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ABSTRACT
In this paper we consider a global optimization problem, where the objective func-
tion is supposed to be Lipschitz-continuous with an unknown Lipschitz constant. 
Based on the recently introduced BIRECT (BIsection of RECTangles) algorithm, 
a new diagonal partitioning and sampling scheme is introduced. 0ur framework, 
called BIRECT-V (where V stands for vertices), combines bisection with sampling 
two points, where in the initial hyper-rectangle, the points are located 1/3 and 1 of 
the way along the main diagonal. Contrary to most DIRECT-type algorithms, where 
the evaluation of the objective function at vertices is not suitable for bisection, this 
strategy combined with bisection provides much more comprehensive information 
about the objective function. However, newly created sampling points may coincide 
with old ones at some shared vertices, leading to additional re-evaluations of the 
objective function, which increases the number of function evaluations per iteration. 
To overcome this situation, we suggest a modification of the original optimization 
domain to obtain a good approximation to the global solution. The experimental 
investigation shows that this modification has a positive impact on the performance of 
the BIRECT-V algorithm, and the proposal is a promising global optimization algo-
rithm compared to the original BIRECT and two popular DIRECT-type algorithms on a 
set of test problems, and performs particularly well for high dimensional problems.
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1. Introduction

Global optimization methods have long had a prominent position in many fileds. They
are becoming more popular tools due to the variety and nature of the problems they
may be utilized to solve. According to the method used to find the optimum, global
optimization approaches can generally be divided into two major categories: determin-
istic [5,9,10,39] and stochastic methods [16,52]. In black-box optimization cases, the
development of derivative-free global optimization algorithms has been forced by the
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need to optimize various and often increasingly complex problems in practice because
the analytic information about the objective function is unavailable.

In this paper, we consider the global optimization problem of the form

min
x∈D

f(x), (1)

where the feasible domain is an n-dimensional hyper-rectangle D = [a,b] = {x ∈
Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}, a, b ∈ Rn and the objective function f(x) is usually
assumed to be Lipschitzian with maybe unknown Lipschitz constant L, 0 < L < ∞,
i.e.,

|f(x)− f(y)| ≤ L ‖x− y‖ , x,y ∈ D. (2)

The norm ‖.‖ denotes usually the Euclidean norm, but other equivalent norms can
also be used [1,24,29]. The function f(x) is also supposed to be non-differentiable,
therefore numerical methods using gradient information can not be used to solve this
kind of problems.

Various methods have been proposed to solve optimization problem (1)- (2) using
different domain partition schemes (see [9,36,52]). In global optimization, a feasible
domain is usually a hyper-rectangle, therefore, most DIRECT-type methods use hyper-
rectangular partitions. However, other types of sampling and partitioning schemes
may be appropriate to some optimization problems, e.g., simplicial partitioning based
on one-dimensional trisection or bisection and sampling at center (DISIMPL-C [28]) or
vertices (DISIMPL-V [29]). Other diagonal sampling schemes ([33–37]) use two points
per hyper-rectangle instead of one point, e.g., adaptive diagonal curves (ADC algo-
rithm [35]) uses hyper-rectangular partitioning based on one-dimensional trisection
and evaluating the objective function at two vertices of the main diagonals. A detailed
review of different sampling and partitioning schemes are summarized in [45] and the
references given therein.

DIRECT (DIvide RECTangles) algorithm developed by Jones [11,12] is one of the
most widely used partitioning-based algorithms, due to its simplicity, and it only
needs one algorithmic parameter ([1–4,6,7]. The algorithm is an extension of classical
Lipschitz optimization (see, e.g., [24–27,38]), where the need to know the Lipschitz
constant is eliminated. However, DIRECT algorithm may converge slowly in case it
gets close to the optimum, and so requiring to divide incessantly nearby the location
of this optimum. The reason is that hyper-rectangles that are not potentially optimal
(having bad function values at their centers), may contain better function values will be
selected in the next iterations. This procedure influences the selection of potentially
optimal hyper-rectangles (having better function values) which need to be selected
first.

Since its introduction, various modifications were introduced to improve the per-
formance of DIRECT [2–4,6,7,11–13,17–23]. Recently, various DIRECT-type extensions
and modifications have been proposed, aiming to improve the selection of potential
optimal hyper-rectangles, or by using different partitioning techniques leading to even
more effective DIRECT-type algorithms [40–47].

Contrary to the most DIRECT-type algorithms which use central sampling strategy,
the use of two points instead of one point in the sampling process as many diagonal
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type algorithms, may reduce the probability for a hyper-rectangle with the global
minimum to have a bad function value since the two (good point and bad function
value) are in the same hyper-rectangle.

BIRECT (BIsection of RECTangles) algorithm was initially developed by Paulavičius
et al. [30]. The algorithm samples two points (located 1/3 and 2/3) along a diagonal
per hyper-rectangle, and uses bisection instead of trisection. Many arguments revealed,
in a recent review [13,14], that BIRECT gives very promising results compared to other
DIRECT-type algorithms.

Since the original BIRECT algorithm was introduced, the authors in [31] suggested
a two-phase globally-biased extensions from [29] to the BIRECT algorithm called
Gb-BIRECT, and a hybridized BIRECT algorithm Gb-BIRMIN is constructed by com-
bining the globally-biased framework and the local optimization. They also developed
in [31] a version of BIRECT called BIRECT-l which differs from BIRECT in that, only one
hyper-rectangle is selected, even if several hyper-rectangles are potentially optimal.
This paper introduces a variant of the original BIRECT by modifiying the location of
the sampling points. Each hyper-rectangle is described by two sampling points, whose
position on the corresponding diagonal are located at one-third and at the opposite
farthest vertex. In contrast to the most DIRECT-type algorithms, where the evalua-
tion of the objective function at vertices is not favorable for bisection, this sampling
strategy, combined with bisection, provides a better approximation of the objective
function than central-sampling methods. Nevertheless, it is observed that the objec-
tive function could be re-evaluated more than twice at some shared vertices, leading
to a significant increasing of function evaluations. This strategy is typical for diagonal-
based algorithms which produce many unnecessary sampling points of the objective
function. Every vertex where the function has been evaluated can belong up to 2n

hyper-rectangles [15,34,38]. Especially the algorithm takes significantly longer than
usually to find a solution close to a global optimum.

