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Abstract. In this tutorial we consider single-leader-multi-follower games in
which the models of the lower-level players have polyhedral feasible sets and
convex objective functions. This situation allows for classic KKT reformulations
of the separate lower-level problems, which lead to challenging single-level
reformulations of MPCC type. The main contribution of this tutorial is to
present a ready-to-use reformulation of this MPCC using SOS1 conditions.
These conditions are readily available in all modern MILP solvers that then solve
the single-leader-multi-follower problem to optimality. After formally stating
the problem class under consideration as well as deriving its reformulations, we
present explicit Python code that shows how these techniques can be realized
using the MILP solver Gurobi. Finally, we also show the effect of the SOS1-based
reformulation using the real-world example of industrial eco-park modeling.

1. Introduction

For many practical applications it is necessary to model non-cooperative behavior
of multiple agents, which usually leads to a Nash game (see Nash (1950)) or to
its generalized version; see, e.g., Facchinei and Kanzow (2010). However, these
game-theoretic models are only applicable in situations in which the competitive
agents act simultaneously. If the agents are ordered in a hierarchical way, the
resulting model is a so-called multi-leader-multi-follower (MLMF) game—a problem
class that dates back to the seminal publications by von Stackelberg (1934, 1952).
In such games, the set of agents is split in two groups, the leaders and the followers,
both interacting in a non-cooperative way. The leaders, who usually represent the
authorities or the most influencing agents, need to take into account the reactions
of the followers, whose problems and, thus, decisions depend on those of the leaders.
This setup is also often referred to as a bilevel game and the general solution
concept on both levels is that of a (generalized) Nash equilibrium. In other words,
the MLMF game is a (generalized) Nash game among Stackelberg leaders. Note
that alternative approaches to Nash equilibrium interactions have been recently
considered in Allevi et al. (2024) and Aussel and Chaipunya (2024). Obviously,
these models are extremely challenging—both in theory and in practice. We refer to
Aussel and Svensson (2020) for a recent overview. The easiest (but still challenging)
instantiation of such models is a bilevel optimization problem, i.e., a single-leader-
single-follower (SLSF) model. This field made an enormous progress in the last
years and decades; see, e.g., the recent books by Dempe et al. (2015) and Dempe
and Zemkoho (2020), the recent survey by Kleinert et al. (2021a) for SLSF games,
Aussel and Svensson (2020) for single-leader-multi-follower (SLMF) games, and
Aussel et al. (2021) and Aussel and Svensson (2018) for MLMF games.

In this tutorial we focus on the intermediate setting in which there is a single
leader but multiple followers, i.e., we consider SLMF games. In particular, we
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present and explain a powerful technique to obtain a single-level reformulation of
the SLMF game that uses so-called special-ordered-sets of type 1 (SOS1), which
date back to Beale and Tomlin (1970) and which have been used for the first time in
bilevel optimization in Fortuny-Amat and McCarl (1981). The key idea is to use the
Karush–Kuhn–Tucker (KKT) conditions of the lower-level players and reformulate
the nonlinear and nonconvex KKT complementarity conditions by using SOS1
conditions. This approach received increasing attention in the last years in bilevel
optimization (Kleinert and Schmidt 2023) since it does not require to determine
correct big-M values, which is needed if one re-writes the KKT complementarity
conditions using additional binary variables; see, e.g., Kleinert et al. (2020) and
Pineda and Morales (2019) for the drawbacks of the big-M approach. An alternative
approach, proposed in Leyffer and Munson (2010), consists in a penalization method
based on the complementarity conditions of the followers. The advantages of the
SOS1 approach are the following:

(i) It is easy to implement. We will present Python code that shows how to
implement the resulting single-level reformulation of a given SLMF game
and then solve it with Gurobi.

(ii) The SOS1 functionality is widely available. Not only Gurobi, but also other
solvers for mixed-integer optimization such as CPLEX or SCIP support this
modeling technique. We choose one specific combination of programming
language (Python) and solver (Gurobi) here to be as specific as possible.
However, the mathematical concepts can, of course, also be implemented
with other programming languages and solvers as well.

(iii) There is no need for computing big-M values or a penalization parameter.
(iv) In combination with other ready-to-use techniques from bilevel optimization,

the approach is competitive with other classic techniques such as the big-M
approach; see, e.g., Kleinert et al. (2021b) and Kleinert and Schmidt (2023).

The remainder of this tutorial is structured as follows. In Section 2, we formally
present the problem statement and derive a first single-level reformulation based on
the KKT conditions of the lower-level players. The SOS1-based reformulation of the
single-level KKT reformulation is then briefly discussed in Section 3. This technique
is then applied in Section 4 to two academic examples. Here, we also present Python
code that shows how easy the implementation is. Afterward, in Section 5, we apply
the SOS1 technique to a real-world SLMF game in the area of a circular industrial
economy to show the applicability of the technique also for more realistic and larger
instances. A comparison with an implementation of the Leyffer–Munson method on
this application is also provided. Finally, we conclude in Section 6.

