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Abstract

In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has
gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and
chemical process optimization. In this domain, the combination of ML and OR often relies on represent-
ing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies in the
literature have developed such formulations for many ML predictors, with a particular emphasis on Artificial
Neural Networks (ANNs) due to their significant interest in many applications. However, ANNs frequently
contain a large number of parameters, resulting in MIP formulations that are impractical to solve, thereby
impeding scalability. In fact, the ML community has already introduced several techniques to reduce the pa-
rameter count of ANNs without compromising their performance, since the substantial size of modern ANNs
presents challenges for ML applications as it significantly impacts computational efforts during training and
necessitates significant memory resources for storage. In this paper, we showcase the effectiveness of pruning,
one of these techniques, when applied to ANNs prior to their integration into MIPs. By pruning the ANN,
we achieve significant improvements in the speed of the solution process. We discuss why pruning is more
suitable in this context compared to other ML compression techniques, and we identify the most appropriate
pruning strategies. To highlight the potential of this approach, we conduct experiments using feed-forward
neural networks with multiple layers to construct adversarial examples. Our results demonstrate that pruning
offers remarkable reductions in solution times without hindering the quality of the final decision, enabling the
resolution of previously unsolvable instances.
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1. Introduction

The concept of embedding learned functions in-
side Mixed Integer Programming (MIP) formula-
tions, also known as “Learning-Symbolic Program-
ming” or “Constraint Learning”, has gained attention
in recent literature [1, 2, 3]. Furthermore, there has
been an increase in the availability of tools that auto-
matically embed commonly used predictive models
into MIPs [4, 5, 6, 7]. These techniques and tools
are especially valuable when employing ML mod-
els for predictions and utilizing OR methods for de-

cision making based on those predictions. Unlike
the traditional two-stage approaches [8], embedding
the predictive model within the decision-making pro-
cess in an end-to-end optimization framework has
been shown to yield superior results. Examples of
applications are automatic algorithmic configuration
[9, 10], adversarial examples identification [11], can-
cer treatments development [12], and chemical pro-
cess optimization [13, 14].

A very relevant case is when the learned function
is an ANN, since ANNs are the state-of-the-art mod-
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els for numerous essential ML tasks in Computer
Vision and Natural Language processing. Conse-
quently, there have been efforts in the literature to
automate the embedding of ANNs [15]. For instance,
[5] enables to incorporate feed-forward architectures
with ReLU activation functions into MIPs, utilizing
the output of the ANN in the objective function. The
maturity of the field is demonstrated by the fact that
one of the leading commercial MIP solvers, Gurobi,
recently released a package that allows feed-forward
ReLU networks to be part of MIP formulations, with
compatibility for popular ML packages such as Py-
Torch, Keras, and scikit-learn.

Unfortunately, even when we consider simple ar-
chitectures that have only ReLU activation functions,
the representation of an ANN in a MIP will intro-
duce binary variables, due to the combinatorial na-
ture of the ReLU function. Additionally, the number
of binary variables and the associated constraints that
need to be added to the MIP is proportional to the
number of parameters in the ANN. Deep Learning
has witnessed a clear trend towards developing ar-
chitectures with a very large number of parameters,
which contributes to ANNs high predictive power
and state-of-the-art performance in various applica-
tions. This, however, poses issues in terms of train-
ing costs, storage requirements, and prediction time.
Consequently, numerous methods, known as model
compression techniques, have been developed to re-
duce the size of ANNs without compromising their
predictive capability. Yet, the large size of the ANNs
presents an even more significant scalability chal-
lenge when it is embedded into a MIP, due to the
potentially exponential growth of the latter computa-
tional cost with its size (and, in particular, the num-
ber of binary variables). Using a state-of-the-art net-
work in a MIP formulation may easily result in an
overwhelming number of binary variables and con-
straints, rendering the models unsolvable within a
reasonable time using any available solver.