One of the possible suggestions to overcomes these drawbacks, is to consider a partic-
ular vertex database to avoid re-evaluation of the objective function [35]. The function
is evaluated at every vertex only once and then the result is directly retrieved from
the database when required [15,34,38]. The second alternative is to group more hyper-
rectangles having approximatively the same size in the same group, which effectively
reduce the set of selected potentially optimal hyper-rectangles. Some suggested meth-
ods are summarized in [13,31,40,45]. This possibilty is not considered in the present
paper, and can be observed, for example, in the case of BIRECT-Vl, since it selects only
one potentially optimal hyper-rectangle from each group. This situation is favorable
especially when a good objective function value attained at the vertex can belong to
many (up to 2n) hyper-rectangles. One possibility is to consider an appropriate (tight)
Lipschitzian lower bound, since we observed that Eq. (5) is much more in favor of
BIRECT than of BIRECT-V. Another alternative which seems to be very attractive is
to modify the original optimization domain, for some test problems, to obtain a good
approximation to the global solution. The influence of such modification to the per-
formance of the BIRECT-V algorithm is as much efficient as less function evaluations
is required to get close to a good solution.

It is clear that this last alternative does not overcome the situation in a proper way,
but at least it helps to reduce considerably the number of function evaluations.

Therefore, the main purpose of this paper is to focuse on this particular scheme
(sampling at vertices) without any additional parameters to the BIRECT-V algorithm
framework, by investigating this new approach, and discuss its advantages and draw-
backs.
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Consequently, the contribution of this paper is summarized as follows:

• A new modified BIRECT algorithm is suggested, named BIRECT-V.
• A new variation of the BIRECT-V algorithm, called BIRECT-Vl is also introduced.
• The new approach incorporates bisection with sampling on diagonal vertices

which is not commonly a used scheme in the most existing BIRECT-type algo-
rithms.
• Numerical Comparison on test problems shows advantages of the approach.
• It is shown that a modification in the original domain can have a positive impact

on the performance of the BIRECT-V algorithm. .

The remainder of this paper is organized as follows. In Sect. 2, we outline the working
principles of the original BIRECT. This will make more comprehensible the ideas behind
the BIRECT-V algorithm to be proposed. A description of the new sampling and parti-
tioning scheme is given in Sect. 2.2. Implementation of the BIRECT-V algorithm along
with the other DIRECT-type algorithms is given in Sect. 3. Numerical investigation and
comparison with BIRECT, BIRECT-l, and two DIRECT-type algorithms on 54 variants
of Hedar test problems [8] is presented in Sect. 3.2. Finally, in Sect. 4 we conclude the
paper with some remarks and directions for a future research.

2. Methodology

In this section we start by giving a description of the principle of the sampling and
division strategies retained from the original BIRECT algorithm. Then we introduce our
suggested method with emphasis on the sampling strategy. We conclude this section
by an illustration of this new scheme.

2.1. From BIRECT to BIRECT-V

The original BIRECT (BIsection of RECTangles) algorithm, developed by Paulavičius
et al. [30], is based on a diagonal space-partitioning technique and includes two main
procedures: sampling on diagonals and using bisection of hyper-rectangles. The al-
gorithm begins by scaling the initial search space D to the unit hyper-cube D̄,
where all the variables are returned. At the initialization step of BIRECT, f(x) is
evaluated at two points “lower” l = (l1, . . . , ln) = (1/3, . . . , 1/3)T and “upper”
u = (u1, . . . , un) = (2/3, . . . , 2/3)T located on the main diagonal of the normalized
domain D̄, equidistant between themselves and the endpoints of the diagonal. The
hyper-cube is then partitioned into a set of smaller hyper-rectangles and f(x) is evalu-
ated over each hyper-rectangle at two diagonal points by following a specific sampling
and partitioning scheme obeying the two following rules.

2.1.1. Selection rule

Let the partition of D̄ at iteration k be defined as

Pk = {D̄i : i ∈ Ik},

where D̄i = [ai,bi] = {x ∈ Rn : li ≤ x ≤ ui,∀i ∈ Ik}, li, ui ∈ [0, 1] and Ik is the
set of indices identifying the subsets defining the current partition Pk. At the generic
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kth iteration, starting from the current partition Pk of D̄i, a new partition Pk+1 is
obtained by bisecting a set of potentially optimal hyper-rectangles from the previous
partition Pk. The identification of a potentially optimal hyper-rectangle is based on
the lower bound estimates for f(x) over each hyper-rectangle by fixing some rate of
change L̃ > 0 (which has a role analogous to a Lipschitz constant). A hyper-rectangle
D̄j , j ∈ Ik. We call potentially optimal a hyper-rectangle j if the following inequalities
hold

min
{
f(lj), f(uj)

}
− L̃δj ≤ min

{
f(li), f(ui)

}
− L̃δi, ∀i ∈ Ik (3)

min
{
f(lj), f(uj)

}
− L̃δj ≤ fmin − ε|fmin|, (4)

where the measure (distance, size) of the hyper-rectangle is given by

δi =
2

3
‖bi − ai‖, (5)

ε > 0 is a positive constant, and fmin is the current best known function value. A hyper-
rectangle j is potentially optimal if the lower bound for f computed by the left-hand
side of (3) is optimal for some fixed rate of change L̃ among the hyper-rectangles of the
current partition Pk. Inequality (4) ensures guarding against an excessive emphasis on
the local search [11].

2.1.2. Division and sampling rule

After the inital covering, BIRECT-V moves to the future iterations by partitioning
potentially optimal hyper-rectangles and evaluating the objective function f (x) at
their new sampling points.

New sampling points are obtained by adding and subtracting from the previous
(old) ones a distance equal to the half-side length of the branching coordinate. This
way, old sampled from the previous iterations are re-used in descendant subregions.

A vital aspect of the algorithm is how the selected hyper-rectangles D̄i, i ∈ Ik
are divided. For every potentially optimal hyper-rectangle the set of the maximum
coordinates (edges) is computed, and every potentially optimal hyper-rectangle is bi-
sected (divided in halves of equal size), along the coordinate (branching variable xbr,
1 ≤ br ≤ n), having the largest side length (dibr) and by first considering the coordi-
nate directions with the lowest index j (if more coordinates may be chosen), where
function values are more promising, [51]

br = min

{
arg max

1≤j≤n
=
{
dij =

∣∣bij − aij∣∣}
}
, (6)

The partitioning process continues until a prescribed number of function evaluations
has been performed, or a stopping criterion is satisfied. The best (smaller) found
objective function value f(x̄) over all sampled points of the final partition, and the
corresponding generated point x̄, provide an approximate solution to the problem.

Further details and comprehensive description of the original BIRECT algorithm can
be found in Paulavicius et al. [30].
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2.2. Description of the new sampling scheme

In this subsection, we present the basic idea of the new sampling scheme in a more
general setting. An illustration is given in a two-dimensional example in Fig. ?? and
Fig. ??. Since our new method is based on the original BIRECT algorithm, BIRECT-V
follows the same hyper-rectangle selection and subdivision procedure, unlike the sam-
pling method which is done in a different way.