2. Problem Statement and Single-Level Reformulation

As announced in the introduction, our aim is to propose a reformulation scheme
based on the SOS1 approach to solve SLMF games. These problems, in their
optimistic version, are given by

min
x,y1,...,yN

F (x, y) (1a)

s.t. G(x, y) ≥ 0, (1b)
y := (yν)ν∈[N ] solves GNEP(x), (1c)

where x ∈ Rn0 is the vector of the leader’s decisions and yν ∈ Rnν is the variable
vector of follower ν ∈ [N ] := {1, . . . , N}. The vector y = (yν)ν∈[N ] ∈ Rnf collects all
decisions of all followers, i.e., nf =

∑
ν∈[N ] nν . Hence, we have F : Rn0 × Rnf → R

and G : Rn0 × Rnf → Rm0 , where m0 is the number of upper-level constraints. In
what follows, we use the classic notation y−ν = (yµ)µ∈[N ]\{ν} from game theory
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that collects all followers’ decisions except for those of player ν. Let us comment
a bit more in detail on two important aspects of Model (1). First, the optimistic
version of the bilevel game is considered here, which is formalized by the fact that
the upper-level player also optimizes over the lower-level variables y in case that
there are any multiplicities in the lower-level’s set of equilibria GNEP(x). For a
more detailed discussion of the differences between the optimistic and pessimistic
version of SLMF games, we refer to Aussel and Svensson (2020). Moreover, let
us note that we allow for so-called coupling constraints G, which are upper-level
constraints that explicitly depend on lower-level variables y. Furthermore, GNEP(x)
stands for the set of generalized Nash equilibria of the non-cooperative game among
the N followers, where the optimization problem of the νth player is given by

min
yν

fν(yν , x, y−ν) (2a)

s.t. Dνyν ≥ e−Dν,0x−
∑
µ6=ν

Dν,µyµ, (2b)

E0x+

N∑
µ=1

Eµyµ ≥ g (2c)

with Dν ∈ Rmν×nν , Dν,0 ∈ Rmν×n0 , Dν,µ ∈ Rmν×nµ for all µ 6= ν, and e ∈ Rmν .
Moreover, we have E0 ∈ Rm×n0 , Eν ∈ Rm×nν , and g ∈ Rm. The problems (2)
define a GNEP because the feasible set of every player explicitly depends on the
decisions on the other players. This is different to classic Nash games in which
only the objective functions depend on the other players’ decisions. However, let us
remark that the approach proposed in this tutorial is also applicable to NEPs in the
lower level as well. In Problem (2), (2b) is the private constraint of player ν, which
may depend on the leader’s decision x and the decisions of all other lower-level
players µ ∈ [N ] \ {ν}, and (2c) is the shared constraint of the GNEP at the lower
level. For later reference, we denote the feasible set of the νth lower-level player
by Ων(x, y−ν). In this spirit, we also define Ω−ν =

∏
µ∈[N ]\{ν}Ωµ(x, y−µ). The

so-called shared constraint set is then given by

Ω :=
{

(x, y) ∈ Rn0 × Rnf : G(x, y) ≥ 0 and yν ∈ Ων(x, y−ν) for all ν ∈ [N ]
}
.

Its projection onto the space of the leader variables is denoted by

Ωx := {x ∈ Rn0 : ∃y with (x, y) ∈ Ω} .
The class of SLMF games we tackle is quite large since the only restrictions are the
following:

• The functions F and G are continuous on Rn0 × Rnf .
• For any ν ∈ [N ], any x ∈ Ωx, and any y−ν ∈ Ω−ν , the function f(·, x, y−ν)

is convex and continuously differentiable on Rnν .
• The feasible set of each follower is polyhedral, i.e., it is defined by affine-linear

functions.
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For any follower ν ∈ [N ], the corresponding KKT conditions are given by

∇νfν(yν , x, y−ν)− (Dν)>λν − (Eν)>δν = 0, (3a)

Dνyν − e+Dν,0x+
∑
µ6=ν

Dν,µyµ ≥ 0, (3b)

E0x+

N∑
µ=1

Eµyµ − g ≥ 0, (3c)

λν , δν ≥ 0, (3d)

(λν)>

Dνyν − e+Dν,0x+
∑
µ6=ν

Dν,µyµ

 = 0, (3e)

(δν)>

(
E0x+

N∑
µ=1

Eµyµ − g

)
= 0. (3f)

The KKT conditions of the lower-level problems are both necessary and sufficient
for all players. In particular, we do not need any further constraint qualifications for
the lower-level problems since the constraint sets are all polyhedral. Moreover, we
assume that all linear problems are stated so that the linear independence constraint
qualification (LICQ) holds. In the linearly constrained case considered here, this
means that the row vectors of all active constraints are linearly independent. This
can can be ensured a priori in the linear case by, w.l.o.g., assuming that the respective
constraint matrices have full row rank; see, e.g., the seminal textbooks by Nocedal
and Wright (2006) or Bertsekas (2016) for an introduction to constraint qualifications.
As a further consequence of the LICQ, all Lagrangian multipliers of all KKT points
are uniquely determined.

Remark 1. Taking a closer look at Constraint (3f) reveals that every lower-level
player ν has an own dual variable δν for the shared primal constraint. For many
applications, this is a problem since the dual variables of shared constraints often
define prices, which leads to economic ambiguities if every player sees a different
price. As a remedy, Rosen (1965) introduced the concept of normalized or variational
equilibria of a GNEP in which all the dual variables of the shared constraint need
to be the same—hence leading to a well-defined price in the respective economic
applications. Here, we are interested in variational equilibria of the GNEP in the
lower-level problem and we thus need to impose δν = δ for all ν ∈ [N ]. Hence, (3f)
needs to be replaced by

δ>

(
E0x+

N∑
µ=1

Eµyµ − f

)
= 0.



