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Multi-stage stochastic programming is notoriously hard, since solution methods suffer from the curse of

dimensionality. Recently, stochastic dual dynamic programming has shown promising results for Markovian

problems with many stages and a moderately large state space. In order to numerically solve these problems

simple discrete representations of Markov processes are required but a convincing theoretical foundation for

the generation of these approximations is still lacking. This paper aims to fill this gap and proposes a frame-

work to analyze quantitative stability for multi-stage stochastic optimization problems with a Markovian

structure. The results show how the objective values change if the underlying stochastic process is approxi-

mated by a simpler one. The resulting bound is formulated using the Fortet-Mourier distance and works for

problems whose value functions are locally Lipschitz continuous in the random data. The framework is appli-

cable for important classes of stochastic optimization problems and the results motivate approximations of

general Markovian processes by discrete scenario lattices that can be used to obtain numerical solutions. We

propose a computationally cheap stochastic gradient descent algorithm for building lattices and show that

out-of-sample objectives as well as decisions converge to the respective quantities of the original problem as

the approximation gets finer. A numerical study of a multi-period newsvendor problem provides a practical

proof of concept of the proposed ideas.

1. Introduction

Multi-stage stochastic programming deals with optimization problems that encompass several

sequential decisions in an uncertain future. In every stage of the problem, the decisions depend

on updated information about a stochastic process ξ = (ξ1, . . . ,ξT ) that models the random

data of the problem. Since most real-life optimization problems cannot be solved analytically,

numerical solutions are usually obtained by building discrete approximations ξ̃ of ξ. While

for two-stage stochastic programs discretizations merely consist of a set of scenarios for the

realization of the second stage randomness, the situation in problems with multiple stages is

complicated by the requirement to model the distributions of ξt conditional on the history of

the process (ξ1, . . . , ξt−1).

The most general approach to build discretizations for stochastic processes are scenario trees.
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There is an extensive literature on the topic of tree generation and on stability results that

provide bounds for errors induced by approximating a process by a tree in a stochastic pro-

gramming problem. In particular, Shapiro (2003, 2008) investigates trees that are built using

Monte-Carlo sampling, Høyland and Wallace (2001), Høyland et al. (2003), Kaut and Wal-

lace (2003) match the first moments of the tree with the moments of ξ, and Pennanen (2005,

2009) use integration quadratures as guiding principle for tree generation. Another approach

is based on the principle of bound-based constructions, see Edirisinghe (1996), Frauendorfer

(1996), Kuhn (2005), Casey and Sen (2005). The most common approach in the contemporary

literature employs probability metrics to measure the distance between the original and the

approximated processes (e.g. Pflug 2001, Dupacová et al. 2003, Heitsch and Römisch 2003,

Pflug 2009, Pflug and Pichler 2012).

In a scenario tree there is a unique path from the root node to any other node, which implies

that the tree contains information about the whole history of the process. While this property

has theoretical merits and enables the most general formulation of stochastic programming

problems, it results in a trade-off between accurate modeling of conditional distributions and

the size of the tree which determines the computational complexity of the approximate problem.

In particular, scenario trees that have no deterministic transitions between nodes necessarily

grow exponentially in the number of stages. Consequently, trees for problems with more than a

handful of stages always have to have a large number of deterministic state transitions in order

to be computationally tractable.

One way to avoid these difficulties is to restrict the attention to more specific problems, where

conditional distributions for ξt do not depend on the whole history (ξ1, . . . , ξt−1), which in turn

allows for more compact representations ξ̃ of ξ. The simplest case in this regard are problems

with stage-wise independent randomness, which only require one set of scenarios for every stage,

implying a linear growth in the number of required discrete states as the number of stages

increases. The next more complicated problem class that still permits a lean discretization are

Markov processes, where the conditional distributions of ξt+1 only depend on the current state

ξt and discretizations take the form of scenario lattices. The resulting class of problems presents
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an interesting compromise between the expressiveness of scenario trees and the simplicitiy of

stage-wise independence. Both of these cases have been successfully used in conjunction with

stochastic dual dynamic programming (SDDP) for problems with a large number of stages (e.g.,

Pereira and Pinto 1991, Löhndorf et al. 2013, Dowson et al. 2019, Löhndorf and Shapiro 2019,

Löhndorf and Wozabal 2021, Bakker et al. 2021, Shinde et al. 2022).

In this paper, we are interested in finite time Markovian stochastic programming based on

scenario lattices as the discretization of general multivariate Markovian randomness. In contrast

to the sizable literature on scenario trees and despite the increasing popularity of the model

class, there is very little work on how to build scenario lattices for stochastic programming

problems.

Scenario lattices have long been used in options pricing where binary lattices are routinely

used as discretizations of pricing measures. This stream of literature started with the seminal

contribution of Cox et al. (1979), who approximate one dimensional continuous-time diffusion

processes by discrete-time binomial lattices that weakly converge to the true process as the

temporal resolution gets finer. Consequently, evaluating the expectation of option values on

lattice process asymptotically yields the true option value and avoids the need for closed form

solutions. In the literature on real options pricing, these initial ideas have been substantially

refined to incorporate information from observed market prices (Rubinstein 1994) and cover

mean reverting processes (e.g. Hahn and Dyer 2008) as well as processes with complex volatil-

ities and jumps (e.g. Harikae et al. 2021, Wang and Dyer 2010). In Wang and Dyer (2010),

Chourdakis (2004) multinomial lattice approximations are explored. The general idea of these

papers is construct lattices in such a way that the resulting process matches certain character-

istics of the original process, mostly volatility and drift.

Broadie and Glasserman (2004) consider discrete time problems based on fairly general

stochastic processes that are approximated by multinomial lattices called stochastic meshes.

Lattices are build using a sampling scheme that is closely motivated by the intended options

pricing application. The papers in the real options literature that come closest to our approach

are Felix and Weber (2012) and Bardou et al. (2009). Both papers consider pricing problems
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with complex decisions and use the Wasserstein metric to measure the difference between the

original process and the lattice. Felix and Weber (2012) employs k-means clustering on sim-

ulated realizations of general processes to minimize the distance between the lattice and the

process, while Bardou et al. (2009) restrict their attention to Gaussion randomness and use

known optimal quantizers to build their lattices.

Bally and Pagès (2003) refer to lattices as vector quantization trees and propose a learning

algorithm that minimizes the Wasserstein distance between the unconditional distribution of a

Markov chain and the nodes of a lattice. Löhndorf and Wozabal (2021) use a similar approach

in a problem of gas storage optimization. However, the focus on unconditional distributions

neglects important aspects of the problem and the papers do not contain quantitative stability

results. In a recent paper, Kiszka and Wozabal (2022) propose a lattice distance and show that

the objective values of certain linear stochastic programming problems are Lipschitz continuous

with respect to the proposed distance. However, their approach is rather complicated and does

not directly lend itself to computationally efficient algorithmic implementation.

We mention that there is a large and well developed theory on the approximations of Markov

decision processes (MDPs) that is concerned with similar questions as this article. Typical

formulations of MDP problems feature finite state and action spaces as well as homogeneous

Markov processes describing the randomness, which is potentially influenced by the actions.

Furthermore, much of the MDP literature treats infinite horizon problems.

The papers in the MDP literature that come closest to our approach are Müller (1997),

Dufour and Prieto-Rumeau (2012, 2013), Saldi et al. (2017). These papers use the Wasserstein

metric to impose continuity conditions similar to the ones used in this paper on the Markov

kernels and require Lipschitz continuous value functions. In the tradition of the MDP literature,

the stability results are with respect to the discretization of the whole state and action space and

are thus fully susceptible to the curse of dimensionality. In order to show that value functions

are Lipschitz, typically stronger regularity assumptions are required than in this work.

We contribute to the literature by deriving stability results for Markovian stochastic pro-

gramming problems that can be used as a guiding principle to construct scenario lattices and
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motivate a fast and straightforward stochastic gradient (SGD) method to generate discretiza-

tions based on samples from the original stochastic process. In particular, our contributions are

the following:

1. We use the Fortet-Mourier metric to prove a quantitative stability result for multi-stage

Markovian stochastic programming problems with locally Lipschitz continuous value functions.

We argue that the Fortet-Mourier metric is more flexible and covers a significantly larger set

of problems than the Wasserstein metric that is frequently used in the extant literature on

tree and lattice generation. In particular, the treatment of problems with randomness in the

constraints is possible in the proposed framework. While the Fortet-Mourier metric has been

used for two-stage problems (Rachev and Römisch 2002, Han and Chen 2015, Chen and Jiang

2020), to the best of our knowledge, this is the first attempt to employ it to the stability analysis

of multi-stage stochastic programs.

2. We demonstrate that the condition of local Lipschitz continuity is fulfilled for a large num-

ber of practically relevant problems. In particular, we show that problems with randomness only

in the objective, problems with compactly supported randomness, and linear problems with

right hand side and objective function randomness all have locally Lipschitz value functions,

provided that a natural continuity condition on the conditional distributions of the underly-

ing stochastic process is fulfilled. Our analysis furthermore provides guidance on the optimal

topology of scenario lattices, i.e., how many nodes the lattice should have in which stage.

3. We show that as the discretizations get finer, the optimal policies found for the approx-

imated problems can be transferred to the actual problem and the resulting out-of-sample

objective values as well as the optimal solutions converge to the respective quantities of the

true problem.

4. We propose a computationally inexpensive SGD algorithm that uses simulations from the

original process to build approximating scenario lattices.

This paper is organized as follows: In Section 2, we define the problem class of Markovian

stochastic optimization problems, review basic facts about probability metrics, and introduce

a smoothness assumption for stochastic processes, which is central to our approach. In Section
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3, we derive a stability result for problems with locally Lipschitz value functions and show that

this property holds for a large set of practically relevant optimization problems. Section 4 is

devoted to the generation of scenario lattices using SGD for non-smooth, nonconvex problems,

while Section 5 contains results about the convergence of the approximated problems as the

discretization gets finer. In Section 6, we use a multi-stage newsvendor example to numerically

evaluate in-sample and out-of-sample performance of the proposed approach and compare it to

an established method based on the Wasserstein distance. Section 7 concludes the paper.

Notation: We use a generic probability space (Ω,F ,P) that permits a uniform random

variable on [0,1] and denote random vectors ξt : Ω→ Rn by bold letters while printing their

realizations ξt in normal font. For a random vector ξt, we write supp(ξt) for its support. Further-

more, for a random process ξ= (ξ1, . . . ,ξT ), we denote the value of ξt conditional on the event

{ω ∈Ω : ξt−1(ω) = ξt−1} as ξt|ξt−1 and for a function f :Rn→R, the expectation of f(ξt) given

{ω ∈Ω : ξt−1(ω) = ξt−1} as E[f(ξt)|ξt−1]. In particular, this implies that for two random pro-

cesses ξ and ξ̃, E[f(ξt)|ξ̃t−1] is the expectation conditional on the event {ω ∈Ω : ξt−1(ω) = ξ̃t−1}

and not on the event {ω ∈Ω : ξ̃t−1(ω) = ξ̃t−1}. We use a similar convention for P (ξt|ξ̃t−1) and

ξt|ξ̃t−1. Finally, we denote the set {1, . . . , n} by [n] and write a.s. for almost surely.

2. Problem Definition and Basic Facts about Probability Metrics

We define the class of Markovian stochastic optimization problems and introduce the required

notation in Section 2.1. In Section 2.2, we introduce the Fortet-Mourier distance along with

some of its most important properties, while Section 2.3 is devoted to an assumption about the

continuity of conditional distributions with respect to the Fortet-Mourier distance, which will

be essential in establishing Lipschitz continuity of value functions in Section 3.

