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EXACT CONVERGENCE RATE OF THE LAST ITERATE

IN SUBGRADIENT METHODS

MOSLEM ZAMANI∗ AND FRANÇOIS GLINEUR †

Abstract. We study the convergence of the last iterate in subgradient methods applied to the
minimization of a nonsmooth convex function with bounded subgradients.

We first introduce a proof technique that generalizes the standard analysis of subgradient meth-
ods. It is based on tracking the distance between the current iterate and a different reference point at
each iteration. Using this technique, we obtain the exact worst-case convergence rate for the objec-
tive accuracy of the last iterate of the projected subgradient method with either constant step sizes
or constant step lengths. Tightness is shown with a worst-case instance matching the established
convergence rate.

We also derive the value of the optimal constant step size when performing N iterations, for
which we find that the last iterate accuracy is smaller than BR

√

1 + log(N)/4/
√

N + 1 , where B is
a bound on the subgradient norm and R is a bound on the distance between the initial iterate and
a minimizer.

Finally, we introduce a new optimal subgradient method that achieves the best possible last-
iterate accuracy after a given number N of iterations. Its convergence rate BR/

√

N + 1 matches
exactly the lower bound on the performance of any black-box method on the considered problem
class. We also show that there is no universal sequence of step sizes that simultaneously achieves
this optimal rate at each iteration, meaning that the dependence of the step size sequence in N is
unavoidable.

Key words. convex optimization, nonsmooth optimization, subgradient method, constant step
size, constant step length, convergence rate, last iterate, optimal subgradient method

MSC codes. 90C25, 90C60, 49J52

1. Introduction.

1.1. Subgradient methods. Subgradient methods are iterative techniques for
solving nonsmooth convex optimization problems, studied by Shor and others in the
1960s. They are both simple and widely used, and continue to be actively studied.
New variants have been recently developed that are more efficient and can handle a
wider range of optimization problems, see [2, 5] and the references therein.

Let X ⊆ R
n be a convex set and f be a convex function whose domain contains

X . Consider the following convex optimization problem

min
x∈X

f(x).(1.1)

The set of subgradients of function f at a point x is denoted as ∂f(x), and is given
by

∂f(x) = {g ∈ R
n such that f(y) ≥ f(x) + 〈g, y − x〉 holds for all y ∈ domf}.

The class of projected subgradient methods is given in Algorithm 1.1, where
PX(·) stands for the Euclidean projection on X . An instance of the method requires
to define the sequence of N step sizes {hk}1≤k≤N , where N is the number of iterations
to perform.

For the method to be well-defined, we will assume the following throughout the
paper:
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Algorithm 1.1 Projected subgradient method with generic step sizes

Parameters: number of iterations N , sequence of positive step sizes {hk}1≤k≤N .

Inputs: convex set X , convex function f defined on X , initial iterate x1 ∈ X .

For k = 1, 2, . . . , N perform the following steps:
1. Select a subgradient gk ∈ ∂f(xk).
2. Compute xk+1 = PX

(

xk − hkg
k
)

.

Output: last iterate xN+1

Assumption 1.1.
1. The set of subdifferential ∂f(x) is nonempty for every x ∈ X.
2. The set X is closed, convex and nonempty.

The first assumption is necessary to compute a direction for the next iterate. It holds
for example if set X is contained in the relative interior of the domain of function f .
The second assumption ensures that the projection on X is well-defined and unique.

1.2. Convergence rates. Unlike the gradient method, the subgradient method
is not a descent method, meaning that inequality f(xk+1) ≤ f(xk) does not necessarily
hold at each iteration. For this reason, most convergence rates for the subgradient
method describe the best iterate, or an average of the iterates, see for example [1, 8, 9].
Convergence results typically require two more assumptions:

Assumption 1.2. Function f has B-bounded subgradients on set X, meaning

x ∈ X and g ∈ ∂f(x) ⇒ ‖g‖ ≤ B.

Note that a convex function f is Lipschitz continuous with modulus B if its subgra-
dients are B-bounded on its domain.

Assumption 1.3. Function f admits a minimizer x∗, and the distance between
initial iterate x1 and x∗ is bounded by a constant R, that is

‖x1 − x∗‖ ≤ R.

For example, under these assumptions, the best iterate of the subgradient method
with generic positive step sizes {hk} will satisfy (see e.g. [1, 8])

(1.2) min
1≤k≤N+1

f(xk)− f(x∗) ≤ R2 +B2
∑N+1

k=1 h2
k

2
∑N+1

k=1 hk

.

The same bound can be shown to also hold for the average iterate defined as

xavg =

N+1
∑

k=1

wkx
k with wk =

hk
∑N+1

k=1 hk

.

Note that these rates depend on step size hN+1 that is not used in the algorithm (i.e.
they are valid for any value of hN+1 > 0). If we know constants B and R, it can be
shown that the optimal choice of step sizes, i.e. which minimizes the rate, consists of
the following constant sequence

hk =
R

B

1√
N + 1

which implies min
1≤k≤N+1

f(xk)− f(x∗) ≤ BR√
N + 1

.



EXACT CONVERGENCE RATE OF SUBGRADIENT METHOD 3

A final remark is that this last result cannot be improved. Indeed, it is known that
no subgradient method can guarantee a rate better than BR√

N+1
[4]. This lower bound

is actually valid for any black-box method that moves in a direction combining past
subgradients at each step, see beginning of Section 5 for more details.

