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Abstract

In this note, we study the size of the support of solutions to linear Diophantine equations
𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛 where 𝐴 ∈ ℤ𝑚×𝑛, 𝑏 ∈ ℤ𝑛. We give an asymptotically tight upper bound on the
smallest support size, parameterized by ‖𝐴‖∞ and 𝑚, and taken as a worst case over all 𝑏 such
that the above system has a solution. This bound is asymptotically tight, and in fact matches
the bound given in Aliev, Averkov, De Leora, Oertel [AADLO22], while the proof presented
here is simpler, relying only on linear algebra. It removes a factor of order log log(√𝑚 ‖𝐴‖∞) to
the current best bound given in Aliev, De Loera, Eisenbrand, Oertel, Weismantel [ADLE+18].

1 Introduction

The main goal of this work is to establish upper and lower bounds on the smallest support size
of solutions to linear Diophantine equations. Let 𝐴 ∈ ℤ𝑚×𝑛 be a matrix and denote by (𝐴) ∶=
{𝐴𝑥 ∣ 𝑥 ∈ ℤ𝑛} the lattice generated by the columns of 𝐴. For any 𝑏 ∈ (𝐴), we want to find an
integer solution to 𝐴𝑥 = 𝑏 with smallest support size, i.e.

min {‖𝑥‖0 ∣ 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛}, (1)

where ‖𝑥‖0 ∶= |{𝑗 ∶ 𝑥𝑗 ≠ 0}|. We will assume without loss of generality that 𝐴 has full row rank,
i.e. rank(𝐴) = 𝑚, because the system is trivially satisfied if and only if the independent rows of
𝐴 are satisfied. According to [Nat95], determining the exact solution to (1) is NP-hard. In this
note, we study the largest value of (1) taken over all points 𝑏 in the lattice (𝐴). To be precise,
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for matrix 𝐴 ∈ ℤ𝑚×𝑛, define 𝑓 (𝐴) to be the maximum, taken over all 𝑏 ∈ (𝐴), of the smallest
support size of an integer solution to 𝐴𝑥 = 𝑏, i.e.

𝑓 (𝐴) ∶= max
𝑏∈(𝐴)

min {‖𝑥‖0 ∣ 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛}. (2)

Note that this notion has been studied in the literature. For example, in [AADLO22], 𝑓 (𝐴) is
called the integer linear rank of 𝐴, denoted by 𝐼𝐿𝑅(𝐴). Nontrivial bounds on problem (2) have
been leveraged in many areas of discrete optimization; see, for example, references in Section 1
of [AADLO22] and in the introduction of [ADLE+18].

As a result, there have been several studies focused on achieving increasingly strong upper
bounds on Problem (2). Currently, the best available upper bound of 𝑓 (𝐴) is achieved in [AADLO22],
which we will elaborate on in Section 2.

We parameterize our bound on 𝑓 (𝐴) by 𝑚 and ‖𝐴‖∞. In particular, denote by ℎ(𝑚, 𝑡) the maximum,
taken over all integer matrices 𝐴 with 𝑚 rows with entries with absolute value no larger than 𝑡,
and vectors 𝑏 ∈ (𝐴), of the smallest support size of an integer solution to 𝐴𝑥 = 𝑏, i.e.

ℎ(𝑚, 𝑡) ∶= max
𝐴∈ℤ𝑚×𝑛,‖𝐴‖∞≤𝑡,𝑏∈(𝐴)

min {‖𝑥‖0 ∣ 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛}

= max
𝐴∈ℤ𝑚×𝑛,‖𝐴‖∞≤𝑡

𝑓 (𝐴).
(3)

There have been several efforts in obtaining good bounds for ℎ(𝑚, 𝑡). As far as we know, the
current explicitly stated best bound appears in [ADLE+18] as ℎ(𝑚, 𝑡) ≤ 2𝑚 log(2

√
𝑚𝑡). We give

the following bound in this paper.
Theorem 1.

ℎ(𝑚, 𝑡) ≤ 𝑂(
𝑚 log(

√
𝑚 𝑡)

log log(
√
𝑚 𝑡))

. (4)

The bound in (4) improves the bound in [ADLE+18] by a factor of order log log(√𝑚𝑡). To obtain
this theorem, we prove the following result, which may be of independent interest.

Let 𝐴 be an integer matrix with 𝑚 rows and at least 𝑚 columns. We will denote by Γ(𝐴) the
largest absolute value of an 𝑚 × 𝑚 subdeterminant, i.e. determinant of an 𝑚 × 𝑚 submatrix of 𝐴.
We denote by gcd(𝐴) the greatest common divisor of all (𝑛

𝑚) such subdeterminants of 𝐴, i.e.

Γ(𝐴) ∶=max
𝐵

{| det(𝐵)| ∣ 𝐵 is an 𝑚 × 𝑚 submatrix of 𝐴};

gcd(𝐴) ∶= gcd {| det(𝐵)| ∣ 𝐵 is an 𝑚 × 𝑚 submatrix of 𝐴}.

Theorem 2. Let 𝐴 be an integer matrix with 𝑚 rows and full row rank. Let 𝑝𝑖 be the 𝑖-th prime.
Then, the following relation between Γ(𝐴), gcd(𝐴) and 𝑓 (𝐴) holds.

