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Abstract

We describe a method to generate cutting planes for quadratically constrained opti-
mization problems. The method uses information from the simplex tableau of a linear
relaxation of the problem in combination with McCormick estimators. The method
is guaranteed to cut off a basic feasible solution of the linear relaxation that violates
the quadratic constraints in the problem as long as finite bounds on all variables
are available. These cutting planes are computationally cheap, and do not require
any special structure in the input problem. The cuts generated by the method are
the well-known Reformulation Linearization Technique (RLT) cuts. The procedure
produces a large number of violated cuts. Several variants for selecting good cuts are
tested. Instead of adding many cuts, one can also add auxiliary variables and a few
cuts. Computational testing on benchmark test instances shows that on an average
upto 30% of gap from the optimal can be closed.
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1 Introduction

We consider a Quadratically Constrained Optimization (QCO) problem with a single
quadratic constraint of the following form

min cTx

s.t. xTQx+ aTx ≤ d, (QCP1)

Gx = h,

x ≤ x ≤ x,

where c, a ∈ Rn, d ∈ R, G ∈ Rk×n, h ∈ Rk, and the symmetric matrix Q ∈ Rn×n are
given as inputs. The cutting plane procedure proposed here assumes one quadratic
constraint for notational convenience only. It works for any number of quadratic
constraints, by considering them one at a time, as illustrated in the computational
experiments in Section 6.

The QCO and its discrete extension, Mixed Integer Quadratically Constrained
Optimization (MIQCO), arise in several applications like the pooling problem in
petrochemical industry (Misener and Floudas 2009), distillation sequences in chemical
plants (Aggarwal and Floudas 1990), wastewater treatment (Ahmetović and Gross-
mann 2011), trimloss problem in paper industry (Harjunkoski et al. 2001), compu-
tational geometry problems (Costa et al. 2013, Kallrath 2009, Audet et al. 2007)
and others. QCO and MIQCO are difficult to solve both in theory and practice,
especially when the quadratic functions in the constraints are non-convex. Jeroslow
(1973) showed that this problem is undecidable when variables are unbounded. When
the variables are bounded, algorithms based on branch-and-cut (Belotti et al. 2009,
Tawarmalani and Sahinidis 2004) can be used to find solutions that are optimal within
some precision.

Given a QCO of the form (QCP1) above, branch-and-cut algorithms require a
suitable relaxation. A relaxation should be easy to solve and at the same time be
a close approximation to the original problem. A linear relaxation is often used as
it is easy to solve repeatedly in a branch-and-cut framework. McCormick (1976)
inequalities are commonly used to obtain a linear relaxation of (QCP1). Simplex
method is then used to solve this linear relaxation because of two practical reasons.
First, simplex method has superior warm starting ability, that is, if a basic solution
is known then it is relatively simple to restart the algorithm after the problem is
modified, and second, cutting planes can sometimes be derived from the simplex
tableau, for example, Gomory Mixed Integer cuts (Gomory 1960), Gomory fractional
cuts (Gomory 1958). The procedure proposed here is similar in vein to these two
methods. A gist of the method is first provided along with an example, and a detailed
description is provided subsequently.
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Suppose we have solved a linear relaxation (LP) of (QCP1) using the simplex
method and obtained a solution, say x∗, not feasible to the quadratic constraint.
The main idea proposed here is to first substitute some or all basic variables in the
quadratic constraint using the corresponding row of the simplex tableau. A new
quadratic inequality valid for (QCP1) is thus obtained. The substitution ensures
that each term in the new quadratic function has at least one nonbasic variable.
Each term is then relaxed using McCormick estimators. Since one of the variables in
each term is at its bounds, the McCormick estimators are ‘tight ’ at x∗ for the term.
The linear inequality obtained as the sum of McCormick estimators will cut off x∗.
Here is a toy example to illustrate the procedure.

Example 1.1. Suppose we get the following two rows in the optimal simplex tableau
while solving a linear relaxation of a given QCO.

x1 + 2x3 − 3x4 + 2x5 = 0.3, (1)

x2 + x6 = 0.5,

xi ∈ [0, 1] i = 1, . . . , 6.

Here x3, x4, x5, x6 are nonbasic variables currently at their lower bounds. A basic
feasible solution for the relaxation is x∗ = (0.3, 0.5, 0, 0, 0, 0). Further suppose that
the QCO has a quadratic constraint x1x2 ≤ x3 that is not satisfied by x∗. Substitute
x1 in the quadratic constraint using (1) to obtain a new quadratic constraint

0.3x2 − 2x2x3 + 3x2x4 − 2x2x5 ≤ x3 (2)

that is valid for the given QCO.We can use term-by-termMcCormick underestimators
to obtain a relaxation of this new quadratic constraint. That is, we use the inequalities
−2x3 ≤ −2x2x3, 0 ≤ 3x2x4, and − 2x5 ≤ −2x2x5 to obtain

0.3x2 − 3x3 − 2x5 ≤ 0.

This inequality is valid for the given QCO, and it cuts off x∗.

The rest of the article is outlined as follows. In Section 2 we describe the Mc-
Cormick estimators and their key properties used in the procedure. In Section 3 we
review existing literature. We then describe our procedure in detail in Section 4.
We next show some connections of our procedure with Reformulation Linearization
Technique (RLT) in Section 5. Finally, in Section 6 we discuss some computational
results to show the efficiency of the cuts we generate, and we conclude in Section 7.
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Table 1: Under- and over-estimators that are tight at the edges of the box B =
[x1, x1]× [x2, x2] for the function f(x) = x1x2

Edge Underestimator Overestimator
x1 = x1 x2x1 + x1x2 − x1x2 x2x1 + x1x2 − x1x2

x2 = x2 x2x1 + x1x2 − x1x2 x2x1 + x1x2 − x1x2

x1 = x1 x2x1 + x1x2 − x1x2 x2x1 + x1x2 − x1x2

x2 = x2 x2x1 + x1x2 − x1x2 x2x1 + x1x2 − x1x2

2 Properties of McCormick Estimators

Property P1 - Under- and over-estimators of a bilinear function: For a bilinear
function f : Rn → R given by f(x) = xixj for some i, j ∈ {1, . . . , n}, over a given box
B = {x ∈ Rn | x ≤ x ≤ x} the following inequalities give a pair of underestimators
and a pair of overestimators for f over B

xjxi + xixj − xixj

xjxi + xixj − xixj

}
≤ xixj ≤

{
xjxi + xixj − xixj

xjxi + xixj − xixj

(3)

These inequalities are the well known McCormick (1976) inequalties for f .
Property P2 - McCormick inequalities are tight at bounds: It is well known that

when either xi or xj is at its bounds (lower or upper), the under- and over-estimators
of f are both tight i.e. at least one under- and one over-estimator evaluate to function
value at that point. The tight under- and over-estimators for four different cases
(arising from the condition that one of the two variables is at one of its bounds) are
given in Table 1. At points when neither variable is at its bounds, there is a gap
between the estimators and the function value.