1.3. Rates on the final iterate. From the above it appears that subgradient
methods are both simple and efficient, matching the best possible convergence rate.
Nevertheless, we observe two drawbacks: first, the optimal sequence of step sizes hk =
R
B

1√
N+1

requires knowledge of constants B and R and, more importantly, depends on

the number of iterations N .
Second, these worst-case convergence rates only hold for the best or the average

iterate, and nothing is guaranteed about the sequence of iterates, or in particular
about the last iterate. As the final iterate is commonly selected in practice as the
output of the subgradient method [7], it may be of interest to analyze the method
with respect to the last generated iterate. It is also of interest in situations where the
iterates cannot be stored, where the function value cannot be evaluated, or where the
sequence of iterates computed by the subgradient method is itself under study.

The question of last-iterate convergence rates was previously raised in [11]. In
[10] the authors introduce a modified subgradient method with double averaging for
which the whole sequence of iterates converges with the rate O( 1√

N
). Moving back

to standard subgradient methods as described by Algorithm 1.1, a lower bound of

order O( log(N)√
N

) for the convergence rate for the last iterate is established in [6] for

a specific choice of step sizes hk = R
B

1√
k
. The authors also prove a high probability

upper bound with the same order O( log(N)√
N

) in the stochastic case. Finally, we can find

in [7] a subgradient method with a different choice of step sizes for which a O( 1√
N
)

convergence rate for the last iterate is obtained when the feasible set X is bounded.
In this paper, we continue to explore this question and contribute in two ways.

First, we establish in Section 3 exact convergence rates for the last iterate the subgra-
dient method with either constant step sizes or constant step lengths. These results
are based on a key lemma presented in Section 2, which generalizes the standard
analysis of subgradient methods. Second, we present in Section 5 an optimal subgra-
dient method for which the last-iterate convergence rate matches exactly the estab-
lished lower bound for black-box nonsmooth convex optimization problems, namely
for which we have f(xN ) − f(x∗) ≤ BR√

N+1
, improving the constant in the rate of [7]

by an order of magnitude.

2. Key lemma for convergence proofs. All convergence rates established
in this paper will be derived from the following key lemma. Its proof is based on
tracking the distance between the current iterate and a different reference point at
each iteration (‖xk − zk‖ in the proof below).

Lemma 2.1. Let f be a convex function and let X be a closed convex set. Suppose
that x̂ ∈ X, hN+1 > 0 and 0 < v0 ≤ v1 ≤ · · · ≤ vN ≤ vN+1. If Algorithm 1.1 with the
starting point x1 ∈ X generates {(xk, gk)}, then

N+1
∑

k=1

(

hkv
2
k − (vk − vk−1)

N+1
∑

i=k

hivi

)

f(xk)− v0

N+1
∑

k=1

hkvkf(x̂) ≤(2.1)

v2
0

2

∥

∥x1 − x̂
∥

∥

2
+ 1

2

N+1
∑

k=1

h2
kv

2
k

∥

∥gk
∥

∥

2
.
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Note that this inequality can also be equivalently written

N+1
∑

k=1

ck
(

f(xk)− f(x̂)
)

≤ v2
0

2

∥

∥x1 − x̂
∥

∥

2
+ 1

2

N+1
∑

k=1

h2
kv

2
k

∥

∥gk
∥

∥

2

with coefficients ck defined as ck = hkv
2
k − (vk − vk−1)

∑N+1
i=k hivi, since one can show

that
∑N+1

k=1 ck = v0
∑N+1

k=1 hkvk using summation by parts.

Proof. Let z0 = x̂ and zk is defined recursively as follows,

zk =
(

1− vk−1

vk

)

xk +
vk−1

vk
zk−1, k ∈ {1, . . . , N + 1}.

It is seen that zk may be written as a convex combination of x1, . . . , xN+1, x̂. Indeed,

zk = 1
vk

k
∑

i=1

(vi − vi−1)x
i + v0

vk
x̂.

By Jensen’s inequality, we get

N+1
∑

k=1

hkv
2
k

(

f(zk)− f(xk)
)

≤
N+1
∑

k=1

k
∑

i=1

hkvk(vi − vi−1)f(x
i) + v0

N+1
∑

k=1

hkvkf(x̂)(2.2)

−
N+1
∑

k=1

hkv
2
kf(x

k)

On the other hand, by the subgradient inequality for k ∈ {1, . . . , N + 1}, we have

f(zk)− f(xk) ≥
〈

√

hkg
k, 1√

hk
(zk − xk)

〉

= hk

2

(

∥

∥

∥
gk + 1

hk
(zk − xk)

∥

∥

∥

2

− 1
h2
k

∥

∥zk − xk
∥

∥

2 −
∥

∥gk
∥

∥

2
)

= hk

2

(

∥

∥

∥
gk + 1

hk
(zk − xk)

∥

∥

∥

2

− v2
k−1

h2
k
v2
k

∥

∥zk−1 − xk
∥

∥

2 −
∥

∥gk
∥

∥

2
)

Due to the non-expansive property of the projection operator, we have ‖PX(xk −
hkg

k)− y‖ ≤ ‖(xk − hkg
k)− y‖ for any y ∈ X . Thus, we get

f(zk)− f(xk) ≥hk

2

∥

∥

∥
gk + 1

hk
(zk − xk)