Γ(𝐴)
gcd(𝐴)

≥ 𝑝𝑚
2 𝑝

𝑚
3 ⋯ 𝑝𝑚

⌊
𝑓 (𝐴)
𝑚 ⌋

𝑝
𝑓 (𝐴)−𝑚⌊

𝑓 (𝐴)
𝑚 ⌋

⌈
𝑓 (𝐴)
𝑚 ⌉

. (5)

Furthermore, the bound is asymptotically tight in the sense that for arbitrarily large integers 𝑚 and
𝑡, there exist an integer matrix 𝐴 with 𝑚 rows, full row rank, ‖𝐴‖∞ > 𝑡, and a vector 𝑏 ∈ (𝐴) such
that equality holds in (5).
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We will see how the bound (5) is comparable to the bound of [AADLO22]; in particular, the proof
of Theorem 2 can easily be adapted to obtain the bound of [AADLO22].

We intend for this paper to stand out for the strength of its result, but also for its simplicity and
readability.

Overview. In Section 2, we discuss related work and how the results of this paper compare
with recent developments in bounding the support size of integer solutions to systems of equa-
tions/inequalities. In Section 3.1 we introduce the notion of integral independence, which will
be useful throughout the proofs of Theorems 1 and 2. In particular, in Section 3.2, we achieve
a nontrivial lower bound on the largest 𝑚 × 𝑚 subdeterminant of a matrix 𝐴 with integrally in-
dependent columns, given by Theorem 1—furthermore, this bound increases with the number of
columns. In Section 3.3, we use the relationship between the largest subdeterminant and largest
entry given by the Hardamard bound, we achieve the upper bound on the number of columns,
i.e. ℎ(𝑚, 𝑡), given by Theorem 1. Finally, in Section 3.4 we exhibit the matrix 𝐴 referred to in the
latter statement of Theorem 2.

Notation. Throughout this paper we use 𝑝𝑖 to denote the 𝑖-th prime number. In particular,
𝑝1 = 2. For any 𝑝, 𝑞 ∈ ℤ, we use 𝑝 ∣ 𝑞 to denote that 𝑝 divides 𝑞, i.e. 𝑞/𝑝 ∈ ℤ; similarly,
𝑝 ∤ 𝑞 to denote that 𝑝 does not divide 𝑞; we may use this interchangeably with the language 𝑞
is (respectively, is not) divisible by 𝑝. We use the convention that gcd(𝑎, 0) = |𝑎| for any 𝑎 ∈ ℤ,
including 0. We use the notation [𝑛] ∶= {1, 2, ..., 𝑛}, and, for positive integers 𝑖 ≤ 𝑗 , [𝑖 ∶ 𝑗] ∶=
{𝑖, 𝑖 + 1, ..., 𝑗}. For any matrix 𝐴 ∈ ℝ𝑚×𝑛, and 𝐼 ⊆ [𝑚], 𝐽 ⊆ [𝑛], we denote by 𝐴𝐼×𝐽 the submatrix
of 𝐴 consisting of rows indexed by 𝐼 and columns indexed by 𝐽 . For 𝑥 ∈ ℝ, denote by ⌊𝑥⌋ the
largest integer less than or equal to 𝑥; ⌈𝑥⌉ the smallest integer greater than or equal to 𝑥 . We use
ℤ𝑛

≥0 ∶= {𝑥 ∈ ℤ𝑛 ∣ 𝑥𝑗 ≥ 0 for all 𝑗 ∈ [𝑛]}, and ℝ𝑛
≥0 analogously.

2 Related work

Problem (2) has garnered interest from multiple research disciplines. For example, an interesting
problem is to find nonnegative integer solutions to𝐴𝑥 = 𝑏. Define the integer conic hull generated
by the columns of𝐴 to be the vectors that can be represented as nonnegative integer combinations
of the columns of 𝐴, i.e. int cone(𝐴) ∶= {𝐴𝑥 ∣ 𝑥 ∈ ℤ𝑛

≥0}. Let

𝑔(𝑚, 𝑡) ∶= max
𝐴∈ℤ𝑚×𝑛, ‖𝐴‖∞≤𝑡, 𝑏∈int cone(𝐴)

min {‖𝑥‖0 ∣ 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛
≥0}. (6)

It is easy to see that ℎ(𝑚, 𝑡) ≤ 𝑔(𝑚, 𝑡), since any solution to 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛
≥0 is also a solution

to 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛. Thus an upper bound on 𝑔(𝑚, 𝑡) can serve as an upper bound for ℎ(𝑚, 𝑡).
[ES06] establishes the first upper bound on 𝑔(𝑚, 𝑡) using the pigeonhole principle. They show
𝑔(𝑚, 𝑡) ≤ 2𝑚 log(4𝑚𝑡). The bound has been improved by [ADLE+18] to 𝑔(𝑚, 𝑡) ≤ 2𝑚 log(2

√
𝑚𝑡)

using Siegel’s lemma [BV83]. These upper bounds on 𝑔(𝑚, 𝑡) have often been used as the best
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available upper bound on ℎ(𝑚, 𝑡). Note that the bound of Theorem 1 improves these bounds on
ℎ(𝑚, 𝑡) by a factor of 𝑂(log log(√𝑚𝑡)). [ADLE+18] also establishes an asymptotic lower bound
for 𝑔(𝑚, 𝑡): for any 𝜖 > 0, there exist a matrix 𝐴 ∈ ℤ𝑚×𝑛 with 𝑛/𝑚 large enough and a vector
𝑏 ∈ int cone(𝐴), such that min {‖𝑥‖0 ∣ 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛

≥0} ≥ 𝑚 log(‖𝐴‖∞)
1

1+𝜖 .

