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Abstract

While the problem of tuning the hyperparameters of a support vector machine (SVM) via
cross-validation is easily understood as a bilevel optimization problem, so far, the corre-
sponding literature has mainly focused on the linear-kernel case. In this paper, we establish
a theoretical framework for the development of bilevel optimization-based methods for tun-
ing the hyperparameters of an SVM in the case where a nonlinear kernel is adopted, which
affords the ability to capture highly-complex relationships between the points in the data
set. By leveraging a Karush-Kuhn-Tucker (KKT)/mathematical program with equilib-
rium constraints (MPEC) reformulation of the (lower-level) training problem, we develop a
theoretical framework for the SVM hyperparameter-tuning problem that established under
which assumptions and conditions suitable qualification conditions including the Mangasar-
ian—-Fromovitz, the linear-independence, and the strong second order sufficient conditions
are satisfied. We then illustrate the need for this theoretical framework in the context
of the well-known Scholtes relaxation algorithm for solving the MPEC reformulation of
our bilevel hyperparameter problem for SVMs. Numerical experiments are conducted to
demonstrate the potential of this algorithm for examples of nonlinear SVM problems.
Keywords: support vector classification, hyperparameter optimization, bilevel optimiza-
tion, mathematical program with equilibrium constraints, constraint qualifications, strong
second order sufficient conditions, Scholtes relaxation method

1 Introduction

Support vector machines (SVMs) Hearst et al. (1998) are among the most-used models in
machine learning for tackling both regression and classification tasks. While the most basic
version of the general SVM model (in which the data set is linearly separable and the separa-
tion margin is maximized) features no hyperparameters, many extremely-popular variants
such as soft-margin and kernel SVMs feature one or more hyperparameters—parameters



of the model which must be selected by the user before fitting the model to data in the
training phase. The standard approach to selecting values for such hyperparameters in such
a way that over-fitting the training data is avoided is to perform cross validation, wherein
a portion of the data set (the validation set) is held out from training and the hyperparam-
eter values are selected such that, after the model is fit to the training data, the model’s
predictions for the hereto unseen validation set minimize a given loss function. For both
classification and regression tasks, the loss function that is typically used is the Li-norm of
the vector of misclassification errors.

The problem of choosing the best hyperparameter values within a cross-validation frame-
work is easily understood as a bilevel optimization problem: it asks for minimizing a loss
function of the model’s predictions evaluated on the validation set (the upper-level or leader’s
objective function) subject to the model parameters minimizing another loss function eval-
uated on the the training set (lower-level or follower’s objective function).

In the general case, such a bilevel program is complex to formulate and often pro-
hibitively hard solve to (local or global) optimality. For this reason, many popular methods
for hyperparameter selection (such as grid search, random search, and Bayesian optimiza-
tion) rely on various schemes for sampling different hyperparameter combinations for which
the training problem is solved and its solution evaluated to measure the loss function of the
resulting trained model’s predictions on the validation set Bishop and Nasrabadi (2006).

While some of such methods work reasonably well in practice, they all are, in essence,
heuristics designed for solving the above-mentioned bilevel optimization problem and, as
such, one may except that a better performance would be achieved if one were to develop
ad hoc techniques for solving it that exploit its bilevel nature within a well-formalized
mathematical optimization framework. Numerous attempts have indeed been made to
formulate and solve the problem in such a way but, to the best of our knowledge, none
studied the case where a nonlinear kernel is employed.

Hyperparameter tuning via bilevel optimization has also been used for classification
models other than SVMs such as ¢, regression Okuno et al. (2021); Nguyen et al. (2023). In
the bilevel optimization literature on hyperparameter tuning, most of the works consider the
linear-kernel case with focus on either the support vector regression (SVR) or the support-
vector classification (SVC) case Bennett et al. (2008, 2006); Moore et al. (2009); Kunapuli
et al. (2008a,b); Li et al. (2022a,b); Wang and Li (2023). The nonlinear-kernel case is
mentioned only in Kunapuli et al. (2008a,b), but it is not studied beyond emphasizing
its importance in many practical applications. Interestingly, some of the aforementioned
works show that, especially when using variants of the SVM model featuring additional
hyperparameters as in Kunapuli et al. (2008b), bilevel methods are able to outperform
sampling-based methods such as grid search.

1.1 Aim and scope of the paper

Since the nonlinear feature-space mapping does not admit a finite algebraic representation,
in the formulation we propose we state the training problem (lower-level problem) in its dual
form. While such a choice substantially complicates the analysis, thanks to the so-called
kernel trick (see, e.g., Bishop and Nasrabadi (2006) the adoption of a dual formulation for
the training problem leads us to a very general formulation that can be flexibly adopted



to many other choices of a nonlinear feature-space mapping. Among many options for the
choice of a nonlinear kernel, for the study of this paper we focus on the Radial Basis Func-
tion (RBF) kernel (also known as Gaussian kernel). Such a kernel has been used in many
practical applications Prajapati and Patle (2010) and has been shown to outperform many
other kernels such as the linear, polynomial, and sigmoid kernel in numerous cases Nanda
et al. (2018); Yekkehkhany et al. (2014); Feizizadeh et al. (2017); Hong et al. (2017); Tbarki
et al. (2016); Garrett et al. (2003). In particular, we remark that most of our analysis is in-
dependent of the adoption of the RBF kernel, which makes extending it to other (nonlinear)
kernels rather easy.

The bilevel optimization problem we formulate features the SVM hyperparameters and
the cross-validation function as, respectively, upper-level variables and upper-level objective
function, while it features the variables of the dual of the nonlinear SVM training problem
and the corresponding loss function as lower-level variables and objective function. Our
formulation also includes a robust formulation for the bias b, which, while not directly
available due to the adoption of the dual formulation, is crucial for stating the upper-level
objective function.

Due to the way cross validation is defined, our bilevel problem features a single upper-
level problem and a multitude of lower-level problems (one per split—see further) and, as
such, it could be classified as a single-leader multi-follower optimization problem.

We then use the Karush-Kuhn-Tucker (KKT)/mathematical program with equilibrium
constraints (MPEC) reformulation (a classical tool to transform a bilevel optimization prob-
lem into a single-level problem—see, e.g., Dempe and Zemkoho (2012, 2013) and references
therein) to build a single-level formulation which is the core of the theoretical analysis we
carry out in the paper.

In the field of MPEC, three qualification conditions are crucial for the theoretical un-
derstanding of the problem and the development of numerical methods; that is, the MPEC
Mangasarian-Fromovitz constraint qualification (MPEC-MFCQ), the MPEC linear inde-
pendence constraint qualification (MPEC-LICQ), and the MPEC strong second order suffi-
cient condition (MPEC-SSOSC); see, e.g., Dempe and Zemkoho (2012, 2013); Flegel (2005);
Ye et al. (1997); Guo et al. (2013); Kanzow and Schwartz (2013); Hoheisel et al. (2013);
Scholtes (2001). Hence, the fundamental question that we address in this paper is the
following one:

Can the MPEC-MFCQ, MPEC-LICQ, and MPEC-550SC be satisfied
for the MPEC reformulation of our bilevel hyperparameter optimization
problem for nonlinear SVMs?

In Section 4, we prove that the MPEC-MFCQ is automatically satisfied for any feasible point
of our MPEC reformulation. As for the MPEC-LICQ and MPEC-SSOSC, in, respectively,
Sections 5 and 6 we carefully consider an exhaustive set of scenarios and construct conditions
and numerical assumptions under which these conditions either fail or hold. Such a study is
crucial for the development of efficient numerical algorithms for our problem, as we illustrate
in Section 7 in the context of an application of the Scholtes relaxation method. In particular,
thanks to our experimental results carried out on a number of real world data sets shows
that our proposed bilevel optimization formulation for selecting the hyperparameter of a
nonlinear SVM (with an RBF kernel) has the potential to outperform grid search.



1.2 Main contributions of the paper

In summary, the main contributions of the paper are as follows:

1. We introduce a bilevel optimization formulation of the hyperparameter optimization
problem for a nonlinear SVM. A tractable transformation of this problem based on
dual formulation of the SVM is then constructed and a framework ensuring that it
is locally and globally equivalent to the corresponding KKT/MPEC reformulation is
established.

2. We show that MPEC-MFCQ is automatically satisfied for the MPEC reformulation
of the our bilevel hyperparameter optimization problem for nonlinear SVMs.

3. We provide an exhaustive analysis that specifically establish conditions under which
the MPEC-LICQ holds or fails for the our bilevel hyperparameter optimization prob-
lem for nonlinear SVMs.

4. Unlike the MPEC-MFCQ and MPEC-LICQ, which only take the feasible set the
problem under consideration, the MPEC-SSOSC involves the objective function. In
our analysis, we exploit the structure of the feasible set of our bilevel hyperparameter
optimization problem for nonlinear SVMs to establish conditions ensuring the MPEC-
SSOC is satisfied or fail. We also extend our analysis under certain differentiability
assumptions on the upper-level objective function of our problem.

5. We illustrate the need for the study of the MPEC-MFCQ, MPEC-LICQ, and MPEC-
SSOSC in the context of the a Scholtes-relaxation algorithm which we design to solve
the problem.