In the initialization phase, BIRECT-V normalize the search domain to an n-
dimensional unit hyper-rectangle D̄1

0, and evaluates the objective function f(x) at
two different diagonal points: “third” ti = (ti1, . . . , t

i
n) = (1/3, . . . , 1/3)T and “vertex”

vi = (vi1, . . . , v
i
n) = (1, . . . , 1)T . The scaled hyper-rectangle is considered as the only

trivial selected POH.
In the succeeding iterations, POHs are selected and bisected in essentially the same

way as BIRECT, with the change that in inequalites (3) and (4), the sampled points li

and ui are replaced by ti = li and vi = ui + 1
3‖b

i − ai‖ respectively, and using the
same measure of the hyper-rectangle given by Eq. (5).

Selected POHs are divided with the restriction that only along the coordinate
(branching variable xbr, 1 ≤ br ≤ n), having the largest side length (dibr), and by
first considering the coordinate directions with the smallest index j (if more coordi-
nates may be chosen). This restriction guarantees that the hyper-rectangle will reduce
on every dimension. Potentially optimal hyper-rectangles are shown in the left-side of
Fig. 3, and correspond to the lower-right convex hull of the set of points.

Formalizing our sampling and partitioning schemes in a more general case. Suppose
that at iteration k, D̄i

k = [ai,bi] = {x ∈ D̄ : 0 ≤ aij ≤ xj ≤ bij ≤ 1, j = 1, ..., n, ∀i ∈ Ik}
is a hyper-cube. Since all the variables (xj , j = 1, ..., n) of D̄i

k have the same side

lengths (dij =
∣∣∣bij − aij∣∣∣, j = 1, ..., n), D̄i

k is bisected (divided in halves) across the

middle point 1
2(ai1 + bi1) of the coordinate direction with the smallest index (xj , j = 1)

into two hyper-rectangles D̄i+1
k , and D̄i+2

k of equal side lengths (see Fig. ??, iteration
1 for illustration).

After D̄i
k is bisected, the first iteration is performed by sampling two new points

from the old ones.
The new point ti+2 is obtained by adding or substracting from the old point one

third side-length dibr/3 to the lower coordinate of the branching variable. Also the new
point vi+1 is obtained from the old one by subtracting or adding the whole side length
dibr, while keeping all the rest of coordinates issued from ti and vi unchanged.

In the case where D̄i
k is a hyper-rectangle, new sampled points are obtained, after

distinguishing the branching variable (br), by adding or substracting the required side
length from the coordinate on which we branch, pursuant the following rule:

If tij ¡ vij , then

ti+2
br = tibr +

dibr

3
, and vi+1

br = vibr − dibr, (7)

otherwise, i.e., if tij ¿ vij , then

ti+1
br = tibr −

dibr

3
, and vi+2

br = vibr + dibr. (8)

The two new points are obtained as follows:
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ti+2 = (ti1, . . . , t
i
br ±

dibr
3 , . . . , t

i
n) = (ti1, . . . , t

i
br ±

|bi1−ai
1|

3 , . . . , tin),

and vi+1 = (vi1, . . . , v
i
br ∓ dibr, . . . , vin) = (vi1, . . . , v

i
br ∓

∣∣bi1 − ai1∣∣, . . . , vin).

Each descending hyper-rectangle D̄i+1
k and D̄i+2

k retainss one sampled point ti and
vi, respectively from their ancestor D̄i

k, At the same time, old sampling points are
re-used in descending hyper-rectangles as ti+1 = ti and vi+2 = vi.

Figure 1. Description of the initialization and the first three iterations used in the new sampling scheme

on on the Branin test problem. Each iteration is performed by sampling two new points (blue color) issued
from the old ones (red color) and bisecting potentially optimal hyper-rectangles (shown in gray color) along

the coordinate (branching variable xbr, 1 ≤ br ≤ n), having the largest side length (dibr, where dij =
∣∣∣bij − aij∣∣∣,

j = 1, ..., n) and by first considering the coordinate directions with the smallest index j (if more coordinates

may be chosen).
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More precisely:

ti+1 = ti =
(
ti1, . . . , t

i
n

)
= (ai1 +

1

3

∣∣bi1 − ai1∣∣ , . . . , ain +
1

3

∣∣bin − ain∣∣)
= (ai+1

1 +
2

3

∣∣bi+1
1 − ai+1

1

∣∣ , . . . , ai+1
n +

1

3

∣∣bi+1
n − ai+1

n

∣∣),
and

vi+2 = vi =
(
vi1, . . . , v

i
n

)
=
(
ai1 +

∣∣bi1 − ai1∣∣ , . . . , ain +
∣∣bin − ain∣∣)

=
(
ai+2

1 +
∣∣bi+2

1 − ai+2
1

∣∣ , . . . , ai+2
n +

∣∣bi+2
n − ai+2

n

∣∣) .
The BIRECT-V algorithm continues in this way by sampling two new points in

each potentially optimal hyper-rectangle, by adding and subtracting the required side-
length from the old points, and bisecting through the longest coordinate until some
stopping rule is satisfied. After subdivision, each rectangle resulting from the previous
iteration retains one point from its predecessor.

Notice that the sampled points vi+1 and vi+1 in D̄i+1
k belong to the same diagonal

(see Fig. 1 for illustration). This is a straightforward consequence of Theorem 1 in
[30]. The same conclusion holds for hyper-rectangle D̄i+2

k .
Finally, let us emphasize that, in contrast to the naming convention used in [30]

of the sampling points as lower (l) and upper (u), to make differentiate two points
belonging to the same hyper-rectangle, we can assume without any confusion that the
new points are affected as third t and vertex v. In this way, the two points are always
identified during all the optimization process even if they are lower or upper.

It is also of importance to stress again, that our new sampling scheme differs in its
unique way on how new sampled points are created by using different side-lengths, in
contrast to direct-type algorithms and diagonal sampling strategies, where they use
the same side-lengths.

2.2.1. Illustration

Let t1 = (t11, t
1
2) = (1/3, 1/3) and v1 = (v1

1, v
1
2) = (1, 1)T denote two points lying

on the main diagonal (see initialization in Fig. 1) of hyper-rectangle D̄1
0 = [a1,b1] =

[a1
1, b

1
1]× [a1

2, b
1
2].

Without loss of generality, we restrict our illustration for two iterations only, the
other situations are the same. In (Fig. 1, iteration 2), D̄3

2 and D̄4
2 are POHs. For

hyper-rectangle D̄3
2, as there is only one longest side (coordinate j = 2) with side

length d3
2 = 1. Therefore using the rule in Eq. 7, the new sampling points t7 and v6

are expressed as follows:

t7 =
(
t71, t

7
2

)
=

(
t31, t

3
2 +

d3
2

3

)
=

(
2

3
,
2

3

)
,

v6 =
(
v6

1, v
6
2

)
=
(
v3

1, v
3
2 − d3

2

)
= (1, 0) .

