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Abstract

This paper investigates linear programming based branch-and-bound using general disjunc-
tions, also known as stabbing planes, for solving integer programs. We derive the first sub-
exponential lower bound (in the encoding length L of the integer program) for the size of a
general branch-and-bound tree for a particular class of (compact) integer programs, namely
2Ω(L1/12−ϵ) for every ϵ > 0. This is achieved by showing that general branch-and-bound admits
quasi-feasible monotone real interpolation, which allows us to utilize sub-exponential lower-
bounds for monotone real circuits separating the so-called clique-coloring pair. Moreover, this

also implies that refuting Θ(log(n))-CNFs requires size 2n
Ω(1)

branch-and-bound trees with high
probability by considering the closely related notion of infeasibility certificates introduced by
Hrubeš and Pudlák [18]. One important ingredient of the proof of our interpolation result is
that for every general branch-and-bound tree proving integer-freeness of a product P ×Q of two
polytopes P and Q, there exists a closely related branch-and-bound tree for showing integer-
freeness of P or one showing integer-freeness of Q. Moreover, we prove that monotone real
circuits can perform binary search efficiently.

1 Introduction

In recent years, there has been renewed interest in the proof system associated to branch-and-
bound using general disjunctions for solving integer linear programs (ILPs) [4, 13, 2, 8, 12, 15];
the literature sometimes also uses the name “Stabbing Planes” (SP), see [4]. In each node, a
general disjunction of the form α⊤x ≤ δ ∨ α⊤x ≥ δ + 1 for α ∈ Zn, δ ∈ Z is used to create two
child nodes.

Branching on general disjunctions lies at the core of Lenstra’s algorithm for integer program-
ming in fixed dimension [22]. It has also been used, for example, for special ordered sets [3],
exploiting flatness [11], achieving feasibility [23], and symmetry handling [24].

Nevertheless, the dominant strategy in practice is to employ variable branching of the form
xi ≤ δ ∨ xi ≥ δ + 1 for some variable xi, which is the special case where α is the ith unit
vector. Some reasons for this choice are that the selection of a branching disjunction is easier,
the sparsity of the constraint matrix is not increased, and it often allows to fix variables, e.g.,
if the variables are binary. This variable branching strategy is then usually enhanced by the
application of cutting planes like Chvátal-Gomory cuts in a branch-and-cut framework, which
has seen a tremendous improvement over the last decades.

As a proof system, branch-and-bound with general disjunctions is not only a generaliza-
tion of branch-and-bound using variable disjunctions, but also branch-and-cut with variable
disjunctions and Chvátal-Gomory cuts, see Beame et al. [4] (in fact it is even equivalent to
branch-and-cut with general disjunctions and split-cuts). Hence, lower bounds on the size of a
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branch-and-bound tree using general disjunctions are also lower bounds on the size of a branch-
and-cut tree using Chvátal-Gomory cuts. This fact shows that branch-and-bound using general
disjunctions form a quite general and important algorithm class.

It is thus surprising that so far no family of integer linear programs provably requiring
branch-and-bound trees using general disjunctions of super-polynomial size (in the encoding
length of the program) without some kind of caveat is known. In fact, no super-linear bounds
are known. In this paper we close this gap by providing a class of compact integer programs

requiring branch-and-bound trees using general disjunctions of size 2Ω(L1/12−ϵ) for every ϵ > 0,
where L denotes the encoding length of the ILP. This has been posed as an open problem by
Dadush and Tiwari [7].

We briefly survey previous contributions: It is actually relatively easy to give families of ILPs
which require branch-and-bound trees of exponential size in the number of variables of the ILP
(but not the encoding size of the ILP). Here the two main strategies are the following: Dadush
and Tiwari [7] argued that an ILP which is barely infeasible (i.e., removal of any constraint
makes the ILP feasible) must require large branch-and-bound trees, since it is impossible to
construct a certified branch-and-bound tree which does not use every constraint in at least one
Farkas-certificate at its leaves. More accurately, the obtained bound is the number of constraints
divided by the number of variables, which is only strong for a large number of constraints. This
weakness is mitigated by an extended formulation of the ILP they use (with polynomial encoding
size in the number of variables). However, this formulation also uses continuous variables. Their
strategy was later generalized by Dey et al. [12]. The other strategy, as investigated by Gläser
and Pfetsch [15], is based on finding a large set of points which have to be associated to different
leaves of some given branch-and-bound trees. Formally, it considers hiding sets, which have been
introduced by Kaibel and Weltge [19]. However, it seems impossible to derive bounds on the
size of a branch-and-bound tree which exceed the number of the constraints of the ILP via either
of these two strategies.

Despite the fact that no strong lower bounds on the size of a branch-and-bound tree have
been available prior to this paper, Beame et al. [4] gave a family of unsatisfiable CNF formulas,
such that refuting the corresponding ILP requires a branch-and-bound tree of depth Ω(n/ log2 n).
Note that since trees are not necessarily balanced, this does not yield a good lower bound on
the size of a tree.

Besides lower bounds, there are some structural insights into branch-and-bound using general
disjunctions: Dadush and Tiwari [7] have shown that branch-and-bound using general disjunc-
tions does not become weaker (with respect to polynomial simulation) when restricting the
coefficients of the disjunctions to have polynomial encoding length (cf. Theorem 1 below), which
is crucial for our argument. If we restrict the coefficients of branch-and-bound using general
disjunctions to polynomial size then branch-and-bound can be quasi-polynomially simulated
by the Chvátal-Gomory cutting planes proof system (CG-CP), see Fleming et al. [13]. Thus,
known lower bounds for CG-CP [25, 18, 14] can be lifted to branch-and-bound using general
disjunctions with polynomially bounded coefficients.

The strategy we employ in this paper is to show that branch-and-bound using general disjunc-
tion admits quasi-feasible real monotone interpolation and then lift lower bounds for monotone
real circuits separating the so-called clique-coloring pair given by Pudlák [25] (cf. Theorem 2) to
lower bounds for branch-and-bound trees. This idea is explained in Section 2 and has already
been successfully used for other proof systems. Most prominently, [25] derived sub-exponential
lower bounds for CG-CP for the same ILP used below by showing that CG-CP admits real feasi-
ble monotone interpolation and a similar result for the resolution proof system. Dash showed an
analogous result for the cutting plane proof system using lift-and-project cuts [9] and later for
split cuts [10], which generalize both Chvátal-Gomory and lift-and-project cuts. The concept
of feasible interpolation and the method in which it is used to derive lower bounds has been
developed in the sequence of papers [20, 27, 21, 6, 25].

Note however, that feasible monotone interpolation can only be used to obtain lower bounds
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for problems in a very specific form. This limitation has recently been addressed independently
in [18] and [14], where it is shown that random Θ(log(n))-CNFs are hard for CG-CP. To this
end, [18] introduced the concept of infeasibility certificates which are very closely related to the
notion of feasible interpolation. We mimic their approach to lift real monotone circuit lower
bounds for infeasibility certificates for random CNFs to establish that Θ(log(n))-CNFs require
branch-and-bound trees with general disjunctions of size at least 2n

Ω(1)

with high probability
as well.

The rest of this paper is structured as follows: We first survey some necessary preliminaries
in Section 2. Then we explicitly state our results in Section 3 and describe in which way they
are related. The proofs are then given in Section 4.

2 Preliminaries

For polyhedra P ⊆ Rn1 and Q ⊆ Rn2 , let P ×Q = {
(
x
y

)
∈ Rn1+n2 |x ∈ P, y ∈ Q} denote their

Cartesian product. For n ∈ N, we use [n] := {1, . . . , n}.

Systems of Linear Inequalities Let Ax ≤ b with A ∈ Qm×n and b ∈ Qm be a system
of linear inequalities. By scaling, we can assume that A and b have integral entries. If a
polyhedron P is described by Ax ≤ b we write {Ax ≤ b} := {x | Ax ≤ b} = P for brevity.

We say Ax ≤ b is integer-feasible, if there is a point x̂ ∈ Zn with Ax̂ ≤ b and integer-infeasible
otherwise. The polyhedron {Ax ≤ b} is integer-free if Ax ≤ b is integer-infeasible. Similarly,
Ax ≤ b is LP-feasible, if there is a point x̂ ∈ Qn with Ax̂ ≤ b and LP-infeasible otherwise.

A Farkas-certificate (of infeasibility) for the system Ax ≤ b is a vector f ∈ Zm
+ , such

that f⊤A = 0 and f⊤b < 0. It is well known that a linear system Ax ≤ b is LP-infeasible if
and only if it admits a Farkas-certificate of infeasibility. Note that the restriction to integral f
is without loss of generality.

Branch-and-Bound Trees To fix notation, we formalize branch-and-bound trees. A dis-
junction is a pair of linear inequalities of the form (α⊤x ≤ δ, α⊤x ≥ δ + 1), where α ∈ Zn

and δ ∈ Z, which we denote α⊤x ≤ δ ∨ α⊤x ≥ δ + 1. Note that every integer point satisfies
exactly one of them. A branch-and-bound proof (of integer-infeasibility) or branch-and-bound
tree for an system of linear inequalities (P ) is a rooted binary directed tree T with the following
properties:

1. For every non-leaf node N there is a disjunction α⊤x ≤ δ∨α⊤x ≥ δ+1, such that the left
outgoing edge of N is labeled with the inequality α⊤x ≤ δ and the right edge is labeled
with α⊤x ≥ β+1. The neighbor N≤ of N incident to the left edge is called the (α⊤x ≤ δ)-
child of N , whereas the neighbor N≥ incident to the right edge is the (α⊤x ≥ δ+1)-child.
The (α⊤x ≤ δ)-branch at a node N is the directed subtree T (N≤) rooted at N≤ and the
(α⊤x ≥ δ + 1)-branch is the subtree T (N≥) rooted at N≥.

