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Abstract

We study the problem of inferring sparse time-varying Markov random fields (MRFs) with
different discrete and temporal regularizations on the parameters. Due to the intractability of
discrete regularization, most approaches for solving this problem rely on the so-called maximum-
likelihood estimation (MLE) with relaxed regularization, which neither results in ideal statistical
properties nor scale to the dimensions encountered in realistic settings. In this paper, we address
these challenges by departing from the MLE paradigm and resorting to a new class of constrained
optimization problems with exact, discrete regularization to promote sparsity in the estimated
parameters. Despite the nonconvex and discrete nature of our formulation, we show that it
can be solved efficiently and parametrically for all sparsity levels. More specifically, we show
that the entire solution path of the time-varying MRF for all sparsity levels can be obtained in
O(pT 3), where T is the number of time steps and p is the number of unknown parameters at
any given time. The efficient and parametric characterization of the solution path renders our
approach highly suitable for cross-validation, where parameter estimation is required for varying
regularization values. Despite its simplicity and efficiency, we show that our proposed approach
achieves provably small estimation error for different classes of time-varying MRFs, namely
Gaussian and discrete MRFs, with as few as one sample per time. Utilizing our algorithm, we
can recover the complete solution path for instances of time-varying MRFs featuring over 30
million variables in less than 12 minutes on a standard laptop computer. Our code is available
at https://sites.google.com/usc.edu/gomez/data. 1
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1An earlier version of this paper [Fattahi and Gomez, 2021], which concentrated solely on sparsely-changing
Gaussian MRFs with a fixed parameter, was presented at the Neural Information Processing Systems (NeurIPS)
conference in 2021. The current submission is a substantial expansion of our work on multiple fronts. Firstly, we
have shown that the complete solution path of time-varying MRFs can be recovered for all regularization parameters.
Secondly, our new approach enables us to tackle a broader class of temporal changes beyond sparsity. Lastly, our
statistical guarantees apply to a more extensive class of MRFs, specifically discrete MRFs.
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1 Introduction

Most modern systems are massive-scale with a hierarchy of unknown and ever-changing topologies
that must be estimated in real-time. For instance, the real-time inference of time-varying stock
correlation networks is crucial for the identification of sharp changes in market conditions, and a
need to rebalance the portfolio [Talih and Hengartner, 2005, Polson and Tew, 2000, Hallac et al.,
2017]. Another example is the inference of temporal gene regulatory networks based on gene
expression data, which has immediate applications in early diagnosis of cancer and other disease
processes [Hartemink et al., 2000, Karlebach and Shamir, 2008, Ravikumar et al., 2023].

The behavior of time-varying networks, such as those mentioned above, can be captured by
time-varying Markov Random Fields (MRF). Time-varying MRFs are associated with a temporal
sequence of undirected Markov graphs Gt(V,Et), where V is the set of nodes and Et is the set of
edges in the graph at time t. The node set V represents the random variables in the model, while
the edge set Et captures the conditional dependency between these variables that may change over
time. In other words, if two nodes i and j are not connected by an edge, then the random variables i
and j are independent at time t, conditioned on the rest of the variables; a feature known as Markov
property. The identification of such conditional independence properties would lead to simpler and
more interpretable models, which are invaluable for improving human understanding of different
phenomena.

1.1 Maximum Likelihood Estimation

A popular approach for the inference of time-varying MRFs is based on the so-called maximum
likelihood estimation (MLE): to find a probabilistic graphical model, based on which the observed
data is most probable to occur [Wainwright and Jordan, 2008]. Despite being known as theoretically
powerful tools—a fact noted as early as 1960s [Kalman, 1960, Shellenbarger, 1966]—MLE-based
methods face several fundamental challenges.

First, MLE-based approaches have overwhelmingly high computational complexity, which limits
their application to small- and medium-scale problems. This challenge is further exacerbated in the
time-varying setting where a graphical model needs to be inferred for each time, thereby leading to
a dramatic increase in the number of parameters to be estimated. For instance, in order to obtain
an ϵ-accurate solution, typical MLE-based methods have complexity ranging from O(Tp6 log(1/ϵ))
(via general interior-point methods) [Mohan et al., 2014, Potra and Wright, 2000] to O(Tp3/ϵ)
(via tailored first-order methods, such as ADMM) [Hallac et al., 2017, Ravikumar et al., 2010,
Banerjee et al., 2008]. Here, p is the number of unknown parameters, and T is the number of time
steps. Solvers with such computational complexity fall short of practical use in settings where the
dimension p is large, and the desired ϵ is small. This prohibitive complexity of MLE-based methods
is also exemplified in their practical performance [Fattahi and Sojoudi, 2019, Zhang et al., 2018,
Fattahi et al., 2019].

Second, MLE-based methods fail to efficiently incorporate prior structural and temporal infor-
mation into their estimation procedure. For instance, it is well-known that different time-varying
networks exhibit sparse topologies, which can be captured via a combinatorial or discrete regularizer
like the “ℓ0-norm”. However, due to the combinatorial nature of the ℓ0-norm, MLE-based methods
inevitably resort to relaxed or weaker variants of such regularization, such as ℓ1-norm, thereby
suffering from inferior statistical properties [Bertsimas et al., 2019]. In particular, a regularizer
based on ℓ1-norm results in shrinkage of the entries of the precision matrix, and the bias due to the

2



penalty can dominate the variance from the likelihood, ultimately leading to poor estimates. In
§2.2, we provide an example to illustrate the performance of such relaxation.

Finally, in most applications, one needs to obtain a statistically meaningful regularization
parameter via cross-validation [Cox and Hinkley, 1979], which amounts to solving the MLE repeatedly
or parametrically for different values of the regularization parameter. However, obtaining parametric
solutions to optimization or inference problems is a highly non-trivial task even if the fixed-parameter
problem can be easily tackled. For example, while the well-known lasso regression can be solved
efficiently, parametric algorithms such as LARS [Efron et al., 2004] have in general exponential
complexity [Mairal and Yu, 2012].

1.2 Our contributions

To address the aforementioned challenges, our approach departs from the conventional wisdom
in statistics and machine learning that the inference with discrete regularizers is intractable, and
convex surrogates should be used instead. In fact, we prove the contrary: time-varying MRFs with
discrete regularizers can be inferred efficiently and parametrically; that is, for all sparsity levels.
Our contributions are as follows:

- More tractable formulation: We introduce a much simpler formulation for the inference of
time-varying MRFs that can leverage and promote different sparsity and smoothness structures.
Unlike most MLE-based methods which typically rely on convexity of the regularizer to ensure
tractability, our proposed formulation can directly incorporate the nonconvex and discrete ℓ0
regularizer to promote sparsity in the estimated parameters and/or their differences.

- Recovering the solution path via dynamic programming: We propose a dynamic
programming approach that can recover the entire solution path of time-varying MRFs for all
sparsity levels, i.e., for all values of the regularization coefficients controlling the sparsity, with
complexity O(pT 3) (Theorem 1), which scales linearly with the dimension p. This makes our
approach particularly suitable for cross-validation, where the goal is to find the regularization
parameter that leads to the best generalization performance of the model.

- Statistical guarantees: We show that our proposed estimation method enjoys a strong
statistical guarantee, provided that an approximate backward mapping of the underlying
distribution is available (Theorem 2). For two classes of Gaussian and Discrete time-varying
MRFs, we derive sharp non-asymptotic guarantees for the estimated parameters, showing that
they can be accurately inferred with as few as one sample per time (Propositions 5 and 6). In
the case where the underlying Markov graphs and their temporal differences are sparse, we
establish high probability guarantees on the sparsistency of the obtained solutions and their
differences.

- Implementation: Using our algorithm, we can recover the entire solution path of an
instance of time-varying MRFs with more than 30M variables in less than 12 minutes on
a normal laptop computer. Our code, as well as our test cases, are available at https:

//sites.google.com/usc.edu/gomez/data.

Notations. The ith element of a time-series vector vt is denoted as vt;i; the (i, j)th element of
a time-indexed matrix Vt is denoted as Vt;ij . For a vector v, the notation vi:j is used to denote
the subvector of v from index i to j. The ℓq-ball with radius ρ centered at µ̄ is defined as
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Bq(µ̄, ρ) := {µ : ∥µ − µ̄∥q ≤ ρ}. For a vector v, the notations ∥v∥∞, ∥v∥2, ∥v∥0 denote the ℓ∞
norm, ℓ2 norm, and “ℓ0-norm”, i.e., the number of nonzero elements, respectively. Moreover,
for a matrix M , the notations ∥M∥2, ∥M∥∞, ∥M∥1/1, ∥M∥∞/∞ refer to the induced 2-norm,
induced ∞-norm, ℓ1/ℓ1 norm, and ℓ∞/ℓ∞ norm, respectively. For a d × d matrix M , We define
∥M∥off = ∥M∥1/1 −

∑d
i=1 |Mii|. For a vector v and matrix M , the notations supp(v) and supp(M)

are defined as the location of their nonzero elements. Given two sequences f(n) and g(n), the
notation f(n) ≲ g(n) implies that there exists a constant C < ∞ that satisfies f(n) ≤ Cg(n).
Moreover, f(n) ≍ g(n) implies that f(n) ≲ g(n) and g(n) ≲ f(n). Given two scalars a and b, the
symbols a ∧ b and a ∨ b are used to denote their minimum and maximum, respectively.

2 Problem Formulation

In this work, we consider a class of time-varying MRFs that can be expressed as families of
exponential distributions, defined as:

P(xt; θ⋆t ) = exp {⟨θ⋆t , ϕ(xt)⟩ −A(θ⋆t )} for t = 0, . . . , T. (1)

Here, xt ∈ Rn is the random variable at time t, θ⋆t is the (unknown) true canonical parameter from
the domain D ⊆ Rp, the function ϕ : Rn → Rp is the sufficient statistics, and A : Rp → R is the
log-partition function, which normalizes the distribution. Special classes of time-varying MRFs
include time-varying Gaussian MRFs (GMRFs) and time-varying Discrete MRFs, respectively
corresponding to multivariate Gaussian and discrete random processes. As will be explained later,
due to the equivalence between MRFs and exponential families, Markov graphs can be systematically
obtained from their canonical parameters {θ⋆t }Tt=0 [Wainwright and Jordan, 2008].

An alternative parameterization of exponential families is via mean or moment parameters,
i.e., the moments of the sufficient statistics µt(θ

⋆
t ) = Eθ⋆t

[ϕ(xt)] ∈ R, where R is the so-called
moment polytope. Given the true canonical parameters {θ⋆t }Tt=0, the mean parameters {µt(θ

⋆
t )}Tt=0

can be obtained via the forward mapping F : D → R, where µt(θt) = F (θt) = ∇A(θt). The
conjugate (or Fenchel) duality can be used to define the backward mapping F ∗ : R → D with
θt(µt) = F ∗(µt) = ∇A∗(µt), where A

∗ is the conjugate dual of the log-partition function [Wainwright
and Jordan, 2008, Chapter 3]. For well-known classes of MRFs, the sufficient statistics, canonical
parameters, and backward and forward mappings can be characterized based on the underlying
probability distribution.
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⇥t =
<latexit sha1_base64="PUpYlFj0wO4XjQWzC2eRt/5q+cI=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7EUoePFYoV/QhrLZbtqlm03YnQgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5QSKFQdf9djY2t7Z3dgt7xf2Dw6Pj0slp28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ/7nSeujYhVE6cJ9yM6UiIUjKKVev3mmCMdILkjg1LZrbgLkHXi5aQMORqD0ld/GLM04gqZpMb0PDdBP6MaBZN8VuynhieUTeiI9yxVNOLGzxYnz8ilVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxrPmZUEmKXLHlojCVBGMy/58MheYM5dQSyrSwtxI2ppoytCkVbQje6svrpF2teNeV6uNNuV7L4yjAOVzAFXhwC3V4gAa0gEEMz/AKbw46L86787Fs3XDymTP4A+fzBzZZkIQ=</latexit>

Gt =
<latexit sha1_base64="BScMLxS6Z6T0LlEZwblfOU8IiNM=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRVsBuh4EKXFewD2hAm00k7dDIJM5NCCf0TNy4UceufuPNvnLRZaOuBgcM593LPnCDhTGnH+bZKG5tb2zvl3cre/sHhkX180lFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLnL/e6USsVi8aRnCfUiPBIsZARrI/m2PYiwHhPMs/u5r9Et8u2qU3MWQOvELUgVCrR8+2swjEkaUaEJx0r1XSfRXoalZoTTeWWQKppgMsEj2jdU4IgqL1skn6MLowxRGEvzhEYL9fdGhiOlZlFgJvOcatXLxf+8fqrDhpcxkaSaCrI8FKYc6RjlNaAhk5RoPjMEE8lMVkTGWGKiTVkVU4K7+uV10qnX3Kta/fG62mwUdZThDM7hEly4gSY8QAvaQGAKz/AKb1ZmvVjv1sdytGQVO6fwB9bnD7+Dkwo=</latexit>

Figure 1: (left) The Markov graph of a time-varying GMRF, (right) the sparsity pattern of the
precision matrix.
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Gaussian setting. The canonical parameters in a Gaussian time-varying MRF (GMRF) corre-
spond to the tuple of inverse covariance matrix Θt ∈ Rn×n (also known as the precision matrix) and
mean vector ηt ∈ Rn. In this setting, the exponential distribution (1) reduces to

P(xt)=exp

{
−1

2
⟨Θ⋆

t , xtx
⊤
t ⟩−A(Θ⋆

t )

}
, (2)

with sufficient statistics xtx
⊤
t , where without loss of generality we assumed that ηt = E[xt] = 0.

For GMRFs, the edge set of the Markov graph Gt coincides with the off-diagonal nonzero elements
of Θ⋆

t [Weiss and Freeman, 2000]. Figure 1 shows the sparsity pattern of a precision matrix
for a GMRF and its corresponding Markov graph. The moment parameter µt in this setting
corresponds to the covariance matrix Σ⋆

t = E[xtx⊤t ]. Accordingly, the forward and backward
mappings F : D → R and F ∗ : R → D can be defined as F (Θt) = Σt = Θ−1

t and F (Σt) = Σ−1
t with

D = {Θt : Θt = Θ⊤
t ,Θt ≻ 0} and R = {Σt : Σt = Σ⊤

t ,Σt ≻ 0}.