2.1. Markovian Stochastic Programming Problems

Let ξ = (ξ1, . . . ,ξT ) be a discrete time Markov process where ξt : Ω→ RNt and the starting

state ξ1 is deterministic. Consider the following finite horizon Markovian multi-stage stochastic

programming problem with T stages

V1(x0, ξ1) =

{
min

x1,x2,...,xT
E
[∑T

t=1Πt(xt,ξt)
]

s.t. xt ∈Xt(xt−1,ξt), t∈ [T ], a.s.,
(1)
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where Πt(xt,ξt) is the immediate profit in stage t, which depends on the decision xt in stage t

as well as the realization of the randomness ξt. Decisions xt are required to be in the feasible

sets Xt(xt−1,ξt)⊆Rmt , which depend on the random data ξt as well as the last stage decision

xt−1. Note that due to the stochasticity of the problem the decisions xt : Ω→RMt are random

variables that depend on the realization of the stochastic process. The parameter x0 together

with ξ1 constitutes the known initial state. We call the problem Markovian, since ξ is Markov

and the decisions only depend on the last state of the problem and not explicitly on its entire

history.

We will analyze the problem via its dynamic programming equations

Vt(xt−1, ξt) =

{
max

xt∈RMt

Πt(ξt, xt)+E [Vt+1(xt,ξt+1)|ξt]

s.t. xt ∈X (ξt, xt−1)
, ∀t∈ [T ] (2)

with terminal condition VT+1 ≡ 0.1 For the following, it will be convenient to define so-called

post-decision value functions (see Powell 2011) as

Vt(xt, ξt) =E [Vt+1(xt,ξt+1)|ξt] , ∀t∈ [T ].

Note that we divide the state space into an environmental state ξt and a resource state

xt−1 (e.g. Löhndorf et al. 2013, Löhndorf and Wozabal 2021). The former is assumed to be

independent of the decisions and typically models external factors such as prices, demand for a

product, equipment failure, or environmental variables. The resource state xt, on the other hand,

describes the part of the state space that is influenced by the decision maker. Examples include

inventory levels, states of machinery, and contractual obligations. In most real-life problems

the resource state xt−1 is of substantially lower dimension than the decisions taken in stage

t− 1. In the dynamic programming literature the actions in stage t− 1 and the initial state

in t are therefore routinely treated as separate. Since for our considerations we do not need to

distinguish the state from the actions, we write our problems just in terms of xt−1 in order not

to over-complicate the notation.

1 All results in the paper hold, if VT+1 is replaced by an arbitrary given concave salvage value VT+1 :R
MT →R

of xT . However, for the sake of simplicity, we assume VT+1 ≡ 0 in what follows.
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In what follows, we will approximate problem (1) by replacing ξ by a simpler Markov process

ξ̃= (ξ̃1, . . . , ξ̃T ) with ξ̃t : Ω→RNt and ξ̃1 = ξ1. To that end, we will denote the value functions of

the approximated problem where ξ is replaced by ξ̃ as Ṽt(xt−1, ξ̃t) and Ṽt(xt, ξ̃t). If the problem

is to be solved numerically, a discretely supported process ξ̃ has to be used. However, note that

while the results on quantitative stability in Section 3 do not require ξ̃ to be finitely supported,

we will need the following assumption, which we will assume to hold throughout.

Assumption 1. The support of all conditional distributions of ξ̃ is contained in the support of

the conditional distributions of ξ. More specifically,

supp(ξ̃t|ξ̃t−1)⊆ supp(ξt|ξ̃t−1), ∀ξ̃t−1 ∈ supp(ξ̃t−1), ∀t : 2≤ t≤ T.

The above assumption basically states that the original complicated process ξ is finer than

the simpler approximating process ξ̃ in that it can take more values, which introduces an

asymmetry between ξ and ξ̃. In particular, this implies that we can evaluate Vt(xt−1, ξ̃t) for

all ξ̃t ∈ supp(ξ̃t), i.e., it makes sense to plug realizations of ξ̃ into the value functions for the

process ξ. Note that the reverse is not necessarily always possible, i.e., Ṽt(xt−1, ξt) need not be

defined for all ξt ∈ supp(ξt).

2.2. The Fortet-Mourier Metric

We analyze the stability of (1) using the Fortet-Mourier metric, which has been used previously

in analysis of the stability of two-stage stochastic programming problems (e.g., Rachev and

Römisch 2002, Han and Chen 2015, Chen and Jiang 2020).

For two probability measures P1 and P2 on RN , the Fortet-Mourier metric is defined as

dpFM(P1, P2) = sup

{∫
f(x) d(P1−P2) : f ∈ Lipp(RN)

}
where

Lipp(RN) =
{
f :RN →R borel : |f(x)− f(y)| ≤max(1, ||x||, ||y||)p−1 ||x− y||

}
are the functions that are locally Lipschitz with moduli that fulfill a polynomial growth condi-

tion of order p. Note that by using Lipp(RN) as test functions, the Fortet-Mourier metric falls
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into the class of metrics with a ζ-structure that metricizes the weak topology on the set of

probability measures with finite p-th moment (Rachev and Römisch 2002). In the following, we

will frequently write dpFM(ξ1,ξ2) to mean dpFM(Pξ1 , Pξ2) with Pξ1 and Pξ2 the image measures

of ξ1 and ξ2, respectively.

Given two measures P1 and P2 on RN , the Fortet-Mourier metric has a dual representation

as the following transshipment problem (Rachev and Römisch 2002)

dpFM(P1, P2) =

{
infz

∫
max(1, ||x||, ||y||)p−1||x− y|| z(dx,dy)

s.t. z(B×RN)−P1(B) = z(RN ×B)−P2(B), ∀B Borel,
(3)

where z is a Borel measure on RN × RN . In the special case of p = 1, dpFM reduces to the

well-known Wasserstein metric, for which (3) is a transport problem, i.e., the constraints on

the joint measure can be written as z(B ×RN) = P1(B) and z(RN ×B) = P2(B). The reason

for this is that the first term in the objective vanishes, making it suboptimal to transport mass

indirectly via intermediate transshipment nodes instead of directly between the source and the

target.

2.3. An Assumption on Conditional Distributions

To facilitate our analysis in the next section and prove that value functions of Markovian

problems are indeed locally Lipschitz and therefore amendable to analysis with the Fortet-

Mourier metric, we require the following continuity assumption on the stochastic process ξ.

Similar assumptions using the Wasserstein distance can be found in the MDP literature (e.g.,

Hinderer 2005, Dufour and Prieto-Rumeau 2012, 2013, Saldi et al. 2017).

Assumption 2. There are constants LC
t > 0 and pCt ∈N such that

d
pCt
FM(ξt+1|ξt,ξt+1|ξ′t)≤LC

t max(1, ||ξt||, ||ξ′t||)p
C
t −1 ||ξt− ξ′t||, ∀ξt, ξ′t ∈ supp(ξt). (4)

This essentially means that conditional distributions for ξt+1 are required to be locally Lipschitz

continuous in ξt with respect to the Fortet-Mourier distance. This property enables to bound

the error that is made when representing conditional distributions of ξt+1 for different ξt by a

single distribution ξ̃t+1|ξ̃t.
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Assumption 2 is natural because a violation would imply that varying ξt only slightly may lead

to vastly different conditional distributions of ξt+1 which would make a discrete approximation

practically impossible. Luckily this condition is fulfilled for all Markov processes commonly used

in stochastic programming. This is illustrated by the sufficient condition in the next result.

Theorem 1. Let ξ be Markov with transition functions ξt+1 = ft+1(ξt,εt+1) depending affinely

on ξt and a random innovation εt+1 : Ω→Rk with image measure Pt+1, i.e.,

ft+1(ξt,εt+1) = at+1(εt+1)+At+1(εt+1)ξt (5)

where at+1(εt+1) :R
k→RNt and At+1(εt+1) :R

k→RNt+1×Nt. If additionally∫ (
||at+1(εt+1)||p

C
t −1 +max(1, ||At+1(εt+1)||)p

C
t −1

)
||At+1(εt+1)|| Pt+1(dεt+1)<∞ (6)

for ||At+1|| the operator-norm of At+1, then property (4) is satisfied.

Proof. Define z by the transport map T (x) = x between ξt+1|ξt and ξt+1|ξ′t, i.e., z(A×B) =

Pt+1(A∩B) and further denote

Λ(εt+1) =max(1, ||at+1(εt+1)+At+1(εt+1)ξt||, ||at+1(εt+1)+At+1(εt+1)ξ
′
t||)p

C
t −1.

We then can bound the Fortet-Mourier distance by

d
pCt
FM(ξt+1|ξt,ξt+1|ξ′t)≤

∫
max(1, ||ξt+1||, ||ξ′t+1||)p

C
t −1 ||ξt+1− ξ′t+1|| z(dξt+1, dξ

′
t+1)

=

∫
Λ(εt+1) ||At+1(εt+1)(ξt− ξ′t)|| Pt+1(dεt+1)

≤
∫

Λ(εt+1)||At+1(εt+1)|| Pt+1(dεt+1) ||ξt− ξ′t||.

We continue by noting that

||at+1(εt+1)+At+1(εt+1)ξt||p
C
t −1 = 2p

C
t −1

∥∥∥∥at+1(εt+1)

2
+

At+1(εt+1)ξt
2

∥∥∥∥pCt −1

≤ 2p
C
t −2(||at+1(εt+1)||p

C
t −1 + ||At+1(εt+1)ξt||p

C
t −1)

≤ 2p
C
t −2(||at+1(εt+1)||p

C
t −1 + ||At+1(εt+1)||p

C
t −1||ξt||p

C
t −1),

where the second line follows from Jensen’s inequality. It therefore holds that

Λ(εt+1)≤ 2p
C
t −2||at+1(εt+1)||p

C
t −1 +2p

C
t −2max(1, ||At+1(εt+1)||)p

C
t −1max(1, ||ξt||, ||ξ′t||)p

C
t −1
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≤ 2p
C
t −2

(
||at+1(εt+1)||p

C
t −1 +max(1, ||At+1(εt)||)p

C
t −1max(1, ||ξt||, ||ξ′t||)p

C
t −1

)
and

d
pCt
FM(ξt+1|ξt,ξt+1|ξ′t)≤LC

t max(1, ||ξt||, ||ξ′t||)p
C
t −1||ξt− ξ′t||

with

LC
t = 2p

C
t −2

∫
(||at+1(εt+1)||p

C
t −1 +max(1, ||At+1(εt+1)||)p

C
t −1)||At+1(εt+1)|| Pt+1(dεt+1)<∞,

which finishes the proof. □

The above result covers most of the classic models of arithmetic and geometric randomness

that are routinely used in stochastic programming as shown in the examples below.

Example 1 (Arithmetic Randomness). Consider a process of the form (5) with

ξt+1 = ϕ(t+1)+At+1ξt + εt+1

with ϕ a deterministic seasonality, At+1 ∈RNt+1×Nt , and εt+1 independent innovations. Clearly,

the above definition covers the cases where the deseasonalized process ξt−ϕ(t) follows a Marko-

vian time series model like VARMA or GARCH and, in particular, time discretized versions of

arithmetic Itô processes as long as the integrability condition (6) for εt+1 is fulfilled.

Example 2 (Geometric Randomness). Processes ξ of the form

ξt+1 = ξtAt+1(εt+1)

fulfill (5) and cover processes of the geometric type like the time discretized geometric Brownian

motion and similar processes. Again (4) holds because of Theorem 1 if the moment condition

(6) is fulfilled for εt+1.

3. An Error Bound for Markovian Stochastic Programs

In Section 3.1, we derive a quantitative stability result for Markovian stochastic problems using

the Fortet-Mourier distance based on the assumption that the value functions Vt(xt−1, ξt) of the

problem are locally Lipschitz continuous in ξt uniformly in xt−1. In Section 3.2, we show the

uniform Lipschitz property for three classes of problems based on the continuity assumption

for the conditional distributions discussed in Section 2.3.
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3.1. A Stability Result Based on Fortet-Mourier Distances

In the following, we will prove a quantitative stability result for problems of the form (1) given

that the value functions Vt(xt−1, ξt) are uniformly locally Lipschitz in xt−1, i.e.,

|Vt(xt−1, ξt)−Vt(xt−1, ξ
′
t)| ≤Lt max(1, ||ξt||, ||ξ′t||)pt−1 ||ξt− ξ′t||, ∀xt−1. (7)

This means that ξt 7→ L−1
t Vt(xt−1, ξt) ∈ Lippt(RNt) for all xt−1, which allows us to use dptFM to

bound differences in objective values of stochastic programs. The recursive application of this

principle backwards in time yields the following result.