2. For a node N in T , the problem TN (P ) associated to N in a branch-and-bound tree T
for (P ) is (the LP-relaxation) of (P ) and all constraints occurring as edge labels on the
unique path from the root to N in T . We say N is feasible if TN (P ) is LP-feasible and
infeasible otherwise. We require N to be infeasible for every leaf N of T .

A branch-and-bound tree for an integer-free polyhedron P is a branch-and-bound tree for a
system Ax ≤ b with P = {Ax ≤ b}.

We emphasize that we do not require non-leaf nodes of T to be feasible. This is convenient,
since then a branch-and-bound tree T for a polyhedron P is also a branch-and-bound tree for
every polyhedron Q ⊆ P , see, e.g., Dey et al. [12]. Moreover, this does not alter the minimal
size of a branch-and-bound tree for any infeasible integer problem.
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A tree labeled as described in Property 1 which does not necessarily satisfy Property 2 will
be called not necessarily valid branch-and-bound tree. For emphasis, we sometimes call trees that
satisfy both properties valid. Note that with above definition only integer-infeasible systems of
linear inequalities have valid branch-and-bound trees.

Since we consider only binary trees, the number of nodes of a tree will be asymptotically
twice the number of its leaves. Hence, we may define the size |T | of T to denote the number
of leaves of T , which turns out to be slightly more convenient. We let T (P ) be the smallest
size of a branch-and-bound tree using general disjunctions proving integer-freeness of P . For P
containing integral points, we define T (P ) := +∞.

An important result about branch-and-bound trees is that they can be recompiled to reduce
the encoding length of the coefficients used in the disjunctions at the nodes. This is stated in
the following Theorem by Dadush and Tiwari [7]:

Theorem 1. (Theorem 1 in [7] and its proof) Let P ⊆ Rn be an integer-free polytope contained
in the ball Bn

1 (R) := {x ∈ Rn | ∥x∥1 ≤ R} with radius R ∈ N with respect to the ℓ1-norm. Let T
be a branch-and-bound tree showing the integer-freeness of P . Then, there exists a branch-and-
bound tree T ′ for P , such that |T ′| ≤ (4n+5)|T |, and for every disjunction α⊤x ≤ δ∨α⊤x ≥ δ+1

which T ′ branches on we have max{∥α∥∞, |δ|} ≤ (10nR)(n+2)2 .

A certified branch-and-bound tree (for a system of inequalities/polyhedron) T is a branch-
and-bound tree (for a system of inequalities/polyhedron), where attached to every leaf L is a
Farkas-certificate fL of infeasibility for the problem associated to L.

Monotone Real Circuits A monotone real circuit C is an acyclic directed graph whose
vertices are called gates, such that every gate has either zero or two incoming edges and the
incoming edges at every gate are ordered. The number of incoming edges of a gate is called
its fan-in. If gate g has fan-in zero, it is called an input gate and is labeled with a variable xi

and if g has fan-in two, then g is labeled by a non-decreasing function fg : R
2 → R, which

is the function applied at g. If x = (x1, . . . , xk) are the variables occurring as labels of input
gates, we define (slightly abusing notation) the function g : Rk → R computed by g inductively
(along a topological order of the underlying graph) to be g(x) = xj , if g is an input gate labeled
by xj and by fg(g1(x), g2(x)), if g is a non-input gate and g1 and g2 are the first and second
predecessors of g. Finally, there is a designated output gate h, and the value C(x) computed
by C on input x is h(x). The size |C| of a circuit C is the number of its gates.

Note that bounded fan-in is essential, since monotone real circuits with unbounded fan-in
of linear size can compute arbitrary monotone functions (consider the circuit with a unique
non-input gate connected to all inputs). Moreover, the term ‘real monotone’ circuit is slightly
misleading: the arithmetical structure of the real numbers R does not play a role in above
definition – instead R merely plays the role of a sufficiently large linearly ordered domain (this
has already been mentioned in [25]).

A circuit C decides (the membership problem for) a set X ⊆ Rk, if C(x) = 1 for x ∈ X
and C(x) = 0 otherwise. Similarly, C separates two sets Z1 ⊆ Rk and Z2 ⊆ Rk, if C(z) = 1
for all z ∈ Z1 and C(z) = 0 for all z ∈ Z2 or vice versa. While modifying a given circuit,
post-composing the function fg applied at a gate g with a function φ : R → R means replac-
ing fg by φ ◦ fg , where ◦ denotes the composition of functions. Similarly, pre-composing
the first [second] input means replacing the function fg : x, y 7→ fg(x, y) by x, y 7→ fg(φ(x), y)
[x, y 7→ fg(x, φ(y))]. The notion of monotone real circuits was introduced in [25].

Interpolation We briefly translate the notion of interpolation into the language of linear in-
teger programs. For this, we consider integer-infeasible linear inequality systems of the following
form: (

A
0

)
x+

(
0
B

)
y +

(
C
D

)
z ≤

(
a
b

)
, x, y, z ∈ {0, 1}n1+n2+n3 , (1)
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where C ≥ 0 andD ≤ 0 (entry-wise). Moreover, we let A ∈ Zm1×n1 , B ∈ Zm2×n2 , C ∈ Zm1×n3 ,
D ∈ Zm2×n3 , a ∈ Zm1 , b ∈ Zm2 and n := n1 + n2 + n3.

Since (1) is integer-infeasible, at least one of the systems Ax ≤ a − Cz, x ∈ {0, 1}n1 or
By ≤ b − Dz, y ∈ {0, 1}n2 is infeasible for every fixed z ∈ {0, 1}n3 . An interpolant for (1)
is a binary function I : {0, 1}n3 → {0, 1}, such that I(z) = 1 implies that the first system is
infeasible and I(z) = 0 implies that the second is infeasible. Note that there is a interpolant for
every integer-infeasible system of the form (1). We say a proof system S admits (monotone/real
monotone) [quasi-]feasible interpolation, if for any proof of infeasibility of (1) in S of size S there
exists a (monotone/real monotone) circuit of size [quasi-]polynomial in S and the encoding size
of (1) computing such an interpolant. Then, if every such monotone circuit must be large, also
any proof for (1) in S must be large. This is the case for the examples described in the next
paragraph.

The Clique-Coloring Pair and the Broken-Mosquito-Screen Pair The following
construction is based on the observation that no r-vertex graph G simultaneously admits both
a (k − 1)-coloring and a k-clique. This is expressed by the integer-infeasibility of:

xiℓ + xjℓ ≤ 2− zij ∀ {i, j} ∈

(
[r]

2

)
, ∀ ℓ ∈ [k − 1], (2a)∑

ℓ∈[k−1]

xiℓ ≥ 1 ∀ i ∈ [r], (2b)

yi + yj ≤ 1 + zij ∀ {i, j} ∈

(
[r]

2

)
, (2c)∑

i∈[r]

yi ≥ k, (2d)

x ∈ [0, 1]r×(k−1), y ∈ [0, 1]r, z ∈ [0, 1](
[r]
2 ), (2e)

where we interpret z ∈ {0, 1}(
[r]
2 ) as an encoding of the graph G = ([r], E), with zij = 1 if and

only if {i, j} ∈ E, x ∈ {0, 1}r×(k−1) as a (k−1)-coloring of G, with xiℓ = 1 if and only if vertex i
gets assigned color ℓ, and y ∈ {0, 1}r as an k-clique of G, with yi = 1 if and only the clique
contains vertex i.

If we write (2) in the form of (1), the pair of sets

Z1 := {z ∈ {0, 1}(
[r]
2 ) | ∃x ∈ {0, 1}r×(k−1) : Ax ≤ a− Cz} and

Z2 := {z ∈ {0, 1}(
[r]
2 ) | ∃y ∈ {0, 1}r : By ≤ b−Dz}

is known as the clique-coloring pair or CC-pair. Note that n1 = r(k − 1), n2 = r, and n3 =(
r
2

)
= (r2 − r)/2 for later calculations. As already remarked, we have Z1 ∩ Z2 = ∅.
Pudlák [25] gave the following lower-bound for any monotone real circuit separating the

CC-pair:

Theorem 2. Every family of monotone real circuits separating the CC-pair with r vertices and

k := ⌊ 1
8
(r/ log r)2/3⌋ has size 2Ω((r/ log r)1/3).

Note that log always refers to the logarithm with respect to base 2 in this paper.
Since n3 = (r2 − r)/2 is the number of inputs to a circuit separating the CC-pair, we note

2Ω((r/ log r)1/3) = 2Ω((n3/ logn3)
1/6) ∈ 2Ω(n

1/6−ϵ
3 ) for every ϵ > 0.

Theorem 2 is in contrast to the fact that the CC-Pair can be separated in polynomial time
by semi-definite programming using Lovász’ Theta body (cf., e.g., Remark 9.3.20(b) in [16]).
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Another example of a disjoint pair of languages which requires a large monotone real circuit
to be separated is the broken-mosquito-screen pair or BMS-pair. The BMS-pair is polynomially
equivalent to the CC-pair [26] and is therefore also polynomial time separable. For the BMS-
pair, a slightly more explicit bound is available in the literature: Cook and Haken [17] show
that any circuit separating the BMS-pair has at least 2Kn

1/8
3 gates for some K > 0.32.

Random CNFs and Infeasibility Certificates In this section we will consider Boolean
variables x1, . . . , xn. A literal is a variable xi or its negation ¬xi. A clause is a set of literals.
A CNF (or formula in conjunctive normal form) is a set of clauses. A k-clause is a clause
with k variables and a k-CNF is a CNF containing only k-clauses. The satisfiability problem
is the problem of deciding whether there exists a satisfying assignment to a given CNF C, i.e.,
an assignment α of binary values (or truth values) to x1, . . . , xn, such that every clause C ∈ C
contains either a literal xi for a variable which is assigned to be true (i.e., α(xi) = 1) or a literal
¬xi for a variable which is assigned to be false (i.e., α(xi) = 0).

