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Abstract

This work establishes new convergence guarantees for gradient descent in smooth convex
optimization via a computer-assisted analysis technique. Our theory allows nonconstant stepsize
policies with frequent long steps potentially violating descent by analyzing the overall effect of
many iterations at once rather than the typical one-iteration inductions used in most first-order
method analyses. We show that long steps, which may increase the objective value in the short
term, lead to provably faster convergence in the long term. A conjecture towards proving a faster
O(1/T log T ) rate for gradient descent is also motivated along with simple numerical validation.

1 Introduction
This work proposes a new analysis technique for gradient descent, establishing a path toward
provably better convergence guarantees for smooth, convex optimization than is possible with
existing approaches based on constant stepsizes. Instead, our theory allows for nonconstant stepsize
policies, periodically taking larger steps that may violate the monotone decrease in objective value
typically needed by analysis. In fact, contrary to the common intuition, we show periodic long steps,
which may increase the objective value in the short term, provably speed up convergence in the
long term, with increasingly large gains as longer and longer steps are periodically included. This
bears a similarity to accelerated momentum methods, which also depart from ensuring a monotone
objective decrease at every iteration.

Establishing this requires a proof technique capable of analyzing the overall effect of many
iterations at once rather than the typical (naive) one-iteration inductions used in most first-order
method analyses. Our proofs are based on the Performance Estimation Problem (PEP) ideas
of [1–3], which cast computing/bounding the worst-case problem instance of a given algorithm as a
Semidefinite Program (SDP). We show that the existence of a feasible solution to a related SDP
proves a descent guarantee after applying a corresponding pattern of nonconstant stepsizes, from
which faster convergence guarantees follow. Our technique is very similar to that first proposed
by Altschuler’s Master’s thesis [4, Chapter 8] which established repeating stepsize patterns of
length two or three with faster contractions towards the minimizer for smooth, strongly convex
minimization. Most existing PEP literature uses computer-solves to guide the search for tighter
convergence proofs [3, 5–13] and inform the development of new, provably faster algorithms [14–18].
Here computer outputs are directly used to constitute the proof, but are large (up to tens of
thousands of rational numbers) and so may provide less guidance or intuition.

We consider gradient descent with a sequence of (normalized) stepsizes h = (h0, h1, h2, . . . )
applied to minimize a convex function f : Rn → R with L-Lipschitz gradient by iterating

xk+1 = xk − hk

L
∇f(xk) (1.1)

∗Johns Hopkins University, Department of Applied Mathematics and Statistics, grimmer@jhu.edu

1



given an initialization x0 ∈ Rn. We assume throughout that a minimizer x⋆ of f exists and its level
sets are bounded D = sup{∥x − x⋆∥2 | f(x) ≤ f(x0)}1. The classic convergence guarantee [19] for
gradient descent is that with constant stepsizes h = (1, 1, 1, . . . ), every T > 0 has f(xT ) − f(x⋆) ≤
LD2/2(T + 1). Using performance estimation techniques, a tight refinement of this bound was
given by [1, Theorem 3.1] (and elementary proof, avoiding the use of PEP, was given by [20]): every
T > 0 has

f(xT ) − f(x⋆) ≤ LD2

4T + 2 . (1.2)

By tight, we mean a matching problem instance exists that attains the above inequality. Using
stepsizes between one and two, this rate can be improved by another factor of two (see [2, 20]).
Stepsizes beyond length two have very little prior theory as one can no longer guarantee a decrease
in objective value at each iteration.

Here we provide an analysis technique capable of handling nonconstant stepsizes, periodically
longer than one can guarantee descent for, finding increasingly fast convergence (in terms of constants)
follows. For example, consider gradient descent alternating stepsizes h = (2.9, 1.5, 2.9, 1.5, . . . ).
Such a scheme is beyond the reach of traditional descent-based analysis as one may fear the stepsizes
of 2.9 can increase the function value individually more than the 1.5 is guaranteed to decrease it.
Regardless, we show this “long step” converges with

f(xT ) − f(x⋆) ≤ LD2

2.2 × T
+ O(1/T 2)

for every even T > 0. See our Theorem 3.2 characterizing many such alternating stepsize methods.
The +O(1/T 2) terms throughout this work are only used to suppress two universal constants,
namely above, we show there exist constants s̄ and C such that all even T > 2s̄ have bound
LD2/(2.2 × T − C).

Using longer cycles, we derive further performance gains. For example, we show a carefully
selected stepsize pattern of length 127 periodically taking stepsizes of 370.0 converges at a rate of
LD2/(5.8346303 × T ). Generally, given a stepsize pattern h = (h0, . . . , ht−1) ∈ Rt, we consider the
gradient descent method repeatedly applying the pattern of stepsizes

xk+1 = xk −
h(k mod t)

L
∇f(xk) . (1.3)

In Theorem 2.1, we give a convergence guarantee for any straightforward stepsize pattern h of

f(xT ) − f(x⋆) ≤ LD2

avg(h)T + O(1/T 2) (1.4)

where avg(h) = 1
t

∑t−1
i=0 hi. See Section 2 for the formal introduction of this straightforwardness

property. Hence the design of provably faster nonconstant stepsize gradient descent methods amounts
to seeking straightforward stepsize patterns with large average stepsize values. Certifying a given
pattern is straightforward can be done via semidefinite programming (see our Theorem 3.1). So the
convergence analysis of such nonconstant stepsizes methods is a natural candidate for computer
assistance.

Table 1 shows straightforward stepsize patterns with increasingly fast convergence guarantees,
each proven using a computer-generated, exact-arithmetic semidefinite programming solution
certificate. Future works identifying longer straightforward patterns and other tractable families

1This assumption can likely be relaxed but eases our development herein.
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Pattern Length “Straightforward” Stepsize Pattern h
(longest stepsize marked in bold)

Convergence Rate
(+O(1/T 2) omitted)

t = 2 (3 − η, 1.5) for any η ∈ (0, 3) LD2

(2.25 − η/2) × T

t = 3 (1.5, 4.9, 1.5) LD2

2.63333... × T

t = 7 (1.5, 2.2, 1.5, 12.0, 1.5, 2.2, 1.5) LD2

3.1999999 × T

t = 15 (1.4, 2.0, 1.4, 4.5, 1.4, 2.0, 1.4, 29.7,
1.4, 2.0, 1.4, 4.5, 1.4, 2.0, 1.4)

LD2

3.8599999 × T

t = 31 (1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 8.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 72.3,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 8.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4)

LD2

4.6032258 × T

t = 63 (1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 14.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 164.0,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 14.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4)

LD2

5.2253968 × T

t = 127 (1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 12.6,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 23.5,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 12.6,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 370.0,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 12.6,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 23.5,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 12.6,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4, 7.2,
1.4, 2.0, 1.4, 3.9, 1.4, 2.0, 1.4)

LD2

5.8346303 × T

Table 1: Improved convergence guarantees for Gradient Descent with stepsizes cycling through a
“straightforward” pattern. Each convergence bound is proven by producing a certificate of feasibility
for a related SDP, which is sufficient by our Theorems 2.1 and 3.1. Coefficients for t ≥ 7 guarantees
are slightly smaller than the ideal avg(h) due to rounding to produce an exact arithmetic certificate.
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of nonconstant, periodically long stepsize policies will surely be able to improve on this work’s
particular guarantees.