Theorem 2. If Assumption 1 and 2 hold for problem (1), then

|Vt(xt−1, ξt)− Ṽt(xt−1, ξ̃t)| ≤
T∑

s=t+1

Ls E[d
ps
FM(ξs|ξ̃s−1, ξ̃s|ξ̃s−1)|ξ̃t], ∀t= 1, . . . , T − 1. (8)

Proof. At stage T , VT (xT−1, ξ̃T ) = ṼT (xT−1, ξ̃T ) and therefore we get for stage T − 1

VT−1(xT−2, ξ̃T−1)− ṼT−1(xT−2, ξ̃T−1)≤E[VT (x
∗
T−1,ξT )|ξ̃T−1]−E[ṼT (x

∗
T−1, ξ̃T )|ξ̃T−1]

=E[VT (x
∗
T−1,ξT )|ξ̃T−1]−E[VT (x

∗
T−1, ξ̃T )|ξ̃T−1]

≤LT dpTFM(ξT |ξ̃T−1, ξ̃T |ξ̃T−1),

where x∗
T−1 is an optimal decision for VT−1(xT−2, ξ̃T−1) and the second inequality follows from

the definition of the Fortet-Mourier metric and (7). Repeating the argument with reversed roles

of VT−1 and ṼT−1 yields

|VT−1(xT−2, ξ̃T−1)− ṼT−1(xT−2, ξ̃T−1)| ≤LT dpTFM(ξT |ξ̃T−1, ξ̃T |ξ̃T−1).

We now assume that the result was already proven for stage t and write

Vt−1(xt−2, ξ̃t−1)− Ṽt−1(xt−2, ξ̃t−1)

≤E[Vt(x
∗
t−1,ξt)|ξ̃t−1]−E[Ṽt(x

∗
t−1, ξ̃t)|ξ̃t−1]

=E[Vt(x
∗
t−1,ξt)|ξ̃t−1]−E[Vt(x

∗
t−1, ξ̃t)|ξ̃t−1] +E[Vt(x

∗
t−1, ξ̃t)− Ṽt(x

∗
t−1, ξ̃t)|ξ̃t−1]

≤Lt d
pt
FM(ξt|ξ̃t−1, ξ̃t|ξ̃t−1)+

T∑
s=t+1

Ls E[d
ps
FM(ξs|ξs−1, ξ̃s|ξ̃s−1)|ξ̃t−1]
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=
T∑

s=t

Ls E[d
ps
FM(ξs|ξ̃s−1, ξ̃s|ξ̃s−1)|ξ̃t−1],

where x∗
t−1 is optimal for Vt−1(xt−2, ξ̃t−1) and the last inequality is due to the Lipschitz continuity

of Vt, Assumption 2, and the induction hypothesis. Reversing the roles of Vt−1 and Ṽt−1 as

above yields the desired result for t− 1 and concludes the proof. □

Plugin in t = 1 in (8) yields a bound between the objective values of the original problem

and its approximated counterpart. Note that due to Assumption 1, the roles of ξ and ξ̃ are not

symmetric in the above result. Note further that, in contrast to many other stability results in

stochastic programming, the bound does not depend on any convexity assumptions. However,

as we will see below, convexity is often convenient in establishing (7) for concrete problems.

3.2. Problems with Locally Lipschitz Value Functions

In the following, we will show (7) for several important cases that cover most of the problems

encountered in real-life applications: In Theorem 3 the objective is random while the feasible set

is deterministic, Theorem 4 treats the case where the randomness is compactly supported, and

lastly Theorem 5 discusses the case of linear problems. Furthermore, note that local Lipschitz

continuity is a natural property of value functions (e.g. Berkovitz 1989, Clarke 1990, Veliov

1997), hence, it is plausible that are a variety of other cases in which (7) is fulfilled as well.

We start discussing problems where randomness only enters in the objective function. These

problems received a fair share of attention, since many stability results in the literature using

scenario trees are restricted to this setting (see e.g., Pflug and Pichler 2014). Note that we do

not make any assumptions on the convexity of the problem.

Theorem 3. If the feasible sets Xt(xt−1, ξt) =Xt(xt−1) are deterministic, and the profit func-

tions are uniformly locally Lipschitz, i.e.,

|Πt(xt, ξt)−Πt(xt, ξ
′
t)| ≤LΠ

t max(1, ||ξt||, ||ξ′t||)p
Π
t −1 ||ξt− ξ′t||, ∀xt, (9)

and Assumption 2 holds with pCt ≥ max(maxs>t p
C
s ,maxs>t p

Π
s ), then (7) holds with pt =

max(pCt , p
Π
t ).
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Proof. Clearly, for t= T , we get by (9)

VT (xT−1, ξT )−VT (xT−1, ξ
′
T )≤ΠT (x

∗
T , ξT )−Πt(x

∗
T , ξ

′
T )

≤LΠ
T max(1, ||ξT ||, ||ξ′T ||)p

Π
t −1 ||ξT − ξ′T ||,

where x∗
T is the optimal solution for the problem VT (xT−1, ξT ). Reversing the roles of

VT (xT−1, ξT ) and VT (xT−1, ξ
′
T ) proves the result for the last stage.

Proceeding by backward induction and assuming that (7) was already shown for Vt+1 with

Lipschitz constant Lt+1, we get, again using (9) and Assumption 2,

Vt(xt−1, ξt)−Vt(xt−1, ξ
′
t)

≤Πt(x
∗
t , ξt)+E[Vt+1(x

∗
t ,ξt+1)|ξt]− (Πt(x

∗
t , ξ

′
t)+E[Vt+1(x

∗
t ,ξt+1)|ξ′t])

≤LΠ
t max(1||ξt||, ||ξ′t||)p

Π
t −1 ||ξt− ξ′t||+Lt+1d

pt+1
FM (ξt+1|ξt,ξt+1|ξ′t)

≤LΠ
t max(1||ξt||, ||ξ′t||)p

Π
t −1 ||ξt− ξ′t||+Lt+1L

C
t max(1||ξt||, ||ξ′t||)p

C
t −1 ||ξt− ξ′t||

=
(
LΠ

t +Lt+1L
C
t

)
max(1||ξt||, ||ξ′t||)pt−1 ||ξt− ξ′t||.

with pt =max(pCt , p
Π
t ). Reversing the roles of ξt and ξ′t concludes the proof. □

Remark 1. The coefficient pt of the local Lipschitz condition (7) is weakly increasing back-

wards in time, i.e., earlier stages cannot have lower moduli than later stages. However, if all

profit functions are globally Lipschitz and condition (4) holds with pCt = 1 for all t ∈ [T ], then

the Wasserstein distance can be used instead of the Fortet-Mourier distance in Theorem 2.

Remark 2. The constants Lt are increasing towards the first stage, which together with the

previous remark implies that the earlier stages require a finer representation in order to guar-

antee good results when approximating the process ξ. This gives a hint at how to optimally

design scenario lattices and, in particular, how many nodes in which stage to use. This modeling

issue regularly arises in practical applications, but there seem to exist no theoretical results in

the literature that could guide the optimal choice of a topology for scenario trees or lattices.

For the next two models classes, we require the following compactness assumption for the

feasible sets, which is usually innocuous in real-world applications.
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Assumption 3. For every stage t ∈ [T ] the feasible sets are contained in a ||.||∞-ball, i.e., for

every t∈ [T ] there are Dt > 0 such that

sup
xt∈Xt(xt−1,ξt)

||xt||∞ <Dt, ∀ξt ∈ supp(ξt), ∀xt−1.

Using this assumption, we continue with the case where additionally ξt is compactly sup-

ported in every stage, i.e.,

∀t∈ [T ] ∃Ct ⊆RNt compact :P(ξt > 0∩Ct) = 1. (10)

In what follows, we will vary ξt in Vt in the objective and the constraints of the respective

problems separately. To that end, we define three parameter versions of the value functions as

Vt(xt−1, ξ
1
t , ξ

2
t ) =

{
maxxt Πt(xt, ξ

2
t )+Vt(xt, ξ

2
t )

s.t xt ∈Xt(xt−1, ξ
1
t ),

where ξ1t models the impact of the randomness on the constraints, while ξ2t determines the value

of ξt in the objective. Naturally, Vt(xt−1, ξt) = Vt(xt−1, ξt, ξt).

Theorem 4. If Assumption 2 holds with pCt ≥ pCt+1, Assumption 3 is fulfilled, (10) holds,

(xt, ξt) 7→Πt(xt, ξt) is continuous, and the feasible sets are of the form

Xt(xt−1, ξt) = {xt : ft(xt, xt−1, ξt)≤ 0} ,

with (xt, ξt) 7→ ft(xt, xt−1, ξt) convex for all xt−1, then (7) follows with pt = pCt

Proof. Note that by the compactness of Ct×Xt(xt−1, ξt)

ξt 7→Πt(xt, ξt)

is Lipschitz with a constant LΠ
t uniformly in xt on the support of ξt.

For stage T and realizations ξT and ξ′T , we get

VT (xT−1, ξT ) =ΠT (x
∗
T , ξT )≤ΠT (x

∗
T , ξ

′
T )+LΠ

T ||ξT − ξ′T ||

≤ VT (xT−1, ξT , ξ
′
T )+LΠ

T ||ξT − ξ′T ||

and therefore

|VT (xT−1, ξT )−VT (xT−1, ξT , ξ
′
T )| ≤LΠ

T ||ξT − ξ′T ||. (11)
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From our assumptions on Xt(xt−1, ξt) and Theorem 5.2 in Still (2018) it follows that the

mapping (xT−1, ξT ) 7→ VT (xT−1, ξT , ξ
′
T ) is continuous and therefore we get by (11) that for every

ε > 0 there is a δ > 0 such that for ||xT−1−x′
T−1||+ ||ξT − ξ′T ||< δ, we have

|VT (xT−1, ξT )−VT (x
′
T−1, ξ

′
T )|= |VT (xT−1, ξT )−VT (x

′
T−1, ξ

′
T , ξ

′
T )|

≤ |VT (xT−1, ξT , ξ
′
T )−VT (x

′
T−1, ξ

′
T , ξ

′
T )|+LΠ

T ||ξT − ξ′T ||

≤ ε+LΠ
T ||ξT − ξ′T ||

≤ 2ε

for ||ξT − ξ′T || sufficiently small. Hence, continuity of VT follows and from that Lipschitz conti-

nuity can be deduced from the compactness of CT ×XT (xT−1, ξT ).

For t < T , we assume that the result was already shown for Vt+1 with Lipschitz constant

Lt+1. We therefore get by Assumption 2

Vt(xt−1, ξt) =Πt(x
∗
t , ξt)+E[Vt+1(x

∗
t ,ξt+1)|ξt]

≤Πt(x
∗
t , ξ

′
t)+E[Vt+1(xt,ξt+1)|ξ′t] +Lt max(1, ||ξt||, ||ξ′t||)pt−1 ||ξt− ξ′t||

≤ Vt(xt−1, ξt, ξ
′
t)+Lt max(1, ||ξt||, ||ξ′t)pt−1 ||ξt− ξ′t||,

with Lt = (Lt+1L
C
t +LΠ

t ). We again deduce from Theorem 5.2 in Still (2018) that (xt−1, ξt) 7→

Vt(xt−1, ξt, ξ
′
t) is continuous so that the rest of the argument follows like the case for T and

backward induction finishes the proof. □

Remark 3. Note that the convexity assumption on the set Xt(xt−1, ξt) holds in particular

for convex problems if the randomness is on the right hand side of the constraint, i.e., if

ft(xt−1, xt, ξt) = f1
t (xt−1, xt)+ f2

t (ξt) is separable in ξt and f2
t is convex.

Remark 4. The modulus of continuity is only determined by the modulus of continuity in

Assumption 2 and remains constant over the stages, if pCt are the same for all t. This, in

particular, implies that, like in Theorem 3, the Wasserstein distance could be used instead of

the Fortet-Mourier distance if pCt = 1 for all t∈ [T ]. However, as in the case of Theorem 3, the

Lipschitz constant grows backward in time, indicating that, everything else being equal, a finer

discretization is required for earlier stages.