The satisfiability problem can be cast as an ILP in a straight-forward way:∑
xi∈C

xi +
∑

¬xi∈C

(1− xi) ≥ 1 ∀C ∈ C, x1, . . . , xn ∈ {0, 1}. (3)

Thus we can speak about branch-and-bound trees refuting unsatisfiable CNFs.
A random k-CNF C in n variables and m clauses is obtained by picking k-clauses uniformly

and independently at random from the
(
n
k

)
2k possible k-clauses. Since we allow repetition, C

may contain less than m clauses. We are interested in choosing the parameters m and k in a
way, such that the resulting CNFs are unsatisfiable, but hard to refute with high probability.
Moreover, we are interested in choosing these parameters as small as possible. For this we follow
the choices made in [18], where this is discussed in more detail. First observe that any random
assignment to the variables satisfies C with probability (1− 2−k)m. Hence, by the union bound
there is a satisfying assignment with probability at most (1− 2−k)m2n ≤ e−2−km2n. Hence,
if we choose m ≥ (ln 2 + ε)2kn for some ε > 0, then a random-formula is unsatisfiable with
high probability, where ln refers to the natural logarithm. Note that if k ∈ O(log(n)), then the
number of clauses is polynomial in n.

Let C denote a CNF and X0 ∪ X1 = X := {x1, . . . , xn} denote a partition of its variables.
Every clause Ci in C can be written as as Ci = C0

i ∪C1
i , where Cj

i contains only variables from
Xj and their negations. A monotone Boolean function F : {0, 1}m → {0, 1} is an (X0, X1)-
certificate (of infeasibility) for C, if for every A ⊆ [m] we have

F (A) = 0 =⇒ {C1
i : i ∈ [m] \A} is unsatisfiable,

F (A) = 1 =⇒ {C0
i : i ∈ A} is unsatisfiable,

where we identify a set of (indices of) clauses with its characteristic vector. That is, given a
subset A of the clauses of C as input, F determines one of the CNFs {C1

i : i ∈ [m] \ A} or
{C0

i : i ∈ A} which is unsatisfiable. It is easy to see that, for any choice of X0 and X1, C admits
an (X0, X1)-certificate if and only if it is unsatisfiable (Proposition 5 in [18]).

Similarly to interpolants, infeasibility certificates have high monotone real circuit complexity
for some problems, among them the interesting case of random CNFs. We say that a sequence
of events (E(n))n∈N holds with high probability if limn→∞ Pr[E(n)] = 1. We then have:

Theorem 3 (Theorem 2 in [18]). Let c > 1 be a constant and let n ≥ 1 be given. Let X0 ∪X1

be a partition of 2n variables into two sets of equal size. If C is a random k-CNF with O(n2k)
clauses, variables X0 ∪ X1, and k ≥ c log(n), then every (X0, X1)-certificate for C requires
monotone real circuits of size 2n

Ω(1)

with high probability.

Note that the conditions in Theorem 3 do not ensure that C is unsatisfiable with high
probability. Hence, for small values of c, the theorem states that with high probability either
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every (X0, X1)-certificate requires large real monotone circuits or C is satisfiable (and thus there
are no (X0, X1)-certificates at all). However, for c > ln 2 almost all random CNFs as in the
statement of the theorem are unsatisfiable, cf. the discussion above. A similar remark is true
about most results about random CNFs in this paper.

The connection between infeasibility certificates and interpolation is explained via the obser-
vation that an infeasibility certificate for a CNF C = {C1, . . . , Cm} can be seen as an interpolant
to a closely related CNF: LetX0∪X1 be a partition of the variables in C. We introduce additional
variables Y = {y1, . . . , ym}, one for every clause, and consider the CNF D with clauses

C0
1 ∪ {¬y1}, . . . , C0

m ∪ {¬ym}, C1
1 ∪ {y1}, . . . , C0

m ∪ {ym}.

Let D0 denote the CNF containing the first m clauses (with variables X0 ∪ Y ) and D1

the CNF containing the second m clauses (with variables X1 ∪ Y ). Let Yi (where i ∈ {0, 1})
denote the collection of assignments α to the variables in Y which make Di satisfiable, if we
fix a variable y ∈ Y to α(y). It is then easy to see that any interpolant separating Y0 and
Y1 is an (X0, X1)-certificate for C and vice versa. In particular, this observation implies that
interpolation theorems also convert short proofs into infeasibility certificates with low monotone
circuit complexity, which can be used to lift the lower bound given by Theorem 3 to a lower
bound on the size of proofs, provided D is not significantly harder to refute than C (which
typically does not seem to be the case).

3 Results

The central result of this work is that branch-and-bound using general disjunctions admits
quasi-feasible monotone real interpolation, that is:

Theorem 4. Given a branch-and-bound tree T for (1), there exists a monotone real circuit
of size 50(n + 1)2|T |2 · [(n + 2)2 log(10n3 + 3)]log((4n+5)|T |) with input z, which separates the
sets Z1 := {z ∈ {0, 1}n3 | ∃x ∈ {0, 1}n1 : Ax ≤ a − Cz} and Z2 := {z ∈ {0, 1}n3 | ∃y ∈
{0, 1}n2 : By ≤ b−Dz}.

Choosing (1) to be integer linear programs expressing a separation problem for which we
have lower bounds for separating monotone real circuits, we obtain lower bounds for branch-
and-bound trees for (1). For example, combining Theorems 4 and 2, we immediately obtain the
following sub-exponential bound:

Theorem 5. Every family of branch-and-bound trees for (2), where k := ⌊ 1
8
(r/ log r)2/3⌋, has

size at least 2Ω(n1/6−ϵ), for every ϵ > 0, where n is the number of variables.

We note that one could make this bound completely explicit, i.e., for fixed ϵ > 0, we can

give N ∈ N and δ > 0, such that any branch-and-bound tree for (2) has size at least 2δn
1/6−ϵ

for
every n ≥ N , by tracking the factor hidden in the Ω-notation in Theorem 2 through its proof
(see [25] building on [1] as presented in [28]). Alternatively, we can give a similar bound for the
BMS-pair, which can then be made explicit by some elementary calculations.

Since the encoding length L of (2) satisfies L ∈ Θ(n2), we immediately obtain:

Corollary 6. Every family of branch-and-bound trees for (2), where k := ⌊ 1
8
(r/ log r)2/3⌋, has

size at least 2Ω(L1/12−ϵ), for every ϵ > 0, where L is the encoding length (2).

We also obtain a similar result for random CNFs:

Theorem 7. If C is a random k-CNF with 2n variables and O(n 2k)-clauses, where k ≥ c logn

for a constant c > 1, then any branch-and-bound tree for (3) for C has size at least 2n
Ω(1)

with
high probability.
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The remainder of this section outlines how we prove Theorem 4. For this we will require
three ingredients.

Let P ∈ Rn1 and Q ∈ Rn2 be two polytopes. Our first ingredient is the fact that given
a certified branch-and-bound tree T showing the integer-freeness of P × Q, there is a branch-
and-bound tree for the integer-freeness of P , which is structurally very close to T , or there is
such a tree showing the integer-freeness of Q. This is helpful for showing Theorem 4, since
after fixing the variables z, the feasible region of the LP-relaxation of (1) is a product of two
lower-dimensional polytopes:

{x ∈ [0, 1]n1 | Ax ≤ a− Cz} × {y ∈ [0, 1]n2 | By ≤ b−Dz}.

Given a branch-and-bound tree T for showing integer-freeness of P ×Q ⊆ Rn1×n2 , a branch-
and-bound tree T ′ for P conforms to T , if their underlying directed graphs (including the
ordering of the children as ≤- and ≥-children) are identical and, if the disjunction used by T
at a node N is α⊤x + β⊤y ≤ δ ∨ α⊤x + β⊤y ≥ δ + 1, then the disjunction used by T ′ at N is
α⊤x ≤ δ′ ∨ α⊤x ≥ δ′ + 1 for some δ′ ∈ Z.

A precursor to our first ingredient will be the following Lemma.

Lemma 8. (Structural Interpolation Lemma) For every branch-and-bound tree T for an integer-
free product of polytopes P ×Q there exits

(a) a branch-and-bound tree TP for P conforming to T or

(b) a branch-and-bound tree TQ for Q conforming to T .

By applying Lemma 8 to a smallest branch-and-bound tree for P×Q, we immediately obtain
the following result, which is of independent interest.

Corollary 9. T (P ×Q) = min(T (P ), T (Q))

Note that Lemma 8 does not give any information of what the right hand side of the disjunc-
tions used at the nodes of TP or TQ should be, while almost every other property of the tree is
preserved. The remaining two ingredients for the proof of Theorem 4 are intended to supply this
information. To this end, it would be helpful, if Farkas-certificates maintain their validity when
passing from T to TP or TQ. This is due to the fact that it is not clear how we can decide the
LP-feasibility of a system of linear inequalities (even without integrality constraints), since we
need to perform computations via monotone real circuits. However, it is easy to check whether
a given Farkas-certificate is valid.

Unfortunately, Lemma 8 does not seem to hold for certified branch-and-bound trees. Indeed,
the naive way to obtain Farkas-certificates for TP (or TQ) from Farkas-certificates for T does
not work, i.e., for a leaf L in TP using the projection of the Farkas-certificate fL attached to L
in T onto constraints of P and branching constraints. As a counter example, consider the square
of the two-dimensional cross-polytope

C2
x × C2

y := {x1, x2 ∈ [0, 1] :
∑
i∈S

xi +
∑
i ̸∈S

(1− xi) ≤ 3
2

∀S ⊆ {1, 2}}

×{y1, y2 ∈ [0, 1] :
∑
i∈S

yi +
∑
i ̸∈S

(1− yi) ≤ 3
2

∀S ⊆ {1, 2}}

and the branch-and-bound tree shown in Figure 1a for C2
x ×C2

y . Here, let all Farkas-certificates
at the leaves have the form

1 · (
∑

i∈S xi +
∑

i ̸∈S(1− xi) ≤ 3
2
)

+
∑

i∈S 1 · (−xi ≤ −1)

+
∑

i ̸∈S 1 · (xi ≤ 0)

(0 ≤ −0.5)
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x1 ≤ 0

y1 ≤ 0

y2 ≤ 0 y2 ≥ 1

y1 ≥ 1

y2 ≤ 0 y2 ≥ 1

x1 ≥ 1

x2 ≤ 0 x2 ≥ 1

(a) A branch-and-bound tree for C2
x × C2

y .

