∈P0(Z2)

EQ

∑
t∈[T ]

∑
ℓ∈[Lt]

1

z̄tℓ
γtℓ||z̃ℓ

t − ξ̃ℓ
t ||∞

 ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂

 .

Accordingly, we propose the following robust satisficing model associated with the generalized

reduced information model,

κτ = min k

s.t. w⊤x+EP

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

≤ τ + k∆γ(P, P̂) ∀P∈P0(Z),

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt,γt ∈RLt
+ ∀t∈ [T ],

x∈X .

(19)

Observe that when ηt1 = a⊤
t x, and γt1 = 1, Problem (19) will recover the solution of the basic

reduced information robust satisficing problem (16). Hence, Problem (19) has a lower objective

value, leading to lower probabilities of violating the target at various levels.

Unlike the basic reduced information model, we cannot solve the generalized robust satisficing

model as a single convex optimization problem even if X is a convex set. Nevertheless, the following

result shows we can solve the general robust model via a binary search on a bounded interval of k.
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Theorem 5. The robust satisficing problem (19) is equivalent to the following deterministic

optimization problem

κτ = min k

s.t. ρ(k)≤ τ

k≥ 0,

(20)

where

ρ(k) = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

rℓωt

s.t. rℓωt ≥ αℓω
tn(k)γtℓ − (ηtℓ −utℓγtℓ)pn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ], ℓ∈ [Lt],

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt ∈RLt ,γt ∈RLt
+ ∀t∈ [T ],

rℓωt ≥ 0 ∀ω ∈ [Ω], t∈ [T ], ℓ∈ [Lt],

x∈X ,

(21)

and
αℓω

tn(k) = max q⊤
n z− k

z̄tℓ
∥z−zℓω

t ∥∞
s.t 1⊤z ≤ z̄tℓ

z ≥ 0.

Moreover, if the empirical optimization problem (15) is solvable, then for all τ ≥Z0, the robust

satisficing problem is also feasible, and κτ ∈ [0, κ̄] for the same κ̄ defined in Theorem 4.

Observe that if X is a polyhedron, then Problem (21) would be a linear optimization problem.

Consequently, using a binary search, we can solve the generalized robust satisficing model by solving

a modest number of convex optimization problems.

Finally, we conclude this subsection by discussing why we use a Robust Satisficing (RS) approach

rather than other robust optimization methods. It is important to note that we are addressing a

problem where data is collected over time, resulting in a limited number of samples. For instance,

a year’s worth of data provides only 52 data points for weekly analysis. Therefore, we are dealing

with a situation characterized by a limited sample size, compounded by the challenges of generat-

ing future samples and the potential for a non-stationary environment. Consequently, solving the

empirical optimization problem alone may not lead to improved out-of-sample performance. Our

goal is to achieve solution robustness to enhance out-of-sample performance beyond what empirical

optimization models can offer.

Data-driven Robust Optimization (RO) and RS are two approaches that can consistently improve

empirical optimization models because they can replicate the solutions of empirical optimization

models for some choice of their hyperparameters, such as the size of the uncertainty set for RO being
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set at zero and the target for RS being set at the empirical optimal value. These hyperparameters

can be determined by cross-validation to ensure consistent performance of the empirical optimiza-

tion models. In contrast, moment-based Distributionally Robust Optimization (DRO) models do

not replicate the solutions of the empirical optimization models, and their performance relative

to empirical optimization models depends on the underlying problem. In our numerical study, the

DRO approach fails to improve over the data-driven approach. To summarize, while the family of

solutions generated by RO and RS can be the same, we focus on the data-driven RS model because

it provides consistent performance and clear interpretability via its target-based hyperparameter

setting.

Statistical justification

When utilizing the empirical model, the platform derives an objective value, yet its attainability

in future applications cannot be guaranteed. The Optimizer’s curse, as described by Smith and

Winkler (2006), suggests that such an objective is often unachievable in out-of-sample tests. To

mitigate this, we propose two robust satisficing models in this paper. When platform planners

adopt these models with a cost target τ for determining couriers’ employment, they may want

to know the probability of τ being exceeded in out-of-samples. Thus, we provide upper bounds

on this probability in this section. While these bounds may not directly inform the target setting

or the model’s performance, they offer theoretical assurance about the reliability of achieving the

target. These bounds, in turn, boost the planners’ confidence in adopting robust satisficing models

to secure a certain level of expected out-of-sample performance.

Theorem 6. Consider the random bidding sets (B̃1, . . . , B̃T ) ∼ Q⋆ which generate the random

variable associated with the generalized reduced information z̃ ∼ P⋆. Let PΩ be the distribution that

governs the distribution of independent samples z̃ω, ω ∈Ω drawn from P⋆. The following holds for

the optimal solution to Problem (19):

1. Confidence guarantee of Fournier and Guillin (2015). For any τ ≥Z0,

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ

≤

 c1 exp(−c2Ωr
NL) ∀r ∈ [0,1]

0 ∀r > 1,

for some positive c1 and c2 that depend on EP⋆ [exp(||z̃||∞)] and NL, L=
∑

t∈[T ]Lt.

2. Confidence guarantee for significant target shortfalls. For given τ ≥Z0,

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ

≤

 exp
(
−2Ω(r−µ)

2
)
∀r ∈ [µ,1]

0 ∀r > 1,

where

µ :=E(z̃,ξ̃)∼P⋆×P⋆

 1

T

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − ξ̃ℓ
t∥∞

} ,

noting that µ≤ 1.
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We present two probability bounds in this theorem. For the confidence bound of Fournier and

Guillin (2015) to dominate the second bound for r ∈ [0, µ], we would require enough samples such

that c1 exp(−c2Ωµ
NL)< 1. However, since data is collected over time in the workforce management

problem, we expect the number of data samples available to be far fewer than necessary for the

confidence guarantee to be practically useful; if the planning horizon is seven days, the weekly

demand data may only provide 52 samples per year. Hence, in practical situations, we expect the

deviation between in-sample and out-of-sample performance to be significant.

Nevertheless, for justifying our robust satisficing model, the second probability bound provides

the assurance that, for a fixed number of samples Ω, the probability of target shortfalls exceeding

Trκτ decreases exponentially in (r−µ)2 and diminishes to 0 when r > 1. Although this bound is

not useful when r < µ, it is indeed a better bound than the first one, especially when µ is a small

number. This also means that greater shortfalls may occur but with an exponentially decreasing

probability. Minimizing the violation probability is consistent with the objective of the robust

satisficing model, which aims to achieve the lowest possible value of κτ . Notably, we provide a

simple expression specific to the robust satisficing model rather than using the results of Fournier

and Guillin (2015). More importantly, unlike the confidence guarantee of Fournier and Guillin

(2015), the second bound is independent of the number of breakpoints in the generalized reduced

information model. Additionally, introducing more breakpoints can result in a lower value of κτ

and a reduced violation probability bound, further motivating the use of the robust satisficing

model constructed from the γ-weighted time-additive Wasserstein metric.

Theorem 6 provides a useful theoretical framework for the robust satisficing model. However,

to set the target, a practical implementation may require additional techniques, such as cross-

validation on the target parameter, to optimize out-of-sample performance.

6. Numerical studies

In this section, we first evaluate the performance of the basic and generalized reduced information

models across multiple payment values. We subsequently compare the robust satisficing model and

the empirical model using simulated data. The data and source code for reproducing the results

can be found in the electronic companion.

Evaluation of the reduced information models using Solomon’s data sets

In Section 3, we demonstrate through a pathological example that the basic reduced information

model could have an arbitrarily large relative performance gap with respect to the true model when

multiple payment values are allowed. However, in practical delivery problems, the performance gap

is usually acceptable. To further investigate the impact of multiple payment values, we conduct

experiments using Solomon’s data sets (Solomon 1987) for the VRP with time windows, where
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hierarchical objectives are considered, with the primary aim being to minimize the number of

vehicles and then the travel distance. The solutions are available at https://sun.aei.polsl.pl/

/~zjc/best-solutions-solomon.html. We only consider the C1, R1, and RC1 data sets, as these

contain instances where more than ten vehicles are used. We do not consider the R2, C2, and RC2

data sets because they only involve a small number of vehicles (2, 3, or 4). Thus, there are 29

instances in total.