1.3 Structure of the paper

The remainder of the paper is structured as follows. In the next section, we introduce the
nonlinear SVM (lower-level problem) and its dual form, construct the cross-validation loss
function (upper-level objective) using the dual variables of the lower-level problem, and
subsequently formulate the whole problem of computing optimal hyperparameter values
for a nonlinear SVM via k-fold CV as a bilevel program. In Section 3, we introduce the
KKT/MPEC single-level reformulation of the problem. Sections 4, 5, and 6 are devoted
to the analysis of the MPEC-MFCQ, MPEC-LICQ, and MPEC-SSOSC, respectively. The
need for these conditions is illustrated in Section 7 by showing how they can be utilized in
the analysis of the Scholtes relaxation algorithm, which is then implemented and run on a
collection of real-world data sets. Conclusions and possible future works are discussed in
Section 8. For the sake of readability, almost all the proofs of the paper are relegated to
the appendices.

2 Mathematical Formulation of the Problem

We start this section by establishing the notation we use throughout the paper. Given
positive integer n € N, we denote the set of integers from 1 to n by [n] :={1,...,n}. Zyxn
denotes the identity matrix in R™*", while 0,,x, denotes the zero matrix in R™*"™ and



0,, the zero vector in R™. Given a matrix X € R™*™ and two sets 7 C [m] and x C [n],

X(r ) denotes the submatrix of X with row and column indices in 7 and &, while X(7,")
and X (-, 7) represent the submatrices of X containing, respectively, the rows and columns
indexed by 7. Given a vector x € R", z, denotes the subvector of x with index set 7.

2.1 SVM training problem and k-fold cross validation

Let us consider N data points (Xj,y;) en), where X; € R! is the I-dimensional feature
vector of the data point of index j and y; € {—1,1} is a binary label indicating whether
the point belongs to one of two given classes A and B.

In its basic version, a support vector machine (SVM) is a maximum margin (often
called hard-margin) binary classifier for which the training problem is to find a hyperplane
of equation w'z + b = 0 which separates the two classes of points. Here, w € R is the
vector orthogonal to the hyperplane, and b € R is the intercept. The hyperplane should
be such that w'z +b>0if z € Aand w'z +b < 0 if z € B and the separation margin
(i.e., the slab of width ||w||> centered about the hyperplane that contains no data points)
associated with it should be as large as possible (Cortes and Vapnik, 1995).

Since in practice it is rarely the case that the two classes A and B are linearly separable
(i.e. separable by a hyperplane), the notion of a soft-margin SVM is often adopted. The goal
of a soft-margin SVM is to find a hyperplane that, at one time, maximizes the separation
margin and minimizes the total misclassification error, the latter being defined as the sum
over all points that end up on the wrong side of the hyperplane of their absolute residual
|wTx — b|. The training problem for a soft-margin SVM reads as

Lo T
min §HwH —i—C"z[;V]max{O,l—yj (w Xj—i-b)},
je

where the hyperparameter C' > 0 controls the relative contribution of each of the two
terms: the inverse of the margin and the total misclassification error. We note that the
case C' = 0 is of no practical interest. This is because, with C' = 0, the problem achieves
an optimal solution (w*,b*) of value 0 by setting w* = 0 for any choice of b* € R. Such a
solution induces a degenerate hyperplane with normal vector w* = 0 leading to an infinite
separation margin PR

When a k-fold cross-validation framework (with k& > 2) is in place, the data set is
partitioned into k folds, from which k splits of the data set are generated. For each split
i € [k], 7 and 2" denote the number of validation points and training points (Note

that (V) 4+ 2() = N holds). Each split of index i € [k] features the i*" fold as validation
set, which we denote by {()_(J(»l),gjj(-l))}je[ﬁ(i)] (where, for each j € [a(?)], QJ(-Z) € {1,-1} is

the label associated with the validation points X j(.l)) and the union of the £ — 1 remaining
) (@)
o ’ ] .
g]]@ € {1,—1} is the label associated with the training point )A(J@).
Differently from the basic SVM model that we introduced before, we assume that, for

)

folds as training set, which we denote by {(X ](1 )}jern) (where, for each j € (™),

each split i € [k], each training point X J(I , j € [AW], is embedded into a higher-dimensional
feature space of dimension [* thanks to the feature-space mapping ¢~ : R — R, where

I* > 1 and v > 0 is a parameter of the mapping (a hyperparameter of the SVM model).



When the RBF kernel is adopted, ¢, is an infinite-dimensional function (I* = co) whereas in
the linear-SVM case, ¢, is the identity function. Adopting this notation, the optimization
problem of training a soft—margin SVM on each split 7 € [k] reads:

min Sw@P+0 S 25, (37,60, X040). M)
o JeR@]

where the function Z4_ is defined by Z¢_ (y,w, X,b) := max {O, 1—y (wT¢7(X) + b)} .

2.2 Bilevel optimization problem

We now formally introduce the bilevel hyperparameter optimization problem for nonlinear
SVMs. In it, each lower-level problem belongs to the family of training problems introduced
in (1). In the upper-level problem, the hyperparameters C' and ~ are tuned in such a way
that the average generalization error evaluated over the k validation sets (across the k splits)
is minimized. This is done by minimizing the following upper-level objective function:

KSVM(w b X y < ,w(z),X](l),b(ZU s (2)

le[k} ]e[n( )}

whose value decreases as the performance of the SVM model on the k validation sets in-
creases. For each of the k splits, the lower-level problem will be problem (1) (training
problem) and the upper-level problem will be to minimize the loss function £ defined in
equation (2).

Combining the k instances of problem (1) for the lower-level and equation (2) for the
upper level, we obtain the following formulation of the bilevel hyperparameter optimization
problem for nonlinear SVMs:

C,v>0,w,b 6[ ] jelnt i ( )
st (w® b®) € argmin {lw Sk )
W@ b L2

+C > = <yj(z), (‘),X](-Z),b(i))} for i € [k],
jEmRD]
where w == (wM, ... w®)) e R*" and b:= (b1, ... b)) € RF.
Differently from the single-level case where, with C' = 0, any solution (w*,b*) with
w* = 0 is optimal for any choice of b* € R, in the bilevel case b(®* must be chosen in such a
way that the out-of-sample upper-level loss function is minimized. Such a value of b®* can
be computed in closed-form according to the following proposition:

Proposition 1. With C = 0 and for any choice of v € R, problem (3) admits the following
optimal solution:

| | +1 if |BO] < ]AD),
forallie k], wD* =0 and bO* ={ -1 if |BO| > AW,
any value in [-1,1] if |[BO| =]A0)],



where AW = {j UE yj(.l) = 1} and B .= {j c [p®] : y](l) = — }

In order to efficiently solve the problem and, in particular, to facilitate the use of the
Karush-Kuhn-Tucker (KKT) reformulation to transform it into a single-level optimization
problem, the first issue to address here is the nonsmoothness of the max operator appearing
in each of the lower-level training problems. To proceed, we transform problem (3) into
a bilevel program featuring a constrained lower-level problem per split of index i € [k]
along the lines of Bishop and Nasrabadi (2006). We do so by applying a commonly-used
lifting operation thanks to which, for each lower-level problem of index i € [k], the max
operator is removed from the objective function at the cost of introducing a linear number
of variables and constraints, one per data point and folder, where, for each split i € [k], the

variable 5](-i) > 0 denotes the misclassification error of data point j € [2(]. This leads to
the following reformulation:

i (@) _p) (@) (@) i
Cryn;go F(C,v,w,b) s.t. (w NSNS >ES (C) for i€ [k], (4)

where, for each split i € [k], S®)(C) denotes the set of optimal solutions to the following
reformulation of the ith lower-level problem:

- 1 (@) T () @)
w“){?(gl,ﬁ(“ W Cje%;ﬂ]g]
St y](Z) ((w(i))T%(j(J(i)) + b(i)) >1-— 5](;‘) for j € [p)], (5)
g(,i) >0 for j € [a()].

J

This problem is completely equivalent to problem (1).
Since a finite algebraic expression of ¢, is not available if ¢, is infinite-dimensional, one
can define the kernel function

K(Xr, X,) 1= 6,(X,)T6,(X,) for any pair (r,s) € [N] x [N] (6)

in terms of the inner product between the maps of any two data points of index r and s
into the (higher- or) infinite-dimensional feature space. In this work, we consider the Radial
Basis Function (RBF) kernel defined by:

K(X,, X,) := exp(—y|| X, — X,|*) for any pair (r,s) € [N] x [N]. (7)

Here v > 0 is the hyperparameter. We recall that, as mentioned above, our analysis can be
easily adapted to many other types of nonlinear kernels besides the RBF one.

By relying on the so-called kernel trick (see, e.g., Bishop and Nasrabadi (2006); Chung
et al. (2003)), equations (6) and (7) can now be applied to the dual of the i*"-split training
problem (5) to obtain a completely explicit formulation which does not include the (infinite-
dimensional) map ¢-:

min (@) (%a(i)) — %(a(i))TQi(fy)@(i) — (@(i))Te(i)
a®era®
s.t. 0< ag-z) <C forje [pW], (LLP?)



In this formulation, o) ¢ R denotes the dual variable of the lower-level problem defined
in (5), G = (gjy), . ,y(<))> € Rﬁ(l), and e is the all-one vector in the space R,

Qi(7) € R *2" s defined as
(Q'(M)rs := 575 exp (=1 XD = XOIB)  for 1,5 € [V, i € [k]. (8)

Note that C' = 0 implies (¥ = 0, which leads to a 0-valued objective function, in line
with what we observed before for the primal problem. In particular, Lagrangian duality
shows that, with 0 = a = C' = 0, the dual multipliers u satisfy p = 0, which allows for
nonegative ¢ (and, in particular, arbitrarily large £’s, which coincides with entirely ignoring
the misclassification error in the primal problem.