Another interesting direction is when the columns of matrix 𝐴 form a Hilbert basis, i.e. {𝑏 ∶
𝐴𝑥, 𝑥 ∈ ℤ𝑛

≥0} = {𝑏 ∶ 𝐴𝑥, 𝑥 ∈ ℝ𝑛
≥0} ∩ ℤ𝑛; in other words, for any 𝑏 in cone(𝐴) ∩ ℤ𝑛, 𝑏 is also in

int cone(𝐴), where cone(𝐴) ∶= {𝐴𝑥 ∣ 𝑥 ∈ ℝ𝑛
≥0}. [CFS86] shows that when cone(𝐴) is pointed and

the columns of 𝐴 form an integral Hilbert basis, 𝑔(𝑚, 𝑡) ≤ 2𝑚 − 1. [Seb90] improves this bound
to 2𝑚 − 2. Note that the bound is independent of ‖𝐴‖∞.

As far as we know, the most relevant paper in the literature is [AADLO22], where they es-
tablish an upper bound for 𝑓 (𝐴) and show that it is optimal. For any 𝑧 ∈ ℤ>0, consider the
prime factorization 𝑧 = 𝑞𝑠11 ⋯ 𝑞𝑠𝑘𝑘 such that 𝑞1, ..., 𝑞𝑘 are pairwise distinct. [AADLO22] introduces
Ω𝑚(𝑧) ∶= ∑𝑘

𝑖=1 min{𝑠𝑖, 𝑚}, called truncated prime Ω-funciton. Let ([𝑛]𝑚 ) be all the subsets of [𝑛] of
cardinality 𝑚 and for 𝜏 ∈ ([𝑛]𝑚 ), let 𝐴𝜏 be the 𝑚 × 𝑚 submatrix of 𝐴 with columns indexed by 𝜏.
They show

𝑓 (𝐴) ≤ 𝑚 + min
𝜏∈([𝑛]𝑚 ),det(𝐴𝜏)≠0

Ω𝑚 (
| det(𝐴𝜏)|
gcd(𝐴) ) . (7)

They also show this bound is optimal in the sense that neither 𝑚 can be replaced by any smaller
constant nor the function Ω𝑚 can be replaced by any smaller function.

The proof of bound (7) relies on the connection between the theory of finite Abelian groups
and lattice theory. In particular, they use the primary decomposition theorem of finite Abelian
groups (see e.g. Chapter 5.2 in [DF04]) and group representation of lattices (see e.g. Section 4.4
of [Sch98]). In contrast, the approach in this paper is significantly simpler, only using linear
algebra. The proof is self-contained and does not require knowledge of group theory or lattice
theory. Moreover, we will show how the bound (7) can be obtained as a byproduct of our proof
of Theorem 2.

3 Proof of Theorems 1 and 2

3.1 Integral independence

We introduce the notion of integral independence in this section.

Definition 3. A set of vectors {𝑎1, ..., 𝑎𝑛} is called integrally dependent if there is some 𝑘 ∈ [𝑛] such
that 𝑎𝑘 = ∑𝑖≠𝑘 𝜇𝑖𝑎𝑖, where every 𝜇𝑖 is an integer, and integrally independent otherwise. Furthermore,
if𝐴 is a matrix with integrally independent columns, we call the matrix itself integrally independent.

The integral independence is closely related to the smallest support of integral solutions to equa-
tion 𝐴𝑥 = 𝑏, which we will elaborate on in the following proposition.
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Proposition 4. Let 𝐴 be a matrix with columns 𝑎1, ..., 𝑎𝑛 ∈ ℤ𝑚. Then, the following are equivalent:

1. the vectors {𝑎1, ..., 𝑎𝑛} are integrally independent;

2. there exists a vector 𝑏 ∈ (𝐴) such that ‖𝑥‖0 = 𝑛 for any integer solution 𝑥 to 𝐴𝑥 = 𝑏;

3. there is no integer vector in the null space of 𝐴 with an entry equal to 1, i.e. {𝑥 ∈ ℤ𝑛 ∶ 𝐴𝑥 =
0, ∃𝑗 ∈ [𝑛] such that 𝑥𝑗 = 1} = ∅.

Proof. We start by proving (1) ⟹ (2). Let 𝑏 = ∑𝑖∈[𝑛] 𝑎𝑖. Consider an integral vector 𝑥 ∈ ℤ𝑛

such that ∑𝑖∈[𝑛] 𝑎𝑖𝑥𝑖 = ∑𝑖∈[𝑛] 𝑎𝑖. For sake of contradiction, assume some component of 𝑥 is zero;
without loss of generality, assume 𝑥𝑛 = 0. Then, ∑𝑖∈[𝑛−1] 𝑎𝑖𝑥𝑖 = ∑𝑖∈[𝑛] 𝑎𝑖. It follows that 𝑎𝑛 =
−∑𝑖∈[𝑛−1](1 − 𝑥𝑖)𝑎𝑖, where 𝑎𝑛 is an integral combination of {𝑎1, ..., 𝑎𝑛−1}, a contradiction.

We now prove (2) ⟹ (1). Let 𝑏 ∈ (𝐴) be such that every integral 𝑥 with 𝐴𝑥 = 𝑏 has ‖𝑥‖0 = 𝑛.
Further let 𝑥′ be one such choice of 𝑥 and write 𝑏 = ∑𝑖∈[𝑛] 𝑎𝑖𝑥′

𝑖 . Suppose for sake of contradiction
that {𝑎1, ..., 𝑎𝑛} is integrally dependent. Then, by definition, there is some 𝑘 ∈ [𝑛] and 𝜇 ∈ ℤ𝑛−1

such that 𝑎𝑘 = ∑𝑖≠𝑘 𝜇𝑖𝑎𝑖. So, we can write

𝑏 = ∑
𝑖≠𝑘

𝑎𝑖𝑥′
𝑖 +∑

𝑖≠𝑘

𝑥′
𝑘𝜇𝑖𝑎𝑖 = ∑

𝑖≠𝑘

(𝑥′
𝑖 + 𝜇𝑖𝑥′

𝑘)𝑎𝑖.