In this paper, we demonstrate that pruning meth-
ods, originally developed to address specific ML
challenges, can be effectively applied in the context
of embedding ANNs into MIPs. Specifically, we
utilize a structured pruning technique that we previ-
ously developed to significantly accelerate the solu-
tion time for adversarial example identification prob-

lems using Gurobi.
The remainder of the paper is organized as fol-

lows: Section 2 provides a formal definition of the
problem concerning the embedding of learned func-
tions in MIP formulations. Additionally, it presents
one of the existing formulations from the literature
specifically designed for embedding ANNs. In Sec-
tion 3, we introduce pruning techniques and we de-
scribe the specific pruning method employed in our
experiments. Section 4 focuses on the benefits of
pruning when incorporating ANNs into MIPs. We
discuss the reasons why pruning is advantageous in
this context and provide insights on selecting appro-
priate pruning techniques. Finally, in Section 5 we
present numerical results to empirically validate that
pruning can effectively speed up the solution process
of MIPs with embedded ANNs.

2. Embedding learned functions in Mixed Integer
Programs

We consider a general class of (Mixed-Integer)
Nonlinear Programs with “learned constraints”. That
is, the formulation of the problem would need to in-
volve some functions gi(x), i = 1, . . . , k, defined on
the variable space of the optimization decisions, that
are “hard” in the sense that no compact algebraic
formulation, and not even an efficient computation
oracle, is available. Yet, (large) data sets are avail-
able, or can be constructed, of outputs ȳ = gi(x̄) for
given x̄. These datasets can be used in several exist-
ing ML paradigms (Support Vector Machines, Deci-
sion Trees, ANNs, . . . ) to construct estimates ḡi(x) of
each gi(x), i = 1, . . . , k, with a workable algebraic de-
scription that can then be inserted into an optimiza-
tion model. Thus, we consider the class of Mathe-
matical Programs with Learned Constraints (MPLC)

min cx + by (1)
s.t. yi = ḡi(x) i = 1, . . . , k (2)

Ax + By ≤ d (3)
x ∈ X (4)

Linearity in (1) and (3) is not strictly necessary in
our development, but it is often satisfied in applica-
tions (see, e.g., [5, 11, 12]) and we assume it for no-
tational simplicity. Indeed, when X in (4) contains
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integrality restrictions on (some of) the x variables,
the class already contains Mixed-Integer Linear Pro-
grams (MILP), whose huge expressive power does
not need to be discussed. Of course, a significant
factor in the complexity of (1)–(4) is the algebraic
form of the ḡi(x), which impacts the class of opti-
mization problems it ultimately belongs to. A sig-
nificant amount of research is already available on
formulations for embedding feedforward ANNs, in
particular with ReLU activations, in a MIP context
[11, 1, 2, 3, 16]. In these formulations, the neural
network is constructed layer by layer. Denoting the
input vector at layer ℓ as oℓ, and the corresponding
weight matrix and bias vector as Wℓ and bℓ, respec-
tively, one has

oℓ+1 = max( 0 , Wℓoℓ + bℓ )

that can be expressed in a MI(L)P form as

v+ℓ − v−ℓ = Wℓoℓ + bℓ (5)
0 ≤ v+ℓ ≤ M+zℓ (6)
0 ≤ v−ℓ ≤ M−(1 − zℓ) (7)
oℓ+1 = v+ℓ (8)
zℓ ∈ { 0 , 1 }m (9)

Constraints (6) and (7) ensure that both v+ℓ and v−ℓ
are (component-wise) positive, and since the zℓ are
(component-wise) binary, that at most one of them is
positive. Consequently, constraint (5) forces the rela-
tions v+ℓ = max{Wℓoℓ + bℓ , 0 } and v−ℓ = min{Wℓoℓ +
bℓ , 0 } (of course, constraint (8) is only there to make
apparent what the output of the layer is). Denot-
ing by n the number of neurons in layer ℓ and by m
the number of neurons in layer ℓ + 1, system (5)–(9)
contains m binary variables, n + 2m continuous vari-
ables, and 3m constraints. A significant aspect of this
model (fragment) is the use of big-M constraints (6)
and (7). It is well known that the choice of the value
for the constants M can significantly impact the time
required to solve an instance. Indeed, the Optimized
Big-M Bounds Tightening (OBBT) method has been
developed in [11] to find effective values for this con-
stant.