It is important to remark that, in problem LLP?, C and v are hyperparameters whose
values must be known before the lower-level training problem can be solved. In the con-
text of linear SVMs, the regularization parameter C' it typically the only hyperparameter.
However, as it can be seen from (LLP?) and equation (8), the adoption of an RBF kernel
leads to the introduction of the second hyperparameter .

From now on, problem (LLP?) will serve as the lower-level problem for each split i € [k].

Proposition 2. For a given C € Ry, let Q¢ : R — R be any function satisfying Qc(¢) =0
for( <0and¢>C and Qc(¢) >0 all¢ € (0,C). For any point (C,w,b) that is feasible for
problem (4), there exists a vector (C,v,a) € R x R x R™ such that the value of the function
F defined in (3) coincides with that of the following function F:

(i) i) [ ()
m . )
kZ 3 aX{O 1 5"HO (%, 7)
ZE[’C] ]E[n(l)
i) (i) .
F(Cyy,a) = TS O (o) Z Z Qc(a ( H()(XK ,’y))} if C > 0,
lizk 2min {40, B0} ifC =0,

where o := (04(1), ... ,a(k)) IS Rﬁ(l)x'”xmk), n = Zle 29, and for all i € [k] and X € R,
AD gnd B® are defined as in Proposition 1, while

HO(X,y) = Y a y exp (—’y”X}i)—XHz).
jen®

We remark that the proposition holds for any choice of ¢ that satisfies our assumptions,
irrespective of its norm. That is, besides the indicator function Q¢ satisfying Qe (¢) = 0
for ( <0 and ¢ > C and Q¢(¢) =1 for all ¢ € (0,C), which can be an example, we can
also select a scenario, where the value of Q¢ on the interval (0,C) is arbitrarily large.

When C > 0 and assuming that there is at least a j € [2(?)] with a( g € (0,C), the second

term in the upper-level objective function F coincides with the blas b, Tt is obtained



starting from the following formula (cf., for instance, Bishop and Nasrabadi (2006)):
; i A\ " o (i . T i
b® — i) — (w( >) - (X§ ))  Vielk], Vje [n< >} st. ol €(0,0),

and re-expressing it w.r.t. the dual variables (see the proof of Proposition 2 in the appendix
for more details), which results in:
2
, 9)

b0 =5 = 3" oy exp (—v X - X
te[n(®)]

for all ¢ € [k] and for any j € ['fz(i)] such that agz) € (0,C). The ”"any” part of the

last statement requires the introduction of an indicator function which not only identifies,

for each i € [k], all the indices j € 7)) where the condition ag»i) € (0,C) is satisfied,

but also selects one (and one only) of them. To circumvent the need for arbitrarily

choosing an index j € 7(Y among those satisfying ay) € (0,C) and, at the same time,
obtain a formulation that is numerically stable, we optimize for defining (w.l.o.g.) b as
the weighted average of the right-hand sides of the previous expression over all the ay) that
satisfy the condition ay) € (0,C). Letting Q¢ be the indicator function Q¢ : [0,C] — {0,1}
with Qc(x) =1if 0 < z < C and Q¢(z) = 0 otherwise, we have that, for each i € [k] the
ratio 1/ 3 cp01 Qo (o) coincides with the number of such variables belonging to (0, C).
Thus, the expression for b used in F coincides the average of the right-hand sides of
equation (9). This avoids the need for selecting a suitable index while also guaranteeing a
numerically more stable formulation due to averaging the value that one would calculate
for b over all the possible indices j € 2() that could be used for it.

If C > 0, and there is some i € [k] such that oz? € {0,C} for all j € [2V], we use the

following way to determine b(). To proceed, we introduce the sets
I_(a®) := {j e [a@] | o) = o} and I (a®) .= {j € [a®] | ol = c}. (10)

Proposition 3. Let o) be the optimal solution of (LLP?) fori € [k]. If ag-i) € {0, C} for
all j € [ﬁ(j)], for some lower-level problem i, then the optimal value of b for lower-level
problem (LLP?) can be any value in [bgé)m, b%)w], where

.= ImaxX : HY (X = iy : HY (X . 11
bmm el () {y] ( i 7)} ) bmaw je]l<(l () {y] ( i 7)} ( )

Based on the above result and problem (LLP?) for each split i € [k], the bilevel hyper-
parameter optimization problem for a nonlinear SVM with RBF kernel can be replaced by

the following problem, which will be our focus in the remainder of the paper and to which
we refer by the shorthand BHO as in Bilevel Hyperparameter Optimization (problem):

min  F (C,7,a)

Gy , , (BHO)
st. (C,7,a) €ERZ xR, ol € Sg)(C', v) for i€ k],

10



where n := Ele 79 and, for each split i € [k], we have

Sy = argmin {HO(3,a) : a® € [0,C1"7, ()50 =0}
a®eRrn'®

Remark 4. It is important to note that both C' and v are likely to be positive for any global
solution in the context of any practically relevant data set. This is because the occurrence
of data sets where solutions with either C = 0 or v = 0 are optimal is extremely unlikely.
Indeed, the existence of an optimal solution with C' = 0 would imply that entirely ignoring
the misclassification error leads to a better out-of-sample loss than doing otherwise, which is
rather unlikely for realistic data sets. Similarly, the adoption of v = 0 would lead to an all-
one kernel matriz. Thus, the existence of an optimal solution with v = 0 would imply that
adopting a trivial feature-space map thanks to which the distance between every pair of data
points is identical (which, incidentally, makes the data points completely indistinguishable)
leads to best out-of-sample loss, which is absurd.

Based on this remark, we would like to highlight our basic setting in terms of data
sets under consideration. Clearly, as we assume that the data sets involved in the model
described here are based on real-world scenarios, it is very unlikely that all the data points
can lie on the separating hyperplane and all be support vectors. Hence, the following basic
settings will be used throughout the paper for data when trained by our nonlinear SVM:

Basic Settings.

(1) For each lower-level problem i € [k], there exists at least one training data with label
1, which is not a support vector in the kernel space, and there also exists at least one
training data with label —1, which is not a support vector in kernel space.

(i1) For each lower-level problem i € [k], there exists at least two training data with label
1, which are support vectors in kernel space, and there also exists at least two training
data with label —1, which are support vectors in kernel space.

In the subsequent sections, we will build a single-level reformulation of (BHO) and study
its theoretical properties.

3 MPEC reformulation

3.1 Single-level reformulation

As it is common in the bilevel optimization literature, the first step in the process of
developing a theoretical framework or numerical solution scheme for a bilevel program is to
reformulate it into a single-level optimization problem. There are three standard approaches
to do so: the implicit function approach, the optimal value (function) approach, and the
Karush-Kuhn-Tucker (KKT) reformulation approach. We refer the reader to Dempe and
Zemkoho (2013) and the references therein for a detailed discussion.

A common point between the implicit function and optimal value function reformula-
tions is that they are both based on implicitly-defined functions, i.e., the lower-level optimal
solution function for the former and the optimal value function for the latter. This means
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that, for each of these two reformulations, we typically might not be able to have a com-
pletely explicit expression of the problem. Hence, our focus in this paper is on applying
the KKT reformulation to KKT reformulation to (BHO). However, throughout, we label
it as mathematical program with equilibrium (MPEC) reformulation, to easily match the
vocabulary of the necessary concepts to the existing literature.

To introduce such a reformulation, we start by noting that, for each split i € [k] and
any 7 > 0, the kernel matrix Q°(y) with Q'(v),s defined in (8) is positive semidefinite due
to being a Gram matrix. Since the lower-level constraints of problem (BHO) w.r.t. o(?
are convex (and, in particular, linear), it follows that each lower-level problem is convex.

This implies that, for each split i € [k], a(?) € S}?(C, ~v) if and only if there exist Lagrange
multipliers ¢ € ]Rﬁ(l), o) ¢ Rﬁm, and u; € R corresponding, respectively, to the lower
bound, upper bound, and equality constraints such that the following system is feasible:

Q (1) —e® — £ 4 o) _ 4,500 = 0, (12a)
0<a® 1L el >0, (12b)
0<o® L e —al >0, (12¢)
NOR O (12d)
By defining «, o, and u as follows
a® M o uy
= : , €:= : , 0= : ,and wi=| @ |, (13)
a®) (k) (k) m

we deduce the following KKT reformulation of problem (BHO), which we refer to as the
“preliminary mathematical programming with equilibrium constraints” reformulation:

min F(Cyy,a)

C,v,a,e,0,u

s.t. C Z 0, Yy Z 0)
Qi('y)a(i) —el) — e 4 o0 — Ui@(i) =0, i€k (pPMPEC-BHO)
0<a® L0 >0, i € [k],
0<o® L Cceld —ald) >0, i€ [k],
a® g0 =, i € [k].

Let us note that the reformulation we applied is standard for deriving single-level model
for bilevel hyperparameter optimization problems; see, e.g., Kunapuli et al. (2008a); Li
et al. (2022a.b) and references therein. However, unlike in (Kunapuli et al., 2008a, Section
5) and (Kunapuli et al., 2008b, Section 3), where the MPEC reformulation for a bilevel
hyperparameter optimization problem for a nonlinear SVM is obtained directly from the
primal lower-level problem, to allow for an infinite-dimensional kernel we proceed here from
the dual of the lower-level training problem (LLP?) (defined for each split i € [k]), which,
as mentioned, makes the analysis substantially harder.