For hyper-rectangle D̄4
2, we use the second rule given by Eq. 8. The new sampling
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Figure 2. Illustration of selection, sampling and partitioning schemes ranging from iteration 4 to 5 on the

Branin test problem. A situation where two adjacent hyper-rectangles share the same vertex. After bisection

of the lower-left hyper-rectangle in iteration 4, the new created point fall exactly with the one in the adjacent
hyper-rectangle. This point is marked with a circle in iteration 5

points are located at (see Fig. 1, iteration 2):

t8 =

(
t41 −

d4
1

3
, t42

)
=

(
t41 −

1

3
, t42

)
=

(
1

6
,
2

3

)
,

v9 =
(
v4

1 + d4
1, v

4
2

)
=
(
v4

1 + 1, v4
2

)
=

(
1

2
, 1

)
.

However, in Fig. 2, we encounter a situation where two adjacent hyper-rectangles
share the same vertex. After bisection of the lower-left hyper-rectangle in iteration 4,
the new created point fall exactly with the one in the adjacent hyper-rectangle. This
point is marked with a circle in iteration 4. This situation is shown in (right-side of
Fig. 3), where we distinguish three sampled points at which the objective function has
been evaluated twice at this vertex. Such a difference becomes more pronounced as
the optimization proceeds.

2.2.2. Main steps of the BIRECT-V algorithm

The BIRECT-V algorithm main steps are shown in Algorithm 1, where the inputs are
problem (f), optimization domain (D), and some stopping criteria: required tolerance
(εpe), the maximal number of function evaluations (Mmax), and the maximal num-
ber of iterations (Kmax). BIRECT-V returns the value of the objective function found
(fmin), and the point (xmin) as well as the algorithmic performance measures: percent
error (pe), number of function evaluations (m), and number of iterations (k) after
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Figure 3. Geometric interpretation of potentially optimal hyper-rectangles using the BIRECT-V algorithm on
the Branin test function in the seventh iteration: (right side), POHs correspond to the lower-right convex hull

of points marked in blue color (left side). The position of six points (values of f(x)) obtained in BIRECT can be

clearly distinguished. We observe three sampled points at which the objective function has been re-evaluated.

termination.
The BIRECT-V algorithm begins the initialization phase by the normalization of the

feasible domain (D), evaluating the objective function (f) at the two first sampling
points t1 and v1, measuring and setting stopping conditions (see Algorithm 1, line 2-
4). Line 5-21 of Algorithm 1 describes the main while loop, which is executed until
one of the stopping conditions specified is met. As explained in the previous section
(see Subsubsect. 2.2.1), the BIRECT-V algorithm, at the beginning of each iteration,
identifies the set of POHs (see Algorithm 1, line 7, excluding steps 7 (highlighted in
magenta color), which are performed only on the BIRECT-Vl algorithm).(see Algo-
rithm 1, line 6), then bisects all POHs ( Algorithm 1, line 11) and creates the new
sampling points ti and vi of generated hyper-rectangles (see Algorithm 1, line 12).
Finally, BIRECT-V found a solution, and the performance measures are returned. The
structure of BIRECT-V is outlined in Algorithm ??.

2.2.3. Convergence

Since BIRECT-V is based on the ideas of BIRECT, therefore the convergence of BIRECT-V
could be determined as many as other DIRECT-V-type algorithms [6,7,11,12], in the sens
of the everywhere-dense type of convergence (see [32]). In addition, the continuity of
the objective function in the neighborhood of global minima is a sufficient assumption
which guarantees the convergence.

3. Experimental results and discussion

This section provides a description of the experimental results, their interpretation as
well as the experimental conclusions.

We compare the performance of our newly introduced modification: BIRECT-V, and
its variant called BIRECT-Vl, which differs from BIRECT-V in that, if several rectan-
gles are tied for being potentially optimal, only one of them is selected. with the
original BIRECT algorithm, BIRECT-l [30,31], and two other well-known DIRECT-type
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Algorithm 1 The BIRECT-V algorithm

1: BIRECT-V (f , D, opt);
Input: Objective function: f , search-space: D, tolerance: εpe, the maximal

number of function evaluations: Mmax, and the maximal number of iterations:
Kmax;

Output: Global minimum: fmin, global minimizer: xmin, and performance
measures: m, k and pe (if needed);

2: Normalize the search space D to be the unit hyper-cube D̄;
3: Initialize t1 = (1/3, . . . , 1/3)T and v1 = (1, . . . , 1)T , m = 1, k = 1, Ik = {1} and
pe; B pe defined in Eq. (9)

4: Evaluate f(t1) and f(v1), and set fmin = min
{
f(t1), f(v1)

}
, xmin =

argmin
x∈{ti,vi}

f(x);

5: while pe > εpe , m < Mmax, k < Kmax do
6: Identify the index set Pk ⊆ Ik of potentially optimal hyper-rectangles (POHs)

applying Inequations (Ineq. (3); Ineq. (4));
7: Select at most one POH from each group ; // Only in BIRECT-Vl

8: Set Ik = Ik\{Pk};
9: for i ∈ Pk do

10: Select the branching variable br (coordinate index) using Eq. (6);
11: Divide D̄i into a two new hyper-rectangles D̄m+1 and D̄m+2;
12: Create the new sampling points tm+1 and vm+2; Bseeillustration. 2.2.1;
13: Evaluate f(tm+1) and f(vm+2)
14: Set fm+1

min = min
{
f(tm+1), f(vm+1)

}
and fm+2

min =

min
{
f(tm+2), f(vm+2)

}
;

15: Update the partition set Ik = Ik ∪ {m+ 1,m+ 2};
16: if fm+1

min ≤ fmin or fm+2
min ≤ fmin then

17: Update fmin and xmin;
18: end if
19: Update performance measures: k, m and pe;
20: end for
21: end while
22: Return : fmin, xmin and algorithmic performance measures: m, k and pe.
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algorithms [6,7,11,12].

iteration:    1   fmin:    4.6082847879    f evals:        2

.

.

iteration:   50   fmin:    3.2479917988    f evals:       12

.

.

iteration:  150   fmin:    0.0007342074    f evals:       14

.

.

iteration:  170   fmin:    0.0002239623    f evals:        4

.