0 ≤ 5

y1 ≤ 0

y2 ≤ 0 y2 ≥ 1

y1 ≥ 1

y2 ≤ 0 y2 ≥ 1

0 ≥ 5

0 ≤ 0 0 ≥ 1

(b) A conforming tree using quasi-Farkas-certificates.

Figure 1: A branch-and-bound tree for C2
x × C2

y showing that Lemma 8 does not hold for certified
branch-and-bound trees. (b) shows a tree for C2

y conforming to the one in (a) using quasi-Farkas-
certificates. For the gray part of the tree, the second case from the definition of quasi-Farkas-
certificates holds, i.e., we do not require the validity of Farkas-certificates there.

for some S ⊆ {1, 2} or the analogous form for variables from C2
y . For any leaf, there is only one

such choice.
It is not hard to see that no choice of new right-hand-sides δ̂ can make every Farkas-

certificate f̂L obtained as described above valid for all leaves simultaneously, when we try
to obtain a conforming branch-and-bound tree for either C2

x or C2
y : For C2

x, δ̂r ≤ −1 has to

hold for the right-hand-side δ̂r used in the disjunction at the root r, if all Farkas-certificates in
the ≤-branch at the root are to be valid. But then it is impossible for both Farkas-certificates
at leaves in the ≥-branch to be valid simultaneously. The situation for C2

y is similar.
However, if we relax the notion of a Farkas-certificate very slightly, then Lemma 8 holds also

for certified trees: Let P be a polytope and U an arbitrary set with P ⊆ U . A quasi-certified
branch-and-bound tree T for P relative to U is a branch-and-bound tree for P , such that to every
leaf L there is an attached quasi-Farkas-certificate fL relative to U , i.e., a vector fL ∈ ZmL

+

indexed by the mL constraints of the problem TL(P ) associated to L, such that

1. fL is a valid Farkas-certificate for TL(P ) or

2. an edge on the unique root-leaf path in T to L is labeled with a constraint α⊤x ≤ γ
(α⊤x ≥ γ + 1), such that U ∩ {α⊤x ≤ γ} = ∅ (U ∩ {α⊤x ≥ γ + 1} = ∅).

Note that fL does not appear in the second condition. A quasi-certified branch-and-bound
tree T ′ for P conforms to a quasi-certified branch-and-bound tree T for P ×Q, if it does so as
(uncertified) branch-and-bound tree and moreover the quasi-Farkas-certificate (f ′)L attached
to a leaf L of T ′ is the projection of the quasi-Farkas-certificate fL attached to the leaf L in T
onto variables corresponding to constraints of P and branching constraints.

In the above example, there exists a quasi-certified branch-and-bound relative to [0, 1]2

conforming to the previously problematic tree, which is shown in Figure (1b). More generally,
we have:

Lemma 10. (Certified Structural Interpolation Lemma) For every quasi-certified branch-and-
bound tree T for an integer-free product of polytopes P ×Q relative to U = UP ×UQ, where P ⊆
UP , Q ⊆ UQ and UP and UQ are bounded, there exists

(a) a quasi-certified branch-and-bound tree TP for P relative to UP conforming to T or

(b) a quasi-certified branch-and-bound tree TQ for Q relative to UQ conforming to T .

Passing from certified trees to quasi-certified trees allows us to choose not to branch at a
node N of T during construction of TP or TQ and instead immediately proceed as in one of the
subtrees rooted at the children of N . Conceptually, it might seem cleaner to consider certified
branch-and-bound trees which embed into T for some suitable notion of embedding. However,
this does not appear to work well with certificates. Moreover, we do not want to be forced to
enumerate over all possible embedded trees later.
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As previously mentioned, the last two ingredients for the proof of Theorem 4 instruct us how
to reconstruct the right-hand-sides of the disjunctions in the tree TP or TQ given by Lemma 10.
The first ingredient is Theorem 1, which establishes that the set of possible right-hand-sides is
not too large (if we recompile T beforehand).

It then remains to show that if a tree TP as in Lemma 10 exits, we can search the space
of possible right-hand-side – whose size is limited by Theorem 1 – efficiently via binary search,
even in the quite restricted computational model of monotone real circuits.

More concretely, assume we have chosen values for the right-hand-sides of all disjunctions
used at a descendant of a node N in T and are now choosing a value γN for the disjunction
used at N . If we consider (say) the (α⊤

Nx ≥ γN + 1)-branch at N , then we want to choose γN
as small as possible (i.e., we want to choose the inequality α⊤

Nx ≥ γN + 1 as weak as possible),
such that we still obtain the validity of all quasi-Farkas-certificates in the (α⊤

Nx ≥ γN + 1)-
branch (depending on the choices for the right-hand-sides for all disjunctions used at ancestors
of N). Assume that we have already expressed the simultaneous validity of the quasi-Farkas-
certificates in the (α⊤

Nx ≥ γN +1)-branch via a monotone real circuit computing values in {0, 1}.
The following result states we can efficiently compute the smallest possible value of γN making
these certificates valid via a monotone real circuit:

Lemma 11. (Oblivious Binary Search Lemma) For a monotone real circuit C computing values
in {0, 1} with k inputs, Λmax ∈ R such that C(x1, . . . , xk−1,Λmax) = 1 for all x1, . . . , xk−1 ∈ R,
and any q ∈ N, there exists a monotone real circuit C̃ of size |C| · q which computes

b : (x1, . . . , xk−1) 7→ max
{
λ ∈ {0, . . . , 2q − 1} | C(x1, . . . , xk−1,Λmax − λ) = 1

}
.

Note that C̃ uses q invocations of C to find the maximal λ among the 2q candidates in
{0, . . . , 2q − 1} causing C to accept on input (x1, . . . , xk−1,Λmax − λ), which is the best we
can reasonably expect while treating C as a black box. In fact, the concrete form of the set
of candidate values is irrelevant – we can search over any set of this cardinality with a circuit
of the same size. This reflects the fact that the definition of monotone circuits does not make
use of the arithmetical structure of the real numbers. Finally, we note that the assumption
C(x1, . . . , xk−1,Λmax) = 1 for all x1, . . . , xk−1 ∈ R is purely for convenience and could be
replaced by one more invocation of C and a slightly less elegant definition of b.

A key observation is that we are able to choose the right-hand-side γN of the disjunction at
a node N by querying the circuit corresponding to the smaller child subtree. We then have to
invoke the circuit corresponding to the larger subtree only once, to ensure that this choice of γN
works for both subtrees. This will ensure the efficiency of our construction. Formally, we have:

Corollary 12. For κ, Λmin, Λmax ∈ Z and monotone real circuit C1 and C2 computing values
in {0, 1} with k inputs each, such that C1(x1, . . . , xk−1,Λmax) = 1 for all x1, . . . , xk−1 ∈ R
and C2(x1, . . . , xk−1, κ − Λmin) = 1 for all x1, . . . , xk−1 ∈ R, there exists a monotone real
circuit C̃ with k − 1 inputs which decides whether there exist integral values xk, x

′
k ∈ Z with

xk+x′
k = κ, such that C1(x1, . . . , xk) = C2(x1, . . . , xk−1, x

′
k) = 1 of size |C1| ·⌈log(L+1)⌉+ |C2|,

where L := Λmax − Λmin.

Note that above lemma and its corollary are the reason we consider monotone real circuit
complexity. We do not see a way in which binary monotone circuits can achieve a similar result
(when the inputs are provided in binary encoding).

Finally, for the proof of Theorem 4, we will construct a monotone real circuit which on
input z ∈ Z1 ∪ Z2 decides whether after fixing the variables z in (1), there exists a branch-
and-bound tree TP (z) for P (z) = {x ∈ {0, 1}n1 | Ax ≤ a− Cz} as in Lemma 10 by efficiently
searching the space of possible right-hand-sides using Corollary 12. Clearly, if such right-hand-
sides exist, we have z ∈ Z2 and z ∈ Z1 otherwise.

10



4 Proofs

4.1 Proof of Lemmas 8 and 10

To showcase our technique, we begin by showing Lemma 8:

Proof of Lemma 8. Let P := {x | Ax ≤ a} and Q := {y | By ≤ b}. We will proceed by induction
on |T |. In case |T | = 1, we have P × Q = ∅, i.e., P = ∅ or Q = ∅, say P = ∅. Then there
exists a branch-and-bound tree T ′ for P with |T ′| = 1 which conforms to T , since their common
underlying directed graph does not contain any internal nodes.

Assume |T | > 1 and that α⊤x + β⊤y ≤ δ ∨ α⊤x + β⊤y ≥ δ + 1 is the topmost disjunction
of T . Let N≤ denote the ≤-child of the root of T and T (N≤) the subtree of T rooted at N≤.
For any γ ∈ Z the subtree T (N≤) is a valid branch-and-bound tree for

(P ×Q)≤γ := (P ∩ {α⊤x ≤ δ + γ})× (Q ∩ {β⊤y ≤ −γ}),

since the two added constraints imply α⊤x+ β⊤y ≤ δ.
The induction hypothesis then implies that either (a) or (b) holds for T (N≤) and (P ×Q)≤γ .