Stability of Markovian Stochastic Programming 17

The last case we are discussing is linear multi-stage stochastic programming with fixed

recourse, i.e., we assume the value functions are of the form

Vt(xt−1, ξt) =

{
maxxt ⟨πt(ξt), xt⟩+Vt(xt, ξt)
s.t Atxt ≤ Ttxt−1 +Rtξt,

(12)

where πt(ξt) ∈ RMt and At ∈ Rn×Mt , Tt ∈ Rn×Mt−1 and Rt ∈ Rn×Nt describe the feasible sets

X (xt−1, ξt) by n linear constraints.

We start by showing some results about the local Lipschitz continuity of Vt for the case that

for every ξt Vt(xt, ξt) can be exactly represented as a piecewise linear function of xt, i.e., is of

the form

Vt(xt, ξt) = min
1≤i≤I

ai(ξt)+ ⟨bi(ξt), xt⟩ (13)

In this case, the problems in the stages become linear programs, which enables the use of classic

results about the Lipschitz continuity of linear systems as in Mangasarian and Shiau (1987) or

Theorem 7.13 in Shapiro et al. (2009).

Lemma 1. Let Vt be of the form (13) resulting in

Vt(xt−1, ξt) =


max
xt,θ
⟨πt(ξt), xt⟩+ θ

s.t Atxt ≤ c
ai(ξt)+ ⟨bi(ξt), xt⟩ ≥ θ, ∀i∈ [I]

with c= Ttxt−1 +Rtξt. Denoting S(c) as the set of optimal solutions as a function of the right

hand side, we have

dH(S(c),S(c′))≤K ||c− c′||1,

where dH is the Hausdorff distance and K only depends on the matrix At and the Lipschitz

constant of xt 7→ Vt(xt, ξt).

Proof. Defining Φ to be the matrix with bi(ξt) as rows and

B =

(
At 0
−Φ 1

)

we get by Mangasarian and Shiau (1987) that

dH(S(c),S(c′))≤ µ(At,Φ)||c− c′||1
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where

µ(At,Φ)= sup


∥∥∥∥(uv

)∥∥∥∥
∞

∣∣∣∣∣∣∣∣∣∣
∥(u, v)B∥1 ≤ 1
u≥ 0, v≥ 0
the rows of B corresponding
to non-zero elements of (u, v)
are linearly independent

 .

Since the last element of (u, v)B equals
∑

vi, we get that
∑

i vi ≤ 1 and consequently∥∥∥∥(uv
)∥∥∥∥

∞
≤ ||u||∞ + ||v||∞ ≤ ||u||∞ +1.

Furthermore, we get that ||uAt− vΦ||1 ≤ 1 implies that

||uAt||1 ≤ ||uAt− vΦ||1 + ||vΦ||1 ≤ 1+L

where L is the Lipschitz constant of the value function.

We therefore have

µ(At,Φ)≤ µ(At) = sup

∥u∥∞
∣∣∣∣∣∣∣∣∣∣
∥uAt∥1 ≤ 1+L
u≥ 0
the rows of A corresponding
to non-zero elements of u
are linearly independent

 .

Hence, the result follows with K = µ(At). □

We use the above lemma in the following two results, once for changes in xt−1 and once for

changes in ξt in the constraints.

Lemma 2. If Vt(xt−1, ξt) and Vt(xt, ξt) are of the form (12) and (13), respectively, there is an

Lx
t <∞ and pxt such that

|Vt(xt, ξt)−Vt(x′
t, ξt)| ≤Lx

t max(1, ||ξt||1)p
x
t −1 ||xt−x′

t||1 (14)

and

||πt(ξt)||2 ≤Cπ
t ||ξt||

pπt −1
1 , (15)

then there is a Lξ
t <∞ such that for pξt =max(pxt , p

π
t ) and arbitrary ξt and ξ′t

|Vt(xt−1, ξt, ξt)−Vt(xt−1, ξ
′
t, ξt)| ≤Lξ

t max(1, ||ξt||)p
ξ
t−1 ||ξt− ξ′t||1, ∀xt−1. (16)

Proof. We get by Lemma 1 that for an optimal solution x∗
t of Vt(xt−1, ξ

′
t, ξt)

dist(x∗
t ,S(ξ′t))≤K2 ||ξt− ξ′t||1. (17)
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where S(ξ′t) is the set of optimal solutions to Vt(xt−1, ξ
′
t, ξt) and the constant K2 only depends

on the matrix At and in particular is independent of ξt and ξ′t.

To translate the above bound to the distance between optimal values for different ξt in the

constraints, holding ξt in the objective fixed, we have

|Vt(xt−1, ξt, ξt)−Vt(xt−1, ξ
′
t, ξt)|

= |⟨πt(ξt), x
∗
t −x∗′

t ⟩+(Vt(x∗
t , ξt)−Vt(x∗′

t , ξt))|

≤ ||πt(ξt)||2 ||x∗
t −x∗′

t ||2 +Lx
t max(1, ||ξt||1)p

x
t −1 ||x∗

t −x∗′
t ||1

≤Cπ
t ||ξt||

pπt −1
1 ||x∗

t −x∗′
t ||2 +Lx

t max(1, ||ξt||1)p
x
t −1 ||x∗

t −x∗′
t ||1

≤ (Cπ′
t +Lx

t ) max(1, ||ξt||1)p
ξ
t−1 ||x∗

t −x∗′
t ||1

≤ (Cπ′
t +Lx

t ) max(1, ||ξt||1)p
ξ
t−1 K2 ||ξt− ξ′t||1.

Note that the first inequality follows from (14), the second follows from (15), while the last one

is due to (17). The result thus follows with Lξ
t = (Cπ

t +Lx
t )K2 and pξt =max(pxt , p

π
t ). □

In the lemma above, we required the post-decision value functions Vt to fulfill (14). The next

lemma provides sufficient conditions for this to be true.

Lemma 3. If the problem is of the form (12), Assumption 3 holds, there are constants Cπ
t > 0

and pπt with

||πt(ξt)||2 ≤Cπ
t max(1, ||ξt||1)p

π
t −1, ∀ξt ∈ supp(ξt), ∀t∈ [T ], (18)

and the stochastic process is such that

E[max(1, ||ξt+1||1)p
π
t+1−1|ξt]≤Cξ

t max(1, ||ξt||1)p
π
t −1, ∀ξt ∈ supp(ξt), ∀t∈ [T ] (19)

holds for some Cξ
t > 0, then there is a pxt with

|Vt(xt, ξt)−Vt(x′
t, ξt)| ≤Lx

t max(1, ||ξt||1)p
x
t −1 ||xt−x′

t||1, ∀ξt,∀t= 1, . . . , T − 1.

Proof. We start at stage T and consider the function xT−1 7→ VT (xT−1, ξT ). For two values

xT−1 and x′
T−1 we get by Lemma 1 that there is a K only dependent on AT such that

dH(S(xT−1),S(x′
T−1))≤K ||xT−1−x′

T−1||1.



20 Stability of Markovian Stochastic Programming

It follows that there is an L<∞ such that

|VT (xT−1, ξT )−VT (x
′
T−1, ξT )|= |⟨π(ξT ), x∗

T −x′∗
T ⟩| ≤ ||πT (ξT )||2 ||x∗

T −x′∗
T ||2

≤L max(1, ||ξT ||1)p
π
T−1 ||xT−1−x′

T−1||1,

where x∗
T and x′∗

T are optimal for VT−1(xT−1, ξT ) and VT−1(x
′
T−1, ξT ).

Using this, we can bound the difference in VT−1 as follows

|VT−1(xT−1, ξT−1)−VT−1(x
′
T−1, ξT−1)| ≤E

[
|VT (xT−1,ξt)−VT (x

′
T−1,ξT )|

∣∣ξT−1

]
≤LE[max(1, ||ξT ||1)p

π
T−1 |ξT−1] ||xT−1−x′

T−1||1

≤LCξ
T−1 max(1, ||ξT−1||1)p

π
T−1−1 ||xT−1−x′

T−1||1.

Hence, the result follows for T − 1 with Lx
T−1 =LCξ

T−1 and pxT−1 = pπT−1.

Moving on to T − 1, in order to be able to apply Lemma 1, we approximate xT−1 7→

VT−1(xT−1, ξT−1) by a piece-wise linear upper approximation ṼT−1 by supporting hyperplanes

such that

|VT−1(xT−1, ξT−1)− ṼT−1(xT−1, ξT−1)| ≤ ε, ∀xT−1.

Note that such an approximation exists for every ε > 0 due to the compactness of the feasible

sets. Further note that since VT−1 is concave in xT−1, ṼT−1 can be chosen such that the Lips-

chitz constant of the approximation is always lower than that of VT−1. Using ṼT−1, we define

ṼT−1(xT−2, ξT−1) as VT−1(xT−2, ξT−1) with VT−1 replaced by ṼT−1.

We therefore get

|VT−1(xT−2, ξT−1)−VT−1(x
′
T−2, ξT−1)|

≤ |ṼT−1(xT−2, ξT−1)− ṼT−1(x
′
T−2, ξT−1)|+2ε

≤ |⟨πT−1(ξT−1), x
∗
T−1−x′∗

T−1⟩|+ |ṼT−1(x
∗
T−1, ξT−1)− ṼT−1(x

′∗
T−1, ξT−1)|+2ε

≤ ||πT−1(ξT−1)||2 ||x∗
T−1−x′∗

T−1||2 +Lx
T−1 max(1, ||ξT−1||1)p

x
T−1−1 ||x∗

T−1−x′∗
T−1||1 +2ε

≤ (Cπ′
T−1 +Lx

T−1)K max(1, ||ξT−1||1)p
′
T−1−1 ||xT−2−x′

T−2||1 +2ϵ,

where p′T−1 =max(pπT−1, p
x
T−1), the second last inequality follows from the result for T − 1 and

the last inequality follows because, again, the optimal values x∗
T−1 and x∗′

T−1 of ṼT−1(xT−2, ξT−1)
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and ṼT−1(x
′
T−2, ξT−1) can be chosen such that K||xT−2−x′

T−2||1 with K only depending on the

matrix AT−1 and (in particular) not on ϵ > 0 due to Lemma 1. Note that the change from Cπ
T−1

to Cπ′
T−1 accounts for the change from || · ||2 to || · ||1 in the last step.

Since ε > 0 was arbitrary, the same argument as above with LT−2 = (Cπ′
T−1 +Lx

T−1)K leads

to the result for T − 2. The result follows by backward induction. □

We are now in the position to prove the following result, establishing the local Lipschitz

continuity for linear problems of the form (12).

Theorem 5. If the problems are linear as in (12), we have (15), (18), (19), and

||πt(ξt)−πt(ξ
′
t)||1 ≤Cπ

t max(1, ||ξt||1, |ξ′t||1)p
π
t −1 ||ξt− ξ′t||1, ∀t∈ [T ], (20)

Assumption 2 holds with pCt ≥max(maxs>t p
C
s ,maxs≥t p

π
s ) and Assumption 3 is fulfilled, then

the value functions are uniformly Lipschitz as in (7) with pt = pCt .

Proof. We start in the last stage and conclude by (20) and Assumption 3

VT (xT−1, ξT ) = ⟨πT (ξT ), x
∗
T ⟩

= ⟨πT (ξ
′
T ), x

∗
T ⟩+ ⟨πT (ξT )−πT (ξ

′
T ), x

∗
T ⟩

≤ ⟨πT (ξ
′
T ), x

∗
T ⟩+DT ||πT (ξT )−πT (ξ

′
T )||1

≤ ⟨πT (ξ
′
T ), x

∗
T ⟩+DTC

π
T max(1, ||ξT ||1, ||ξ′T ||1)p

π
T−1 ||ξT − ξ′T ||1

≤ VT (xT−1, ξ
′
T )+ (Lξ

T +DTC
π
T ) max(1, ||ξT ||1, ||ξ′T ||1)pT−1 ||ξT − ξ′T ||1,

where x∗
T is the optimal solution to VT (xT−1, ξT ) and the last inequality follows because of

Lemma 2. Reversing the roles of ξT and ξ′T , yields the results for stage T with LT =Lξ
T +DTC

π
T

and pT = pπT ).