SOS1-REFORMULATION OF LINEAR SINGLE-LEADER-MULTI-FOLLOWER PROBLEMS 5

Replacing the GNEP in the lower level by the concatenation of all KKT conditions
of the lower-level players, we obtain the single-level reformulation

min
x,y,λ,δ

F (x, y) (4a)

s.t. G(x, y) ≤ 0, (4b)

∇νfν(yν , x, y−ν)− (Dν)>λν − (Eν)>δν = 0, ν ∈ [N ], (4c)

Dνyν − e+Dν,0x+
∑
µ6=ν

Dν,µyµ ≥ 0, ν ∈ [N ], (4d)

E0x+

N∑
µ=1

Eµyµ − g ≥ 0, (4e)

λν , δν ≥ 0, ν ∈ [N ], (4f)

(λν)>

Dνyν − e+Dν,0x+
∑
µ6=ν

Aν,µyµ

 = 0, ν ∈ [N ], (4g)

δ>

(
E0x−

N∑
µ=1

Eµyµ − g

)
= 0. (4h)

Here and in what follows, we use the abbreviations y := (yν)ν∈[N ], λ := (λν)ν∈[N ],
and δ := (δν)ν∈[N ].

Note that the single-level reformulation leads to an optimistic solution of the
single-level-multi-follower problem.

Theorem 2. Let (x∗, y∗) be a global optimal solution of the single-leader-multi-
follower game (1). Then, there exists λ∗ and δ∗ so that (x∗, y∗, λ∗, δ∗) is a global
optimal solution of the single-level reformulation (4).

On the other hand, if (x∗, y∗, λ∗, δ∗) is a global optimal solution of the single-level
reformulation (4), then (x∗, y∗) is a global optimal solution of the single-leader
multi-follower game (1).

The proof is straightforward or can be deduced from Theorem 3.3.8 in Aussel
and Svensson (2020).

Remark 3. We finally discuss some potential generalizations of the above setting.
(1) The setup and the main result can be generalized to convex instead of

polyhedral feasible sets if Slater’s constraint qualification is satisfied since
the corresponding KKT conditions of the followers are still necessary and
sufficient. However, in the light of the results by Aussel and Svensson (2019)
and Dempe and Dutta (2012), one needs to be careful with the respective
Lagrangian multipliers to actually obtain the correctness of Theorem 2.

(2) The constraints of the lower-level problems would stay linear if one allows
for multilinear terms. Hence, the classic KKT reformulation can still be
applied. However, the resulting single-level reformulation would then inherit
these multilinear terms. Since one optimizes over all follower variables in the
single-level reformulation, this would then lead to nonconvex nonlinearities.
The analogue applies to the lower-level objective functions, where we, however,
loose one degree of the multilinear polynomial by taking the respective gradient
in the KKT conditions.

3. SOS1-Based Reformulation

The main burden in Problem (4) are the two complementarity constraints (4g)
and (4h). These two nonlinear and nonconvex constraints can be modeled using
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SOS1-type constraints and can thus be solved using Gurobi or CPLEX to global
optimality without choosing any big-Ms; see, e.g., Kleinert and Schmidt (2023).

To this end, we introduce auxiliary variables sνiν ≥ 0 for all ν ∈ [N ] and all
iν ∈ [mν ] and tj ≥ 0 for all j ∈ [m] as well as the following SOS1 conditions:

λνiν and sνiν =

Dνyν − e+Dν,0x+
∑
µ6=ν

Aν,µyµ


iν

are SOS1

for all ν ∈ [N ] and iν ∈ [mν ] as well as

δj and tj =

(
E0x−

N∑
ν=1

Eνyν − g

)
j

are SOS1

for all j ∈ [m].
Let us recall that a SOS1-type constraint defines a set of variables for which at

most one variable in the set may take a value other than zero.

Remark 4. If for some of these components, we have good (and, of course, prov-
ably correct) upper bounds (“big-Ms”) for the dual variables λνiν and δj as well as
for the corresponding primal expressions, we can also use the classic big-M-like
reformulation for these components.

4. Academic Examples

Our aim in this section is to show, via two simple examples, how simple the
implementation of the SOS1 approach is for the computation of solutions of single-
leader-multi-follower games. While the first example is completely linear, the second
one also contains nonlinearities. In the spirit of a tutorial and for each example,
the single-level/MPCC reformulation of the single-leader-multi-follower game will
be given, then the Python code corresponding to the numerical resolution of the
MPCC will be fully described, and the optimization results will be presented.

4.1. Example #1. Let us start with a very simple and completely linear example
of a single-leader-multi-follower game. Three agents are here considered here. Thus,
we have one leader and two followers. The leader’s problem is given by

min
x,y1,y2,y3

2x+ y1 + y2 − y3

s.t. x ≥ 1,

y solves GNEP(x),

where the GNEP in the lower level consists of two players—the first follower has a 2-
dimensional optimization problem while the second follower solves the 1-dimensional
problem:

Player 1 Player 2

miny1,y2 x− 2y1 − y2 miny3 x+ y1 + y2 + y3

s.t. y1 ≥ y2 + y3 s.t. y3 ≥ x
y1 ≤ x

This bilevel problem admits only one optimal solution (x̄, ȳ1, ȳ2, ȳ3) = (1, 1, 0, 1).
The corresponding KKT conditions of the first and second follower are given as
follows:
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KKTs of Player 1 KKTs of Player 2

−2− λ1
1 + λ1

2 = 0 1− λ2
1 = 0

−1 + λ1
1 = 0 y3 − x ≥ 0

y1 − y2 − y3 ≥ 0 λ2
1(y3 − x) = 0

x− y1 ≥ 0 λ2
1 ≥ 0

λ1
1(y1 − y2 − y3) = 0

λ1
2(x− y1) = 0

λ1
1, λ

1
2 ≥ 0

Thanks to Theorem 2, the single-level reformulation is equivalent to SLMF
game (4.1) and reads

min
x,y1,y2,y3

2x+ y1 + y2 − y3

s.t. x ≥ 1,

− 2− λ1
1 + λ1

2 = 0,

− 1 + λ1
1 = 0,

y1 − y2 − y3 ≥ 0,

x− y1 ≥ 0,

λ1
1(y1 − y2 − y3) = 0,

λ1
2(x− y1) = 0,

λ1
1, λ

1
2 ≥ 0,

1− λ2
1 = 0,

y3 − x ≥ 0,

λ2
1(y3 − x) = 0,

λ2
1 ≥ 0.