As previously mentioned, the state-of-the-art
solver Gurobi now includes an open-source Python
package that automatically embeds ANNs with

ReLU activation into a Gurobi model. Additionally,
starting from the 10.0.1 release, Gurobi has the ca-
pability to detect if a model contains a block of con-
straints representing the relationship y = g(x), where
g(·) is an ANN, in order to then apply the afore-
mentioned OBBT techniques to enhance the solution
process. Despite showing a substantial improvement
with respect to the previous version, the capabilities
of Gurobi to solve these MIPs are still limited. In par-
ticular, when embedding an ANN into a MIP, Gurobi
is not able to solve the problem in a reasonable time
unless the number of layers and neurons in the ANN
is small.

3. Artificial Neural Networks Pruning

As mentioned in the introduction, the size of state-
of-the-art ANNs has been growing exponentially
over the years. While these models deliver remark-
able performance, they come with high computa-
tional costs for training and inference, as well as
substantial memory requirements for storage. To ad-
dress this issue, various techniques have been devel-
oped to reduce these costs without significantly com-
promising the predictive power of the network. One
such technique is pruning, which involves reducing
the ANN size by eliminating unnecessary parame-
ters. Consider for instance a linear layer with input
xinp, output xout, and weight and bias tensors W and b,
i.e., xout = Wxinp+b. Thus, pruning entails removing
certain entries from W or b. That is, pruning, say, the
parameter W1,1 results in the first coordinate of xinp

being ignored in the scalar product when computing
the first coordinate of xout.

Pruning individual weight entries can offer some
advantages, but it is generally suboptimal. Since
most of the computation is performed on GPUs,
there is little computational benefit unless entire
blocks of computation, such as tensor multiplica-
tions, are removed. Removing entire structures of
the ANN is known as structured pruning, in contrast
to unstructured pruning that involves eliminating sin-
gle weights. In the example of the linear layer, struc-
tured pruning would aim to remove entire neurons by
deleting rows from the W tensor (along with the cor-
responding b entry in most cases). Figures 1, 2, and 3
illustrate the difference between these two pruning
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Figure 1: Unpruned network
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Figure 2: Unstructured pruning

techniques.
The literature on pruning techniques for neural

networks is vast and encompasses a wide range of
approaches. One simple and commonly used method
is magnitude-based pruning, which involves remov-
ing parameters with small magnitudes. This was
first introduced in [17] and has been widely adopted
since. However, more sophisticated strategies have
also been proposed, such as Bayesian methods [18,
19, 20, 21], combinations of pruning with other com-
pression techniques [22, 23, 24], and zero accuracy
drop pruning [25, 26, 27, 28].

A relevant subset of pruning techniques uses a reg-
ularization term to enforce sparsity in tensor weight.
It is common practice in Machine Learning to add
a regularization term R(w) to the standard loss func-
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Figure 3: Structured pruning

tion L(X,Y,w), where w is the vector containing the
ANNs parameters and (X,Y) is the training set. Usu-
ally, R(w) penalizes the magnitude of the parame-
ters (e.g., R(w) = |w|22) and it is known to improve
the generalization performances of the model. If the
form of R(w) is chosen carefully, e.g., R(w) = |w|1, it
can also lead to a sparse parameter vector w. When
a network parameter is zero, it can typically be re-
moved without changing the model output for any
given input. Hence, if R(w) is chosen appropriately
to induce all the weights of some neurons to be zero,
then such neurons can be removed from the network.
Many regularization terms have been proposed both
for structured and unstructured pruning, including
but not limited to l1 norm, BerHu term [29], group
lasso, and lp/lq norms [30].