It follows from 𝑥′ and 𝜇 are both integral that each (𝑥′
𝑖 +𝜇𝑖𝑥′

𝑘) is integral. Then, 𝑏 can be written as
an integral combination of {𝑎1, ..., 𝑎𝑛} ⧵ {𝑎𝑘}, contradicting the fact that ‖𝑥‖0 = 𝑛 for every integral
𝑥 such that 𝐴𝑥 = 𝑏.

We now prove (1) ⟹ (3). Suppose there is some 𝑥 ∈ ℤ𝑛⧵{0} such that ∑𝑖∈𝑛 𝑎𝑖𝑥𝑖 = 0; and without
loss of generality, assume 𝑥𝑛 = 1. Then, we can rewrite this as 𝑎𝑛 = ∑𝑖∈[𝑛−1]

𝑥𝑖
𝑥𝑛
𝑎𝑖 = ∑𝑖∈[𝑛−1] 𝑥𝑖𝑎𝑖.

Therefore, {𝑎1, ..., 𝑎𝑛} is integrally dependent.

We now prove (3) ⟹ (1). Suppose that {𝑎1, ..., 𝑎𝑛} is integrally dependent. Then, by definition,
there exists a 𝑘 ∈ [𝑛] such that 𝑎𝑘 = ∑𝑖≠𝑘 𝜇𝑖𝑎𝑖, where every 𝜇𝑖 integer. Therefore, vector
(−𝜇1 −𝜇2 ... −𝜇𝑘−1 1 −𝜇𝑘+1 ... 𝜇𝑛) is in the null space of 𝐴.

3.2 Upper bound on 𝑓 (𝐴)

Applying unimodular column operations, we can bring 𝐴 into Hermite normal form 𝐻 = (𝐷 0),
where 𝐷 ∈ ℤ𝑚×𝑚 is a lower triangular matrix. We have the relation 𝐴𝑈 = (𝐷 0), where 𝑈 ∈
ℤ𝑛×𝑛 is a unimodular matrix corresponding to the unimodular operations (see e.g. Section 1.5.2
in [CCZ+14]). To proceed, we remind readers of some basic facts about unimodular operations.

Fact 1. Let 𝐶 be any 𝑚 × 𝑛 integer matrix where 𝑚 ≤ 𝑛, and 𝑉 be an 𝑛 × 𝑛 unimodular matrix. Then,
the greatest common divisor (GCD) of all 𝑚 × 𝑚 subdeterminants of 𝐶𝑉 is equal to the GCD of all
𝑚 × 𝑚 subdeterminants of 𝐶.
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Fact 2. The GCD of all 𝑚 × 𝑚 subdeterminants of 𝐶 is zero (i.e. all 𝑚 × 𝑚 subdeterminants of 𝐶 are
0) if and only if the rows of 𝐶 are linearly dependent.

The first fact follows from the GCD of all 𝑚 × 𝑚 subdeterminants of 𝐶 being invariant under
unimodular column operations (see, e.g., Section 4.4 of [Sch98]). To see the second fact, we can
bring 𝐶 into its Hermite normal form (𝐶′ 0) by applying unimodular column operations 𝑉 , i.e.
𝐶𝑉 = (𝐶′ 0). By the first fact, the GCD of all 𝑚 × 𝑚 subdeterminants of 𝐶 equals to that of
𝐶𝑉 , which is det(𝐶′). Thus, the GCD is 0 if and only if det(𝐶′) = 0, which means the rows of 𝐶′

are linearly dependent. Since 𝑉 is unimodular and thus nonsingular, the rows of 𝐶′ are linearly
dependent if and only if the rows of 𝐶 are linearly dependent. Furthermore, it may be useful to
recall that the Hermite normal form of a matrix is unique. Due to these facts and the properties
of unimodular matrices, we have the following lemma.

Lemma 5. Let 𝐴 ∈ ℤ𝑚×𝑛 be a matrix with integrally independent columns. Let 𝐻 = 𝐴𝑈 be the
Hermite normal form of 𝐴, where 𝑈 is a unimodular matrix. Suppose 𝑈 = (𝑈1 𝑈2), where 𝑈1 ∈
ℤ𝑛×𝑚, 𝑈2 ∈ ℤ𝑛×(𝑛−𝑚). Then 𝑈2 must satisfy the following properties:

(P1). 𝑈2 has at least one nonsingular (𝑛 − 𝑚) × (𝑛 − 𝑚) submatrix.

(P2). The GCD of all (𝑛 − 𝑚) × (𝑛 − 𝑚) subdeterminants of 𝑈2 is 1.

(P3). For each row 𝑖 of 𝑈2, there exists some prime 𝑞𝑖 ≥ 2 such that 𝑞𝑖 ∣ (𝑈2)𝑖𝑗 for all 𝑗 ∈ [𝑛 − 𝑚].

Proof. It follows from 𝑈−1𝑈 = 𝐼 that 𝑈 ⊤
2 (𝑈−1)⊤ = (𝐼𝑛−𝑚 0). Together with the fact that (𝑈−1)⊤ is

unimodular we obtain that the Hermite normal form of 𝑈 ⊤
2 is the (𝑛−𝑚) × (𝑛−𝑚) identity martix

𝐼𝑛−𝑚. According to Fact 1, the GCD of all (𝑛 − 𝑚) × (𝑛 − 𝑚) subdeterminants of 𝑈2 equals to 1,
proving (P2). In particular, it is nonzero and thus by Fact 2, 𝑈2 has rank 𝑛 − 𝑚 and therefore has
a nonsingular (𝑛 − 𝑚) × (𝑛 − 𝑚) submatrix, proving (P1).