3.2 Relationship between (BHO) and (pMPEC-BHO)

To establish the relationship between problems (BHO) and (pMPEC-BHO), recall the index
sets in (10). Note that the set [2()]\I- coincides with the index set of the support-vectors
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of the i-th lower-level problem (which are called this way as their dual variable ay) directly
contributes to the construction of the equation of the discriminating hyperplane). Basic
duality theory shows that: (i) every data point with index j € I_ is correctly classified
and ends up on or outside the separation margin; (i7) every data point with index j €
[\ (I= UL.) is correctly classified and ends up on the separation margin; (iii) every data
point with index j € I. may either be misclassified (while being either inside or outside
of the margin) or correctly classified but being within the margin. The two sets will be
needed for some important constraint qualifications, including the lower-level constant rank
constraint qualification (LCRCQ) for problem (LLP?) that we introduce first.

Definition 5. For a split i € [k], a point (C,7,a") satisfies the lower-level constant rank
constraint qualification (LCRCQ') of problem (LLP?) if there exists an open neighborhood
NG of (C,7,aD) such that, for every pair of index sets Iy, I with I C I_(a®) and
I, C1-(a®), the family of gradient vectors

{ey) |je Il} U {—egi) | j € [2} U {y(i)} (14)

has the same rank (depending on I, Iy) for all (C,~, o)) e NO. The LOCRCQ will be said
to hold at (C,7,&) if the LCRCQ' holds at (C,7,a™) for each i € [K].

Crucially, we can show the following:
Proposition 6. The LCRCQ holds at every feasible point v of (pMPEC-BHO).

Next, we introduce the set of Lagrange multipliers for the lower-level problem. For each
lower-level problem i € [k] and a(® € Sg)(C’, ), let AY(C,~,a?) be the set of Lagrange
multipliers (E(i), a(i),ui) of problem (LLP?) satisfying (12). Subsequently, let A(C,~,a) :=
xE_ A(C,,a®), where a is defined as in (13). Based on these definitions, we can establish
the following relationship between problems (BHO) and (pMPEC-BHO):

Theorem 7. The following assertions are satisfied:

(i) Let (C,v,a) be a global (resp., local) optimal solution of problem (BHO). Then, for
each (g,0,u) € A(C,~, ), the point (C,~,a,e,0,u) is a global (resp., local) optimal
solution of problem (pMPEC-BHO).

(i) Conversely, let (C,~,a,e,0,u) be a global optimal solution (resp., local optimal solu-
tion for all vertices (e,0,u) € A(C,~v,a)) of problem (pMPEC-BHO). Then, (C,~,«)
is a global (resp., local) optimal solution of problem (BHO).

Proof The proof can straightforwardly be derived from Dempe and Dutta (2012). |

The first observation we can make from this result is that, from a global optimal so-
lution perspective, problems (BHO) and (pMPEC-BHO) are globally equivalent without
any assumptions. However, from a local optimal solution point of view, the tricky aspect is
ensuring that a local optimal solution (C,~, «, €, 0,u) of problem (pMPEC-BHO) leads to
a point (C,~, a) which is locally optimal for problem (BHO). For the latter to happen, we
need the following assumption included in part (ii) of Theorem 7.
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Assumption 1. For all vertices (g,0,u) € A(C,~, ), the point (C,~,a,e,0,u) is a local
optimal solution of problem (pMPEC-BHO).

This is crucial, as our analysis in this paper is essentially focused around local optimal
solutions for problem (pMPEC-BHO). So, it is important to know whether such a local
optimal solution has a chance to lead to a local optimal solution of our original problem
(BHO). Clearly, based on Assumption 1, a critical thing to look at is whether there is a
way to reduce the number of vertices (¢,0,u) € A(C,,«) that need to be checked. Note
that that A(C,~,a) will reduce to a singleton (e, 0,u) defined as in (13) if the following
lower-level linear independence constraint qualification is satisfied:

Definition 8. For i € [k], the lower-level linear independence constraint qualification
(LLICQ') for problem (LLP?) is satisfied at the point (C,~,aD) if the following family
of vectors is linearly independent:

{g@)} U {ey') lje H:(a@))} U {—ej Ije H<(a<i>)} .

Here, eéi) is the j" column of the identity matriz T € RAxa® e LLICQ will be said

to hold at (C,~,a) with o defined as in (13) if the LLICQ' holds at (C,~,a®) for all
lower-level problems (LLP?) of index i € [k].

Proposition 9. Let C > 0. If C = 0, then the LLICQ' fails at any (C,~,a")) that satisfies
the constraints of the lower-level problem (LLP?) for any i € [k]. Otherwise (i.e., if C > 0),
for any (C,~, D) that satisfies the constraints of (LLP?) for any i € [k], it holds that:

(i) If 1—(a®) =[], the LLICQ' fails at (C,~, V).
(i) If I_ (o) UT- (D) = [a)], the LLICQ fails at (C,~, V).
(ii) If I-(a®) UT. (D) # [2)], the LLICQ" holds at (C,~,a®).
The proposition implies that if the condition
I_ () UT () # [aD] for all i e [k] (15)

holds for (C,~,a) such that o € Sg)(C,v) for all i € [k], then A(C,v,a) = {(¢,0,u)},
and problems (BHO) and (pMPEC-BHO) are globally and locally equivalent.

As mentioned before in Remark 4, under the Basic Settings, the case C' = 0 is unlikely
to hold in any (globally) optimal solution to (3).

3.3 MPEC preliminaries
By eliminating ¢ from (12a) we obtain
£ = Q'(7)a® — e 4 6@ ug® .= 0D (v) for i € [k].
Substituting it into (12b), we obtain the following reduced form of problem (pMPEC-BHO):

min - f(v) = F(C,7,q)

st g(v) <0, h(v)=0, (MPEC-BHO)
G(v) > O H(v) >0, Gv)TH(v)=0.
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Here, the variable v € R™, while the functions g : R = R, h: R™ — R¥, G : R™ — R", and
H :R™ — R" are respectively given by

¢ 1
_| G ()
; > o= Gagy |
V= o ’ g(v) == h(v) :=Ya, and Hl(v) (16)
¥ 10 = [ i) |
u
where
o (v)
G'(v) :==0(v) = : , G%(v) :=Ce —a, H'(v):=a, H*(v):=o0,
0%) (v)
[ O,ﬁ(l) i
e ) G T 0, o
e=| 1 |, Y:= to |, and ghi=| g@ | forie[k] (17)
el ()T 0,41
L O

Above, m := 2+ k+2n, r := 2n, and, as before, where n = Zle 7). Compared to problem
(BHO), it is worth noting that in problem (MPEC-BHO), the nonnegativity of C', which is
explicit in (BHO), is implied by Ce —a > 0 and o > 0 and, thus, is not imposed explicitly.

In the remainder of this section, we introduce some basic MPEC theoretical concepts
on which we will focus our attention in the subsequent sections. Start by recalling that
for a given optimization problem, concepts such as constraint qualifications, and necessary
and sufficient optimality conditions are not only crucial for their theoretical analysis, but
also for the development of various numerical methods. This is no different in the context
of problem (MPEC-BHO). However, for this problem in MPEC form, standard constraint
qualification such as the Mangasarian—Fromovitz constraint qualification (MFCQ) is known
to automatically fail for any of its feasible points; see, e.g., Flegel (2005); Ye et al. (1997).
Hence, to address this issue, specifically tailored constraint qualifications have been intro-
duced in the literature to derive optimality conditions and other relevant properties.

To describe some of these specific types of constraint qualifications, we now introduce
the following decomposition of the index sets involved in the complementarity constraints
featured in the feasible set of problem (MPEC-BHO). Letting © € R™ be a feasible point
of problem (MPEC-BHO), for the inequalities defined by G and H we define:

Ios (@) == {ic[r]: Gi(v) =0, Hi(@) >0},
Lo(@) == {ie[r]: Gi(v) >0, Hi(v) =0}, (18)
Ioo(@) = {ier]: Gi(v) =0, Hi®)=0}.

Considering the inequality defined by g, we define the set of active indices as

I,(®) = {i € [1]: gi(v) = 0}. (19)
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For the sake of notation, in the sequel instead of Iy (v) we will simply write Ipy, and
proceed similarly for I1o(0), Ipo(v), and I4(D).

Next, we introduce tractable versions of the Mangasarian-Fromovitz and linear indepen-
dence constraint qualifications tailored to (MPEC-BHO).

Definition 10. Let v € R™ be a feasible point of problem (MPEC-BHO) and consider the
following famility of vectors:

{VG;(v): i€ Ipy Ulpo} U{VH;(®): i €I0UIly}

o o (20)
U{Vg;i(v) : i€ I} U{Vhi(v): i€ [k]}.

The point v will be said to satisfy:

(a) the MPEC Mangasarian-Fromovitz constraint qualification (MPEC-MFCQ) if the
family of vectors in (20) is positively linearly independent;

(b) the MPEC linear independence constraint qualification (MPEC-LICQ) if the family
of vectors in (20) is linearly independent.