3.1. The Structured Perspective Regularization Term

In the literature, the majority of pruning tech-
niques rely on heuristics to determine the impact
of removing a parameter or a structure from the
ANN. This trend persists in recent works [31, 32,
33, 34], including methods that still utilize simple
magnitude-based criteria [35, 36, 37, 38]. Only a
few techniques attempt to develop a theoretically-
grounded methodology [39, 40, 41, 18], and these
methods do not primarily focus on structured prun-
ing. In light of this, a pruning technique was de-
veloped in [42] that is motivated by strong theoreti-
cal foundations and specifically addresses structured
pruning. In [42], the pruning problem is addressed
by starting with a naı̈ve exact MIP formulation and
then deriving a stronger formulation by leveraging
the Perspective Reformulation technique [43]. Anal-
ogously to what is done in [44, 45, 46] for individual
variables rather than groups of them, an efficient way
to solve the continuous relaxation of this problem is
obtained by projecting away the binary variables, re-
sulting in an equivalent problem to standard ANN
training with the inclusion of the new Structured Per-
spective Regularization (SPR) term

z(W;α,M) =
2
√

(1 − α)α||W ||2 if ||W ||∞M ≤
√
α

1−α ||W ||2 ≤ 1
αM
||W ||∞
||W ||22 + (1 − α) ||W ||∞M if

√
α

1−α ||W ||2 ≤
||W ||∞

M ≤ 1
α||W ||22 + (1 − α) otherwise,
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where M is a constant, α is a tunable hyper-
parameter and W is the weight tensor corresponding
to the structure we want to prune (e.g., the weight
matrix of a neuron). That is, in order to prune the
ANN one trains it using as loss function

L(X,Y,W) + λ
∑

j∈N z(W j;α,M),

where W j is the weight matrix corresponding to neu-
ron j and N is the set of neurons of the ANN. Cou-
pled with a final magnitude-based pruning step, this
approach has been shown to provide state-of-the-art
pruning performances thanks to the unique and inter-
esting properties of the SPR term. This potentially
comes at the expense of extra hyperparameter tuning
effort for α and M, which is unlikely to be a ma-
jor issue in this application since ANNs that can be
embedded in a MILP, even after pruning, cannot pos-
sibly have the extremely large size common in appli-
cations like Computer Vision and Naturale Language
Processing, and therefore their training and tuning
time is unlikely to be a major factor.

4. Pruning as a Speed-Up Strategy

As previously mentioned, in the context of embed-
ding ANNs in MIPs, scalability becomes a signif-
icant challenge as the number of (binary) variables
and constraints grows proportionally with the num-
ber of parameters in the embedded ANN, but the
cost of solving the MI(L)P may well grow exponen-
tially in the number of (binary) variables. It therefore
makes even more sense to employ the ML compres-
sion techniques that are used to reduce the compu-
tational resources required by ANNs. Many com-
pression techniques other than pruning exist in the
ML literature. However, not all of them are effective
in the context of MIPs with embedded ANNs. For
instance, quantization techniques aim to train net-
works that have weight values in a discrete (relatively
small) set of R [47, 48]. One possibility is to directly
implement the ANN using a lower bit number format
than the standard Float-32 one [49, 50]. Quantization
is a very popular technique in ML since can decrease
both backward- and forward-pass computational ef-
fort, at the same time reducing the memory footprint
of the resulting model. However, in the contest of
MIPs, quantization does not bring any advantage,
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Figure 4: Constraints matrix

Figure 5: Corresponding network

since the resulting problem from embedding a quan-
tized ANN is not significantly different, from an Op-
erations Research point of view, to the one where a
non-quantized model has been embedded. Indeed,
weights are coefficients in (5)–(9), and having them
in a small set of (integer) values may at most have a
minor impact on the solution time. Other methods,
like low-rank decomposition and parameter-sharing
techniques [51, 52, 53, 54], modify the internal oper-
ations of layers; this means that they cannot directly
be used in this context without the development of
new, specific formulations and new algorithms that
can automatically detect them in a MIP problem.