Finally, if we use the non-negative slack variables

s1
1 = y1 − y2 − y3, s1

2 = x− y1, s2
1 = y3 − x,

we obtain the SOS1-based single-level reformulation

min
x,y,λ,s

2x+ y1 + y2 − y3

s.t. x ≥ 1,

− 2− λ1
1 + λ1

2 = 0,

− 1 + λ1
1 = 0,

y1 − y2 − y3 ≥ 0,

x− y1 ≥ 0,

SOS1(λ1
1, s

1
1),

SOS1(λ1
2, s

1
2),

s1
1 = y1 − y2 − y3, s1

1 ≥ 0,

s1
2 = x− y1, s1

2 ≥ 0,

λ1
1, λ

1
2 ≥ 0,

1− λ2
1 = 0,

y3 − x ≥ 0,

SOS1(λ2
1, s

2
1),
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s2
1 = y3 − x, s2

1 ≥ 0,

λ2
1 ≥ 0

with y = (y1, y2, y3)>, λ = (λ1
1, λ

1
2, λ

2
1)>, and s = (s1

1, s
1
2, s

2
1)>.

Using the Python interface of Gurobi, this model can be implemented as follows:�

�

�



# Import the Gurobi interface
from gurobipy import *

# Create an empty model
model = Model("example-1")

# Build all variables
x = model.addVar(name="x", lb=1)
y1 = model.addVar(name="y1", lb=-GRB.INFINITY, ub=GRB.INFINITY)
y2 = model.addVar(name="y2", lb=-GRB.INFINITY, ub=GRB.INFINITY)
y3 = model.addVar(name="y3", lb=-GRB.INFINITY, ub=GRB.INFINITY)
lambda11 = model.addVar(name="lambda11")
lambda12 = model.addVar(name="lambda12")
lambda21 = model.addVar(name="lambda21")
s11 = model.addVar(name="s11")
s12 = model.addVar(name="s12")
s21 = model.addVar(name="s21")

# Build the upper-level objective function
model.setObjective(2*x + y1 + y2 - y3, GRB.MINIMIZE)

# Add lower-level dual feasibility constraints
model.addConstr(-2 - lambda11 + lambda12 == 0)
model.addConstr(-1 + lambda11 == 0)
model.addConstr(1 - lambda21 == 0)

# Add lower-level primal feasibility constraints
model.addConstr(y1 - y2 - y3 >= 0)
model.addConstr(x - y1 >= 0)
model.addConstr(y3 - x >= 0)

# Add slack variable defining constraints
model.addConstr(s11 == y1 - y2 - y3)
model.addConstr(s12 == x - y1)
model.addConstr(s21 == y3 - x)

# Add SOS1 conditions
model.addSOS(GRB.SOS_TYPE1, [lambda11, s11])
model.addSOS(GRB.SOS_TYPE1, [lambda12, s12])
model.addSOS(GRB.SOS_TYPE1, [lambda21, s21])

# Solve it
model.optimize()
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After solving the model, we can get the solution values via�

�

�

�

# Print the solution
print(" x = " + str(x.X))
print(" y1 = " + str(y1.X))
print(" y2 = " + str(y2.X))
print(" y3 = " + str(y3.X))
print("lambda11 = " + str(lambda11.X))
print("lambda12 = " + str(lambda12.X))
print("lambda21 = " + str(lambda21.X))
print(" s11 = " + str(s11.X))
print(" s12 = " + str(s12.X))
print(" s21 = " + str(s21.X))

and obtain�

�

�

�

x = 1.0
y1 = 1.0
y2 = 0.0
y3 = 1.0

lambda11 = 1.0
lambda12 = 3.0
lambda21 = 1.0

s11 = 0.0
s12 = 0.0
s21 = 0.0

4.2. Example #2. The second academic example also involves one leader and two
followers but the objective function of one of the followers is nonlinear now. Here,
the leader’s problem is given by

min
x,y1,y2

− 2x+ y1 + 3y2

s.t. x ≥ −1,

x ≤ 1

y solves GNEP(x),

where the GNEP in the lower level consists of two players, each of them solving a
1-dimensional problem:

Player 1 Player 2

miny1 y1 + 2y2 + 10 miny2 y1y2

s.t. y1 + y2 ≥ x s.t. y2 ≥ 0

One can easily see that the best-response functions of the followers, i.e., the
optimal solutions of each follower given the leader’s decision as well as the decisions
of all other followers, are given by

R1(x, y2) = {x− y2}, R2(x, y1) =


R+, if y1 = 0,

{0}, if y1 > 0,

∅, otherwise.

Since (y1, y2) ∈ GNEP(x) is equivalent to y1 ∈ R1(x, y2) and y2 ∈ R2(x, y1), we get

GNEP(x) =

{
{(x, 0), (0, x)}, if x > 0,

{(0, 0)}, if x = 0.
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Thus, the SLMF game (4.2) admits only one optimal (optimistic) solution, which is
given by (x, y1, y2) = (1, 1, 0).