Discrete setting. In discrete time-varying MRFs (DMRF), each element of the random variable
xt takes a value from the discrete set K with cardinality |K| = K. For simplicity, we assume that
K ⊆ [0, 1]. In this case, (1) reduces to

P(xt)=exp

 ∑
i∈[p],k∈K

θ⋆t;ikI[xt;i = k] +
∑

i,j∈[p],k,l∈K

θ⋆t;ijklI[xt;i = k, xt;j = l]−A(θ⋆t )

 , (3)

where θ⋆t;i· ∈ RK is a vector parameter for the node-wise indicator function I[xt;i = k], and

θ⋆t;ij·· ∈ RK×K is a matrix parameter for the edge-wise indicator function I[xt;i = k, xt;j = l]. The
node- and edge-wise indicator functions form an (over-complete) sufficient statistics. In this case,
the edge set of the Markov graph Gt corresponds to the nonzero matrix parameters θ⋆t;ij··; in other
words, (i, j) ∈ Et if and only if θ⋆t;ij·· ̸= 0K×K . The moment parameter, in this case, coincides with
the node- and edge-wise marginal probabilities, defined as µ⋆

t;ik = E[I[xt;i = k]] = P(xt;i = k) and
µ⋆
t;ijkl = E[I[xt;i = k, xt;j = l]] = P(xt;i = k, xt;j = l). Accordingly, the forward mapping F : D → R

is a function that computes the node- and pair-wise marginal probabilities given the canonical
parameters of the joint distribution. Moreover, the backward mapping F ∗ : R → D recovers the set of
canonical parameters under which the joint probability distribution has node- and pair-wise marginal
distributions that agree with the mean parameters. In this setting, D = {{(θi·, θjv··)}i,j,v|θi· ∈
RK , θjv·· ∈ RK×K , θjv·· = θ⊤jv··, θjv·· = θvj··, ∀i, j, v ∈ [p]}, and R corresponds to the convex hull
of all valid marginal distributions (also known as marginal polytope). Unfortunately, obtaining
the exact and compact representation of the marginal polytope is NP-hard [Roughgarden and
Kearns, 2013], which leads to the intractability of computing the backward mapping for time-
varying DMRFs [Bresler et al., 2014, Montanari, 2015]. To circumvent this difficulty, a common
approach is to resort to variational approximations of the backward mapping via tree-reweighted
entropy [Wainwright et al., 2003, Wainwright and Jordan, 2008], which will be discussed in detail in
§6.2.

2.1 Estimating the Canonical Parameters

In practice, the true mean parameters are rarely available and should be replaced by their empirical

analogs {µ̂t}Tt=0, where µ̂t =
1
Nt

∑Nt
i=1 ϕ

(
x
(i)
t

)
and

{
x
(i)
t

}Nt

i=1
are the samples at time t [Jordan et al.,
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Figure 2: (a) The heatmap of the mismatch error. (b) The true and estimated nonzero elements of
the precision matrix.

1999]. Given the empirical mean parameters and the backward mapping, one can estimate the
canonical parameters from which the Markov graphs can be extracted. However, the backward
mapping may be ill-defined or hard to derive explicitly, especially in the time-varying regime where
the number of available samples at each time may be extremely small [Wainwright and Jordan,
2008, Zhou et al., 2010]. For example, for the time-varying GMRF, the empirical moment parameter

coincides with the sample covariance matrix Σ̂t =
1
Nt

∑Nt
i=1 x

(i)
t x

(i)
t

⊤
. Recalling the explicit form

of the backward mapping, the precision matrix can be estimated as Θ̂t = Σ̂t
−1

. In time-varying
settings, Nt is often significantly smaller than p, which in turn implies that the sample covariance
matrix is rank deficient and, therefore, not invertible. Under such circumstances, a consistent
estimation of the canonical parameters is only possible by leveraging additional prior information
on the structural or temporal properties of the MRF. For instance, many real-world problems
have sparsely- [Barabasi and Oltvai, 2004, Montanari et al., 2012, Ravikumar et al., 2023] and/or
smoothly-changing [Sporns et al., 2004, Yu et al., 2008] structures. These structures can be promoted
via different regularizers.

For example, consider a sparsely-changing GMRF, where the time-varying precision matrices
are sparse and change sparsely over time. The corresponding ℓ1-regularized MLE, also known as
time-varying Graphical Lasso [Hallac et al., 2017], is defined as:

{Θ̂t}Tt=0 = arg sup
{Θt}Tt=0

T∑
t=0

(
⟨Θt, Σ̂t⟩ − log det(Θt)

)
+ γ1

T∑
t=0

∥Θt∥off + γ2

T∑
t=0

∥Θt −Θt−1∥1/1 (4a)

s.t. Θt ≻ 0 t = 0, 1, . . . , T (4b)

where ∥Θt∥1 and ∥Θt −Θt−1∥1/1 are convex relaxations of the “ℓ0-norm” that promote sparsity
in the precision matrices and their differences. However, ℓ1-regularized MLE suffers from inferior
statistical properties, which is shown in our next example.
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Example (regularized MLE for time-varying GMRF). Consider an instance of time-varying
GMRF with T = 5 and n = 25, where {Θ⋆

t }4t=0 ∈ R25×25 are randomly generated symmetric and
sparse matrices. At each time t = 0, . . . , 4, the true precision matrix Θ⋆

t has exactly 30 off-diagonal
elements with value one (while maintaining its symmetry), and the remaining off-diagonal entries are
set to zero. Moreover, the diagonal entries Θ⋆

t;ii are set to 1 +
∑

j ̸=iΘ
⋆
t;ij to ensure Θ⋆

t ≻ 0 for every
t = 0, . . . , 4. At every time, 5 nonzero off-diagonal elements are changed to zero, and 5 zero elements
are set to one. The sample covariance Σ̂t for every t = 0, . . . , 4 is obtained by collecting 500 samples
from the Gaussian distribution with the constructed precision matrices. Figure 2a illustrates a
heatmap of the mismatch error, i.e., the total number of false positives and false negatives in the
sparsity patterns of the true and estimated precision matrices and their differences, for different
values of the regularization coefficients. It can be seen that after an exhaustive search over the
regularization coefficient space, the best achievable mismatch error is in the order of 50. Note that
simply predicting a fully sparse precision matrix has a mismatch error of 190. In light of this, the
estimated parameters reveal little information about the true structure of the time-varying GMRF.
Moreover, Figure 2b shows the concatenation of the nonzero elements in the true precision matrices
(dashed red line), and their corresponding estimated values via the regularized MLE (blue) and our
proposed method (green). It can be seen that, even when the sparsity pattern of the elements is
correctly recovered, the estimated nonzero entries via regularized MLE are “shrunk” toward zero
due to the shrinking effect of ℓ1 regularizer, thereby incurring a substantial bias. In contrast, our
proposed method circumvents this undesirable bias by directly employing the ℓ0 regularizer instead.

3 Related Work

Time-varying MRF. The problem of inferring time-varying MRFs can be traced back to
Kalman filters, where the goal is to predict a random signal evolving over time by filtering out the
observational noise [Kalman, 1960, Brown and Hwang, 1992]. More recent results have studied
the non-asymptotic inference of time-varying MRF with side information, such as sparsity and
smoothness. In addition to the time-varying Grahical Lasso introduced in (4), a recent line of
works has studied the inference of smoothly-changing MRFs [Kolar and Xing, 2011, Greenewald
et al., 2017, Zhou et al., 2010]. These methods rely on kernel methods, where the empirical mean
parameter at any given time is estimated as a weighted average of the samples over time, and
the weights are collected from a predefined kernel. However, these methods do not leverage the
prior information about the sparsity of the parameter differences. With the goal of addressing this
deficiency, several works have studied the inference of sparsely-changing MRF (also known as sparse
differential networks) [Wang et al., 2018, Zhao et al., 2014, Liu et al., 2017]. However, the main
drawback of these methods is that they only estimate the parameter differences, and their theoretical
guarantees are restricted to problems with two time steps (T = 1). Similarly, regression-based
approaches have been proposed for change point detection problems [Kolar and Xing, 2012, Roy
et al., 2017] with MRFs and two time periods, assuming the sparsity pattern of all entries of the
precision matrices change at the same time. In contrast, Wang and Kolar [2014] have studied the
inference of sparse MRFs given an index variable under the assumption that the sparsity pattern is
invariant, whereas Geng et al. [2019] have assumed that the precision matrix is a linear function of
the index variable.
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Sparsity-promoting optimization. Unfortunately, solving statistical inference problems with
sparsity is often an NP-hard discrete optimization problem [Chickering, 1996, Natarajan, 1995],
and exact methods requiring exhaustive search [Lauritzen, 1996] are impractical. Perhaps the
most popular approaches are Fused Graphical Lasso and Group Graphical Lasso [Danaher et al.,
2014], which propose to relax ∥θt∥0 and ∥θt − θt−1∥0 with their ℓ1-approximations. The ℓ1-norm
proxy for sparsity is by now a standard approach in inference with graphical models [Banerjee
et al., 2008, Friedman et al., 2008, Meinshausen and Bühlmann, 2006]. However, such relaxation
results in inferior statistical performance than its exact, non-convex counterpart [Bertsimas et al.,
2019]. Moreover, MLE-based estimators with ℓ1 regularization are statistically consistent only under
stringent conditions, while in some cases, their nonconvex counterparts do not require such strong
restrictions [Lam and Fan, 2009].

Also closely related to our setting is the class of optimization problems of the form

min
θ∈[ℓ,u]p

∥θ∥0 +
p∑

i=1

p∑
j=i+1

gij(θi − θj), (5)

for given one-dimensional functions gij : R → R,. If functions gij are convex, then problem (5)
admits pseudo-polynomial time algorithm [Ahuja et al., 2004, Bach, 2019]. Moreover, convex
relaxations that deliver near-optimal solutions for (5) were proposed for the special case of convex
quadratic g functions [Atamtürk et al., 2018]. If, additionally, we have ℓ = 0 and u = ∞, then
problem (5) is, in fact, solvable in strongly polynomial time [Atamtürk and Gómez, 2018]. As
another special case, if ℓ = −∞, u =∞, and gij(x) = 0 whenever j > i+ 1, then the problem (5)
with convex quadratic g functions can be solved in quadratic time [Liu et al., 2022]. On the other
hand, problem (5) is much more challenging for non-convex g: if g(x) = 1 {x ̸= 0}, as is the case
for sparsely-changing MRFs, then problem (5) is NP-hard even if the term ∥θ∥0 is dropped from
the objective [Hochbaum, 2001]. Nonetheless, as we show in this paper, problem (5) can be solved
efficiently in the context of time-varying MRFs, where gij(x) = 0 whenever j > i+ 1.

4 Proposed Method

We propose the following class of constrained optimization problems:

{θ̂t}Tt=0 = arg min
{θt}Tt=0

γ
T∑
t=0

∥θt∥0︸ ︷︷ ︸
absolute regularizer

+(1− γ)
T∑
t=1

∥θt − θt−1∥qq︸ ︷︷ ︸
temporal regularizer

,

s.t.
∥∥∥θt − F̃ ∗(µ̂t)

∥∥∥
∞︸ ︷︷ ︸

backward mapping deviation

≤ λt ∀t = 0, . . . , T,

(ProxGL)

where q ≥ 0 in the temporal ℓq-regularizer is chosen to match the temporal changes in the canonical
parameters. For example, q = 0 is a natural choice for sparsely-changing MRF where only a
few elements of the canonical parameters change in consecutive times, while q = 2 is suitable for
smoothly-changing MRFs where canonical parameters change smoothly over time. The parameter
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0 ≤ γ ≤ 1 is a regularization parameter that is used to balance the sparsity level and the temporal
changes. Indeed, a larger value for γ would lead to sparser parameters, whereas a smaller γ would
result in smaller temporal changes in the parameters. In the above optimization, the backward
mapping deviation controls the deviation of the canonical parameters from an approximate backward
mapping F̃ ∗(µ̂t), which we assume can be obtained directly from the data. In §6, we provide a
detailed discussion on how to obtain such approximate backward mapping for different classes of
time-varying MRFs. Despite its nonconvexity, our next theorem shows that ProxGL can be solved
efficiently. Recall that T is the number of time steps, and p is the dimension of the canonical
parameter at each time.

Theorem 1 (Efficient algorithm). For all values of the regularization parameter γ ∈ [0, 1] and any
q ∈ {0} ∪ [1,∞), the entire solution path of ProxGL can be obtained in at most O(pT 3) time on a
single thread.

The proof of Theorem 1 is provided in §5 together with the detailed implementation of our
proposed algorithm. To the best of our knowledge, Theorem 1 is the first result showing that the entire
solution path of time-varying MRFs can be estimated in strongly polynomial time. The availability
of the solution path facilitates the automated fine-tuning of the sparsity level and/or smoothness
of the obtained canonical parameters via cross-validation or by solving a bilevel optimization,
where the estimated canonical parameters on the training set are parameterized as functions of
γ and optimized on the validation set [Sinha et al., 2014, MacKay et al., 2019]. Our algorithm
for solving ProxGL relies on two key properties of our proposed formulation: First, ProxGL is
decomposable into p independent subproblems over different coordinates of {θt}Tt=0. This guarantees
that the complexity of our algorithm depends linearly on the dimension p. Moreover, we propose a
dynamic programming approach that can solve each subproblem in O(T 3) for all values of γ.

Given the efficient solvability of ProxGL, our next goal is to show that the obtained solution
indeed enjoys a small estimation error. To this goal, we formally define two classes of temporal
structures for the canonical parameters, namely sparsely-changing MRFs and smoothly-changing
MRFs.

Definition 1 (Sparsely-changing MRF). A time-varying MRF is sparsely-changing with parameter
D0 ≥ 0 if

∥∥θ⋆t − θ⋆t−1

∥∥
0
≤ D0 for every t = 1, . . . , T .

Intuitively, we say that “a time-varying MRF is sparsely-changing” if it is sparsely-changing
with a parameter that satisfies D0 ≪ p. We note that, if ∥θ⋆t ∥0 ≤ S0 for every t, then D0 ≤ 2S0. In
other words, time-varying MRFs with sparse parameters are also sparsely-changing with parameter
2S0.

Definition 2 (Smoothly-changing MRF). A time-varying MRF is smoothly-changing with parameters

(q,D) if max
1≤i≤n

{∑T
t=1 |θ⋆t;i − θ⋆t−1;i|q

}
≤ D.

Similarly, We say “a time-varying MRF is smoothly-changing” if it is smoothly-changing with
q ≥ 1 and D ≪ T . Indeed, a time-varying MRF can be simultaneously sparsely-changing and
smoothly-changing. In such settings, only a few elements of the canonical parameters change over
time and the changes are smooth. However, to streamline the presentation, we study these two
scenarios separately.

Let St denote the set of indices corresponding to the nonzero elements of θ⋆t for every t = 0, . . . , T .
Similarly, let Dt denote the set of indices corresponding to the nonzero elements of θ⋆t −θ⋆t−1 for every
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t = 1, . . . , T . Our next theorem provides conditions under which an optimal solution of ProxGL
enjoys a small estimation error and correct sparsity pattern.

Theorem 2 (Estimation error and sparsistency). Suppose that the parameter λt in ProxGL satisfies∥∥∥θ⋆t − F̃ ∗(µ̂t)
∥∥∥
∞
≤ λt, ∀t = 0, . . . , T. (A1)

Then the following statements hold:

• Estimation error. We have∥∥∥θ̂t − θ⋆t

∥∥∥
∞
≤ 2λt, ∀t = 0, . . . , T. (6)

• Sparsistency for smoothly-changing MRF. Suppose that the time-varying MRF is
smoothly-changing with parameters (q,D) for some q ≥ 1, D ≥ 0. Additionally, suppose that
0 < γ < 1/(1 + D) and 2λt ≤ mini∈St |θ⋆t;i|. Then, the optimal solution of ProxGL with
temporal ℓq-regularizer satisfies:

supp(θ̂t) = supp(θ⋆t ), ∀t = 0, . . . , T. (7)

• Sparsistency for sparsely-changing MRF. Suppose that the time-varying MRF is sparsely-
changing with parameter D0 ≥ 0. Moreover, suppose that 2λt ≤ mini∈St |θ⋆t;i| and 2λt+2λt−1 ≤
mini∈Dt |θ⋆t;i − θ⋆t−1;i|. Then, with any choice of 0 < γ < 1, the optimal solution of ProxGL
with temporal ℓ0-regularizer satisfies:

supp(θ̂t) = supp(θ⋆t ), ∀t = 0, . . . , T,

supp(θ̂t − θ̂t−1) = supp(θ⋆t − θ⋆t−1), ∀t = 1, . . . , T.
(8)

The above theorem shows that if the true canonical parameters remain feasible for ProxGL
with sufficiently small λt, then the estimated parameters have small errors and correct sparsity
patterns. Moreover, if the time-varying MRF is sparsely-changing, then the solution of ProxGL with
a temporal ℓ0-regularizer recovers the correct sparsity pattern of the individual parameters, as well
as their temporal changes. In §6, we use the above theorem to characterize the sample complexity
of our proposed framework for two classes of time-varying MRFs, namely GMRFs and DMRFs.
Next, we present the proof of Theorem 2.