By contrast, structured pruning techniques per-
fectly fit the needs of embedding an ANN in a MIP.
Even unstructured pruning may have some impact,
since when a weight is removed (i.e., set to zero)
the corresponding entry in the MIP constraints ma-
trix is also set to zero, leading to a sparser con-
straints matrix. However, entirely removing vari-
ables or constraints is more effective; in the case of
a feed-forward ANN, this corresponds to performing
structured pruning on neurons, as visualized in Fig-
ures 4- 5- 6- 7.

It is interesting to remark that, for ML purposes,
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Figure 6: Constraints matrix, in red the removed constraints and
variables due to neurons pruning

Figure 7: Corresponding network, the highlighted part is the
pruned one.

pruning techniques only bring advantages at infer-
ence time, but reducing the number of parameters
only reduces linearly the computational cost of the
forward pass. By contrast, removing neurons of a
network brings an exponential speed up in the time
required to solve the resulting MIP formulations.
Hence, pruning is arguably more relevant for OR
than for ML, despite having been developed in the
latter area. In particular, structured pruning—as op-
posed to unstructured one—is crucial in that it al-
lows using existing automatic structure detection al-
gorithms, such as that implemented in Gurobi, while
unstructured pruning is very likely to result in a dif-
ferent structure of the constraints matrix that would
not be recognizable, thereby preventing the use of
OBBT techniques that are crucial in this context.

Based on the considerations above, we argue
about modifying the existing pipeline for embedding
ANNs in MIPs. After training the ANN (or dur-
ing training, depending on the technique used), we
prune the model before embedding it in the MIP for-
mulation of the problem in hand. This approach ei-
ther reduces the solution time of the MIP with the

same generalisation performances, or, possibly, al-
lows one to include larger, therefore more expres-
sive ANNs, capable of achieving higher accuracy
while still maintaining the ability to solve the result-
ing MIPs within a reasonable time. In particular, we
will employ the Structured Perspective Regulariza-
tion, i.e., we train the ANN by adding the SPR term
to the loss, which will lead to a weight tensor with
a structured sparsity. After fixing to zero (i.e., re-
moving) neurons whose weights are all below a fixed
threshold, we fine-tune the network with a standard
loss for a few more epochs (see [42] for details). The
obtained ANN is then embedded in the MIP, and it
will require the addition of fewer variables and con-
straints with respect to its unpruned counterpart.

5. Experiments

5.1. Building adversarial examples
We test the effectiveness of pruning in the task of

finding an adversarial example of a given network. In
particular, we focus on the verification problem [55],
which consists in finding a slight modification of an
input that is originally correctly classified by the net-
work in such a way that the modified one is assigned
to a chosen class by the ANN. More formally, as-
sume we are given a trained ANN ḡ(·) : Rn → [0, 1]C

and one input x such that ḡ(x) has its maximum value
at the coordinate corresponding to the correct class
of x. Denoting with k this coordinate and with h the
coordinate with the second highest value of ḡ(x), the
problem we want to solve is

max yh − yk (10)
s.t. y = ḡ(x̄) (11)
∆ ≥ x − x̄ (12)
∆ ≥ x̄ − x (13)
x̄ ∈ Rn (14)

where ∆ is a given distance bound. Clearly, (10)–
(14) is a special case of the MPLC class (1)–(4). In
particular, the constraint (11) encodes an ANN func-
tion, so it needs to be handled with the techniques
we presented in Section 2. We selected this problem
since it is of great interest to ML researchers. Fur-
thermore, it can in principle be relevant to test the
robustness of networks of any size, and therefore it
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allows to explore the boundaries of what MPLC ap-
proaches (with or without pruning) can achieve.

5.2. General setup and notation

To test the effectiveness of our pruning techniques,
we ran some experiments on network robustness
using the MNIST dataset. We used the same settings
of the notebook available at https://github.

com/Gurobi/gurobi-machinelearning/blob/

main/notebooks/adversarial/adversarial_

pytorch.ipynb, where formulation (10)-(14) is
solved with ∆ = 5.