In order to describe the applications of the SOS1 approach on this example, let
us describe first the KKT conditions of both followers:

KKTs of Player 1 KKTs of Player 2

1− λ1
1 = 0 y1 − λ2

1 = 0
y1 + y2 − x ≥ 0 y2 ≥ 0

λ1
1 ≥ 0 λ2

1 ≥ 0
λ1

1(y1 + y2 − x) = 0 λ2
1y2 = 0

For this example, we only need an auxiliary slack variable for the first leader:

s1
1 = y1 + y2 − x, s1

1 ≥ 0.

With this, we obtain the single-level reformulation

min
x,y,λ,s

− 2x+ y1 + 3y2

s.t. x ≥ −1,

x ≤ 1,

1− λ1
1 = 0,

y1 + y2 − x ≥ 0,

λ1
1 ≥ 0,

s1
1 = y1 + y2 − x, s1

1 ≥ 0,

SOS1(λ1
1, s

1
1),

y1 − λ2
1 = 0,

y2 ≥ 0,

λ2
1 ≥ 0,

SOS1(λ2
1, y2)

with y = (y1, y2)>, λ = (λ1
1, λ

2
1)>, and s = s1

1.

The required Python code for solving the single-level reformulation with Gurobi
reads�

�

�

�

# Import the Gurobi interface
from gurobipy import *

# Create an empty model
model = Model("example-2")

# Build all variables
x = model.addVar(name="x", lb=-1, ub=1)
y1 = model.addVar(name="y1", lb=-GRB.INFINITY, ub=GRB.INFINITY)
y2 = model.addVar(name="y2")
lambda11 = model.addVar(name="lambda11")
lambda21 = model.addVar(name="lambda21")
s11 = model.addVar(name="s11")

# Build the upper-level objective function
model.setObjective(-2*x + y1 + 3*y2, GRB.MINIMIZE)
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�

	

# Add lower-level dual feasibility constraints
model.addConstr(1 - lambda11 == 0)
model.addConstr(y1 - lambda21 == 0)

# Add lower-level primal feasibility constraints
model.addConstr(y1 + y2 - x >= 0)

# Add slack variable defining constraints
model.addConstr(s11 == y1 + y2 - x)

# Add SOS1 conditions
model.addSOS(GRB.SOS_TYPE1, [lambda11, s11])
model.addSOS(GRB.SOS_TYPE1, [lambda21, y2])

# Solve it
model.optimize()

and printing the solution via�

�

�

�

# Print the solution
print(" x = " + str(x.X))
print(" y1 = " + str(y1.X))
print(" y2 = " + str(y2.X))
print("lambda11 = " + str(lambda11.X))
print("lambda21 = " + str(lambda21.X))
print(" s11 = " + str(s11.X))

leads to�

�

�

�

x = 1.0
y1 = 1.0
y2 = 0.0

lambda11 = 1.0
lambda21 = 1.0

s11 = 0.0

5. A Real-World Application: Industrial Eco-parks

Our aim in this section is to apply the above described SOS1 approach to a
reasonably large application case and to compare the obtained results with an
alternative method, namely the penalization approach proposed by Leyffer and
Munson (2010). An interesting example of such an application is the problem of
optimally designing industrial eco-parks (IEP). An industrial eco-park consists of a
network of plants of different companies built in order to share one or more resources.
More precisely, when companies are located close to each other, the IEP structure
aims to explore the possibility for the companies to use waste resources coming from
the other companies for their plant processes. An exemplary implementation of
such an IEP is the industrial park of Kalendburg in Denmark in which companies
are sharing water, vapor, ammonia, and more than 30 other different resources.
The main targets for implementing an IEP are, on the one hand, to attract the
participation of companies to the IEP by reducing the production cost for each
of them and, on the other hand, to reduce the total needs of resources of the
industrial park. Thus, in the concept of industrial eco-parks the term “eco” indicates
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Fresh water

Sink node

Company 1

Company 3

Company 2

Figure 1. Example of a connection graph of an IEP with three
companies/processes

both economic and ecological concerns. For many years, the optimal design of
IEPs has been done by using multi-objective optimization (Ehrgott 2005), where
the components of the vectorial objective function are the cost functions of the
companies and a function evaluating the total ecological impact of the production;
see, e.g., Boix et al. (2015, 2012). More recently, in Aussel et al. (2023), Ramos
et al. (2016), and Salas et al. (2020), an alternative approach has been proposed.
It is a game-theoretical approach based on a single-leader-multi-follower model in
which the followers are the companies that aim to minimize their cost and the
unique leader is the designer/manager of the eco-park, who wants to determine the
optimal implementation of an IEP, i.e., the interconnections and fluxes between
companies, which allow to better reduce the ecological impact. Industrial eco-parks
are well adapted examples for the purpose of the comparative analysis of this section
because (i) the constraints of the companies (the followers) are naturally expressed
by affine-linear functions if so-called regeneration units are not considered and (ii)
because the size of the problem is quite large as soon as a realistic number of
companies/processes is involved.

In order to simplify the presentation of the example and to focus on its numerical
treatment, the only resource which is exchanged in our example is water. Hence, by
implementing an industrial eco-park, the leader creates a graph of water connections
in which the companies/processes are the vertices and the edges are the connecting
pipes. Water is bought by the companies at a “fresh water node” and finally rejected
(also subject to payment) to the sink node, which is where the water that will not
be used anymore leaves the system. Whenever one company uses the waste water of
another one, then an additional connection is implemented between both companies
and the associated transfer cost is equally shared by both companies.