We remark that one can easily verify that, if a point satisfies the MPEC-LICQ), then it
automatically satisfies the MPEC-MFCQ as well.

The literature offers a multitude of stationarity concepts which are suitably defined to
handle problems with complementarity conditions among their constraints and that can be
seen as analogues of the KKT conditions for problems that do not feature constraints of
MPEC type. Here, we introduce the three main stationarity concepts for (MPEC-BHO).
To do so, we will rely on the following Lagrangian function of (MPEC-BHO) and defined
for the point v € R™ and the Lagrange multipliers A € R, u € R, and 1,¢ € R"™:

H“'(”? )\7 y 1, C) = f(U) + Ag('l)) + /’LTh(v) - WTG(U) - CTH(U)
Definition 11. A feasible point v € R™ of problem (MPEC-BHO) will be said to be

(a) strongly stationary (S-stationary) if there exist Lagrange multipliers X €ER, i € RF,
7 €R", and ( € R" such that

V”L)L(’Ba X:ﬂa 7, E) =0, ( )

Viel,: N\ >0, Vie{1}\I,: X\ =0, (22)
Viel: 7;=0, Vjely: (=0, (23)
(24)

Vi€lp: 7; <0, ¢ <0,

(b) Mordukhovich stationary (M-stationary) if we can find Lagrange multipliers A €ER,
peRF, 7 eR", and ¢ € R" such that (21)~(23) and

Vi€ Iy : (ﬁjéj = O) V (ﬁ] <0, Ej < 0) R (25)

(c) Clarke stationary (C-stationary) if we can find Lagrange Multipliers A ER, i € R,
7 €R", and ¢ € R" such that (21)—(23) hold together with

Vi € Iy : ﬁjfj > 0. (26)
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It is well-known that if a local optimal solution v to an MPEC satisfies the MPEC-
MFCQ, then this point is M-stationary. However, if the stronger MPEC-LICQ holds at v,
then this point is S-stationary. A point that is S-stationary is also M-stationary, and the
latter implies that C-stationarity holds.

It is also important to note that the S-stationarity concept is equivalent to the KKT
conditions of problem (MPEC-BHO) seen from the perspective of a standard optimization
problem with G(v) " H(v) = 0 treated as a usual equality constraint; see, e.g., Flegel (2005).
With this in mind, it clearly makes sense to think that an S-stationary point that satisfies
some strong second order conditions would be locally optimal for problem (MPEC-BHO).
This is indeed the case under the following MPEC-tailored strong second order sufficient
condition (MPEC-SSOSC):

Definition 12. Let v be a S-stationary point of problem (MPEC-BHO) with multiplier
vector (X, [, 7, C) is said to satisfy the MPEC-SSOSC if it holds that

vd e C(®)\{0}: d'V3,L(®,A fi,7,{)d > 0 (27)

with C(v) defined as follows (with supp(a) := {i € [n]: a; # 0} for a € R"):

Vgigz_;;_rd =0 Vie ?u]pp(j\)

_ m  Vhi(v)'d=0 Vielk

Cv) = qdeR™: VGi(v)Td=0 Vi supp(7) (28)
(0)Td=0 C

Vi € supp(()

Note, for example, that if ¥ is a S-stationary point of (MPEC-BHO) that satisfies the
MPEC-SSOSC together with the MPEC-LICQ), then there exists a neighborhood U (v) of v
such that v is the only M-stationary point among all the feasible points of (MPEC-BHO)
in U(v); see, e.g., (Kanzow and Schwartz, 2013, Theorem 4.11) and references therein.

4 MPEC-MFCQ

In this section, we analyze the MPEC-MFCQ in the context of (MPEC-BHO). To proceed,
we introduce the following index sets associated to the complementarity conditions involved
in the feasible of problem (MPEC-BHO), which will play an important role in the analysis.

Definition 13. Letting v be a feasible point of (MPEC-BHO), we define the index sets

Ay (D) {ie[n]: @=0, 6(v);=0, 3, =0}, (29)
Ay(v) == {ien]: a;=0, 6(v); >0, 7, =0}, (30)
As(v) == {iehn]: 0<a<C, 0(v);=0, & =0}, (31)
Ay(D) = {i€n]: a;=C, 0(v); =0, 5; >0} (32)

A3(0) is further partitioned as follows:

AT () = {ien:0<a <C, 0(v); =0, 5, =0}, (33)
A§(@) = {ien]:a=0C, 0(v); =0, 5;=0}. (34)



Definition 14. Let v be a feasible point of (MPEC-BHO). For each lower-level problem
(LLP?) fori € [K], ; (v) and Ag(z)(ﬁ) correspond to the sets A (D) and A§(D), respectively,
and for r € [4], AY ( ) denotes the set corresponding to A ().

Definition 15. We define the following partition of the index sets associated to the com-
plementarity conditions involved in the feasible set of problem (MPEC-BHO):

Jg(v) = {ie€n] : a =0, 6(v); >0}, (35a)
J2(0) == {ien] : 5;=0, C—a; >0}, (35b)
Je(0) == {i€n] : a >0, 6(v); =0}, (35¢)
Je2(®) = {i€en] : 5, >0, C—a; =0}, (35d)
Jog(0) == {i€n] : a =0, 6(v); =0}, (35e)
Jop2(0) == {i€[n] : 6;=0, C—a; =0}. (35f)

For the ease of notation, in the sequel, we will simply write A; for each ¢ € [4] rather
than A;(?), and proceed similarly for A7 (9) and A§(9), and also for Jy:(v), Jai (), and
Jopi(0) for i = 1,2. We observe that we have the equalities J* = Jgi U Jgi U Jgpi for
i=1,2, and it is clear that J' = J? = [n].

Next, we give some relationships between the index sets in (35) and the index sets
described in (29)—(32); also see Figure 1 for an illustration.

Proposition 16. The index sets in (35) and (29) — (32) satisfy the following relationships:
(a) Jm = Ao, Jeon = A3 UAy, Jom =Aq;
(b) J2 :AlUAQUA;{, Je2 = Ay, Jom :Ag

The proof is the same as in (Li et al., 2022a, Proposition 5), and is therefore omitted.

(A (Ay) (M) Ay

Ay At (45) Ay

= Jein Tyt Ju2 Jenz Je2
(a) (b)
Figure 1: Index sets for the complementarity constraints in Proposition 16.

Due to our Basic Settings (i), we have the following properties.
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Proposition 17. For each lower-level problem i € [k], let a® be the solution. There exists
at least an index j € [AY)] such that

ol =0 and ¥ = 1. (36)

Similarly, for each lower-level problem i € [k], we can find at least one j € [A] such that

ozg-i) =0 and yA](-i) =—1. (37)

Proposition 18. (a) The set of gradient vectors in (20) at a feasible point v of problem
(MPEC-BHO) can be written in matriz form as follows:

0100 ViOOu, QCQWMua.) Zua. Py
0.1y V4900 QMugm.) Zugms)  Plem.
00,1.0)  O(.L2) (1) 00,1.L0)  O(.Ls)
O(JGHLLI) O(JGHl,L2) I(JGHl,-) O(JGHl,L4) O(JGHl,Lg,)
ro— €(Jy2,L1) O(JGQ,LQ) —I(JGL.) O(JGQ,L4) O(JGQ,Ls) (38)

€(Jgp2,L1) O(JGH2,L2) _I(JGH2,~) O(JGHQ,L4) O(JGHQ,L5) ’

0,2.1)  0(sy2.L2) 0(J,2.L5) L(ry2r)  O(ry2.Ls)
O(JGszLl) O(JGH27L2) O(JGﬁQVL:))) I(JGH27') O(JGH27L5)

O((k),L1) O ((k),L2) Y O(r),L)  O(k).Ls)

0i,01) —€U, L) 0(1,,15) 0uy2s)  Ouy.Ls)

where Ly, with q € [5], are the index sets of the columns that correspond, respectively, to
the variables C, v, o, o, and u; P =Y " with Y given in (17); and
Ql(V) SR UN GO )
Qly) = : : € R™*™. (39)
0p0xnw - QF(y)

(b) Thanks to Proposition 16, I in (38) takes the following form:

Ot oy V90 QMwiy Zagy  Fagn
Ong,)  VA0(0)as  Q(V)ag,) I( o Pagy
Oa,z) V300, QMg  Ziay)  Plag
O(Al,Ll) V’YH(E)Al Q(’_V)(Alf) I(Al, ) P(Al,‘)
0(A2:L1) 0(A27L2) I(Azw) 0(A2:L4) 0(A27L5)
0(A17L1) O(A17L2) I(Ah ) 0(A17L4) O(ALLS)

T — €(A4,L1) O(A4,L2) _I(AAL;) 0(A4,L4) 0(A4,L5) (40)
ens.L)  Oms)  ~Zagy  Ougryy Onsis)
Oai,L)  Orzy)  Ogan,Ls) I<A1,> 0(A,,Ls)
O0r2,L1)  OanLy)  O(asry) <Az, ) Oag,Ls)
Otz Ouizs  Ouiize  Zag. Onirs
Oag,)  Owagro)  Oeag,s) I(A 9 Og,Ls)
O(r.L)  O(wl.L2) Y Or,La)  O(k].Ls)

L 0(p,0)  —@(pL2)  Ouyrs)  Ougrs)  Owyrs) |




Remark 19. Note that, if some index set such as, e.g., A;, 18 empty, then by construction,
the corresponding row block does not appear in (40).