For each instance, we consider a list of N = 5 possible payments, with pn = ⌊0.8dmin + (n −
1) (1.2dmax−0.8dmin)

(N−1)
⌋, where dmin and dmax represent the minimal and maximal route lengths, respec-

tively. Note that the route length does not include the travel distance from the last customer to

the depot. We set Kt = 2Jt and consider four cases for bidding jobs. In each case, every ad-hoc

courier could provide N ′ ∈ {2, . . . ,5} payment values. For each courier j ∈ [Jt], we randomly gener-

ate their coordinates within the minimal and maximal coordinates of all nodes, then calculate the

travel distances required to complete each job, which is the sum of the distance between a courier’s

current location and the depot, and the route length associated with a job. Subsequently, we sort

the travel distances of each courier in non-decreasing order, denoting the resulting list as Dj. For

the first ⌊ |Jt|
N ′ ⌋ jobs in Dj, we calculate the average travel distance d̄ and set the courier’s payment

for each of these jobs as the one that has the minimal absolute deviation from d̄. We then follow

a similar procedure to set the payment for the second ⌊ |Jt|
N ′ ⌋ jobs until N ′ payments are specified.

We acknowledge that this bidding scheme is simplistic and intended for illustrative purposes only.

More complex bidding schemes can be developed by incorporating other influential factors, such

as the courier’s destination after finishing a job and the properties of the jobs (e.g., the number of

customers included in a job and package weights).

Subsequently, we solve Problems (1) and (7) for a⊤
t x ∈ {0, . . . , Jt − 1}. For a combination of

(N ′,a⊤
t x), we randomly generate 20 instances, where each instance differentiates from the other

in the payment values provided by a courier and the sets of bidding jobs under each payment.

The average percentage gaps are reported in Table 1, where gaps are calculated by gt(x,zt)−ft(x,Bt)

ft(x,Bt)
.

Moreover, we also present the results under N ′ = 1 to give some intuition of Theorem 2. To provide

insights into the differences among payment values, we give the price ratio between the maximal

value p5 and the minimal p1 in the table.

Table 1 indicates that the price ratio p5/p1 ranges from 2.02 to 9.71, relatively high values

compared to the average earnings of Amazon Flex drivers, which is stated to be between 18 to

25 dollars per hour, resulting in a ratio of around 1.39. Despite this, our approximation model

performs well, with average performance gaps of less than 5% observed in 101 out of 116 cases

where multiple payment values are allowed. In 35 cases, the average gaps are less than 1%. When

the single payment value bidding scheme is employed, the reduced information model generates

https://sun.aei.polsl.pl//~zjc/best-solutions-solomon.html
https://sun.aei.polsl.pl//~zjc/best-solutions-solomon.html
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Table 1 Average gaps (in %) between gt(x,zt) and ft(x,Bt) under multiple payment values

Number Instance p5/p1 N ′ = 1 N ′ = 2 N ′ = 3 N ′ = 4 N ′ = 5 Number Instance p5/p1 N ′ = 1 N ′ = 2 N ′ = 3 N ′ = 4 N ′ = 5

1 C101 2.81 0.00 0.08 3.40 2.81 3.48 16 R107 3.00 0.00 0.00 0.07 3.35 2.77
2 C102 2.81 0.00 0.24 2.98 3.87 4.03 17 R108 2.02 0.00 0.62 0.47 0.85 1.38
3 C103 4.25 0.00 6.38 2.45 1.86 2.05 18 R109 2.42 0.00 5.04 2.34 4.37 2.77
4 C104 4.25 0.00 2.97 2.09 1.13 1.98 19 R110 2.05 0.00 0.00 0.57 1.32 1.36
5 C105 2.81 0.00 0.19 2.47 4.04 4.29 20 R111 2.67 0.00 1.01 2.50 0.74 1.58
6 C106 2.81 0.00 0.23 2.50 3.64 3.69 21 R112 2.02 0.00 1.89 0.90 1.31 2.61
7 C107 2.81 0.00 0.13 2.34 3.11 3.93 22 RC101 4.07 0.00 3.86 0.49 0.60 0.71
8 C108 2.81 0.00 0.31 3.05 3.14 4.04 23 RC102 2.62 0.00 1.11 0.17 0.78 0.41
9 C109 2.81 0.00 0.33 2.87 2.70 3.86 24 RC103 3.08 0.00 2.95 2.25 2.64 2.32
10 R101 6.42 0.00 0.23 6.03 1.77 1.91 25 RC104 2.53 0.00 5.30 4.49 6.22 7.54
11 R102 9.71 0.00 0.00 1.05 0.00 1.24 26 RC105 3.67 0.00 0.33 4.10 5.44 4.00
12 R103 5.70 0.00 0.49 4.54 1.00 0.75 27 RC106 2.87 0.00 1.41 6.68 8.34 7.59
13 R104 2.09 0.00 0.00 0.00 0.31 0.99 28 RC107 3.46 0.00 4.34 13.81 13.89 8.66
14 R105 4.23 0.00 0.04 8.02 3.11 3.48 29 RC108 2.69 0.00 0.97 1.34 1.66 1.61
15 R106 3.48 0.00 2.46 12.74 3.20 1.08

exact solutions, as illustrated in columns N ′ = 1. Based on these results, we conclude that our

basic reduced information model can provide good approximations for Problem (1) when applied

to practical delivery problems.

To provide a comparative analysis of the performance of the generalized information model, we

conduct further experiments using the same instances using L= 2 breakpoints, where u0 = 0 and

u2 = ⌊Jt/2⌋. Figure 2 plots the average percentage gaps between the basic/generalized reduced

information model and the crowdsourcing cost function. The results reveal that the generalized

model provides tighter bounds than the basic model and sometimes significantly improves the

bounds. For example, when N ′ = 3, the average gap between the basic model and the crowdsourcing

cost function is approximately 14% in instance RC107 (i.e., instance number 28); however, the

generalized model reduces the gap to 0.5%. Moreover, we observe that the generalized model

produces solutions with performance gaps of less than 5% for all instances. When N ′ = 2, the

average gap of the generalized model is less than 0.5% for all the instances. Therefore, we can

conclude that the generalized reduced information model can provide better approximations for

Problem (1) and be useful in tackling practical delivery problems. Finally, we note that similar

results are obtained under an alternative bidding scheme. We provide the detailed experimental

settings and results in Appendix C.

Evaluation of robust satisficing models via a simulated crowdsourced delivery system

This section uses a simulated crowdsourced delivery system to evaluate the robust satisficing mod-

els. Suppose we have K = 60 ad-hoc couriers in total performing delivery tasks within an area

A = [0,40] × [0,40] ⊆ R2. For each courier k ∈ [K] at the beginning of the time period t ∈ [T ],

her/his current location is denoted as lkt ∈A. The planning horizon consists of T = 8 time periods,

representing a typical workday of 8 hours. There are a total of 26 work shifts, each lasting between

1 to 4 periods. The compensation for each contracted courier in the ith work shift is given by
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Figure 2 Average gaps (in %) between the reduced information models and the crowdsourcing cost function

under a distance-based bidding scheme
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(a) N ′ = 2
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(b) N ′ = 3
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(c) N ′ = 4
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(d) N ′ = 5

wi = 20σi × 0.9σi−1, where the basic compensation for each period is 20 and σi is the number of

periods that shift i covers. A discount factor of 0.9 is used to distinguish shifts; otherwise, hiring

a person for a shift of a certain number of periods is equivalent to hiring that person for multiple

continuous shifts, each lasting for one period. It is also reasonable in real-world applications that

shorter shift has higher compensation per hour since it is more flexible.

Simulation process. At the beginning of the time period t, we randomly select Kt couriers out

of [K], where Kt is sampled from a normal distribution with the mean and the standard deviation

being K/2. The value of Kt is then rounded to the nearest integer and truncated to the interval

[0,K]. We assume the other couriers in [K] are occupied by their own affairs and will appear in

a uniformly random location in A at the beginning of the time period t+1. There are Jt jobs to
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be performed within the time period t, which are independent of the couriers and the previous

decisions made by the platform. Since our problem does not explicitly solve the VRP, for simplicity,

we assume each job includes exactly one delivery. The lower and upper bounds of Jt are set to

Jmin = 10 and Jmax = 50, respectively. We first randomly generate the value of Jt from a normal

distribution with the mean and the standard deviation being (Jmin + Jmax)/2. We then round

the value to the nearest integer and truncate it to the interval [Jmin, Jmax]. Each delivery job is

associated with an origin lOj and a destination lDj , which are uniformly randomly distributed in A.