After modeling the problem of optimally designing an industrial eco-park in
Subsection 5.1 and describing the associated MPCC reformulation in Subsection 5.2,
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Table 1. Meaning and unit of all constants

Symbol Meaning Unit

Mi Contaminant load of process i g/h
β Polluted water discharge cost $/ton
δ Polluted water pumping cost $/ton

Ci,out Maximum contaminant concentration allowed ppm
in outlet of processes i

Ci,in Maximum contaminant concentration allowed ppm
in inlet of processes i

we present and compare the implementation of the SOS1 and the Leyffer–Munson
approach in Subsections 5.3 and 5.4.

5.1. Modeling. We use the notation from Salas et al. (2020) to model the optimal
design problem of an IEP in which companies only exchange water. The model
is an SLMF game, with the leader being in charge of the design as well as of the
regulatory structure (e.g., the state), and the followers are the companies. Each
company is assumed to handle only one process but the modeling can be easily
extended to several processes per company. The leader minimizes the total use of
fresh resources while the companies aim to minimize their production cost. Note
that their production level is assumed to be fixed. Moreover, we define IP as the
set of all companies and I as the union of the companies and the sink node.

Further following Salas et al. (2020), each company controls the amount of
polluted water it will send to the other companies or to the sink node of the water
network. Recall that the production level of each company is assumed to be constant.
Thus, the model is built for a single hour. For any (i, j) ∈ I2

P , let us denote by
• Fi,j the water flux going from company i to company j and by
• Fi,0 the water flux going from company i to sink node.

Thus, the variable of company i is the vector Fi,· composed of all the fluxes
exiting from company i. Now, the manager of the IEP, i.e., the leader, decides
about the implementation of connections between companies and this decision is
represented by the binary matrix y given by

yi,j =

{
1, the implementation of a pipe between i and j is decided,
0, otherwise,

for all (i, j) ∈ I2
P . Note that we will later always set yi,i = 0 for all i ∈ IP .

The optimization problem of each company i ∈ IP can then be expressed as
a parameterized linear problem in which the parameters are the binary design
variables y of the leader and the fluxes F−i,· of the other companies. The meaning
and the unit of each of the constant terms used in the following model that are not
explained explicitly in the text are given in Table 1.
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Formally, the problem of company i reads

min
F
i,·

cMi

Ci,out
+
∑
k∈IP

[(
cCk,out

Ci,out
− c+ δ

)
Fk,i + δFi,k

]
+ βFi,0

s.t. Fi,j ≥ 0, j ∈ I,
Kyi,j − Fi,j ≥ 0, j ∈ I,

Mi +
∑
k∈IP

Ck,outFk,i − Ci,out
∑
j∈I

Fi,j = 0,

Ci,in
∑
j∈I

Fi,j −
∑
k∈IP

Ck,outFk,i ≥ 0,

Mi −
∑
k∈IP

(Ci,out − Ck,out)Fk,i ≥ 0.

Here and in what follows, c is the cost of fresh water. Note that the objective
functions of the followers as well as all their constraints are linear. Moreover,
note that in the variables defined above, the amount of fresh water reaching each
process/company is not given. Indeed, as observed by Salas et al. (2020), taking
into account the contaminant mass balance and since the production level is fixed,
the amount of fresh water needed for company i can be described as a function of
the other variables:

zi(F−i) =
1

Ci,out

(
Mi +

∑
k∈IP

(Ck,out − Ci,out)Fk,i

)
. (5)

For more details on the formulas used, we refer the interested reader to Ramos
et al. (2016) and Salas et al. (2020). However, let us explain a bit more that the
constant value K is chosen in such a way that Fi,j is forced to be zero if yi,j is zero,
and such that it guarantees the non-negativity of Fi,j otherwise. Thus K has to be
larger than all of the feasible values of Fi,j and a natural choice is

K =
∑
i∈IP

Mi

Ci,out
,

which corresponds to the sum of the natural resources used by companies if none of
them participates in the eco-park.

The leader aims to design the eco-park, i.e., the leader decides about the topology
of the IEP network in order to minimize the total amount of fresh water used by
the companies, which is a proper measure of the overall ecological impact. This
leads to the following optimistic SLMF game

min
y,F

∑
i∈IP

1

Ci,out

(
Mi +

∑
k∈IP

(Ck,out − Ci,out)Fk,i

)

s.t. β

(
Fi,0 −

Mi

Ci,out

)
+
∑
k∈IP

[(
δ − c+

c Ck,out

Ci,out

)
Fk,i + δ Fi,k

]
≤ 0, i ∈ IP ,

yi,i = 0, i ∈ IP ,
F ∈ GNEP(y).

The leader only has to guarantee that the production cost of each company will
not increase when participating to the IEP, i.e., the resulting production cost in
case the IEP is implemented is not larger than the one the company would face in
a “stand-alone situation”, i.e., if not participating in the eco-park. Here, as above,
GNEP(y) stands for the set of generalized Nash equilibria between the companies
acting as followers in the lower level. This set is non-empty for at least one binary
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design matrix y—namely the one corresponding to the stand-alone situation, which
is given yi,j = 0 for all (i, j) ∈ I2

P .

