
A MORE EFFICIENT REFORMULATION OF COMPLEX SDP AS
REAL SDP∗

JIE WANG†

Abstract. This note proposes a new reformulation of complex semidefinite programs (SDPs) as
real SDPs. As an application, we present an economical reformulation of complex SDP relaxations
of complex polynomial optimization problems as real SDPs and derive some further reductions by
exploiting inner structure of the complex SDP relaxations. Various numerical examples demonstrate
that our new reformulation runs significantly faster than the usual popular reformulation.

Key words. complex semidefinite programming, complex polynomial optimization, semidefinite
programming, the complex moment-HSOS hierarchy, quantum information

MSC codes. 90C22, 90C23

1. Introduction. Complex semidefinite programs (SDPs) arise from a diverse
set of areas, such as combinatorial optimization [9], optimal power flow [10, 12], quan-
tum information theory [2, 4, 17], signal processing [11, 14]. In particular, they appear
as convex relaxations of complex polynomial optimization problems (CPOPs), giv-
ing rise to the complex moment-Hermitian-sum-of-squares (moment-HSOS) hierarchy
[10, 15, 16]. However, most modern SDP solvers deal with only real SDPs1. In order
to handle complex SDPs via real SDP solvers, it is mandatory to reformulate com-
plex SDPs as equivalent real SDPs. A popular way2 to do so is to use the equivalent
condition

(1.1) H ⪰ 0 ⇐⇒ Y =

[
HR −HI

HI HR

]
⪰ 0

for an Hermitian matrix variable H = HR + HI i ∈ Cn×n with HR and HI being
its real and imaginary parts respectively. Note that the right-hand-side constraint
in (1.1) entails certain structure and to feed it to an SDP solver, we need to impose
extra affine constraints to the positive semidefinite (PSD) constraint Y ⪰ 0:

(1.2) Yi,j = Yi+n,j+n, Yi,j+n + Yj,i+n = 0, i = 1, . . . , n, j = i, . . . , n.

This conversion is quite simple but could be inefficient when n is large. In this note,
inspired by Lagrange duality, we propose a new reformulation of complex SDPs as real
SDPs. The benefit of this new reformulation is that there is no need to add extra affine
constraints and hence it owns lower complexity. In the same manner, we can obtain
a new reformulation of complex SDP relaxations of CPOPs as real SDPs. Moreover,
by exploiting inner structure of the complex SDP relaxations, we are able to remove
a bunch of redundant affine constraints, which leads to an even more economical
real reformulation of the complex SDP relaxations. Various numerical experiments
(including randomly generated CPOPs and the alternating current optimal power

∗Submitted to the editors DATE.
Funding: This work was funded by NSFC-12201618 and NSFC-12171324.

†Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
(wangjie212@amss.ac.cn, https://wangjie212.github.io/jiewang/)

1As far as the author knows, SeDuMi [13], Sdolab [7], and Hypatia [6] are the only solvers that
can handle complex SDPs directly.

2See for instance the online modeling cookbook of the commercial SDP solver MOSEK: https:
//docs.mosek.com/modeling-cookbook/sdo.html.

1

mailto:wangjie212@amss.ac.cn
https://wangjie212.github.io/jiewang/
https://docs.mosek.com/modeling-cookbook/sdo.html
https://docs.mosek.com/modeling-cookbook/sdo.html

2 JIE WANG

flow (AC-OPF) problem) confirm our theoretical expectation and demonstrate that
the new reformulation is more efficient than the usual popular one. Actually, our
implementation of the new reformulation with MOSEK [1] also runs much faster than
the implementation of the original complex formulation with Hypatia [8], probably
because the SDP solvers based on real numbers are more mature and robust.

Notation. The symbol N denotes the set of nonnegative integers. For n ∈ N \ {0},
let [n] := {1, 2, . . . , n}. We use |A| to stand for the cardinality of a set A. Let i be the
imaginary unit, satisfying i2 = −1. For d ∈ N, let Nn

d := {(αi)i ∈ Nn |
∑n

i=1 αi ≤ d}
and let ωn,d :=

(
n+d
d

)
be the cardinality of Nn

d . For α = (αi)i ∈ Nn
d and an n-tuple

of variables z = {z1, . . . , zn}, let zα := zα1
1 · · · zαn

n . For a complex number a, a (resp.
R(a), I(a)) denotes the conjugate (resp. real part, imaginary part) of a, and for a
complex vector v, vH denotes the conjugate transpose of v. For a positive integer n,
the set of n × n symmetric (resp. Hermitian) matrices is denoted by Sn (resp. Hn).
We use A ⪰ 0 to indicate that the matrix A is PSD. For A,B ∈ Cn×n, we denote by
⟨A,B⟩ the trace inner-product, defined by ⟨A,B⟩ = Tr(AHB), where AH stands for
the conjugate transpose of A. For A ∈ Rn×n, A⊺ stands for the transpose of A.

We endow Cm (viewed as a R-vector space) with the scalar product ⟨·, ·⟩R defined
by

⟨u, v⟩R = R(uHv) = R(u)⊺R(v) + I(u)⊺I(v), u, v ∈ Cm.