This allows us to define (µ≤(γ))γ∈Z by

µ≤(γ) :=


−1, if case (a) holds for T (N≤) and (P ×Q)≤γ , but case (b) does not,

0, if cases (a) and (b) both hold for T (N≤) and (P ×Q)≤γ ,

1, if case (b) holds for T (N≤) and (P ×Q)≤γ , but case (a) does not.

Indeed, by the induction hypothesis, we have defined µ≤ for all possible cases. It is easy to
see that µ≤ is non-decreasing. Moreover, µ≤ is neither identically −1 nor identically 1, since
sufficiently extreme values of γ can render both (P ∩ {α⊤x ≤ δ + γ}) and (Q ∩ {β⊤y ≤ −γ})
empty (and hence any branch-and-bound tree is valid for them).

Similarly, we let N≥ denote the ≥-child of the root of T and T (N≥) the subtree of T rooted
at N≥. We define (P×Q)≥γ := (P∩{α⊤x ≥ δ+γ+1})×(Q∩{β⊤y ≥ −γ}) and then (µ≥(γ))γ∈Z
by

µ≥(γ) :=


−1, if case (a) holds for T (N≥) and (P ×Q)≥γ , but case (b) does not,

0, if cases (a) and (b) both hold for T (N≥) and (P ×Q)≥γ ,

1, if case (b) holds for T (N≥) and (P ×Q)≥γ , but case (a) does not.

Note that µ≥(γ) is non-increasing and neither identically −1 nor identically 1. We remark that
this definition is not symmetric in P and Q (the ‘+1’ goes with P ).

The noted properties of µ≤ and µ≥ imply that at least one of the following cases hold:
Either (i) there is γ ∈ Z, such that µ≤(γ) ≤ 0 and µ≥(γ) ≤ 0, or (ii) there is γ ∈ Z, such
that µ≤(γ) = µ≥(γ − 1) = 1.

If there exists γ as in (i), we construct TP as desired by branching on α⊤x ≤ δ + γ ∨
α⊤x ≥ δ + γ + 1 and attaching to the resulting children the trees for (P ∩ {α⊤x ≤ δ + γ})
and (P ∩{α⊤x ≥ δ+γ+1}) conforming to T (N≤) and T (N≥) for which existence is guaranteed
by µ≤(γ) ≤ 0 and µ≥(γ) ≤ 0.

Otherwise, there exists γ as in (ii) and we construct TQ as desired by branching on β⊤y ≤
−γ ∨ β⊤y ≥ −γ + 1 and attaching to the resulting children the trees for (Q ∩ {β⊤y ≤ −γ})
and (Q ∩ {β⊤y ≥ −γ + 1}) conforming to T (N≤) and T (N≥) for which existence is guaranteed
by µ≤(γ) = µ≥(γ − 1) = 1.

The proof of Lemma 10 follows the same arguments as Lemma 8, but we now need to track
that the condition on the quasi-Farkas certificates holds as well.
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Proof of Lemma 10. Let P := {x | Ax ≤ a} and Q := {y | By ≤ b}, i.e.,

P ×Q =

{(
x
y

) ∣∣∣ (A 0
0 B

)(
x
y

)
≤
(
a
b

)}
.

We will proceed by induction on |T |. If we have |T | = 1, then the root r of T is the unique node
of T and T does not branch on any disjunctions. Hence, there is a valid Farkas-certificate fr

attached to r. Let fr
P denote the projection of fr onto constraints belonging to P and fr

Q the
projection of fr onto constraints belonging to Q. We then have(

fr
P

fr
Q

)⊤(
A 0
0 B

)
= 0,

(
fr
P

fr
Q

)⊤(
a
b

)
= (fr

P )
⊤a+ (fr

Q)
⊤b < 0.

It follows that (fr
P )

⊤A = 0, (fr
Q)

⊤B = 0, and that (fr
P )

⊤a < 0 or (fr
Q)

⊤b < 0. Hence, fr
P is a

Farkas-certificate for the infeasibility of P or fr
Q is a Farkas-certificate for the infeasibility of Q.

Thus, the branch-and-bound tree with a single leaf and certificate fr
P for this leaf is a quasi-

certified branch-and-bound tree for P relative to UP conforming to T or the branch-and-bound
tree with a single leaf and certificate fr

Q is a quasi-certified branch-and-bound tree for Q relative
for UQ conforming to T .

Assume |T | > 1 and that α⊤x + β⊤y ≤ δ ∨ α⊤x + β⊤y ≥ δ + 1 is the topmost disjunction
of T . Let N≤ denote the ≤-child of the root of T and T (N≤) the subtree of T rooted at N≤.
For any γ ∈ Z the subtree T (N≤) is a valid branch-and-bound tree for

(P ×Q)≤γ := (P ∩ {α⊤x ≤ δ + γ})× (Q ∩ {β⊤y ≤ −γ}),

since the two added constraints imply α⊤x+β⊤y ≤ δ. In order to use the induction hypothesis,
we must turn T (N≤) into a quasi-certified branch-and-bound tree for (P ×Q)≤γ relative to U .
For every leaf L in T which is a descendant of N≤, there is a quasi-Farkas-certificate fL for the
associated subproblem TL(P ×Q). To obtain the problem T (N≤)L((P ×Q)≤γ) associated to L
as a leaf of the branch-and-bound tree T (N≤) for (P ×Q)≤γ , we have to replace the constraint
α⊤x+ β⊤y ≤ δ, which we denote by η, by α⊤x ≤ δ+ γ and β⊤y ≤ −γ, which we denote by ηP
and ηQ, respectively. We define f̃L indexed by the constraints of T (N≤)L((P ×Q)≤γ) by

f̃L
ν =

{
fL
ν , if ν ̸∈ {ηP , ηQ},
fL
η , if ν ∈ {ηP , ηQ}.

We claim that f̃L is a Farkas-certificate for T (N≤)L((P ×Q)≤γ), if f
L is one for TL(P ×Q).

Indeed, let us consider the system M
(
x
y

)
≤ m, with

M :=

A 0
0 B
E1 E2

 and m :=

a
b
e

 ,

such that with E := [E1, E2] we have that E
(
x
y

)
≤ e are the constraints of TL(P × Q) which

come from branching decisions in T and additionally ηP and ηQ. Moreover, extend fL and f̃L

with zeros, so that the following computations are well-defined:

(fL − f̃L)⊤M = fL
η Mη − f̃L

ηP MηP − f̃L
ηQMηQ

= fL
η Mη − fL

η MηP − fL
η MηQ

= fL
η (Mη −MηP −MηQ) = fL

η · 0 = 0

and

(fL − f̃L)⊤m = fL
η mη − f̃L

ηP mηP − f̃L
ηQmηQ

= fL
η mη − fL

η mηP − fL
η mηQ = 0.
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Hence, we have

(f̃L)⊤M = (fL)⊤M = 0 and (f̃L)⊤m = (fL)⊤m < 0.

Thus, f̃L is a valid Farkas-certificate for the infeasibility of T (N≤)L((P × Q)≤γ), if f
L is one

for TL(P ×Q). Furthermore, note that if there is an edge e in the path from the root to L in T
labeled with an inequality α̃⊤x + β̃⊤y ≤ δ̃, such that U ∩ {α̃⊤x + β̃⊤y ≤ δ̃} = ∅ and e is not
the edge between the root and N≤, then e is also contained in the path between the root and L
in T (N≤).

Hence, if U∩{α⊤x+β⊤y ≤ δ} ̸= ∅, then T (N≤) with the quasi-Farkas-certificates constructed
above is indeed a valid quasi-certified branch-and-bound tree for (P × Q)≤γ relative to U and
thus, the induction hypothesis implies that (a) or (b) holds for T (N≤) as a branch-and-bound
tree for (P × Q)≤γ relative to U . Moreover, if U ∩ {α⊤x + β⊤y ≤ δ} = ∅, then we have
UP ∩ {α⊤x ≤ δ + γ} = ∅ or UQ ∩ {β⊤y ≤ −γ} = ∅.

Define the following cases:

(a′) Case (a) holds for T (N≤) and (P ×Q)≤γ or UP ∩ {α⊤x ≤ δ + γ} = ∅.
(b′) Case (b) holds for T (N≤) and (P ×Q)≤γ or UQ ∩ {β⊤y ≤ −γ} = ∅.

This allows us to define (µ≤(γ))γ∈Z by

µ≤(γ) :=


−1, if case (a′) holds, but case (b′) does not,

0, if cases (a′) and (b′) both hold,

1, if case (b′) holds, but case (a′) does not.

Indeed, by the induction hypothesis and our previous considerations, we have defined µ≤
for all possible cases. It is easy to see that µ≤ is non-decreasing. Moreover, µ≤ is neither
identically −1 nor identically 1, since sufficiently extreme values of γ can render both (UP ∩
{α⊤x ≤ δ + γ}) and (UQ ∩ {β⊤y ≤ −γ}) empty.

Similarly, one defines (P ×Q)≥γ := (P ∩ {α⊤x ≥ δ + γ + 1})× (Q∩ {β⊤y ≥ −γ}) and then
the following cases:

(a′′) Case (a) holds for T (N≥) and (P ×Q)≥γ or UP ∩ {α⊤x ≥ δ + γ + 1} = ∅.
(b′′) Case (b) holds for T (N≥) and (P ×Q)≥γ or UQ ∩ {β⊤y ≥ −γ} = ∅,
and finally (µ≥(γ))γ∈Z by

µ≥(γ) :=


−1, if case (a′′) holds, but case (b′′) does not,

0, if cases (a′′) and (b′′) both hold,

1, if case (b′′) holds, but case (a′′) does not.

One checks easily that µ≥(γ) is non-increasing and neither identically −1 nor identically 1.
The noted properties of µ≤ and µ≥ imply that at least one of the following cases hold:

(i) There is γ ∈ Z, such that µ≤(γ) ≤ 0 and µ≥(γ) ≤ 0, or (ii) there is γ ∈ Z, such that
µ≤(γ) = µ≥(γ − 1) = 1.