.

iteration:  188   fmin:    0.0002239623    f evals:        8

iteration:  189   fmin:    0.0002225978    f evals:       10

iteration:  190   fmin:    0.0000152596    f evals:       10

.

iteration:   50   fmin:    3.2479917988    f evals:      522

iteration:  133   fmin:    0.0042301342    f evals:     2028

iteration:  134   fmin:    0.0040898808    f evals:     1294

iteration:  135   fmin:    0.0039448443    f evals:     2422

iteration:  136   fmin:    0.0037944837    f evals:     2482

iteration:  150   fmin:    0.0007342074    f evals:     1746

.

iteration:  189   fmin:    0.0002225978    f evals:     2430

iteration:  190   fmin:    0.0000152596    f evals:     3306

Figure 4. Iteration progress of the BIRECT-Vl algorithm on the left-hand side, and BIRECT-V on the right-hand

side, while solving Ackley (No. 3, n =10, from Table 3) test problem.

3.1. Implementation

As the BIRECT-V algorithm is based on the original BIRECT algorithm, we use the
same measure of the size of the hyper-rectangle. Note that in the DIRECT algorithm,
this size is measured by the Euclidean distance from its center to a corner, while in
DIRECT-l, it corresponds to the infinity norm, permitting the algorithm to collect
more hyper-rectangles having the same size. In BIRECT-Vl, the number of potentially
hyper-rectangles in each group, to be further divided, is reduced to at most one hyper-
rectangle.

In Table A1 (see Appendix A) are listed the test problems from [8] used in this com-
parison which consists in total of 54 global optimization test problems with dimensions
varying from n = 2, to n = 10, with the main attributs: problem number, problem
name, dimension (n), faisible domain (D), number of local minima, and known mini-
mum (f∗). Note that these problems could also be found in [49], and in a more detailed
version in [43] and related up-to-date versions.

Some of these test problems have several variants, e.g. (Bohachevsky, Hartmann,
Shekel), while others (Ackley, Dixon and Price, Levy, Rastrigin, Rosenbrock, Schwefel,
Sphere, Sum squares, Zakharov) and can be tested for different dimensionality.

Finally, notice that it may occurs occasionnally that at the initial steps of the
algorithm, the sampling is performed near the global minimizer. In this particular
situation, the feasible domain was modified the same way as in [30], i. e., the upper
bound is increased. For clarity, the modified test problems are marked with an asterisk.

Implementation and comparison of the new introduced scheme with the original
BIRECT together with other DIRECT-type algorithms were performed in MATLAB pro-
gramming language, using MATLAB R2016a on EliteBook with the following hard-
ware settings: Intel Core i5-6300U CPU @ 2.5 GHz, 8GB memory and running on
the Windows 10 operating system (64-bit). Potentially optimal hyper-rectangles are
identified using modified Graham’s scan algorithm. In our implementation, the output
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values are rounded up to 10 decimals. A test problem is considered successful if an
algorithm returns a value of an objective function which did not exceed 10−4 error,
or a minimizer xmin that achieves a comparable value in [44]. The algorithms were
stopped either when the point x̄ (noted also xmin) is generated such that the following
stopping criterion is satisfied

pe =

{
f(x̄)−f∗

|f∗| ≤ 10−4, f∗ 6= 0,

f(x̄) ≤ 10−4, f∗ = 0,
(9)

(where f∗ is the known global optimum), or when the number of function evalua-
tions exceeds the prescribed limit of 500, 000. (The maximum number of iterations
was set to 100, 000 but usually it is supposed to be unlimited). The comparison is
based on two criteria : the best found function value f(x̄) and the number of func-
tion evaluations (f.eval.). For each test problem, the average and median numbers of
function evaluations are shown at the bottom of each table. The best number of func-
tion evaluations is shown in bold font in Table 3. The number of iterations, and the
execution time (measured in seconds) are only reported in Tables 1 and 2 in the link:
https://data.mendeley.com/datasets/x9fpc9w7wh.

3.2. Discussion

In this subsection, we discuss the efficiency of the new introduced BIRECT-V algorithm
and compare it with the original BIRECT, BIRECT-l (see [30,31]) and two DIRECT-type
algorithms. In Table 1, we report the results obtained by BIRECT-V and BIRECT-Vl

when the algorithm is running in the usual way without additional parameters.
In Table 2 are reported the results when the best found objective function value

f(x̄) found by the BIRECT algorithm is used as a known optimal (minimal) value (f∗).
In Table 3, are summarized the experimental results for all tested algorithms, and
compared in the case where the original domain (D) was modified. Also, the results
related to this comparison are presented in Table B1, Appendix B.

First, it is easy to observe, from Table 1, that our proposed partitioning scheme
requires, most often, more function evaluations than in BIRECT and BIRECT-l, and
sometimes did not reach a comparable minimum function value to that obtained in
BIRECT for certain test problems. This seems inappropriate and makes the compari-
son not in favor of our results.This is the case, for example, of Ackley test problems
(No.1–3). At the same time, it requires less function evaluations than in DIRECT and
DIRECT-lalgorithms. Also, the median value is smallest using BIRECT-Vl (921.000),
compared to BIRECT-V (1681.000), DIRECT-l (1752) and DIRECT (3810) algorithms.

Table 1.: Preliminary results during the first run of the
BIRECT-V algorithm

Problem Optimum BIRECT-Vl BIRECT-V

No. f∗ f(x̄) f.eval. f(x̄) f.eval.

1 0.0 7.42× 10−5 198 7.42× 10−5 342
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Table 1 Continued

Problem Optimum BIRECT-Vl BIRECT-V

No. f∗ f(x̄) f.eval. f(x̄) f.eval.

2 0.0 9.17× 10−5 422 9.17× 10−5 3514
3 0.0 9.69× 10−5 984 9.69× 10−5 70690
4 0.0 8.77× 10−5 640 8.77× 10−5 1034
5 0.0 7.14× 10−5 676 7.14× 10−5 656
6 0.0 5.96× 10−5 692 5.96× 10−5 694
7 0.0 7.58× 10−5 902 7.58× 10−5 1062
8 0.0 6.10× 10−5 234 6.10× 10−5 254
9 0.39789 0.39790 656 0.39790 492
10 0.0 9.82× 10−5 2320 9.82× 10−5 1910
11 0.0 8.92× 10−5 940 5.48× 10−5 1432
12 0.0 9.34× 10−5 28034 9.36× 10−5 23412
13 0.0 8.79× 10−3 > 500000 4.73× 10−4 > 500000
14 −1.0 −0.99999 180 −0.99999 1082
15 3.0 3.00000 28 3.00000 28
16 0.0 5.13× 10−5 8288 5.13× 10−5 8950
17 −3.86278 −3.86244 200 −3.86244 208
18 −3.32237 −3.32214 542 −3.32214 542
19 −1.03163 −1.03154 202 −1.03154 334
20 0.0 1.44× 10−5 188 1.44× 10−5 226
21 0.0 7.56× 10−5 674 7.56× 10−5 1000
22 0.0 9.27× 10−5 2082 9.27× 10−5 18676
23 0.0 2.71× 10−5 148 2.71× 10−5 208
24 −1.80130 −1.80130 184 −1.80130 314
25 −4.68736 −4.64588 > 500000 −4.68732 339818
26 −9.66015 −8.60560 > 500000 −7.55568 > 500000
27 0.0 0.00000 80890 0.00000 62368
28 0.0 4.59× 10−5 2786 4.59× 10−5 1678
29 0.0 9.15× 10−5 387440 9.15× 10−5 467200
30 0.0 0.00000 204 0.00000 204
31 0.0 0.00000 14 0.00000 16
32 0.0 0.00000 204 0.00000 210
33 0.0 0.00000 14360 0.00000 14348
34 0.0 9.65× 10−5 698 9.65× 10−5 718
35 0.0 2.41× 10−5 2444 2.41× 10−5 2972
36 0.0 5.42× 10−5 16506 5.42× 10−5 39846
37 0.0 5.64× 10−5 446 5.64× 10−5 580
38 0.0 9.49× 10−5 63908 9.49× 10−5 23022
39 0.0 1.79× 10−8 2938 3.42× 10−5 134562
40 −10.15320 −10.15234 6618 −10.15234 5866
41 −10.40294 −10.40201 2298 −10.40201 2604
42 −10.53641 −10.53544 2498 −10.53544 3324
43 −186.73091 −186.72944 806 −186.72944 1684
44 0.0 1.15× 10−5 112 1.15× 10−5 190
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Table 1 Continued