Property P3 - Under- and over-estimators of a quadratic function: Given a
general quadratic function f(x) =

∑n
i=1

∑n
j=1 qijxixj, where qij ∈ R for all i, j ∈

{1, . . . , n}, a linear underestimator or overestimator of f over a given box B := [x, x]
can be obtained using the above McCormick estimators for each term, depending on
the sign of qij. For example, one underestimator of f is

n∑
i=1

n∑
j=1
qij>0

qij(xjxi + xixj − xixj) +
n∑

i=1

n∑
j=1
qij<0

qij(xjxi + xixj − xixj). (4)

Note that many underestimators can be obtained by choosing one of the two estima-
tors possible for each term.

Property P4 - Tight under- and over-estimators of a quadratic function: Con-
sider a quadratic function f over a box B as described in Property P3 and an x∗ ∈ Rn
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such that for every pair (i, j) with qij ̸= 0 at least one of xi, xj is at one of its bounds.
We can find an under- and over-estimator for f that is tight at x∗ by selecting an
appropriate estimator depending on the sign of qij (using Table 1) for each term in
f .

For example, consider the quadratic function f(x) = x2
1 − 2x1x2 + x2x3 over the

box B = [0, 1]3 and let x∗ = (0, 0.5, 1). Clearly, for every term in f at least one of
the variables is at its bounds at x∗. From Table 1, we can underestimate x2

1 with
0,−2x1x2 with −2x1, and x2x3 with x2 + x3 − 1 to obtain a tight underestimator
−2x1 + x2 + x3 − 1 of f. Similarly, a tight overestimator for f at x∗ is x1 + x2.

Auxiliary variables for McCormick relaxation: A matrix variable X = xxT is often
introduced (Burer and Saxena 2012) to obtain the following reformulation of (QCP1)

min cTx

s.t. ⟨Q,X⟩+ aTx ≤ d,

Gx = h,

X = xxT ,

x ≤ x ≤ x,

which can then be relaxed using McCormick inequalities described above to obtain
the following linear relaxation

min cTx

s.t. ⟨Q,X⟩+ aTx ≤ d,

Gx = h,

Xij ≥ xjxi + xixj − xixj, (5)

Xij ≥ xjxi + xixj − xixj,

Xij ≤ xjxi + xixj − xixj,

Xij ≤ xjxi + xixj − xixj,

x ≤ x ≤ x.

3 Literature review

Most state-of-the-art global optimization solvers for nonconvex problems use Branch-
and-Bound algorithms augmented by cutting planes, primal heuristics, presolving,
infeasibility analysis etc. (Tawarmalani and Sahinidis 2004, Berthold et al. 2012,
Belotti et al. 2009, Misener and Floudas 2013). Cutting planes for QCO have also
been developed using several approaches both for general purpose QCO and for certain
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special structures that are commonly seen in applications. Some of these are described
below.

Sherali and Adams (1998) described the Reformulation and Linearization Tech-
nique (RLT) for product of linear inequalities. This type of linearization has been
quite popular and well studied in the literature. Their approach of taking a product of
two linear constraints in the problem and then adding auxiliary variables Xij = xixj

for product of variables wherever they appear is also used in this work. This approach
reduces to McCormick (1976) relaxation for problems with variable bounds as the only
linear constraints. Audet et al. (2000) describe a branch-and-cut approach using the
RLT method and give four classes of cutting planes derived from RLT. Sherali and
Alameddine (1992) describe the RLT approach for bilinear problems. Liberti and
Pantelides (2006) describe a graph theoretical algorithm for augmenting relaxation of
nonconvex problems using some RLT constraints. Adams and Johnson (1994) give a
first order RLT formulation of Quadratic Assignment Problem. Recently, Bestuzheva
et al. (2022) give a separation algorithm based on RLT cuts. They identify products
of a bound factor and a linear constraint which will not produce a violated inequal-
ity. Such products are then discarded, and other products are considered. They also
project some linear constraints on a subspace of variables to obtain RLT cuts for a
smaller system of inequalities. Luedtke et al. (2012) provide several results on the
strength of McCormick relaxations for multilinear problems and show that the Mc-
Cormick relaxation of a bilinear function is within a constant factor of the convex hull
at every point within the bounds of the variables. All these methods try to search for
an RLT inequality by trying different combinations of linear and bound constraints.
As far as we understand, information from the simplex tableau has not been used
earlier to generate RLT inequalities that are guaranteed to cut off a basic feasible
solution of the linear relaxation.

Semidefinite programming (SDP) relaxations for QCO are also well studied in
the literature. Shor (1987) proposed an SDP relaxation of the QCO by relaxing the
constraint X = xxT to X − xxT ≽ 0. Saxena et al. (2008) provide a disjunctive
approach to generate valid inequalities based on their SDP relaxation. Burer and
Saxena (2012) review methods to obtain linear inequalities from SDP.

Given a QCO of the form (QCP1), it can be relaxed by rewriting the matrix Q as a
difference of two positive semidefinite matrices. (Bomze 2002, Poljak and Wolkowicz
1995, Zheng et al. 2011). Another related approach is the αBB underestimators
developed by Androulakis et al. (1995) and Adjiman et al. (1998).
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4 A Procedure for generating cuts

In this section we describe our procedure for the standard form of a linear relaxation
of (QCP1). The method is also explained with examples for the inequality form of
the linear relaxation in Appendix 8.