If there exists γ as in case (i), i.e., cases (a′) and (a′′) hold for this γ, we construct TP as
desired by branching on α⊤x ≤ δ+γ∨α⊤x ≥ δ+γ+1 and attaching to the resulting children N≤
and N≥ the following trees: If (a) holds for T (N≤) and (P ×Q)≤γ , we attach the quasi-certified
branch-and-bound tree T (N≤)

P for P∩{α⊤x ≤ δ+γ} relative to UP conforming to T (N≤) given
by (a). While doing so, we can keep the quasi-Farkas-certificates attached to leaves in T (N≤)

P .
For this, note that the set of constraints describing the problem (T (N≤)

P )L(P ∩{α⊤x ≤ γ+δ})
associated to a leaf L in the branch-and-bound tree T (N≤)

P for P ∩ {α⊤x ≤ γ + δ} is identical
to the constraints describing the problem (TP )L(P ) associated to L as a leaf of the branch-and-
bound tree TP for P . If (a) does not hold for T (N≤) and (P × Q)≤γ , we have UP ∩ {α⊤x ≤
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δ + γ} = ∅, and we attach an arbitrary, not necessarily valid quasi-certified branch-and-bound
tree conforming to T (N≤).

Similarly, if (a) holds for T (N≥) and (P × Q)≥γ , then we attach to N≥ the quasi-certified
branch-and-bound tree T (N≥)

P relative to UP conforming to T (N≥) given by (a). Otherwise,
we have UP ∩ {α⊤x ≥ δ + γ + 1} = ∅, and we attach an arbitrary, not necessarily valid quasi-
certified branch-and-bound tree for P conforming to T (N≥). Choose quasi-Farkas-certificates
as in the previous case.

It is then easy to see that TP is conforming to T . It remains to check that TP is a valid
quasi-certified branch-and-bound tree for P relative to UP . For this consider a leaf L of TP in
the subtree rooted at N≤. If we have UP ∩{α⊤x ≤ δ+ γ} = ∅, there is nothing to check for fL.
Similarly, if there is an edge in T (N≤)

P on the path from the root to L labeled with an inequality
α̃⊤x ≤ δ̃, such that UP ∩{α̃⊤x ≤ δ̃} = ∅, then the same inequality appears on the path from the
root to L in TP . The only remaining case is that the quasi-Farkas-certificate fL attached to L
in T (N≤)

P is a Farkas-certificate for the associated problem (T (N≤)
P )L(P ∩ {α⊤x ≤ δ + γ}).

But then fL is also a Farkas-certificate for the problem (TP )L(P ) associated to L in TP , which
is the same problem. For leaves in the subtree rooted at N≥ we proceed similarly.

In case (ii) we proceed analogously.

4.2 Proofs of Lemma 11 and Corollary 12

Proof of Lemma 11. For ease of notation, we write p := q−1 instead. Thus we have to compute

b : (x1, . . . , xk−1) 7→ max
{
λ ∈ {0, . . . , 2p+1 − 1} | C(x1, . . . , xk−1,Λmax − λ) = 1

}
.

We will construct a monotone real circuit C̃ of the desired size which works in p + 1
phases 0, . . . , p. For each phase i, there will be a gate hi in C̃ representing the state of compu-
tation after phase i. The gate hi will compute the function

bi(x) := ⌊b(x)⌋2p−i ,

where x = (x1, . . . , xk−1) and ⌊·⌋2p−i denotes rounding down to the nearest integer divisible
by 2p−i. Clearly, this suffices, since hp then computes the desired function. Moreover, b0 can be
computed by a copy C0 of C, which receives (x,Λmax−2p) where the output gate h0 is modified
to compute b0(x) = 2pC(x,Λmax − 2p).

To construct the part of C̃ belonging to phase i > 0, we will rely on the recurrence

bi(x) = bi−1(x) + 2p−iC(x,Λmax − bi−1(x)− 2p−i).

Unfortunately, this recurrence is not necessarily monotone in x and bi−1 due to the sign on the
second occurrence of bi−1(x). However, since it is immediate from the definition that bi−1 is
divisible by 2p−(i−1), we might as well consider the recurrence

bi = ⌊bi−1⌋2p−(i−1) + 2p−iC(x,Λmax − ⌊bi−1⌋2p−(i−1) − 2p−i). (4)

Note that we drop the dependence of bi and bi−1 on x to improve readability.
Unfortunately for us, the latter recurrence – while clearly monotone in x and bi−1 – still does

not provide an obvious monotone real circuit, since the last summand applies a non-monotone
function to bi−1.

Thus, we have to give a version of C, which passes along the old bound bi−1 from the k-th
input gate to the output gate in the higher order bits, together with how C behaves on input
(x,Λmax − bi−1 − 2p−i) in the lower order bits, in order to make our computation monotone.

We begin by assuming that every non-input gate in C applies a function f with range f ⊆
(0, 1

2
). This can be achieved by post-composing the function applied at every gate with the

monotone bijection
φ : R→ (0, 1

2
), y 7→ (arctan(y) + π

2
)/2π
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and pre-composing every function applied at a gate, which takes as input such a modified gate,
with φ−1 for the respective input. Let C′ be the monotone real circuit obtained from C this
way. We then have C′(x) = φ(C(x)).

Next, we introduce a gate g̃k, which provides both the k-th input (which is supposed to
be bi−1) and the transformed value of Λmax − bi−1 − 2p−i, i.e, both inputs to g̃k are the k-th
input gate gk of C′ and the function applied at g̃k is

f i(gk, gk) := ⌊gk⌋2p−(i−1) + φ
(
Λmax − ⌊gk⌋2p−(i−1) − 2p−i).

Then, for every gate g which uses gk as input in C′, we let g use g̃k as input instead. We note f i

is non-decreasing: If an increase of gk would cause the summand involving φ to decrease, then
it decreases by at most 1

2
, but the other summand then increases by at least 1.

Let S denote the set of gates in C′ which are a descendant of gk (hence now of g̃k) and
consider a gate g in S with predecessors g1 and g2, such that g1 ∈ S, but g2 ̸∈ S. We then
replace the function fg(g1, g2) applied at g by the function

f i
g(g1, g2) :=⌊g1⌋2p−(i−1) + fg

(
{g1}2p−(i−1) , g2

)
,

where {g1}2p−(i−1) := g1 − ⌊g1⌋2p−(i−1) . We check that f i
g is non-decreasing: If an increase

of g1 would cause {g1} to decrease, then fg({g1}2p−(i−1) , g2) decreases by at most 1
2
, since

range fg ⊆ (0, 1
2
), while ⌊g1⌋2p−(i−1) increases by at least 1.

If g is a gate with both predecessor g1 and g2 in S, we replace the function fg applied at g
by

f i
g(g1, g2) := (⌊g1⌋2p−(i−1) + ⌊g2⌋2p−(i−1))/2 + fg

(
{g1}2p−(i−1) , {g2}2p−(i−1)

)
,

Once again, f i
g is non-decreasing by an analogous argument.

Let Ci denote the monotone real circuit obtained by applying these modifications to C′. For
a gate g′ in C′, let gi denote the corresponding gate of Ci. It is then easy to show by induction
along a topological order on the gates of C′ (or equivalently Ci) that

gi(x, bi−1) =

{
g′
(
x, Λmax − bi−1 − 2p−i

)
, if g ̸∈ S,

bi−1 + g′
(
x, Λmax − bi−1 − 2p−i

)
if g ∈ S.

We note that this holds for the input gates g1, . . . gk−1 and g̃k. For a non-input gate g′ in C′,
consider for example the case where g has predecessors g′1 and g′2, such that g′1 ∈ S and g′2 ̸∈ S.
Then a straight-forward computation yields

gi(x, bi−1) = f i
g

(
gi1(x, bi−1), g

i
2(x, bi−1)

)
= ⌊gi1(x, bi−1)⌋2p−(1−i) + fg

(
{gi1(x, bi−1)}2p−(1−i) , g

i
2(x, bi−1)

)
= ⌊bi−1 + g′1

(
x, Λmax − bi−1 − 2p−i)⌋2p−(1−i)

+ fg
(
{bi−1 + g′1(x, Λmax − bi−1 − 2p−i)}2p−(i−1) , g

′
2(x,Λmax − bi−1 − 2p−i)

)
= bi−1 + fg

(
g′1(x, Λmax − bi−1 − 2p−i), g′2(x,Λmax − bi−1 − 2p−i)

)
= bi−1 + g′

(
x, Λmax − bi−1 − 2p−i)

as desired, where the first and last identity are due to the definition of the computed function,
the second due to the definition of f i

g, the third due to the induction hypothesis and the fourth
due to bi−1 = ⌊bi−1⌋2p−(i−1) and range g ∈ (0, 1

2
). The other cases are analogous.

By considering this identity for the output gate hi of Ci (note that we can assume to be in
the second case), we obtain

Ci(x, bi−1) = bi−(i−1) + C′(x,Λmax − bi−1 − 2p−i)

= bi−(i−1) + φ(C(x,Λmax − bi−1 − 2p−i)).

15



Thus, by our recurrence (4), if we post-compose the function applied at hi with

y 7→

{
⌊y⌋2p−(i−1) if {y}2p−(i−1) < φ(1),

⌊y⌋2p−(i−1) + 2p−i if {y}2p−(i−1) ≥ φ(1),

we obtain a monotone real circuit which on input (x, bi−1) computes bi. For this, note that
{Ci(x, bi−1)}2p−(i−1) = φ(C(x,Λmax − bi−1 − 2p−i)) < φ(1) is equivalent to C(x,Λmax − bi−1 −
2p−i) = 0. Then C̃ can be constructed in the obvious way, i.e., by sequentially using the
constructed circuits C0, . . . , Cp to compute the values b0(x), . . . , bp(x) = b(x).