The analysis of such nonconstant, long stepsize gradient descent methods has eluded the literature,
with only a few exceptions. In 1953, Young [21] showed optimal, accelerated convergence is possible
for gradient descent when minimizing a smooth, strongly convex quadratic function by using a
careful nonconstant selection of hi. Namely, Young set h0 . . . hT −1 as one over the roots of the
T -degree Chebyshev polynomial2. Few works have shown faster convergence from long steps beyond
quadratics. Two notable works have done so for smooth, strongly convex minimization:

Oymak [23] showed substantial speed-ups for strongly convex functions with special bimodal
structured Hessians. Closely in line with this work’s reasoning, several recent Master’s and doctoral
theses have addressed the optimal design and analysis of one, two, or three steps of gradient descent.
The theses of Daccache [24] and Eloi [25] provide exhaustive characterizations of gradient descent’s
objective gap after two or three steps for smooth convex optimization. Their results do not provide
a mechanism to be applied inductively, so no convergence rates follow from repeatedly applying the
studied patterns. For strongly convex optimization, Altschuler [4, Chapter 8] used PEP techniques
to derive the optimal patterns of length t = 1, 2, 3 for contracting either the distance to optimal or
the gradient’s norm. Inductively applying their improved contractions, one arrives at the same moral
takeaway advanced by this work: SDP-based analysis can prove faster convergence follows from
periodically taking longer steps, potentially violating descent. Importantly, their length two and
three patterns are optimal, meaning their patterns give the best possible contraction factor. Note
their patterns differ from those presented here, only being optimal for strongly convex problems.
The primary contribution in this work is identifying a tractable analysis technique for general
smooth, convex optimization and showing increasing performance gains for increasingly large t > 3,
continuing in this seventy-year-old direction.

The search for long, straightforward stepsize patterns h is hard; the set of all straightforward
patterns is nonconvex, making local searches often unfruitful. Our patterns of length t = 2m − 1
in Table 1 were created by repeating the pattern for t = 2m−1 − 1 twice with a new long step
added in between and (by hand) shrinking the long steps in the length 2m−1 − 1 subpatterns. This
recursive pattern has strong similarities to the cyclic and fractal Chebyshev patterns for quadratic
minimization considered by [26–28], although we make no provable connections. This doubling
procedure consistently increased avg(h) by ≈ 0.6. We conjecture the following.

Conjecture 1.1. For any t ∈ N, there exists a straightforward stepsize pattern h ∈ Rt with
avg(h) = Ω(log(t)).

If true, this would likely yield convergence rates on the order of O(1/(T log(T ))), strictly improving
on the classic O(1/T ) guarantee. If such long patterns exist, one natural question is how close to the
optimal O(1/T 2) rate attained by momentum methods can be achieved by gradient descent with
long steps. The numerics of [13, Figure 2] suggested a O(1/T 1.178) rate may be possible. The theory
of Lee and Wright [29] showed asymptotic o(1/T ) convergence for constant stepsize gradient descent
(although no improved guarantees in finite-time were given), which also motivates the possibility for
improved finite-time convergence guarantees.

For strongly convex optimization (or, more generally, any problem satisfying a Hölder growth
bound), the classic convergence rates for constant stepsize gradient descent are known to improve.
We show the same improvements occur for any straightforward stepsize pattern (see Theorem 2.2)
with an additional gain of avg(h). We validate that the convergence speed-ups of Table 1 actually
occur on randomly generated least squares problems in Figure 1, seeing gains proportional to avg(h).

2A nice summary of this is given by the recent blog post [22].
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Figure 1: Least squares problems minimizing ∥Ax − b∥2
2 (left) and ∥Ax − b∥2

2 + ∥x∥2
2 (right) with

i.i.d. normal entries in A ∈ Rn×n and b ∈ Rn for n = 4000. Objective gaps are plotted over
T = 2000 iterations with h = (1) and with each pattern from Table 1. Note this second objective is
substantially more strongly convex, so its faster linear convergence is expected. For comparison,
Nesterov’s accelerated method (without modification to utilize strong convexity) is shown.

These plots also showcase that descent is not ensured within the execution of a straightforward
pattern as t = 7 rapidly oscillates within each pattern while converging overall. Note, gradient
descent is not an optimal first-order method as accelerated methods can attain a faster O(1/T 2) rate.
A basic implementation of Nesterov’s accelerated method is included in our numerics to showcase
the degree of progress in closing this gap able to be accomplished via our longer steps.

Cyclic, periodically long stepsizes have been used in neural network training schedules [30–32].
Our results only apply to convex, deterministic problems. New techniques handling nonconvexity
and stochasticity would need to be developed to describe the effect of long steps in such settings of
machine learning.

Outline. In the remainder of this section, we informally sketch how our proof technique proceeds.
Then Section 2 formally introduces our notion of straightforward stepsize patterns, showing that
any such pattern has a guarantee of the form (1.4). Section 3 shows the existence of a solution to a
certain semidefinite program implies straightforwardness. Section 4 concludes by outlining several
future directions of interest enabled by and hopefully able to improve on this work.

1.1 Sketch of Proof Technique - Reducing proving eventual descent to an SDP

Our analysis works by guaranteeing a sufficient decrease is achieved after applying the whole pattern
h = (h0, h1, . . . , ht−1) of t steps (but not necessarily descending at any of the intermediate iterates).
Our notion of straightforward stepsize patterns aims to ensure that for all δ > 0 small enough, if
f(x0) − f(x⋆) ≤ δ, then xt will always attain a descent of at least

f(xt) − f(x⋆) ≤ δ −
∑t−1

i=0 hi

LD2 δ2 . (1.5)

For constant stepsizes equal to one, this amounts to f(x0 − ∇f(x0)/L) ≤ f(x0) − δ2/LD2, a classic
descent result that holds for all L-smooth convex f .

To prove a descent lemma like (1.5), one can take a direct combination of several known
inequalities. This is a well-known approach, equivalent to providing dual solutions to the dual of the
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associated performance estimation problem. We are given the equalities xk+1 = xk − (hk/L)∇f(xk)
and ∇f(x⋆) = 0 and as inequalities an initial distance bound

∥x0 − x⋆∥2
2 ≤ D2 ,

an initial objective gap bound
f(x0) − f(x⋆) ≤ δ ,

and for any xi and xj with i, j ∈ {⋆, 0, 1, 2, . . . t}, convexity and smoothness imply [33, (2.1.10)]

f(xi) ≥ f(xj) + ∇f(xj)T (xi − xj) + 1
2L

∥∇f(xi) − ∇f(xj)∥2
2 .