Proof of Theorem 2. We first present the proof of estimation error bound (6).

Estimation error bound. The solution of ProxGL satisfies∥∥∥θ̂t − θ⋆t

∥∥∥
∞
≤
∥∥∥θ̂t − F̃ ∗(µ̂t)

∥∥∥
∞

+
∥∥∥θ⋆t − F̃ ∗(µ̂t)

∥∥∥
∞
≤ 2λt,

where in the first inequality, we used the triangle inequality, and in the second inequality, we used
the assumption that the true canonical parameter {θ⋆t }Tt=0 is feasible for ProxGL.
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Sparsistency. Next, we show the sparsistency of the estimated parameters for any q ∈ {0} ∪ [1,∞).

First, we prove supp(θ̂t) = supp(θ⋆t ) for any q ≥ 1. To this goal, we show supp(θ̂t) ⊆ supp(θ⋆t ) and
supp(θ⋆t ) ⊆ supp(θ̂t). For any i ∈ St, we have∣∣∣θ̂t;i∣∣∣ = ∣∣∣θ̂t;i − θ⋆t;i + θ⋆t;i

∣∣∣
≥
∣∣θ⋆t;i∣∣− ∣∣∣θ̂t;i − θ⋆t;i

∣∣∣
≥
∣∣θ⋆t;i∣∣− 2λt

> 0,

where in the second inequality we used the upper bound on the estimation error, and in the last
inequality we used the assumption 2λt ≤ mini∈St |θ⋆t;i|. This implies that supp(θ⋆t ) ⊆ supp(θ̂t). To

prove supp(θ̂t) ⊆ supp(θ⋆t ), we first rewrite ProxGL as follows:

{θ̂t}Tt=0 = arg min
{θt}Tt=0

γ

T∑
t=0

n∑
i=1

I[θt;i ̸= 0] + (1− γ)
T∑
t=1

n∑
i=1

|θt;i − θt−1;i|q

s.t.
∣∣∣θt;i − [F̃ ∗(µ̂t)

]
i

∣∣∣ ≤ λt ∀t = 0, . . . , T, i = 1, . . . , p.

(9)

We make the following observation. First, due to the use of the infinity norm for the backward
mapping deviation, problem (9) decomposes into p independent subproblems, one for each coordinate
of θt. On the other hand, due to the optimality of {θ̂t}Tt=0 and the feasibility of {θ⋆t }Tt=0, we have for
every 1 ≤ i ≤ p

(1−γ)
T∑
t=0

I{θ̂t;i ̸= 0}+γ

T∑
t=1

∣∣∣θ̂t;i−θ̂t−1;i

∣∣∣q≤(1− γ)

T∑
t=0

I{θ⋆t;i ̸= 0}+γ

T∑
t=1

∣∣θ⋆t;i − θ⋆t−1;i

∣∣q
=⇒ (1− γ)

T∑
t=0

I{θ̂t;i ̸= 0} ≤ (1− γ)

T∑
t=0

I{θ⋆t;i ̸= 0}+ γD

=⇒ (1−γ)
T∑
t=0

I{θ̂t;i ̸=0}I{i∈St}+(1−γ)
T∑
t=0

I{θ̂t;i ̸=0}I{i∈ [n]\St}≤(1−γ)
T∑
t=0

∣∣θ⋆t;i∣∣0+γDq

=⇒ (1− γ)

T∑
t=0

I{θ̂t;i ̸= 0}I{i ∈ [n]\St} ≤ γD

=⇒
T∑
t=0

I{θ̂t;i ̸= 0}I{i ∈ [n]\St} < 1

where the second inequality follows from the assumption
∑T

t=1

∑
i∈[p] |θ∗t;i − θ∗t−1;i|q ≤ D. Moreover,

the fourth inequality follows from supp(θ⋆t ) ⊆ supp(θ̂t). The last inequality follows from the
assumption 0 < γ < 1/(1 +D). This implies that I{θ̂t;i ≠ 0}I{i ∈ [n]\St} = 0 for every t and i, and

hence, we have supp(θ̂t) ⊆ supp(θ⋆t ).
Finally, we show that for sparsely-changing MRFs, ProxGL with temporal ℓ0-regularizer satisfies

supp(θ̂t) = supp(θ⋆t ) and supp(θ̂t − θ̂t−1) = supp(θ⋆t − θ⋆t−1). An argument identical to q ≥ 1 can be
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invoked to show that supp(θ⋆t ) ⊆ supp(θ̂t). Similarly, given any i ∈ Dt, one can write∣∣∣θ̂t;i − θ̂t−1;i

∣∣∣ = ∣∣∣θ̂t;i − θ∗t;i + θ∗t;i − θ∗t−1;i + θ∗t−1;i − θ̂t−1;i

∣∣∣
≥
∣∣θ∗t;i − θ∗t−1;i

∣∣− ∣∣∣θ̂t;i − θ∗t;i

∣∣∣− ∣∣∣θ̂t−1;i − θ∗t−1;i

∣∣∣
≥
∣∣θ∗t;i − θ∗t−1;i

∣∣− 2λt − 2λt−1

> 0,

where the last inequality is due to our assumption 2λt + 2λt−1 ≤ mini∈Dt |θ⋆t;i − θ⋆t−1;i|. This implies

that supp(θ⋆t − θ⋆t−1) ⊆ supp(θ̂t − θ̂t−1). On the other hand, due to the optimality of {θ̂t}Tt=0 and
the feasibility of {θ⋆t }Tt=0, we have

(1− γ)

T∑
t=0

∥θ̂t∥0 + γ

T∑
t=1

∥θ̂t − θ̂t−1∥0 ≤ (1− γ)

T∑
t=0

∥θ∗t ∥0 + γ

T∑
t=1

∥θ∗t − θ∗t−1∥0

=⇒ (1−γ)
T∑
t=0

 ∑
i∈[n]\St

I{θ̂t;i ̸= 0}+
∑
i∈St

I{θ̂t;i ̸= 0}


+γ

T∑
t=1

 ∑
i∈[n]\Dt

I{θ̂t;i − θ̂t−1;i ̸= 0}+
∑
i∈Dt

I{θ̂t;i − θ̂t−1;i ̸= 0}


≤ (1− γ)

T∑
t=0

∑
i∈St

I{θ⋆t;i ̸= 0}+ γ
T∑
t=1

∑
i∈Dt

I{θ⋆t;i − θ⋆t−1;i ̸= 0}

=⇒ (1− γ)
T∑
t=0

∑
i∈[n]\St

I{θ̂t;i ̸= 0}+ γ
T∑
t=1

∑
i∈[n]\Dt

I{θ̂t;i − θ̂t−1;i ̸= 0} ≤ 0

where the last inequality follows from supp(θ∗t ) ⊆ supp(θ̂t) and supp(θ∗t − θ∗t−1) ⊆ supp(θ̂t − θ̂t−1).

Due to 0 < γ < 1, the above inequality implies that θ̂t;i = 0 for every t = 0, . . . , T and i ∈ [n]\St,
and θ̂t;i − θ̂t−1;i = 0 for every t = 1, . . . , T and i ∈ [n]\Dt. Therefore, we have supp(θ̂t) ⊆ supp(θ∗t )

and supp(θ̂t − θ̂t−1) ⊆ supp(θ∗t − θ∗t−1). This completes the proof. □

5 Efficient Algorithm

In this section, we describe the proposed algorithm for solving ProxGL, assuming that the approxi-
mate backward mapping F̃ ∗(µ̂t) is known. In the next section, we study efficient ways for obtaining
F̃ ∗(µ̂t). Recall that, due to the use of the infinity norm for the backward mapping deviation,
problem (9) decomposes into p independent subproblems, one for each coordinate of θt. Moreover, if
γ = 1, then problem (9) can be solved trivially, by setting θt;i = 0 whenever that solution is feasible
and setting θt;i = [F ∗(µ̂t)]i otherwise. Thus, we assume without loss of generality that p = 1 (so we
omit subscripts i) and γ < 1, and focus on solving the problem

min
{θt}Tt=0

γ̄

T∑
t=0

I[θt ̸= 0] +

T∑
t=1

|θt − θt−1|q

s.t. ℓt ≤ θt ≤ ut ∀t = 0, . . . , T,

(10)
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where γ̄ = γ/(1 − γ), ℓt = −λt + F̃ ∗(µ̂t) and ut = λt + F̃ ∗(µ̂t). First, in §5.1, we discuss how to
solve (10) for a given value of the parameter γ̄. We note that Fattahi and Gomez [2021] proposed
a method for solving (10) with q = 0 by casting it as a shortest path problem, which is a special
case of our proposed dynamic programming approach. Then, in §5.2, we give an algorithm to solve
problem (10) for all values of γ̄. Finally, in §5.3 we discuss further refinements of the algorithm.
Overall, the main result of this section is an algorithm that solves (10) in strongly polynomial time,
summarized in Proposition 1 below.

Proposition 1. The entire solution path of (10) for all values of 0 ≤ γ̄ ≤ ∞ and any fixed
q ∈ {0} ∪ [1,∞) can be computed in O(T 3).

5.1 Fixed parameter solution

A key insight to solve (10) is that if θt = 0 for any index t, then (10) decomposes into two independent
problems. This key observation gives rise to a dynamic programming approach for solving (10).
Given 0 ≤ a < b ≤ T + 1, define function v(a, b) to be the best objective value of (10) from time
period a to b− 1 assuming that θa−1 = θb = 0 (if such variables exist), that is,

v(a, b) = min
{θt}b−1

t=a

γ̄
b−1∑
t=a

I[θt ̸= 0]+
b−1∑

t=a+1

|θt−θt−1|q+I[a > 0](θa − 0)q+I[b < T + 1]|θb−1 − 0|q

s.t. ℓt ≤ θt ≤ ut ∀t = a, . . . , b− 1.

(11)

Clearly, the optimal objective value of problem (10) is v(0, T + 1). Moreover, let f(a, b) denote the
best objective value of (10) from indexes a to b− 1 while ignoring the absolute regularizer terms,
that is,

f(a, b) = min
{θt}b−1

t=a

b−1∑
t=a+1

|θt − θt−1|q + I[a > 0] |θa − 0|q + I[b < T + 1] |θb−1 − 0|q

s.t. ℓt ≤ θt ≤ ut ∀t = a, . . . , b− 1.

(12)

By convention, we also let f(a, a) = v(a, a) = 0 for all a = 0, . . . , T + 1. In §5.3, we discuss the
complexity of solving (12).

Functions v and f are related through the following recursion:

Lemma 1. For any 0 ≤ a < b ≤ T + 1, we have

v(a, b) = min
{

min
t∈{a,...,b−1}: 0∈[ℓt,ut]

v(a, t) + v(t+ 1, b)︸ ︷︷ ︸
Cost of setting θt=0

, f(a, b) + γ̄(b− a)︸ ︷︷ ︸
Cost of setting θt ̸=0, a≤t≤b−1

}
. (13)

Proof. The optimal solution corresponding to v(a, b) either satisfies θt ̸= 0 for all a ≤ t ≤ b − 1,
or θt = 0 for some a ≤ t ≤ b − 1. If θt ̸= 0 for all a ≤ t ≤ b − 1, then we have v(a, b) =
f(a, b) + γ̄

∑b−1
t=a I[θt ̸= 0] = f(a, b) + γ̄(b − a). Otherwise, the problem (11) decomposes at the

break-point t with θt = 0 which results in v(a, b) = v(a, t) + v(t+ 1, b). Therefore, v(a, b) can be
obtained by taking the minimum of f(a, b) + γ̄(b− a) and v(a, t) + v(t+ 1, b) for the best choice of
the break-point t.
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In our subsequent arguments, EO stands for “evaluation oracle” and denotes the complexity
of solving (12). Moreover, EO2 stands for the complexity of solving (12) for all combinations of
parameters 0 ≤ a < b ≤ T + 1. Clearly, EO2 = O(T 2EO), by simply calling the evaluation oracle
T 2 times, although more efficient methods may exist.

Lemma 2. For a given value of γ̄, (10) can be solved with complexity O
(
EO2 + T 3

)
.

Proof. From the recursion (13), it follows that if all values of v(a, t) and v(t + 1, b) for all t ∈
{a, . . . , b − 1} are available, and f(a, b) is available as well, then computing v(a, b) reduces to
performing O(T ) comparisons. Since v needs to be computed O(T 2) for all a < b, to ensure v(a, t)
and v(t+ 1, b) are available, we obtain the complexity of O(T 3). The term O(EO2) corresponds to
computing function f as well.

5.2 Parametric scheme for solution path

We now show that (10) can be solved for all values of γ̄ with the same theoretical complexity as the

dynamic programming algorithm discussed in §5.1. Observe that the optimal solution {θ̂t}Tt=0 of
(10) is also optimal for the optimization problem

min
{θt}Tt=0

T∑
t=1

|θt − θt−1|q

s.t.

T∑
t=0

I[θt ̸= 0] ≤ k

ℓt ≤ θt ≤ ut ∀t = 0, . . . , T

(14)

with k =
∑T

t=0 I[θ̂t ̸= 0]. Thus, to solve (10) for all values of γ̄, one can instead solve (14) for
all values of k ∈ {0, . . . , T} and select the solution with best objective value. Observe that this
approach produces optimal solutions for all values of the regularization parameter γ̄. Also note
that since problems (10) and (14) are non-convex, the regularized and constrained problems are not
equivalent: some optimal solutions of (14) for a given value of k may not be optimal for (10) for
any value of γ̄.

Given 0 ≤ b ≤ T + 1 and k ∈ Z, define function ν(b, k) to be the best objective value of (14)
from indexes 0 to b− 1 assuming θb = 0 (if b ≤ T ), that is,

ν(b, k) = min
{θt}b−1

t=0

b−1∑
t=1

|θt − θt−1|q + I[b < T + 1] |θb−1 − 0|q

s.t.
b−1∑
t=0

I[θt ̸= 0] ≤ k

ℓt ≤ θt ≤ ut ∀t = a, . . . , b− 1,

where we adopt the convention that ν(b, k) =∞ if the optimization is not feasible (e.g., if k < 0),
and ν(0, k) = 0 for all k ∈ Z+. Our goal is to compute ν(T +1, k) for all values of k ∈ {0, . . . , T +1}.
Note that for all k ≥ b, we have that ν(b, k) = f(0, b), where f is given by (12). For k < b, functions
ν and f are related through the following recursion:
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Lemma 3. For any 0 ≤ k < b ≤ T + 1, we have

ν(b, k) = min
t∈{0,...,b−1}: 0∈[ℓt,ut]

ν(t, k − (b− t− 1)) + f(t+ 1, b). (15)

Proof. The optimal solution corresponding to ν(b, k) satisfies θt = 0 for some 0 ≤ t ≤ b− 1 (due
to the assumption that k < b). Letting t̄ be the largest such index, and noting that the problem
decomposes at the breakpoint t̄ with θt̄ = 0, it follows that

ν(b, k) = ν(t̄, k − (b− t̄− 1))︸ ︷︷ ︸
Cost from 0 to t̄− 1 with remaining budget

+ f(t̄+ 1, b)︸ ︷︷ ︸
Cost from t̄+ 1 to b− 1 with θt ̸= 0.