Problem Optimum BIRECT-Vl BIRECT-V

No. f∗ f(x̄) f.eval. f(x̄) f.eval.

45 0.0 2.87× 10−5 392 2.87× 10−5 1400
46 0.0 5.74× 10−5 1054 5.74× 10−5 27566
47 0.0 8.74× 10−5 248 8.74× 10−5 280
48 0.0 3.97× 10−5 1354 3.97× 10−5 1776
49 0.0 9.35× 10−5 3394 9.35× 10−5 9244
50 −50.0 −49.99511 1402 −49.99511 2112
51 −210.0 −209.98223 168432 −209.98155 368312
52 0.0 0.00000 78 0.00000 78
53 0.0 0.00000 22498 0.00000 24150
54 0.0 1.13284 > 500000 1.21289 > 500000

Average 52485.148 58762.852
Median 921.000 1681.000

On the other hand, our framework gives better results on the basis of the best (min-
imum) function value, for almost all instances compared to both versions of BIRECT.
In general, the overall average number of objective function obtained with BIRECT-V

algorithm is approximately 61, 11% (33 out of 54). To confirm the above mentionned
fact, it can be seen from Table 2, that the situation changes completely when the
best found objective function value f(x̄) found by the BIRECT algorithm is used as a
known optimal (minimal) value (f∗). Both BIRECT-V and BIRECT-Vl algorithms give
on average significantly better results compared to the original BIRECT and BIRECT-l

algorithms.
The same as observed especially for some problems (for n = 10 case), as for

Michalewics (No.26), and Zakharov (No.54) test problem, while others have reached
exactly the known optimal (minimal) value (f∗). This is the case of the following test
problems: Perm (No.27), Power Sum (No.30), Rastrigin (No.31–33), and Zakharov
(No.52, 53). These results are confirmed by comparing the value of the global min-
imizer xmin from the libraries ([8], [49], [45]), and the value of x̄ generated by the
algorithm, (see Table B1, Appendix B.

Table 2.: BIRECT-Vl and BIRECT-V versus BIRECT and
BIRECT-l

Problem Optimum BIRECT-Vl BIRECT-V

No. f∗ f(x̄) f.eval. f(x̄) f.eval.

1 0.00000000e+ 00 2.54× 10−5 206 2.54× 10−5 360
2 0.00000000e+ 00 2.54× 10−5 438 2.54× 10−5 4196
3 0.00000000e+ 00 2.54× 10−5 1020 2.54× 10−5 73452
4 0.00000000e+ 00 8.77× 10−5 640 8.77× 10−5 1034
5 0.00000000e+ 00 4.02× 10−5 1078 4.02× 10−5 1040
6 0.00000000e+ 00 2.19× 10−5 1138 2.19× 10−5 1122
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Table 2 Continued

Problem Optimum BIRECT-Vl BIRECT-V

No. f∗ f(x̄) f.eval. f(x̄) f.eval.

7 0.00000000e+ 00 3.67× 10−5 932 3.67× 10−5 1106
8 0.00000000e+ 00 3.81× 10−6 364 3.81× 10−6 376
9 3.97890000e− 01 0.39790 656 0.39790 492
10 0.00000000e+ 00 4.36× 10−5 2568 4.36× 10−5 2182
11 0.00000000e+ 00 4.84× 10−5 1268 3.31× 10−5 1472
12 0.00000000e+ 00 5.99× 10−5 28368 4.78× 10−5 23902
13 0.00000000e+ 00 8.79× 10−3 > 500000 4.73× 10−4 > 500000
14 −1.00000000e+ 00 −0.99999 180 −0.99999 1082
15 3.00000000e+ 00 3.00000 28 3.00000 28
16 0.00000000e+ 00 4.61× 10−7 8456 4.61× 10−7 9162
17 −3.86278000e+ 00 −3.86244 200 −3.86244 208
18 −3.32237000e+ 00 −3.32214 542 −3.32214 542
19 −1.03163000e+ 00 −1.03152 168 −1.03152 274
20 0.00000000e+ 00 1.44× 10−5 188 1.44× 10−5 226
21 0.00000000e+ 00 1.12× 10−5 870 1.12× 10−5 1406
22 0.00000000e+ 00 2.84× 10−5 2642 2.84× 10−5 24978
23 0.00000000e+ 00 1.70× 10−6 244 1.70× 10−6 318
24 −1.80130000e+ 00 −1.80130 184 −1.80130 314
25 −4.68736000e+ 00 −4.645885 > 500000 −4.68732 339818
26 −9.66015000e+ 00 −7.452392 646 −7.37292 2408
27 0.00000000e+ 00 0.00000 80890 0.00000 62368
28 0.00000000e+ 00 4.59× 10−5 2786 4.59× 10−5 1678
29 0.00000000e+ 00 9.15× 10−5 387440 9.15× 10−5 467200
30 0.00000000e+ 00 0.00000 204 0.00000 204
31 0.00000000e+ 00 0.00000 14 0.00000 16
32 0.00000000e+ 00 0.00000 204 0.00000 210
33 0.00000000e+ 00 0.00000 14360 0.00000 14348
34 0.00000000e+ 00 9.65× 10−5 698 9.65× 10−5 718
35 0.00000000e+ 00 2.41× 10−5 2444 2.41× 10−5 2972
36 0.00000000e+ 00 5.42× 10−5 16506 5.42× 10−5 39846
37 0.00000000e+ 00 5.64× 10−5 446 5.62× 10−5 580
38 0.00000000e+ 00 6.41× 10−5 64414 6.41× 10−5 26050
39 0.00000000e+ 00 1.79× 10−8 2938 3.42× 10−5 134562
40 −1.01532000e+ 01 −10.15234 6618 −10.15234 5866
41 −1.04029400e+ 01 −10.40201 2298 −10.40201 2604
42 −1.05364100e+ 01 −10.53544 2498 −10.53544 3324
43 −1.86730910e+ 02 −186.72944 806 −186.72944 1684
44 0.00000000e+ 00 1.15× 10−5 112 1.15× 10−5 190
45 0.00000000e+ 00 2.87× 10−5 392 2.87× 10−5 1400
46 0.00000000e+ 00 5.74× 10−5 1054 5.74× 10−5 27566
47 0.00000000e+ 00 7.95× 10−6 274 7.95× 10−6 318
48 0.00000000e+ 00 3.73× 10−5 1678 3.73× 10−5 2218
49 0.00000000e+ 00 9.11× 10−6 3636 9.11× 10−6 9868
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Table 2 Continued