For any nonnegative multipliers v(δ), w(δ), λi,j(δ) ≥ 0 (parameterized by the initial objective gap δ),
one can combine these inequalities to conclude that on every L-smooth convex function, gradient
descent (1.3) with stepsizes h satisfies

v(δ)(∥x0 − x⋆∥2
2 − D2) (1.6)

+w(δ)(f(x0) − f(x⋆) − δ)

+
∑

i,j∈{⋆,0,...t}
λi,j(δ)

(
f(xj) + ∇f(xj)T (xi − xj) + 1

2L
∥∇f(xi) − ∇f(xj)∥2

2 − f(xi)
)

≤ 0 .

Our proof then proceeds by showing carefully selected functions w(δ), v(δ), λ(δ) reduce this inequality

to guaranteeing (1.5). We find to prove our guarantees in Table 1, it suffices to set v(δ) =
∑t−1

i=0 hi

LD4 δ2,

w(δ) = 1 − 2
∑t−1

i=0 hi

LD2 δ, and use a linear function λ(δ) = λ + δγ. For this choice of v(δ) and w(δ),
our Theorem 3.1 shows (1.6) implies (1.5) if (λ, γ) is feasible to a certain SDP. Hence, proving
a t iteration descent lemma of the form (1.5) can be done by semidefinite programming. Our
Theorem 2.1 then completes the argument by showing such a periodic descent guarantee implies the
guarantee (1.4).

2 Straightforward Stepsize Patterns
To analyze a given stepsize pattern, we first aim to understand its worst-case problem instance. We
do so through the “Performance-Estimation Problem” (PEP) framework of [1]. Given a pattern h
and bounds on smoothness L, initial distance to optimal D, and initial objective gap δ, the worst
final objective gap able to be produced by one application of the stepsize pattern is given by

pL,D(δ) :=



maxx0,x⋆,f f(xt) − f(x⋆)
s.t. f is convex, L-smooth

∥x0 − x⋆∥2 ≤ D

f(x0) − f(x⋆) ≤ δ

∇f(x⋆) = 0
xk+1 = xk − hk

L ∇f(xk) ∀k = 0, . . . , t − 1 .

(2.1)

Note this problem is infinite-dimensional as it optimizes over functions f : Rn → R and vectors
x0, x⋆ ∈ Rn for some given problem dimension n. The key insight of Drori and Teboulle [1] is that
such infinite-dimensional problems can be relaxed to a finite-dimensional semidefinite program.
Subsequently, Taylor et al. [2] showed this relaxation can be made an exact reformulation. We
formalize and utilize these insights in Section 3. We note one particular nice property here: pL,D is
concave.
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Lemma 2.1. For any L, D > 0, pL,D is concave.

Proof. Consider any δ(1), δ(2) ∈ R and λ ∈ (0, 1). Denote feasible solutions to the problem defining
pL,D(δ(i)) for each i = 1, 2 by f (i), x

(i)
0 , x

(i)
⋆ . Note if no feasible solution exists for either of these

problems, one vacuously has concavity as

λpL,D(δ(1)) + (1 − λ)pL,D(δ(2)) = −∞ ≤ pL,D(λδ(1) + (1 − λ)δ(2)) .

Note without loss of generality, x
(i)
⋆ = 0 and f (i)(x(i)

⋆ ) = 0. Then one can easily check λf (1) + (1 −
λ)f (2), λx

(1)
0 +(1−λ)x(2)

0 , λx
(1)
⋆ +(1−λ)x(2)

⋆ is feasible to the problem defining pL,D(λδ(1)+(1−λ)δ(2)).
Consequently, taking the supremum over choices of f (i), x

(i)
0 gives concavity as

λpL,D(δ(1)) + (1 − λ)pL,D(δ(2)) ≤ pL,D(λδ(1) + (1 − λ)δ(2)) .

Generally, the worst-case functions f attaining (2.1) can be nontrivial. To find a tractable
family of stepsizes for analysis, we focus on ones where this worst-case behavior is no worse than
a simple one-dimensional setting: Consider the one-dimensional (nonsmooth) convex function
linearly decreasing from x0 to x⋆ and constant thereafter. That is, given L, D, δ, consider the
problem instance f(x) = max{δx/D, 0}, x0 = D, and x⋆ = 0. Provided δ is small enough (i.e.,
δ ≤ LD2/

∑t−1
i=0 hi), the gradient descent iteration xk+1 = xk − hk

L ∇f(xk) has

δt = δ0 −
∑t−1

i=0 hi

LD2 δ2
0 (2.2)

where δk = f(xk) − f(x⋆) denotes the objective gap. In this example, gradient descent spends
all t iterations moving straight forward in a line along the slope. So the descent achieved is just
controlled by the objective’s slope δ0/D (squared) and the total length of steps taken

∑t−1
i=0 hi/L.

We say that a stepsize pattern h is straightforward if its worst-case behavior (over all smooth
functions, as defined in (2.1)) is no worse than this one-dimensional piecewise linear setting for δ
small enough. Formally, we say that a stepsize pattern h of length t is straightforward if for some
∆ ∈ (0, 1/2],

pL,D(δ) ≤ δ −
∑t−1

i=0 hi

LD2 δ2 ∀δ ∈ [0, LD2∆]

for any L, D > 0. Our analysis of gradient descent with long steps then proceeds by:
(i) Certifying h is straightforward (able to be computer automated) see Theorem 3.1,
(ii) Solving a resulting recurrence, showing δT ≤ LD2

avg(h)T + O(1/T 2) see Theorem 2.1.
The second step is simpler, so we address it first. Additionally, we show the same factor of guarantee
improvement avg(h) carries over to more structured domains like strongly convex optimization.

2.1 Convergence Guarantees for Straightforward Stepsize Patterns

Note straightforwardness provides no guarantees on the intermediate objective values at iterations
k = 1, 2, . . . t − 1. We show in our theorem below descent at every tth iteration. To allow for some
numerical flexibility, we say a pattern is ϵ-straightforward if for some ∆ ∈ (0, 1/2], all δ ∈ [0, LD2∆]

have value function bounded by pL,D(δ) ≤ δ −
∑t−1

i=0(hi−ϵ)
LD2 δ2.

7



Theorem 2.1. Consider any L-smooth, convex f . If h = (h0, . . . , ht−1) is ϵ-straightforward with
parameter ∆ ∈ (0, 1/2], then gradient descent (1.3) has, for any s ∈ N, after T = st gradient steps

f(xT ) − f(x⋆) ≤


(1 −

∑t−1
i=0(hi − ϵ)∆)s(f(x0) − f(x⋆)) if s ≤ s̄

LD2

(avg(h) − ϵ)(T − s̄t) + 1
∆

if s > s̄
(2.3)

where s̄ =


log
(

f(x0)−f(x⋆)
LD2∆

)
log(1−

∑t−1
i=0(hi−ϵ)∆)

. In particular, suppressing lower-order terms, this guarantee is

f(xT ) − f(x⋆) ≤ LD2

(avg(h) − ϵ)T + O(1/T 2) .

Proof. For any ϵ ≥ 0, we begin by showing ϵ-straightforwardness implies that for any s ∈ N, the
recurrence relation

δ(s+1)t ≤

δst −
∑t−1

i=0(hi−ϵ)
LD2 δ2

st if δst ≤ LD2∆(
1 −

∑t−1
i=0(hi − ϵ)∆

)
δst if δst > LD2∆ .