.

Therefore, ν(b, k) can be obtained by selecting the break-point t̄ with least cost.

Lemma 4. The problem (14) can be solved for all values of γ̄ with complexity O(T 3 +EO2), where
EO2 is the complexity of solving (12) for all combinations of parameters a < b.

Proof. Computing all values of ν(b, k) amounts to computing f(a, b) for all O(T 2) combinations of
parameters a < b and doing O(T 3) comparisons, corresponding to O(T 2) choices of b and k, with
each computation of v(b, k) requiring O(T ) comparisons.

Observe that if solving (12) for all combinations of a < b can be done in O(T 3), then the overall
complexity of the method is cubic in T . We now show that this is indeed the case.

5.3 Solving the subproblems

Solving (10), either for a fixed value of γ̄ or parametrically for all values of the regularization
parameter, requires solving problem (12) for all 0 ≤ a < b ≤ T + 1. We now discuss how to
accomplish this task efficiently, depending on the value of q. In particular, we show that (12) for all
0 ≤ a < b ≤ T + 1 can be solved in O(T 2) for q = 0, and in O(T 3) for any q ≥ 1.

5.3.1 Case q = 0

We now provide an efficient algorithm (Algorithm 1) for solving (12) for the case q = 0, which we
restate for convenience:

f(a, b) = min
{θt}b−1

t=a

b−1∑
t=a+1

I[θt ̸= θt−1] + I[a > 0]I[θa ̸= 0] + I[b < T + 1]I[θb−1 ̸= 0]

s.t. ℓt ≤ θt ≤ ut ∀t = a, . . . , b− 1.

(16)

For simplicity, we can introduce a dummy variable θa−1 with bounds ℓa−1 = ua−1 = 0 if a > 0,
and bounds −ℓa−1 = ua−1 = ∞ if a = 0. Similarly, we can introduce a variable θb with bounds
ℓb = ub = 0 if b < T + 1, and bounds −ℓa−1 = ua−1 = ∞ if b = T + 1. With these additional
variables, we can rewrite (16) as

f(a, b) = min
{θt}bt=a−1

b∑
t=a

I[θt ̸= θt−1]

s.t. ℓt ≤ θt ≤ ut ∀t = a− 1, . . . , b.

(17)

The next lemma provides a method to compute lower bounds on the objective value of (17).
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Lemma 5. Given any indexes a ≤ τ1 < τ2 ≤ b, if maxτ1≤t≤τ2 ℓt > minτ1≤t≤τ2 ut, then

τ2∑
t=τ1+1

I[θt ̸= θt−1] ≥ 1, (18)

for any feasible solution θt of (17).

Proof. The left hand side of (18) is zero if and only if θτ1 = θτ1+1 = · · · = θτ2 . However, the
condition maxτ1≤t≤τ2 ℓt > minτ1≤t≤τ2 ut ensures that such solutions are not feasible.

Algorithm 1 below solves (17) to optimality. At a high level, starting from time period τ1 = a,
the algorithm greedily finds the largest time period τ2 such that setting θτ1 = θτ1+1 = · · · = θτ2 is
feasible. In the algorithm, we maintain a set Γ corresponding to the first and last time periods, as
well as breakpoints τ such that θτ1 ̸= θτ1−1. We use last(Γ) to denote the last element added to
set Γ.

Algorithm 1 ℓ0 greedy

1: Input: θ̂ ∈ Rb−a+2: array to store the optimal solution
2: Output: The optimal objective value f(a, b)

3: f̄ ← 0
4: ℓ̄← ℓa−1, ū← ua−1 ▷ Current bounds on constant interval
5: Γ← {a− 1} ▷ Set of breakpoints
6: for t = a, . . . , b do
7: if max{ℓt, ℓ̄} < min{ut, ū} then ▷ Possible to extend constant interval
8: ℓ̄← max{ℓt, ℓ̄}, ū← min{ut, ū}
9: else ▷ Breakpoint found

10: f̄ ← f̄ + 1 ▷ Updates objective
11: θ̂τ ← (ℓ̄+ ū)/2 ∀τ = last(Γ), . . . , t− 1 ▷ Updates solution
12: Γ← Γ ∪ {t}
13: ℓ̄← ℓt, ū← ut ▷ Reset bounds on interval
14: end if
15: end for
16: if last(Γ) ̸= b then ▷ Either b = T + 1 or 0 ∈ [ℓ̄, ū]
17: θ̂τ ← (ℓ̄+ ū)/2 ∀τ = last(Γ), . . . , b
18: Γ← Γ ∪ {b}
19: end if
20: Return f̄ ;

Proposition 2. Algorithm 1 runs in O(b− a) time and memory, and returns a solution {θ̂t}ba−1

that is optimal for (17). Moreover, given any b0 < b, the truncated solution {θ̂t}b0a−1 is optimal for
the problem associated with function f(a, b0).

Proof. The runtime readily follows by counting the number of iterations in Algorithm 1. We first
prove the first sentence of the proposition. Let a − 1 = τ0 < τ1 < τ2 < . . . < τm = b be the
elements of the set Γ from Algorithm 1. By construction, maxτi≤t≤τi+1 ℓt > minτi≤t≤τi+1 ut for all
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i = 0, . . . ,m− 2 (since elements are added to Γ in line 12 only when the condition in line 7 fails). It
follows from Lemma 5 that

m− 1 ≤
m−2∑
i=0

τi+1∑
t=τi+1

I[θt ̸= θt−1] =

τm−1∑
t=a−1

I[θt ̸= θt−1].

Moreover, if ℓb = ub = 0 and 0 ̸∈ [maxτm−1≤t≤b−1 ℓt,minτm−1≤t≤b−1 ut], then

1 ≤
b∑

t=τm−1+1

I[θt ̸= θt−1]

since θt needs to be nonzero for some τm−1 ≤ t ≤ τb−1 and θb = 0. Therefore, we find the lower
bound on the optimal objective value of (17) given by

m− 1 + I
[
ℓb = ub = 0 and 0 ̸∈ [ max

τm−1≤t≤b−1
ℓt, min

τm−1≤t≤b−1
ut]

]
≤

b∑
t=a−1

I[θt ̸= θt−1].

We now check the objective value of Algorithm 1, given by f̄ . Note that set Γ̄ contains m + 1
elements. The first element added (line 5) does not increase the objective value. The next m− 1
elements added (line 12) increase the objective function by one. Finally, the last element added
increases the objective value by one unless b = T + 1 (in which case −ℓb = ub = ∞) or 0 ∈ [ℓ̄, ū]
(line 18). Thus, the value f̄ returned by Algorithm 1 matches the lower, and is thus optimal.

The second sentence of the proposition follows since Algorithm 1 is greedy: the first b0 steps
used when computed f(a, b) are exactly the same as those used to compute f(a, b0).

From Proposition 2 we see that solving (16) for a fixed a and all b > a can be done in linear
time. It follows that solving (16) for all a < b is possible in O(T 2) time.

5.3.2 Case q ≥ 1

We now discuss how to solve (12) for q ≥ 1. We assume for simplicity that 0 < a < b < T + 1,
although the arguments can easily be extended to the cases with a = 0 or b = T + 1.

Lemma 6. If q ≥ 1, there exists an optimal solution θ∗ of (12) where: • for all a < t < b, either
θ∗t = (θ∗t−1 + θ∗t+1)/2, or θ∗t ∈ {ℓt, ut}; • either θ∗a = θ∗a+1, or θ∗a ∈ {ℓa, ua}; • either θ∗b−1 = θ∗b−2, or
θ∗b−1 ∈ {ℓb−1, ub−1}.

Proof. We only prove the first statement in the lemma, since the other two follow from identical
arguments. Given any index a < τ < b− 1, consider optimization (12) where all values except for
θτ are fixed to any feasible value (we omit terms that do not depend on θτ )

min
θτ
|θτ − θτ−1|q + |θτ+1 − θτ |q

s.t. ℓτ ≤ θτ ≤ uτ .
(19)

Observe that if an optimal solution θ∗τ of (19) satisfies θ∗τ > max{θτ−1, θτ+1}, then necessarily
θ∗τ = ℓτ , since otherwise it would be possible to decrease θ∗τ , improving the objective value. Similarly
the case θ∗τ < min{θτ−1, θτ+1} implies that θ∗τ = uτ .
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To prove the first statement, assume that θ∗τ ̸∈ {ℓt, ut}, which can only happen if min{θτ−1, θτ+1} ≤
θ∗τ ≤ max{θτ−1, θτ+1}. If θτ−1 ≤ θτ+1, then it follows that θτ is optimal for

min
θτ∈R

(θτ − θτ−1)
q + (θτ+1 − θτ )

q . (20)

First, suppose that q > 1. Then, by convexity and differentiability, the derivative of (20) at the
optimal solution should be zero. This implies

q(θt − θt−1)
q−1 − q(θt+1 − θt)

q−1 = 0⇔ θt − θt−1 = θt+1 − θt ⇔ θτ = (θt+1 + θt−1)/2.

Moreover, if q = 1, it can be easily seen that any feasible value θτ ∈ [θτ−1, θτ+1] is optimal. Thus,
at least one of the following five cases holds: (i) θ∗τ = (θt+1 + θt−1)/2 ∈ [θτ−1, θτ+1] is optimal; (ii)
θ∗τ = ℓt ∈ [θτ−1, θτ+1] is optimal; (iii) θ∗τ = ut ∈ [θτ−1, θτ+1]; (iv) θ∗τ = ℓt ≥ θτ+1 is optimal; or (v)
θ∗τ = ut ≤ θτ−1 is optimal. Since all fives cases satisfy θ∗τ ∈ {ℓτ , (θt+1 + θt−1)/2, uτ}, the statement
of the lemma holds.

The case θτ−1 ≥ θτ+1 is handled identically, concluding the proof.

From Lemma 6, we find that θt (when not fixed to a bound) is obtained by interpolation
of the adjacent values. In other words, in an optimal solution to (12), there is a set of indexes
a ≤ τ1 < τ2 < · · · < τm ≤ b − 1 corresponding to variables fixed to a bound, and for a variable t
who is not at a bound with τj < t < τj+1, we find its optimal value given by

θ∗t = θ∗τj +
t− τj

τj+1 − τj
(θ∗τj+1

− θ∗τj ). (21)

Moreover, θ1 > a (thus θ∗a ̸∈ {ℓa, ua}), then it also follows from Lemma 6 that θ∗a = θ∗a+1 = θτ1 ;
similarly, if τm < b− 1, then θ∗τm = θ∗τm+1 = θb−1.

We now propose a dynamic programming approach for solving (12) with q ≥ 1. Let set
S = {lb, mid, ub}, where lb stands for “lower bound”, ub stands for “upper bound”, and mid stands
for “neither lower or upper bound”. Given sa, sb ∈ S, define f0(a, sa, b, sb) as the objective value of
(12) when θa and θb−1 are set to their bounds indicated by sa and sb, respectively, and the remaining
variables are set according to (21). Note that f0(a, sa, b, sb) can be computed in O(T ) time, and
f0(a, sa, b, sb) =∞ if the sequence indicated by (21) is infeasible.

Given sa, sb ∈ S, define f1(a, sa, b, sb) as the optimal solution of (12), and observe that f1 can
be computed via the recursion (where a ≤ t < b− 1 is the largest index of a variable set to a bound)

f1(a, sa, b, sb) = min
t∈{a,...,b−1},s∈{lb,ub}

f1(a, s1, t+ 1, s) + f0(t, s, b, sb). (22)

Thus, assuming that values f1(a, sa, t, s) with s ∈ S and t < b have been computed, (22) can be
computed in O(T ) time, and computing f1 for all O(T 2) combinations of parameters requires O(T 3)
time. Figure 3 illustrates an example of the recursion (22).

6 Statistical Guarantees

In the previous section, we showed that ProxGL can be solved efficiently for all values of the
regularization parameter 0 ≤ γ ≤ 1. However, the efficient solvability of ProxGL is contingent
upon the availability of the approximate backward mapping F̃ ∗. On the other hand, according
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𝟎 𝟏 𝟐 𝟑 𝟒

(a) f0(0, ub, 5, lb) = ∞

𝟎 𝟏 𝟐 𝟑 𝟒

(b) f1(0, mid, 5, lb) = f1(0, mid, 3, ub) + f0(2, ub, 5, lb)

Figure 3: Example of recursion (22). (Left) Evaluation of the cost setting θ0 = u0, θ4 = ℓ4 and
remaining variables by interpolation (21). Since this solution is infeasible due to θ2 ̸∈ [ℓ2, u2], the
cost is infinity. (Right) Optimal solution, which sets θ2 = u2.

to Theorem 2, the accuracy of this backward mapping and the choice of λt directly controls the
estimation error of the obtained parameters. In this section, our goal is to provide statistically
and computationally efficient ways to obtain approximate backward mappings for two classes of
time-varying MRFs, namely time-varying GMRFs and time-varying DMRFs. We then use our
results to provide end-to-end sample complexity guarantees for the solution of ProxGL.

To achieve this goal, we first present a general statistical bound on the backward mapping
deviation. Recall that R is the domain of the backward mapping and B∞(µ⋆, α) is the ℓ∞-ball with
radius ρ centered at µ⋆.

Definition 3 (Local lipschitzness of F̃ ∗F̃ ∗F̃ ∗). F̃ ∗ is (L,α)-locally Lipschitz for some L,α > 0 if
∥F̃ ∗(µ)− F̃ ∗(µ′)∥∞ ≤ L∥µ− µ′∥∞ for every µ, µ′ ∈ R ∩ B∞(µ⋆, α).

The local Lipschitzness of the approximate backward mapping will play a crucial role in
our subsequent statistical analysis. Roughly speaking, it entails that if the mean parameters
µ, µ′ ∈ R ∩ B∞µ⋆(α) are close, so are their images under F̃ ∗.

Assumption 1 (Exponential tail bound). Let µ̂t =
1
Nt

∑Nt
i=1 ϕ

(
x
(i)
t

)
be the empirical mean param-

eter and µ⋆
t = Eθ⋆t

[ϕ(xt)] its true counterpart. There exist c, c′, v > 0 such that

P(|µ̂t;i − µ⋆
t;i| ≥ δ) ≤ c′ exp(−cNtδ

2) for every δ ∈ (0, v], i = 1, . . . , p, t = 0, . . . , T

The above assumption implies that the empirical mean parameters are concentrated around
their expectation with a tail bound that decreases exponentially fast. As will be shown later, this
assumption is satisfied for a wide range of MRFs, including GMRFs and DMRFs.