It remains to prove property (P3). Since𝐴 (𝑈1 𝑈2) = (𝐷 0), for𝐷 ∈ ℤ𝑚×𝑚 some lower triangular
matrix, we notice that columns of 𝑈2 are in the null space of 𝐴. Since the columns of 𝐴 are
integrally independent, by Proposition 4, any integral 𝑥 in the null space of 𝐴 has no entry equal
to 1. Suppose for the sake of contradiction, the entries in row 𝑖 of 𝑈2 have GCD 1. Then, by
Bézout’s theorem there exists an integral 𝜇 ∈ ℤ𝑛−𝑚 such that ∑𝑛−𝑚

𝑗=1 𝜇𝑗(𝑈2)𝑖𝑗 = 1. Then 𝑥 = 𝑈2𝜇 is
an integral vector in the null space of 𝐴 with 𝑥𝑖 = 1, which contradicts the integral independence
of 𝐴. Therefore, for any row of 𝑈2, its entries must have a common divisor strictly greater than 1,
and therefore a prime that is at least 2.

The following is key to derive Theorem 2 of this paper. It establishes a lower bound for the largest
𝑚 × 𝑚 subdeterminant of a matrix with integrally independent columns.

Theorem 6. Let matrix 𝐴 ∈ ℤ𝑚×𝑛 be of full row rank with integrally independent columns. Let 𝑝𝑖
be the 𝑖-th prime. Then,

Γ(𝐴)
gcd(𝐴)

≥ 𝑝𝑚
2 𝑝

𝑚
3 ⋯ 𝑝𝑚

⌊ 𝑛
𝑚⌋𝑝

𝑛−𝑚⌊ 𝑛
𝑚⌋

⌈ 𝑛
𝑚⌉

.
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To prove this theorem, we need to introduce Jacobi’s Theorem (see Theorem 2.5.2 of [Pra94]),
which uses linear algebra to establish the relation between the subdeterminant of a matrix and
its inverse.

Lemma 7. [Jacobi] Let 𝐴 ∈ ℝ𝑛×𝑛, 𝐴 = (𝑎𝑖𝑗)𝑛1. For any 𝐼 , 𝐽 ⊆ [𝑛], denote 𝐴𝐼×𝐽 be the submatrix of 𝐴
consisting of rows indexed by 𝐼 and columns indexed by 𝐽 . Let 𝐴∗ = (𝑎∗𝑖𝑗)𝑛1 be the classical adjoint of
𝐴, where

𝑎∗𝑖𝑗 = (−1)𝑖+𝑗 det(𝐴[𝑛]⧵{𝑗} × [𝑛]⧵{𝑖})

is the cofactor of element 𝑎𝑗𝑖 in 𝐴. Let 𝜎 = (
𝑖1 𝑖2 ⋯ 𝑖𝑛
𝑗1 𝑗2 ⋯ 𝑗𝑛)

be an arbitrary permutation. Let

1 ≤ 𝑝 ≤ 𝑛. Let 𝐼 = {𝑖1, ...𝑖𝑝}, 𝐽 = {𝑗1, ..., 𝑗𝑝}, 𝐼 ′ = {𝑖𝑝+1, ..., 𝑖𝑛}, 𝐽 ′ = {𝑗𝑝+1, ..., 𝑗𝑛}. Then,

det(𝐴∗
𝐼×𝐽 ) = (−1)𝜎 det(𝐴𝐽 ′×𝐼 ′) ⋅ det(𝐴)𝑝−1.

To prove Theorem 6, we will use the following direct corollary of Lemma 7.

Corollary 8. Let 𝑈 ∈ ℝ𝑛×𝑛 be a unimodular matrix. Then for any 𝐼 ⊆ [𝑛], 𝐽 ⊆ [𝑛],

𝑑𝑒𝑡((𝑈−1)𝐼×𝐽 ) = ±𝑑𝑒𝑡(𝑈[𝑛]\𝐽 × [𝑛]\𝐼 ), (8)

where 𝑈𝐼×𝐽 denotes the submatrix of 𝑈 consisting of rows indexed by 𝐼 and columns indexed by 𝐽 .

Proof of Theorem 6. Suppose by applying unimodular column operations, we bring 𝐴 into Her-
mite normal form 𝐻 = (𝐷 0), where 𝐷 ∈ ℤ𝑚×𝑚 is a lower triangular matrix. We obtain the
relation of 𝐴𝑈 = (𝐷 0), where 𝑈 ∈ ℤ𝑛×𝑛 is a unimodular matrix. Let 𝑈 = (𝑈1 𝑈2), where
𝑈1 ∈ ℤ𝑛×𝑚, 𝑈2 ∈ ℤ𝑛×(𝑛−𝑚).

Recall property (P3) of 𝑈2 in Lemma 5 saying that for each row 𝑖 of 𝑈2, there exists some prime
𝑞𝑖 ≥ 2 such that 𝑞𝑖 ∣ (𝑈2)𝑖𝑗 for all 𝑗 ∈ [𝑛 − 𝑚]. For any prime 𝑞, let 𝐼𝑞 ∶= {𝑖 ∈ [𝑛] ∶ 𝑞 ∣ (𝑈2)𝑖𝑗 , ∀𝑗 ∈
[𝑛 − 𝑚]} be the indices of rows of 𝑈2 which are divisible by 𝑞. Notice for any prime 𝑞, 𝑈2 must
have a nonsingular (𝑛 − 𝑚) × (𝑛 − 𝑚) submatrix (𝑈2)𝐼×[𝑛−𝑚] with 𝐼 ⊆ [𝑛] ⧵ 𝐼𝑞 , |𝐼 | = 𝑛 − 𝑚. Suppose
for sake of contradiction that every nonsingular (𝑛 − 𝑚) × (𝑛 − 𝑚) submatrix of 𝑈2 includes at
least one row whose index is in 𝐼𝑞 . Since such a row is divisible by 𝑞, the determinant of such a
submatrix must also be divisible by 𝑞. Therefore if every nonsingular (𝑛−𝑚) × (𝑛−𝑚) submatrix
of 𝑈2 includes at least one such row, the GCD of the ( 𝑛