∥

∥

∥

2

− v2
k−1h

2
k−1

2v2
k
hk

∥

∥

∥
gk−1 + 1

hk−1
(zk−1 − xk−1)

∥

∥

∥

2

− hk

2

∥

∥gk
∥

∥

2
,

for k ∈ {2, . . . , N + 1}. Hence,

2hkv
2
k

(

f(zk)− f(xk)
)

≥− h2
kv

2
k

∥

∥gk
∥

∥

2
+ h2

kv
2
k

∥

∥

∥
gk + 1

hk
(zk − xk)

∥

∥

∥

2

− v2k−1h
2
k−1

∥

∥

∥
gk−1 + 1

hk−1
(zk−1 − xk−1)

∥

∥

∥

2

.

Moreover,

2h1v
2
1

(

f(z1)− f(x1)
)

≥ h2
1v

2
1

∥

∥

∥
g1 + 1

h1
(z1 − x1)

∥

∥

∥

2

− v20
∥

∥z0 − x1
∥

∥

2 − h2
1v

2
1

∥

∥g1
∥

∥

2
.
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By summing up these inequalities, we obtain

2

N+1
∑

k=1

hkv
2
k

(

f(zk)− f(xk)
)

≥h2
N+1v

2
N+1

∥

∥

∥
gN+1 + 1

hN+1
(zN+1 − xN+1)

∥

∥

∥

2

(2.3)

− v20
∥

∥z0 − x1
∥

∥

2 −
N+1
∑

k=1

h2
kv

2
k

∥

∥gk
∥

∥

2
.

Inequalities (2.2) and (2.3) imply the desired inequality and the proof is complete.

Compared to the standard analysis of subgradient methods, additional flexibility
is provided by the sequence of weights {vk}. Note that by setting vk = 1 for all k and
x̂ = x⋆ in (2.1), we get

N+1
∑

k=1

hk

(

f(xk)− f⋆
)

≤ 1
2

∥

∥x1 − x⋆
∥

∥

2
+ 1

2

N+1
∑

k=1

h2
k

∥

∥gk
∥

∥

2
.(2.4)

from which it is straightforward to derive the standard convergence rate (1.2) with
respect to the best objective value or the average of iterates [1, 8].

In order to establish a last-iterate convergence rate via Lemma 2.1, one should
choose appropriate values for the N + 3 parameters, v0, . . . , vN+1 and hN+1, so that
coefficients ck are zero for all k except cN+1. One can actually see with some algebra
that all parameters are uniquely determined if we assign values to vN+1, hN+1 and
the coefficient cN+1 of f(xN+1) in (2.1).

3. Subgradient method with constant step sizes. In this section, we inves-
tigate the convergence rate of Algorithm 1.1 when the step size is constant for each
iteration. Moreover, following the standard presentation of such convergence results,
we assume that this constant step size is chosen proportionally to the ratio R

B
, namely

we define hk = hR
B

(k = 1, . . . , N) for some h > 0. This normalization leads to slightly
simpler expressions for the rates, which become proportional to a common factor BR.

3.1. Increasing sequences {sα,k}k≥1. Before we prove our results we need to
introduce a family of real sequences. Let α ≥ 1 be a real parameter. We define the
sequence {sα,k}k≥1 recursively as follows

sα,1 = α, sα,k+1 = sα,k +
1

sα,k
.(3.1)

The next proposition lists some properties of these sequences that will be used later.

Proposition 3.1. Any sequence {sα,k} defined by (3.1) satisfies the following for
all k:
(a) sα,k+1 = α+

∑k

i=1
1

sα,i

(b) s2α,k+1 = α2 + 2k +
∑k

i=1
1

s2
α,i

(c) β > α implies sβ,k > sα,k
(d) limα→+∞ sα,k = +∞.

Proof.
(a) This follows from telescoping in the sum of defining equalities sα,i+1 = sα,i+

1
sα,i

for i ranging from 1 to k.
(b) Squaring the defining equality gives s2α,i+1 = (sα,i +

1
sα,i

)2 = s2α,i + 2 + 1
s2
α,i

.

Summing for i ranging from 1 to k and telescoping provides the result.
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(c) This follows from the fact that s 7→ s+ 1
s
is strictly increasing when s ≥ 1.

(d) This follows from limα→∞ sα,1 = +∞ and the fact that each sequence {sα,k} is
strictly increasing.

The sequence in the particular case α = 1 will play a central role in our convergence
rates. We denote {s1,k} by {sk} for convenience, meaning that

s1 = 1, sk+1 = sk +
1
sk

and provide the following estimate of its asymptotic behavior.

Lemma 3.2. For any k ≥ 2 we have

√
2k ≤ sk ≤

√

2k + 1
2 log (k − 1).

Proof. To prove the left inequality, since s2i+1 = s2i +
1
s2
i

+ 2 ≥ s2i +2, we have by

induction that s2k ≥ s22 + 2(k − 2) = 2k (using s2 = 2). To prove the right inequality,
we use (b) in Proposition 3.1 to obtain

s2k = 12 + 2(k − 1) +

k−1
∑

i=1

1
s2
i

≤ 2k − 1 + (1 + 1
2

k−1
∑

i=2

1
i
) ≤ 2k + 1

2 log(k − 1),

where the first inequality follows from s2k ≥ 2k, and the second from the upper bound

on harmonic numbers
∑k

i=1
1
i
≤ log(k) + 1.