The platform provides couriers with N = 5 possible bidding prices, i.e., {p1, p2, . . . , p5} =

{20,30, · · · ,60}. The bidding price of each courier k ∈ [Kt] for job j ∈ [Jt] is set as the smallest

value in {p1, . . . , pN} that is higher than or equal to the courier’s expected payment of taking that

job, which is calculated by

Ukjt = dist(lkt, l
O
j )+ dist(lOj , l

D
j )+ ϵkt, (22)

where dist is the Euclidean distance and ϵkt represents the courier’s idiosyncratic noise at time

period t such that (ϵk1, . . . , ϵkT )∼N (0,Σk), where Σk = 5I. Whenever Kt < Jt, i.e., the available

couriers cannot take all the jobs, we assume a third-party delivery company could provide Jt−Kt

couriers, each of them would take the job with the highest price pN . To reflect the fluctuation of

price in different time intervals, we let the couriers’ expected payments increase and decrease by

20% in periods t∈ {1,8} and t∈ {4,5} to simulate the peak and off-peak periods, respectively.

At the beginning of the time period t, each hired ad-hoc courier k would travel through the path

lkt → lOj → lDj to finish the assigned job. Consequently, the courier’s location becomes lkt+1 = lDj at

the beginning of the time period t+1. If a courier provides her/his biddings but is not hired by the

platform (due to Kt >Jt), we assume that the courier’s location stays unchanged until the start of

the next period. Note that we can also randomly generate locations in A for these couriers, which

will not affect the solutions’ performance. To evaluate the performance of the proposed models, we

generate 7 training samples and 200 testing samples for each instance.

Choice of breakpoints. To compare the performance of the RS model and the empirical

model (EMP) associated with the generalized reduced information model, we begin by solving

the assignment problem to obtain the generalized reduced information vectors zℓω
t , for all t ∈ [T ],

ℓ∈ [Lt], and ω ∈ [Ω]. We then solve the empirical model (15) and obtain its objective value Z0. Next,

we consider a target ratio r and set τ = rZ0. Using a binary search algorithm, we solve problem

(20) to produce the solution of the robust satisficing model (19). When solving the generalized

reduced information model, we consider three cases for setting the breakpoints in each period:

• Lt = 1 with ut1 = 0. In this case, the generalized reduced information model coincides with

the basic reduced information model (7).
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• Lt = 2 with ut1 = 0 and ut2 =
⌊
0.5

∑
ω∈[Ω]

Jω
t /Ω

⌋
, where Jω

t is the number of jobs in period t∈ [T ]

under training sample ω ∈ [Ω].

• Lt = 2 with ut1 = 0 and ut2 = a⊤
t x̂, where x̂ is the solution to the empirical optimization

problem (3) with reformulation in (4). Note that if we choose this breakpoint, the generalized

reduced information model (15) solves exactly the empirical optimization problem (3).

For ease of notation, we use symbols B, G1, and G2 to denote the above three settings of break-

points and append them to EMP and RS to represent the empirical and robust satisficing models

associated with the breakpoints under these settings. Finally, we evaluate the performance of both

RS and EMP models in testing samples by solving problem (1) and obtain the second-stage crowd-

sourcing costs. To accelerate the resolution of models, we relax the feasible set X of the decision

variable x from ZI
+ to RI

+. Our preliminary results show that the differences in the out-of-sample

performance of integer solutions (round real-number solutions to the nearest integers) and real-

number solutions are negligible. Thus, we conduct the following experiments by setting x∈RI
+.

Comparison of out-of-sample performance. To assess the out-of-sample performance of

the RS and empirical models, we generate 60 instances. Figure 3 presents the average performance

along with the 95% confidence intervals (CIs), with the CIs depicted as shaded areas. The vertical

axis of the figure represents the value (in %) of the difference in test objective between MODEL

and EMP G2, divided by the test objective of EMP G2, denoted by MODEL−EMP G2
EMP G2

for short,

where MODEL∈ {RS B, RS G1, RS G2, EMP B, EMP G1, EMP G2}. We observe that the aver-

age performance of EMP B, EMP G1, and EMP G2 are comparable in the out-of-sample test, and

RS models produce better average out-of-sample performance than the corresponding EMP models

when the target is set slightly higher than the objective of EMP models. Moreover, RS G2 exhibits

superior performance to RS B and RS G1. Furthermore, when the target ratio varies between

1.01 and 1.05, the upper bounds of the CIs for the RS models’ performance also outperform the

corresponding EMP models. In addition, we conduct experiments to explore the out-of-sample

performance of the moment-based DRO problem for the basic reduced information model. The

detailed analysis is provided in Appendix C. The comparison results show that the DRO model

performs worse than its corresponding empirical model, further verifying the superiority of the RS

framework for our problem.

We note that the random bidding sets could also be correlated in the sense that each courier’s

remaining capacity or location follows a complex Markov decision process. Preliminary experiments

were performed, where the covariance matrix, Σk, was assumed to deviate from the identity matrix,

denoting the case where noises across different time periods were correlated. Nonetheless, the results

did not show any distinct variations and patterns compared to the case with independent noises.
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Figure 3 Comparison of out-of-sample performance (mean values and 95% CIs in shaded areas) between the

robust satisficing and the empirical models

1.00 1.02 1.04 1.06 1.08
target ratio

2.5

1.5

0.5

0.5

1.5

2.5
M

OD
EL

EM
P_

G2
EM

P_
G2

%
RS_B
RS_G1
RS_G2
EMP_B
EMP_G1
EMP_G2

We can expect these results because the simulation process is sufficiently complex and has some

inherent randomness. To conclude, while we can introduce correlations into the bidding set, neither

theoretical nor experimental results suggest that they would significantly impact the outcomes.

To further evaluate the performance of the RS model, we introduce more uncertainty in the

number of jobs in the testing samples. Specifically, we set the low and upper bounds to Jmin =

⌊10(1 − ζ)⌋ and Jmax = ⌊50(1 + ζ)⌋, where ζ ∈ {−20%,−10%,0%,+10%,+20%} represents the

percentage variations of job numbers, and generate Jt following the previous approach. We evaluate

the out-of-sample performance of the RS G2 and the EMP G2 models and report the average

comparison over 50 random instances in Figure 4. When the testing samples have a more significant

variation in job numbers, the benefit of using the RS G2 model becomes more apparent. When the

variation is minor, the RS G2 model with a small target performs better than the EMP G2 model.

Thus, we advise that decision-makers adopt a modestly conservative target in the RS model, say,

1.02, which would be advantageous across almost all the scenarios, including low and high levels

of uncertainty and risk. Moreover, if a greater variation in the job numbers is expected in the

future, then a conservative target in the robust satisficing model could lead to a more significant

improvement in the actual performance.

Investigation on different schemes of ad-couriers’ expected payments. In practice, the

ad-couriers’ expected payment schemes could be quite complex, influenced by several factors besides

the distances. In this section, we investigate four different settings of the expected payments. The
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Figure 4 Comparison of out-of-sample performance between the robust satisficing and the empirical models with

different deviations of job numbers in testing samples
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first two are based on distances. The other two are completely random, representing the case of

couriers’ unknown preferences, as some studies have shown that couriers may have various or even

completely different preferences even though the covariates are the same (Rechavi and Toch 2022).

• D1: The first one is aligned with the setting in the previous experiments. Namely, the expected

payment for courier k to take job j at the time period t is calculated using Equation (22).

• D2: The second one is more complex, introducing a coefficient to the distance function, i.e.,

Ukjt = αk

(
dist(lkt, l

O
j )+ dist(lOj , l

D
j )

)
+ ϵkt. The coefficient αk is sampled from the uniform

distribution Uni[0.5,1.5], which represents the courier’s expected payment per unit distance.

• R1: The third one is a random scheme, representing that the couriers’ bidding behaviors are

completely random. The expected payment is calculated by Ukjt = ϱkjt + ϵkt, where ϱkjt is

drawn from Uni[p1, pN ].