We proceed by induction assuming that the result was already shown for t+1 and by fixing

ε > 0 as well as arbitrary ξt, ξ
′
t, xt−1, and a piecewise linear approximation Ṽt such that

|Vt(xt, ξ
′
t)− Ṽt(xt, ξ

′
t)| ≤ ε, ∀xt.

Denoting by x∗
t the solution to Vt(xt−1, ξt), pt =max(pCt , p

π
t , p

ξ
t ), we write

Vt(xt−1, ξt) = ⟨πt(ξt), x
∗
t ⟩+E[Vt+1(x

∗
t ,ξt+1)|ξt]
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≤ ⟨πt(ξ
′
t), x

∗
t ⟩+E[Vt+1(x

∗
t ,ξt+1)|ξ′t] + (Lt+1L

C
t +Cπ

t Dt) max(1, ||ξt||1, ||ξ′t||1)pt−1 ||ξt− ξ′t||1

≤ ⟨πt(ξ
′
t), x

∗
t ⟩+ Ṽt(x∗

t , ξ
′
t)+ (Lt+1L

C
t +Cπ

t Dt) max(1, ||ξt||1, ||ξ′t||1)pt−1 ||ξt− ξ′t||1 + ε

≤ Ṽt(xt−1, ξt, ξ
′
t)+ (Lt+1L

C
t +Cπ

t Dt) max(1, ||ξt||1, ||ξ′t||1)pt−1 ||ξt− ξ′t||1 + ε

≤ Ṽt(xt−1, ξ
′
t, ξ

′
t)+ (Lt+1L

C
t +Cπ

t Dt +Lξ
t ) max(1, ||ξt||1, ||ξ′t||1)pt−1 ||ξt− ξ′t||1 + ε

= Ṽt(xt−1, ξ
′
t)+ (Lt+1L

C
t +Cπ

t Dt +Lξ
t ) max(1, ||ξt||1, ||ξ′t||1)pt−1 ||ξt− ξ′t||1 + ε

≤ Vt(xt−1, ξ
′
t)+ (Lt+1L

C
t +Cπ

t Dt +Lξ
t ) max(1, ||ξt||1, ||ξ′t||1)pt−1 ||ξt− ξ′t||1 +2ε

where, as before, Ṽt is the function Vt where Vt in the objective is replaced with Ṽt. Note that

the first inequality follows by (20) and the induction hypothesis, the second by the definition

of Ṽt, the fourth by Lemma 2, which is applicable because of Lemma 3

To see that the constant Lξ
t above does not depend on ε, note that the Lipschitz constant

of Ṽt is bounded above by the Lipschitz constant of Vt. Reversing the roles of ξt and ξ′t and

noting that both the Lipschitz constant and xt 7→ Vt(xt, ξt) and xt 7→ Vt(xt, ξ
′
t) can be bounded

by Lx
t max(1, ||ξt||1, ||ξ′t||1)pt−1 by Lemma 3 finishes the proof, since ε > 0 was arbitrary. □

Remark 5. Note that opposed to the situation in Theorem 3 and Theorem 4, the modulus

of continuity does not only depend on pCt but also on the properties of the function πt(ξt). In

particular, in case of the two earlier results global Lipschitz continuity of the value functions is

possible as long as (4) holds with pt = 1. This, in case of Theorem 5, only works if (15) holds

with pπt = 1, i.e., for the case of a deterministic πt or if πt(ξt) is bounded as a function of ξt.

This shows, that Lipschitz continuous value functions are possible if either only the objective

is random as in Theorem 2 or only the right hand side of the constraints is random, i.e., pπt = 1.

The combination of both, seems to necessitate a higher order modulus of continuity.

Remark 6. The above result cannot be extended to problems where there is also randomness in

the left-hand side of the constraints, since in this case the value function might be discontinuous

(e.g. Terça and Wozabal 2021).

Remark 7. Since all norms are equivalent in Rn, || · ||1 in Theorem 5 can be replaced by

arbitrary norms by an appropriate change in constants.
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4. Building Scenario Lattices

In this section, we describe how to build scenario lattices as natural discrete approximations

of discrete time Markov processes. First, we review the concept of lattices in Section 4.1 and

then we proceed to the description and theoretical analysis of an SGD algorithm in Section 4.2

that generates lattices from simulations of Markov processes while minimizing (8) and thereby

guaranteeing the stability of the stochastic program when the original process is replaced by

the lattice approximation.

4.1. Scenario Lattices

Formally, a scenario lattice is a graph organized in a finite number of layers. Each layer is

associated with a discrete point in time t, models the process ξ̃t at stage t, and contains a finite

number of nodes ξ̃tn. Successive layers are connected by arcs. A node ξ̃tn represents a possible

state of the stochastic process, and an arc indicates the possibility of a state transition between

the two connected nodes. Each arc connecting two nodes ξ̃tn and ξ̃t+1,m is associated with a

probability weight ptnm and the weights of outgoing arcs of a node add up to one. Note that this

definition in particular covers inhomogeneous Markov processes where conditional distributions

change over time. A scenario tree differs from a scenario lattice by the additional requirement

that every node in stage t+1 has only one predecessor in stage t. See Figure 1 for a graphical

comparison of a scenario lattice with a scenario tree.2

Denote Nt as the set of nodes in stage t, pt, t= 1, . . . , T − 1 as the |Nt| × |Nt+1| transition

matrix with elements ptnm, and

qtm =
∑

k∈NT−1

qt−1,kpt−1,km, m∈Nt, t= 2, . . . , T.

as the unconditional probability of node n in stage t. We assume that the initial state of the

lattice is deterministic, i.e., q1,1 = 1.

A scenario tree is a general representation of a discrete stochastic process and a lattice is

a general representation of a discrete Markovian process. Hence, while scenario trees could

2 Note that the topology of both the lattice and the tree is chosen for illustrative purposes. In particular, the
number of nodes per stage in the lattices need not grow linearly in time and the branching factor of the tree need
not be as regular as depicted, let alone binary.
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Figure 1 A tree with 31 nodes representing 16 scenarios on the left and a lattice with 15 nodes representing

120 scenarios on the right.

be used as representations of Markov processes, the advantage of scenario lattices is that the

number of nodes grows slower in the number of stages as is visually demonstrated in Figure 1.

In particular, in contrast to scenario lattices, for trees with a branching factor of at least two,

the number of nodes necessarily grows exponentially in the number of stages.

The reason for this difference is that every node in a tree contains information on the entire

history of the process, while this is not the case for a scenario lattice. This implies that a scenario

lattice can only be used in Markovian stochastic programming, where neither the history of the

decisions (beyond the information encapsulated in the resource state) nor the history of the

randomness is relevant for making decisions. The advantage of this property is that it allows to

mitigate the curse of dimensionality caused by an increasing number of stages in a multi-stage

problem. The intuition suggested by Figure 1 is made precise for the special case of stagewise

independent randomness in Lan (2020).

An algorithmic disadvantage of scenario lattices is rooted in the fact that a node does not

represent the whole history of the decision process as well. In particular, a lattice only uniquely

models the environmental part of the state space. Consequently, there might be multiple paths

of ξ̃ traversing the same node ξ̃tn that have different optimal resource states x∗
t associated with

them. It is therefore in general not possible to assign a single optimal decision to nodes of a

scenario lattice. This makes it impossible to solve the overall problem directly by its determin-

istic equivalent as can be done with scenario trees. Instead one needs the value functions Vt
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that implicitly define a policy for every lattice node given the resource state, which necessitates

a solution strategy like SDDP.

4.2. A Stochastic Gradient Descent Algorithm

We propose an algorithm that constructs a scenario lattice minimizing the bound in Theorem

2 in order to assure that the error in the first stage objective function is small when replacing

ξ with the easier to handle ξ̃. To this end, we note that

E[dptFM(ξt|ξ̃t−1, ξ̃t|ξ̃t−1)] =
∑

n∈Nt−1

qt−1,nd
pt
FM(ξt|ξ̃t−1,n, ξ̃t|ξ̃t−1,n),

which allows us to rewrite the left hand side of (8) for t= 1 as

T∑
t=2

Lt

∑
n∈Nt−1

qt−1,nd
pt
FM(ξt|ξ̃t−1,n, ξ̃t|ξ̃t−1,n). (21)

In the algorithm proposed below, we minimize dptFM(ξt|ξ̃t−1,n, ξ̃t|ξ̃t−1,n) building the lattice stage

by stage, i.e., solve the quantization problem of finding a good discrete approximating distri-

bution ξ̃t for ξt, given that both the processes take the value ξ̃t−1,n stored on the lattice node

n∈Nt−1.

Clearly, to make the problem well defined we have to fix the number of atoms of ξ̃t. Note

that we do not explicitly use the constants Lt in the lattice generation algorithm, since, given a

fixed number of nodes for each stage, the Lt do not have an influence on the result by the logic

of the stagewise construction. However, as pointed out in Section 3, estimates of the constants

Lt can be used to determine how many nodes the lattice should have in which stage.

SGD-type algorithms proved to be successful when building trees and lattices based on the

Wasserstein distance (e.g. Pflug and Pichler 2015, Löhndorf and Wozabal 2021). However, there

are two problems with directly transferring this approach to the more general case of the Fortet-

Mourier metric: Firstly, for pt > 1 the distance dptFM does not have a dual representation as a

mass transport problem, which is the basis for all the aforementioned algorithms. Secondly, the

maximum in the definition of the Fortet-Mourier distance makes the problem non-smooth and

therefore incompatible with standard SDG that relies on gradients to compute updates.
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We start by tackling the first problem. Luckily, although the dual representation of the Fortet-

Mourier distance is a transshipment problem, it can be modeled as transportation problem

when constructing optimal discretizations as shown in the following result.

Theorem 6. Denote by PN the set of discrete random vectors ξ̃ : Ω→Rn with N atoms. Given

a random vector ξ : Ω→Rn the problem

min
ξ̃∈PN

dpFM(ξ, ξ̃) (22)

is equivalent to

min
ξ̃1,...,ξ̃N

∫
min

i
max(1, ||ξ||, ||ξ̃i||)p−1 ||ξ− ξ̃i|| P (dξ). (23)

Furthermore, the optimization problem that defines dpFM(ξ, ξ̃) in (22) can, without loss of gen-

erality, be viewed as a transportation problem.

Proof. Suppose the optimal measure is supported on points ξ̃1, . . . , ξ̃N and π∗ is the optimal

transshipment measure for (22).

Define the sets

Ai =

{
ξ ∈Rn : i∈ argmin

i
max(1, ||ξ||, ||ξ̃i||) ||ξ− ξ̃i||

}
\
⋃
j<i

Aj

which form a partition of Rn.

We then have ∫
Rn×Rn

max(1, ||ξ||, ||ξ̃||)p−1 ||ξ− ξ̃|| π∗(dξ, dξ̃)

=
∑
i

∑
j

∫
Ai×Aj

max(1, ||ξ||, ||ξ̃||)p−1 ||ξ− ξ̃|| π∗(dξ, dξ̃)

≥
∑
i

∫
Ai

max(1, ||ξ||, ||ξ̃i||)p−1 ||ξ− ξ̃i|| P (dξ) (24)

=

∫
Rn×Rn

max(1, ||ξ||, ||ξ̃||)p−1 ||ξ− ξ̃|| π̄(dξ, dξ̃),

where π̄(A,B) = P (A∩T−1(B)) is the transport measure induced by the transport map T (ξ) =

ξ̃(ξ) = ξtn with n=minargmini max(1, ||ξ||, ||ξ̃i||)p−1 ||ξ− ξ̃i||. Hence, the transport measure π̄

is also optimal for (22). Lastly, (24) implies that maximizing over transport plans to measures

in PN is equivalent to solving (23), which concludes the proof. □
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In order to solve problem (23) using SGD, we have to also deal with the second problem

mentioned above, namely the non-smoothness of the objective. To this end, we use a method

pioneered in Norkin (1980) that is based on generalized gradients instead of gradients.