(2.4)

Consider first s = 0. The first case of (2.4) follows from the definition of straightforwardness as

δt ≤ pL,D(δ0) ≤ δ0 −
∑t−1

i=0(hi−ϵ)
LD2 δ2

0. For the second case of (2.4), first note that pL,D(·) is concave
by Lemma 2.1. Then since pL,D(0) = 0 and pL,D

(
LD2∆

)
≤ LD2

(
∆ −

∑t−1
i=0(hi − ϵ)∆2

)
, every

δ0 > LD2∆ must have

δt ≤ pL,D(δ0) ≤ δ0
LD2∆pL,D

(
LD2∆

)
≤ δ0

(
1 −

t−1∑
i=0

(hi − ϵ)∆
)

.

As a result, applying the sequence of steps from the straightforward pattern h from x0 yields δt ≤ δ0.
Hence ∥xt − x⋆∥ ≤ D since xt lies in the initial level set {x | f(x) ≤ f(x0)}. Thus the above
reasoning can apply inductively, giving the claimed recurrence.

Next, we show this recurrence implies the claimed convergence guarantee (2.3). Suppose first,
δst is larger than LD2∆. Then applying the pattern h contracts the objective gap3, inductively
giving δst ≤ (1 −

∑t−1
i=0(hi − ϵ)∆)sδ0. After at most s̄ executions of the stepsize pattern, one must

have δst ≤ LD2∆. Afterward, for any s > s̄, the objective gap decreases by at least

δ(s+1)t ≤ δst −
∑t−1

i=0(hi − ϵ)
LD2 δ2

st .

Solving this recurrence with the initial condition δs̄t ≤ LD2∆ gives

δst ≤ LD2∑t−1
i=0(hi − ϵ)(s − s̄) + 1

∆
.

3Interestingly, this contraction factor is independent of L, D. As a result, problem conditioning plays a minimal
role in this initial phase of convergence. Instead, only h and the associated straightforwardness parameter ∆ matter.
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2.2 Faster Convergence for Straightforward Patterns given Growth Bounds

A function f is µ-strongly convex if f − µ
2 ∥ · ∥2

2 is convex. This condition is well-known to lead
to linear convergence for most first-order methods in smooth optimization. More generally, faster
convergence occurs whenever f satisfies a Hölder growth or error bound condition. Here we consider
settings where all x ∈ Rn within the level set f(x) ≤ f(x0) satisfy

f(x) − f(x⋆) ≥ µ

q
∥x − x⋆∥q

2 . (2.5)

Strong convexity implies this condition with q = 2 and leads gradient descent with constant
h = (1, 1, . . . ) to converge at a rate of O((1 − µ/L)T ). When q > 2, improved sublinear guarantees
of O((L/µ2/qT )q/(q−2)) follow. Below, we show that any straightforward stepsize pattern enjoys the
same convergence improvements, gaining a similar factor of avg(h).

Theorem 2.2. Consider any L-smooth, convex objective f satisfying (2.5). If h = (h0, . . . , ht−1) is
ϵ-straightforward with parameter ∆ ∈ (0, 1/2], then gradient descent (1.3) has, for any T = st

f(xT ) − f(x⋆) ≤
(

1 − min
{

∆,
µ

2L

} t−1∑
i=0

(hi − ϵ)
)s

(f(x0) − f(x⋆))

when q = 2 and when q > 2 and s > s̄ :=


log
(

f(x0)−f(x⋆)µ2/(q−2)

q2/(q−2)(L∆)q/(q−2)

)
log(1−

∑t−1
i=0(hi−ϵ)∆)

 has

f(xT ) − f(x⋆) ≤ q

(
L

µ2/q(q − 2)(avg(h) − ϵ)((s − s̄)t)

)q/(q−2)
.

Proof. Let Dk = sup{∥x − x⋆∥ | f(x) ≤ f(xk)} denote the size of each level set visited by gradient
descent. The growth bound (2.5) ensures Dk ≤ ( q

µδk)1/q. Then the recurrence (2.4) implies

δ(s+1)t ≤

δst − µ2/q
∑t−1

i=0(hi−ϵ)
Lq2/q δ

2−2/q
st if δst ≤ LD2

st∆(
1 −

∑t−1
i=0(hi − ϵ)∆

)
δst if δst > LD2

st∆ .

One can bound this recurrence relation by the maximum of the two cases. If q = 2, both cases give
a contraction and so

δst ≤
(

1 − min
{

∆,
µ

2L

} t−1∑
i=0

(hi − ϵ)
)s

δ0 .

If q > 2, one has

δ(s+1)t ≤ max
{

δst − µ2/q ∑t−1
i=0(hi − ϵ)

Lq2/q
δ

2−2/q
st ,

(
1 −

t−1∑
i=0

(hi − ϵ)∆
)

δst

}
.

Solving this recurrence gives linear convergence until the objective gap is less than
(

q2/qL∆
µ2/q

) q
q−2 is

reached, which must occur by iteration s̄, and then afterwards gives a sublinear convergence rate
(for example, see [34, Lemma A.1] for this calculation), giving the claim.

Note that the above bound for the case of q > 2 is independent of D. Asymptotically, this
is reasonable as better bounds on distance to optimal are eventually available, namely ( q

µδk)1/q.
One could give a bound depending on D = D0 early onby using the stronger bound Dk ≤
min{( q

µδk)1/q, D0}. However, once the gap is small enough for the first term to dominate, the bound
will again be independent of D0.
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3 Certificates of Straightforwardness
All that remains is to show how one can certify the straightforwardness of a stepsize pattern. We do
this in two steps. First, Section 3.1 shows that pL,D(δ) is upper bounded by an SDP minimization
problem using previously developed PEP techniques. Hence straightforwardness is implied by
showing the SDP corresponding to each δ ∈ [0, LD2∆] has a sufficiently good feasible solution.
Second, Section 3.2 shows that another semidefinite programming feasibility problem can certify
that such an interval of solutions exists.

3.1 The Worst-Case Value Function is Upper Bounded by an SDP

We first reformulate the infinite-dimensional problem (2.1) as a finite-dimensional nonconvex quadrat-
ically constrained quadratic problem (see (3.1)), relax that formulation into an SDP (see (3.2)),
and then upper bound the SDP by its dual problem (see (3.3)). This process was been developed
by [1–3] and is carried out in our particular setting below.

Step 1: A QCQP reformulation. First, as proposed by Drori and Teboulle [1], one can discretize
the infinite-dimensional problem defining pL,D(δ) over all possible objective values fk and gradients
gk at the points xk with k ∈ I⋆

t := {⋆, 0, 1, . . . t} as done below. Using the interpolation theorem of
Taylor et al. [2], this is an exact reformulation rather than a relaxation, giving

pL,D(δ) =



maxx0,f,g ft − f⋆

s.t. fi ≥ fj + gT
j (xi − xj) + 1

2L∥gi − gj∥2
2 ∀i, j ∈ I⋆

t

∥x0 − x⋆∥2
2 ≤ D2

f0 − f⋆ ≤ δ

x⋆ = 0, f⋆ = 0, g⋆ = 0
xi+1 = xi − hi

L gi ∀i = 0, . . . , t − 1

(3.1)

where, without loss of generality, we have fixed x⋆ = 0, f⋆ = 0, g⋆ = 0.