• R2: The last one uses the same formula as in the case R1. However, we draw ϱkjt from a two-

point distribution between p1 and pN , each with a probability of 0.5. This scheme represents

a more extreme case than case R1.

The patterns observed in Figure 5 across various preference settings are consistent with those

observed in the earlier section. This consistency suggests that, despite variations and intricacies in

the setting of couriers’ bidding behaviors, our robust satisficing model can consistently outperform

the empirical model. Moreover, a modestly conservative target in the RS model, say, a value of 1.02,
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Figure 5 Comparison of out-of-sample performance among different settings of couriers’ preferences
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would be sufficient to guarantee satisfactory out-of-sample performance. Thus, in practical appli-

cations, stakeholders operating the crowdsourcing delivery platforms can confidently deploy our

model, anticipating good outcomes regardless of the specific nuances of their operational settings

and the distinct personal preferences of couriers.

In sum, our experiments using Solomon’s data sets suggest that the performance gap between

the reduced information models and the true model is usually acceptable for practical delivery

problems. More importantly, through simulated data, we show that the robust satisficing model

can produce better out-of-sample performance than the empirical model when the target is set

slightly higher than the objective of the empirical model.

7. Conclusion

To offer affordable and reliable delivery services, e-commerce platforms and local businesses are

increasingly turning to crowdsourced delivery resources. However, the uncertainties surrounding

ad-hoc couriers’ availability and job bidding behavior have presented a challenge to the manage-

ment of the workforce. In this study, we propose a robust satisficing framework that accounts for

the uncertainty of ad-hoc couriers and the cost associated with hiring them when necessary. Our

framework provides a practical tool for decision-making that enables platforms to effectively man-

age their workforce resources and balance their cost objectives with service quality requirements.

Future work in this area could explore the integration of predictive analytics into the robust sat-

isficing framework to provide better insights into future demand and couriers’ availability, which

could further enhance the platform’s decision-making capability.
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Appendix A Proofs

A.1 Proof of Theorem 1

Observe that the value of gt(x,zt) corresponds to the allocation of Jt−a⊤
t x ad-hoc couriers using

the solution s∗, which has Jt assigned couriers, and then removing a⊤
t x of the most expensive

bidders. Such an assignment is a feasible solution to Problem (1). Hence,

ft(x,Bt)≤ gt(x,zt).

Now suppose there exists an optimal solution of Problem (1) such that s ≤ s∗. Then we can

construct the solution,

yn =
∑

(k,j):(k,j,n)∈Bt

skj ∀n∈ [N ],

which is feasible in Problem (7) and its objective

p⊤y=
∑

(k,j,n)∈Bt

pnskj

coincides with the optimum objective of Problem (1). Hence, in this case, we also have ft(x,Bt)≥
gt(x,zt). □

A.2 Proof of Theorem 2

We first define the set,

F :=

K⊆ [Kt]

∣∣∣∣∣∣∣∣
∀k ∈K,∃jk ∈ [Jt] :

(k, jk)∈ B̄t,

|K|= |{jk|k ∈K}|

 ,

so that each element in F is a set of couriers in which every courier in the set could be assigned to

a unique job.

Given a set of selected couriers K ∈ F , we consider the following assignment problem that

minimizes the total cost,

G(K) = min
∑

(k,j,n)∈Bt,k∈K

pnskj

s.t.
∑

k:(k,j)∈B̄t,k∈K

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj = 1 ∀k ∈K,∑
j:(k,j)∈B̄t

skj = 0 ∀k ∈ [Kt]\K,

skj ≥ 0 ∀(k, j)∈ B̄t,
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where the second collection of constraints specifies that any courier in K must be assigned with one

job, and the third collection of constraints ensures that any courier outside K cannot be assigned

with any job. The above assignment problem is a minimum-cost network flow optimization problem.

From discrete convex analysis, the minimum-cost network flow problem is an M-convex problem,

i.e., G :F →R is an M-convex function (see example 2.3 in Murota 1998 or section 4.1 in Chen and

Li 2021). A feasible solution K is a local minimum in the sense that we cannot replace any courier

k1 ∈K with a courier k2 ∈ [Kt]\K such that rk2 < rk1 and (K∪{k2})\{k1} ∈F . By Theorem 4.6 in

Murota (1998), any local minimum of the M-convex function is also a global minimum. Note that

whenever referring to the local/global minimum of G, we assume the domain of G is contained in

a hyperplane {K ∈F : |K|= η} for some η ∈ {0,1, . . . , Jt}.
Next, we consider a sequence of optimal solutions for the following problems,

fη = min
∑

(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥ η

skj ≥ 0 ∀(k, j)∈ B̄t,

for η ∈ {0,1, . . . , Jt}, and we use sη to denote the corresponding optimal solution. Obviously, we

have minK∈F,|F|=η G(K) ≥ fη. For a given η ∈ [Jt], let Kη be the corresponding set of selected

couriers,

Kη = {k ∈ [Kt] | ∃j ∈ [Jt] : s
η
kj = 1},

and each courier, k ∈ Kη is assigned to the job jk ∈ [Jt] so that sηkjk = 1. Observe that Kη ∈ F ,

|Kη|= η, and the total payment,
∑

k∈Kη
rk does not depend on how the η jobs are being assigned

to the couriers in Kη. Hence,

fη = min
K∈F,|K|=η

G(K) =G(Kη).

Now let Kη−1 = Kη\{k0} for some k0 ∈ argmaxk∈Kη{rk}. We claim the set Kη−1 is also a local

minimum of G (in domain {K ∈ F : |K| = η − 1}). Suppose this is not the case, we can replace

some courier k1 ∈Kη−1 with a courier k2 ∈ [Kt]\Kη−1 such that rk2 < rk1 and K̄ ∪ {k2} ∈ F , where

K̄=Kη\{k0, k1}. Observe that k2 ̸= k0 since rk0 ≥ rk for all k ∈Kη−1. To arrive at the contradiction

that Kη−1 is not a local minimum, we consider an assignment solution, s̄ for couriers in K̄ that

based on sη as follows

s̄kj =

 sηkj if k /∈ {k0, k1}
0 otherwise

∀(k, j)∈ B̄t.
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Since the assignment problem is a network flow problem, we can construct the residual network

associated with the solution s̄ (see, e.g., Ahuja et al. 1988). Moreover, because K̄ ∪ {k2} ∈ F , we

can find a feasible assignment solution using a max-flow algorithm by sending a unit of residual

flow from node k2, along an augmenting path on the residual network associated with s̄ (refer

to augmenting path algorithm for max-flow in Ahuja et al. 1988), that will terminate at one of

the unassigned jobs, ℓ ∈ [Jt]\J̄ where J̄ is the set of jobs that assigned to couriers in K̄ based

on s̄. If ℓ ̸= jk0 , then we would have K̄ ∪ {k0, k2} ∈ F . However, it contradicts that Kη is the

local minimum since we can replace k1 ∈ Kη with k2 to achieve a lower total payment. On the

other hand, if ℓ = jk0 ̸= jk1 , then K̄ ∪ {k1, k2} ∈ F . However, this will also contradict that Kη is

local minimum; since rk0 ≥ rk1 > rk2 , we can replace k0 ∈ Kη with k2 to achieve a lower total

payment. Therefore, by contradiction, we must have K̄ ∪ {k2} /∈ F , implying that the set Kη−1 is

local minimum. Consequently, it is also global minimum and we have fη−1 =minK∈F,|K|=η−1G(K) =

G(Kη−1).