Suppose we are given a QCO of the form (QCP1) and its linear relaxation R =
min{cTx | Ax = b, x ≤ x ≤ x}. We assume that all the additional variables, either
substituted for quadratic terms or added as slack/surplus variables to obtain the
standard form of the relaxation, are included in x, and finite bounds are available
for all variables. If R is infeasible, then so is (QCP1), and no cuts are required.
Let x∗ be the optimal solution of R. If x∗TQx∗ + aTx∗ ≤ d, then x∗ is optimal to
(QCP1). Otherwise, let B denote the optimal basis matrix identified by the simplex
method and N denote the submatrix of A associated with nonbasic variables. The
simplex method provides linear equalities of the form xB = B−1b − B−1NxN . A
cut can be generated as follows. For every term xixj in xTQx with nonzero qij, if
both xi, xj are basic variables then substitute at least one of the variables with its
corresponding simplex row. If one of the two variables is a nonbasic variable, then
either substitute the basic variable or leave the term as is. This step ensures that the
quadratic function obtained after substitution has at least one nonbasic variable in
each term. This substituted quadratic function can then be relaxed using McCormick
estimators to obtain a cutting plane. This gives us Algorithm 1 to separate x∗ from
the feasible region of (QCP1).

Theorem 1. In Algorithm 1, f(x∗)−d = πTx∗−π0. Further, the inequality πTx ≤ π0

is valid for (QCP1) and cuts off x∗.

Proof. Proof: In Algorithm 1, g(x) is a quadratic function obtained by substituting
some variables in f(x) by their corresponding rows of simplex tableau, therefore, it
is clear that f(x) = g(x) for every point x ∈ R. In particular, f(x∗) = g(x∗). Each
quadratic term in g(x) has at least one nonbasic variable. Property (P4) in Section
2 ensures g(x∗) = πTx∗ + k. Thus, f(x∗) = πTx∗ + k = πTx∗ + d − π0, and hence
πTx∗ − π0 = f(x∗)− d > 0.

Since f(x) = g(x) for x feasible to (QCP1), an underestimator of g is also an
underestimator of f for all feasible points of (QCP1). Hence, the inequality πTx ≤ π0

is valid for (QCP1).

The cutting planes derived above are computationally cheap since no additional
linear programs are solved and no matrix factorizations or eigen values are required.
Note that there are several cuts possible for a quadratic constraint. If both variables
of a quadratic term are basic, then one can substitute either one of them or both
(steps 6, 7 of Algorithm 1). After g(x) is obtained from step 14 of Algorithm 1, it is
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Algorithm 1 Cut generating algorithm

Input: A linear relaxation R = min{cTx | Ax = b, x ≤ x ≤ x} ∈ Rp of a QCO of
the form (QCP1), a basic solution x∗ with x∗TQx∗+aTx∗ > d, set of indices for basic
and nonbasic variables B, N respectively, and a row of the optimal simplex tableau
for each basic xi i. e. xi +

∑
j∈N αijxj = βi ∀ i ∈ B.

Output: (π, π0) ∈ Rp+1 such that πTx∗ > π0

1: procedure GenerateCuts
2: f(x)←

∑n
i=1

∑n
j=1 qijxixj

3: g(x)← 0
4: for every quadratic term xixj of f , where qij ̸= 0 do
5: if i, j ∈ B then
6: h(x)← qij(βi −

∑
k∈N αikxk)xj

7: (Optional) substitute xj by (βj −
∑

k∈N αjkxk) in h(x)
8: else
9: h(x)← qijxixj

10: if i ∈ B then
11: (Optional) substitute xi by (βi −

∑
k∈N αikxk) in h(x)

12: else if j ∈ B then
13: (Optional) substitute xj by (βj −

∑
k∈N αjkxk) in h(x)

14: g(x)← g(x) + h(x)

15: for every quadratic term xixj of g do
16: if coefficient of xixj is nonnegative then
17: underestimate the term using the appropriate underestimator from Ta-

ble 1
18: else
19: underestimate the term using the appropriate overestimator from Table

1
20: Let πTx+ k be the linear underestimator obtained. π0 ← d− k
21: return (π, π0)
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possible that some quadratic terms in g(x) have both the variables at their bounds (for
example, during substitution if one substitutes both the basic variables of a quadratic
term) and it may happen that both the underestimators for that term can be used for
underestimating the term. In that case, we can select either of the estimators or can
take a convex combination of the two. Regardless of how one selects the variables or
the estimators, the cut violation at x∗ is the same. Hence other criteria like sparsity
of the cut, range of coefficients etc. maybe needed to pick an appropriate cut. We
now give a small example where the cutting plane method converges to the optimal
solution in the limit.

Example 4.1. Consider the problem min{x1 | x1+2x2 = 1, x2 = x2
1, 0 ≤ x1, x2 ≤ 1}.

Let R = {x1 + 2x2 = 1, 0 ≤ x1, x2 ≤ 1}. Optimal solution (0, 1
2
) can be cut off using

the McCormick overestimator for the constraint x2
1− x2 ≥ 0, x1− x2 ≥ 0. Let us call

this iteration - 0. Applying the above procedure after adding a surplus variable, gives
us the cut x1 − x2 ≥ 2

11
in the original space of variables. Define the sequence {bk}

of right hand sides of the cuts added in each iteration e.g. b0 = 0, b1 =
2
11
, etc. Now

we show that bk+1 > bk∀ k and the cuts generated in the kth iteration is of the form
x1 − x2 ≥ bk. Assume this is true for some k, then in (k + 1)th iteration the active
constraints will be x1 − x2 ≥ bk, x1 + 2x2 = 1, and therefore the optimal solution
xk+1 = (1+2bk

3
, 1−bk

3
). When we apply Algorithm 1 using these as active constraints

we get the following cut

x1 − x2 ≥
11bk + 2

4bk + 11
.

Setting bk+1 = 11bk+2
4bk+11

and observing that bk+1 > bk whenever bk ≥ 0 completes the

proof using induction. In the limit bk → 1
4
and xk → (1

2
, 1
4
), which is optimal solution

to the problem.

We do not know whether the method always converges. A pure cutting plane
algorithm for general QCO is still an open question. The above example shows that
even when it converges, it can be slow.

It is not necessary to use the optimal basis of the relaxation, sometimes using a
non-optimal basis or an infeasible basis may result in a better cut as shown below.