Recall that
∥∥∥θ⋆t − F̃ ∗(µ̂t)

∥∥∥
∞

plays an important role in Theorem 2. Under the local Lipschitzness
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of F̃ ∗ and Assumption 1, we will next show that the backward mapping deviation
∥∥∥θ⋆t − F̃ ∗(µ̂t)

∥∥∥
∞

can be controlled with high probability.

Proposition 3 (Backward mapping deviation). Suppose that Assumption 1 is satisfied and F̃ ∗

is (L,α)-locally Lipschitz with some α,L > 0. Then, for any constant τ ≥ 0 and sample size
Nt ≥ 1+τ

cmin{v2,α2} · log p, we have

∥∥∥θ⋆t − F̃ ∗(µ̂t)
∥∥∥
∞
≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞︸ ︷︷ ︸

:=∆t

+

√
(1 + τ)L2

c
· log p

Nt
, with probability of 1− p−τ .

Proof. Applying Assumption 1 with the choice of δ =
√

1+τ
c ·

log p
Nt

implies that

P

(
|µ̂t;i − µ⋆

t;i| ≤
√

1 + τ

c
· log p

Nt

)
≥ 1− c′p−(1+τ),

where δ ≤ v is automatically satisfied due to the lower bound on Nt. Then, a simple union bound
over index i leads to

∥µ̂t − µ⋆
t ∥∞ ≤

√
1 + τ

c
· log p

Nt
≤ α, with probability of 1− c′p−τ .

Under this event, one can write∥∥∥θ⋆t − F̃ ∗(µ̂t)
∥∥∥
∞
≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞

+
∥∥∥F̃ ∗(µ̂t)− F̃ ∗(µ⋆

t )
∥∥∥
∞

≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞

+ L ∥µ̂t − µ⋆
t ∥∞

≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞

+

√
(1 + τ)L2

c
· log p

Nt

where in the second inequality we used the (L,α)-local Lipschitzness of F̂ ∗.

Proposition 3 shows that in order to guarantee a small backward mapping deviation, F̃ ∗ should
satisfy two properties: first, it must incur a small error at the true mean parameter (captured by
∆t), and second, it must be (α,L)-Lipschitz for some α and L. However, there is often a trade-off
between these two properties. To see this trade-off, consider F̃ ∗(Σ) = Σ−1 as a natural choice of
the approximate backward mapping for GMRFs. Evidently, we have ∆t = 0 for F̃ ∗(Σ) = Σ−1.
However, this choice of approximate backward mapping loses its local Lipschitzness as Σ approaches
singularity (i.e., when the sample size falls below the dimension). To alleviate this issue, we propose
a proxy backward mapping that strikes a balance between ∆t and the local Lipschitzness.

6.1 Approximate Backward Mapping for GMRFs

Suppose that at any given time t, a sequence of data samples
{
x
(i)
t

}Nt

i=1
⊂ Rn are collected from a

time-varying GMRF with distribution (2). Our next lemma is borrowed from [Ravikumar et al.,
2011] and shows that the empirical mean parameters (i.e., sample covariance matrices) satisfy
Assumption 1.
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Lemma 7 (Lemma 1, Ravikumar et al. [2011]). Suppose the samples
{
x
(i)
t

}Nt

i=1
are collected from a

time-varying GMRF. Then, the empirical mean parameter defined as Σ̂t = (1/Nt)
∑Nt

i=1 x
(i)
t x

(i)
t

⊤

satisfies Assumption 1 with c′ = 4, c = 3200maxi{Σ⋆
t;ii}2, and v = 40maxi{Σ⋆

t;ii}.

Recall that the canonical parameter corresponds to the inverse covariance matrix for GMRFs.
Hence, we have p = n2. To address the singularity of the backward mapping when Nt < n,
we use the approximate backward mapping introduced by Yang et al. [2014]: consider the soft-
thresholding operator STν : Rn×n → Rn×n defined as STν(M)ij = Mij − sign(Mij)min{|Mij |, ν} if
i ̸= j, and STν(M)ij = Mij if i = j. The proposed approximate backward mapping is then given by

F̃ ∗(Σ̂t) = [STν(Σ̂t)]
−1. Clearly, we have ∆t = 0 for the choice of ν = 0. However, we will later show

that ν > 0 is essential for guaranteeing the (L,α)-local Lipschitzness of F̃ ∗ when Nt < n.

Assumption 2 (Bounded norm). There exist constant numbers κ1 <∞, κ2 > 0, and κ3 <∞ such
that

∥Θ⋆
t ∥∞ ≤ κ1, inf

w:∥w∥∞=1
∥Σ⋆

tw∥∞ ≥ κ2, ∥Σ⋆
t ∥∞/∞ ≤ κ3, for every t = 0, . . . , T .

The above assumption is fairly mild and implies that the true covariance matrices and their
inverses have bounded norms. Without loss of generality and to streamline the presentation, we
assume that κ1, κ3 ≥ 1 and κ2 ≤ 1.

Definition 4 (Weak sparsity). We say Σ ∈ Rn×n is (s, r)-weakly sparse for some s ≥ 0 and
0 ≤ r < 1 if maxi

∑n
j=1 |Σij |r ≤ sr.

Intuitively, we say that “the true covariance matrices are weakly sparse” if {Σ⋆
t }Tt=0 are (s, r)-

weakly sparse with sr ≪ n for some 0 ≤ r < 1. The notion of weak sparsity extends the classical
notion of sparsity for matrices. Indeed, except for a few special cases, a sparse matrix does not
have a sparse inverse. Consequently, a sparse precision matrix may not lead to a sparse covariance
matrix. However, a large class of sparse precision matrices have weakly sparse inverses:

• If Θ⋆
t has a banded structure with small bandwidth, then it is known that the elements of

Σ⋆
t = Θ−1

t enjoy exponential decay away from the main diagonal [Demko et al., 1984, Kershaw,
1970]. Under such condition, one can verify that s ≤ C

1−ρr for some constant C > 0 and ρ < 1.

• A similar statement holds for a class of inverse covariance matrices whose support graphs have
large average path length [Benzi and Razouk, 2007, Benzi and Simoncini, 2015]; a large class
of inverse covariance matrices with row- and column-sparse structures satisfy this condition.

• Suppose that Θ⋆
t is diagonally dominant with Θ⋆

t,ii −
∑

j ̸=i |Θ⋆
t,ij | > 0 for i =

1, 2, . . . , d. Then, a simple derivation reveals that Σ⋆
t is (s, r)-weakly sparse with s ≤

d1−r/
(
mini

{
Θ⋆

t,ii −
∑

j ̸=i |Θ⋆
t,ij |
})r

for any 0 ≤ r < 1. The diagonally dominant struc-

tures naturally arise in the context of graphical model inference; see [Egilmez et al., 2016] for
various applications, including those with graph Laplacian structures.

Under Assumption 2 and (s, r)-weak sparsity of the true covariance matrices, we show that the
proposed approximate backward mapping F̃ ∗(Σ̂t) = [STν(Σ̂t)]

−1 is (L,α)-locally Lipschitz and has
small ∆t.

21



Lemma 8. Suppose that Assumption 2 is satisfied and Σ⋆
t is (s, r)-weakly sparse for some s ≥ 0

and 0 ≤ r < 1. Then, the following statements hold for the approximate backward mapping
F̃ ∗(Σ̂t) = [STν(Σ̂t)]

−1:

• We have ∆t ≤ (2κ1/κ2)ν;

• Assume that ν ≤ (κ2/(20s))
1/(1−r). Then, F̃ ∗(Σ) is (L,α)-locally Lipschitz with L = 4/κ22 and

α = min{κ2νr/(24s), ν/2}.

To provide the proof of the above lemma, we will rely on the following intermediate lemma
adapted from [Yang et al., 2014, Lemma 1].

Lemma 9 (Yang et al. [2014]). We have

∥STν(Σ)− Σ⋆
t ∥∞ ≤ 5srν

1−r + 3srν
−rα,

for every Σ ∈ BΣ⋆
t
(α) and α ≤ ν/2.

Proof of Lemma 8 We first start with the proof of the first statement. One can write

∆t =
∥∥Θ⋆

t − [STν(Σ
⋆
t )]

−1
∥∥
∞/∞ ≤ ∥Θ

⋆
t ∥∞

∥∥[STν(Σ⋆
t )]

−1
∥∥
∞ ∥STν(Σ

⋆
t )− Σ⋆

t ∥∞/∞

≤ κ1ν
∥∥[STν(Σ⋆

t )]
−1
∥∥
∞ (23)

where the last inequality follows from ∥STν(Σ⋆
t )− Σ⋆

t ∥∞/∞ ≤ ν and our assumption ∥Θ⋆
t ∥∞ ≤ κ1.

Next, we provide an upper bound for
∥∥[STν(Σ⋆

t )]
−1
∥∥
∞. One can write

∥STν(Σ⋆
t )w∥∞ ≥ ∥Σ⋆

tw∥∞ − ∥(STν(Σ⋆
t )− Σ⋆

t )w∥∞
≥ (κ2 − ∥(STν(Σ⋆

t )− Σ⋆
t )∥∞) ∥w∥∞

≥ (κ2/2) ∥w∥∞

where the last inequality is due to our choice of ν. This implies that
∥∥[STν(Σ⋆

t )]
−1
∥∥
∞ ≤ 2/κ2.

Combining this inequality with (23) leads to ∆t ≤ (2κ1/κ2)ν.
Moving on to the proof of the second statement, we invoke Lemma 9 to write

∥STν(Σ)− Σ⋆
t ∥∞ ≤ 5srν

1−r + 3srν
−rα for every Σ ∈ BΣ⋆

t
(α) and α ≤ ν/2.

Based on our assumption on ν, we have 5srν
1−r ≤ κ2/4. Similarly, based on our assumed upper

bound on α, we have 3srν
−rα ≤ κ2/4. This implies that ∥STν(Σ)− Σ⋆

t ∥∞ ≤ κ2/2 for every
Σ ∈ BΣ⋆

t
(α). On the other hand, for every Σ,Σ′ ∈ BΣ⋆

t
(α), we have∥∥[STν(Σ)]−1 − [STν(Σ

′)]−1
∥∥
∞/∞ ≤

∥∥[STν(Σ)]−1
∥∥
∞
∥∥[STν(Σ′)]−1

∥∥
∞
∥∥Σ− Σ′∥∥

∞/∞ (24)

Similarly, one can write

∥STν(Σ)w∥∞ ≥ ∥Σ⋆
tw∥∞ − ∥(STν(Σ)− Σ⋆

t )w∥∞
≥ (κ2 − ∥STν(Σ)− Σ⋆

t ∥∞) ∥w∥∞
≥ (κ2/2)∥w∥∞
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where in the last inequality, we used ∥STν(Σ)− Σ⋆
t ∥∞ ≤ κ2/2. This in turn implies

∥∥[STν(Σ)]−1
∥∥
∞ ≤

2/κ2. Similarly, we have
∥∥[STν(Σ′)]−1

∥∥
∞ ≤ 2/κ2. Combining these inequalities with (24) leads to∥∥[STν(Σ)]−1 − [STν(Σ

′)]−1
∥∥
∞/∞ ≤ (4/κ22)

∥∥Σ− Σ′∥∥
∞/∞ , for every Σ,Σ′ ∈ BΣ⋆

t
(α).

This completes the proof. □
Lemma 8 highlights the trade-off in choosing the threshold ν: to keep the error ∆t small, it is

desirable to pick a small value for ν. However, ν cannot be too small, as it would shrink the radius
of the neighborhood within which F̃ ∗ is locally Lipschitz. Our next lemma shows that it suffices to

pick ν large enough so that
∥∥∥Σ̂t − Σ⋆

t

∥∥∥
∞/∞

≤ α with high probability, where α is a function of ν

defined in Lemma 8. To streamline the presentation, we first define the following quantities which
will be used extensively in our subsequent arguments:

Ng :=

(
4sr
κ3κ2

) 2
1−r

, Eg :=
10κ1 + 2κ−1

3

5κ22
,

Θ̄t := min
(i,j)∈St

|Θ⋆
t;ij |, ∆Θ̄t := min

(i,j)∈Dt

|Θ⋆
t;ij −Θ⋆

t−1;ij |, Θmin
t :=

min
{
Θ̄t,

∆Θ̄t
2 , ∆Θ̄t−1

2

}
t ≥ 1

min
{
Θ̄t,

∆Θ̄t
2

}
t = 0

The quantities Ng and Eg will be used in our subsequent error bounds, while Θ̄t, ∆Θ̄t, and Θmin
t

are defined to capture the minimum nonzero elements of the true parameter and their differences.

Lemma 10. Suppose that Assumption 2 is satisfied and Σ⋆
t is (s, r)-weakly sparse for some s ≥ 0

and 0 ≤ r < 1. Suppose that Nt ≥ Ng log n. Then, with the choice of νt =
√

log n/Nt, we have∥∥∥Θ⋆
t − [STνt(Σ̂t)]

−1
∥∥∥
∞/∞

≤ Eg
√

log n

Nt
, with probability of 1− 4n−15.

Proof. In order to apply Proposition 3, we need to verify that Nt ≥ (1 + τ)/(cmin{v2, α2}) log n.
This is readily implied by setting τ = 15, and invoking the derived values for c, v, and α in Lemmas 7
and 8 together with our choice of νt and the assumed lower bound on Nt. The result then follows
from Proposition 3 and the provided upper bounds on ∆t and L in Lemma 8.

Given Lemma 10, we are ready to provide the sample complexity of ProxGL for GMRFs.

Theorem 3 (Sample Complexity of GMRFs). Suppose that a sequence of data samples
{
x
(i)
t

}Nt

i=1
are

collected from the distribution (2) at every t = 0, . . . , T . Suppose that Assumption 2 is satisfied and Σ⋆
t

is (s, r)-weakly sparse for some s ≥ 0 and 0 ≤ r < 1. Consider ProxGL with F̃ ∗(Σ̂t) = [STνt(Σ̂t)]
−1

and parameters νt ≍
√
log n/Nt and λt ≍ Eg

√
log n/Nt. The following statements hold with

probability of 1− 4Tn−15:

- Estimation error: Suppose that Nt ≳ Ng log p for every t = 0, 1, . . . , T . For any q ∈
{0} ∪ [1,∞), the solution of ProxGL with a temporal ℓq-regularizer satisfies∥∥∥Θ̂t −Θ⋆

t

∥∥∥
∞/∞

≲ Eg
√

log n

Nt
, for every t = 0, . . . , T. (25)
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- Sparsistency for smoothly-changing GMRFs. Suppose that the GMRF is smoothly
changing with parameters (q,D), q ≥ 1, D ≥ 0. Suppose that Nt ≳

(
Ng ∨ (Eg/Θ̄t)

2
)
log n for

every t = 0, . . . , T . Then, the solution of ProxGL with 0 < γ < 1/(1 +D) and a temporal
ℓq-regularizer satisfies

supp(Θ̂t) = supp(Θ⋆
t ), ∀t = 0, . . . , T. (26)

- Sparsistency for sparsely-changing GMRFs. Suppose that the GMRF is sparsely changing
with parameter D0 ≥ 0. Suppose that Nt ≳

(
Ng ∨ (Eg/Θmin

t )2
)
log n for every t = 0, . . . , T .