Notice that the assignment optimization problem in G only uses couriers in Kη−1 which rules

out the courier with the highest cost from Kη. Therefore, if G(Kη) equals the optimal objec-

tive value of the basic reduced information model (7) with 1⊤zt − a⊤
t x = η assignments, then

G(Kη−1) must equal the optimal objective value of the basic reduced information model with η−1

assignments. Also, from previous analysis, if Kη ∈ argminK∈F,|K|=η G(K) and fη = G(Kη), then

Kη−1 ∈ argminK∈F,|K|=η−1G(K) and fη−1 =G(Kη−1). Obviously, G(KJt) equals the optimal objec-

tive value of the basic reduced information model with Jt assignments, KJt ∈ argminK∈F,|K|=Jt G(K)

and fJt =G(KJt). By mathematical induction, the basic reduced information model evaluates the

crowdsourcing cost exactly for any number of assignments η ∈ {0,1, . . . , Jt}. □

A.3 Proof of Theorem 3

Observe that since ηℓ ≥ 0, we have ht(0, ηℓ, z
ℓ
t ) = 0. Moreover, for all γℓ > 0, we have

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t ) = min

p⊤y

∣∣∣∣∣∣1
⊤y≥ 1⊤zℓ

tγℓ − (ηℓ −utℓγℓ)

0≤ y≤ zℓ
tγℓ


= γℓmin

p⊤y

∣∣∣∣∣∣1
⊤y≥ 1⊤zℓ

t − (ηℓ/γℓ −utℓ)

0≤ y≤ zℓ
t


= γℓht(1, ηℓ/γℓ −utℓ,z

ℓ
t ).

Moreover, following the same argument in the proof of Theorem 1, observe that for η≥ utℓ the value

of the function ht(1, η − utℓ,z
ℓ
t ) corresponds to the allocation of Jt − η ad-hoc couriers using the

solution stℓ, which has Jt−utℓ assigned couriers, and removing η−utℓ of the most expensive bidders,
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with at most one partial removal if η is fractional. However, when η < utℓ, we have ht(1, η−utℓ,z
ℓ
t ) =

∞, since the underlying minimization problem would be infeasible. Hence, we have

ht(1, η−utℓ,z
ℓ
t )≥ f̄t(η,Bt),

where
f̄t(η,Bt) = min

∑
(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥ Jt − η

skj ≥ 0 ∀(k, j)∈ B̄t.

Therefore, any feasible solution to Problem (11)∑
ℓ∈[Lt]

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t )

=
∑

ℓ∈[Lt]:γℓ>0

γℓht(1, ηℓ/γℓ −utℓ,z
ℓ
t )

≥
∑

ℓ∈[Lt]:γℓ>0

γℓf̄t(ηℓ/γℓ,Bt)

≥ f̄t(1
⊤η,Bt)

= f̄t(a
⊤
t x,Bt)

= ft(x,Bt)

where the last inequality is due to the function f̄t(η,Bt) being convex in η, γ ≥ 0 and 1⊤γ = 1.

To show the bound (13), it suffices to note that

ht(1,a
⊤
t x−ut1,z

1
t ) = ht(1,a

⊤
t x,z

1
t ) = gt(x,z

1
t ).

□

A.4 Proof of Proposition 1

The monotonicity property holds naturally because the optimal solution to the optimization prob-

lem h̄(x,L) is a feasible solution to problem h̄(x,L′) if L⊆L′.

Let γℓ∗ = 1, a⊤
t x= utℓ∗ for some ℓ∗ ∈L, and γℓ = ηℓ = 0 for ℓ∈L, ℓ ̸= ℓ∗, ηℓ∗ = a⊤

t x, which would

be an optimal solution to the minimization problem since

ft(x,Bt) ≤
∑
ℓ∈L

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t )

= ht(γℓ∗ , ηℓ∗ −utℓ∗γℓ∗ ,z
ℓ∗

t )

= ht(1,0,z
ℓ∗

t )

= ft(x,Bt),
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where the first inequality is by Theorem 3 and the final equality follows from the same argument

in Theorem 1, since the optimal solution of Problem (1) is the same as sℓ∗ in which the reduced

information zℓ∗
t is derived. □

A.5 Proof of Proposition 2

Based on the definition of the Wasserstein metric, we can rewrite the first group of constraints in

Problem (16) as

w⊤x+EQ

∑
t∈[T ]

(
gt(x, z̃t)−

k

z̄t
||z̃t − ξ̃t||∞

)≤ τ ∀Q∈P0(Z2) : (z̃, ξ̃)∼Q, ξ̃∼ P̂,

or equivalently

w⊤x+
1

Ω

∑
ω∈[Ω]

EPω

∑
t∈[T ]

(
gt(x, z̃t)−

k

z̄t
||z̃t −zω

t ||∞
)≤ τ ∀Pω ∈P0(Z).

Since P0(Z) contains all Dirac distributions whose unit mass concentrates on any z ∈ Z, we can

also express this as a robust constraint as follows,

w⊤x+
1

Ω

∑
ω∈[Ω]

sup
z∈Z

∑
t∈[T ]

(
gt(x,zt)−

k

z̄t
||zt −zω

t ||∞
)≤ τ

⇐⇒ w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

sup
zt∈Zt

{
gt(x,zt)−

k

z̄t
||zt −zω

t ||∞
}
≤ τ.

□

A.6 Proof of Theorem 4

From Proposition 2, we can express the robust satisficing model as

κτ =mink

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

rωt ≤ τ

rωt ≥ sup
zt∈Zt

{
gt(x,zt)−

k

z̄t
∥zt −zω

t ∥∞
}

∀ω ∈ [Ω], t∈ [T ], (A.1)

x∈X , k≥ 0.

Next we begin to reformulate gt(x,zt). The feasible region of gt(x,zt) is the intersection of a box

region and a hyperplane; therefore, the number of extreme points is finite. Even so, it is impractical

to traverse all the extreme points to find the optimal solution because the time complexity of the

traversal algorithm is O(2N). By leveraging the special structure of the duality of gt(x,zt), we will

only need to evaluate a few affine functions with a time complexity of O(N).
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Recall that pn is non-decreasing in n∈ [N ], and let p0 = 0. By strong duality of linear optimiza-

tion, we have

gt(x,zt) = min
yt

{
p⊤yt | 1⊤yt ≥ 1⊤zt −a⊤

t x,0≤ yt ≤ zt

}
= max

λ≥0
min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt

}
.

A notable observation is that the optimal value of the inner minimization problem

min
0≤yt≤zt

(p−λ1)⊤yt +λ
(
1⊤zt −a⊤

t x
)

is indeed a piecewise linear function of λ with breaks being p1, p2, . . . , pN . More specifically, when

λ∈ [pn−1, pn], n∈ [N ], we have

max
λ∈[pn−1,pn]

min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)
| 0≤ yt ≤ zt

}
= max

λ∈[pn−1,pn]
min
yt

 ∑
m∈[N ]

(pm −λ)ytm +λ
(
1⊤zt −a⊤

t x
)
| 0≤ yt ≤ zt


= max

λ∈[pn−1,pn]

∑
m∈[n−1]

(pm −λ)ztm +λ
(
1⊤zt −a⊤

t x
)

= max
λ∈{pn−1,pn}

∑
m∈[n−1]

(pm −λ)ztm +λ
(
1⊤zt −a⊤

t x
)

= max
{
q⊤
n−1zt − pn−1(a

⊤
t x),q

⊤
n zt − pn(a

⊤
t x)

}
,

and when λ∈ [pN ,+∞), the optimality is obtained at yt = zt,

max
λ∈[pN ,+∞)

min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)
| 0≤ yt ≤ zt

}
= max

λ∈[pN ,+∞)
p⊤zt −λ(a⊤

t x)

= p⊤zt − pN(a
⊤
t x)

= q⊤
Nzt − pN(a

⊤
t x).

Therefore, when evaluating gt(x,zt), we only need to consider the maximum of N +1 affine func-

tions {q⊤
n zt − pn(a

⊤
t x)}n∈[N ]∪{0}, i.e.,

gt(x,zt) = max
n∈[N ]∪{0}

{
q⊤
n zt − pn(a

⊤
t x)

}
= max

{
0,max

n∈[N ]

{
q⊤
n zt − pn(a

⊤
t x)

}}
Hence, for any ω ∈ [Ω], t∈ [T ], the constraint (A.1) is equivalently expressed as

rωt ≥ sup
zt∈Zt

{gt(x,zt)− k∥zt −zω
t ∥∞/z̄t}

⇐⇒

 rωt ≥ q⊤
n zt −a⊤

t xpn − k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt, n∈ [N ]

rωt ≥−k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt.

(A.2)
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Observe that since zω
t ∈Zt, we have

rωt ≥−k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt ⇐⇒ rωt ≥ 0.