We are now ready to present our main theorem about the MPEC-MFCQ.

Theorem 20. The MPEC-MFCQ holds at any point v := (C,5,a,5,u) that is feasible to
problem (MPEC-BHO).

Proof Assume there exists a nonnegative vector p = (p1,--- , p1o) such that p'T' = 0.

Here, p1, p2, p3, p4, p5, Ps, P75 P8, P9, p1o correspond to the blocks of Jg1, Jogt, Jg1, Jom1,

Jg2, JGHQ, JHz, JGH27 [k‘], Ig inI'. By (38), we have 0 = pTF = [Sl 82 53 S4 55] Hence,
S1 = PsTe(JG2,L1) + PGTe(J 2.1) =0, (41)
Sy = pl{Vy0(0)s + p3 Vo0(0) 1, — Pr0€(L, Ly) = 0, (42)
Ss = P QUM Ug) + 03 QN g T P3 L) + PA T

_pg—I(‘]GQ N I<JGH27') + pg Y =0, (43)
So = plZuay+ra L+ 01 L0, )+ 08 L, =0, (44)
Ss = pi Py +ps Py, =0 (45)

With the nonnegativity of p, (41) implies that p; = 0, pg = 0. Similarly, (44) implies that
p1 =0, po=0,p7 =0, ps = 0. Therefore, by (42), it holds that p;op = 0. (43) reduces to
p;I(JHl ot pII(J

GHl’)

+p9Y—0

By Lemma 39 in the Appendix, we obtain that p3 =0, ps = 0, and pg = 0. |

The result of Theorem 20 complements what was shown in Li et al. (2022a), i.e., that
the MPEC-MFCQ automatically holds for the version of problem (3) where the kernel is
linear and the lower-level training problem is formulated in the primal space, and therefore
showing that the result holds as well for the case of an RBF kernel with the lower-level
problem stated in the dual space.

5 MPEC-LICQ

In this section, we analyze the MPEC-LICQ for each feasible point of problem (MPEC-BHO).
The following further observations for the lower-level problem, derived from Basic Settings
(ii), will play an important role in the analysis.

Proposition 21. For each lower-level problem (LLP?) for i € [k], there are at least two
positive support vectors and two negative support vectors; i.e., there exist distinct indices
Ji 2 Ja ja € [A) such that

(Z)>0 a()>0 with y()—l yJ(Q) 1

and

()>O a()>0 with y]():—l gj](i)— —1.
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Thanks to this result, we can establish the first main result of this section.

Theorem 22. Let v be a feasible point of problem (MPEC-BHQO). Then the MPEC-LICQ
fails at v if one of the following conditions holds:

‘ Jom | + | Jom ‘> 2 and Ig = @; (46)
| JGH1 | + | JGHQ ‘Z 2 and Ig 7’5 @ (47)

Based on this result, we can see that the behaviour of the MPEC-LICQ is closely related
to the number of elements in the index sets Igy1 and Igg2. Hence, next, we first consider
the very special case v > 0, and Igpy1 and Igg2 are both empty. To this end, we make the
following assumptions.

Assumption 2. I, =0, A # 0, and Q('y)(A; Ap) Positive definite.

Assumption 3. For a feasible point v of problem (MPEC-BHO), assume that LLICQ'
holds at &) for each i € [k]. Or equivalently, for each lower-level problem i € [k] with

A" # 0, there exists j € [AD)] satisfying
~() _ A N —(i) _ :
0<a;” <C, (0(v));" =0, ;=0 for i€ [k] (48)

This assumption is the same as the condition ensuring the LLICQ that we have in (15).
Indeed, note the relationships

I_(a®) = AD UAY and 1€(a®) = AP UASY for i € [K].

Condition (15) reduces to )\;(z) # () for @ € [k], which coincides with (48) in Assumption 3.
If Assumption 3 does not hold as the LLICQ? fails for some lower-level problem i € [k], we
can still show that MPEC-LICQ still holds if LLICQ fails at a single lower-level problem.
To show this, let us first define

K:={ic[k: AFY =0} and K°:= [k]\K. (49)
Furthermore, define s := (sg,---, s;)" € R¥, where
8i = Z y; for i€ [k].
jEJGQUJGHz

Relying on these definitions, we introduce the following assumption:

Assumption 4. For a feasible point v of problem (MPEC-BHO), assume that there exists
a lower-level problem i € [k] where the LLICQ' fails. Further assume that

si#0 for i€ K. (50)
Without (50), Assumption 4 would be the opposite part of Assumption 3. Note that

the two assumptions cannot simultaneously hold; however, they may fail at the same time.
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Theorem 23. For a feasible point v of problem (MPEC-BHO) satisfying Assumption 2
and | Jgp1 | + | Jguz |= 0, it holds that:

(i) If Jg» = Jg2, then the MPEC-LICQ fails at v;
(ii) If Jgz =0, the MPEC-LICQ holds at v if and only if Assumption 3 holds;

(iii) If Jg2 C Jgn and Jgo # 0, the MPEC-LICQ holds at v if and only if either Assumption
3 or Assumption 4 hold.

Note that | Jgm1 | + | Jom2 |= 0 basically implies that the strict complementarity
condition holds in the KKT system of each lower-level problem.

To extend the result to the case where | Joy1 | + | Jog2 |# 0, we introduce the
following notation. Let A! € ka\/\;l, A? ¢ R|A§|X|A§r‘, A3 € RMaIXIAS] apd A% € RIMIXIAS ]
be matrices satisfying the following conditions:

AQMuga = Ywah AMuzan = @Mt (51)
ASQ('_Y)(A;A;) = Q('_Y)(A47A;)7 A4Q(’7)(A;,A;) = Q(’_Y)(Ah/\;)- (52)
Thanks to Assumptions 2 and 3, Q(ﬁ)( AFAD) is positive definite and, therefore, the above
matrices A’ for i = 1,...,4 are unique. Next, we introduce the following quantities:
. ~
al = [Q(’?)(Ag, AsuAg) — BYY (g, auuag)
+ (BlAl - AQ) Q(’_Y)(Af, A4uA§)} €|ALUAS)»
a? = [Q(?)(Al, AUAS) — B2Y (), asung)
+ (B2A! - AY) QY ay, A4UA§)} ©|A4UAS|s
bl = V»YQ(U)Ag + (BlAl — AQ)VVQ(U)A;—,
= Va0(u)a, + (B2AN = ANV 0(0) s, (53)
¥ = v 4+B3 (AleQ(U)A;)KC ,
o= 24 B <A1V79(U)A;>KC ,
1. 2
U2 = P(A?;’) —A4P(A;r7.)a
U = P(All’.)—A P(A;{,-)’

Let now Bl € RIAsIxk B2 ¢ RIMIxE B3 ¢ RIASIXIE® and B € RIMIXIEY be matrices
satisfying the following conditions:

Bz = U, (54)
B*Z = U? (55)
B3 Z e ey = U({ Koy (56)
B'Z(ke key = U key (57)

Note that, if Z and Z(fe i) are nonsingular, B', B%, B3, and B* are uniquely defined.
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Theorem 24. Let v be a feasible point of problem (MPEC-BHO) satisfying Assumption 2
and the condition | Jgpi | + | Jau2 |€ {1,2}.

(i) If Assumption 3 is satisfied:
bl
b2

1
(a) If | Jam | + | Jamz |= 2 holds and the matriz M := [ 22

then the MPEC-LICQ holds.
(b) If | Jom | + | Jomz |=1 holds:
i. If | Jom |= 1 and (a®,b%) # 0, then the MPEC-LICQ holds.
i If | Jomz |= 1 and (a',b') # 0, then the MPEC-LICQ holds.

} is nonsingular,

(i) If Assumption 4 is satisfied:

b3 Ul
o If | Jom | + | Jam2 |= 2 and the matriz M := " U(Q"K) is nonsingular,
('7 K)

then the MPEC-LICQ holds.
o If| Jom |+ | Jam2 |=1:
~ I g |= 1 and (b4, v? K)) £ 0, then the MPEC-LICQ holds.
I e |= 1 and (b3, o K)) £ 0, then the MPEC-LICQ holds.
(iii) If Assumption 3 and Assumption 4 fail, the MPEC-LICQ fails.

To analyze the case where I, # () and | Jgg1 | + | Jog2 |€ {0, 1}, we need the following
further assumption:

Assumption 5. Assume that | Ag) U Agi) |< 1 for alli € [k].

Based on Proposition 3 in Li et al. (2022a), Assumption 5 basically means that for
each lower-level problem, the number of correctly classified training data which lies on the
boundary of margin does not exceed one.

Theorem 25. Let v be a feasible point of problem (MPEC-BHO) satisfying I, # (0 and
| Jam2 |+ | Jom € {0,1}.

(i) If Assumption 5 holds, the MPEC-LICQ holds at v if and only if at least one among
Assumption 3 or 4 holds.

(ii) If Assumption 5 fails, then the MPEC-LICQ fails at ©.