For the size bound, observe that we have used q = p+1 copies of C and that the introduced
auxiliary gates g̃k can be eliminated from the circuit, since the functions applied at the children
of g̃k can instead be pre-composed with the function applied at g̃k.

Proof of Corollary 12. Choose q := ⌈log(L + 1)⌉ and apply Lemma 11 to C1 to construct C̃1,
such that the output gate h of C̃1 computes

b : (x1, . . . , xk−1) 7→ max
{
λ ∈ {0, . . . , 2q − 1}

∣∣ C(x1, . . . ,Λmax − λ) = 1
}
.

and use a copy of C2 to compute C2(x1, . . . , xk−1, κ− (Λmax − b(x1, . . . , xk−1))).
Clearly, if the output gate of this copy of C2 computes 1, then xk = Λmax − b(x1, . . . , xk−1)

and x′
k = κ − xk satisfy C1(x1, . . . , xk−1, xk) = C2(x1, . . . , xk−1, x

′
k) = 1 and xk + x′

k = κ.
Otherwise, there are no possible such choices for xk and x′

k, since for xk < Λmax−b(x1, . . . , xk−1)
we have C1(x1, . . . , xk−1, xk) = 0 and for xk ≥ Λmax − b(x1, . . . , xk−1) and x′

k = κ− xk we have
C2(x1, . . . , xk−1, x

′
k) = 0. Hence, the constructed circuit decides the question posed in the

corollary.

4.3 Proof of Theorem 4

For ease of notation, we assume that the variable bounds in (1) are incorporated into the
constraints. Then the LP-relaxation of (1) is given by:(

A
0

)
x+

(
0
B

)
y +

(
C
D

)
z ≤

(
a
b

)
,

The basic structure of the proof is as follows: Given z ∈ Z1∪Z2, where Z1 = {z ∈ {0, 1}n3 | ∃x ∈
{0, 1}n1 : Ax ≤ a − Cz} and Z2 = {z ∈ {0, 1}n3 | ∃y ∈ {0, 1}n2 : By ≤ b −Dz}, and a branch-
and-bound tree T for the infeasibility of (1), we compute Farkas-certificates for the leaves of T
and then obtain a certified branch-and-bound tree T̃ for P (z)×Q(z) := {Ax ≤ a−Cz}×{Bx ≤
b−Dz} by plugging in the values for z in the disjunctions used in T . Then at least one of the
alternatives in Lemma 10 holds. However, since z ∈ Z1 ∪ Z2, exactly one of P (z) and Q(z)
is integer-feasible, and thus at most one of the alternatives in Lemma 10 holds. Clearly, we
have z ∈ Z2 if and only if there exists a quasi-certified branch-and-bound tree (T̃ )P for P (z)
conforming to T̃ . Thus, if we construct a monotone real circuit C that given values for the z
variables decides whether there exists such a tree (T̃ )P , then C separates Z1 and Z2. We work
out the details below:

Proof of Theorem 4. We again assume that variable bounds in (1) are incorporated into the
constraints as above. We begin by applying Theorem 1 to our branch-and-bound tree T for (1)
to obtain a certified branch-and-bound tree T ′ for (1) with bounded coefficients: Note that the
linear programming relaxation of (1) is contained in the ball Bn

1 (n) = {x ∈ Rn | ∥x∥1 ≤ n},
where n := n1+n2+n3. Hence, we can assume that for every disjunction d⊤w ≤ δ∨d⊤w ≥ δ+1

used in T ′, we have max{∥d∥∞, |δ|} ≤ (10n2)(n+2)2 and moreover we have |T ′| ≤ (4n + 5)|T |.
Then we fix some Farkas-certificates for T ′ which thus becomes a certified branch-and-bound
tree.
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Lmin Lmax
Lmax + 1

[0, 1]n1

(a) The hyperplanes α⊤x = γ for different
values of γ.

M1

M2

M3

N

M4

(b) An example for T ′ for which V+(N) = {γ+
M2

},
V−(N) = {γ−

M1
, γ−

M3
} and U(N) = {γ−

N , γ+
N , γ−

M4
, γ+

M4
}.

Figure 2: Illustrations of Lmin, Lmax, U(N) and V(N).

By fixing the values of z in the disjunctions used in T ′, we obtain a certified branch-and-
bound tree T̃ for P (z)×Q(z) := {Ax ≤ a−Cz}×{By ≤ b−Dz}. Since P (z)×Q(z) ⊆ [0, 1]n1 ×
[0, 1]n2 , we may also consider T̃ as a quasi-certified branch-and-bound tree for P (z) × Q(z)
relative to [0, 1]n1 × [0, 1]n2 .

Let N (T ′) denote the set of internal nodes of T ′ and let γ ∈ ZN (T ′). Consider the not
necessarily valid quasi-certified branch-and-bound tree T̃P (γ) for P (z) relative to [0, 1]n1 , which
has the same underlying directed tree as T̃ , and at a node N branches on the disjunction
α⊤
Nx ≤ γN ∨α⊤

Nx ≥ γN +1, when T̃ branches at N on the disjunction α⊤
Nx+ β⊤

Ny ≤ δ ∨α⊤
Nx+

β⊤
Ny ≥ δN + 1. Similarly, the Farkas-certificate at a leaf L of T̃P (γ) is the Farkas-certificate at

leaf L of T̃ with the entries corresponding to constraints from Q(z) removed. We are interested
in whether there exists a choice for γ for which T̃P (γ) is a valid quasi-certified branch-and-bound
tree for P (z) relative to [0, 1]n1 .

For any candidate disjunction α⊤
Nx ≤ γN ∨α⊤

Nx ≥ γN +1 to be used at a node N in T̃P (γ),
the slab {x ∈ Rn1 : γN ≤ α⊤

Nx ≤ γN + 1} has width 1
∥αN∥2

≥ 1√
n1∥αN∥∞ . Since

max
{( αN

∥αN∥2

)⊤
x | x ∈ [0, 1]n1

}
−min

{( αN

∥αN∥2

)⊤
x | x ∈ [0, 1]n1

}
≤

√
n1,

we have that at most
√
n1 ·

√
n1∥αN∥∞ + 2 ≤ n(10n2)(n+2)2 + 2 of our slabs intersect [0, 1]n1 .

Let LN
min denote the maximal value for γ for which [0, 1]n1 ∩ {α⊤

Nx ≤ γ} = ∅ (cf. Figure 2a).
Similarly, let LN

max denote the minimal γ for which [0, 1]n1 ∩ {α⊤
Nx ≥ γ + 1} = ∅. Moreover, let

LN := LN
max − LN

min and L := max{LN | N internal node of T ′} ≤ n(10n2)(n+2)2 + 2.
Then, for every internal node N of T ′, we introduce two variables γ+

N and γ−
N . Variable γ+

N

represents how far the right-hand-side of the disjunction at N is chosen away from the lower
bound LN

min, while γ−
N represents how far the right-hand-side of the disjunction at N is chosen

away from the upper bound LN
max. Thus, γN = LN

min + γ+
N = LN

max − γ−
n . Hence, in order for the

pair (γ+
N , γ−

N ) to represent a valid right-hand-side for the node N , we must have γ+
N +γ−

N = LN .
Note that this representation of γN allows us to work with the usual definition of monotone real
circuits and not deal with the case where a function is non-increasing in an input variable.

For every nodeN of T ′, let anc(N) denote the set of proper ancestors ofN (i.e., excludingN).
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Then define

V(N) := V+(N) ∪ V−(N) :=

{
γ+
M

∣∣∣ M ∈ anc(N) and N is in the subtree
rooted at the α⊤

Mx ≥ γM + 1-child of M

}
∪
{
γ−
M

∣∣∣ M ∈ anc(N) and N is in the subtree
rooted at the α⊤

Mx ≤ γM -child of M

}
and

U(N) := {γ−
M , γ+

M | M internal node of T ′ and descendant of N}.
For this definition, we consider N as a descendant of N . See Figure 2b for an example.

Then, for the sake of induction, we strengthen the statement of the theorem to:

Claim. For every node N of T ′, there exists a monotone real circuit CN of size |T ′(N)| ·
2(|T ′| + n3) · log(L + 1)log|T

′(N)|, which receives as inputs values for the variables Z ∪ V(N),
where Z := {z1, . . . , zn3} and decides whether there exist values for the variables U(N), which
obey γ+

N + γ−
N = LN and choosing

γN := LN
min + γ+

N ∀ γ+
N ∈ U(N) ∪ V+(N) and

γN := LN
max − γ−

N ∀ γ−
N ∈ V−(N)

turns every fL attached to a leaf L in the corresponding subtree T̃P (γ)(N) rooted at N in T̃P (γ)
into a valid quasi-Farkas-certificate for L in the branch-and-bound tree T̃P (γ) for P (z) relative
to [0, 1]n1 .

Note that γ is only partially defined by the definition given in the claim; however, all entries
of γ which are relevant for the validity of the quasi-Farkas-certificates in T̃P (γ)(N) are defined.

It suffices to show the claim, since then C := Cr (where r denotes the root of T ′) decides
whether there exists a branch-and-bound tree (T̃ )P for P (z) conforming to T̃ and hence sepa-
rates Z1 and Z2.

We begin by noting that for every input γ±
M of such a circuit CN corresponding to the

right-hand-side of the disjunction used at a node M in V(N), we have CN (z, γ̃, LM ) = 1 for

all (z, γ̃) ∈ RZ∪(V(N)\γ±
M

), since then the side of the disjunction at M which corresponds to
the branch containing N does not intersect [0, 1]n1 and hence all vectors attached to leaves
in T̃P (γ)(N) are valid quasi-Farkas-certificates.