5.2. MPCC Reformulation. As already explained in Section 2, the first step
to solve an SLMF game is to build a reformulation as an MPCC by replacing the
computation of a parameterized Nash equilibrium between the followers by the
computation of solutions to the associated and concatenated Karush–Kuhn–Tucker
conditions. For the case of the IEP, let

Γ =


(ηi,j)j∈I,i∈IP
(θi,j)j∈I,i∈IP

(κi)i∈IP
(λi)i∈IP
(µi)i∈IP


be the vector of the Lagrangian multipliers. With this notation at hand, the MPCC
reformulation is thus given by

min
y,F,Γ

∑
i∈IP

zi(F−i)

s.t. β(Fi,0 −
Mi

Ci,out
) +

∑
k∈IP

[(
δ − c+

cCk,out

Ci,out

)
Fk,i + δFi,k

]
≤ 0, i ∈ IP ,

yi,i = 0, i ∈ IP ,
(F,Γ) ∈ (KKT)i, i ∈ IP ,

where, for any i ∈ IP , the set (KKT)i is given by all points satisfying

δ − ηi,j + θi,j − κiCi,out − λiCi,in = 0, j ∈ IP ,
β − ηi,0 + θi,0 − κiCi,out − λiCi,in = 0,

ηi,jFi,j = 0, j ∈ I,
θi,j(Kyi,j − Fi,j) = 0, j ∈ I,

λi

Ci,in∑
j∈I

Fi,j −
∑
k∈IP

Ck,outFk,i

 = 0,

µi

(
Mi −

∑
k∈IP

(Ci,out − Ck,out)Fk,i

)
= 0,

ηi,j ≥ 0, j ∈ I,
θi,j ≥ 0, j ∈ I,
λi ≥ 0,

µi ≥ 0,

Fi,j ≥ 0, j ∈ I,
Kyi,j − Fi,j ≥ 0, j ∈ I,

Mi +
∑
k∈IP

Ck,outFk,i − Ci,out
∑
j∈I

Fi,j = 0,

Ci,in
∑
j∈I

Fi,j −
∑
k∈IP

Ck,outFk,i ≥ 0,

Mi −
∑
k∈IP

(Ci,out − Ck,out)Fk,i ≥ 0.
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Our aim in the forthcoming subsections 5.3 and 5.4 is to see how the SOS1 as well
as the Leyffer–Munson approach can be compared on a reasonably large application
case of designing an IEP.

The test IEP used in these two subsections is composed of 15 companies and
the values of the constant terms of the model are given in Appendix A. All models
have been implemented using Python 3.10.9 and have been solved using Gurobi
version 10.0.2 on a DELL 5310 Latitude with an i5 Intel Core CPU with 16GB
RAM, and a Intel(R) UHD Graphics GPU.

5.3. The SOS1 Approach. We now reformulate the MPCC to get rid of the
nonlinear and nonconvex KKT complementarity constraints. The idea is, as shown
in Section 3, to re-write them using SOS1 constraints. Thus, for each inequality
constraints gi,k(y, F ) ≥ 0 of the optimization problem of company i, one introduces
a new real-valued variable si,k and the additional constraint

si,k = gi,k(y, F ).

Moreover, the corresponding KKT complementarity constraint µi,k gi,k(y, F ) = 0 of
the system (KKT)i is replaced by the SOS1 condition SOS1(si,k, µi,k).

As an example, in (KKT)i, the complementarity constraint

µi

(
Mi −

∑
k∈IP

(Ci,out − Ck,out)Fk,i

)
= 0

is replaced by

si,k = Mi −
∑
k∈IP

(Ci,out − Ck,out)Fk,i and SOS1(si,k, µi).

The resulting optimization problem with 15 companies has 1275 continuous and
240 binary variables as well as 1530 constraints—including 510 SOS1 conditions.
Gurobi solves the problem to global optimality in 3 seconds. The resulting IEP
design is given in Figure 2.

The white nodes represent the companies participating in the eco-park and the
red node is the sink node (SN). The edges represent the built connections between
the respective companies in the IEP. The amount of fresh, i.e., unpolluted, resource
is not displayed. However, the optimal value for the designed IEP shows that,
compared to the stand-alone situation, 32.72% of the fresh-water resource is saved
thanks to the implementation of the IEP structure.

5.4. The Penalization Method by Leyffer and Munson and a Comparison.
To assess the performance of the SOS1 reformulation, we solve the same IEP
problem using the Leyffer–Munson reformulation; see Leyffer and Munson (2010).
This method is based on a penalization technique in which the original objective
function is extended to also penalize the violation of the KKT complementarity
constraints, which are then deleted from the set of constraints. By doing so, the
new objective function is nonlinear while the new constraint set is now convex.

Starting from the MPCC reformulation of Subsection 5.2, the notation

qi(y, Fi, F−i) =


(Fi,j)j∈I

(Kyi,j − Fi,j)j∈I
Ci,in

∑
j∈I Fi,j −

∑
k∈IP Ck,outFk,i

Mi −
∑
k∈IP (Ci,out − Ck,out)Fk,i


is used for i ∈ IP .
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Figure 2. The optimal IEP design for 15 participating companies

We introduce slack variables s := (si)i∈IP and reformulate the KKT complemen-
tarity conditions as

qi(y, Fi, F−i)− si = 0,

0 ≤ Γi ⊥ si ≥ 0,

where Γi is the subvector of Γ referring to company i and only containing Lagrangian
multipliers for inequality constraints. Using the Leyffer–Munson approach, the IEP
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Table 2. Gaps and total runtime (in minutes) of solving depending
on ρ and warmstart. We set the penalty parameter ρ = 10n