Definition 1 (Generalized Gradients). A function f : Rn → R is generalized differen-

tiable at a point x∈Rn if in some neighborhood U of x there exists a multi-valued mapping ∂f

upper semicontinuous at x with ∂f(y)⊆Rn closed and convex ∀y ∈U for which the following

approximation holds

f(y) = f(x)+ ⟨λ,y−x⟩+ o(x, y,λ),

where

o(x, yk, λk)

||yk−x||
k→∞−−−→ 0 for all (yk)⊆U with yk→ x and λk ∈ ∂f(yk).

∂f(x) is the generalized gradient of f at x.

Generalized gradients can be computed for a wide range nonconvex and nonsmooth functions.

We summarize some facts in the following result.

Theorem 7. 1. All convex functions f :Rn→R are generalized differentiable with ∂f equal

to the set of subgradients.

2. Differentiable functions are generalized differentiable and ∂f(x) = {∇f(x)}.

3. If f1, . . . , fm :Rn→R are generalized differentiable then f =max(f1, . . . , fm) is generalized

differentiable with

∂f(x) = conv {λ∈Rn : λ∈ ∂fi(x), fi(x) = f(x), 1≤ i≤m} .

4. If f0 :R
m→R as well as f1, . . . , fm :Rn→R are generalized differentiable, then the com-

position f = f0(f1(x), . . . , fm(x)) is a generalized differentiable function with

∂f(x) = conv {λ∈Rn : λ= [λ1, . . . , λm]λ0, λ0 ∈ ∂f0(z), λi ∈ ∂fi(x), 1≤ i≤m} ,

where z(x) = (f1(x), . . . , fm(x))
⊤ ∈Rm and [λ1, . . . , λm]∈Rn×m is the matrix with λi as column

vectors.
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5. If x∗ is a local minimum of a generalized differrentiable function f , then 0∈ ∂f(x∗).

6. Let f :Rn×Ω→R, (Ω, σ,P ) be a probability space with finite measure, f(x, ·) integrable

for every x∈Rn, and f(·, ω) generalized differentiable with measurable gradient maps. If further

for every compact set K ⊆Rn there exist an integrable function LK(ω) such that

sup{||λ|| : λ∈ ∂f(·, ω)(x), x∈K} ≤LK(ω)

then f(x) :=
∫
f(x,ω) P (dω) is generalized differentiable and

∂f(x) =

∫
∂f(·, ω)(x) P (dω), (25)

i.e., integration and taking generalized gradients can be interchanged.

Proof. For (1)-(5), see Norkin (1980), (6) is proven in Norkin (1986). Note that in (25) the

integral is the Aumann integral for set valued functions (see, e.g., Aumann 1965). □

Based on the above, we can prove the following for the quantization problem (23).

Theorem 8. 1. For p ≥ 1, and y ∈ Rn×k with y = (y1, . . . , yk), yi ∈ Rn, and x ∈ Rn, the

function

y 7→min
i

max(1, ||x||, ||yi||)p−1||x− yi|| (26)

is generalized differentiable. Furthermore, if i=minargminimax(1, ||x||, ||yi||)p−1||x− yi||, the

sets

Λ(y) =

{
−∂|| · ||(x− yi)max(1, ||x||)p−1, ||yi|| ≤ 1

−∂|| · ||(x− yi)||yi||p−1 +(p− 1)||yi||p−2∂|| · ||(yi)||x− yi||, ||yi||> 1
(27)

are subsets of the generalized gradient of the function in (26) at y.

2. If the random variable ||ξ||p is integrable, then the generalized gradient set for the function

(ξ̃1, . . . , ξ̃N) 7→
∫

min
i

max(1, ||ξ||, ||ξ̃i||)p−1 ||ξ− ξ̃i|| P (dξ)

equals

∫
∂min

i
max(1, ||ξ||, ||ξ̃i||)p−1 ||ξ− ξ̃i|| P (dξ). (28)
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Proof. To proof 1. note that the norm is convex and therefore generalized differentiable

because of Theorem 7.1, the maximum raised to the power p− 1 is generalized differentiable

because of Theorem 7.2-4 and finally the whole term is generalized differentiable because of

Theorem 7.2 and 7.4 and the fact that (t, s) 7→ ts is continuously differentiable for s, t ∈ R.

Formula (27) follows from straightforward calculation.

To show the second point, we verify the conditions of Theorem 7.6. For fixed ξ̃ we have∫
min

i
max(1, ||ξ||, ||ξ̃i||)p−1 ||ξ− ξ̃i|| P (dξ)

≤max(1, ||ξ̃1||)p−1

(∫
||ξ||≤1

||ξ− ξ̃1|| P (dξ)+

∫
||ξ||>1

||ξ||p−1 ||ξ− ξ̃1|| P (dξ)

)
≤max(1, ||ξ̃1||)p−1

(
||ξ̃1||+

∫
||ξ|| P (dξ)+ ||ξ̃1||

∫
||ξ||p−1 P (dξ)+

∫
||ξ||p P (dξ)

)
<∞

by the assumption on the integrability of ||ξ||p. The boundedness of the subgradient set can be

shown in the same way. Lastly, the measurability of the gradient maps follows from Remark 1

in Norkin (1986). □

Remark 8. If the probability distribution P is absolutely continuous with respect to the

Lebesgue measure, the generalized gradient sets in (28) are almost everywhere singletons and

the points where this is not the case do not affect the value of the integral.

After these preparations, we have everything in place to apply the SDG algorithm in Ermol’ev

and Norkin (1998) to solve (22). In particular, to find an optimal solution, we start at an

arbitrary point ξ̃0 ∈Rn×N , sample points ξ̄k ∈Rn, and use the following updates to generate

candidate solutions ξ̃k+1 for k≥ 0

gk ∈Λ(ξ̄k) (29)

ξ̃k+1
i =

{
ξ̃ki − ρkgk, ξ̃(ξ̄k) = ξ̃i

ξ̃ki , otherwise,
(30)

where the learning rates ρk fulfills the Robbins-Monroe conditions

∞∑
k=0

ρk =∞,
∞∑
k=0

ρ2k = 0.

The above procedure converges to a critical point as shown in the following result.
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Theorem 9 (Ermol’ev and Norkin (1998)). All limit points of the sequence ξ̃k generated

in (30), are almost surely contained in the set

{ξ̃ ∈RN×n : 0∈ ∂dpFM(ξ, ξ̃)},

i.e., fulfill the necessary conditions for local minima.

In order to employ the above result to generate a scenario lattice, we have to re-formulate the

problem of minimizing (21) to fit the framework in Theorem 9. In order, to do so we split the

problem into stage-wise subproblems. Note that this strategy could potentially be improved by

considering the whole problem as a single optimization problem over all stages.

We start by defining the root node ξ̃1 as the deterministic starting state ξ1 of the process.

Then we proceed in a stage-wise manner assuming that the nodes ξ̃tn, n ∈ Nt at stage t are

already found. We find |Nt+1| nodes ξ̃t+1,m such that the probability weighted sum of the

transportation problems is minimized, i.e.,

minzn,ξ̃t+1

∑
n∈Nt

qtn
∫
max(1, ||ξt+1||, ||ξ̃t+1||)pt+1−1 ||ξt+1− ξ̃t+1|| zn(dξ̃t+1, dξt+1)

s.t. zn(R
Nt+1 ×B) = Pt+1(B|ξt = ξ̃tn), ∀B borel, ∀n∈Nt

zn({ξ̃t+1,m}×RNt+1) = Pt+1(At+1,i|ξt = ξ̃tn), ∀m∈Nt+1, ∀n∈Nt,

(31)

where zn is the transportation measure between the image measure of ξt+1 given ξt = ξ̃tn and

the image measure of ξ̃t+1 given ξ̃t = ξ̃tn on the lattice and At+1,i are the sets defined in the

proof of Theorem 6 for the random variable ξ̃t+1. The constraints of the above problem ensure

that the conditional distributions of ξt+1 given the discretization in stage t are captured as

accurately as possible, whereby the weighting with the unconditional probabilities qtn of the

nodes in stage t captures the trade-off between the |Nt| different transportation problems.

To rewrite this weighted sum of optimization problems to a single problem of the form (22),

denote by Pt+1(·|ξ̃tn) the image measure of ξt+1 in RNt+1 given ξt = ξ̃tn and define a measure

P̂t+1 for ξt+1 conditional on the nodes of the lattice at stage t with unconditional probabilities

qtn, i.e.,

P̂t+1(B) =
∑
n∈Nt

qtnP (B|ξ̃tn), ∀B ⊆RNt+1 borel. (32)

Hence, P̂t+1 is the image measure of ξt+1, given a random starting state ξ̃tn with probability

qtn in period t. Note that by this conditioning P̂t+1 is different from the original unconditional

measure Pt+1.
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Using the measure P̂t+1, we reformulate (31) using the following proposition.

Theorem 10. Problem (31) is equivalent to (22) for the measure P̂t+1, i.e., the problem

minz,ξ̃t+1

∫
max(1, ||ξt+1||, ||ξ̃t+1||)pt+1−1 ||ξt+1− ξ̃t+1|| z(dξ̃t+1, dξt+1)

s.t. z(RNt+1 ×B) = P̂t+1(B), ∀B, ∀n∈Nt

z({ξ̃t+1,m}×RNt+1) = P̂t+1(At+1,m), ∀m∈Nt+1.

(33)

Proof. We start by showing that every solution of (33) can be transformed to a solution of

(31) with the same objective. To this end, we disintegrate z with respect to the projection on

the second coordinate into a measure λ on the second coordinate and conditional distributions

zξt+1
for the first coordinate. By the first constraint in (33) it follows that λ= P̂t+1 and we can

rewrite the objective as∫
max(1, ||ξt+1||, ||ξ̃t+1||)pt+1−1 ||ξt+1− ξ̃t+1|| z(dξ̃t+1, dξt+1)

=

∫∫
max(1, ||ξ||t+1, ||ξ̃||t+1)

pt+1−1 ||ξt+1− ξ̃t+1|| zξt+1
(dξ̃t+1) P̂t+1(dξt+1)

=
∑
n∈Nt

qtn

∫∫
max(1, ||ξ||t+1, ||ξ̃||t+1)

pt+1−1 ||ξt+1− ξ̃t+1|| zξt+1
(dξ̃t+1) Pt+1(dξt+1|ξ̃tn) (34)

=
∑
n∈Nt

qtn

∫
max(1, ||ξ||t+1, ||ξ̃||t+1)

pt+1−1 ||ξt+1− ξ̃t+1|| zn(dξ̃t+1, dξt+1)

with

zn(B̃×B) =

∫∫
1B̃×B(ξ̃t+1, ξt+1) zξt+1

(dξ̃t+1)Pt+1(dξt+1|ξ̃tn),

for measurable sets B and B̃ where (34) follows from (32).

Since

zn(R
Nt+1 ×B) =

∫∫
1
R
Nt+1×B

(ξ̃t+1, ξt+1) zξt+1
(dξ̃t+1) Pt+1(dξt+1|ξ̃tn)

=

∫
1B(ξt+1) Pt+1(dξt+1|ξ̃tn)

= Pt+1(B|ξ̃tn)

zn({ξ̂t+1,m}×RNt+1) =

∫∫
1{ξ̂t+1,m}×RNt+1 (ξ̃t+1, ξt+1) zξt+1

(dξ̃t+1) Pt+1(dξt+1|ξ̃tn)

=

∫
zξt+1

({ξ̃t+1,m}) Pt+1(dξt+1|ξ̃tn)

= Pt+1(At+1,m|ξ̃tn)

the zn are feasible for (31), where the last equality follows from Theorem 6, because it is optimal

to transport ξt+1 ∈At+1,n to ξ̃t+1,n.
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To show the other direction, let (zn)n∈Nt be a solution of (33) and define

z(B̃×B) =
∑
n∈Nt

qtnzn(B̃×B).

Note that the objective function (33) for z equals

∫
max(1, ||ξt+1||, ||ξ̃t+1||)pt+1−1 ||ξ̃t+1− ξt+1|| z(dξ̃t+1, dξt+1).

and thus is the same as the objective for (31) with (zn)n∈Nt .