We prove the claim via induction on |T̃ (N)|. If |T̃ (N)| = 1, then N is a leaf. Hence,
U(N) = ∅ and since we are given values for all variables from Z ∪ V(N), we are given all right-
hand-sides to the subproblem T̃P (γ)N (P (z)) =: {x ∈ Rn1 | Ex ≤ e} associated to the leaf N of
the tree T̃P (γ) for P (z). We have to test whether fN is a valid quasi-Farkas-certificate. To this
end, it suffices to test if (fL)⊤e < 0, since we have (fL)⊤E = 0, because T ′ is a valid certified
branch-and-bound tree for P (z)×Q(z) (see the proof of Lemma 10). Note that T̃P (γ)N (P (z))
contains constraints which are also contained in P (z) and are indexed with numbers i ∈ [m1]
and constraints of the form α⊤

Mx ≥ γM +1 or α⊤
Mx ≤ γM coming from branching, which we will

index with the node M at which they appear in a disjunction. We then calculate:

(fL)⊤e =
∑

i∈[m1]

fN
i (ai − Ciz) +

∑
γ+
M

∈V+(N)

fN
M (−LM

min − γ+
M − 1) +

∑
γ−
M

∈V−(N)

fN
M (LM

max − γ−
M )

=: kN −
∑

τ∈Z∪V(N)

sNτ · τ,

where Ci is the i-th row of C and the second line is defined by aggregating variables and
constants. We note that the resulting sNτ are non-negative (recall C is non-negative). Evidently,
the sum in the second line can be computed by a monotone real circuit with inputs corresponding
to the elements of Z ∪V(N) and |Z ∪ V(N)| − 1 further gates by iteratively adding summands.
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Note that adding sNτ times the first input to the second input is a monotone operation, since sNτ
is non-negative. By post-composing the function applied at the output gate with the function
sending numbers larger than kN to 1 and numbers at most kN to 0, we obtain a monotone real
circuit ĈN that decides whether fN is a Farkas-certificate.

We modify ĈN to obtain a monotone real circuit CN which decides whether fN is a quasi-
Farkas-certificate as follows: For every gate g in ĈN which adds sNτ -times the value of an input
γ+
M ∈ V(N) (or γ−

M ) to our sum, we modify the function applied at this gate such that it adds a
very large constant KN instead, if γ+

M ≥ LM (γ−
M ≥ LM ). By our definition of LM and γM , this

is the case if and only if the side of the disjunction at the node M corresponding to the subtree
of M containing N , does not intersect [0, 1]n1 , which makes fN a valid quasi-Farkas-certificate
relative to [0, 1]n1 by definition. Hence, if we choose KN sufficiently large, such that CN will
certainly accept in this case, for example KN := kN +1, then CN correctly decides whether fN

is a valid quasi-Farkas-certificate. Moreover, CN satisfies the claimed bound on its size.
If |T ′(N)| > 1, we appeal to Corollary 12: Let N≤ and N≥ denote the children of N . Then,

by the induction hypothesis, there exist circuits CN≤ and CN≥ for these nodes as in the claim.

Since V(N≤) = V(N)∪{γ−
N} = (V(N≥)\{γ+

N})∪{γ−
N} and CN≤(z, γ̃, LN ) = CN≥(z, γ̃, LN ) = 1

for all (z, γ̃) ∈ RZ∪V(N), we may apply Corollary 12 to CN≤ and CN≥ (with Λmax = LN ,

Λmin = 0 and κ = LN ), in a way which invokes the larger circuit only once.
To see that CN is no larger than claimed, assume the subtree T ′(N≤) of T ′ rooted at N≤

is smaller than the one rooted at N≥, the other case is analogous. Hence, T ′(N≤) has size at
most |T ′(N)|/2 while T ′(N≥) has size at most |T ′(N)| − 1. Then, compute

|CN | ≤ |CN≤ | · (⌈log(LN + 1)⌉) + |CN≥ |

≤ |T ′(N≤)| · 2(|T ′|+ n3) · (⌈log(L+ 1)⌉)log(|T
′(N)|/2) · (⌈log(LN + 1)⌉)

+ |T ′(N≥)| · 2(|T ′|+ n3) · (⌈log(L+ 1)⌉)log(|T
′(N)|−1)

≤ |T ′(N≤)| · 2(|T ′|+ n3) · (⌈log(L+ 1)⌉)log|T
′(N)|

+ |T ′(N≥)| · 2(|T ′|+ n3) · (⌈log(L+ 1)⌉)log|T
′(N)|

≤ |T ′(N)| · 2(|T ′|+ n3) · (⌈log(L+ 1)⌉)log|T
′(N)|.

Finally, set C := Cr for the circuit Cr given by the claim for the root node r of T ′ and note

⌈log(L+1)⌉ = ⌈log(n(10n2)(n+2)2 +3)⌉ as well as |T ′| ≤ (4n+5)|T |. Hence Cr has size at most

|T ′(r)| · 2(|T ′|+ n3) · (⌈log(L+ 1)⌉)log|T
′(r)|

≤ (4n+ 5)|T | · 2[(4n+ 5)|T |+ n] · [(n+ 2)2 log(10n3 + 3)]log((4n+5)|T |)

≤ 2(5n+ 5)2|T |2 · [(n+ 2)2 log(10n3 + 3)]log((4n+5)|T |)

≤ 50(n+ 1)2|T |2 · [(n+ 2)2 log(10n3 + 3)]log((4n+5)|T |).

The computations bounding the circuit size in the recursive step are taken from Fleming et
al. [13] where they are used to show that branch-and-bound with really small coefficients can
be quasi-polynomially simulated by cutting planes. A very similar recursive formula already
appears in [5], where it is used to show that branch-and-bound for variable disjunctions is
quasi-automatizable.

4.4 Proof of Theorems 5 and 7

Proof of Theorem 5. Assume that we have a family of branch-and-bound trees T for (2), one
for each r, such that |T | ∈ 2O(n1/6−ϵ) for some ϵ > 0. Then Theorem 4 gives rise to a family of
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circuits Cn separating the CC-pair of size

|Cn| = 50(n+ 1)2|T |2 · [(n+ 2)2 log(10n3 + 3)]log((4n+5)|T |)

= 50(n+ 1)222O(n1/6−ϵ) ·
(
2log[(n+2)2 log(10n3+3)]

)log(4n+5)O(n1/6−ϵ)

= 2O(n1/6−ϵ) · 2log[(n+2)2 log(10n3+3)]·log(4n+5)O(n1/6−ϵ)

= 2O(n1/6−ϵ) · 2O(nϵ/2)·O(n1/6−ϵ) = 2O(n1/6−ϵ) · 2O(n1/6−ϵ/2) = 2O(n1/6−ϵ/2).

Since we have n = n1 + n2 + n3 = r⌊ 1
8
(r/ log r)2/3⌋+ r+ (r2 − r)/2 and n3 = r+ (r2 − r)/2 we

have

1 ≤ n

n3
= 1 +

O(r5/3)

Ω(r2)

Since n → ∞ implies r → ∞, we have n3 ∈ Θ(n). But then we have

|Cn| ∈ 2O(n1/6−ϵ/2) = 2O(n
1/6−ϵ/2
3 ),

which contradicts Theorem 2.

For the proof of Theorem 7, we require an analog of Theorem 8 in [18].
Given an (unsatisfiable) CNF C = {C1, . . . , Cm} and a partition of its variables X0 ∪X1, let

Y1, Y2 and D be defined as in Section 2.

Observation 13. Every branch-and-bound tree for the ILP (3) for C and any partition X0∪X1

is also a branch-and-bound tree for the ILP (3) for D.

Proof. It suffices to note that linear constraints corresponding to the original clauses of C are
valid inequalities for the LP-relaxation of (3) for D.

Lemma 14. For every branch-and-bound tree T for (3) for C and a partition X0 ∪ X1 of its
variables, there is a monotone real circuit computing an (X0, X1)-infeasibility certificate for C
of size quasi-polynomial in n, m and |T |, i.e., size at most poly(n+m+ f(n))log(n+m+f(n)).

Proof. By Observation 13, we can consider T as a branch-and-bound tree for (3) for D and
hence can apply Theorem 4 to obtain a monotone real circuit separating Y0 and Y1 of size

50(n′ + 1)2|T |2 · [(n′ + 2)2 log(10n′3 + 3)]log((4n
′+5)|T |) ∈ poly(n+m+ T )log(n+m+|T |),

where n′ = 2m+n. Since a monotone function separating Y0 and Y1 is an (X0, X1)-infeasibility
certificate for C, the lemma is shown.

Finally, combining Theorem 3 with Lemma 14, we obtain a proof for Theorem 7:

Proof of Theorem 7. Assume that there exists a function f ∈ O(2n
o(1)

) such that for a random k-
CNF C with O(n2k) clauses and 2n variables there exists a branch-and-bound tree T refuting (3)
for C of size at most f(n) with non-negligible probability, i.e., the probability of this occurring
does not tend to 0 for n → ∞. Then, due to Lemma 14, for any fixed partition X0 ∪ X1 of
the variables with |X0| = |X1| = n there is a monotone real circuit computing an (X0, X1)-
certificate for C of size poly(n+m+f(n))log(n+m+f(n)) with non-negligible probability. We may
assume that f(n) ≥ max(n,m) for simplicity, hence C has size at most g ∈ poly(f(n))log(f(n)).
However, clearly poly(O

(
2n

o(1))
) = O

(
2n

o(1))
and

O
(
2n

o(1))log(O(2n
o(1)

))
= O

(
2n

o(1))O(no(1))
= O

(
2n

o(1)·O(no(1))) = O
(
2n

o(1))
.

Hence, for a random k-CNF with O(n2k) clauses and 2n variables with partition X0 ∪X1 such
that |X0| = |X1| = n and k ≥ c log(n) there is an (X0, X1)-certificate with size at most g(n)
with non-negligible probability which contradicts Theorem 3.
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