3.2. Convergence rate for the last iterate. We now turn to proving a con-
vergence rate for the last iterate of the subgradient method with constant step sizes.
With the choice of constant step size explained above hk = R

B
h for some positive

parameter h, the subgradient algorithm becomes

Algorithm 3.1 Projected subgradient method with constant step sizes

Parameters: number of iterations N , normalized step size parameter h > 0

Inputs: convex set X , convex function f defined on X with B-bounded subgra-
dients, initial iterate x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer x∗.

For k = 1, 2, . . . , N perform the following steps:
1. Select a subgradient gk ∈ ∂f(xk).
2. Compute xk+1 = PX

(

xk − hR
B
gk
)

.

Output: last iterate xN+1

Most of the effort in obtaining our convergence rate will be spent in obtaining the
following lemma.

Lemma 3.3. Let f be a convex function with B-bounded sugradients on a convex
set X, and let α ≥ 1. Let x̂ ∈ X be a reference point. Consider N iterations of
Algorithm 3.1 with step size parameter h > 0, starting from an initial iterate x1 ∈ X

satisfying ‖x1 − x̂‖ ≤ R. We have that the last iterate xN+1 satisfies

f(xN+1)− f(x̂) ≤ BR

(

1
2

(

sα,N+1

√
h− 1

sα,N+1

√
h

)2

+ 1−Nh

)

.(3.2)
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Proof. To prove inequality (3.2), we employ Lemma 2.1. Assume that

vk =
1

sα,N+1−k

, k ∈ {0, 1, . . . , N},

and vN+1 = sα,1. It is seen that 0 < v0 ≤ v1 ≤ · · · ≤ vN+1. Suppose that hN+1 = hR
B
.

By using Proposition 3.1, one can verify that for k ∈ {1, . . . , N},

v2k − (vk − vk−1)

N+1
∑

i=k

vi =
1

s2α,N+1−k

−
(

1
sα,N+1−k

− 1
sα,N+2−k

)

(

N+1−k
∑

i=1

1
sα,i

+ sα,1

)

=
1

s2α,N+1−k

−
(

sα,N+2−k

sα,N+1−k
− 1
)

= 0.

Furthermore,

v2N+1 − vN+1(vN+1 − vN ) = sα,1(
1

sα,1
) = 1,

v0

N+1
∑

k=1

vk = 1
sα,N+1

(

N
∑

k=1

1
sα,1

+ sα,1

)

= 1.

Hence, by Lemma 2.1, we obtain

f(xN+1)− f⋆ ≤ Rh
2B

N+1
∑

i=1

v2k
∥

∥gi
∥

∥

2
+ Bv0

2Rh

∥

∥x1 − x⋆
∥

∥

2

≤ BRh
2

N
∑

i=1

1

s2α,N+1−k

+
BRhα2

2
+

BR

2hs2α,N+1

= BR

(

1
2

(

sα,N+1

√
t− 1

sα,N+1

√
t

)2

+ 1−Nh

)

,

where the last equality follows from Proposition 3.1. Hence, we derive the desired
inequality and the proof is complete.

The following theorem now uses Lemma 3.3 with the choice x̂ = x∗ to obtain a
last-iterate convergence rate for the subgradient method with constant step sizes.

Theorem 3.4. Let f be a convex function with B-bounded sugradients on a con-
vex set X. Consider N iterations of Algorithm 3.1 with step size parameter h > 0,
starting from an initial iterate x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer
x∗. We have that the last iterate xN+1 satisfies

f(xN+1)− f⋆ ≤







BR (1−Nh) when h ≤ 1
s2
N+1

,

BR
(

(12s
2
N+1 −N)h+ 1

2s2
N+1

h

)

when h > 1
s2
N+1

.

Proof. We prove the theorem by plugging a suitable value for α into inequality
(3.2) written for the choice x̂ = x∗ , since it holds for any α ≥ 1. In the first case,
when h ≤ 1

s2
N+1

, we may select by Proposition 3.1 a value of α ≥ 1 such that

sα,N+1

√
h− 1

sα,N+1

√
h
= 0

which leads to the desired inequality. In the second case where h > 1
s2
N+1

one can

choose α = 1 to obtain the inequality.
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It is interesting to compare this last-iterate convergence rate to the one holding
for the best iterate. Plugging hk = R

B
h into the rate (1.2), we obtain that

min
1≤k≤N+1

f(xk)− f(x∗) ≤ BR
(

1
2

1
(N+1)h + 1

2h
)

.

Using the bounds 2N + 2 ≤ s2N+1 ≤ 2N + 2 + 1
2 log(N) from Lemma 3.2, we

rewrite the rate for larger steps from Theorem 3.4 in the following slightly weaker but
easier to interpret form:

f(xN+1)− f(x⋆) ≤ BR
(

(1 + 1
4 log(N))h+ 1

4(N+1)h

)

.

Finally, when using the standard optimal constant step size h = 1√
N+1

we obtain

f(xN+1)− f(x⋆) ≤ BR√
N + 1

(

5
4 + 1

4 log(N)
)

,

which show a logarithmic loss compared to the BR√
N+1

rate for the best iterate.