Then, with any choice of 0 < γ < 1, the optimal solution of ProxGL with temporal ℓ0-regularizer
satisfies:

supp(Θ̂t) = supp(Θ⋆
t ), ∀t = 0, . . . , T,

supp(Θ̂t − Θ̂t−1) = supp(Θ⋆
t −Θ⋆

t−1), ∀t = 1, . . . , T.
(27)

Proof. The proof is a direct consequence of Lemma 10 and Theorem 2. The details are omitted for
brevity.

Remark 1. We note that Theorem 3 does not impose any condition on the weak sparsity parameter
s of the true covariance matrices; instead, it uses this parameter to control the sample complexity of
our method. In other words, our theoretical result still holds for large values of s, provided that the
number of samples scales accordingly.

6.2 Approximate Backward Mapping for DMRFs

Suppose that at any given time t, a sequence of discrete data samples
{
x
(i)
t

}Nt

i=1
are collected

from a DMRF with distribution (3). Our next lemma shows that the empirical mean parameters—
corresponding to the empirical node- and edge-wise marginal probabilities—satisfy Assumption 1.

Lemma 11 (Hoeffding’s inequality). For every 1 ≤ i, j ≤ p and k, l ∈ K, define µ̂t;ik =

(1/Nt)
∑Nt

s=1 I[x
(s)
t;i = k] and µ̂t;ijkl = (1/Nt)

∑Nt
s=1 I[x

(s)
t;i = k, x

(s)
t;j = l] as the empirical node-

and edge-wise marginal probabilities. Then, for all µ̂t;ik and µ̂t;ijkl, Assumption 1 holds with c′ = 2,
c = 2, and v =∞.

Proof. Note that both µ̂t;ik and µ̂t;ijkl are empirical averages of binary random variables. Therefore,
the proof follows from a direct application of Hoeffding’s inequality; see e.g. [Wainwright, 2019,
Proposition 2.5].

Bresler et al. [2014] showed that, unlike GMRFs, obtaining the backward mapping of DMRFs is
NP-hard, even if random variables are restricted to binary values. Therefore, one can only hope to
provide an approximation of this backward mapping. A promising candidate for such approximation
is the so-called tree-reweighted entropy mapping F̃ ∗ introduced by Wainwright et al. [2003]:

[
F̃ ∗
trw(µ̂t)

]
ϕ
=

{
log µ̂t;ik, if ϕ = ik

ρt;ij log
(

µ̂t;ijkl

µ̂t;ikµ̂t;jl

)
, if ϕ = ijkl

(28)

The weights 0 ≤ ρt;ij ≤ 1 are selected from the so-called spanning tree polytope. For any spanning
tree Tt of the Markov graph Gt, one can set ρt;ij = 1 if (i, j) ∈ Tt and ρt;ij = 0 otherwise. However,
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due to the unknown nature of Gt, its spanning trees are also unknown. To circumvent this issue, it
is common to select ρt;lk = 1 for all tuples (t, l, k) [Wainwright, 2002].

Due to the intractability of the backward mapping, in general one cannot expect the defined
approximate backward mapping to be tight even if µ̂t = µ⋆

t . This implies that, unlike GMRFs, it
may not be possible to push ∆t towards zero. Nonetheless, we will establish the local Lipschitzness
of the above approximate backward mapping under the following mild condition.

Assumption 3. There exists µmin > 0 such that:

• We have µ⋆
t;ik = P (Xi = k) ≥ µmin for every i, k.

• We have µ⋆
t;ijkl = P (Xi = k,Xj = l) ≥ µmin for every i, j, k, l.

The above assumption requires the density of the joint probability distribution to be strictly
positive on every atom of the distribution. Given the above assumption, we next prove the local
Lipschitzness of our defined approximate backward mapping.

Lemma 12. Suppose that Assumption 3 is satisfied. Then, the approximate backward mapping (28)
is (L,α)-locally Lipschitz with L = 6/µmin and α = µmin/2.

Proof. Suppose that ϕ = ijkl is an arbitrary index. For any µ, µ′ ∈ Bµ⋆
t
(α), we have∣∣∣∣[F̃ ∗

trw(µ)
]
ϕ
−
[
F̃ ∗
trw(µ

′)
]
ϕ

∣∣∣∣ =
∣∣∣∣∣ρt;ij log

(
µijkl

µikµjl

)
− ρt;ij log

(
µ′
ijkl

µ′
ikµ

′
jl

)∣∣∣∣∣
≤
∣∣∣∣∣log

(
µ′
ijkl

µijkl

)∣∣∣∣∣+
∣∣∣∣log(µ′

ik

µik

)∣∣∣∣+
∣∣∣∣∣log

(
µ′
jl

µjl

)∣∣∣∣∣
On the other hand, one can write∣∣∣∣∣log

(
µ′
ijkl

µijkl

)∣∣∣∣∣ ≤
∣∣∣∣∣log

(
min{µ′

ijkl, µijkl}+ |µ′
ijkl − µijkl|

min{µ′
ijkl, µijkl}

)∣∣∣∣∣
≤
∣∣∣∣∣log

(
1 +

|µ′
ijkl − µijkl|

min{µ′
ijkl, µijkl}

)∣∣∣∣∣
≤
|µ′

ijkl − µijkl|
min{µ′

ijkl, µijkl}
≤ (2/µmin) |µ′

ijkl − µijkl|
where the third inequality follows from log(1+x) ≤ x for any x > −1 and the last inequality is due to
µ, µ′ ∈ Bµ⋆

t
(α) and our choice of α. Similarly, one can show that |log (µ′

ik/µik)| ≤ (2/µmin) |µ′
ik−µik|

and
∣∣∣log (µ′

jl/µjl

)∣∣∣ ≤ (2/µmin) |µ′
jl − µjl|. This implies that∣∣∣∣[F̃ ∗

trw(µ)
]
ijkl
−
[
F̃ ∗
trw(µ

′)
]
ijkl

∣∣∣∣ ≤ (6/µmin) ·max{|µ′
ijkl − µijkl|, |µ′

ik − µik|, |µ′
jl − µjl|}

Similarly, for an arbitrary index ϕ = ik, we have

∣∣∣∣[F̃ ∗
trw(µ)

]
ϕ
−
[
F̃ ∗
trw(µ

′)
]
ϕ

∣∣∣∣ ≤ (2/µmin)|µ′
ik − µik|.

This implies that ∥∥∥F̃ ∗
trw(µ)− F̃ ∗

trw(µ
′)
∥∥∥
∞
≤ (6/µmin)

∥∥µ− µ′∥∥
∞ ,

thereby completing the proof.
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Lemma 12 combined with Proposition 3 leads to the following concentration bound on the
backward mapping deviation.

Lemma 13. Suppose that Assumption 3 is satisfied. Moreover, suppose that Nt ≥ (16/µ2
min) log p.

Then, we have∥∥∥θ⋆t − F̃ ∗
trw(µ̂t)

∥∥∥
∞
≤ ∆t +

12

µmin

√
log p

Nt
, with probability of 1− 2p−8. (29)

Proof. The proof immediately follows from Lemma 12 and Proposition 3.

Lemma 13 implies that the backward mapping deviation can be upper bounded with 2∆t, so
long as Nt ≥ (12/(µmin∆t))

2 log p. The above result implies that, with logarithmic sample size, the
backward mapping deviation stays in the order of the approximation error ∆t. Equipped with the
above lemma, we are ready to present the sample complexity of ProxGL for DMRFs. Similar to
GMRFs, we define the following quantities:

θ̄t := min
(i,j)∈St

|θ⋆t;ij |, ∆θ̄t := min
(i,j)∈Dt

|θ⋆t;ij − θ⋆t−1;ij |, θmin
t :=

min
{
θ̄t,

∆θ̄t
2 , ∆θ̄t−1

2

}
t ≥ 1

min
{
θ̄t,

∆θ̄t
2

}
t = 0

Theorem 4 (Sample Complexity of DMRFs). Suppose that a sequence of data samples
{
x
(i)
t

}Nt

i=1
are collected from the distribution (3) at every t = 0, . . . , T . Suppose that Assumption 3 is satisfied.

Consider ProxGL with the backward mapping F̃ ∗
trw defined as (28) and parameter λt ≍ ∆t+

1
µmin

√
log p
Nt

.

The following statements hold with probability of 1− 2Tp−8:

- Estimation error: Suppose that Nt ≳ µ−2
min log p for every t = 0, . . . , T . For any q ∈

{0} ∪ [1,∞), the solution of ProxGL with a temporal ℓq-regularizer satisfies∥∥∥θ̂t − θ⋆t

∥∥∥
∞

≲ ∆t +
1

µmin

√
log p

Nt
, for every t = 0, . . . , T.

- Sparsistency for smoothly-changing DMRFs. Suppose that the time-varying DMRF is
smoothly changing with parameters (q,D), q ≥ 1, D ≥ 0. Suppose that ∆t ≤ θ̄t/2 and Nt ≳
(µmin · θ̄t)−2 log p for every t = 0, . . . , T . Then, the solution of ProxGL with 0 < γ < 1/(1+D)
and a temporal ℓq-regularizer satisfies

supp
(
θ̂t

)
= supp (θ⋆t ) , ∀t = 0, . . . , T. (30)

- Sparsistency for sparsely-changing DMRFs. Suppose that the time-varying DMRF
is sparsely changing with parameter D0 ≥ 0. Suppose that ∆t ≤ θmin

t /2 and Nt ≳ (µmin ·
θmin
t )−2 log n for every t = 0, 1, . . . , T . Then, with any choice of 0 < γ < 1, the optimal

solution of ProxGL with temporal ℓ0-regularizer satisfies:

supp
(
θ̂t

)
= supp(θ⋆t ), ∀t = 0, . . . , T,

supp
(
θ̂t − θ̂t−1

)
= supp(θ⋆t − θ⋆t−1), ∀t = 1, . . . , T.

(31)
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Proof. The proof is a direct consequence of Lemma 13 and Theorem 2. The details are omitted for
brevity.

According to Theorem 4, the exact sparsity recovery is only possible if the approximation error
of the backward mapping ∆t is small.

6.3 Kernel Averaging

In most realistic time-varying MRFs, the underlying graphical model changes continuously over
time as the samples continue to arrive. For instance, in financial markets, the underlying stock
correlation network may change quickly in response to global events. Therefore, a stock holder
needs to identify the sharp changes in the market and rebalance their portfolio “on the go” [Talih
and Hengartner, 2005, Hallac et al., 2017]. Evidently, in these applications, the sample size Nt may
be significantly smaller than what is required for ProxGL to provide a reliable estimation of the
canonical parameters.

To address the scarcity of data in this setting, we leverage and combine the information provided
by the samples over time. In particular, we propose to replace the empirical mean parameters with
their weighted averages over time, where the weights are obtained from a nonparametric kernel
K : R→ R+. Without loss of generality, suppose that Nt = 12 for every t = 0, . . . , T and consider
the weighted mean parameter

µ̂ker
t =

T∑
s=0

w(s, t)ϕ(xs), where w(s, t) =
1

Th
K

(
s− t

Th

)
. (32)

Here, K(·) is a symmetric nonnegative kernel that satisfies a set of mild conditions which will be
delineated later. Moreover, the parameter h is the bandwidth of the kernel, controlling the decay
rate of the weights. The key insight behind kernel averaging is simple: at any given time t, we
estimate the mean parameters by taking the weighted average of the samples over time, where the
weights are obtained from a kernel that assigns smaller weights to samples that are temporally
farther away from t. The idea of kernel averaging (also known as kernel smoothing) dates back to
late 60s [Epanechnikov, 1969, Altman, 1992, Wand and Jones, 1994], and has been recently used in
graphical model inference [Greenewald et al., 2017, Zhou et al., 2010].

To ensure that such weighted averaging is statistically consistent, we must assume that its true
counterpart changes slowly over time to ensure that the samples collected over time can be used to
reveal partial information about the true mean parameter at time t. More precisely, our hope is
to guarantee that

∑T
s=0w(s, t)ϕ(xs) ≈ E[ϕ(xt)] = µ⋆

t . To formalize this intuition, we assume that
µ⋆
t = µ(t/T ), for some twice continuously differentiable µ(x) : [0, 1]→ Rn that satisfies the following

assumption:3

Assumption 4 (Bounded derivatives). There exist constants 0 ≤ Γ0,Γ1,Γ2 < ∞ such that
∥µ(x)∥∞ ≤ Γ0, ∥µ′(x)∥∞ ≤ Γ1, and ∥µ′′(x)∥∞ ≤ Γ2, for every 0 ≤ x ≤ 1.

The above assumption implies that the function µ and its first derivative change smoothly.

2If Nt > 1, the sufficient statistics ϕ(xs) in (32) can be replaced by 1
Nt

∑Nt
i=1 ϕ(x

(i)
s ).

3A function can be differentiable only on open sets. Without loss of generality and with a slight abuse of notation,
we replace the derivatives of µ(x) at x = 0 and x = 1 with their right and left derivatives, respectively.
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Assumption 5 (Kernel properties). The kernel K(x) satisfies the following conditions:

-
∫ 1
−1K(x)dx = 1;

- There exist constants Kl,Ku,K1,K2 <∞ such that:

0 < Kl ≤ K(x/h) ≤ Ku, |K ′(x/h)| ≤ K1 · h−1, |K ′′(x/h)| ≤ K2 · h−2,

for every −h ≤ x ≤ h and 0 < h ≤ 1.

The above assumption holds for most standard kernels. For instance, it is easy to verify
that the uniform kernel K(x) = 1/2 with domain [−1, 1] satisfies Assumption 5 with parameters
Kl = Ku = 1/2 and K1 = K2 = 0. As another example, consider the truncated Gaussian kernel
K(x) = Ce−x2/2, where C = (Φ(1)− Φ(−1))−1 ≈ 1.465 is the normalizer of the kernel and Φ is the
CDF of the normal distribution. Simple calculation reveals that this kernel satisfies Assumption 5
with parameters Kl = Ce−1/2, Ku = K1 = C and K2 = 2C.

Given the above two assumptions, our next goal is to derive a generalization of Proposition 3 to
the kernel averaged empirical mean parameters. Recall that Proposition 3 relies on an upper bound
on ∥µ̂t − µ⋆

t ∥∞. With kernel averaging, the empirical mean parameter µ̂t is replaced with µ̂ker
t . As

a result, we need to obtain a concentration bound on the deviation of µ̂ker
t from µ⋆

t . To this goal, we
write ∥∥∥µ̂ker

t − µ⋆
t

∥∥∥
∞
≤
∥∥∥µ⋆

t − E[µ̂ker
t ]
∥∥∥
∞︸ ︷︷ ︸

kernel error

+
∥∥∥µ̂ker

t − E[µ̂ker
t ]
∥∥∥
∞︸ ︷︷ ︸

deviation from kernel mean

Our next two lemmas provide upper bounds on the kernel error and the deviation of kernel mean.