For u, v ∈ Rm, ⟨u, v⟩ := u⊺v, where u⊺ stands for the transpose of u. For each
A ∈ Cn×n, we associate it with an Hermitian matrix H(A) := 1

2 (A + AH). One can
check that R(⟨A,H⟩) = ⟨H(A), H⟩ for any H ∈ Hn.

2. The real reformulations of complex SDPs. Given a tuple of complex
matrices A1, . . . , Am ∈ Cn×n, we define a R-linear operator A : Hn → Cm by

(2.1) A (H) := (⟨Ai, H⟩)mi=1 ∈ Cm, ∀H ∈ Hn.

Let us consider the following complex SDP:

(PSDP-C)

sup

H∈Hn

⟨C,H⟩

s.t. A (H) = b,

H ⪰ 0,

where C ∈ Hn, b ∈ Cm. In order to convert (PSDP-C) to a real SDP, we define two
real linear operators AR,AI : Rn×n → Rm associated to A by

(2.2) AR(S) := (⟨R(Ai), S⟩)mi=1 ∈ Rm, ∀S ∈ Rn×n

and

(2.3) AI(S) := (⟨I(Ai), S⟩)mi=1 ∈ Rm, ∀S ∈ Rn×n,

respectively. Moreover, assume H = HR + HI i, C = CR + CI i, b = bR + bI i with

A MORE EFFICIENT REFORMULATION OF COMPLEX SDP AS REAL SDP 3

HR, HI , CR, CI ∈ Rn×n, bR, bI ∈ Rm. We can now convert (PSDP-C) to a real SDP:

(PSDP-R)

sup
Y ∈S2n

⟨CR, HR⟩+ ⟨CI , HI⟩

s.t. AR(HR) + AI(HI) = bR,

AR(HI)− AI(HR) = bI ,

Y =

[
HR −HI

HI HR

]
⪰ 0.

As mentioned in the introduction, to feed the PSD constraint in (PSDP-R) to
an SDP solver, we need to include also the extra n(n+ 1) affine constraints listed in
(1.2), which could be inefficient in practice. Below we show that by taking a dual
point of view, we can actually get rid of this issue.

Before formulating the dual problem of (PSDP-C), we explicitly give the adjoint
operator of A .

Lemma 2.1. The adjoint operator A ∗ of A satisfies A ∗(y) = H (
∑m

i=1 yiAi) for
y ∈ Cm.

Proof. For any H ∈ Hn, we have

⟨A ∗(y), H⟩ = ⟨y,A (H)⟩R = R

(
m∑
i=1

yi⟨Ai, H⟩

)

= R

(〈
m∑
i=1

yiAi, H

〉)
=

〈
H

(
m∑
i=1

yiAi

)
, H

〉
,

which yields A ∗(y) = H (
∑m

i=1 yiAi).

Then by the convex duality theory, the dual problem of (PSDP-C) reads as

(DSDP-C)

 inf
y∈Cm

⟨b, y⟩R

s.t. A ∗(y) ⪰ C.

Assume y = yR + yI i with yR, yI ∈ Rm. Using Lemma 2.1, we deduce that A ∗(y) =
U + V i with

U :=
1

2

m∑
i=1

R(yi)R(Ai +A⊺
i)− I(yi)I(Ai +A⊺

i)

and

V :=
1

2

m∑
i=1

I(yi)R(Ai −A⊺
i) +R(yi)I(Ai −A⊺

i).

Thus, we can convert (DSDP-C) to a real SDP by using the equivalent condition (1.1):

(DSDP-R)

inf

yR,yI∈Rm
b⊺RyR + b⊺I yI

s.t.

[
U − CR −V + CI

V − CI U − CR

]
⪰ 0.

4 JIE WANG

Let X =
[
X1 X⊺

3

X3 X2

]
∈ S2n be the dual PSD variable of (DSDP-R) with X1, X2, X3 ∈

Rn×n. Then the Lagrangian associated with (DSDP-R) given by

L(X, yR, yI)

= b⊺RyR + b⊺I yI −
〈[

X1 X⊺
3

X3 X2

]
,

[
U − CR −V + CI

V − CI U − CR

]〉
= b⊺RyR + b⊺I yI − ⟨X1 +X2, U − CR⟩ − ⟨X3 −X⊺

3 , V − CI⟩
= b⊺RyR + b⊺I yI + ⟨CR, X1 +X2⟩+ ⟨CI , X3 −X⊺

3 ⟩

−
m∑
i=1

⟨R(Ai), X1 +X2⟩R(yi) +

m∑
i=1

⟨I(Ai), X1 +X2⟩I(yi)

−
m∑
i=1

⟨R(Ai), X3 −X⊺
3 ⟩I(yi)−

m∑
i=1

⟨I(Ai), X3 −X⊺
3 ⟩R(yi)

= ⟨CR, X1 +X2⟩+ ⟨CI , X3 −X⊺
3 ⟩+ ⟨bR − AR(X1 +X2)− AI(X3 −X⊺

3), yR⟩
+ ⟨bI − AR(X3 −X⊺

3) + AI(X1 +X2), yI⟩.