Problem Optimum BIRECT-Vl BIRECT-V

No. f∗ f(x̄) f.eval. f(x̄) f.eval.

50 −5.00000000e+ 01 −49.99218 1324 −49.99218 1942
51 −2.10000000e+ 02 −209.98223 168432 −209.96002 279324
52 0.00000000e+ 00 0.00000 78 0.00000 78
53 0.00000000e+ 00 0.00000 22498 0.00000 24150
54 0.00000000e+ 00 9.13966 1284 9.13966 1410

Average 34062.037 38966.519
Median 1037.000 1575.000

More precisely, for the case of the problems: Michalewics (No.26), we found
x(10) = [1.57079632679490], Perm (No.27), the global minimizer found is xmin =
[1,2,3,4], Power Sum (No.30), the global minimum is 0, which is attained at [2,1,3,2],
Rastrigin (No.32), and Zakharov (No.52-53) test problems, the global minimum is 0,
which is attained at xmin = 0. This situation arises occasionally, where at the early
stages of the sampling process, the algorithm samples near a global optimum. More-
over, for some test problems, e.g., (Dixon and Price (No.13), Michalewics (No.25),
Powell (No.29), Schewefel problem (No.39), Trid (No.51), as previously pointed out,
we observed an excessive number of function evaluations. In this case, we observe the
following situations :

• There is no improvement in the best function value after many consecutive itera-
tions. The algorithm suffers to get close to a global minimizer, and the objective
function seems to be stagnated around a certain value, which may be a local
optimum.
• An increasing number of evaluations (per iteration) is observed during the iter-

ation progress, as shown for e.g., in Fig. 4.

Notice that these situations are typical for diagonal-based algorithms as also it is
common for DIRECT-type algorithms. A detailed review could be found in [13].

Let us illustrate the above situations in the case of our sampling strategy. Assume
that a global minimum is near one of the two sampled points located 1/3 and 2/3
along one of the diagonals of a hyper-rectangle. This situation is in favor of BIRECT,
since it samples one of these two points per hyper-rectangle. However, for the BIRECT-V
algorithm, it may produce many unnecessary sampling points of the objective function
at vertices before this optimum is reached. Every vertex could be shared up to 2n hyper-
rectangles, where the function has been re-evaluated. In this case, the algorithm takes
significantly longer than usual to find a good solution close to the global optimum.
This can be observed from the results given in Table 3, where the two algorithms
reached approximatively, or the same best function value in some situations.

In the opposite scenario, i.e., if the global optimum point is located at a vertex
of a hyper-rectangle, BIRECT has a contrary impact to the previous situation. As the
optimization proceeds, BIRECT-V requires fewer function evaluations than BIRECT,
since many adjacent hyper-rectangles could share the same vertex.

In contrast to the previous situations, the same objective function value can be at-
tained in many different points of the feasible domain, as it is the case of the Branin test
problem (No.9), where xmin = [3.13965, 2.275] for BIRECT-V, while for BIRECT, xmin
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= [9.42383, 2.471]. This situation is current for multimodal problems (having multi-
ple global minima), symmetrical and for (convex) quadratic test problems. Therefore,
BIRECT-V requires less function evaluations, and thus leading to a much larger set
of selected potentially optimal hyper-rectangles having the same size and objective
function value.

For the problems where BIRECT-V failed to converge most often, we suggested a
modification to the original optimization domain, to obtain a good approximation rea-
sonably closer to the real (known) global optimum. The performance of the BIRECT-V

algorithm is better improved compared to the original results. It is clear that this
strategy does not overcome the situation in a proper way, but allows the algorithm
to avoid unnecessary sampling of objective function points at vertices, and reduces
considerably the number of function evaluations.

It should be stressed that we did not adopt any specific rule or known method on
how the optimization domain is modified. Just, we slightly modify the domain until we
find a minimizer close to the known solution, or at least to the one obtained by BIRECT.
For example, For the Schewefel problem (No.39), we obtained xmin =[420.9635416667]
for BIRECT-V, and xmin = [420.9686279297] for BIRECT-Vl. The domain was modified
up to [−500, 700]10, see [42–44].

Note that some results reported in Table 3, and Table ?? could be improved
more and more, e.g., Ackley problem 1, 2, and 3 could be improved to get f(x̄) =
1.27161957e− 05, with a global minimizer: xmin =[0.0000031789, ...]. Also, it is shown
that for some problems are sensitive to the domain modification, while other don’t
really require such a modification.

From table 3, the numerical results prove that both BIRECT-Vl and BIRECT-V algo-
rithms produce the best results based on the best found objective function value with
about 89% (48 out of 54) for BIRECT-Vl, and 87% (47 out of 54) for BIRECT-V. On the
other hand, we observe that the number of function evaluations is most often smallest
for the BIRECT (for about 33 out of 54 of the test problems) and (30 out of 54) for
the BIRECT-l algorithms when compared to BIRECT-V and BIRECT-Vl respectively, in
particular even for the test problems having the same minimum value.

To conclude this comparison, it is important to notice that, despite the excessive
number of evalautions, due to many unnecessary sampling points at some shared
vertices, BIRECT-Vl produces the best results in terms of the lowest function values,
and on average the almost smallest number of function evaluations compared to other
algorithms.