𝑛−𝑚) such subdeterminants is at least 𝑞 ≥ 2,
contradicting property (P2) in Lemma 5. Therefore, by the pigeonhole principle, |𝐼𝑞 | ≤ 𝑛− |𝐼 | = 𝑚
for any prime 𝑞.

Recall 𝑝𝑖 is the 𝑖-th prime and 𝑞𝑖 ≥ 2 is a prime that divides row 𝑖 of 𝑈2. The above argument
implies that 𝑈2 has a nonsingular (𝑛 − 𝑚) × (𝑛 − 𝑚) submatrix, denoted as 𝑉 , whose row indices
are in [𝑛] ⧵ 𝐼𝑝1 . Assume 𝑉 consists of the first 𝑛 − 𝑚 rows of 𝑈2 without loss of generality. Then,
we have

𝑞1𝑞2 ⋯ 𝑞𝑛−𝑚
||| | det(𝑉 )|
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Notice that each prime 𝑝𝑖 appears at most 𝑚 times among {𝑞1, ..., 𝑞𝑛−𝑚}, since |𝐼𝑞 | ≤ 𝑚 for any prime
𝑞 and 𝑝1 never appears in {𝑞1, ..., 𝑞𝑛−𝑚}. It follows from det(𝑉 ) ≠ 0 that

| det(𝑉 )| ≥ 𝑞1𝑞2 ⋯ 𝑞𝑛−𝑚 ≥ 𝑝𝑚
2 𝑝

𝑚
3 ⋯ 𝑝𝑚

⌊ 𝑛
𝑚⌋𝑝

𝑛−𝑚⌊ 𝑛
𝑚⌋

⌈ 𝑛
𝑚⌉

.

Moreover, we use the relation between the determinant of the submatrix of 𝐴 and 𝑈 to bound
above det(𝑉 ). Notice 𝐴 = (𝐷 0)𝑈−1 and thus 𝐴[𝑚]×[𝑛−𝑚+1∶𝑛] = 𝐷 ⋅ (𝑈−1)[𝑚]×[𝑛−𝑚+1∶𝑛]. We have

| det(𝐴[𝑚]×[𝑛−𝑚+1∶𝑛])| =| det(𝐷)| ⋅ | det((𝑈−1)[𝑚]×[𝑛−𝑚+1∶𝑛])|
=gcd(𝐴) ⋅ | det((𝑈−1)[𝑚]×[𝑛−𝑚+1∶𝑛])|
=gcd(𝐴) ⋅ | det(𝑈[𝑛−𝑚]×[𝑚+1∶𝑛])|
=gcd(𝐴) ⋅ | det(𝑉 )|,

where the second equality follows from Fact 1 and the third equality follows from Corollary 8.
Recall Γ(𝐴) is the largest absolute value of an 𝑚 × 𝑚 subdeterminant of 𝐴. Combining them
together we obtain

Γ(𝐴)
gcd(𝐴)

≥
| det(𝐴[𝑚]×[𝑛−𝑚+1∶𝑛])|

gcd(𝐴)
=| det(𝑉 )|

≥𝑝𝑚
2 𝑝

𝑚
3 ⋯ 𝑝𝑚

⌊ 𝑛
𝑚⌋𝑝

𝑛−𝑚⌊ 𝑛
𝑚⌋

⌈ 𝑛
𝑚⌉

,

as desired.

Recall from Proposition 4 that a matrix 𝐴 has integrally independent columns if and only if there
exists some 𝑏 such that every integer solution to 𝐴𝑥 = 𝑏 has full support. Taking advantage
of this observation, Theorem 6 can be naturally adapted to derive an upper bound for 𝑓 (𝐴), i.e.
the maximum, taken over 𝑏 ∈ (𝐴), of smallest support size of an integer solution to 𝐴𝑥 = 𝑏
(formally defined in (2)). This yields the proof of one of our main results.

Proof of Theorem 2. Take 𝑏 such that 𝐴𝑥 = 𝑏 has maximum smallest support size of an integer
solution to 𝐴𝑥 = 𝑏, i.e. min {‖𝑥‖0 ∣ 𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛} = 𝑓 (𝐴). Let 𝑥∗ be an integral solution to
𝐴𝑥 = 𝑏 with smallest support, i.e. ‖𝑥∗‖0 = 𝑓 (𝐴). We can assume without loss of generality that
𝐴 ∈ ℤ𝑚×𝑓 (𝐴) by deleting the columns 𝑗 of 𝐴 corresponding to 𝑥∗

𝑗 = 0 for 𝑗 ∈ [𝑛]. This will not
increase Γ(𝐴), the largest 𝑚 × 𝑚 subdeterminant of 𝐴, and will not decrease gcd(𝐴), the GCD of
all 𝑚 × 𝑚 subdeterminants of 𝐴 (this is easily seen by the fact that redundant columns can be
zeroed out using unimodular column operations). Thus it suffices to prove inequality (5) after
deleting redundent columns of 𝐴. By the minimality of support size of 𝑥∗, any integer solution
to 𝐴𝑥 = 𝑏 has full support. By Proposition 4, columns of 𝐴 are integrally independent. It follows
from Theorem 6 that inequality (5) holds.