Therefore, the dual problem of (DSDP-R) can be written down as

(PSDP-R’)

sup
X∈S2n

⟨CR, X1 +X2⟩+ ⟨CI , X3 −X⊺
3 ⟩

s.t. AR(X1 +X2) + AI(X3 −X⊺
3) = bR,

AR(X3 −X⊺
3)− AI(X1 +X2) = bI ,

X =

[
X1 X⊺

3

X3 X2

]
⪰ 0.

Theorem 2.2. (PSDP-R’) is equivalent to (PSDP-R) (in the sense that they
share the same optimum). As a result, (PSDP-R’) is equivalent to (PSDP-C). In

addition, if X⋆ =
[
X⋆

1 (X⋆
3)

⊺

X⋆
3 X⋆

2

]
is an optimal solution to (PSDP-R’), then H⋆ =

(X⋆
1 +X⋆

2) + (X⋆
3 − (X⋆

3)
⊺)i is an optimal solution to (PSDP-C).

Proof. Let us denote the optima of (PSDP-R) and (PSDP-R’) by v and v′, re-
spectively. Suppose that Y =

[
HR −HI

HI HR

]
is a feasible solution to (PSDP-R). Then

one can easily check that X := 1
2Y is a feasible solution to (PSDP-R’). Moreover, we

have ⟨CR, X1+X2⟩+ ⟨CI , X3−X⊺
3 ⟩ = ⟨CR, HR⟩+ ⟨CI , HI⟩ and it follows v ≤ v′. On

the other hand, suppose X =
[
X1 X⊺

3

X3 X2

]
is a feasible solution to (PSDP-R’). We then

have [
0 −1
1 0

]−1

X

[
0 −1
1 0

]
=

[
X2 −X3

−X⊺
3 X1

]
⪰ 0,

and thus

Y =

[
HR −HI

HI HR

]
:=

[
X1 +X2 X⊺

3 −X3

X3 −X⊺
3 X1 +X2

]
⪰ 0.

One can easily see that Y is a feasible solution to (PSDP-R) and in addition, it holds
⟨CR, HR⟩+ ⟨CI , HI⟩ = ⟨CR, X1+X2⟩+ ⟨CI , X3−X⊺

3 ⟩. Thus v ≥ v′, which proves the
equivalence. The latter statement of the theorem is clear from the above arguments.

A MORE EFFICIENT REFORMULATION OF COMPLEX SDP AS REAL SDP 5

In contrast to (PSDP-R), the PSD constraint in (PSDP-R’) is straightforward,
and thus no extra affine constraint is required. This is why the conversion (PSDP-R’)
is more appealing than (PSDP-R) from the computational perspective.

Remark 2.3. A similar reformulation to (PSDP-R’) but for a restricted class of
complex SDP relaxations of multiple-input multiple-output detection has appeared in
[11].

3. Application to complex SDP relaxations for CPOPs. In this section,
we apply the reformulation (PSDP-R’) to complex SDP relaxations arising from the
complex moment-HSOS hierarchy for CPOPs. A CPOP is given by

(CPOP)

{
inf
z∈Cs

f(z, z) =
∑

β,γ bβ,γz
βzγ

s.t. gi(z, z) =
∑

β,γ giβ,γz
βzγ ≥ 0, i ∈ [t],

where z := (z1, . . . , zs) stands for the conjugate of complex variables z := (z1, . . . , zs).
The functions f, g1, . . . , gt are real-valued polynomials and their coefficients satisfy

bβ,γ = bγ,β, g
i
β,γ = giγ,β. The support of f is defined by supp(f) := {(β,γ) | bβ,γ ̸=

0}. For i ∈ [t], supp(gi) is defined in the same way.
Fix a d ∈ N. Let y = (yβ,γ)(β,γ)∈Ns

d×Ns
d
⊆ C be a sequence indexed by (β,γ) ∈

Ns
d × Ns

d and satisfying yβ,γ = yγ,β. Let Ly be the linear functional defined by

f =
∑
(β,γ)

bβ,γz
βzγ 7→ Ly(f) =

∑
(β,γ)

bβ,γyβ,γ .

The complex moment matrixMd(y) associated with y is the Hermitian matrix indexed
by Ns

d such that

[Md(y)]β,γ := Ly(z
βzγ) = yβ,γ , ∀β,γ ∈ Ns

d.

Suppose that g =
∑

(β′,γ′) gβ′,γ′zβ
′
zγ

′
is a complex polynomial. The complex local-

izing matrix Md(gy) associated with g and y is the Hermitian matrix indexed by Ns
d

such that

[Md(gy)]β,γ := Ly(gz
βzγ) =

∑
(β′,γ′)

gβ′,γ′yβ+β′,γ+γ′ , ∀β,γ ∈ Ns
d.

Let d0 := max {|β|, |γ| : bβ,γ ̸= 0} and di := max {|β|, |γ| : giβ,γ ̸= 0} for i ∈ [t],
where | · | denotes the sum of entries. Let dmin := max {d0, d1, . . . , dm}. For any
d ≥ dmin, the d-th (d is called the relaxation order) complex moment relaxation for
(CPOP) is given by

(Mom-C)

inf
y

Ly(f) = ⟨b, y⟩R
s.t. Md(y) ⪰ 0,

Md−di(giy) ⪰ 0, i ∈ [t],

y0,0 = 1.