A last interesting remark is that Lemma 3.3 can be used with a reference x̂ that
is not a minimizer. In essence, it shows that subgradient methods converge to any
sublevel set of the objective function with the same worst-case rate, provided the
constant R in its numerator is taken as the distance from the initial iterate to that
sublevel set.

3.3. Tightness of the convergence rate. A convergence rate is said to be
exact (or tight) if there exists a problem instance achieving that rate. We now show
that the convergence rates we obtained for the subgradient method with constant step
sizes are exact.

In the case of shorter steps (h ≤ 1
s2
N+1

), it is readily seen that the convergence

rate in Theorem 3.4 is exact. Indeed, it is enough to consider an unconstrained
optimization univariate problem (n = 1, X = R) with objective function f(x) = B|x|
and the initial point x1 = R.

In the case of longer steps (h > 1
s2
N+1

), the following more involved example illus-

trates that the convergence rate in Theorem 3.4 is also exact. To establish exactness,
we may assume without loss of generality that R = B = 1. We also use ei to denote
the ith unit vector.

Example 3.5. Let N be a number of iterations and h > 1
s2
N+1

. Let γ1 = 1 and

define

γk =

√

√

√

√

k−1
∏

i=1

(

1− 1
s4
N+1−i

)

, k ∈ {2, . . . , N}.

Suppose that ξ1, . . . , ξN+1 ∈ R
N+1 are given as follows,

ξk = 1
hs2

N+1

e1 +
√

1− 1
h2s4

N+1

(

k
∑

i=2

γi−1

s2
N+2−i

ei − γkek+1

)

, k ∈ {1, . . . , N},

and ξN+1 = ξN + 2γN
√

1− 1
h2s4

N+1

eN+1. By the definition of ξk, it is seen

∥

∥ξk
∥

∥ = 1, k ∈ {1, . . . , N + 1}.
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For k < N and k < j, we have

〈

ξk, ξj
〉

=
〈

ξk, ξk + γk

(

1
s2
N+1−k

+ 1
)
√

1− 1
h2s4

N+1

ek+1

〉

(3.3)

= 1− γ2
k

(

1
s2
N+1−k

+ 1
)(

1− 1
h2s4

N+1

)

,

and
〈

ξN , ξN+1
〉

= 1− 2γ2
N

(

1− 1
h2s4

N+1

)

. Let f : RN+1 → R given by

f(x) = max
0≤k≤N+1

fk + 〈ξk, x− zk〉

where f0 = 0,

fk = 1
s2
N+1

+
(

1− 1
h2s4

N+1

)

k−1
∑

i=1

γ2
i

(

1 + 1
s2
N+1−i

)

, k ∈ {1, . . . , N + 1},

and ξ0 = z0 = 0,

zk = e1 − h

k−1
∑

i=1

ξi, k ∈ {1, . . . , N + 1}.

It is readily seen that ‖ξ‖ ≤ 1 for any ξ ∈ ∂f(x) and x ∈ R
N+1. By (3.3), one can

show that f(0) = 0. Hence, 0 ∈ ∂f(0) and zero is an optimal solution of the following
problem,

min
x∈RN+1

f(x).

Furthermore,

ξk ∈ ∂f(xk), k ∈ {1, . . . , N}.(3.4)

After some algebraic manipulations, one can show that f(xN+1) = (12s
2
N+1 −N)h+

1
2s2

N+1
h
. Algorithm 1.1 with initial point x1 = e1 and step size h may generate the

following points
xk = zk, gk = ξk k ∈ {2, . . . , N + 1}.

Since f(xN+1) = (12s
2
N+1 − N)h + 1

2sq2
N+1

h
, one infers the tightness of the rate for

large steps in Theorem 3.4.

3.4. Optimal constant step size. In what follows, we determine the optimal
constant step size for Algorithm 1.1, i.e. the value of h that minimizes the rate
established in Theorem 3.4, and derive the resulting optimal last-iterate convergence
rate for this class of subgradient methods.

Theorem 3.6. Let f be a convex function with B-bounded sugradients on a con-
vex set X. Consider N iterations of Algorithm 3.1 starting from an initial iterate
x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer x∗. The optimal value of the
step size parameter h is given by

h⋆ =
1

sN+1

√

s2N+1 − 2N
,

and with that choice the last iterate xN+1 satisfies

f(xN+1)− f(x⋆) ≤ BR
√

1− 2N
s2
N+1

.
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Proof. To get the optimal step size suffices to minimize the function H : R+ → R

given by

H(h) =







1−Nh h ∈ [0, 1
s2
N+1

)

(12s
2
N+1 −N)h+ 1

2s2
N+1

h
h ∈ [ 1

s2
N+1

,∞).

It is readily seen than H is a differentiable convex function, decreasing on its first
piece, and the above minimizer h∗ can be found by solving H ′(h⋆) = 0 on the second
piece.

Plugging this optimal h∗ in the rate Theorem 3.4 completes the proof.

A simpler, slightly weaker bound is obtained using 1− 2N
s2
N+1

=
s2N+1−2N

s2
N+1

≤ 2+ 1
2
log(N)

2N+2 ,

leading to

f(xN+1)− f(x⋆) ≤ BR√
N + 1

√

1 + 1
4 log(N) = O(

√

logN
N

)

which emphasizes the logarithmic loss compared to the best-iterate convergence rate.