Remark 1. We demonstrate how to modify the proof of Theorem 6 to obtain the bound (7) given in
[AADLO22]. We use the same notation as in the proof of Theorem 6. For any 𝑚 × 𝑚 submatrix of 𝐴
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whose columns are indexed by 𝐽 where |𝐽 | = 𝑚, we have

| det(𝐴[𝑚]×𝐽 )| =| det(𝐷)| ⋅ | det((𝑈−1)[𝑚]×𝐽 )|
=gcd(𝐴) ⋅ | det((𝑈−1)[𝑚]×𝐽 )|
=gcd(𝐴) ⋅ | det(𝑈[𝑛]\𝐽 × [𝑚+1∶𝑛])|.

We also know that
∏
𝑖∈[𝑛]\𝐽

𝑞𝑖
||| | det(𝑈[𝑛]\𝐽 × [𝑚+1∶𝑛])|,

and thus
∏
𝑖∈[𝑛]\𝐽

𝑞𝑖
|||
| det(𝐴[𝑚]×𝐽 )|

gcd(𝐴)
,

where 𝑞𝑖, 𝑖 ∈ [𝑛]\𝐽 are primes numbers and with the same prime repeating at most 𝑚 times in
{𝑞𝑖 ∣ 𝑖 ∈ [𝑛]\𝐽 }. Recall notation Ω𝑚(𝑧) = ∑𝑘

𝑖=1 min{𝑠𝑖, 𝑚} for the prime factorization of 𝑧 = 𝑟 𝑠11 ⋯ 𝑟 𝑠𝑘𝑘
with multiplicities 𝑠1, ..., 𝑠𝑘 ∈ ℤ>0. Clearly, when 𝑥 ∣ 𝑦, Ω𝑚(𝑥) ≤ Ω𝑚(𝑦). Thus, Ω𝑚 (∏𝑖∈[𝑛]\𝐽 𝑞𝑖) ≤

Ω𝑚 (
| det(𝐴[𝑚]×𝐽 )|

gcd(𝐴) ). Moreover, since the multiplicity of each 𝑞𝑖 in ∏𝑖∈[𝑛]\𝐽 𝑞𝑖 is at most 𝑚, we have

Ω𝑚 (∏𝑖∈[𝑛]\𝐽 𝑞𝑖) = |[𝑛]\𝐽 | = 𝑛−𝑚. Therefore, 𝑛−𝑚 ≤ Ω𝑚 (
| det(𝐴[𝑚]×𝐽 )|

gcd(𝐴) ). Since 𝐽 is an arbitrary subset

of [𝑛] with cardinality 𝑚, we obtain 𝑛 ≤ 𝑚 + min𝜏∈([𝑛]𝑚 ),det(𝐴𝜏)≠0 Ω𝑚(
| det(𝐴𝜏)|
gcd(𝐴) ). Applying the same

argument as in the proof of Theorem 2 above, we obtain 𝑓 (𝐴) ≤ 𝑚 + min𝜏∈([𝑛]𝑚 ),det(𝐴𝜏)≠0 Ω𝑚(
| det(𝐴𝜏)|
gcd(𝐴) ).

3.3 Upper bound on ℎ(𝑚, 𝑡)

Recall ℎ(𝑚, 𝑡) is the maximum, taken over all integer matrices 𝐴 with 𝑚 rows and largest entry
𝑡, of the smallest support size of an integer solution to 𝐴𝑥 = 𝑏 for some 𝑏 ∈ (𝐴) (formally
defined in (3)). Using a relation between the size of largest entry of a matrix and the size of its
subdeterminant, we want to use results in Section 3.2 to obtain an upper bound for ℎ(𝑚, 𝑡). We
will use the well-known Hadamard inequality [Had93], which gives us an upper bound on the
determinant of a matrix, i.e. for any matrix 𝐵 ∈ ℝ𝑚×𝑚,

| det(𝐵)| ≤ (
√
𝑚 ‖𝐵‖∞)

𝑚.

Applying this to inequality (5), we obtain the following corollary.

Corollary 9. ℎ(𝑚, 𝑡) satisfies

(
√
𝑚 𝑡)𝑚 ≥ 𝑝𝑚

2 𝑝
𝑚
3 ⋯ 𝑝𝑚

⌊ ℎ(𝑚,𝑡)
𝑚 ⌋𝑝

ℎ(𝑚,𝑡)−𝑚⌊ ℎ(𝑚,𝑡)
𝑚 ⌋

⌈ ℎ(𝑚,𝑡)
𝑚 ⌉ . (9)

Proof. Suppose 𝐴 ∈ ℤ𝑚×𝑛 is a full row rank matrix with ‖𝐴‖∞ ≤ 𝑡 and 𝑏 ∈ (𝐴) such that it has
the smallest support of any integer solution to 𝐴𝑥 = 𝑏 is the maximum possible, i.e. min{‖𝑥‖0 ∣
𝐴𝑥 = 𝑏, 𝑥 ∈ ℤ𝑛} = ℎ(𝑚, 𝑡). Then inequality (9) follows directly from Theorem 2 and Hadamard’s
inequality.
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Furthermore, we can prove the upper bound on ℎ(𝑚, 𝑡) of Theorem 1 by applying prime number

theorem to approximate the product of the first 𝑘 primes
𝑘
∏
𝑖=1

𝑝𝑖.