We trained the ANNs using the Pytorch SGD opti-
mizer with no weight decay and no momentum. We
used 128 as batch size and we trained the network
for 50 epochs with a constant learning rate equal to
0.1. All the networks are Pytorch sequential mod-
els containing only Linear and ReLU layers. For the
pruned networks, we performed a (limited) 3 by 3
grid search to choose the λ factor that multiplies the
SPR term and the α hyper-parameter needed in its
definition (M is automatically set as in [42]). Af-
ter 50 training epochs, the model is fine-tuned for 10
epochs without using any regularization. Note that
the objective of the grid search is to find the smallest
network that keeps basically the same out-of-sample
accuracy of the original one, and better results could
conceivably be obtained by employing end-to-end
techniques that take into account the optimization
process in the computation of the loss [56, 57].

In tables 1 and 2, the first column reports the net-
work architecture of the used ANN and if pruning
was used, while the ∆ parameter value of (10)-(14)
can be found in the first row. We compare the re-
sult of the baseline approach (i.e., without pruning)
and the result obtained using the pruning method
with the best hyper-parameters found. We report the
validation accuracy (in percentage), the time needed
by Gurobi to solve the obtained MIP (in seconds),
and the number of branch-and-bound nodes explored
during that time. Additionally, for the pruned net-
works, we report the value of λ and α and the ar-
chitecture of the network after pruning. When refer-
ring to a network architecture, the terms LxN refer
to a sequence of L layers each of them containing
N neurons. When multiple terms follow each other,
it indicates their order in the network. For example,

2x20-3x10 stands for a network that starts with 2 lay-
ers of 20 neurons and continues with 3 layers of 10
neurons. Each experiment is repeated 3 times and a
time limit of 1800 seconds is given to Gurobi.

5.3. Detailed results

Table 1 shows the results using ∆=5 on 4 dif-
ferent architectures with an increasing number of
neurons and layers. When pruning small architec-
tures, like the 2x50 and 2x100 networks, pruning
the ANN results in at least halving the time used by
Gurobi. Moreover, the accuracy of the pruned mod-
els is higher than the baseline, this is, likely, because
pruning has also a regularization effect.

The results on the 2x200 architecture show that the
baseline is not able to solve the problems in the given
time for two out of three runs. Instead, our method
always leads to MIPs that are easily solved by Gurobi
while maintaining the same accuracy as the baseline.

Finally, we report the results using the 6x100 net-
works, significantly bigger with respect to the previ-
ous ones. The baseline, once again, cannot solve two
out of the three problems in the given time limit. In-
stead, our method is able to succeed in all cases, at
the cost of losing a little bit of accuracy (0.3 percent
in the best case).

As a last remark, we notice that for all the MIPs we
solved relatively to unpruned network, no counterex-
ample existed in the given neighborhood (i.e., the op-
timal value of (10)-(14) is negative). This remains
true for the corresponding pruned counterparts, con-
firming that the pruned and unpruned versions of the
MIPs are qualitatively very similar.

5.4. Investigating the quality of the solutions

To better validate the quality of our results, we
solved again the adversarial problem (10)-(14) using
∆=20 and employing the same networks trained in
the previous experiments. This was aimed to find ad-
versarial examples in the given region to better un-
derstand the effect of pruning on the resulting MIP.
We report the results in Table 2, where the “accu-
racy” and “pruned architecture” columns have been
removed since they are the same as in the previous
table. For all the experiments, a counter-example ex-
isted in the given region, and in the last column of
Table 2, named “Found”, we report if Gurobi was
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∆ = 5

Arch λ-α Acc. Time Nodes Pruned Arch

2x50
Baseline

97.55 14.88 5820
97.47 20.65 12040
97.25 8.07 9497

2x50
Pruned

0.5-0.9
97.77 3.29 3328 1x39-1x43
97.49 3.93 6482 1x30-1x42
97.73 1.96 3992 1x39-1x42