(Mom-C) and its dual problem form the complex moment-HSOS hierarchy of (CPOP).
For more details on this hierarchy, we refer the reader to [10, 15].

6 JIE WANG

For any (β,γ) ∈ Ns
d×Ns

d, we associate it with a matrix A0
β,γ ∈ Rωs,d×ωs,d defined

by

(3.1) [A0
β,γ]β′,γ′ =

{
1, if (β′,γ′) = (β,γ),

0, otherwise.

Moreover, for each i ∈ [t], we associate any (β,γ) ∈ Ns
d−di

× Ns
d−di

with a matrix

Ai
β,γ ∈ Cωs,d−di

×ωs,d−di defined by

(3.2) [Ai
β,γ]β′,γ′ =

{
giβ′′,γ′′ , if (β′ + β′′,γ′ + γ′′) = (β,γ),

0, otherwise.

Now for each i = 0, 1, . . . , t, we define the R-linear operator A i by

A i(H) :=
(
⟨Ai

β,γ , H⟩
)
(β,γ)∈Ns

d−di
×Ns

d−di

, H ∈ Hωs,d−di .

For convenience let us set g0 := 1. By construction, it holds

Md−di
(giy) =

∑
(β,γ)∈Ns

d−di
×Ns

d−di

Ai
β,γyβ,γ = (A i)∗(y), i = 0, 1, . . . , t.

Therefore, one can rewrite (Mom-C) as follows:

(Mom-C’)

inf
y

⟨b, y⟩R
s.t. (A i)∗(y) ⪰ 0, i = 0, 1, . . . , t,

y0,0 = 1,

whose dual reads as

(HSOS-C)

sup
λ,Hi

λ

s.t.
∑t

i=0[A
i(Hi)]β,γ + δ(β,γ),(0,0)λ = bβ,γ , (β,γ) ∈ Ns

d × Ns
d,

Hi ⪰ 0, i = 0, 1, . . . , t.

Note that we have used the Kronecker delta δ(β,γ),(0,0) in (HSOS-C).
Let us from now on fix any order “<” on Ns.

Proposition 3.1. (HSOS-C) is equivalent to the following complex SDP:

(HSOS-C’)

sup
λ,Hi

λ

s.t.
∑t

i=0[A
i(Hi)]β,γ + δ(β,γ),(0,0)λ = bβ,γ ,

β ≤ γ, (β,γ) ∈ Ns
d × Ns

d,

Hi ⪰ 0, i = 0, 1, . . . , t.

Proof. It suffices to show that for β < γ,
∑t

i=0[A
i(Hi)]γ,β = bγ,β is equivalent

A MORE EFFICIENT REFORMULATION OF COMPLEX SDP AS REAL SDP 7

to
∑t

i=0[A
i(Hi)]β,γ = bβ,γ . Indeed, this equivalence follows from bγ,β = bβ,γ and

t∑
i=0

[A i(Hi)]γ,β =

t∑
i=0

⟨Ai
γ,β, H

i⟩

= [H0]γ,β +

t∑
i=1

∑
(γ′,β′)∈Ns

d−di
×Ns

d−di

(γ′′,β′′)∈supp(g)
(γ′+γ′′,β′+β′′)=(γ,β)

giγ′′,β′′ [Hi]γ′,β′

=

t∑
i=0

⟨Ai
β,γ , H

i⟩ =
t∑

i=0

[A i(Hi)]β,γ .

Let A i
R,A

i
I be the real linear operator associated with A i which are defined in

a similar way as (2.2) and (2.3). With Hi = Hi
R + Hi

I i, b = bR + bI i, (HSOS-C’) is
equivalent to the following real SDP by using the equivalent condition (1.1):
(HSOS-R)

sup
λ,Y i

λ

s.t.
∑t

i=0

(
[A i

R(H
i
R)]β,γ + [A i

I (H
i
I)]β,γ

)
+ δ(β,γ),(0,0)λ = [bR]β,γ ,∑t

i=0

(
[A i

R(H
i
I)]β,γ − [A i

I (H
i
R)]β,γ

)
= [bI]β,γ ,

β ≤ γ, (β,γ) ∈ Ns
d × Ns

d,

Y i =

[
Hi

R −Hi
I

Hi
I Hi

R

]
⪰ 0, i = 0, 1, . . . , t.

On the other hand, by invoking Theorem 2.2, we obtain another equivalent real SDP
conversion of (HSOS-C’):
(3.3)

sup
λ,Xi

λ

s.t.
∑t

i=0

(
[A i

R(X
i
1 +Xi

2)]β,γ + [A i
I (X

i
3 − (Xi

3)
⊺)]β,γ

)
+ δ(β,γ),(0,0)λ = [bR]β,γ ,∑t

i=0

(
[A i

R(X
i
3 − (Xi

3)
⊺)]β,γ − [A i

I (X
i
1 +Xi

2)]β,γ

)
= [bI]β,γ ,

β ≤ γ, (β,γ) ∈ Ns
d × Ns

d,

Xi =

[
Xi

1 (Xi
3)

⊺

Xi
3 Xi

2

]
⪰ 0, i = 0, 1, . . . , t.