We next reformulate the constraint (A.2) using the duality theorem. For any q ∈RN , we have

sup
zt∈Zt

{
q⊤zt − k∥zt −zω

t ∥∞/z̄t
}

= sup
zt≥0

1⊤zt≤z̄t

{
q⊤zt − k ∥zt −zω

t ∥∞ /z̄t
}

= sup
zt≥0

1⊤zt≤z̄t

inf
∥θ∥1≤k/z̄t

{
q⊤zt −θ⊤ (zt −zω

t )
}

= inf
∥θ∥1≤k/z̄t

sup
zt≥0

1⊤zt≤z̄t

{
q⊤zt −θ⊤ (zt −zω

t )
}

= inf
∥θ∥1≤k/z̄t

sup
zt≥0

1⊤zt≤z̄t

{
(q−θ)

⊤
zt +θ⊤zω

t

}
= inf

∥θ∥1≤k/z̄t
1ϕ+θ≥q,ϕ≥0

{
z̄tϕ+θ⊤zω

t

}
.

Therefore, for all t∈ [T ], ω ∈ [Ω], n∈ [N ],

rωt ≥ q⊤
tnzt −a⊤

t xpn − k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt

⇐⇒


rωt ≥ z̄tϕ

ω
tn +(θω

tn)
⊤
zω
t −a⊤

t xpn

z̄t ∥θω
tn∥1 ≤ k

1ϕω
tn +θω

tn ≥ qtn

for some ϕω
tn ∈R+,θ

ω
tn ∈RN .

Up to now, we can get the deterministic optimization problem (18) in Therem 4. Finally, to

show feasibility for τ ≥ Z̄0, we consider a restricted feasible set of Problem (18) with ϕω
tn = 0 and

qn = θω
tn for all n∈ [N ], ω ∈ [Ω], t∈ [T ]. Hence, we can express the restricted feasible set as

Q =

x∈X

∣∣∣∣∣∣∣∣∣∣
∃rωt ≥ 0 ∀ω ∈ [Ω], t∈ [T ] :

w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

rωt ≤ τ

rωt ≥ q⊤
n z

ω
t −a⊤

t xpn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ]


=

{
x∈X

∣∣∣∣∣w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

max

{
0,max

n∈[N ]

{
q⊤
n z

ω
t −a⊤

t xpn
}}

≤ τ

}

=

x∈X

∣∣∣∣∣∣w⊤x+EP̂

∑
t∈[T ]

gt(x, z̃t)

≤ τ

 ,
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so that any x ∈ Q would be feasible in Problem (18). Hence, if the empirical optimization prob-

lem (8) is solvable, then its solution would be feasible in the robust satisficing problem for all

τ ≥ Z̄0. Moreover, when k≥ κτ ≥ z̄t∥qn∥1,

q⊤
n z− k∥z−zω

t ∥∞/z̄t

= q⊤
n z

ω
t + q⊤

n (z−zω
t )− k∥z−zω

t ∥∞/z̄t

≤ q⊤
n z

ω
t + ∥qn∥1∥z−zω

t ∥∞ − k∥z−zω
t ∥∞/z̄t

≤ q⊤
n z

ω
t .

On the other hand,

sup
zt∈Zt

{q⊤
n zt − k∥zt −zω

t ∥∞/z̄t} ≥ q⊤
n z

ω
t

since zω
t ∈Zt. Therefore, when k≥ κτ ,

rωt ≥ sup
zt∈Zt

{gt(x,zt)− k∥zt −zω
t ∥∞/z̄t}

⇐⇒

 rωt ≥ q⊤
n zt −a⊤

t xpn − k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt, n∈ [N ]

rωt ≥ 0

⇐⇒

 rωt ≥ q⊤
n z

ω
t −a⊤

t xpn ∀n∈ [N ]

rωt ≥ 0

⇐⇒ rωt ≥ gt(x, z̃
ω
t ),

indicating the robust satisficing problem (17) coincides with the empirical optimization problem (8),

thus the κτ can never be larger than κ̄ when for any τ ≥ Z̄0. □

A.7 Proof of Theorem 5

Observe that

w⊤x+EP

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

≤ τ + k∆γ(P, P̂) ∀P∈P0(Z)

is equivalent to

w⊤x+
1

Ω

∑
ω∈[Ω]

EPω

∑
t∈[T ]

∑
ℓ∈[Lt]

(
ht(γtℓ, ηtℓ −utℓγtℓ, z̃

ℓ
t )−

kγtℓ
z̄tℓ

||z̃ℓ
t −zℓω

t ||∞
)≤ τ ∀Pω ∈P0(Z).

Since P0(Z) contains all Dirac distributions whose unit mass concentrates on any z ∈Z, and given

that the support set is breakpoints separable, we have the following equivalent constraint,

w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

sup
zℓ
t∈Zℓ

t

{
ht(γtℓ, ηtℓ −utℓγtℓ,z

ℓ
t )−

kγtℓ
z̄tℓ

||zℓ
t −zℓω

t ||∞
}
≤ τ.
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Therefore Problem (19) has the following equivalent formulation

min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

rℓωt ≤ τ

rℓωt ≥ sup
z∈Zℓ

t

{
ht(γtℓ, ηtℓ −utℓγtℓ,z

ℓ
t )− kγtℓ∥z−zℓω

t ∥∞/z̄tℓ
}
∀ω ∈ [Ω], t∈ [T ], n∈ [N ], ℓ∈ [Lt],

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt ∈RLt ,γt ∈RLt
+ ∀t∈ [T ],

x∈X .

Consequently, following the similar analysis in the proof of Theorem 4, we have

rℓωt ≥ sup
zℓ
t∈Zℓ

t

{
ht(γtℓ, ηtℓ −utℓγtℓ,z

ℓ
t )− kγtℓ∥zℓ

t −zℓω
t ∥∞/z̄tℓ

}

⇐⇒


rℓωt ≥ sup

z∈Zℓ
t

{
q⊤
n z− k∥z−zω

t ∥∞/z̄tℓ
}
γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ sup
z∈Zℓ

t

{
−k∥z−zℓω

t ∥∞/z̄tℓ
}
γtℓ

⇐⇒

 rℓωt ≥ αℓω
tn(k)γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ 0,

where αℓω
tn(k) = supz∈Zℓ

t

{
q⊤
n z− k∥z−zω

t ∥∞/z̄tℓ
}
. Up to now, we can obtain the deterministic opti-

mization problem (20) in Theorem 5.

Now we begin to show the feasibility of the robust satisficing model for τ ≥ Z0. Observe that

since zℓω
t ∈Zℓ

t , we have

αℓω
tn(k)≥ q⊤

n z
ℓω
t .

However, we note that if k≥ z̄tℓ∥qn∥1, then

q⊤
n z− k∥z−zω

t ∥∞/z̄tℓ

= q⊤
n z

ℓω
t + q⊤

n (z−zω
t )− k∥z−zω

t ∥∞/z̄tℓ

≤ q⊤
n z

ℓω
t + ∥qn∥1∥z−zω

t ∥∞ − k∥z−zω
t ∥∞/z̄tℓ

≤ q⊤
n z

ℓω
t ,

which implies αℓω
tn(k) = q⊤

n z
ℓω
t . Hence, if k≥ κ̄≥ z̄tℓ(1

⊤p)≥ z̄tℓ∥qn∥1 for all t∈ [T ], ℓ∈ [Lt], then the

following holds  rℓωt ≥ αℓω
tn(k)γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ 0

⇐⇒

 rℓωt ≥ q⊤
n z

ℓω
t γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ 0

⇐⇒ rℓωt ≥ ht(γtℓ, ηtℓ −utℓγtℓ,z
ℓω
t ).
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Hence, when k ≥ κ̄, the empirical optimization problem (15) is the same as Problem (21) so that

ρ(k) =Z0. Therefore, the robust satisficing problem is feasible for τ ≥Z0, and κτ would not exceed

κ̄. □

A.8 Proof of Theorem 6

For any optimal solution x,γ,η, κτ to Problem (19) given τ , we have from Theorem 3,

EQ⋆

∑
t∈[T ]

ft(x, B̃t)

≤EP⋆

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

 .