Lemma 14 (Kernel error). Under Assumptions 4 and 5, we have∥∥∥µ⋆
t − E[µ̂ker

t ]
∥∥∥
∞
≤ Γ2

4
· h2 + Γ1 · h+

Γ2Ku

24T 2
· h−1 +

Γ1K1

12T 2
· h−3 +

Γ0K2

24T 2
· h−5 (33)

Proof. One can write∥∥∥µ⋆
t − E[µ̂ker

t ]
∥∥∥
∞
≤
∥∥∥∥µ⋆

t −
∫ 1

0

1

h
K

(
x− t/T

h

)
µ(x)dx

∥∥∥∥
∞︸ ︷︷ ︸

A

+

∥∥∥∥∫ 1

0

1

h
K

(
x− t/T

h

)
µ(x)dx− E[µ̂ker

t ]

∥∥∥∥
∞︸ ︷︷ ︸

B

According to Zhou et al. [2010, Lemma 14] we have A ≤ Γ2
4 · h2 + Γ1 · h. Therefore, it remains to

control B. To this goal, define f(x) := 1
hK

(
x−t/T

h

)
µ(x). Note that

E[µ̂ker
t ] =

1

T

T∑
s=0

1

h
K

(
s− t

Th

)
µ
( s

T

)
=

1

T

T∑
s=0

f
( s

T

)
.
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This implies that E[µ̂ker
t ] is the Riemann approximation of

∫ 1
0 f(x)dx. Therefore, we have

B =

∥∥∥∥∥
∫ 1

0
f(x)dx− 1

T

T∑
s=0

f
( s

T

)∥∥∥∥∥
∞

≤ max0≤x≤1 ∥f ′′(x)∥∞
24T 2

(34)

where the second inequality follows from a standard bound on the Riemann sum [Hughes-Hallett
et al., 2020]. Next, we provide an upper bound on max0≤x≤1 ∥f ′′(x)∥∞. It is easy to verify that

f ′′(x) = h−3 ·K ′′
(
x− t/T

h

)
µ(x) + 2h−2 ·K ′

(
x− t/T

h

)
µ′(x) + h−1K

(
x− t/T

h

)
µ′′(x), (35)

Therefore, with Assumption 5, we have

∥f ′′(x)∥∞ ≤ h−5 ·K2Γ0 + 2h−3 ·K1Γ1 + h−1 ·KuΓ2.

The above inequality combined (34) completes the proof.

Lemma 15 (Deviation from kernel mean). Suppose that Assumptions 4 and 5 are satisfied. Moreover,
suppose that T ≥ (τ + 1)(Ku/Kl)

4 log p for an arbitrary τ > 0. Then, we have∥∥∥µ̂ker
t − E[µ̂ker

t ]
∥∥∥
∞
≤
√

(τ + 1)K2
u log p

cTh2
, with probability 1− c′p−τ

Proof. Let us define gs = (1/h)K((s− t)/(Th)) and Ys = gsϕ(xs). We have µ̂ker
t = (1/T )

∑T
s=0 Ys.

According to Assumption 1, Ys satisfies

P(|Ys;i − E[Ys;i]| ≥ δ) ≤ c′ exp(−(c/g2s)δ2) for every δ ∈ (0, gsv], i = 1, . . . , n.

Therefore, Ys;i is a sub-exponential random variable with parameters (g2s/(2c), 1/(gsv)); see [Wain-
wright, 2019, Chapter 2] for the definition of sub-exponential random variables). On the other
hand, it is easy to see that E[µ̂ker

t;i ] =
1
T

∑T
s=0 gsµs =

1
T

∑T
s=0 E[Ys;i]. Therefore, one can invoke the

concentration bound on the sum of sub-exponential random variables [Wainwright, 2019, Proposition
2.9] to obtain

P

(∣∣∣∣∣ 1T
T∑

s=0

Ys;i − E[µ̂ker
t;i ]

∣∣∣∣∣ ≥ δ

)
≤ c′ exp

(
− cT 2∑T

s=0 g
2
s

· δ2
)

for every δ ∈
(
0,

∑T
s=0 g

2
s

T maxs gs

]
.

A simple union bound leads to

P

(∥∥∥∥∥ 1T
T∑

s=0

Ys − E[µ̂ker
t ]

∥∥∥∥∥
∞

≥ δ

)
≤ c′ exp

(
log p− cT 2∑T

s=0 g
2
s

· δ2
)

for every δ ∈
(
0,

∑T
s=0 g

2
s

T maxs gs

]
.

Upon choosing δ =

√
(τ+1)(

∑T
s=0 g

2
s) log p

T 2c
, we have

∥∥∥∥∥ 1T
T∑

s=0

Ys − E[µ̂ker
t ]

∥∥∥∥∥
∞

≤

√√√√(τ + 1)
(∑T

s=0 g
2
s

)
log p

T 2c
,
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with probability 1− c′p−τ , provided that√√√√(τ + 1)
(∑T

s=0 g
2
s

)
log p

T 2c
≤
∑T

s=0 g
2
s

T maxs gs
. (36)

To verify the last inequality, recall that according to Assumption 5, we have Kl ≤ K(·) ≤ Ku, which
in turn implies that h−1Kl ≤ gs ≤ h−1Ku for every s. This results in√√√√(τ + 1)

(∑T
s=0 g

2
s

)
log p

T 2c
≤
√

(τ + 1)K2
u log p

Th2c
,

K2
l

hKu
≤
∑T

s=0 g
2
s

T maxs gs
.

Therefore, to satisfy (36), it suffices to have√
(τ + 1)K2

u log p

Th2c
≤ K2

l

hKu

which is satisfied with T ≥ (τ + 1)(Ku/Kl)
4 log p. This completes the proof.

Combining Lemmas 14 and 15 leads to an upper bound on
∥∥µ̂ker

t − µ⋆
t

∥∥
∞. To simplify our

subsequent arguments, we define Cker = Γ2/4 + Γ1 + Γ2Ku/24 + Γ1K1/12 + Γ0K2/24.

Lemma 16. Suppose that Assumptions 4 and 5 are satisfied, and T ≥ (τ + 1)(Ku/Kl)
4 log p for

any arbitrary τ ≥ 0. Then, upon choosing h = T−1/4, we have∥∥∥µ̂ker
t − µ⋆

t

∥∥∥
∞
≤ C

ker

T 1/4
+

Ku

√
(τ + 1) log p√
cT 1/4

, with probability of 1− c′p−τ . (37)

Proof. The proof follows from Lemmas 14 and 15 after replacing h = T−1/4.

Given Lemma 16, we are now ready to provide an upper bound for the backward mapping
deviation of the kernel averaged empirical mean parameter.

Proposition 4 (Backward mapping deviation with kernel averaging). Suppose that Assumptions 4
and 5 are satisfied and F̃ ∗ is (L,α)-locally Lipschitz for some α,L > 0. Then, for any τ ≥ 0 and

T ≥ max
{
16(Cker/α)4,

(
16K4

u(τ+1)2

c2K4
l α

4 · log2 p
)}

, we have

∥∥∥θ⋆t − F̃ ∗(µ̂ker
t )
∥∥∥
∞
≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞︸ ︷︷ ︸

:=∆t

+
CL
T 1/4

+
KuL

√
(τ + 1) log p√
cT 1/4

,

with probability of 1− c′p−τ .

Proof. Due to Lemma 16 and T ≥ max
{
16(Cker/α)4,

(
16K4

u(τ+1)2

c2K4
l α

4 · log2 p
)}

, we have

∥∥∥µ̂ker
t − µ⋆

t

∥∥∥
∞
≤ C

T 1/4
+

Ku

√
(τ + 1) log p√
cT 1/4

≤ α
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with probability of 1− c′p−τ . Conditioned on this event, we have∥∥∥θ⋆t − F̃ ∗(µ̂ker
t )
∥∥∥
∞
≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞

+
∥∥∥F̃ ∗(µ̂ker

t )− F̃ ∗(µ⋆
t )
∥∥∥
∞

≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞

+ L
∥∥∥µ̂ker

t − µ⋆
t

∥∥∥
∞

≤
∥∥∥θ⋆t − F̃ ∗(µ⋆

t )
∥∥∥
∞

+
CL
T 1/4

+
KuL

√
(τ + 1) log p√
cT 1/4

where in the second inequality we used the (L,α)-local Lipschitzness of F̃ ∗.

Relying on Proposition 4, we next present the sample complexity of ProxGL for GMRF and
DMRF with kernel averaging. To this goal, we first provide the explicit form of the kernel empirical
mean parameter (32) in both settings:

• For GMRF, the kernel mean parameters are the weighted sample covariance matrices defined
as Σ̂ker

t =
∑T

s=0w(s, t)xsx
⊤
s , for every t = 0, . . . , T .

• For DMRF, the kernel mean parameters are the weighted empirical node- and edge-wise
marginal probabilities respectively defined as µ̂ker

t;ik =
∑T

s=0w(s, t)I[xs;i = k] and µ̂ker
t;ijkl =∑T

s=0w(s, t)I[xs;i = k, xs;j = l], for every i, j, k, l.

To streamline the presentation, we define the following quantities:

Ekerg :=
Cker + κ1 +Kuκ

−1
3

κ22
, N ker

g := max

{(Ckers
κ2

) 4
1−r

,

(
Kus

Kl
√
κ3κ2

) 4
1−r

}

where κ1, κ2, κ3, r, s are defined in Assumptions 2 and Definition 4.

Proposition 5 (Sample complexity of GMRF with kernel averaging). Suppose that a sequence of
data samples {xt}Tt=0 are collected from the distribution (2). Moreover, suppose that Assumptions 2, 4,
and 5 are satisfied and Σ⋆

t is (s, r)-weakly sparse for some s ≥ 0 and 0 ≤ r < 1. Consider ProxGL with
F̃ ∗(Σ̂ker

t ) = [STνt(Σ̂
ker
t )]−1 and parameters νt ≍

√
log n/T 1/4, λt ≍ Eg log n/T 1/4, and h ≍ T−1/4.

Then, with probability of 1− 4Tn−15, the following statements hold:

- Estimation error: Suppose that T ≳ N ker
g log2 n. For any q ∈ {0} ∪ [1,∞), the solution of

ProxGL with a temporal ℓq-regularizer satisfies∥∥∥Θ̂t −Θ⋆
t

∥∥∥
∞/∞

≲ Ekerg

√
log n

T 1/4
, for every t = 0, 1, . . . , T.

- Sparsistency for smoothly-changing GMRF. Suppose that the GMRF is smoothly
changing with parameters (q,D), q ≥ 1, D ≥ 0. Suppose that T ≳

(
N ker

g ∨ (Ekerg /Θ̄t)
4
)
log2 n.

Then, the solution of ProxGL with 0 < γ < 1/(1 +D) and a temporal ℓq-regularizer satisfies

supp(Θ̂t) = supp(Θ⋆
t ), ∀t = 0, . . . , T. (38)
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- Sparsistency for sparsely-changing GMRF. Suppose that the GMRF is sparsely changing
with with sparsity parameter D0 ≥ 0. Suppose that T ≳

(
N ker

g ∨ (Ekerg /Θmin
t )4

)
log2 n. Then,

with any choice of 0 < γ < 1, the optimal solution of ProxGL with temporal ℓ0-regularizer
satisfies

supp(Θ̂t) = supp(Θ⋆
t ), ∀t = 0, . . . , T,

supp(Θ̂t − Θ̂t−1) = supp(Θ⋆
t −Θ⋆

t−1), ∀t = 1, . . . , T.
(39)

Proof. The proof follows that of Theorem 3. First, due to Lemma 8, we have ∆t ≤ (2κ1/κ2)νt
and F̃ ∗(Σ) is (L,α)-locally Lipschitz with L = 4/κ22 and α = min{κ2νrt /(24s), νt/2}, provided that
νt ≤ (κ2/(40s))

1/(1−r). This combined with Proposition 4 and the selected values for νt and T leads
to ∥∥∥Θ⋆

t − [STνt(Σ̂
ker
t )]−1

∥∥∥
∞/∞

≤ Ekerg

√
log n

T 1/4
, for every t with probability of 1− 4Tn−15.

Therefore, upon choosing λt ≍ Ekerg log n/T 1/4, Theorem 2 can be invoked to write
∥∥∥Θ̂t −Θ⋆

t

∥∥∥
∞/∞

≤
λt, which completes the proof of the first statement. To prove the correct sparsity recovery,
according to Theorem 2 we additionally need to satisfy λt ≤ Θ̄t/2 for smoothly-changing GMRFs,
and λt ≤ Θmin

t /2 for sparsely-changing GMRFs. These are guaranteed to hold with the above error
bound and the assumed lower bounds on T .

Finally, we provide the sample complexity if inferring DMRFs with kernel averaging. Similar to
GMRF, we define the following quantities:

Ekerd :=
Cker +Ku

µmin
, N ker

d := max

{( Cker
µmin

)4

,

(
Ku

Klµmin

)4
}

Proposition 6 (Sample complexity of DMRF with kernel averaging). Suppose that a sequence of
data samples {xt}Tt=0 are collected from the distribution (3). Moreover, suppose that Assumptions 3, 4,
and 5 are satisfied. Consider ProxGL with parameter λt ≍ ∆t + Ekerd

√
log p/T 1/4 and the backward

mapping F̃ ∗
trw defined as (28). Then, with probability of 1− 2Tp−8, the following statements hold:

- Estimation error: Suppose that T ≳ N ker
d log2 p. For any q ∈ {0} ∪ [1,∞), the solution of

ProxGL with a temporal ℓq-regularizer satisfies∥∥∥θ̂t − θ⋆t

∥∥∥
∞

≲ Ekerd

√
log p

T 1/4
, for every t = 0, . . . , T.

- Sparsistency for smoothly-changing DMRF. Suppose that the DMRF is smoothly chang-
ing with parameters (q,D), q ≥ 1, D ≥ 0. Suppose that ∆t ≤ θ̄t/2 and T ≳

(
N ker

d ∨ (Ekerd /θ̄t)
4
)
log2 p.

Then, the solution of ProxGL with 0 < γ < 1/(1 +D) and a temporal ℓq-regularizer satisfies

supp
(
θ̂t

)
= supp (θ⋆t ) , ∀t = 0, . . . , T. (40)

- Sparsistency for sparsely-changing DMRF. Suppose that the time-varying DMRF is
sparsely changing with sparsity parameter D0 ≥ 0. Suppose that ∆t ≤ θmin

t /2 and T ≳
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(
N ker

d ∨ (Ekerd /θmin
t )4

)
log2 p. Then, with any choice of 0 < γ < 1, the optimal solution

of ProxGL with temporal ℓ0-regularizer satisfies

supp
(
θ̂t

)
= supp(θ⋆t ), ∀t = 0, . . . , T,

supp
(
θ̂t − θ̂t−1

)
= supp(θ⋆t − θ⋆t−1), ∀t = 1, . . . , T.

(41)

Proof. The proof is similar to those of Theorem 3 and Proposition 5. The details are omitted for
brevity.

The above propositions show that the previously imposed lower bounds on the number of samples
per time can be relaxed via kernel averaging. However, this comes at the expense of increasing the

error bound from O(N−1/2
t ) to O(T−1/4) (in this case, T plays the role of sample size Nt).

7 Computational experiments

In this section, we test the proposed method in both synthetic and real datasets. We point out that
the single-parameter version of the proposed algorithm was showcased in Fattahi and Gomez [2021],
thus in this section we seek to demonstrate the parametric version of the algorithm.

In §7.1 we consider synthetically generated instances of time-varying GMRFs and compare the
performance of our proposed method with two other well-known techniques. In §7.2, we test our
approach for time-varying DMRFs, using stock market data for our case study.