Example 4.2. Let P be the problem min{−x1 − 4x2 | x2
1 − x2

2 ≥ 3, x1 + 2x2 ≤
2,−x1 + x2 ≤ 2,−2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1}. The feasible region of P is shown in
Figure 1. Let R = min{−x1 − 4x2 | x1 + 2x2 + s1 = 2,−x1 + x2 + s2 = 2,−2 ≤ x1 ≤
2,−1 ≤ x2 ≤ 1, 0 ≤ s1 ≤ 6, 0 ≤ s2 ≤ 5} be a relaxation of P . The optimal solution
to R is x∗ = (0, 1), s∗ = (0, 1) with the optimal objective value z∗ = −4. Algorithm
1 gives the cut 6x1 + 20x2 ≤ 16 and the lower bound increases to −3.33.

Instead, consider a sub optimal corner point x̂ = (2, 0), ŝ = (0, 4)T . Note that
the quadratic constraint is already satisfied at this point. Algorithm 1 gives the cut
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Figure 1: Cuts generated for Example 4.2. Blue region is the feasible region of P , red
region is the region cut off from cuts obtained by optimal basis (x2, s1) = (1, 0), orange
region is the region cut off from cuts obtained by the feasible basis (x1, s1) = (2, 0),
and green region is the region cut off from cuts obtained by the infeasible basis
(s1, s2) = (0, 0)
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x1 + 4x2 ≤ 3, and the lower bound increases to −3. This cut dominates the cut
obtained from the optimal basis (see Figure 1). Now choose yet another “corner”
point, say, x̂ = (−2

3
, 4
3
)T , ŝ = (0, 0)T which is infeasible to the relaxation. Algorithm

1 provides the cut x1 − 13x2 ≥ −5 and the lower bound increases to −2.93. This cut
dominates the other two cuts obtained.

Thus, carefully choosing a basis to obtain the cuts can impact the performance of
Algorithm 1. This observation is not surprising, since, similar techniques have been
used for cutting planes for integer linear optimization problems (Cornuéjols 2008).

5 Adding new variables and connections with RLT

In the previous section, linear estimators were obtained for each term of the substi-
tuted quadratic function. These estimators were then summed together to obtain
a valid inequality. Another way to linearize the substituted quadratic is by adding
auxiliary variables for each quadratic term and then using McCormick relaxation as
described in Section 2. This procedure obviously creates several new variables that
must be added to the LP relaxation. On the other hand, this form is equivalent to
adding all the cuts possible after g(x) is obtained by selecting different combinations
of under- or over-estimators in Algorithm 1, and hence may tighten the relaxation
more. We illustrate this using an example.

Example 5.1. Consider the substituted quadratic inequality (2) obtained in Exam-
ple 1.1. We add auxiliary variables w23 = x2x3, w24 = x2x4, w25 = x2x5 and add
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McCormick relaxation for these added variables to obtain the following relaxation

x1 + 2x3 − 3x4 + 2x5 = 0.3

x2 + x6 = 0.5

0.3x2 − x3 − 2w23 + 3w24 − 2w25 ≤ 0 (6)

x2 + x3 − w23 ≤ 1

w23 − x2 ≤ 0

w23 − x3 ≤ 0 (7)

x2 + x4 − w24 ≤ 1

w24 − x2 ≤ 0

w24 − x4 ≤ 0

x2 + x5 − w25 ≤ 1

w25 − x2 ≤ 0

w25 − x5 ≤ 0 (8)

xi ∈ [0, 1], i = 1, . . . , 6

w23, w24, w25 ≥ 0

Taking the linear combination (6)+2× ((7)+(8)) and using the fact that w24 ≥ 0
we get the cut 0.3x2 − 3x3 − 2x5 ≤ 0 obtained in Example 1.1. Consider the point
x̂ = (1, 0.5, 0.15, 1, 1, 0) which satisfies both the equality constraints and the cut but
there does not exist any ŵ such that (x̂, ŵ) is feasible to the above relaxation. This
shows that the above relaxation is tighter than simply adding the cut.

It is clear from the above example that our procedure adds cuts which are equiv-
alent to some of the cuts obtained by Reformulation Linearization Technique (RLT)
(Sherali and Adams 1998). However, it should be noted that the substituted quadratic
inequality obtained is dense in the nonbasic variables and thus several auxiliary wij

variables will be required. This increases the size of the LP significantly and is prac-
tically not suitable for a solver.

6 Computational results

We describe two sets of experiments to assess the computational impact of adding the
cuts described in the previous sections. In the first set of experiments (Section 6.1)
cuts are added as described in Algorithm 1, i.e., without introducing new variables
in the cutting stage. Six variants of this procedure are tested. In the second set
of experiments (Section 6.2), new variables are introduced in each round of cutting,
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as described in Section 5. The second approach results in a much tighter relaxation
after adding cuts, but comes with the additional cost of adding more variables each
time a cut is added. This experiment is proposed to quantify the effect of deriving
one or two inequalities from a quadratic constraint (Section 6.1) relative to adding
all possible ones from Algorithm 1.

We implemented the procedures in Minotaur framework (Mahajan et al. 2021).
The mglob solver in Minotaur solves QCP using branch-and-cut. It is used as a
starting point of our implementation. All computational experiments have been per-
formed on a computer with a 64-bit Intel(R) Xeon(R) E5-2670 v2, 2.50GHz CPU,
and 128 GB RAM. The programs were run on a single core of the CPU. The code
was compiled using GCC-4.9.2 compiler. CLP-1.17.6 (Forrest et al. 2020) was used
as an LP solver.

We selected 216 QP, QCP, and QCQP instances from MINLPLib (Bussieck et al.
2003) for the experiments that have an optimal solution available, i.e. there is a gap
of less than 10−6 between the primal and dual bound in MINLPLib dataset. Limiting
our experiments to these “easy” instances enables us to check whether the cuts erro-
neously cut the optimal point and also to precisely compute the gap closed. We did
not consider instances with integer variables as we wanted to focus on our procedure
in isolation from other tightening and cut generation procedures. We further excluded
51 instances which either mglob solved in the root node without any cuts or the gap
between root node relaxation and the optimal objective value was less than 10−6.
One instance for which root node processing by Minotaur took more than 30 minutes
was also excluded. After this filtering, 164 instances remained for the computational
experiments described here. We have chosen both convex and nonconvex problems
which contain either quadratic objective or one or more quadratic constraints. Rou-
tines to automatically identify and exploit convex nonlinear constraints in mglob were
disabled for these experiments. Thus all these instances were treated as nonconvex.
We call this test set T1.