Proposition 3.2. (3.3) is equivalent to the following real SDP:
(HSOS-R’)

sup
λ,Xi

λ

s.t.
∑t

i=0

(
[A i

R(X
i
1 +Xi

2)]β,γ + [A i
I (X

i
3 − (Xi

3)
⊺)]β,γ

)
+ δ(β,γ),(0,0)λ = [bR]β,γ ,∑t

i=0

(
[A i

R(X
i
3 − (Xi

3)
⊺)]β,γ − [A i

I (X
i
1 +Xi

2)]β,γ

)
= [bI]β,γ , β ̸= γ,

β ≤ γ, (β,γ) ∈ Ns
d × Ns

d,

Xi =

[
Xi

1 (Xi
3)

⊺

Xi
3 Xi

2

]
⪰ 0, i = 0, 1, . . . , t.

Proof. We need to show that the following constraints

(3.4)

t∑
i=0

(
[A i

R(X
i
3 − (Xi

3)
⊺)]β,β − [A i

I (X
i
1 +Xi

2)]β,β

)
= [bI]β,β = 0, β ∈ Ns

d

8 JIE WANG

in (3.3) are redundant. For each i = 0, 1, . . . , t and β ∈ Ns
d, we have〈

(Ai
β,β)R, X

i
3 − (Xi

3)
⊺
〉

=
∑

(β′,γ′)∈Ns
d−di

×Ns
d−di

(β′′,γ′′)∈supp(g)
(β′+β′′,γ′+γ′′)=(β,β)

R(giβ′′,γ′′)
(
[Xi

3]β′,γ′ − [(Xi
3)

⊺]β′,γ′
)

=
1

2

∑
(β′,γ′)∈Ns

d−di
×Ns

d−di

(β′′,γ′′)∈supp(g)
(β′+β′′,γ′+γ′′)=(β,β)

R(giβ′′,γ′′)
(
[Xi

3]β′,γ′ + [Xi
3]γ′,β′ − [(Xi

3)
⊺]β′,γ′ − [(Xi

3)
⊺]γ′,β′

)

=0,

where we have used fact that [(Xi
3)

⊺]β′,γ′ = [Xi
3]γ′,β′ and [(Xi

3)
⊺]γ′,β′ = [Xi

3]β′,γ′ . It
follows that [A i

R(X
i
3 − (Xi

3)
⊺)]β,β = ⟨(Ai

β,β)R, X
i
3 − (Xi

3)
⊺⟩ = 0.

In addition, for each i = 0, 1, . . . , t and β ∈ Ns
d, we have〈

(Ai
β,β)I , X

i
1 +Xi

2

〉
=

∑
(β′,γ′)∈Ns

d−di
×Ns

d−di

(β′′,γ′′)∈supp(g)
(β′+β′′,γ′+γ′′)=(β,β)

I(giβ′′,γ′′)
(
[Xi

1]β′,γ′ + [Xi
2]β′,γ′

)

=
1

2

∑
(β′,γ′)∈Ns

d−di
×Ns

d−di

(β′′,γ′′)∈supp(g)
(β′+β′′,γ′+γ′′)=(β,β)

I
(
giβ′′,γ′′ + giγ′′,β′′

) (
[Xi

1]β′,γ′ + [Xi
2]β′,γ′

)

=0,

where we have used fact that I(giβ′′,γ′′ +giγ′′,β′′) = I(giβ′′,γ′′ +giβ′′,γ′′) = 0 and Xi
1, X

i
2

are symmetric. It follows that [A i
I (X

i
1 +Xi

2)]β,β = ⟨(Ai
β,β)I , X

i
1 +Xi

2⟩ = 0.
Putting all above together yields (3.4).

We have proved the following theorem.

Theorem 3.3. (HSOS-R’) is equivalent to (HSOS-C).
Before closing the section, we compare complexity of different real SDP reformu-

lations for complex SDP relaxations of (CPOP) in Table 1.

Table 1
Comparison of complexity of different real SDP reformulations for complex SDP relaxations of

(CPOP). nsdp: the maximal size of SDP matrix, msdp: the number of affine constraints.

(HSOS-R) (HSOS-R’)
nsdp 2ωs,d 2ωs,d

msdp 2ω2
s,d + 2ωs,d +

∑t
i=1 ωs,d−di ω2

s,d

4. Numerical experiments. In this section, we benchmark the performance of
the two real reformulations for complex SDPs using the software TSSOS 1.2.13 in which

3TSSOS is freely available at https://github.com/wangjie212/TSSOS.

https://github.com/wangjie212/TSSOS

A MORE EFFICIENT REFORMULATION OF COMPLEX SDP AS REAL SDP 9

MOSEK 10.0 [1] is employed as an SDP solver with default settings. For comparison,
we also include the results of directly solving complex SDPs obtained with Hypatia

0.8.1 [6] in Sections 4.1–4.3. All numerical experiments were performed on a desktop
computer with Intel(R) Core(TM) i9-10900 CPU@2.80GHz and 64G RAM. When
presenting the results, the column labelled by ‘opt’ records the optimum and the
column labelled by ‘time’ records running time in seconds. Moreover, the symbol ‘-’
means the SDP solver runs out of memory, and the symbol ‘∗’ means running time
exceeds 10000 seconds.