Step 2: An SDP relaxation. Second, one can relax the nonconvex problem (3.1) to the following
SDP as done in [2,3,15]. We follow the particular notational choices of [13], which recently considered
globally, numerically optimizing gradient descent’s stepsizes with fixed total iterations, defining

H := [x0 | g0 | g1 | . . . | gt] ∈ Rd×(t+2) ,

G := HT H ∈ St+2
+ ,

F := [f0 | f1 | . . . | ft] ∈ R1×(t+1) ,

with the following notation for selecting columns and elements of H and F :

g⋆ := 0 ∈ Rt+2, gi := ei+2 ∈ Rt+2, i ∈ [0 : t]
x0 := e1 ∈ Rt+2, x⋆ := 0 ∈ Rt+2 ,

xi := x0 − 1
L

i−1∑
j=0

hjgj ∈ Rt+2, i ∈ [1 : t]

f⋆ := 0 ∈ Rt+1, fi := ei+1 ∈ Rt+1, i ∈ [0 : t] .

10



This notation ensures xi = Hxi, gi = Hgi, and fi = F fi. Furthermore, for i, j ∈ I⋆
t , define

Ai,j(h) := gj ⊙ (xi − xj) ∈ St+2 ,

Bi,j(h) := (xi − xj) ⊙ (xi − xj) ∈ St+2
+ ,

Ci,j := (gi − gj) ⊙ (gi − gj) ∈ St+2
+ ,

ai,j := fj − fi ∈ Rt+1

where x ⊙ y = 1
2(xyT + yxT ) denotes the symmetric outer product. This notation is defined so

that gT
j (xi − xj) = TrGAi,j(h), ∥xi − xj∥2

2 = TrGBi,j(h), and ∥gi − gj∥2
2 = TrGCi,j for any i, j ∈ I⋆

t .
Then the QCQP formulation (3.1) can be relaxed to

pL,D(δ) ≤



maxF,G F ft

s.t. Fai,j + TrGAi,j(h) + 1
2LTrGCi,j ≤ 0, ∀i, j ∈ I⋆

t : i ̸= j

−G ⪯ 0
TrGB0,⋆ ≤ D2

F f0 ≤ δ .

(3.2)

Equality holds above if one adds the constraint that rank G ≤ n where n is the dimension of
problem instances considered when defining pL,D. This constraint is vacuously true if the considered
problem dimension n exceeds t+2. Consequently, the QCQP (3.1) and the SDP (3.2) are equivalent,
provided one allows sufficiently high-dimensional objectives, but may differ if one restricts to finding
the worst-case over lower-dimensional problem instances. However, this equality is not needed for
our analysis, so we make no such assumption.
Step 3: The upper bounding dual SDP. Third, note the maximization SDP (3.2) is bounded
above by its dual minimization SDP by weak duality, giving

pL,D(δ) ≤



minλ,v,w,Z D2v + δw

s.t.
∑

i,j∈I⋆
t :i ̸=j λi,jai,j = a⋆,t − wa⋆,0

vB0,⋆ +
∑

i,j∈I⋆
t :i ̸=j λi,j

(
Ai,j(h) + 1

2LCi,j

)
= Z

Z ⪰ 0
v, w ≥ 0, λi,j ≥ 0, ∀i, j ∈ I⋆

t : i ̸= j .

(3.3)

Although it is not needed for our analysis, equality holds here as well (i.e., strong duality holds)
due to [2, Theorem 6].

3.2 An SDP Feasibility Certificate that implies Straightforwardness

The preceding bound (3.3) establishes that ϵ ≥ 0-straightforwardness holds if for some ∆ ∈ (0, 1/2],

every δ ∈ [0, LD2∆] has a corresponding dual feasible solution with objective at most δ−
∑t−1

i=0(hi−ϵ)
LD2 δ2.

We claim that it suffices to fix L = 1, D = 1 without loss of generality. For any L-smooth f with
∥x0 − x⋆∥ ≤ D, this follows by instead considering minimizing f̃(x̃) = 1

LD2 f(Dx̃). One can
easily verify f̃ is 1-smooth, has ∥x̃0 − x̃⋆∥ ≤ 1 for x̃0 = Dx0, x̃⋆ = Dx⋆, and gradient descent
x̃k+1 = x̃k − hk∇f̃(xk) produces exactly the iterates of xk+1 = xk − hk/L∇f(xk) rescaled by D.
Hence pL,D(δ) = LD2p1,1(δ/LD2).

We restrict our search for dual certificates bounding p1,1(δ) to a special case, which we numerically
observed to hold approximately at the minimizers of (3.3): given δ, fix v =

∑t−1
i=0(hi + ϵ)δ2 and
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w = 1 − 2
∑t−1

i=0 hiδ. Noting this fixed variable setting has v + δw = δ −
∑t−1

i=0(hi − ϵ)δ2, ϵ-
straightforwardness follows if one can show feasible solutions with these fixed values exist.

Given δ and a selection of λ ∈ R(t+2)×(t+2) and fixing v as above, we define

Zh,ϵ(λ, δ) :=
t−1∑
i=0

(hi + ϵ)δ2B0,⋆ +
∑

i,j∈I⋆
t :i ̸=j

λi,j

(
Ai,j(h) + 1

2Ci,j

)
. (3.4)

Observe that Zh,ϵ(λ, δ) is nearly linear: the first entry has the only nonlinear behavior, depending
quadratically on δ, with the rest depending only linearly on λ. Written in block form, we denote

Zh,ϵ(λ, δ) =:
[∑t−1

i=0(hi + ϵ)δ2 mh(λ)T

mh(λ) Mh(λ)

]
(3.5)

where mh : R(t+2)×(t+2) → Rt+1 and Mh : R(t+2)×(t+2) → R(t+1)×(t+1) are linear functions. Certifying
p1,1(δ) ≤ δ−

∑t−1
i=0(hi −ϵ)δ2 for fixed δ then follows by showing the following spectral set is nonempty

Rh,ϵ,δ =

λ ∈ R(t+2)×(t+2) |

∑
i,j∈I⋆

t :i ̸=j λi,jai,j = a⋆,t −
(
1 − 2

∑t−1
i=0 hiδ

)
a⋆,0

λ ≥ 0
Zh,ϵ(λ, δ) ⪰ 0

 .

Lemma 3.1. A stepsize pattern h ∈ Rt is ϵ ≥ 0-straightforward if for some ∆ ∈ (0, 1/2], Rh,ϵ,δ is
nonempty for all δ ∈ [0, ∆]. Straightforwardness of h is implied by each Rh,0,δ being nonempty.

This lemma alone does not directly enable the computation of a convergence-proof certificate.
One would need certificates of feasibility for the infinitely many sets given by each δ ∈ [0, ∆]. The
following theorem shows that the existence of such solutions can be certified via a single feasible
solution to yet another semidefinite program.