Warmstart n = 1 n = 2 n = 3 n ∈ {4, 5, 6} n = 7 Total time

yes 1.98% 3.02% 1.32% 1.32% 3 48
no 1.98% 4.24% 4.77% 1.32% 7 52

problem is now formulated as

min
y,Γ,s

∑
i∈IP

zi(F−i) + ρ
∑
i∈I

s>i Γi

s.t. β(Fi,0 −
Mi

Ci,out
) +

∑
k∈IP

[(
δ − c+

cCk,out

Ci,out

)
Fk,i + δFi,k

]
≤ 0, i ∈ IP ,

yi,i = 0, i ∈ IP ,
qi(y, Fi, F−i) = si, i ∈ IP ,
Γi ≥ 0, i ∈ IP ,
si ≥ 0, i ∈ IP ,
δ − ηi,j + θi,j − κiCi,out − λiCi,in = 0, i, j ∈ IP ,
β − ηi,0 + θi,0 − κiCi,out − λiCi,in = 0, i ∈ IP ,

Mi +
∑
k∈IP

Ck,outFk,i − Ci,out
∑
j∈I

Fi,j = 0, i ∈ IP ,

which can then be solved with state-of-the-art solvers for mixed-integer nonlinear
optimization problems (MINLPs). We do this by using Gurobi again, for which we
have to change its NonConvex parameter to 2 so that Gurobi is able to handle the
given nonconvex MINLP.

It is now important to notice that the penalization coefficient ρ plays a funda-
mental role since it must be chosen sufficiently large for the violation to be forced
to be zero in an optimum, ensuring the equivalence between the above model and
the initial formulation of the IEP problem. Since a provably correct threshold for
the parameter being large enough is usually not known in advance, one often tries
to increase the penalty parameter ρ iteratively. This, however, requires the solution
of multiple MINLPs and can thus be computationally expensive.

For the specific IEP problem at hand, we conducted a sensitivity analysis on the
value of ρ, i.e., we tested values ρ = 10n for some n ∈ N. Table 2 lists the total
runtimes for all problems. We set the maximum runtime to 8 minutes for each ρ and
try to solve the model without and with warmstart, i.e., we then use the solution of
the last run as an initialization for the current run. For almost all runs, we are not
able to solve the problem to global optimality within the time limit. In these cases,
the respective optimality gaps are given in the table.

We note that, with or without the warmstart, the solver takes around 50 minutes
to solve all problems, which is significantly longer than the runtime of the SOS1
method. Moreover, not using warmstarts leads to points for n = 7 that violate
KKT complementarity conditions. Hence, the sum of the KKT complementarity
constraints in the extended objective function is positive and the obtained point
is, consequently, not a solution of the SLMF game. Using warmstarts, we get a
solution of the SLMF game for n = 7.

It is also interesting to note that the Leyffer–Munson reformulation of the IEP
with 15 companies generates a problem with 1515 real-valued variables and 240
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binary variables, thus around 250 continuous variable more than for the SOS1
formulation. Of course, it does not contain any SOS1 conditions.

The comparison of the SOS1 and the Leyffer–Munson method on this specific
IEP example shows that the SOS1 can be more efficient and, more importantly,
does not need the determination of a specific parameter, which is required for ρ for
the penalty approach. Hence, the penalization approach faces a similar difficulty as
the determination of the M -parameter in the “big-M” method.

6. Conclusion

Single-leader-multi-follower games naturally appear in many decision making
processes including non-cooperative and hierarchical aspects. Recent results from
bilevel optimization paved the way for a ready-to-use single-level and SOS1-based
reformulation of these models that can be solved to global optimality by modern
branch-and-cut solvers such as Gurobi. We present two academic examples including
Python code that exemplify the usage of the SOS1 technique. Moreover, we discussed
the application of this reformulation for solving a real-world problem from industrial
eco-park modeling.

One of the main advantages of the SOS1-based reformulation is that there is
no need for deriving provably correct big-M values or a sufficiently large penalty
parameter, which is required if KKT complementarity constraints are re-written
using further binary variables for modeling the corresponding disjunction or if the
Leyffer–Munson penalty approach is used. However, the SOS1-based reformulation
might lead to slower performance. Hence, an important topic for future research is
on how to strengthen the resulting single-level reformulation, e.g., by generalizing
the valid inequalities given in Audet et al. (2007a,b) and Kleinert et al. (2021b) to
the case of SLMF games. For the eco-park example, however, we see that the SOS1
approach leads to a mixed-integer linear model (instead of a mixed-integer nonlinear
one that needs to be solved in the Leyffer–Munson approach) and the runtimes are
thus significantly faster for the SOS1 approach for this specific application.

Appendix A. Appendix - Calibration of the IEP Text Example

The meaning, unit, and values of the constants in the test example for the IEP
model with 15 companies are given in Table 3.

Table 3. Specific data for the IEP problem used in the numerical experiments

Meaning Unit Value

P number of companies — 15
Mi contaminant load of process i g/h (6)
c fresh water cost $/ton 0.01
β polluted water discharge cost $/ton 0.22
δ polluted water pumping cost $/ton 0.01

Ci,out maximum contaminant concentration ppm (8)
allowed in outlet of processes i

Ci,in maximum contaminant concentration ppm (7)
allowed in inlet of processes i

The values of the contaminant load are given by
M = (7500, 6000, 5000, 30000, 4000, 2500, 2200,

500, 30000, 4000, 2000, 2000, 5000, 30000, 13000)
(6)
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and the maximum contaminant concentrations are given by

C·,in = 103 × (0, 0, 50, 80, 400, 20, 50, 80, 100, 400, 30, 25, 25, 50, 100) (7)

as well as by

C·,out = 103 × (100, 200, 100, 800, 800, 100, 100,

400, 800, 1000, 60, 50, 75, 800, 200).
(8)
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