Hence, for any r≥ 0

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ


≤ PΩ

w⊤x+EQ⋆

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

> τ +Trκτ


≤ PΩ

[
∆γ(P⋆, P̂)>Tr

]
≤ PΩ

[
∆̄(P⋆, P̂)>Tr

]
,

where

∆̄(P, P̂) := inf
Q∈P0(Z2)

EQ

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
||z̃ℓ

t − ξ̃ℓ
t ||∞

} ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂

 ,

noting that ∆γ(P⋆, P̂)≤ ∆̄(P⋆, P̂) is due to 1⊤γt = 1 and γt ≥ 0. By the definition of ∆̄, we have

PΩ
[
∆̄(P⋆, P̂)>Tr

]
≤ PΩ

 1

Ω

∑
ω∈[Ω]

Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

}>Tr

 .

Since z̃ℓ
t , z̃

ℓω
t ∈Zt almost everywhere, we have

∥z̃ℓ
t − z̃ℓω

t ∥∞ ≤ max
x,y≥0

1⊤x≤z̄tℓ,1
⊤y≤z̄tℓ

max
n∈[N ]

{|e⊤
n (x−y)|}

≤ max
x,y≥0

∥x∥1≤z̄tℓ,∥y∥1≤z̄tℓ

max
n∈[N ]

{
max{e⊤

nx,e
⊤
ny}

}
(since x,y≥ 0)

≤ max
n∈[N ]

{
max

{
max

∥x∥1≤z̄tℓ

{e⊤
nx}, max

∥y∥1≤z̄tℓ

{e⊤
ny}

}}
= max

n∈[N ]
{max{z̄tℓ∥en∥∞, z̄tℓ∥en∥∞}}}= z̄tℓ,

where en is the nth unit basis vector. Therefore,

PΩ

 1

Ω

∑
ω∈[Ω]

Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

}≤ T

= 1.
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Consequently, when r > 1, we must have

PΩ
[
∆̄(P⋆, P̂)>Tr

]
= 0.

1. We now complete the proof for the first probability bound. Before proving this result, we need

to recap the result on the probability bound of the Wasserstein distance in Fournier and Guillin

(2015) as follows.

Suppose the actual data-generating distribution P⋆, z̃ ∼ P⋆ is a light-tailed distribution such that

EP⋆ [exp(∥z̃∥α)]<∞ (A.3)

for some α > 1 and PΩ is the distribution that governs the distribution of independent samples

ẑ1, . . . , ẑΩ drawn from P⋆, which constitutes the empirical distribution P̂. Then for any R ∈ (0,1),

PΩ
[
∆1(P⋆, P̂)>R

]
≤ c1 exp(−c2ΩR

max{nz ,2}) (A.4)

for some positive constants, c1 and c2 that only depend on α, EP⋆ [exp(∥z̃∥α)], nz being the dimension

of z̃, and ∆1 is the (type-1) Wasserstein metric defined by

∆1(P, P̂) := inf
Q∈P0(Z2)

{
EQ

[
||z̃− ξ̃||

] ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂
}
.

This result serves as a critical step to build the target attainment confidence guarantee since our

result eventually relies on the probability bound of the Wasserstein distance. It remains to derive

an upper bound for PΩ
[
∆̄(P⋆, P̂)>Tr

]
. Since z̃ ∈Z almost everywhere, it is easy to see

∥z̃∥∞ = max
t∈[T ],ℓ∈[Lt]

n∈[N ]

zℓtn ≤ max
t∈[T ],ℓ∈[Lt]

z̄tℓ = z̄ a.e.,

then

EP⋆ [exp(∥z̃∥α∞)]≤ exp(z̄α)<∞

for any α≥ 1. We can choose α= 1 to meet the assumption in inequality (A.3). Since mint∈[T ] z̄tℓ ≥ 1,

we have

T∥z̃− ξ̃∥∞ ≥
∑
t∈[T ]

max
ℓ∈[Lt]

[
1

z̄tℓ
||z̃ℓ

t − ξ̃ℓ
t ||∞

]
a.e.,

therefore

T∆1(P⋆, P̂)≥ ∆̄(P⋆, P̂) =⇒ PΩ
[
∆̄(P⋆, P̂)>Tr

]
≤ PΩ

[
∆1(P⋆, P̂)> r

]
∀r ∈ [0,1].

Further notice the dimension of z̃ is N(
∑

t∈[T ]Lt) ≥ 2, the following probability bound hold by

inequality (A.4)

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ

≤ c1 exp(−c2Ωr
NL) ∀r ∈ [0,1],
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where L=
∑

t∈[T ]Lt, c1 and c2 are constants that depend on EP⋆ [exp(||z̃||∞)] and NL.

2. We next prove the result for the second probability bound. For ease of expression, we can

define the random variables

ν̃ω :=Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

} ∀ω ∈ [Ω],

then ν̃1, ν̃2, . . . , ν̃Ω are independent random variables and

0≤EPΩ [ν̃ω] = µ≤ ess sup ν̃ω ≤ 1

T

∑
t∈[T ]

z̄tℓ
z̄tℓ

= 1 ∀ω ∈ [Ω].

We have the following for any r ∈ [µ,1]

PΩ

 1

Ω

∑
ω∈[Ω]

Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

}≥ Tr


= PΩ

 1

Ω

∑
ω∈[Ω]

ν̃ω ≥ r


≤ inf

θ≥0

exp (−θr)EPΩ

exp
θ

∑
ω∈[Ω]

ν̃ω/Ω


= inf

θ≥0

exp (−θr)EPΩ

 ∏
ω∈[Ω]

exp (θν̃ω/Ω)


= inf

θ≥0

exp (−θr)

 ∏
ω∈[Ω]

EPΩ [exp (θν̃ω/Ω)]


≤ inf

θ≥0

exp (−θr)

 ∏
ω∈[Ω]

exp
(θEPΩ [ν̃ω]

Ω
+

θ2

8Ω2

)
= inf

θ≥0

{
exp

( θ2

8Ω
− θr+

θ
∑

ω∈[Ω]EPΩ [ν̃ω]

Ω

)}
≤ inf

θ≥0

{
exp

( θ2

8Ω
− θ(r−µ)

)}
= exp

(
− 2Ω(r−µ)

2
)
,

where the first equation holds by the definition of ν̃ω, the second inequality holds by Markov

inequality, the third equation holds trivially, the fourth equation holds since ν̃1, ν̃2, . . . , ν̃Ω are

independent, the fifth inequality holds by Hoeffding’s lemma, the sixth equation and the seventh

inequality hold trivially, and the last equation holds by calculating the minimum of the quadratic

function. □
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Appendix B On the worst-case scenarios of robust models

To promote the utilization of robust optimization methods in practical situations, one may argue

that it is necessary to identify the worst-case scenario so that the decision-maker can comprehen-

sively understand the decision. However, the fact is that the worst-case scenario may not provide

direct insight into the optimal decision. A similar opinion is also found in Bertsimas and den Hertog

(2022)’s book Robust and Adaptive Optimization (Page 26): “At first glance, RO optimizes for the

worst-case scenario. However, this statement is confusing and even incorrect.”

To explain the perspective stated above, we first consider the classical distributionally free robust

optimization, where, conceptually, minimizing the worst-case objective can be viewed from a game-

theoretic standpoint. Specifically, the decision-maker adjusts variable x∈X , while an ‘adversarial

nature’ influences input vector z ∈ Z. The decision-maker seeks to minimize the cost function

f(x,z), while the adversarial nature endeavors to maximize this cost, opposing the decision-maker.

Mathematically, the decision-maker aims to minimize the worst-case cost imposed by the adver-

sary:

ZD = inf
x∈X

sup
z∈Z

f(x,z).

Here, the decision-maker takes the first move, and the adversarial nature responds to provide the

worst outcome for the decision-maker. It is important to note that the worst-case scenarios obtained

from this perspective may not be unique.

It is also a common narrative to obtain the worst-case scenario as follows:

ZA = sup
z∈Z

inf
x∈X

f(x,z).

In this perspective, the adversary acts first, seeking to maximize the disadvantage for the decision-

maker. The saddle point worst-case scenario, z̄ obtained in this way, could be uniquely determined.

However, this perspective, where the adversary acts first, may seem somewhat contrived.

Suppose an equilibrium exists, i.e.,

ZD = inf
x∈X

sup
z∈Z

f(x,z) = f(x̄, z̄) = sup
z∈Z

inf
x∈X

f(x,z) =ZA.