Theorem 3.1. A stepsize pattern h ∈ Rt is ϵ ≥ 0-straightforward if for some ∆ ∈ (0, 1/2], Sh,ϵ,∆ is
nonempty where

Sh,ϵ,∆ =


(λ, γ) ∈ R(t+2)×(t+2) × R(t+2)×(t+2) |

∑
i,j∈I⋆

t :i ̸=j λi,jai,j = a⋆,t − a⋆,0∑
i,j∈I⋆

t :i ̸=j γi,jai,j = 2
∑t−1

i=0 hia⋆,0
mh(λ) = 0
λ ≥ 0, λ + ∆γ ≥ 0[∑t−1

i=0(hi + ϵ) mh(γ)T

mh(γ) Mh(λ)

]
⪰ 0[∑t−1

i=0(hi + ϵ) mh(γ)T

mh(γ) Mh(λ + ∆γ)

]
⪰ 0


.

Proof. Let (λ, γ) ∈ Sh,ϵ,∆. We prove this by showing λ(δ) := λ + δγ ∈ Rh,ϵ,δ for every δ ∈ [0, ∆] by
Lemma 3.1. This amounts to verifying the three conditions defining Rh,ϵ,δ for each λ(δ).

First, we check
∑

i,j∈I⋆
t :i ̸=j λ

(δ)
i,j ai,j = a⋆,t −

(
1 − 2

∑t−1
i=0 hiδ

)
a⋆,0. The first equality defining

Sh,ϵ,∆ ensures this for λ(0) = λ. Adding δ times the second equality defining Sh,ϵ,∆ establishes
the equality for every λ(δ) as

∑
i,j∈I⋆

t :i ̸=j(λ(δ)
i,j + δγi,j)ai,j = a⋆,t −

(
1 − 2

∑t−1
i=0 hiδ

)
a⋆,0. Second, we

check nonnegativity λ(δ) ≥ 0. This follows by noting λ(δ) is a convex combination of λ and λ + ∆γ,
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which are nonnegative by construction. Finally, we check the nonlinear (but nearly linear) condition
Zh,ϵ(λ(δ), δ) ⪰ 0. We consider the block-form (3.5) of this semidefinite inequality, seeking

Zh,ϵ(λ(δ), δ) =
[∑t−1

i=0(hi + ϵ)δ2 mh(λ(δ))T

mh(λ(δ))) Mh(λ(δ))

]
⪰ 0 .

Since mh(λ) = 0, using the linearity of mh and Mh, the above can be expanded to equal[∑t−1
i=0(hi + ϵ)δ2 δmh(γ)T

δmh(γ) Mh(λ) + δMh(γ)

]
⪰ 0 .

Rescaling the first row and column by 1/δ gives an equivalent condition, which is now linear in δ,[∑t−1
i=0(hi + ϵ) mh(γ)T

mh(γ) Mh(λ) + δMh(γ)

]
⪰ 0 .

When δ = 0 or ∆, this condition is explicitly ensured by the definition of Sh,ϵ,∆. Then the linearity
and convexity of this condition imply it holds for all intermediate λ(δ), completing the proof.

Note computing a member of Sh,ϵ,∆ does not correspond to solving a particular performance
estimation problem. Instead, each member provides a “line segment” of solutions to a series of the
performance estimation problems pL,D(δ) for an interval of possible δ values.

3.3 Certificates of Straightforwardness Proving Guarantees in Table 1

To prove a given pattern h converges at rate LD2/avg(h)T , we only need to show some Sh,0,∆ is
nonempty. The most natural path is to provide an exact member of this set. For all of the stepsizes
in Table 1, it was relatively easy to find a feasible solution Sh,0,∆ in floating point arithmetic via an
interior point method. However, exactly identifying a member of Sh,0,∆ from this can still be hard.

First, we prove the claimed guarantees for the t = 2 and t = 3 stepsize patterns of Table 1
by presenting exact members of Sh,0,∆. Then, to handle larger values of t, we present a simple
rounding approach able to produce members of Sh,ϵ,∆, often with ϵ around the accuracy of our SDP
solves ≈ 10−9. This approach produced rational-valued certificates proving the rest of the claimed
convergence guarantees in Table 1.

The exact rational arithmetic verifying the correctness of all certificates (λ, γ) was done in
Mathematica 13.0.1.0. Note that the entries in these certificates for t ≥ 7 are entirely computer-
generated and lack real human insight. As an example for reference, the certificate for t = 7 is
included in the appendix. Larger certificates are impractical to include here. For example, our t = 127
guarantee is certificate (λ, γ) has 32640 nonzero entries. Certificates for every pattern in Table 1
and exact verifying computations are available at github.com/bgrimmer/LongStepCertificates.

Theorem 3.2. For any η ∈ (0, 3), the stepsize pattern h = (3 − η, 1.5) is straightforward. Hence
gradient descent (1.3) alternating between these two stepsizes has every even T satisfy

f(xT ) − f(x⋆) ≤ LD2

(2.25 − η/2) × T
+ O(1/T 2) .

Proof. For any η ∈ (0, 3), consider the selection of (λ, γ) given by

λ =


0 0 0 0
0 0 1

2
1
2

0 0 0 1
2

0 0 0 0

 , γ =


0 3 − η 6−η

2
6−η

2
0 0 −(6−η)

2
−(6−η)

2
0 0 0 0
0 0 0 0

 .
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It suffices to show for some ∆ ∈ (0, 1/2], (λ, γ) ∈ Sh,0,∆. One can easily verify the needed equalities
and nonnegativities hold for all 0 ≤ ∆ ≤ 1/(6 − η). The first positive semidefiniteness condition of
(λ, γ) ∈ Sh,0,∆ amounts to checking every η ∈ (0, 3) has

[∑t−1
i=0(hi + ϵ) mh(γ)T

mh(γ) Mh(λ)

]
=


9−2η

2
−(3−η)

2
−(6−η)

4
−(6−η)

4
−(3−η)

2
1
2

2−η
4

2−η
4

−(6−η)
4

2−η
4

1
2

1
2

−(6−η)
4

2−η
4

1
2

1
2

 ⪰ 0 .

Since this convex condition is linear in η, it suffices to check it at η = 0 and η = 3. Moreover,
for any η ∈ (0, 3), note this matrix has exactly two zero eigenvalues with associated eigenvec-
tors spanning (1/2, 1/2, 1, 0) and (1/2, 1/2, 0, 1). The second positive semidefiniteness condition
amounts to checking an update to this matrix of size ∆ remains positive semidefinite, namely[∑t−1

i=0(hi + ϵ) mh(γ)T

mh(γ) Mh(λ + ∆γ)

]
which equals


9−2η

2
−(3−η)

2
−(6−η)

4
−(6−η)

4
−(3−η)

2
1
2

2−η
4

2−η
4

−(6−η)
4

2−η
4

1
2

1
2

−(6−η)
4

2−η
4

1
2

1
2

+


0 0 0 0
0 −3

2
6−η

4
6−η

4
0 6−η

4 0 0
0 6−η

4 0 0

∆

must be positive semidefinite. One can check this added matrix term is positive semidefinite on the
subspace spanned by (1/2, 1/2, 1, 0) and (1/2, 1/2, 0, 1) (again by checking when η = 0 and η = 3 and
then using convexity). As a result, positive semidefiniteness is maintained for ∆ small enough. Exact
arithmetic verifying all of these claims are given in the associated Mathematica notebook. Hence
(λ, γ) ∈ Sh,0,∆, proving the main claim by Theorem 3.1 and the claimed convergence guarantee by
Theorem 2.1.