We consider another set, T2 of pooling problems (Misener and Floudas 2009)
from the MINLPLib. Pooling problem is a problem in petrochemical industries. All
quadratic terms in these instances are bilinear, and may be suited for the RLT cuts
like we propose. From a total of 88 pooling instances in MINLPLib dataset, three are
not quadratic problems and were removed. One more instance was removed because
default Minotaur solves the problem in the root node (without any cuts). Eight
instances were removed because default Minotaur takes more than 30 minutes to
process the root node. We select the remaining 76 instances. Unlike the set T1, we
do not know the optimal solution value of some of the instances in T2. Some of these
instances have integer or binary variables.
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6.1 Cuts in original space of variables

We now describe the computational impact of adding cuts as described in Section
4. The input QCO problem is first transformed by substituting each quadratic term,
xixj, that appears in the problem (including the objective function), with an auxiliary
variable yij and then adding the constraint yij = xixj. Bound propagation techniques
(Belotti et al. 2010, Puranik and Sahinidis 2017, Domes and Neumaier 2010) are then
applied to obtain bounds on each variable. An initial LP relaxation of the transformed
problem is then obtained using McCormick inequalities for each bilinear term yij =
xixj. We then solve the relaxation to obtain a lower bound that we call zbefore. Cuts
are then added using the proposed variants of Algorithm 1 as described below. The
lower bound obtained after adding cutting planes and solving the tightened relaxation
is called zafter. We compute the gap closed by the cuts using the formula

Gap closed =
(zafter − zbefore)× 100

z∗ − zbefore
, (9)

where z∗ is the best known optimal objective value available from MINLPLib. Note
z∗ ≥ zafter ≥ zbefore.

We have conducted two types of experiments here each having three sub-variants.
For each quadratic constraint yij = xixj when both xi, xj are basic variables and
y∗ij ̸= x∗

ix
∗
j (in the initial LP solution), then two possible ways of substituting this

quadratic constraint are possible.

1. Substitute both xi and xj with their corresponding simplex rows to obtain a
quadratic function in only nonbasic variables and then under- or overestimate
the new terms to obtain the cuts. We propose three different variants of ob-
taining the linear estimator of the quadratic function for this case.

(a) Minimum coefficient sum - Suppose there is a term xkxl (after the above
substitution) that needs to be overestimated and both xk, xl are at their
lower bounds xk, xl. Then two overestimators xlxk+xkxl−xkxl, and xlxk+
xkxl − xkxl are available. If |xk| + |xl| < |xk| + |xl| then we choose the
first overestimator, and the second one otherwise. Similar rules are used
for other cases. The motivation behind using the minimum coefficient sum
rule is that we prefer smaller coefficients in the cut.

(b) Equal weight - In this variant, if we have two under- or overestimators for
a quadratic term then we take a convex combination of the two estimators
with λ = 0.5.

(c) Reduced cost weight - Instead of giving equal weights to the two estimators
as in (b), reduced costs are used to decide a different convex combination.
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Let us consider the term with xk, xl and the corresponding reduced costs
µk, µl. If |µk|+ |µl| < ϵ then we select the weights for each estimator as 0.5,

otherwise we normalize the reduced costs so that dk =
|µk|

|µk|+|µl|
, dl =

|µl|
|µk|+|µl|

.
The underestimators and overestimators then are given in Table 2. We set
ϵ = 10−6 in our experiments.

2. In the second set of variants, only one variable is substituted. For a constraint
yij = xixj with y∗ij ̸= x∗

ix
∗
j , we substitute only one out of xi or xj with its cor-

responding simplex row to obtain a new quadratic function. Again, we propose
three different ways of choosing which variable to substitute.

(a) Least infeasible - Among the two variables xi, xj we substitute the variable
that appears in the fewer number of quadratic constraints that are violated
by the current basic solution. If there is a tie we use the one which has
fewer nonzero terms in its simplex row.

(b) Most sparse - Among the two variables xi, xj we substitute the variable
which has fewer nonzero terms in its simplex row. If there is a tie we use
the one that appears in the fewer number of quadratic constraints violated
by the current basic solution.

(c) One-by-one - We substitute both variables one-by-one to obtain two quadratic
functions. For example, if the term x1x2 needs to substituted and if
x1 +

∑
j∈N α1jxj = β1 and x2 +

∑
j∈N α2jxj = β2 are the correspond-

ing simplex rows, then we first substitute x1 to obtain the quadratic
β1x2−

∑
j∈N α1jxjx2 and then we substitute x2 to obtain another quadratic

β2x1 −
∑

j∈N α2jxjx1. Thus we get two quadratic functions and two cuts
for each quadratic constraint.

We do only a single round of cut generation in these experiments. For all the six
variants discussed, we only add a cut to the relaxation if the current LP solution x∗

violates it by at least 10−3. In a more practical setting, one would apply these cuts
repeatedly and manage them in a more sophisticated manner (see Andreello et al.
(2007), Wesselmann and Stuhl (2012), Turner et al. (2022) for example). We leave
this aspect of tighter integration with other components of the solver to a future
study. We also limit ourselves to only measuring the gap closed by these cuts, and
not focus on their overall effectiveness in solving the problems as this would also
require a lot of fine tuning and integration with the solver. While performing the
experiments upto five instances on some of the variants faced numerical issues, and
for such cases we report zero gap closed. The average gap closed per instance in T1 is
tabulated in Table 3. On an average we close about 13% of the gap on the instances

15



Table 2: Underestimators/overestimators based on the weights from the reduce cost
of the variables

State of
variable xk

State of
variable xl

Underestimators to
choose

Overestimators to
choose

At lower
bound (xk)

At lower
bound (xl)

xlxk + xkxl − xkxl
dk(xlxk + xkxl − xkxl)+
dl(xlxk + xkxl − xkxl)

At lower
bound (xk)

At upper
bound (xl)

dk(xlxk + xkxl − xkxl)+
dl(xlxk + xkxl − xkxl)

xlxk + xkxl − xkxl

At upper
bound (xk)

At lower
bound (xl)

dl(xlxk + xkxl − xkxl)+
dk(xlxk + xkxl − xkxl)

xlxk + xkxl − xlxk

At upper
bound (xk)

At upper
bound (xl)

xlxk + xkxl − xkxl
dl(xlxk + xkxl − xkxl)+
dk(xlxk + xkxl − xkxl)

Table 3: Average gap closed after adding the cuts on set T1.
Substitute
both variables

Minimum Coeffi-
cient sum

Equal Weight Reduced cost
weight

Average gap
closed

12.75 10.45 13.31

Substitute one
variable

Least infeasible Most sparse One-by-one

Average gap
closed

31.06 30.86 35.53

tested when both the basic variables are substituted while more than 30% of gap was
closed when only one basic variable is substituted.