To show that z is a feasible solution to (33), note that

z(RNt+1 ×B) =
∑
n∈Nt

qtnzn(R
Nt+1 ×B) =

∑
n∈Nt

qtnPt+1(B|ξ̃tn) = P̂t+1(B),

where the second equality follows from the first constraint in (31).

Similarly, we have

z({ξ̃t+1,m}×RNt+1) =
∑
n∈Nt

qtnzn({ξ̃t+1,m}×RNt+1) =
∑
n∈Nt

qtnPt+1(At+1,m|ξ̃tn)

= P̂t+1(At+1,m),

which finishes the proof. □

We therefore can use the SGD algorithm in (29) for the distribution P̂t stage by stage to

generate a scenario lattice whose nodes on each stage solve the problem (31). We summarize

the overall algorithm for the generation of a scenario lattice over T stages in Algorithm 1. Note

that after we find the nodes of the lattice in a stage, we estimate the conditional probabilities

to reach these nodes from nodes in the previous stage by generating Kt2 samples from the

distributions of ξt given the values ξ̃t−1,i on the nodes of the previous stage in line 10 to 17.

5. Out-of-sample Evaluation of Policies

In this section, we will show that the scenario lattices generated in the previous section lead to

approximate decision problems that in some sense converge to the true problems. In particular,

we apply the optimal policies for the approximate problem to realizations of the real processes

by rounding the environmental state ξt to the next lattice node and use the value function

associated to that node to make decisions. In this way the policy, which is implicitly encoded in
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Data: Nt, ξ, Kt1, Kt2, S

1 ξ̃1← ξ1

/* Loop over stages */

2 for t← 2 to T do

3 Set ξ̃tn randomly for n∈Nt by sampling from P̂t defined in (32)

/* Learn nodes of next stage using the SGD algorithm */

4 for k← 1 to Kt1 do

5 Sample ξ̄kt from P̂t defined in (32)

6 Obtain gkt ∈Λ(ξ̄kt ) as defined in (29)

7 i∗←minargminimax(1, ||ξ̃ti||, ||ξ̄kt ||)pt−1||ξ̃ti− ξ̄kt ||

8 ξ̃ti∗← ξ̃ti∗ − ρkt g
k
t

9 end

/* Calculate conditional probabilities */

10 for n∈Nt−1 do
11 ptni = 0 for all i∈Nt

12 for k← 1 to Kt2 do

13 Sample ξ̄kt from ξt|ξ̃t−1,n

14 i=max argminj max(1, ||ξ̄kt ||, ||ξ̃tj||)pt−1 ||ξ̄kt − ξ̃tj||

15 pt−1,ni← pt−1,ni + 1/Kt2

16 end
17 end

/* Calculate unconditional probabilities */

18 for n2 ∈Nt do
19 qtn2

←
∑

n1∈Nt−1
qt−1,n1

pt−1,n1n2

20 end
21 end

Algorithm 1: Stage-wise scenario lattice generation algorithm.

the value function, can be applied to the true problem. The analysis extends similar arguments

presented in Terça and Wozabal (2021) for the more restrictive case of compactly supported

randomness.

Note that the ensuing convergence analysis is different from the results in Section 3, since

it does not merely approximate the optimal value of the original problem, but additionally
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demonstrates that the approximate policy is actually useful in the original problem, i.e., is close

to the true optimal policy and, what is even more important, yields an objective that is close

to the true optimal objective. Although, strictly speaking, these results are the pre-requisite

for employing the decisions of the approximate problem in the actual problem, this perspective

is rarely taken in the literature on stability of stochastic programs.

To transfer the solution from the scenario lattice back to the original problem and obtain a

solution for an observed trajectory ξ̄1, . . . , ξ̄T of the original process, we sequentially compute

decisions as follows

x∗
t ∈ argmax

xt

{
Πt(ξ̄t, xt)+ Ṽt+1(xt, ξ̃t(ξ̄t)) : xt ∈Xt(x

∗
t−1, ξ̄t)

}
. (35)

This implies that the problem is solved with the data determined by the sample ξ̄t using the

post-decision value function xt 7→ Ṽt+1(xt, ξ̃t(ξ̄t)) of the approximated problem associated with

the lattice node ξ̃t(ξ̄t) that is closest to ξ̄t in the respective notion of distance implied by the

Fortet-Mourier metric. Given that ξ̃t has S atoms, we denote by V̄ S
t (xt−1, ξ̄t) the objective value

of the problem in (35) and refer to this procedure as rounding to a lattice node. Rounding to a

lattice node is made possible by the fact that once the problem is solved for an approximating

scenario lattice, the value functions can, in principle, be used to make decisions for all possible

resource states.

For the purpose of the next results, we denote by ξ̃St
t , the optimal approximation of ξt with

St = |Nt| centers minimizing (21). Note that we use the superscript in ξ̃St
t to indicate the number

of nodes and not, as in Section 4, the number of iterations of the SGD algorithm.

In the following, we prove Lemma 5, which is adapted from Terça and Wozabal (2021) where

it is proven for the Wasserstein distance. We adapt the proof for the Fortet-Mourier distance

and the lattices used in this paper. As a preparation, we show the following auxiliary result,

which establishes that optimal discretizations with respect to the Fortet-Mourier metric are

asymptotically correct and lead to almost sure convergence of realizations to the next center of

the discrete distribution.



Stability of Markovian Stochastic Programming 35

Lemma 4. Given a random vector ξ : Ω→Rn and discretizations ξ̃S : Ω→Rn that live on S

atoms such that

ξ̃S ∈ argmin
ξ̃′∈PS

dpFM(ξ̃′,ξ).

It follows that

dpFM(ξ̃S,ξ)
S→∞−−−→ 0 (36)

and ξ̃S(ξ)
a.s.−−→ ξ.

Proof. The result in (36) follows in the same way as the corresponding result for the Wasser-

stein distance in Graf and Luschgy (2000), Lemma 6.1.

Now suppose that almost sure convergence would not be true, i.e., that there is a ξ′ ∈ supp(ξ),

a sequence Sk
k→∞−−−→∞, and an ε > 0 for which

||ξ′− ξ̃Sk(ξ′)||> ε, ∀k.

Define A= {z ∈Rn : ||z− ξ′||< ϵ/2} and δ= P (A). If δ > 0, then

dpFM(ξ̃Sk ,ξ)≥
∫
A

max(1, ||ξ||, ||ξSk(ξ)||)p−1||ξ− ξ̃Sk(ξ)|| P (dξ)> δ
ε

2
, ∀k ∈N,

which is in contradiction to (36) and therefore proves almost sure convergence. □

We now establish that, with an increasing number of nodes of the lattice, the optimal dis-

cretization ξ̃St
t converges almost surely to ξt and that this property carries over to the conditional

distributions at stage t.

Lemma 5. Let Assumption 2 hold and the problem be convex. Let ξ̃St
t be the optimal discretiza-

tion of ξt with St centers according to Algorithm 1. Then it holds that:

1. dptFM(ξt, ξ̃
St
t )

St→∞−−−−→ 0 and the discretization is almost surely asymptotically correct, i.e.,

ξ̃St
t (ξt)

St→∞−−−−→ ξt, a.s. (37)

2. The distances between the conditional distributions ξ̃St
t |ξ̃

St−1
t−1 (ξt) and the true conditional

distributions vanishes as St grows, i.e.,

dptFM

(
ξ̃St
t |ξ̄

St−1
t−1 (ξt−1),ξt|ξt−1

)
St→∞−−−−→ 0.
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Proof. We proof 1. starting from the first stage. Clearly, ξ̃S1
1 = ξ1 and dp2FM(ξ2, ξ̃

S2
2 )→ 0 as

S2→∞ and ξ̃S2
2 (ξt)→ ξ2 almost surely by Lemma 4.

For the induction step from t to t+1, we choose ε > 0 and write

dptFM(ξt+1, ξ̃
St
t+1) = sup

f

∫
f Pt+1(dξt+1)−

∫
f P̃

St+1
t+1 (dξ̃

St+1
t+1 )

= sup
f

∫∫
f Pt+1,ξt(dξt+1)Pt(dξt)−

∫∫
f P̃

St+1

t+1,ξ̃
St
t

(dξ̃
St+1
t+1 )P̃ St

t (dξ̃St
t )

≤ sup
f

∫ (∫
f P

t+1,ξ̃
St
t (ξt)

(dξt+1)−
∫

f P̃
St+1

t+1,ξ̃
St
t

(dξ̃
St+1
t+1 )

)
P̃ St

t (dξ̃St
t )+ ε

≤
∫

sup
f

(∫
f P

t+1,ξ̃
St
t (ξt)

(dξt+1)−
∫

f P̃
St+1

t+1,ξ̃
St
t

(dξ̃
St+1
t+1 )

)
P̃ St

t (dξ̃St
t )+ ε (38)

where the first inequality follows the fact that the inner integral is in Lipp
C
t , since∣∣∣∣∫ f Pt+1,ξt(dξt+1)−

∫
f Pt+1,ξ′t

(dξt+1)

∣∣∣∣≤ dptFM(ξt+1|ξt,ξt+1|ξ′t)

≤LC
t min(1, ||ξt||, ||ξ′t||)p

C
t −1||ξt− ξ′t||,

which together with the induction hypothesis and Assumption 2 yields the inequality for large

enough St.

Note that (38) is minimized in (21) and that this problem can be written as a quantization

problem of a single distribution due to Theorem 10. Since ε > 0 was arbitrary and due to Lemma

4 the right hand side of (38) thus converges to zero and it follows that ξ̃
St+1
t+1 (ξt+1)→ ξt+1 almost

surely as in Lemma 4, which proves 1.

To prove the second point, we use Assumption 2 to write

d
pCt−1
FM (ξt|ξt−1, ξ̃

St
t |ξ̃

St−1
t−1 (ξt−1))≤ d

pCt−1
FM (ξt|ξ̃

St−1
t−1 (ξt−1), ξ̃

St
t |ξ̃

St−1
t (ξt−1))

+LC
t max(1, ||ξt−1||, ||ξ̃

St−1
t−1 (ξt−1)||)p

C
t−1−1||ξt−1− ξ̃

St−1
t−1 (ξt−1)||,

where the first term on the right hand side vanishes because (21) goes to zero due to Lemma

4 as St increases and the second term vanishes, since ξ̃
St−1
t−1 (ξt−1)→ ξt−1 almost surely because

of 1. □

We are now in a position to prove the following theorem, which shows that the approximation

of the value functions progressively gets better as the scenario lattice gets finer, i.e., as the

number of nodes per stage increases. In particular, we establish that the out-of-sample value
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generated by rounding to the next lattice node converges to the true optimal value of the

problem in the number of nodes.

Theorem 11. Consider a sequence of approximating random variables (ξ̃S
1 , . . . , ξ̃

S
T )S∈N such

that for each ξ̃S
t the number of atoms St(S) of ξ̃

S
t goes to infinity as S→∞ and the atoms of ξ̃S

t

are chosen to minimize (21). Let the problem be convex and the value functions be locally Lips-

chitz as in (7), Assumption 2 be true, and assume that there are integrable bounding functions

Ψt such that

Vt(xt−1, ξt)≤Ψt(xt−1, ξt), a.s., ∀t∈ [T ] (39)

Ṽ S
t (xt−1, ξ̃

S
t )≤Ψt(xt−1, ξ̃

S
t ), a.s., ∀t∈ [T ] (40)

Then it holds that

V̄ S
t (xt−1, ξt)

S→∞−−−→ Vt(xt−1, ξt), a.s., ∀xt−1, ∀t∈ [T ] (41)

and

ṼS
t (xt, ξ̃

S
t (ξt))

S→∞−−−→Vt(xt, ξt), a.s., ∀xt, ∀t∈ [T ]. (42)

Proof. For the final stage T , we have

V̄ S
T (xT−1, ξT ) = VT (xT−1, ξT ), ∀xT−1 ∈RMt .