4. Conclusions and Future Works

This paper proposes a new diagonal partitioning strategy for global optimization prob-
lems. A modification of the BIRECT algorithm based on bisection and a novel sampling
scheme, contary to the most DIRECT-type algorithms, where the evaluation of the
objective function at vertices of hyper-rectangles are not suitable for bisection. The
new introduced BIRECT-V and its variant BIRECT-Vl were compared against BIRECT,
BIRECT-l, and two DIRECT-type algorithms [30,31]. The experimental results revealed
that the new sampling scheme gives significantly better results for almost all test prob-
lems, particularly when the faisible domain is modified. Further considerations may
be investigated using additional assumptions to improve this version. One of these
possible improvements is to evaluate the objective function only once at each vertex of
each hyper-rectangle, where the objective function values at vertices could be stored in
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a special vertex database, and thus avoiding re-evaluation of the objective function at
certain shared vertices in adjacent hyper-rectangles. Another feature, as shown during
the previous test process, is to find a specific rule about how the change in the original
optimization domain should be applied in order to improve the performance of the
BIRECT-V algorithm, (see [45,46,48,50]). Finally, the results could also be extended
to other test problems from [42]. All these observations may be considered for future
research.
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[1] Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models
in direct search. Computational Optimization and Applications. (2010), 46(2), 265-278.
DOI:10.1007/s10589-009-9283-0

[2] Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding
RECTangles algorithm for a problem in astrophysics. Journal of Optimization Theory
and Applications. (2011), 151(1), 175-190. DOI:10.1007/s10957-011-9856-9

[3] Finkel, D.E.: Global optimization with the Direct algorithm. Ph.D. thesis, North Carolina
State University (2005)

[4] Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. Journal of Global
Optimization. (2006), 36(4), 597-608. DOI:10.1007/s10898-006-9029-9

[5] Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications.
Nonconvex Optimization and Its Applications, vol. 37. Springer, Boston, MA (1999).
https://doi.org/10.1007/978-1-4757-4949-6

[6] Gablonsky, J.M.: Modifications of the Direct algorithm. Ph.D. thesis, North Carolina
State University (2001)

[7] Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. Journal
of Global Optimization. (2001), 21(1), 27-37. DOI:10.1023/A:1017930332101

[8] Hedar, A.: Test functions for unconstrained global optimization. :http://www-
optima.amp.i.kyotou.ac.jp/member/student/hedar/Hedar files/TestGO.htm (2005). ((ac-
cessed on 23 August 2006))

[9] Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex
Optimization and Its Application. Kluwer Academic Publishers (1995)

20



[10] Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin
(1996)

[11] Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the
Lipschitz constant. Journal of Optimization Theory and Application. (1993), 79(1), 157-
181. DOI:10.1007/BF00941892

[12] Jones, D.R.: The Direct global optimization algorithm. In: C.A. Floudas, P.M. Pardalos
(eds.) The Encyclopedia of Optimization, pp. (2001), 431-440. Kluwer Academic Publish-
ers, Dordrect (2001)

[13] Jones, D.R., Martins, J.R.R.A.: The DIRECT algorithm: 25 years later. Journal of Global
Optimization 79, 521566 (2021). https://doi.org/10.1007/s10898-020-00952-6

[14] Ma, K., Rios, L. M., Bhosekar, A., Sahinidis, N., V., Rajagopalan, S.: Branch-and-Model:
a derivative-free global optimization algorithm. Computational Optimization and Appli-
cations. (2023), https://doi.org/10.1007/s10589-023-00466-3

[15] Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-
based partitioning scheme. Journal of Computational and Applied Mathematics. (2012),
236(16), 4042-4054. DOI:10.1016/j.cam.2012.02.020

[16] Liberti, L., Kucherenko, S.: Comparison of deterministic and stochastic ap-
proaches to global optimization. International Transactions in Operational Re-
search 12(3), 263285 (2005) https:// onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-
3995.2005.00503.x.https://doi.org/10.1111/j.1475-3995.2005.00503.x

[17] Liu, Q., Cheng, W.: A modified DIRECT algorithm with bilevel partition. Journal of
Global Optimization. (2014), 60(3), 483-499. DOI:10.1007/s10898-013-0119-1

[18] Liu, H., Xu, S.,Wang, X.,Wu, J., Song, Y.: A global optimization algorithm for simulation-
based problems via the extended DIRECT scheme. Eng. Optim. (2015), 47(11), 1441–
1458. DOI:10.1080/0305215X.2014.971777

[19] Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for
global optimization problems. Journal of Global Optimization. (2015), 62(2), 205-227.
DOI:10.1007/s10898-014-0241-8

[20] Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations
for the solution for large-scale global optimization problems. Computational Optimization
and Applications. (2010), 45(2), 353-375. DOI:10.1007/s10589-008-9217-2

[21] Liuzzi, G., Lucidi, S., Piccialli, V.: A DIRECT-based approach exploiting local mini-
mizations for the solution of large-scale global optimization problems. Computational
Optimization and Applications. (2010), 45, 353-375. DOI:10.1007/s10589-008-9217-2

[22] Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. Jour-
nal of Global Optimization. (2010), 48(1), 113-128. DOI:10.1007/s10898-009-9515-y

[23] Liuzzi, G., Lucidi, S., Piccialli, V.: Exploiting derivative-free local searches in direct-type
algorithms for global optimization. Computational Optimization and Applications pp.
(2014), 1-27. DOI:10.1007/s10589-015-9741-9
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1∗, 2∗, 3∗ Ackley 2, 5, 10 [−15, 35]n multimodal 0.0
4 Beale 2 [−4.5, 4.5]2 multimodal 0.0
5∗ Bohachevsky 1 2 [−100, 110]2 multimodal 0.0
6∗ Bohachevsky 2 2 [−100, 110]2 multimodal 0.0
7∗ Bohachevsky 3 2 [−100, 110]2 multimodal 0.0
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28, 29 Powell 4, 8 [−4, 5]n multimodal 0.0
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34, 35, 36 Rosenbrock 2, 5, 10 [−5, 10]n unimodal 0.0
37, 38, 39∗ Schwefel 2, 5, 10 [−500, 500]n unimodal 0.0
40 Shekel, m = 5 4 [0, 10]4 5 −10.15320
41 Shekel, m = 7 4 [0, 10]4 7 −10.40294
42 Shekel, m = 10 4 [0, 10]4 10 −10.53641
43 Shubert 2 [−10, 10]2 760 −186.73091
44∗, 45∗, 46∗ Sphere 2, 5, 10 [−5.12, 6.12]n multimodal 0.0
47∗, 48∗, 49∗ Sum squares 2, 5, 10 [−10, 15]n unimodal 0.0
50 Trid 6 [−36, 36]6 multimodal −50.0
51 Trid 10 [−100, 100]10 multimodal −210.0
52∗, 53∗, 54∗ Zakharov 2, 5, 10 [−5, 11]n multimodal 0.0
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Appendix A. Key characteristics of the Hedar test problems [8]

Appendix B. Global minimizer found by the BIRECT-V algorithm using
Hedar test problems [8] with modified domain from Table 3
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