We plot a profile in Figure 2, to visualise the distribution of the performance of
each of the six variants over 164 instances. The horizontal axis in the plot shows the
gap closed (9) and the vertical axis counts the number of instances. A point (x, y) on
the plot shows that at least x% gap was closed on y instances. It is clear from the
profiles that substituting only one variable is superior to substituting both variables.
The choice of sub-variants did not seem to have much influence on the gap closed. The
detailed summary of the results for the instances in T1 for the six variants described
here is reported in the file DatasetT1.csv in the online supplementary material1. We
observe that the time taken in cutting is reasonably low for all instances, and that our
procedure is computationally cheap. Also, time taken when substituting one variable

1https://www.ieor.iitb.ac.in/files/faculty/amahajan/papers/SupplCutPaper.zip
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Figure 2: Profile of gap closed by one round of cuts on T1.

is lower as compared to substituting both variables. It is unsurprising because the
number of terms in the new quadratic increases significantly if both variables are
substituted.

We also compare the objective lower bound obtained from our cutting plane pro-
cedure to that obtained by two different settings of the SCIP 8.0.2. (Bestuzheva et al.
2021). SCIP is one of the leading open-source solvers for integer linear and nonlinear
optimization. The first setting keeps the default values of all parameters of SCIP. In
the second setting, primal heuristics are turned off in order to isolate the effects of
lower bound improvements from cuts and bound tightening routines alone. To switch

Table 4: Comparison of SCIP and Algorithm 1 for T1 instances
SCIP setting Number

of in-
stances

Number of
instances
where both
SCIP and
Algorithm
1 perform
similarly

Number of in-
stances where
Algorithm
1 performs
better

Number of in-
stances where
SCIP per-
forms better

Default 164 62 27 75
No heuristics 164 50 62 52
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Table 5: Comparison of SCIP and Algorithm 1 for T2 instances
SCIP setting Number

of in-
stances

Number of
instances
where both
SCIP and
Algorithm
1 perform
similarly

Number of in-
stances where
Algorithm
1 performs
better

Number of in-
stances where
SCIP per-
forms better

Default 76 46 13 17
No heuristics 76 43 22 11

off all primal heuristics in SCIP we use the option set/heuristics/emphasis/off.
We call the lower bound provided by SCIP after processing the root node as zSCIP.
Our algorithm is then compared to zSCIP using the formula

Percent change =
(zSCIP − zafter)× 100

|zbefore|
, (10)

where zbefore and zafter are obtained from Minotaur as described above.

When |Percent change| ≤ 1 we say our procedure and SCIP perform similarly.
On the other hand if (Percent change) < −1 then we say our procedure performs
better than SCIP and if (Percent change) > 1 then we say SCIP performs better
than our procedure. SCIP root node processing of some instances in T1, and T2 were
not completed even after 9600 seconds, and for these instances we use the lower
bound provided within this time limit. We summarise the results in Table 4 for test
set T1 and Table 5 for T2. In both these experiments the variant One-by-One was
used as it was the most promising in our previous analysis. We observe that, on
an average, the lower bounds from one round of our procedure are inferior to those
from default SCIP on T1 and comparable to those from default SCIP on T2. The
lower bounds from our procedure are seen to be superior to those from SCIP when
primal heuristics of SCIP are turned off. It indicates that the proposed procedure
may be quite helpful in improving the bounds, and needs good integration with other
components of the solver. Detailed summary of the results have been reported in the
online supplementary material2.

2https://www.ieor.iitb.ac.in/files/faculty/amahajan/papers/SupplCutPaper.zip
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6.2 Adding variables

Now we describe the computational impact when we add auxiliary variables as de-
scribed in Section 5 to obtain tighter relaxation. We first obtain an initial LP relax-
ation as explained in Section 6.1. For each quadratic constraint yij = xixj when both
xi, xj are basic variables and y∗ij ̸= x∗

ix
∗
j (in the initial LP solution), we substitute

variables with their corresponding simplex row using the following two strategies.

1. Substitute both variables - We substitute both the basic variables xi and xj

to obtain a new quadratic function. For each term xkxl in this new quadratic
function, if an auxiliary variable for xkxl is already present in the relaxation
we substitute the term xkxl with that variable. Otherwise we introduce a new
variable wkl = xkxl and relax it using McCormick relaxations.

2. Substitute one variable - We substitute one variable at a time to obtain two new
quadratic functions as described in variant One-by-one in Section 6.1. A new
variable wkl is then introduced for each term in the two quadratic constraints
as described above.

In both these variants it is sometimes observed that the bounds on wkl introduced
can be quite large. If that is the case, the McCormick relaxation can have large
coefficients and can cause numerical issues with the LP solvers. If max{|wkl|, |wkl|} ≥
106 we do not add a new variable, but rather just add a linear term as described in
Section 6.1. This anomaly was observed in 53 instances when both variables were
substituted and in 42 instances when one variable was substituted.