2x100
Baseline

97.96 39.29 2971
97.76 35.01 3112
97.97 39.00 3019

2x100
Pruned

0.5-0.9
98.08 15.99 3066 1x61-1x80
98.01 15.65 3107 1x61-1x87
98.04 17.67 2951 1x63-1x86

2x200
Baseline

98.14 1800.37 424758
98.04 1800.18 401361
97.95 781.90 58656

2x200
Pruned

0.5-0.5
97.96 18.66 3029 1x56-1x144
98.13 24.65 3600 1x57-1x144
98.04 28.19 2997 1x59-1x140

6x100
Baseline

97.60 474,76 15261
97.77 1800.02 798306
97.67 818.19 14334

6x100
Pruned

1.0-0.1

97.52 231.02 3173
1x39-1x82

2x61-1x60-1x54

97.47 79.22 7566
1x44-1x71-1x49

-1x53-1x49-1x45

97.21 44.24 11417
1x37-1x72-1x48

-1x51-1x48-1x46

Table 1: Results using ∆ = 5.

able to find one adversarial example in the given time
limit. Unsurprisingly, for all the MIPs correspond-
ing to pruned networks, Gurobi was able to find an
adversarial example within a time considerably in-
ferior to the 1800 seconds limit. Moreover, all the
adversarial examples obtained using a pruned net-
work were also adversarial for the unpruned coun-
terpart with the same starting architecture. This em-
pirically proved that, in our setting, pruning can be
even used to solve the adversarial example problem
for the unpruned counterpart and it is again a good
indication that pruning does not heavily affect the re-
sulting MIP. This is in accordance with the ML liter-
ature, where there is a good consensus that not-too-
aggressive pruning of ANNs does not significantly
impacts their robustness [58, 59], and therefore the
existence—or not—of the counter-example in our
application. Finally, the times reported in Table 2
show that the speed-up is still very significant even
with the new value of ∆ and that in some cases the
Baseline is not able to find any adversarial example.

We conclude this section by noting that additional
experiments, which are not included in this paper
for the sake of brevity, have shown that a high set-
ting of the OBBT parameter [11] of Gurobi is cru-
cial to obtain good performances both for pruned
and unpruned instances, confirming the importance
of structured pruning.

∆ = 20

Arch λ-α Time Nodes Found

2x50
Baseline

1.85 1 YES
5.06 1221 YES
1.66 1 YES

2x50
Pruned

0.5-0.9
2.73 127 YES
2.90 1128 YES
0.64 1 YES

2x100
Baseline

17.35 1217 YES
147.67 7532 YES
102.67 3252 YES

2x100
Pruned

0.5-0.9
6.66 2079 YES
6.03 127 YES
2.16 1 YES

2x200
Baseline

439.17 40075 YES
563.24 17597 YES
508.14 6014 YES

2x200
Pruned

0.5-0.5
2.56 1 YES

18.65 5433 YES
9.60 1202 YES

6x100
Baseline

1800.06 138918 NO
1800.03 237328 NO
1800.10 184954 NO

6x100
Pruned

1.0-0.1
15.53 1 YES

7.51 1 YES
129.70 27045 YES

Table 2: Results using ∆ = 20.

6. Conclusions and future directions

This paper has demonstrated the effectiveness of
pruning artificial neural networks in accelerating the
solution time of mixed-integer programming prob-
lems that incorporate ANNs. The choice of the
sparsity structure for pruning plays a crucial role in
achieving significant speed-up, and we argued that
structured pruning is superior to unstructured one.
Further research in this area can focus on gaining
a deeper understanding of which sparsity structures
are most suitable for improving the solution time
of MIPs. Exploring the trade-off between pruning-
induced sparsity and solution quality is another in-
teresting avenue for future investigations. By ad-
vancing our understanding of pruning techniques and
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their impact on MIPs, we can enhance the efficiency
and scalability of embedding ANNs in optimization
problems.
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