4. Subgradient method with constant step lengths. Identifying a bound
B on the maximum norm of any subgradient may be difficult. Alternatively, one can
adapt the subgradient method from Algorithm 1.1 such that constant step lengths
are used. We express this constant step length as a fraction of the initial distance tR,
for some value of t > 0. Since the length of a step is equal to ‖hkgk‖, this implies the
choice of step sizes hk = tR

‖gk‖ for each k. Algorithm 4.1 below presents the subgradient

method with constant step length.

Algorithm 4.1 Projected subgradient method with constant step lengths

Parameters: number of iterations N , step length parameter t > 0

Inputs: convex set X , convex function f defined on X with B-bounded subgra-
dients, initial iterate x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer x∗.

For k = 1, 2, . . . , N perform the following steps:
1. Select a subgradient gk ∈ ∂f(xk).

2. Compute xk+1 = PX

(

xk − t R
‖gk‖g

k
)

.

Output: last iterate xN+1

We give below a convergence rate for Algorithm 4.1 by using Lemma 2.1.

Theorem 4.1. Let f be a convex function with B-bounded sugradients on a con-
vex set X. Consider N iterations of Algorithm 4.1 with step length parameter t > 0,
starting from an initial iterate x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer
x∗. We have that the last iterate xN+1 satisfies the following rate
i) If t ∈ (0, 1

s2
N+1

], then

f(xN+1)− f(x⋆) ≤ BR (1−Nt) .

ii) If t ∈ [ 1
s2
N+1

,∞), then

f(xN+1)− f(x⋆) ≤ BR
(

(12s
2
N+1 −N)t+ 1

2s2
N+1

t

)

.
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Proof. We employ Lemma 2.1 to establish the theorem. Let hN+1 = tR
B

and

vN+1 = α for some α ≥ 1. Suppose that hk = tR
‖gk‖ , k ∈ {1, . . . , N}. We define vk

recursively as follows,

vk =
hN+1

∑N+1
i=k+1 hivi

, k ∈ {N, . . . , 1, 0}.(4.1)

It is seen that 0 < v0 ≤ v1 ≤ · · · ≤ vN ≤ vN+1. For k ∈ {1, . . . , N}, we have

hkv
2
k − (vk − vk−1)

N+1
∑

i=k

hivi = vk−1

N+1
∑

i=k

hivi − vk

N+1
∑

i=k+1

hivi = 0.

Furthermore,

hN+1v
2
N+1 − (vN+1 − vN )hN+1vN+1 = hN+1, v0

N+1
∑

k=1

hkvk = hN+1.

On the other hand, by (4.1), we get vN = 1
α
and

1
vk

= hk+1

hN+1
vk+1 +

1
vk+1

≥ vk+1 +
1

vk+1
, k ∈ {0, . . . , N − 1},

where the last inequality follows from ‖gk+1‖ ≤ B. Since function µ : [1,∞) → R

given by µ(o) = γo+ 1
o
for γ ≥ 1 is increasing on its domain, one can infer by induction

that

vk ≤ 1

sα,N+1−k

, k ∈ {0, . . . , N}.

Hence, by using Lemma 2.1, we obtain

f(xN+1)− f(x⋆) ≤ v2
0

2hN+1

∥

∥x1 − x⋆
∥

∥

2
+ t2R2

2hN+1

N
∑

k=1

v2k +
hN+1B

2v2
N+1

2

≤ BR

(

1
2

(

sα,N+1

√
t− 1

sα,N+1

√
t

)2

+ 1−Nh

)

,

where the last inequality resulted from Proposition 3.1. The rest of the proof is
analogous to Theorem 3.4.

5. Optimal subgradient methods.

5.1. Lower bound on last-iterate convergence rate. The convergence rate
of any black-box method that relies on subgradients cannot be arbitrarily small. More
precisely, for any method that moves at each iteration in a direction belonging to the
span of the current and past subgradients, it is known that the accuracy of last iterate
must obey a lower bound of the order Ω( 1√

N
). Nesterov [9, Theorem 3.2.1] proposes

a Lipschitz continuous function f with modulus B > 0, for which any subgradient
method that calls the first-order oracle N times satisfies

f(xN+1)− f(x⋆) ≥ BR

2(2 +
√
N + 1)

,
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where ‖x1 − x⋆‖ ≤ R. Drori and Teboulle [4] improved the above-mentioned lower
bound and proposed the following lower bound

f(xN+1)− f(x⋆) ≥ BR√
N + 1

.(5.1)

A subgradient method for which the last-iterate accuracy would match this lower
bound Ω( 1√

N
) is certainly desirable [11]. Recently, Jain et al. [7] introduced such a

subgradient method when the feasible set X is bounded. Indeed, they [7, Theorem
2.6] derive the following convergence rate for their proposed algorithm

f(xN + 1)− f(x⋆) ≤ 15BD√
N + 1

,

where D = maxx,y∈X ‖x− y‖.
5.2. Optimal subgradient method. In this section, we introduce Algorithm

5.1, a subgradient method based on a new sequence of step sizes for which the last-
iterate convergence rate matches the lower bound (5.1).

Algorithm 5.1 Optimal projected subgradient method

Parameters: number of iterations N

Inputs: convex set X , convex function f defined on X with B-bounded subgra-
dients, initial iterate x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer x∗.

For k = 1, 2, . . . , N perform the following steps:
1. Select a subgradient gk ∈ ∂f(xk).