The above results are summarized in Figure 2, where Assumption C1 in Case 2.3.1 refers
to the requirement that one of the following conditions holds:

o | Jomt | + | Jap2 |= 2 and the matrix MY is nonsingular,
o | Jom | + | Janz |= 1, | Jomt |= 1 and (a®,0%) #0,

i | JG’Hl ‘ + ’ JGH2 ’: 17 ’ JGH2 |: 1 and (alabl) 7& 07
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>2 Case 1.1

(Theorem 5.1) Case 1.2.1
#0 [Jemt| + [Tame| (A5.2,A5.4)
.
<1 Case 1.2 (A5.3,A5.4)
(Theorem 5.4)
Otherwise

Tg— >2 Case 2.1 Case 1.2.2 TR
(Theorem 5.1) ase 2.2.1.
Ja2 (A5.2)

#0
Otherwise
=0 [Jent| + [Jaunz|| =0 Case 2.2 Jar = Jg2
Jer 40 {Case 2.2.3.1
e 7 Gase223 )} | (A52)
Jon C Jen
Case 2.2.3.2
Case 2.3.1 -
Case 2.3 Case 2.3.2
e {12 (Theorem 5.3) (A5.3,C2) Case 2.2.3.3
Otherwise
Case 2.3.3
Figure 2: Summary of the behaviour of MPEC-LICQ for problem (MPEC-BHO), where
Ab.i stands for Assumption 5.0 with i € {2,3,4}. The red (resp. green) color

indicates when the MPEC-SSOSC fails (resp. holds). As for the yellow color, it
represents a transitional leave.

-

while Assumption C2 in Case 2.3.2 means that one of the following conditions holds:

e | Jom | + | Jou, |= 2 and the matrix M' is nonsingular,
o [ Jom | +[Jenz2 |= 1, [ Jam |=1 and (b4,U(2_ K)) #0,

o [ Jom |+ | T |= 1, | Jage |= 1 and (.U} ) #0

Note that in practice, Case 2-1 takes place in most situations as it is often the case
that strict complementarity does not hold for some lower-level problems. In such a case,
the number of indices in | Jg1 | + | Jou2 | easily exceeds two. In other words, for most
feasible points, MPEC-LICQ is likely to fail.

6 MPEC-SSOSC

Our main aim in this section is to study the MPEC-SSOSC in the context of problem
(MPEC-BHO), with the intention of identifying situation where the condition fails or holds.

6.1 No differentiability requirement for leader’s objective function

To proceed with the analysis, let v be the feasible point of (MPEC-BHO) and let 7 € R??
and ¢ € R?” be the Lagrange multipliers associated to the constraint functions G and H,



respectively. Consider now the partition

) B i, Chy
n:_[@],g;—[ﬂwnhni:— To | @m | S | fori=1,2,  (59)

n 7_7{\3 QAS

M, Chy

where the sets A;, i = 1,...,4 are defined in (29)—(32). The following holds:

Proposition 26. If v is a weak stationary point for problem (MPEC-BHO) with Lagrange
multiplier vector (X, 1,7, (), then we have

M, =0, 73, =0, 73, =0, ﬁi; =0,(y, =0, =0, and (5, =0. (59)

Remark 27. Proposition 26 implies that for a weak stationary point v of problem (MPEC-BHO)
with multipliers (A, i, 7, C) the following holds:

supp(7') C (A1 UA3) and supp(if’) C (A§ U Ay); (60)

supp(¢') C (A1 UA2) and supp(¢?) C (A U As). (61)

Denote

1 1
Al ={je A : gt #0}, A§2:={j€A3:ﬁ17€0},
2 . _ . _
(Afi)”1 = {j € A§ : 7127&0}, AZ1 ={je : 722#0},
A ={ieh o (A0 AS =i s A0}
A i={jeh : (240},  AS ={jens : CZ#0},

and consider the following set that will play a critical role in the analysis:
A% = (A UAs)\ (AT UAS UAT U A§2) . (62)
Theorem 28. The MPEC-550S5C fails at any weakly stationary point v of problem (MPEC-BHO)
with multiplier vector (X, i, 77, C) if one of the following conditions holds:
(1) A UA4 #0,
(ii) AoUAy =0 and A° # 0,
where A; for i =2, 4 are defined as in (29) and (32).

Note that Theorem 28 does not require any second order information of f. The reason
is that if (i) or (ii) holds, the set (v) in (28) reduces to {0}, which means that the MPEC-
SSOSC holds automatically. Based on this result, we next look closely at what happens
under the following assumptions.

Assumption 6. Let v be any weakly stationary point v of problem (MPEC-BHO) with
multipliers (A, i, 7,(). At 0, it holds that Ao U Ay = 0 and Ay = 0.
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Next, we discuss the special case where strict complementarity holds for the comple-
mentary constraints in (MPEC-BHO). In other words, we make the following assumption.

Assumption 7. Assmzze that, for a weakly stationary point v of problem (MPEC-BHO)
with multiplier vector (A, i, 7, C), conditions (60) and (61) hold as equalities, i.e.,

A=A = A8 = A, As= AT = A, A= AT, AS = (AT, and Ay = AT .
To proceed with the next assumption, we select for each lower-level problem i € [k], the

smallest index in Agi), which we denote by j;. The corresponding index in A; is denoted by

ji- Based on this, let
JO:=J i} and J° = A\JO (63)
i€ k]

Let ﬁl € RIMUASIXIAT and gg € R¥*IA{| be matrices of suitable sizes such that
QW wyung, af) = AR g, a) Yiw, ap) = A2QW st ap)- (64)

Note that, if Q(%) (AF, AD) is positive definite, A and A? are unique. Therefore, below, we
first make the following assumption.

Assumption 8. Let AT # () and Q(’?)(A; AD) be positive definite.

Assumption 9. Let J° and J° be defined as in (63). We assume rank(M) = 2, where

o= ajo — glldjo Bjo - zf_ll_l;Jo
o gl — AZC_LJO g]2 — A2bJ0

with A* € RIIxk gng A2 ¢ Rkxk being matrices such that
A_IP(JQ )= p(jo7 5 and A2P(JO’ )= 7A2P(A§,‘—7 D (65)
respectively, while @, b, P, §', and 9 are defined as follows:

= (Q(W)(AluAg, AG) — ZlQ(’_Y)(A;y, Ag)) €lagly
V40(0)auag — A1V, 0(0) 4,

FU‘ S QI

= Playuns, ) — le(A;, > (66)
L= (Vo a9~ 200 as ap)) @ingl

¢

<

\

Assumption 10. Let J° and J° be defined as in (63). mnk:(]\/J\) =| A | +1, where

- Q) o, agreing — A2QM o, ageng QUM (go, apy = A°Q(W) (o, as)
M =

~

Y, apeingl Yo, af)
with A3 € RUMI=R)XE peing the unique matriz such that

A3P(JO7 )= P(j()’ ) (67)
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Assumption 9 and Assumption 10 will lead to the fact that C(v) = {0} under proper
situations, which leads to the following result.

Theorem 29. Let v be a strongly stationary point of problem (MPEC-BHO) with multi-
pliers vector (A, i, 7, () satisfying Assumptions 6, 7, 8. Then, it holds that

(i) If I; = 0 and Assumption 9 hold at v, then the MPEC-SSOSC holds at v;
(ii) If I; # 0, A > 0, and Assumption 10 hold, then the MPEC-SSOSC holds at v.

6.2 Differentiable leader’s objective function

The working assumption from now on is that the upper-level objective function f of the
problem be at least twice continuously differentiable. There are multiple ways to achieve
this; one is to apply the same trick in (5) to eliminate the max operator from the upper-
level objective function. Secondly, a smooth loss function (e.g., the logistic loss) can be
used instead of the hinge loss used in (3). One could also consider a smooth approximation
of the max operator, such as the well-known smooth-max operator which we will use for
the computational experiments in Section 7.

Note that the upper-level objective function f does not depend on ¢ or u. Hence, we
automatically have V, f(v) = 0 and V, f(v) = 0. It is also clear that if we were to apply
the same trick in (5) to eliminate the max operator from the upper-level objective function,
then the function f will be independent from C'. Of course, note that if proceed with this
trick, the main change in our analysis of the previous two sections will be the structure
of the function g. However, most of the results could be derived similarly. This will be
carefully analyze in a separate work. Next, we precisely analyze what happens in the latter
scenario; i.e., we make the following assumption:

Assumption 11. Let Vo f(v) = 0.

Assumption 12. Let v be a strongly stationary point of (MPEC-BHO) with 57 > 0 and
rank(M) < 2, and d"(V))TDIVIdY > 0 for all d¥ # 0. Here,

T S ::[ D DH, (68)
ke|ag| (D11) Dy
while (recall 7 defined in (58))
(7= (Q(’?)(A;,A;)>_1 </3Q(:7)(A;7A§)|A§\_v’ye(@>A3+
—Piat, (P, ) H@goB = byo)),

Dy = V3,10) + Tien, 1V3,0:(0), (69)
Dfy = Vo, f(0)+ Tica, 1 V2a,,0:(0),
Dfy = V2, oy, F(0).
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Assumption 13. Let ¥ be a strongly stationary point of problem (MPEC-BHO) with 5 =0
and X > 0, let rank(M) <| A | +1 and

. N R d®
d"VHTDIVId>0 forall d:= [ qo ] £ 0 with d°, N+, d" satisfying
A 3
P, d-
QU apeinsl @O, ap) Pl | | 4o, | 0
i} c\€AC ? 0 A; o ( )
([k], A5)©|AS] ([K], AT) ([k],Ls) dv
Here, we have
vi— | O ey | g pf = w2 fw) (71)
' €|Ag| 0 ' XAz XAz )

Theorem 30. Let v be a strongly stationary point of (MPEC-BHO) with multipliers vector
(\, 1,7, C) satisfying Assumptions 6, 7, 8, and 11.