The equilibrium associated with minimizing the worst-case objective centers on a specific worst-case

scenario, z̄, that arises in the equilibrium, provided that the equilibrium exists. Even if it exists, a

prevalent misunderstanding is that this particular scenario offers direct insight into obtaining the

optimal decision x that minimizes the worst-case objective. Whereas, the reality is that even if z̄

is known, the solution x derived from the set argminx∈X f(x, z̄) does not necessarily match the

equilibrium solution x̄. We illustrate this in the following example:
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Consider the biaffine function f(x, z) = xz, and the sets X = [−1,1], Z = [−1,1]. We have

ZD = min
x∈[−1,1]

{
max

z∈[−1,1]
xz

}
= min

x∈[−1,1]
{max{−x,x}}= min

x∈[−1,1]
|x|= 0.

Likewise,

ZA = max
z∈[−1,1]

{
min

x∈[−1,1]
xz

}
= max

z∈[−1,1]
{min{−z, z}}= max

z∈[−1,1]
−|z|= 0.

Therefore, the saddle point is uniquely determined at z̄ = x̄ = 0. In contrast, there are infinite

solutions that satisfy maxz∈[−1,1] x̄z or minx∈[−1,1] xz̄. Hence, it is our opinion that deriving the

worst-case scenarios in robust decision models is an artificial problem, offering limited utility and

insight that could be used in practical applications. Therefore, we respectfully disagree that com-

prehending the worst-case scenarios would help business managers make informed decisions in

practical situations.

Furthermore, when there is a discrepancy between the decision-maker’s and adversary’s evalua-

tions, marked by ZD >ZA, it highlights a fundamental misalignment in their perspectives, suggest-

ing that achieving equilibrium might not be feasible. In this study, we consider a distributionally

robust model, which can be expressed as the following problem:

ZD = inf
x∈X

sup
P∈F

g(x,P).

For the given optimal solution x̄, we can find a discrete worst-case distribution obtained from the

classical robust optimization representation of the distributionally robust optimization problem.

However, this worst-case distribution may not necessarily be the saddle-point worst-case distribu-

tion. To obtain the saddle-point worst-case distribution, we need to solve the adversarial problem

as follows:

ZA = sup
P∈F

inf
x∈X

g(x,P).

We would like to emphasize that determining the saddle point worst-case distribution in the adver-

sarial problem is generally challenging. While there have been recent analyses of special cases in

Chen et al. (2024), finding the saddle point distribution remains a complex task in most scenarios.

It is important to emphasize that the adversarial problem is a contrived problem meant for the

adversarial nature. Its insights may not be relevant to the decision-maker because it is not a reflec-

tion of reality; different robust models would yield different saddle-point worst-case distributions.

Furthermore, it only makes sense to consider the saddle point worst-case distribution when an

equilibrium, such that ZA =ZD, exists. However, in our context, since X ⊆ZI
+ is not a convex set,

we cannot apply Sion’s minimax result and therefore do not expect equilibrium to exist.

Appendix C Supplementary numerical results and discussions

This section provides supplementary numerical results and discussions.
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Evaluation of the reduced information models under a random bidding scheme

In this section, we evaluate the performance of both reduced information models under a random

bidding scheme, representing the case of couriers’ unknown preferences, as some studies have shown

that couriers may have various or even completely different preferences even though the covariates

are the same (Rechavi and Toch 2022). We set Kt = Jt. For each courier k ∈ [Kt], we first randomly

choose N ′ bidding prices from the set {p1, p2, . . . , pN}. Subsequently, we generate a random binary

number for each job j ∈ [Jt], with a value of 0 denoting that courier k is not interested in job j.

In this case, we set the bidding price of courier k for job j to pN . If the random variable equals 1,

we randomly choose a price from the N ′ selected prices for job j. Other parameters’ settings are

the same as those in Section 6. Figure C1 plots the average percentage gaps between the reduced

information models and the crowdsourcing cost function.

Figure C1 Average gaps (in %) between the reduced information models and the crowdsourcing cost function

under a random bidding scheme
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(a) N ′ = 2
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(b) N ′ = 3
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(c) N ′ = 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Instance number

0

1

2

3

4

5

Av
er

ag
e 

 g
ap

s (
in

 %
) b

et
we

en
 g

t (
h t

) a
nd

 f t

basic
generalized

(d) N ′ = 5
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Figure C1 shows that the average gaps are within 5% for all the cases. In particular, when N ′ =

2, i.e., two payment values are allowed, both reduced information models can provide satisfying

approximation results, controlling the gaps to be smaller than 1%. The generalized model can

always provide tighter bounds than the basic model, regardless of the value of N ′. The results

confirm again the effectiveness of the reduced information models, especially the generalized model,

for approximating Problem (1) and tackling practical delivery problems.

Comparison with a moment-based distributionally robust optimization model

We consider a moment-based distributionally robust optimization (DRO) problem for the basic

reduced information model, which is as follows,

ZF = min w⊤x+sup
P∈F

EP

∑
t∈[T ]

gt(x, z̃t)


s.t. x∈X ,

where the ambiguity set F is defined as

F =


P∈P(RTN ×RTN)

∣∣∣∣∣∣∣∣∣∣∣

(z̃, ũ)∈ P

EP[z̃] =µ

EP[ũ] =σ

P[(z̃, ũ)∈Zlift] = 1


.

Parameters µ and σ are the component-wise means and the mean absolute deviations (MAD) of

the random variables z̃ = (z̃t)t∈[T ], respectively. These parameters can be directly estimated after

obtaining the reduced information vectors from historical data. The auxiliary random variables ũ

are introduced such that the terms inside the expectation constraints in the ambiguity set F are

all linear, and the nonlinear term associated with the MAD is transferred to the support set Zlift,

which is written as

Zlift =

(z,u)∈RTN ×RTN

∣∣∣∣∣∣∣∣
z ≥ 0, u≥ 0

1⊤zt ≤ z̄t ∀t∈ [T ]

|ztn −µtn| ≤ utn ∀t∈ [T ], n∈ [N ]

 .

To solve this two-stage robust optimization problem, we utilize the robust stochastic optimization

framework from Chen et al. (2020), where the linear decision rule (LDR) is used, i.e., the recourse

decision y should be defined as an affine function of z and u. This framework is associated with an

algebraic modeling package called RSOME (Chen and Xiong 2023), which can facilitate the solving

process by employing only a few lines of code. We note that the moment-based DRO problem is

solved approximately using the LDR, whereas our robust satisficing models can be exactly solved

by addressing a few convex optimization problems.
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Figure C2 Comparison of out-of-sample performance between the empirical and the moment-based DRO models
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Figure C2 presents a comparison of the out-of-sample performance between the empirical and

moment-based DRO models. All the experimental settings are consistent with those of Figure 3

except the in-sample size, which ranges from 5 to 30. The results indicate that the empirical

model consistently outperforms the DRO model. Moreover, as the in-sample size increases, the

performance gap between the two models widens. The numerical results in Section 6 demonstrate

that the robust satisficing model for the basic reduced information model exhibits superior out-of-

sample performance compared to its empirical counterpart model. Combining this finding with the

results presented here, we can further confirm the superiority of the robust satisficing framework

in managing crowdsourcing delivery platforms’ workforce.

Selection of the target parameter in the robust satisficing model

We finally discuss how to select the target ratio parameter α for real-world crowdsourced delivery

problems with limited datasets based on the insights from this paper. Below is a brief overview

of the process: First, the dataset is partitioned into training and testing subsets. Parameters are

then evaluated using the training set to identify the best-performing ones, which are subsequently

assessed on the testing set. Various cross-validation techniques, like the k-fold cross-validation, can

be used to implement this process. In the context of the robust satisficing problem, the parameter of

interest is the target ratio α. An important aspect of cross-validation is determining an appropriate

search range for this parameter. Our simulation results indicate that restricting the search range

for α to [1.01,1.05] can yield decent performance.
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Both data-driven robust optimization and robust satisficing approaches rely on cross-validation

to fine-tune parameters in practical scenarios. Compared to the data-driven robust optimization

where the radius of the Wasserstein ball is the tuning parameter, the target ratio α is more

tangible and intuitive. This parameter represents an acceptable trade-off between optimality and

robustness, offering a clear interpretation of the cost incurred to accommodate greater uncertainty.

Consequently, decision-makers can adjust α within the recommended range for their own preference.
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