4.1. Minimizing a random complex quartic polynomial over the unit
sphere. Our first example is to minimize a complex quartic polynomial over the unit
sphere:

(4.1)

{
inf
z∈Cs

[z]H2 Q[z]2

s.t. |z1|2 + · · ·+ |zs|2 = 1,

where [z]2 is the column vector of monomials in z up to degree two and Q ∈ H|[z]2| is
a random Hermitian matrix whose entries are selected with respect to the standard
normal distribution.

We approach (4.1) for s = 5, 7, . . . , 15 with the second and third HSOS relaxations.
The related results are shown in Table 2. From the table, we see that the reformulation
(HSOS-R’) is several (2 ∼ 7) times as fast as the reformulation (HSOS-R), and the
speedup becomes more significant as the SDP size grows. On the other hand, solving
the original complex SDP with Hypatia is much slower than solving the real SDP
reformulation (HSOS-R’) with MOSEK.

Table 2
Minimizing a random complex quartic polynomial over the unit sphere.

s d
(HSOS-R) (HSOS-R’) (HSOS-C’)

msdp opt time msdp opt time opt time

5
2 966 -11.2409 0.11 441 -11.2409 0.05 -11.2409 0.12

3 6846 -9.47725 8.13 3136 -9.47725 2.00 -9.47725 6.54

7
2 2736 -14.2314 0.97 1296 -14.2314 0.28 -14.2314 0.59

3 30372 -11.0407 389 14400 -11.0407 57.0 -11.0407 474

9
2 6270 -19.0019 5.73 3025 -19.0019 1.62 -19.0019 4.61

3 100320 - - 48400 -15.5614 1944 - -

11
2 12480 -22.8630 31.7 6084 -22.8630 6.67 -22.8630 32.3

3 271882 - - 132496 - - - -

13
2 22470 -25.6352 145 11025 -25.6352 23.5 -25.6352 174

3 639450 - - 313600 - - - -

15
2 37536 -29.1672 585 18496 -29.1672 86.1 -29.1672 802

3 1351976 - - 665856 - - - -

4.2. Minimizing a random complex quartic polynomial with unit-norm
variables. The second example is to minimize a random complex quartic polynomial

10 JIE WANG

with unit-norm variables:

(4.2)

{
inf
z∈Cs

[z]H2 Q[z]2

s.t. |zi|2 = 1, i = 1, . . . , s,

whereQ ∈ H|[z]2| is a random Hermitian matrix whose entries are selected with respect
to the uniform probability distribution on [0, 1].

We approach (4.2) for s = 5, 7, . . . , 15 with the second and third HSOS relaxations.
The related results are shown in Table 3. From the table, we see that the reformulation
(HSOS-R’) is about one magnitude faster than the reformulation (HSOS-R), and the
speedup becomes more significant as the SDP size grows. Again, solving the original
complex SDP with Hypatia is much slower than solving the real SDP reformulation
(HSOS-R’) with MOSEK.

Table 3
Minimizing a random complex quartic polynomial with unit-norm variables.

s d
(HSOS-R) (HSOS-R’) (HSOS-C’)

msdp opt time msdp opt time opt time

5
2 734 -24.4919 0.10 271 -24.4919 0.03 -24.4919 0.21

3 4474 -24.4919 2.34 1281 -24.4919 0.26 -24.4919 10.9

7
2 2202 -56.5289 0.65 869 -56.5289 0.16 -56.5289 1.15

3 21158 -46.7128 132 6637 -46.7128 7.44 -46.7128 520

9
2 5242 -114.342 4.62 2161 -114.342 0.73 -114.342 5.29

3 73312 - - 24691 -81.2676 184 - -

11
2 10718 -202.436 32.1 4555 -202.436 3.86 -202.436 30.0

3 206188 - - 73327 - - - -

13
2 19686 -338.041 126 8555 -338.041 12.7 -338.041 162

3 499438 - - 185277 - - - -

15
2 33394 -514.226 678 14761 -514.226 55.1 -514.226 705

3 1081514 - - 414841 - - - -

4.3. Minimizing a randomly generated sparse complex quartic polyno-
mial over multi-spheres. Given l ∈ N\{0}, we randomly generate a sparse complex

quartic polynomial as follows: Let f =
∑l

i=1 fi ∈ C[z1, . . . , z5(l+1), z1, . . . , z5(l+1)],
4

where for all i ∈ [l], fi = f i ∈ C[z5(i−1)+1, . . . , z5(i−1)+10, z5(i−1)+1, . . . , z5(i−1)+10]
is a sparse complex quartic polynomial whose coefficients (real/imaginary parts) are
selected with respect to the uniform probability distribution on [−1, 1]. Then we
consider the following CPOP:

(4.3)

 inf
z∈C5(l+1)

f(z, z)

s.t.
∑10

j=1 |z5(i−1)+j |2 = 1, i = 1, . . . , l.