Proof of Theorem 1. According to the prime number theorem, the product of the first 𝑘 primes
𝑘
∏
𝑖=1

𝑝𝑖 ∼ 𝑒(1+𝑜(1))𝑘 log 𝑘, where log(⋅) is the natural logarithm (see e.g. [Zag97]). Let 𝑛 = ℎ(𝑚, 𝑡).
Relaxing (9), we have

(
√
𝑚 𝑡)𝑚 ≥ 𝑝𝑚

2 𝑝
𝑚
3 ⋯ 𝑝𝑚

⌊ 𝑛
𝑚⌋𝑝

𝑛−𝑚⌊ 𝑛
𝑚⌋

⌈ 𝑛
𝑚⌉

≥ (𝑝1𝑝2 ⋯ 𝑝⌊ 𝑛
𝑚⌋)

𝑚/2𝑚.

Taking logarithm and applying
𝑘
∏
𝑖=1

𝑝𝑖 ∼ 𝑒(1+𝑜(1))𝑘 log 𝑘, we have

log(
√
𝑚 𝑡) ≥ log(𝑝1𝑝2 ⋯ 𝑝⌊ 𝑛

𝑚⌋) − log 2 ≥ 𝐶 ⌊
𝑛
𝑚⌋ log ⌊

𝑛
𝑚⌋

for some constant 𝐶.

We claim that ⌊ 𝑛
𝑚⌋ = 𝑂 (

log(
√
𝑚 𝑡)

log log(
√
𝑚 𝑡)). Suppose not, we assume ⌊ 𝑛

𝑚⌋ >
2 log(

√
𝑚 𝑡)

𝐶 log log(
√
𝑚 𝑡) for some 𝑚 that

is arbitrarily large. Thus,

log(
√
𝑚 𝑡) ≥ 𝐶 ⌊

𝑛
𝑚⌋ log ⌊

𝑛
𝑚⌋ >

2 log(
√
𝑚 𝑡)

log log(
√
𝑚 𝑡)(

log log(
√
𝑚 𝑡) − log (𝐶 log log(

√
𝑚 𝑡))).

This will give us
2 log (𝐶 log log(

√
𝑚 𝑡)) > log log(

√
𝑚 𝑡),

which is not going to hold when 𝑚 is arbitrarily large, a contradiction. Thus, we have ⌊ 𝑛
𝑚⌋ =

𝑂 (
log(

√
𝑚 𝑡)

log log(
√
𝑚 𝑡)). It follows that 𝑛 = 𝑂 (

𝑚 log(
√
𝑚 𝑡)

log log(
√
𝑚 𝑡)).

3.4 Lower bound on 𝑓 (𝐴)

Finally, we prove the latter statement of Theorem 2 by giving an example integer matrix 𝐴 with
arbitrarily large number of rows 𝑚 and ‖𝐴‖∞, showing that the upper bound on 𝑓 (𝐴) is asymptot-
ically tight. A similar construction has appeared in [ADLE+18, AADLO22] to prove lower bounds
on support size of integer solutions.

Proposition 10. For arbitrarily large (𝑚, 𝑡), there exists 𝐴with𝑚 rows, full row rank, and ‖𝐴‖∞ > 𝑡,
and 𝑏 ∈ (𝐴) such that equality holds in (5). In other words, the bound inTheorem 2 is asymptotically
tight.

Proof. Let 𝑝𝑖 be the 𝑖-th prime. There exists 𝑘 such that 𝑝2𝑝3 ⋯ 𝑝𝑘 > 𝑡. Let 𝑛 = 𝑘𝑚. Define𝐴 ∈ ℤ𝑚×𝑛

as

𝐴𝑖𝑗 =

{
𝑝1𝑝2⋯ 𝑝𝑘/𝑝𝑟 𝑗 = (𝑖 − 1)𝑘 + 𝑟 , 1 ≤ 𝑟 ≤ 𝑘
0 𝑜.𝑤.
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and 𝑏 = 𝐴𝟏. Then, ‖𝐴‖∞ = 𝑝2𝑝3⋯ 𝑝𝑘 > 𝑡. For any 𝑖 ∈ [𝑚], 𝑏𝑖 = ∑𝑘
𝑟=1 𝑝1𝑝2⋯ 𝑝𝑘/𝑝𝑟 . Observe that

𝑝𝑗 ∤ 𝑏𝑖, ∀𝑖 = 1, ..., 𝑚, 𝑗 = 1, ..., 𝑘. Any 𝑥 ∈ ℤ𝑛 with ‖𝑥‖0 < 𝑛would have 𝑥𝑗 = 0 for some 𝑗 = (𝑖−1)𝑘+𝑟
with 1 ≤ 𝑟 ≤ 𝑘. Thus, (𝐴𝑥)𝑖 = ∑𝑘

𝑠=1,𝑠≠𝑟(𝑝1𝑝2 ⋯ 𝑝𝑘/𝑝𝑠)𝑥(𝑖−1)𝑘+𝑠. Since 𝑝𝑟 ∣ (𝑝1𝑝2⋯ 𝑝𝑘/𝑝𝑠), ∀𝑠 ≠ 𝑟 ,
we have 𝑝𝑟 ∣ (𝐴𝑥)𝑖. Thus, 𝐴𝑥 ≠ 𝑏, which means any integer 𝑥 with ‖𝑥‖0 < 𝑛 is not a solution to
𝐴𝑥 = 𝑏. Therefore, any integer solution of 𝐴𝑥 = 𝑏 has smallest support size 𝑛 = 𝑘𝑚. Moreover,
Γ(𝐴) = max

𝐵
{| det(𝐵)| ∣ 𝐵 is an 𝑚 × 𝑚 submatrix of 𝐴} = 𝑝𝑚

2 𝑝𝑚
3 ⋯ 𝑝𝑚

𝑘 , matching the right hand
side in (5).
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