2. Compute xk+1 = PX

(

xk − hkg
k
)

using step size step hk = R(N+1−k)

B
√

(N+1)3
.

Output: last iterate xN+1

In what follows, we establish that Algorithm 5.1 attains the optimal rate of con-
vergence. Indeed, the subsequent theorem presents a convergence rate for Algorithm
5.1 by employing Lemma 2.1.

Theorem 5.1. Let f be a convex function with B-bounded sugradients on a con-
vex set X. Consider N iterations of Algorithm 5.1 starting from an initial iterate
x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer x∗. We have that the last
iterate xN+1 satisfies

f(xN+1)− f(x⋆) ≤ BR√
N + 1

.(5.2)

Proof. Suppose that vk’s are given as follows,

vk =
(N + 1)

3
4

N + 1− k

√

B

R
, k ∈ {0, . . . , N},

and vN+1 = vN . It is seen that 0 < v0 ≤ v1 ≤ · · · ≤ vN ≤ vN+1. In addition, let
hN+1 = R

B
√

(N+1)3
. For k ∈ {1, . . . , N}, we have

hkv
2
k − (vk − vk−1)

N+1
∑

i=k

hivi =
1

N+1−k
− (N + 2− k)( 1

N+1−k
− 1

N+2−k
) = 0.
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In addition,

v0

N+1
∑

k=1

hkvk = 1
N+1

N+1
∑

k=1

1 = 1, hN+1v
2
N+1 = 1.

By Lemma 2.1, we get

f(xN+1)− f(x⋆) ≤ R

2B
√

(N+1)3

N+1
∑

i=1

∥

∥gi
∥

∥

2
+ B

2R
√
N+1

∥

∥x1 − x⋆
∥

∥

2

≤ R

2B
√

(N+1)3

N+1
∑

i=1

B2 + B

2R
√
N+1

R2 =
BR√
N + 1

,

and the proof is complete.

5.3. Absence of optimal sugradient method with universal sequence

of step sizes. It is seen that the step sizes in Algorithm 5.1 are dependent on the
number of iterations, N . As conjectured in [7], it is not possible to introduce {hk} for
which (5.2) holds for any arbitrary N . Before we show this point, we need to present
a lemma.

Lemma 5.2. Consider Algorithm 1.1 with h1 = 1
2
√
2
and N = 2.

i) If h2 ∈ (0, 1
8
√
2
], then there exists f ∈ F(R2) with 1-bounded sugradients and x1

and such that
f(x3)− f⋆ = 1√

2
− h2,

where ‖x1 − x⋆‖ ≤ 1.
ii) If h2 ∈ ( 1

8
√
2
,∞), then there exists f ∈ F(R3) with 1-bounded sugradients and x1

and such that
f(x3)− f⋆ = h2 +

1
64h2

+ 16h2

(1+8
√
2h2)2

,

where ‖x1 − x⋆‖ ≤ 1.

Proof. First we establish i). Let f ∈ F(R2) be given by

f(x) = max {x1 − 1, x2 − 1,−1} .

It is readily seen that x⋆ = 0 is an optimal solution to problem min f(x). Algorithm
1.1 with initial point x1 = 1√

2
(1, 1)T may generate the following points

x2 = x1 − 1
2
√
2
e1, x3 = x1 − 1

2
√
2
e1 − h2e2.

In addition, f(x3) − f⋆ = 1√
2
− h2 and we introduce an optimization problem with

the desired properties.
Now, we prove ii). Let γ = 32h2

(1+8
√
2h2)2

. One can show that γ ∈ [0, 1]. Suppose

that

ξ
1 =





γ

−

√

1− γ2

0



 , ξ
2 =









γ
√

1−γ2

8
√

2h2

−

√

(1− γ2)(1− 1

128h2
2

)









, ξ
3 =









γ
√

1−γ2

8
√

2h2
√

(1− γ2)(1− 1

128h2
2

)









.

It is readily seen that ‖ξk‖ = 1, i ∈ {1, 2, 3}. Let z1 = e1 and

z2 = e1 − 1
2
√
2
ξ1, z3 = e1 − 1

2
√
2
ξ1 − h2ξ

2.
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Consider the following linear functions

α1(x) = γ+〈ξ1, x− z1〉, α2(x) = γ + 1−γ2

32h2
− γ2

2
√
2
+ 〈ξ2, x− z2〉,

α3(x) = h2 +
1

64h2
+ 16h2

(1+8
√
2h2)2

+ 〈ξ3, x− z3〉.

We define f : R3 → R by

f(x) = max {0, α1(x), α2(x), α3(x)} .

One can show that x⋆ = 0 is an optimal solution to problem min f(x). By doing
some algebra, one can check that Algorithm 1.1 with initial point x1 = e1 may
generate the following points x2 = z2 and x3 = z3. It is seen that f(x3) − f(x⋆) =
h2 +

1
64h2

+ 16h2

(1+8
√
2h2)2

, and the proof is complete.