The sparsity in (4.3) can be exploited to derive a sparsity-adapted complex moment-
HSOS hierarchy [15]. We solve the second sparse HSOS relaxation of (4.3) for

4C[z, z] denotes the ring of complex polynomials in variables z, z.

A MORE EFFICIENT REFORMULATION OF COMPLEX SDP AS REAL SDP 11

l = 40, 80, . . . , 400. The results are displayed in Table 4. From the table we see that
the reformulation (HSOS-R’) is 1.5 ∼ 2 times as fast as the reformulation (HSOS-R).
Moreover, for this problem, solving the original complex SDP with Hypatia is ex-
tremely slow probably due to the fact that the SDP contains many PSD blocks.

Table 4
Minimizing a randomly generated sparse complex quartic polynomial over multi-spheres.

l
(HSOS-R) (HSOS-R’) (HSOS-C’)

msdp opt time msdp opt time opt time

40 23090 -98.9240 3.12 12529 -98.9240 2.06 -98.9240 886

80 46768 -197.577 12.6 25549 -197.577 8.07 -197.577 5433

120 70958 -292.024 30.1 38871 -292.024 19.0 ∗ ∗
160 94278 -389.652 45.9 51563 -389.652 30.7 ∗ ∗
200 117526 -482.684 84.5 64185 -482.684 37.7 ∗ ∗
240 140298 -578.896 130 76389 -578.896 59.5 ∗ ∗
280 162504 -671.047 173 89241 -671.047 65.4 ∗ ∗
320 187528 -766.403 206 102171 -766.403 88.5 ∗ ∗
360 210370 -866.771 291 114589 -866.771 147 ∗ ∗
400 233396 -963.137 297 127173 -963.137 138 ∗ ∗

4.4. Application to the AC-OPF problem. The AC-OPF is a central prob-
lem in power systems, which aims to minimize the generation cost of an alternating
current transmission network under physical and operational constraints. Mathemat-
ically, it can be formulated as the following CPOP:

(4.4)

inf
Vi,S

g
k

∑
k∈G

(
c2k(R(Sg

k))
2 + c1kR(Sg

k) + c0k
)

s.t. ∠Vr = 0,

Sgl
k ≤ Sg

k ≤ Sgu
k , ∀k ∈ G,

υl
i ≤ |Vi| ≤ υu

i , ∀i ∈ N,∑
k∈Gi

Sg
k − Sd

i −Ysh
i |Vi|2 =

∑
(i,j)∈Ei∪ER

i
Sij , ∀i ∈ N,

Sij = (Yij − i
bc

ij

2) |Vi|2
|Tij |2 −Yij

ViV j

Tij
, ∀(i, j) ∈ E,

Sji = (Yij − i
bc

ij

2)|Vj |2 −Yij
V iVj

Tij
, ∀(i, j) ∈ E,

|Sij | ≤ suij , ∀(i, j) ∈ E ∪ ER,

θ∆l
ij ≤ ∠(ViV j) ≤ θ∆u

ij , ∀(i, j) ∈ E,

where Vi is the voltage, Sg
k is the power generation, Sij is the power flow (all are

complex variables; ∠· stands for the angle of a complex number) and all symbols
in boldface are constants. Notice that G is the collection of generators and N is the
collection of buses. For a full description on the AC-OPF problem, we refer the reader
to [3] as well as [5].

We select test cases from the AC-OPF library PGLiB-OPF [3]. For each case, we
solve the minimal relaxation step of the sparse HSOS hierarchy [15]. The results are
displayed in Table 5. From the table, we again see that the reformulation (HSOS-R’)
is several (1.4 ∼ 5) times as fast as the reformulation (HSOS-R).

https://github.com/power-grid-lib/pglib-opf

12 JIE WANG

Table 5
The results for the AC-OPF problem. s: the number of CPOP variables; t: the number of

CPOP constraints.

Case s t
(HSOS-R) (HSOS-R’)

msdp opt time msdp opt time

14 ieee 19 147 2346 1.9940e3 0.19 422 1.9940e3 0.10

30 ieee 36 297 4828 8.1959e3 0.73 836 8.1960e3 0.37

30 as 36 297 4828 5.0371e2 0.55 836 5.0371e2 0.24

39 epri 49 361 5270 1.3568e5 0.74 966 1.3579e5 0.54

89 pegase 101 1221 57888 9.4098e4 63.6 10262 9.4101e4 15.1

57 ieee 64 563 11102 3.6644e4 2.36 2008 3.6644e4 1.06

118 ieee 172 1325 25374 9.3216e4 8.27 4471 9.3216e4 2.68

162 ieee dtc 174 1809 64874 1.0492e5 43.4 11327 1.0495e5 13.8

179 goc 208 1827 25712 6.0859e5 10.3 4368 6.0860e5 3.57

240 pserc 383 3039 52172 2.8153e6 31.9 9243 2.8170e6 10.7

300 ieee 369 2983 53946 5.3037e5 40.6 9647 5.3037e5 10.6

500 goc 671 5255 90502 3.9697e5 89.8 15918 3.9697e5 25.4

588 sdet 683 5287 79362 1.9799e5 91.7 13933 1.9749e5 21.3

793 goc 890 7019 104978 1.1194e5 105 18536 1.1222e5 31.5

1888 rte 2178 18257 280580 1.2537e6 939 47205 1.2545e6 180

2000 goc 2238 23009 455530 9.1876e5 2087 77974 9.1881e5 439

Acknowledgments. The authors would like to thank Jurij Volčič for helpful
comments on an earlier preprint of this note.