For all other time periods, it follows because of Theorem 2 and Lemma 5 that

Ṽ S
t (xt−1, ξ̃

S
t )

S→∞−−−→ Vt(xt−1, ξ̃
S
t ), ∀ξ̃St ∈ supp(ξ̃S

t ), ∀xt. (43)

We then can write

|ṼS
t (xt, ξ̃

S
t (ξt))−Vt(xt, ξt)|

= |E[Ṽ S
t+1(xt, ξ̃

S
t+1)|ξ̃St (ξt)]−E[Vt+1(xt, ξt+1)|ξt]|

≤ |E[Ṽ S
t+1(xt, ξ̃

S
t+1)|ξ̃St (ξt)]−E[Vt+1(xt, ξt+1)|ξ̃St (ξt)]|

+LC
t Lt max(1, ||ξt||, ||ξ̃St (ξt)||)p

C
t −1 ||ξt− ξ̃St (ξt)||

≤ |E[Ṽ S
t+1(xt, ξ̃

S
t+1)−Vt+1(xt, ξ̃

S
t+1)|ξ̃St (ξt)]|
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+LC
t Ltmax(1, ||ξt||, ||ξ̃St (ξt)||)p

C
t −1 ||ξt− ξ̃St (ξt)||+Lt d

pt
FM(ξt+1|ξ̃St (ξt), ξ̃S

t+1|ξ̃St (ξt))

C→∞−−−→ 0

where the first inequality follows, since Vt+1 is locally Lipschitz and Assumption 2 and the

second one follows again because of the local Lipschitz continuity of Vt+1. Finally, the last line

goes to zero because the Fortet-Mourier term goes to zero and ξ̃St (ξt)→ ξt because of Lemma 5

and Theorem 2 while the second last line goes to zero by (43) and the dominated convergence

theorem which is applicable because of (39) and (40). This proves (42).

Finally, because of (42)

V̄ S
t (xt−1, ξt)−Vt(xt−1, ξt)≤ ṼS

t (x̄
∗
t , ξ̃

S
t (ξt))−Vt(x̄∗

t , ξt)
S→∞−−−→ 0,

where x̄∗
t is optimal for V̄ S

t (xt−1, ξt). Reversing the roles of V̄ S
t and Vt shows (41) and concludes

the proof. □

Remark 9. Conditions (39) and (40) on the existence of a bounding function Ψt are usually

unproblematic. In particular, if ||ξt||pt is integrable, the existence of Ψt can be easily shown in

the settings of Theorem 3, Theorem 4, and Theorem 5.

Theorem 12. If the assumptions of Theorem 11 hold and the Hausdorff distance of the feasible

sets converge, i.e.,

dH(Xt(xt−1, ξt),Xt(x
′
t−1, ξt))

x′t→xt−−−−→ 0, ∀xt−1, ∀ξt ∈ supp(ξt), (44)

then every limit point of the optimal policy x̄S∗
t of the approximated problems converge almost

surely to a policy x∗
t that is optimal for the original problem as S→∞.

Proof. For a given sample path ξ̄1, . . . , ξ̄T of the stochastic process ξ, we compare the solu-

tions x̄S∗
t to (35) to the solutions x∗

t of the original problem for the sample path.

From Theorem 11, we know that

ṼS
t+1(xt, ξ̃t(ξt))

S→∞−−−→Vt+1(xt, ξt), ∀xt, a.s.

For the first stage, the constraints of problem Ṽ S
1 and V1 are the same and therefore the objective

functions epi-converge because of Theorem 7.31 in Shapiro et al. (2009). It thus follows from
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Proposition 7.30 in Shapiro et al. (2009) that every limit point of the first stage solutions x̄S∗
1

converge to a first stage solution x∗
1.

Proceeding by induction over t, we notice that for a given sample ξ̄1, . . . , ξ̄T the feasible sets

of the problems V̄ S
t and Vt differ due to the difference between x∗

t−1 and x̄S∗
t−1. Consider an

arbitrary point x with distance ϵ > 0 to the boundary of Xt(x
∗
t−1, ξ̄t). Because of (44), we get

that, eventually, x ∈ Xt(x
∗
t−1, ξ̄t) ∩Xt(x̄

S∗
t−1, ξ̄t) or x /∈ Xt(x

∗
t−1, ξ̄t) ∩Xt(x̄

S∗
t−1, ξ̄t), due to the fact

that by the induction hypothesis every limit point of x̄S∗
t−1 converge to an optimal solution x∗

t−1.

Since the complement of the boundary of Xt is dense in RMt , it follows by Proposition 7.31

in Shapiro et al. (2009) that for every convergent subsequence x̄
Sk∗
t−1

Πt(xt, ξ̄t)+ V̄S
t (xt, ξ̃

S
t (ξt))+1Xt(x̄

Sk∗
t−1 ,ξ̄t)

epi-converges to

Π(xt, ξ̄t)+Vt(xt, ξ̄t)+1Xt(x
∗
t−1,ξ̄t)

as S→∞ for x∗
t−1 an optimal solution for the problem in t− 1. Therefore, every limit point of

x̄S∗
t converges to an optimal solution x∗

t due to Proposition 7.30 in Shapiro et al. (2009), which

finishes the proof. □

Remark 10. The condition on the Hausdorff distance of the feasible sets holds for all problem

classes discussed in Section 3: The case with deterministic feasible sets treated in Theorem 3

trivially fulfills the condition. Problems of the type treated in Theorem 4 fulfill the condition

because of the convexity of the function f . Finally, the linear problems in Theorem 5 fulfill the

property because of the Lipschitz continuity of solutions of linear inequalities (Mangasarian

and Shiau 1987).

6. A Numerical Example

In this section, we put the proposed methods to the test using a multistage extension of the

classic newsvendor problem with uncertain demands and prices and benchmark the results with

a common lattice generation method which approximates unconditional distributions and is, for

example, used in Bally and Pagès (2003), Löhndorf and Shapiro (2019), Löhndorf and Wozabal

(2021).
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We consider a supplier of a single perishable good who faces a random demand Dt. The

supplier buys the goods at a random price Pt and sells it to its customers with a markup m> 0

for (1 +m)Pt. Goods ordered in stage t arrive at stage t+ 1. The supplier owns a storage of

size L̄ with the storage balance connecting the decision stages. Due to the perishable nature of

the goods, a fraction η ∈ (0,1) of the stock in period t perishes until period t+1.

Denoting the order decision in period t by ot, the sell decision by st, and the storage level by

lt, the problem can be written as

max
o,s,l

E
[∑T

t=1(Pt +m)st−Ptot

]
s.t. lt ≤ (1− η)lt−1 + ot−1− st, a.s., ∀t∈ [T ]

lt ≤ L̄, a.s., ∀t∈ [T ]
lt, st, ot ≥ 0, a.s., ∀t∈ [T ],

(45)

with initial values l0 and o0. For the sake of simplicity, we set the salvage value at the end of

the planning horizon to 0, i.e., remaining goods are discarded. Note that (45) falls in the class

of problems treated in Theorem 5 with pt = 2, since the objective is linear in the randomness.

We choose the following stochastic processes for prices and demands

Dt =max(0,Dt−1 +σDεDt)

Pt = Pt−1 exp(σP εPt)

with (εDt, εPt) bivariate normal with mean 0 and correlation α.

For our numerical experiments, we fix T = 20, σD = 10, σP = 0.1, α = 0.5, P0 =D0 = 100,

o0 = 0, l0 = 5, m = 0.1, L̄ = 10, and η = 0.1. We choose ρk = 3/30+k as learning rate for the

SGD, which ensures that early updates do not push atoms ξ̃ti to far out locations where they

will never again be reached by subsequent samples. The latter happens for the naive choice

ρk = k−1.

As mentioned in Section 3, the Lipschitz constants Lt of the problem keep growing, suggesting

a finer approximation, i.e., more lattice nodes, in earlier stages as compared to the later stages.

On the other hand, both the stochastic process for demand and price are nonstationary with

increasing variance. Since these two factors have an opposing effect and to keep the study

simple, we keep the number of nodes of the scenario lattices constant for all non-root stages

and postpone a more detailed study of the optimal number of nodes to future work.
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Fortet-Mourier Wasserstein Difference

UB OOS Gap UB OOS Gap ∆ Std

5 nodes 15593 11443 36.27 14853 6032 146.23 47.28 33.02
10 nodes 16604 13793 20.38 17274 10864 59.00 21.23 34.24
20 nodes 17455 16105 8.38 18704 13329 40.33 17.24 39.60
50 nodes 18311 17999 1.73 19290 17121 12.67 4.88 43.64

100 nodes 18786 18795 -0.05 19549 18739 4.32 0.30 47.14

Table 1 Comparison of results for problem (45) using lattices generated from Algorithm 1 and lattices

generated minimizing the Wasserstein distance between the unconditional distributions of ξt. UB: SDPP upper

bound. OOS: average profit on samples of the continuous stochastic process. Gap: gap between UB and OOS

measured in percentages of UB. ∆: gap between the OOS results of the two methods measured in percentages

of the Fourtet-Mourier OOS values. Std: Standard deviation of the difference between the OOS values.

For our numerical experiments, we vary the number of nodes in order to study how the

approximations improve with progressively finer scenario lattices. In particular, we use lattices

with 5, 10, 20, 50, and 100 nodes per stage and Kt1 = 105 and Kt2 = 104 samples for lattice

generation for all t= 2, . . . , T . For the lattices that are based on the minimization of the Wasser-

stein distance between the unconditional distributions ξt and ξ̃t, we use the same learning rate

and 105 samples as well. For the analysis of the out-of-sample performance of the trained poli-

cies, we generate 105 samples from the original process and solve the problems V̄t, rounding to

the next lattice node, as described in Section 5. Note that even for lattices with only 5 nodes

per stage the equivalent scenario trees would have
∑20

t=1 5
t−1 = 2.38× 1013 nodes and therefore

would lead to computationally intractable problems.

We solve problem (45) using the Quasar3 implementation of SDDP and run the solver for

a fixed number of 500 iterations, which is easily enough to ensure convergence in the above

example. The code that generated the results in this section is available at Google Colab.4

Table 1 summarizes the results of the numerical study. As expected the quality of the approx-

imation gets better with the number of lattice nodes. This can be seen for both methods in

the increasing out-of-sample performance of the respective policies and the decreasing gaps

between the SDDP upper bounds and the out of sample values. In particular, for the method

based on the Fortet-Mourier metric the gap closes for 100 nodes per stage implying that the

3 See https://www.quantego.com/quasar.

4 See https://colab.research.google.com/drive/1FhpII8aRPdUzX55e_o6Z3ZUXYz5Nfaer.
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approximate policy delivers an out-of-sample value close to the objective of the approximated

stochastic program.

The comparison of the two methods reveals that the out of sample results as well as the gap

of the out-of-sample profit to the SDDP upper bound are significantly better for the method

proposed in this paper – particularly for more coarse discretization by smaller lattices, where

the unconditional Wasserstein lattices perform rather poorly. This can be seen as a promising

result for problems with higher dimensional stochastic processes ξ, where even discretizations

with thousands of nodes are necessarily coarse due to the curse of dimensionality.

7. Conclusion

This paper proposes a bound for the objective function of a Markovian stochastic optimization

problem when the distribution of the stochastic process varies. The result uses Fortet-Mourier

distances between conditional distributions and holds whenever the value functions of the prob-

lems are locally Lipschitz in the resource state, which is the case for a range of important

problems provided a rather natural continuity assumption on the stochastic process holds.

Based on these results, we propose a nonconvex and nonsmooth SGD method using gen-

eralized gradients that generates scenario lattices from samples of the stochastic process. We

detail how the solution obtained for the scenario lattice can be transferred back to the original

process and show that under mild regularity conditions the discretization error in the objective

and the solutions of the problem vanishes as the approximation gets finer.

Finally, we show in a numerical study for a multi-stage newsvendor problem that the proposed

method outperforms a state-of-the-art lattice generation method that has been used in the

extant literature. In particular, the obtained solutions exhibit better out-of-sample solutions

and a smaller gap between the estimated insample objective and the realized out of sample

profits, especially for smaller lattices.

Interesting topics for future research are more extensive numerical tests with a wide range of

examples and the exploration of different choices for lattice topologies guided by the relative size

of the constants Lt in different stages. Furthermore, it would interesting to explore which other
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problem classes lead to locally Lipsschitz continuous value functions and to possibly obtain

more general results on Lipschitz moduli.
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