7.1 Experiments with synthetic data

We consider randomly generated instances of sparsely-changing GMRFs. Given the dimension n,
the number of time periods T and the number of observations per time period Nt, the instances
are constructed as follows. Initially, for time period t = 0, we construct a “true” precision matrix
Θ̄t ∈ Rn×n with exactly 3n off-diagonal non-zero elements. Each non-zero off-diagonal element
satisfies (Θ̄t)ij = −0.4, while

(Θ̄t)ii = 1 +
∑
j ̸=i

|(Θ̄t)ij |

to guarantee positive definiteness. Then, for all subsequent time periods, 4% of the non-zero
off-diagonal elements are set to 0, and the same number of previously zero elements are set to the
value −0.4. Once the precision matrices have been constructed, we generate for each period Nt

iid samples x ∼ N (0, Θ̄−1
t ) that are used to train the models, and another Nt samples to use for

validation. Thus, at the end of this process, we obtain two datasets, each containing T ×Nt samples
of dimension n. Finally, for each combination of parameters, we repeat this process five times and
report the averages over the five instances generated with identical parameters.

7.1.1 Methods

We test three approaches:
• ProxGL with cross-validation We use the parametric algorithm described in §5, which solves
ProxGL for all values of the parameter γ. We then use cross-validation to determine the best value
of γ as follows. Given any fixed value of γ, the method produces a sequence of estimated precision
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matrices {Θ̂t}Tt=0. Then, given the sequence of samples in the validation set for time period t,

{x(i)t }Nt
i=1, the negative log-likelihood that the samples where generated from the estimated precision

matrices is proportional to

−Nt

2
log(det(Θ̂t)) +

1

2

Nt∑
i=1

(
x
(i)
t

)⊤
Θ̂tx

(i)
t ,

and the overall negative log-likelihood can be obtained by summing across all time periods. We
select the value of γ that minimizes the negative log-likelihood. In our computations, we set the
ℓ∞ parameter λ = 0.2 ( this parameter naturally matches the data-generation process, where
parameters change by multiples of 0.4), and the shrinkage parameter ν = ν0

√
(log n)/(T ·Nt) for

ν0 ∈ {0.0, 0.2, 0.5, 0.8, 2.0}. Observe that we could select ν0 using cross-validation as well. Instead,
we show that while the two extreme choices ν0 ∈ {0, 2} (corresponding to no shrinkage, or excessive
shrinkage) are unsatisfactory, all other choices of ν0 outperform the alternatives.
• TVGL with cross-validation The time varying Graphical Lasso (TVGL), computed as (4), is a
well-known regularized MLE approach for estimating the sparsely-changing GMRFs [Hallac et al.,
2017, Cai et al., 2018]. Similar to ProxGL, we pick γ1 and γ2 via cross-validation, i.e., by selecting
the parameters that minimize the negative log-likelihood.
• L1E with cross-validation Consider an ℓ1 relaxation of our proposed estimator ProxGL, where
the ℓ0 regularizer in the objective function is replaced with its ℓ1 relaxation. The resulted estimator
reduces to that of Yang et al. [2014] for T = 0, and to that of Wang et al. [2018] for T = 1 and
γ = 1. Similar to ProxGL and TVGL, we fine-tune the parameter γ via cross-validation.

7.1.2 Metrics

We test the quality of the approaches in terms of the estimation error with respect to the true
parameters, as well as the ability to correctly recover the sparsity pattern of the sequence of precision
matrices and their changes. The estimation error is computed as

error =

√√√√√∑T
t=0

∑n
i=1

∑n
j=i

(
Θ⋆

t;ij − Θ̂t;ij

)2
∑T

t=0

∑n
i=1

∑n
j=iΘ

⋆
t;ij

2
,

where {Θ⋆
t }Tt=0 are the “true” precision matrices of the process that generated the data, and {Θ̂t}Tt=0

are the estimates delivered by a given method. The ability to recover the true sparsity pattern is
computed using the

F1-score = 2× Recall× Precision

Recall+ Precision
,

where Recall = TP/(TP+ FP), Precision = TP/(TP+ FN), and TP, FP and FN denote respectively
the number of true positives, false positives and false negatives in the sequence of estimated precision
matrices. We also use the F1-score to evaluate the detection of changes in the sparsity patterns,
where the formulas are identical but TP, FP and FN refer to changes in the sparsity pattern of the
matrices from a time period to the next.
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7.1.3 Performance

We test the performance of all methods by varying the number of samples per time period. Specifically,
we fix n = 50, T = 10 and let Nt = nκ for integer 1 ≤ κ ≤ 20. Table 3 (at the end of the paper)
presents the results for κ = {1, 5, 10, 15, 20} and varying levels of threshold in the approximate
backward mapping. Note that ν0 = 0 corresponds to no thresholding, whereas ν0 = 2 sets every
off-diagonal entry of the sample covariance matrix to zero. As can be seen in the table, ProxGL
with ν0 ∈ {0, 2} is clearly inferior to other choices of the parameters, so these values are excluded
from our subsequent experiments. Figure 4 depicts the performance of ProxGL, TVGL, and L1E
for more values of Nt/n. We note that both ProxGL and TVGL tend to perform better as the
number of samples Nt increases (as expected). While TVGL results in a better estimation error
with few samples (Nt = 2n), ProxGL performs better for all values of Nt ≥ 8n and all parameters
ν0 ∈ {0.2, 0.5, 0.8}. In particular, for the largest value Nt = 40n, ProxGL decreases the estimation
error from 7.4% of TVGL to up to 5.3% (if ν0 = 0.2). We also observe that both TVGL and ProxGL
have good performance in terms of detecting the true sparsity pattern of Θ̂t. However, TVGL
fails to correctly identify changes in the underlying graphical model (with a F1-score of 0.2 for
most values of Nt), whereas ProxGL is able to do so accurately (with F1-score above to 0.7 for
the largest values of Nt considered). Method L1E performs poorly according to the three metrics
considered, and is inferior to the other two approaches. Finally, we point out that no value of ν0 for
ProxGL clearly dominates the others, with larger values resulting in better performance when Nt is
small and smaller values performing best with a large number of samples per time period.

We now briefly discuss computational times. TVGL is solved via the solver MOSEK [ApS, 2019],
which is one of the fastest available solvers for general-purpose convex optimization problems. We
highlight the fact that while faster algorithms for static Graphical Lasso (such as QUIC [Hsieh
et al., 2014] and BIG-QUIC [Hsieh et al., 2013]) exist, these algorithms do not readily extend to the
time-varying settings. Moreover, L1E reduces to linear programming (LP), for which fast algorithms
(such as GUROBI [Gurobi Optimization, LLC, 2023], CPLEX [Cplex, 2009], and MOSEK) exist.
However, these solvers are incapable of solving LPs parametrically, thereby leading to larger runtimes
with cross-validation. In our experiments, we use MOSEK to solve L1E.

Our implementation of ProxGL is very fast: for the large-sample instance with Nt = 40n, it
requires, on average, 11 seconds per instance on a single thread. We point out that this time
includes computing the backward mappings, solving ProxGL for all values of γ, and printing to
disc (a CSV file) the estimated precision matrices for all possible values of γ. We also highlight
that the most expensive component is, in fact, printing to file, which accounts for 9 out of the 11
seconds on average, while computing the backward mappings and solving ProxGL is done in less
than two seconds. On the other hand, for the same large-sample instance with Nt = 40n, TVGL
with cross-validation over 16 choices of the parameters (γ1, γ2) requires on average 1600 seconds
per instance on a single thread, which is at least 145 times slower than ProxGL. Finally, L1E with
cross-validation over 10 choices of the parameter γ requires on average 61 seconds per instance on a
single thread, which is at least 5 times slower than ProxGL.

In summary, we see that while TVGL has a reasonable performance and can identify the sparsity
pattern of the precision matrices, ProxGL is able to decrease further the estimation error and is
substantially better at identifying changes in the underlying graphs, and does so with only a fraction
of the computational cost.
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(a) F1-score: parameters
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Figure 4: Performance metrics between ProxGL, TVGL and L1E. The top row depicts the ability of each
method to recover the sparsity pattern and identify changes in the underlying graph (top left: F1-score of
the parameters, top right: F1-score of changes in the parameters), and bottom graphs depict the actual
estimation error.

7.1.4 Further experiments on computational times

We further discuss the computational times of solving ProxGL for larger instances of GMRFs. To
do so, we fix T = 10 and Nt = n/2, and vary the dimension n (and thus the number of parameters
to be estimated). The computational times for DMRF and with varying T are discussed in the next
section. The results are summarized in Table 1. It shows the dimension n and the total number of
parameters to be estimated—computed as n(n+ 1)T/2. Moreover, it shows the time (in seconds)
required to compute the backward mapping, as well as the time to solve the dynamic program for all
values of γ, and the overall computational time. We see that in these instances, the computational
times are primarily dominated by the backward mapping process, involving the inversion of T
matrices of size n× n. Conversely, the time spent on solving ProxGL itself is negligible.
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Table 1: Time required to compute estimators ProxGL (for all values of γ) on synthetic instances.
The time to print the solutions to a file is not included.

n # params
time (s)

backwards mapping dynamic program total

100 50,500 0.3 0.1 0.4
500 1,252,500 4.9 0.9 5.8
1,000 5,005,000 71.2 5.0 76.2
1,500 11,257,500 250.2 11.2 261.4
2,000 20,010,000 450.1 15.7 465.8

7.2 Case study with Stock Market data

In this section, we test our approach for DMRFs on real stock market data. The dataset, based on
the publicly available data from Kaggle4, contains the daily percent changes for 214 securities from
01/01/1990 to 08/10/2017 (note that only days in which trades occurred are reported, resulting in
7,022 time periods). To obtain a discrete dataset, we use an approach similar to Campajola et al.
[2022]: if the absolute value of the percent change of a given security i in a given time period t
is larger than some predetermined quantity κ, we set xt;i = 1 (indicating large volatility for that
security at time period t), and otherwise we set xt;i = 0. The quantity κ is set so that 50% of the
elements of x are 0. In total there are 91, 591 parameters to be estimated per time period, resulting
in 91, 591× T parameters (e.g., if N = 30, then 91, 591× T ≈ 2.1× 107).

In our experiments, given a number N ∈ {20, 30, 40, 50, 60} of observations per time period, we
partition the data into T = ⌊7, 022/N⌋ time periods (for simplicity, we discard the observations
corresponding to the last time period with less than N data points). We use the Kernel averaging
method discussed in §6.3 (using a Gaussian kernel with parameter h = 0.02T−1/3), we set the ℓ∞
parameter λt = λ0

√
n/(TNh) for λ0 ∈ {0.05, 0.16, 0.5, 1, 2, 3, 4, 5} and use the algorithm described

in §5 to compute the complete solution path with q = 0.
Note that in this case we do not have access to an explicit “ground truth”, although periods of

high volatility in the market tend to coincide with economic recessions. Observe that during the
time period considered, there are three official recessions: the early 1990s recession (from July 1990
to March 1991), the early 2000s recession (from March to November 2001) and the Great Recession
(from December 2007 to June 2009). Thus we expect to see more changes in the stock correlation
network during those time periods. In a previous paper [Fattahi and Gomez, 2021], we showed
that this is indeed the case for selected choices of the hyperparameters of the model (although we
were using GMRFs to model the problem). In this paper, since we can now compute the solution
path for all values of γ, we investigate the complete distribution of changes in the stock correlation
network for all optimal solutions of ProxGL.

In particular, fixing N = 30 and given any choice of the ℓ∞ parameter λ, we count the total
number of changes in the stock correlation market at each time period across all optimal solutions
of ProxGL (for different values of γ), and report the resulting histograms in Figure 5. At the two
extreme values of the parameter λ, i.e., λ→ 0 and λ→∞, the histograms are relatively flat: indeed,
letting λ→ 0 induces changes for all parameters at all time periods, and letting λ→∞ results in

4https://www.kaggle.com/datasets/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
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estimations where all parameters are constant and equal to 0. However, we see that for the vast
majority of values of λ (i.e., 0.16 ≤ λ ≤ 5), the periods with the most changes correspond to the
early 2000s recession and the Great Recession. We thus conclude that the inferences obtained from
ProxGL are robust to the choices of sparsity parameter, as most of the solutions obtained coincide
in identifying the two recessions (and, to a minor degree, the early 1990s recession as well).
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Figure 5: Distribution of changes in the stock correlation network among all optimal solutions of ProxGL.

Table 2 presents the computational times required to compute the solution path of ProxGL. It
shows the number of observations per time period N and the total number of time periods T , and
the total number of parameters to be estimated. Moreover, it shows the time required (in seconds) to
compute the backwards mappings, solve the dynamic program, and the overall times. We point out
some key differences with the computational times with GMRFs and synthetic instances reported
in Table 1. First, computing the backward mappings for GMRFs is an expensive operation since
requires matrix inversion, while the approximate backward mapping for DMRFs is substantially
simpler to compute. As such, the time required to compute the backward mapping is negligible.
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Second, in the instances with real data, we vary the number of time periods T (instead of the number
of parameters per time period p). We see that the dynamic programming algorithm to solve ProxGL
is sensitive to T , and thus solving this problem consumes the majority of the computational time.
Nonetheless, the computational times per number of parameters are similar to those reported in
Table 1. Moreover, in Figure 6, we plot in logarithmic scale the time required to solve the problems
as a function of the number of time periods. We observe that the empirical complexity of O(T 3.1)
to compute the entire solution path matches the theoretical complexity reported in Theorem 1.

Table 2: Time required to solve ProxGL (for all values of γ) on real instances with stock correlation
networks. Time to print the solutions to a file is not included.

N T # params
time (s)

backwards mapping dynamic program total

60 117 10,716,147 8 14 22
50 140 12,822,740 7 22 29
40 176 16,120,016 8 57 65
30 234 21,432,294 8 105 113
20 351 32,148,441 9 694 701

y = 3.1x - 5.2

1

1.5

2

2.5

3
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ti
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log(T)

Figure 6: Time (in seconds) required in to solve stock correlation problems as a function of the number of
time periods T (in logarithmic scale). The slope of 3.1 confirms the theoretical complexity of O(T 3) of the
proposed method.

8 Conclusion

In this paper, we present a tractable formulation, referred to as ProxGL, for inferring time-varying
Markov random fields (MRFs) with various sparsity and temporal structures. Unlike existing
methods that rely on maximum likelihood estimation (MLE) with relaxed ℓ1 regularization, we
demonstrate that ProxGL can efficiently achieve optimal solutions with exact ℓ0 regularization. By

39



utilizing our proposed formulation, we can recover the complete solution path of the time-varying
MRF for all sparsity parameters γ.

We identify two promising avenues for future research. Firstly, our parametric solution relies
on a fixed λt in ProxGL. It would be valuable to explore whether ProxGL can be parametrically
solved for varying values of γ and λ. Secondly, extending our proposed technique to spatiotemporal
settings, where the MRF evolves over both time and space, presents an interesting future direction.
Spatiotemporal MRFs are integral in inferring dynamically changing gene expression networks
with spatial implications, carrying significant implications for understanding dynamic disease
processes [Werhli et al., 2006, Hartemink et al., 2000, Karlebach and Shamir, 2008]. The main
challenge in this extension lies in the complex interactions among individual MRFs, which become
considerably more intricate in spatially varying settings compared to their temporal counterparts.
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