REFERENCES

[1] E. D. Andersen and K. D. Andersen, The Mosek Interior Point Optimizer for Lin-
ear Programming: An Implementation of the Homogeneous Algorithm, in High Perfor-
mance Optimization, vol. 33 of Applied Optimization, Springer US, 2000, pp. 197–232,
https://doi.org/10.1007/978-1-4757-3216-0 8.

[2] M. Araújo, M. Huber, M. Navascués, M. Pivoluska, and A. Tavakoli, Quantum key
distribution rates from semidefinite programming, Quantum, 7 (2023), p. 1019.

[3] S. Babaeinejadsarookolaee, A. Birchfield, R. D. Christie, C. Coffrin, C. De-
Marco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang, et al., The
power grid library for benchmarking AC optimal power flow algorithms, arXiv preprint
arXiv:1908.02788, (2019).

[4] J. Bae and L.-C. Kwek, Quantum state discrimination and its applications, Journal of Physics
A: Mathematical and Theoretical, 48 (2015), p. 083001.

[5] D. Bienstock, M. Escobar, C. Gentile, and L. Liberti, Mathematical programming formu-
lations for the alternating current optimal power flow problem, 4OR, 18 (2020), pp. 249–
292.

[6] C. Coey, L. Kapelevich, and J. P. Vielma, Solving natural conic formulations with Hypa-
tia.jl, INFORMS Journal on Computing, 34 (2022), pp. 2686–2699, https://doi.org/https:
//doi.org/10.1287/ijoc.2022.1202.

[7] J. C. Gilbert, SDOlab-A solver of real or complex number semidefinite optimization problems,
PhD thesis, INRIA Paris, 2017.

[8] J. C. Gilbert and C. Josz, Plea for a semidefinite optimization solver in complex numbers,
PhD thesis, Inria Paris, 2017.

[9] M. X. Goemans and D. Williamson, Approximation algorithms for max-3-cut and other

https://doi.org/10.1007/978-1-4757-3216-0_8
https://doi.org/https://doi.org/10.1287/ijoc.2022.1202
https://doi.org/https://doi.org/10.1287/ijoc.2022.1202

A MORE EFFICIENT REFORMULATION OF COMPLEX SDP AS REAL SDP 13

problems via complex semidefinite programming, in Proceedings of the thirty-third annual
ACM symposium on Theory of computing, 2001, pp. 443–452.

[10] C. Josz and D. K. Molzahn, Lasserre hierarchy for large scale polynomial optimization in
real and complex variables, SIAM Journal on Optimization, 28 (2018), pp. 1017–1048.

[11] C. Lu, Y.-F. Liu, W.-Q. Zhang, and S. Zhang, Tightness of a new and enhanced semidefinite
relaxation for mimo detection, SIAM Journal on Optimization, 29 (2019), pp. 719–742.

[12] A. Oustry, C. D’Ambrosio, L. Liberti, and M. Ruiz, Certified and accurate sdp bounds for
the acopf problem, Electric Power Systems Research, 212 (2022), p. 108278.

[13] J. F. Sturm, Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optimization Methods and Software, 11 (1999), pp. 625–653, https://doi.org/10.1080/
10556789908805766, https://doi.org/10.1080/10556789908805766.

[14] I. Waldspurger, A. d’Aspremont, and S. Mallat, Phase recovery, maxcut and complex
semidefinite programming, Mathematical Programming, 149 (2015), pp. 47–81.

[15] J. Wang and V. Magron, Exploiting sparsity in complex polynomial optimization, Journal of
Optimization Theory and Applications, 192 (2022), pp. 335–359.

[16] J. Wang and V. Magron, A real moment-hsos hierarchy for complex polynomial optimization
with real coefficients, arXiv preprint arXiv:2308.14631, (2023).

[17] J. Watrous, Semidefinite programs for completely bounded norms, Theory Comput., 5 (2009),
pp. 217–238, https://doi.org/10.4086/toc.2009.v005a011.

https://doi.org/10.1080/10556789908805766
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1080/10556789908805766
https://doi.org/10.4086/toc.2009.v005a011

	Introduction
	The real reformulations of complex SDPs
	Application to complex SDP relaxations for CPOPs
	Numerical experiments
	Minimizing a random complex quartic polynomial over the unit sphere
	Minimizing a random complex quartic polynomial with unit-norm variables
	Minimizing a randomly generated sparse complex quartic polynomial over multi-spheres
	Application to the AC-OPF problem

	References