Theorem 3.3. The stepsize pattern h = (1.5, 4.9, 1.5) is straightforward. Hence gradient de-
scent (1.3) cycling through these three stepsizes has every T = 3s satisfy

f(xT ) − f(x⋆) ≤ LD2

2.63333... × T
+ O(1/T 2) .

Proof. This result is certified with ∆ = 10−4 by the following exact values for (λ, γ) ∈ Sh,0,∆ of

λ =


0 0 0 0 0
0 0 1.95 0.003 0.007
0 0.95 0 0.5 0.5
0 0.006 0 0 0.51
0 0.004 0 0.013 0

 , γ =


0 0.005 7.825 3.9497 4.0203
0 0 −5.24 −10.555 0
0 0 0 7.9 −5.315
0 0 0 0 1.2947
0 0 0 0 0

 .

Based on numerical exploration, we conjecture that patterns of the form (3 − η, 1.5) are the longest
straightforward patterns of length two and (1.5, 5 − η, 1.5) are the longest of length three.

For larger settings t ≥ 7, determining an exact member of Sh,0,∆ proved difficult. So we resort to
a fully automated construction of a convergence guarantee certificate by first numerically computing
an approximate member of Sh,0,∆ (via an interior point method) and then rounding to a nearby
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rational-valued exact member of Sh,ϵ,∆ for some small ϵ. In light of our Theorem 2.1, such rounding
only weakens the resulting guarantee’s coefficient from avg(h) to avg(h) − ϵ.

Computer Generation of Convergence Proof Certificates. Given h and ∆,
(i) Numerically compute some (λ̃, γ̃) approximately in Sh,0,∆,
(ii) Compute rational (λ̂, γ̂) near (λ̃, γ̃) exactly satisfying the three needed equalities,
(iii) Check in exact arithmetic nonnegativity and positive definiteness of Mh(λ̂) and Mh(λ̂ + ∆γ̂),
(iv) If so, (λ̂, γ̂) ∈ Sh,ϵ,∆, certifying LD2

(avg(h)−ϵ)T + O(1/T 2) convergence, for

ϵ = max{mh(γ̂)T Mh(λ̂)−1mh(γ̂), mh(γ̂)T Mh(λ̂ + ∆γ̂)−1mh(γ̂)}
t

− avg(h) .

The above value of ϵ is the smallest value with (λ̂, γ̂) ∈ Sh,ϵ,∆, since by considering their Schur
complements, the two needed positive semidefinite conditions hold if and only if

t−1∑
i=0

(hi + ϵ) − mh(γ̂)T Mh(λ̂)−1mh(γ̂) ≥ 0 and
t−1∑
i=0

(hi + ϵ) − mh(γ̂)T Mh(λ̂ + ∆γ̂)−1mh(γ̂) ≥ 0 .

Theorem 3.4. The stepsize patterns of lengths t ∈ {7, 15, 31, 63, 127} in Table 1 are all ϵ-
straightforward for ϵ ∈ {10−9, 10−9, 10−11, 10−3, 10−4} with ∆ ∈ {10−5, 10−6, 10−8, 10−7, 10−8}.
Hence the convergence guarantees claimed in Table 1 hold for each corresponding “long step” gradi-
ent descent method.

Proof. Certificates (λ̂, γ̂) ∈ Sh,ϵ,∆ (produced via the above procedure) with exact arithmetic valida-
tion are available at github.com/bgrimmer/LongStepCertificates.

4 Future Directions
Building on existing performance estimation ideas, we have demonstrated an analysis technique
capable of proving convergence of gradient descent using nonconstant, long stepsize patterns, which
gain in strength as longer patterns are considered. This runs contrary to widely held intuitions
regarding constant stepsize selections and the importance of monotone objective decreases. Instead,
we show that long-run performance can improve by periodically taking (very) long steps that may
increase the objective value in the short term. We accomplish this via computer-generated proof
certificates bounding the effect of many steps collectively by providing solutions for a sequence
of related performance estimation problems. We conclude by discussing a few possible future
improvements on and shortcomings of this technique.

Possible Extension to More Families of Gradient Methods. Often, analysis techniques for
gradient descent and its accelerated variants extend rather directly to constrained minimization
or minimizing composite objectives f(x) + r(x) by utilizing projections and proximal operators.
PEP techniques naturally extend to these settings. Drori [35, Theorem 2.7 and 2.9] shows the tight
convergence rate for projected gradient descent is strictly worse than the unconstrained setting,
having rate LD2/4T instead of (1.2). A similar (small) worsening of the optimal rate also holds for
accelerated proximal gradient methods [36]. This difficulty appears to extend to our straightforward
analysis technique. Figure 2 shows the length two and three stepsize patterns that numerically
satisfy a generalized notion of straightforwardness for gradient descent, projected gradient descent,
and proximal gradient descent. The set of “straightforward” patterns for constrained is strictly
smaller and composite yet strictly smaller. Consequently, strictly less aggressive stepsizes than
Table 1 would be required for future projected or proximal extensions.
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Figure 2: For unconstrained, constrained, and composite minimization, the stepsize patterns
satisfying a natural generalization of straightforwardness are shown. Patterns (h1, h2) of length
two and symmetric patterns (h1, h2, h1) of length three were sampled at every 0.1 increment.
Straightforwardness was approximated by solving a performance estimation problem determining if
f(xt)−p⋆ (or f(xt)+r(xt)−p⋆ for composite problems) is always at most f(x0)−p⋆−

∑
hi

LD2 (f(x0)−p⋆)2

(or f(x0) + r(x0) − p⋆ −
∑

hi

LD2 (f(x0) + r(x0) − p⋆)2) given the initial gap was at most ∆ = 10−4.

The PEP framework has previously been successfully employed in handling settings of inexact
gradients [37] and relatively smooth optimization (via Bregman divergences) [7]. Determining the
degree to which utilizing periodic long steps can improve the convergence of inexact, Bregman, and
stochastic variations of gradient descent also provides interesting future directions.
Future Improvements in Algorithm Design. The search for long, straightforward stepsize
patterns h is hard. The patterns presented in Table 1 resulted from substantial brute force searching.
The task of maximizing avg(h) subject to h being straightforward, although nonconvex, may be
approachable using branch-and-bound techniques similar to those recently developed by Gupta et
al. [13] and applied to a range of PEP parameter optimization problems. Such an approach may
yield numerically, globally optimal h for fixed length t. This may also generate insights into the
general form of the longest straightforward stepsize patterns for each fixed t.