Now, we present an argument why there does not exist a sequence {hk} that
satisfies the convergence rate (5.2) for any arbitrary N . By contradiction, assume
that there exists such a {hk}. For the convenience suppose that B = R = 1. Due to
the exactness of rates given in Theorem 3.4, we have h1 = 1

2
√
2
. By Lemma 5.2, one

can infer that a convergence rate of Algorithm 1.1 with h1 = 1
2
√
2
and N = 2 cannot

be lower than o = 0.5785. Note that o is computed by solving minh≥0 H(h), where
H is given by

H(h) =

{

1√
2
− h h ∈ [0, 1

8
√
2
]

h+ 1
64h + 16h

(1+8
√
2h)2

h ∈ ( 1
8
√
2
,∞)

.

On the other hand, o > 0.5775 > 1√
3
. Hence, it is not possible to have {hk} for which

(5.2) holds for any N in the setting of Algorithm 1.1.
As seen the optimal sizes depend on the number of iterations in the setting of

Algorithm 1.1. We conjecture that the incorporation of suitable momentum terms in
the subgradient method may lead to a universal optimal algorithm whose convergence

rate of O
(

BR√
N+1

)

would hold for all iterations.

5.4. Optimal projected subgradient method using step lengths. In the
last part of this section, we present Algorithm 5.2, an optimal subgradient method
based on step lengths.

Algorithm 5.2 Optimal projected subgradient method (step lengths)

Parameters: number of iterations N

Inputs: convex set X , convex function f defined on X with B-bounded subgra-
dients, initial iterate x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer x∗.

For k = 1, 2, . . . , N perform the following steps:
1. Select a subgradient gk ∈ ∂f(xk).

2. Compute xk+1 = PX

(

xk − tk
gk

‖gk‖

)

with tk = R(N+1−k)√
(N+1)3

.

Output: last iterate xN+1

In the forthcoming theorem, we provide a convergence rate for Algorithm 5.2.
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Theorem 5.3. Let f be a convex function with B-bounded sugradients on a con-
vex set X. Consider N iterations of Algorithm 5.2 starting from an initial iterate
x1 ∈ X satisfying ‖x1 − x∗‖ ≤ R for some minimizer x∗. We have that the last
iterate xN+1 satisfies

f(xN+1)− f(x⋆) ≤ BR√
N + 1

.(5.3)

Proof. The proof is analogous to that of Theorem 4.1. Let

uN+1 = (N + 1)
3
4

√

B
R
, hN+1 = R

B
√

(N+1)3
,

and let hk = tk
‖gk‖ , k ∈ {1, . . . , N}. Let us define uk recursively in the following

manner,

uk =
1

∑N+1
i=k+1 hiui

, k ∈ {N, . . . , 1, 0}.(5.4)

It is readily seen that 0 < u0 ≤ u1 ≤ · · · ≤ uN ≤ uN+1, and

hku
2
k − (uk − uk−1)

N+1
∑

i=k

hiui = uk−1

N+1
∑

i=k

hiui − uk

N+1
∑

i=k+1

hiui = 0, k ∈ {1, . . . , N}.

In addition,

hN+1u
2
N+1 − (uN+1 − uN)hN+1uN+1 = 1, u0

N+1
∑

k=1

hkuk = 1.

Consider vk given in the proof of Theorem 5.1. As

vk =
1

∑N+1
i=k+1 vihi

‖gk‖
B

, k ∈ {0, 1, . . . , N},

one can infer by induction that uk ≤ vk, k ∈ {0, 1, . . . , N + 1}. Thus, by Lemma 2.1,
we get

f(xN+1)− f(x⋆) ≤ u2
0

2

∥

∥x1 − x⋆
∥

∥

2
+ 1

2

N
∑

k=1

h2
ku

2
k

∥

∥gk
∥

∥

2
+ 1

2h
2
N+1u

2
N+1B

2

=
u2
0

2

∥

∥x1 − x⋆
∥

∥

2
+ 1

2

N
∑

k=1

(

tk
B

)2
u2
kB

2 + 1
2h

2
N+1u

2
N+1B

2

≤ B

2R
√
N+1

R2 + R

2B
√

(N+1)3

N+1
∑

i=1

B2 =
BR√
N + 1

,

where the last inequality follows from uk ≤ vk, k ∈ {0, 1, . . . , N +1}, and the proof is
complete.
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Conclusion. Before concluding, we briefly explain how most of the theorems
in this paper were initially discovered. We used the performance estimation (PEP)
methodology [3, 12], which allowed us to compute numerically the exact last-iterate
convergence rate of subgradient methods applied to convex functions with bounded
sugradients. Assuming B = R = 1 without loss of generality, the values of the worst
case accuracy for several choices of N and h were matched with explicit analytical
expressions, which required some guesswork including the introduction of the sequence
{sk}. The next step was to use the numerical values of the dual multipliers to identify
PEP-style proofs of those convergence rates, then to guess analytical expressions for
those multipliers. Finally, we observed that large parts of the obtained proofs could be
simplified by rewriting them as Jensen-type inequalities. After further simplifications,
this ultimately leads to the proof technique that was exposed in Section 2.

To summarize, we have provided in this paper new convergence rates for the sub-
gradient method with constant step sizes and constant step lengths, and proved their
tightness. Additionally, we have presented two optimal subgradient methods that at-
tains the most favorable convergence rate achievable among subgradient algorithms.
As avenues for future research, it would be valuable to investigate the convergence
analysis of the (stochastic) proximal subgradient method with respect to the last it-
erate by employing some result analogous to Lemma 2.1. Moreover, deriving tighter
convergence rates for the stochastic subgradient method may be of interest.
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