We test the above two variants on the test set T1. Four instances (torsion*) hit
the time limit of 9600 seconds while generating the new relaxation. These are removed
from the subsequent analysis, leaving 160 instances in T1. Also there were 7 instances
facing numerical issues whose gap closed has been reported as 0%. Average gap closed
for the two variants is reported in Table 6. We also measure the relative size of the
new relaxation in terms of the number of variables in the initial relaxation i.e. the
ratio of the number of variables in the new relaxation to the number of variables in
the initial relaxation. The second row in Table 6 shows the average relative size of
the new relaxation. We observe that substituting both variables and adding auxiliary
variables closes 25% of gap on an average in the instances tested while the size of
the relaxation increases to more than three times on average. On the other hand
substituting one variable at a time and adding auxiliary variables for both quadratic
functions closed about 39% of the gap while adding slightly fewer variables. Figure 3
shows the distribution of the performance of both the variants based on the gap closed.
The experiment again demonstrates that substituting only one basic variable at a time
is more beneficial. Substituting both variables increases the number of terms in the
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Table 6: Average gap closed and relative size of the problem after adding auxiliary
variables on 160 instances of set T1

Substitute both
variables

Substitute one
variable

Average Gap Closed 25.50 39.89
Added varibles w.r.t.
original number of
variables

3.87 2.84

Gap closed
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Figure 3: Profile of gap closed by adding auxiliary variables on T1.

new quadratic whose termwise relaxation can be relatively weak. Detailed summary
of results can be accessed in the online supplementary material 3.

The general scheme of introducing new variables while generating cuts is not
recommended in a practical setting. Most branch-and-cut implementations do not
allow adding new variables after the presolving stage. These experiments however
are useful for understanding the effectiveness of the cuts described in Section 6.1.
By adding variables, we are introducing all possible cuts that can be generated by
Algorithm 1. These experimental results suggest that the heuristic strategy of One-
by-one generates sufficiently good cuts and closes a sizeable gap as compared to what
is possible by adding all cuts.

3https://www.ieor.iitb.ac.in/files/faculty/amahajan/papers/SupplCutPaper.zip
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7 Conclusion and Future Work

We have presented a procedure for deriving cutting planes for a linear relaxation
of QCP. Our procedure is guaranteed to cut off LP basic feasible solution that is
not feasible to the QCP. Our tests of applying one round of cuts yield promising
results. Even though these cuts are a particular type of RLT inequalities, they are
available readily and do not require any search or guess-work. Successful integration
with a general purpose solver would require multiple rounds of cut generation, careful
selection, and management of these cuts along with careful tuning of parameters.

There are several open questions with regards to this procedure. First, the con-
vergence of this procedure on general and specific classes of QCP can be analysed.
Second, several cuts are possible with different choices available in the algorithm and
from different basic solutions. Practical strategies for finding computational effective
cuts would be an interesting topic, as would integrating them fully in an MIQCP
solver.
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Gérard Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical
programming, 112(1):3–44, 2008.

Alberto Costa, Pierre Hansen, and Leo Liberti. On the impact of symmetry-breaking
constraints on spatial branch-and-bound for circle packing in a square. Discrete Applied
Mathematics, 161(1-2):96–106, 2013.

Ferenc Domes and Arnold Neumaier. Constraint propagation on quadratic constraints.
Constraints, 15(3):404–429, 2010.

John Forrest, Stefan Vigerske, Ted Ralphs, Lou Hafer, JP Fasano, Haroldo Gambini Santos,
Matthew Saltzman, Horand Gassmann, Bjarni Kristjansson, and Alan King. coin-
or/Clp: Version 1.17.6 (releases/1.17.6). Zenodo, April 2020.

Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64(5):275 – 278, 1958.

22



Ralph E. Gomory. An algorithm for the mixed Integer Problem. Report No. P-1885, The
Rand Corporation, Santa Monica, CA., 1960.

Iiro Harjunkoski, Ray Pörn, and Tapio Westerlund. MINLP: trim-loss problem, pages 1469–
1477. Springer US, Boston, MA, 2001.

R. C. Jeroslow. There cannot be any algorithm for Integer Programming with Quadratic
constraints. Operations Research, 21(1):221–224, February 1973.

Josef Kallrath. Cutting circles and polygons from area-minimizing rectangles. Journal of
Global Optimization, 43(2):299–328, 2009.

Leo Liberti and Constantinos C Pantelides. An exact reformulation algorithm for large
nonconvex NLPs involving bilinear terms. Journal of Global Optimization, 36(2):161–
189, 2006.

James Luedtke, Mahdi Namazifar, and Jeff Linderoth. Some results on the strength of
relaxations of multilinear functions. Mathematical programming, 136(2):325–351, 2012.

Ashutosh Mahajan, Sven Leyffer, Jeff Linderoth, James Luedtke, and Todd Munson. Mino-
taur: A mixed-integer nonlinear optimization toolkit. Mathematical Programming
Computation, 13(2):301–338, 2021.

Garth P McCormick. Computability of global solutions to factorable nonconvex programs:
Part-I Convex underestimating problems. Mathematical programming, 10(1):147–175,
1976.

Ruth Misener and Christodoulos Floudas. Advances for the pooling problem: Modeling,
global optimization, and computational studies survey. Applied and Computational
Mathematics, 8, 01 2009.

Ruth Misener and Christodoulos A. Floudas. GloMIQO: Global mixed-integer quadratic
optimizer. Journal of Global Optimization, 57(1):3–50, Sep 2013.

Svatopluk Poljak and Henry Wolkowicz. Convex relaxations of (0, 1)-quadratic program-
ming. Mathematics of Operations Research, 20(3):550–561, 1995.

Yash Puranik and Nikolaos V Sahinidis. Domain reduction techniques for global NLP and
MINLP optimization. Constraints, 22(3):338–376, 2017.

Anureet Saxena, Pierre Bonami, and Jon Lee. Disjunctive cuts for non-convex mixed inte-
ger quadratically constrained programs. In Integer Programming and Combinatorial
Optimization: 13th International Conference, IPCO 2008 Bertinoro, Italy, May 26-28,
2008 Proceedings 13, pages 17–33. Springer, 2008.

Hanif D Sherali and WP Adams. A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems, volume 31. Springer Science & Business
Media, 1998.

Hanif D Sherali and Amine Alameddine. A new reformulation-linearization technique for
bilinear programming problems. Journal of Global optimization, 2(4):379–410, 1992.

Naum Z Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems
Sciences, 25:1–11, 1987.

23



Mohit Tawarmalani and Nikolaos V Sahinidis. Global optimization of mixed-integer non-
linear programs: A theoretical and computational study. Mathematical programming,
99(3):563–591, 2004.

Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive cut selection
in mixed-integer linear programming. arXiv preprint arXiv:2202.10962, 2022.

Franz Wesselmann and U Stuhl. Implementing cutting plane management and selection
techniques. University of Paderborn, Tech. Rep, 2012.

XJ Zheng, XL Sun, and Duan Li. Nonconvex quadratically constrained quadratic pro-
gramming: best DC decompositions and their SDP representations. Journal of Global
Optimization, 50(4):695–712, 2011.

8 APPENDIX : Canonical form of the relaxation

Let R = {x ∈ Rn | Ax ≤ b} be a linear relaxation of the (QCP1). Note that R may
have additional auxiliary variables. Let S = R ∩ {x ∈ Rn | xTQx + aTx ≤ d} be
the equivalent feasible region of (QCP1). The inequalities Ax ≤ b include lower and
upper bound constraints on each variable along with any other additional constraints.

At an optimal extreme point of R, n linearly independent constraints from Ax ≤
b will be active. Let such a set of active constraints be Bx ≤ bB, where B is a
nonsingular square matrix. We can add additional slack variables sB ≥ 0 such that
Bx + sB = bB. Since all x feasible to R satisfy Bx + sB = bB we get, x = B−1bB −
B−1sB. The optimal solution to R has x∗ = B−1bB, sB∗ = 0. Thus, any feasible
solution to R (and also S) must satisfy x = x∗ − B−1sB. If x∗ is feasible to S then
we have obtained an optimal solution to S. Otherwise, the quadratic constraint in S
must be violated at x∗, i. e. x∗TQx∗ + aTx∗ > d.

We substitute x = x∗ −B−1sB on one side of xTQx to obtain

xTQ(x∗ −B−1sB) + aTx ≤ d

=⇒ xTQx∗ + aTx− xTQB−1sB≤ d. (11)

Let Q̃ =
(
q̃ij

)
= −QB−1. Then the quadratic inequality

xTQx∗ + aTx+
n∑

i=1

n∑
j=1

q̃ijxis
B
j ≤ d, (12)

is valid for S. Now we relax this quadratic inequality using McCormick inequalities
(3) and Table 1 to get
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xTQx∗ + aTx+
n∑

i=1

n∑
j=1
q̃ij>0

q̃ijxis
B
j +

n∑
i=1

n∑
j=1
q̃ij<0

q̃ijxis
B
j ≤ d. (13)

At the point x = x∗, sB∗ = 0 the left hand side of the inequality (13) evaluates to
x∗TQx∗ + aTx∗. Since we assumed x∗TQx∗ + aTx∗ > d the linear inequality (13) cuts
off x∗

Example 8.1. Let S = {x ∈ R2 | x1x2 ≤ 4, 4x1 − 3x2 ≤ 8, 0 ≤ x1, x2 ≤ 4} and
z = min{−x1 | x ∈ S}. The optimal z, z∗ = −3 obtained at (3, 4

3
)T . Consider the

linear relaxation R = {x ∈ R2 | 0 ≤ x1, x2 ≤ 4, 4x1 − 3x2 ≤ 8}. An optimal solution
of R is x∗ = (4, 8

3
)T , where constraints x1 ≤ 4, and 4x1−3x2 ≤ 8 are active. We have

Q =

[
0 1

2
1
2

0

]
, B =

[
1 0
4 −3

]
, bB =

(
4
8

)
. Substituting in (12), we obtain the valid

quadratic inequality

4

3
x1 + 2x2 −

2

3
x1s1 +

1

6
x1s

B
2 −

1

2
x2s

B
1 ≤ 4,

McCormick underestimators as shown in (13) provide the cut

4

3
x1 + 2x2 −

14

3
sB1 ≤ 4.

Substituting the slack variable using the active constraint we get

6x1 + 2x2 ≤
68

3
.

Solving the problem after adding the cuts improves the lower bound to zl = −3.231.

In the above procedure when we substitute x = x∗ − B−1sB to obtain (11), we
substitute only one of x’s in xTQx, one can substitute both the x’s to obtain an
inequality in only slack sB variables, i. e.

(x∗ −B−1sB)TQ(x∗ −B−1sB) + aT (x∗ −B−1sB) ≤ d

=⇒ x∗TQx∗ + aTx∗ − 2x∗TQB−1sB − aTB−1sB + sBTB−TQB−1sB≤ d. (14)

Let Q̃ =
(
q̃ij

)
= B−TQB−1 then the following quadratic inequality is valid for S

x∗TQx∗ + aTx∗ − 2x∗TQB−1sB − aTB−1sB +
n∑

i=1

n∑
j=1

q̃ijs
B
i s

B
j ≤ d. (15)
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This quadratic inequality can be underestimated using McCormick underestimators
for

∑n
i=1

∑n
j=1 q̃ijs

B
i s

B
j to obtain a different cut. In this case we will require to compute

the bounds on the sB variables, which can be computed from the equation Bx +
sB = bB and bounds on x i. e., sB = bB − B+x − B−x, where B+ is obtained by
replacing all the negative enteries in B with 0 and B− is obtained by replacing all
the positive enteries in B with 0. For every term q̃ijs

B
i s

B
j in (12), if q̃ij ≥ 0, then 0

an underestimator for the term and if q̃ij < 0, then either overestimators q̃ijsBj s
B
i and

q̃ijsBi s
B
j can be used (see Table 1 again).

Example 8.2. Consider again the problem from Example 8.1. We substitute Q,B, bB

in (14) to obtain the following quadratic inequality

4

3
sB1 s

B
1 −

1

3
sB1 s

B
2 − 8sB1 +

4

3
sB2 ≤ −

20

3
.

Note that sB1 ∈ [0, 4], sB2 ∈ [0, 20]. Also, sB1 s
B
1 is underestimated using 0 and sB1 s

B
2 is

overestimated using either 20sB1 and 4sB2 to obtain the cuts

−44

3
sB1 +

4

3
sB2 ≤ −

20

3
,

−8sB1 ≤ −
20

3
.

Substituting the slack variables and simplifying gives the cuts

7x1 + 3x2 ≤ 31, and

x1 ≤
19

6
.

And the lower bound increases to −3.167.
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