One practical drawback of the method (1.3) is the requirement that one knows L. Since our anal-
ysis in Theorem 2.1 only relies on decreases in objective value after t steps, backtracking linesearch
schemes or other adaptive ideas may be applicable. For example, one could consider an Armijo-type
linesearching procedure, backtracking with an estimate of L̃ seeking f(xt) ≤ f(x0)−

∑
hi

L̃
∥∇f(x0)∥2.

Since convexity ensures ∥∇f(x0)∥2 ≥ δ2
0/D2, this condition guarantees the descent required by

straightforwardness. Analysis and practical development of such ideas are beyond our scope.

Future Improvements in Analysis Techniques. Future works may improve our analysis by
considering other Lyapunov functions. The distance to optimal and norm of the gradient were
both used in [4, Chapter 8]. Our proofs are only concerned with the eventual decrease of the
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objective gap. The analysis of optimal accelerated and subgradient methods relies additionally on
the decreasing distance to a minimizer or a decreasing combination thereof. Identifying better Lya-
punovs and stepsize patterns guaranteed to eventually decrease them may lead to stronger guarantees.

Future Improvements in Computational Aspects. We observed that numerically computed
primal optimal solutions to (3.2) were rank-one for all considered straightforward patterns. This
corresponds to the worst-case objective function being essentially one-dimensional. This is in line
with many prior PEP-based analyses finding one-dimensional Huber functions often attain the
worst-case performance. This property was not used herein but could likely be leveraged to enable
customized solvers for evaluating pL,D(δ) and checking membership of Sh,0,∆. Such improvements
in tractability for SDPs with rank-one solutions have been studied widely [38–44] and may enable
the search for longer, provably faster straightforward stepsize patterns than shown here.

As another avenue of improvement, note that any certificates produced by using floating point
arithmetic followed by a rounding step (as done here) will likely lose a small ϵ amount in the guarantee.
The use of an algebraic solver, like SPECTRA [45], could enable the automated production of exact
certificates of straightforwardness as well as being able to certify when Sh,0,∆ is empty.
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A A Computer-Generated Straightforwardness Certificate with
∆ = 10−5 and ϵ = 10−9 for h = (1.5, 2.2, 1.5, 12.0, 1.5, 2.2, 1.5)

Below is a certificate (λ̂, γ̂) ∈ Sh,ϵ,∆, completely computer generated, proving a LD2/(3.1999999×T )
rate for the pattern of length t = 7 in Table 1. Given the length of these 9 × 9 matrices, we display
their first five and last four columns separately below. Exact calculations verifying the feasibility of
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these values are given in the associated publicly posted Mathematica notebook.

λ̂1:5 =



0 0 0 0 0
0 0 8837407518919583

4503599627370496
5370688140802311

2305843009213693952
960254226721649

144115188075855872
0 2191522964335457

2251799813685248 0 4118290538555273
2251799813685248

2688409565283275
4503599627370496

0 6721678331720401
2305843009213693952

4407991053556385
18014398509481984 0 5801123626984329

1125899906842624
0 1313681189860411

1152921504606846976
2695784755734549
2251799813685248

8068866010524833
2251799813685248 0

0 1137203495150241
4611686018427387904

4688926225212825
9223372036854775808

4572972758977097
4611686018427387904

1182579142099203
1152921504606846976

0 5789750435206701
18446744073709551616

4956986009057139
9223372036854775808

5204247088958345
4611686018427387904

5375927246703545
9223372036854775808

0 7965115934238233
36893488147419103232

6653418691702949
9223372036854775808

4849791056907609
4611686018427387904

7288685819438951
9223372036854775808

0 1977810093374139
9223372036854775808

1222316311137735
1152921504606846976

6194623724653895
4611686018427387904

1504051934577545
1152921504606846976


,

λ̂6:9 =



0 0 0 0
4697224493034383

9223372036854775808
8368394272075953

2305843009213693952
6128278626086993

9223372036854775808
80543723501136599

36893488147419103232
7733370871946025

4611686018427387904
5388133457257119

2305843009213693952
8119439550484479

4611686018427387904
19797186857495837

9223372036854775808
2740682573240027

576460752303423488
5290333777740781

1152921504606846976
4877381506142205

1152921504606846976
12485929602009775

2305843009213693952
8956652459407733
72057594037927936

4723166920241497
18014398509481984

5356440120675597
18014398509481984

339319020784307309
1152921504606846976

0 772844649199827
4503599627370496

2338413531710477
288230376151711744

13381432557675475
2305843009213693952

6929007831194361
288230376151711744 0 8173541145090013

36028797018963968
3837009581398546887
18446744073709551616

3923691798295005
144115188075855872

1250438084247729
288230376151711744 0 18985683012247614283

36893488147419103232
13037057806369

2251799813685248
7367859533233689

576460752303423488
2876396710542189

288230376151711744 0


,

γ̂1:5 =



0 1445047782665419
360287970189639680

4403953050470099
36028797018963968

12063929807726837
144115188075855872

3158567943322891003
144115188075855872

0 0 −4876214136104831
140737488355328 −8833525210676647

1125899906842624 −2173342829362743
281474976710656

0 −3452744755754301
70368744177664 0 − 6337493011708677

36028797018963968 −6175482448055731
2251799813685248

0 5865189115672077
36028797018963968 −7694464236006067

281474976710656 0 − 5761085953121451
144115188075855872

0 8990085085489805
562949953421312

8180724221663923
9007199254740992 −170650240960227

70368744177664 0
0 814636363991245

2251799813685248 −5002382223044879
9007199254740992 −5824324289872487

4503599627370496 −5420042187723199
2251799813685248

0 3576868018334213
18014398509481984 − 3095322656598895

18014398509481984 −4741216870166437
4503599627370496

8742107678118927
18014398509481984

0 7467009600885335
72057594037927936

7502387060304591
18014398509481984 −2299019529082251

2251799813685248
5226016391129105
4503599627370496

0 5171454268783955
18014398509481984

4976089659881855
4503599627370496 − 849946842273963

1125899906842624
4041378073126239
2251799813685248


,

γ̂6:9 =



842771278878770475
288230376151711744

1763107326300397405
288230376151711744

490223898427757151
72057594037927936

246036905476920105
36028797018963968

−7575374264747013
1125899906842624 −847735720154307

140737488355328 −3644178695304033
562949953421312 −2065817857485759

281474976710656
256866650877453
562949953421312 −2501054473773415

1125899906842624 −1008218866207467
281474976710656 −6366578400890641

2251799813685248
4819157742253121
2251799813685248

8130105639853323
18014398509481984

2019419188776927
1125899906842624

2348470109478957
281474976710656

451884763914337
281474976710656

7742823693376695
18014398509481984

2908076698229235
2251799813685248 −6004115926843261

1125899906842624
0 − 3545908575737889

288230376151711744
3082103085688847
18014398509481984

3631847684938235
1125899906842624

− 6392823462111415
72057594037927936 0 226196870745667

9007199254740992 −5233938836038739
2251799813685248

−3454102047914875
9007199254740992 − 2760923356849777

36028797018963968 0 − 664739622472857
2251799813685248

−1957421956488181
4503599627370496 −7174137438907087

4503599627370496 − 4503200630060789
36028797018963968 0


.
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