(i) If I, = 0 and Assumption 12 hold at v, then MPEC-SSOSC' holds;
(ii) If I, #0, A > 0, and Assumption 13 hold, MPEC-SSOSC' holds.

6.3 Summary of main results on the MPEC-SSOSC
The above results about MPEC-SSOSC are summarized in Figure 3.

£0

0

A6.4

\s
Theorem 6.1
Theorem 6.2
Ao =0 ————"
A6.2, A6.3
AGG
Theorem 6.3

A6.8

Figure 3: Partition of different cases for MPEC-SSOSC, where A6.i stands for Assumption
6.i with ¢ € {2,...,8}. The red (resp. green) color indicates when MPEC-SSOSC
fails (resp. holds). As for the yellow color, it represents a transitional leave.

7 Applications to Scholtes’ Relaxation Method

In this section, we introduce the Scholtes relaxation method, and show how the results from
Sections 4-6 can be used to derive its convergence results.
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Recall that the basic idea of the Scholtes relaxation method Scholtes (2001) is as follows.
Let {t;} | 0 be a sequence of relaxation parameters. At each iteration, we replace problem
(MPEC-BHO) by the relaxed mathematical program

min  f(v)
st. g(v) <0, h(v) =0, (NLP-t;)
G(v) >0, H(v) >0, Gi(v)"H;j(v) <tj, i€ [2n],

which is clearly a nonlinear program (NLP—for short), even in the case where our original
bilevel program is linear. (NLP-¢;) is then solved and ¢; decreased at each iteration. The
process is repeated until a certain stopping criterion is satisfied. Clearly, (NLP-¢;) pa-
rameterized in ¢; for j = 1,2,..., has a larger feasible set than (MPEC-BHO). Hence, the
decrease in ¢; leads to a feasible set which gets progressively closer to that of (MPEC-BHO).

Throughout this section, we assume that the function f is continuously differentiable.
Otherwise, a smoothing approximation can be used; see Subsection 7.2 for a possible choice
of a smoothing function. The details of the Scholtes-based global relaxation method (GRM)
are shown in Algorithm 1.

Algorithm 1 The Global Relaxation Method (GRM) (vy, to, o, tmin)

1: Require a starting vector vg, an initial relaxation parameter ty, and parameters p €
(0,1), tmin > 0.

2: Set j :=0.

3: do

4: Compute an approximate solution v/*1 of problem (NLP-¢;) using v’/ as starting
point.

5: Lettj+1<—[)'tjandj%j+1.

6: while tj > tmin

7. Return the final iterate v,y := v7, the corresponding function value f(vypt), and the
maximum constraint violation Vio(vep).

7.1 Convergence results

In this subsection, we provide some convergence results for Algorithm 1, which can be
established thanks to our results from Sections 4-6.

Corollary 31. Let {t;} | 0 and v/ be a KKT point of (NLP-t;) with v/ — ¥, where v is
feasible point of (MPEC-BHO). Then v is a C-stationary point of (MPEC-BHO).

Proof Considering the fact that MPEC-MFCQ automatically holds at any feasible point
of (MPEC-BHO) (cf. Theorem 20), we get the result; see, e.g., Hoheisel et al. (2013). H

This result can be strengthened if we impose assumptions from Section 5 ensuring the
fulfilment of the stronger MPEC-LICQ.

Theorem 32. Let {t;} | 0 and {(v/,N,p?,1n7,{7,67)} be a sequence of KKT points of
(NLP-t;) with vl — v. Furthermore, let all the assumptions resulting from one of the green
leaves in Figure 2 be satisfied. Then v M-stationary for problem (MPEC-BHO).
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Proof See Subsection F for the proof. |

This is quite an interesting result, as it demonstrates that, unlike in most of the literature,
where it is common to get only C-stationarity points, the stronger M-stationarity could be
obtained from the Scholtes algorithm.

The next results shows that, under stronger assumptions, we can guarantee a unique
M-stationary point in some neighborhood of the point of interest.

Corollary 33. Let v be a S-stationary point of problem (MPEC-BHO) with multipliers
(AN, 1,7, C) that satisfies assumptions (i) and (ii) below:

(i) All the assumptions resulting from one of the green leaves in Figure 2 are satisfied.
(i1) All the assumptions resulting from one of one of the green leaves in Figure 3 hold.
Then, there exists a neighborhood of v, where v is the only M-stationary point.

Proof Recall that assumption (i) ensures the fulfillment of the MPEC-LICQ based on
Theorem 23, Theorem 24, or Theorem 25. Similarly, any assumption in (ii) leads to the
satisfaction of the MPEC-SSOSC according to Theorem 29 or Theorem 30. Therefore, the
result follows by applying (Kanzow and Schwartz, 2013, Theorem 4.11). |

Finally, we state the following results, which also requires the MPEC-SSOC and MPEC-
LICQ to ensure that, for a given S-stationary point v, we can find a sequence of local optimal
solutions of the relaxed problems (NLP-t;) that converges to this point. Note that, here,
X(t;) denotes the feasible set of the relaxed problem (NLP-t;).

Corollary 34. Let v be a S-stationary point of (MPEC-BHO), with multiplier vector
(N, [i,7,C), that satisfies Assumption (i) in Corollary 35. Then there exists a neighbor-
hood U(v) of v such that for every sequence t; | 0 such that the relaxed problems (NLP-t;)
have at least one local minimum v? € U(0)NX(t;) for all j sufficiently large. If additionally,
Assumption (i) in Corollary 33 holds at v, then v/ — .

Proof Given that Assumption (ii) in Corollary 33 ensures that MPEC-SSOSC holds, and
similarly, as we have the satisfaction of the MPEC-LICQ under Assumption (i) in Corollary
33, the result directly follows by applying (Kanzow and Schwartz, 2013, Theorem 4.12). B

7.2 Illustrative numerical examples

In this section we will provide illustrative examples of our bilevel hyperparameter tuning
model in action on real data sets from the Cleveland Heart Disease, Glass Classification
data set, Pima Indians Diabetes and the Sonar, Mines vs. Rocks data sets from the UCI
Machine Learning Repository. In this paper we perform k-fold using k = 3 as is suggested
in similar works on bilevel optimization for SVM hyperparameter tuning Kunapuli et al.
(2008b); Bennett et al. (2006, 2008). In these experiments we use the following smooth
approximation of the function max(0, z):

SmoothMax (z) := x + /22 + ¢,
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Table 1: Solutions found by each hyperparameter tuning method. Here, PID stands for
Pima Indians Diabetes.

Data Set  Tuning Method Objective Value Time(s) ~y C
Cleveland Bilevel 1.0979 5311.0 0.0147 9.6651
Grid Search 1.1110 5245.0 0.0100 857.70
Glass Bilevel 1.5215 2252.3 0.0989 11.195
Grid Search 1.5666 4203.4 0.0631 21.544
PID Bilevel 2.0420 6530.5 0.0211 5.7434
Grid Search 2.0851 4552.6  0.0016 73.564
Sonar Bilevel 1.8078 5779.6 0.0066 11.691
Grid Search 1.8252 5211.5 0.0100 251.19

where ¢ > 0 is a small perturbation. As for the function Q¢, for C' > 0, we adopt the
following smooth quadratic function on (0, C):

9 2
Qc(a):=1-— (a - 1) + 7 forall a€ (0, O),

where 7 is a small perturbation parameter used to in order to avoid dividing by 0 (see the
proof of Proposition 2 in Section A of the appendix).

In order to keep the size of the bievel program manageable, we sample n = 100 pairs of
data points and labels. This means that each fold will contain either 33 or 34 pairs of data
points and labels. To ensure that class imbalance did not play a role in our analysis our
100 point data sets contain 50 data point, label pairs from each class. As scaling can effect
the performance of RBF kernel SVMs, we apply standard scaling to each variable.

We compare our bilevel hyperparameter tuning algorithm with grid search. This grid
search will be performed by iteratively selecting values or v and C' from a grid of hyper-
parameter combinations, solving the lower-level training problem (LLP?) using fmincon in
MATLAB and then using the output values for a together with the selected values for ~
and C' to compute the value of the objective function of problem (NLP-t;).

The hyperparameter grid used here has the shape 16 x 16 and is comprised of a loga-
rithmic range of values of

C € {1074H86=D/16-1 v ¢ [16]} and ~ € {107 6+120-D/16-1 v; ¢ [16]}.

The size of this grid was chosen as it resulted in the most similar run-times to those of our
bilevel algorithm across the data sets in our experiments. The comparison of our bilevel
algorithm and grid search on the aforementioned data sets can be found in Table 1.
Figure 4 shows how our bilevel hyperparameter tuning algorithm navigates the hyper-
parameter space for two of the data sets. The path taken by our bilevel hyperparameter
tuning algorithm is shown in yellow with the yellow cross being it’s finial solution. The
black crosses represent the points tested by the grid search described previously. Of course,
most of the points evaluated by this grid search do not lie in the region shown in these
plots. The heatmap shown in the background was generated by conducting a very fine grid
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Figure 4: Performance comparison for grid search and our method for tuning hyperparam-
eters for the Cleveland, Glass, PID (Pima Indian Diabetes), and Sonar datasets.

search of this local region, the run time of which was orders or magnitude greater than that
of either the previous grid search or our bilevel algorithm. As can be seen, in each instance
the bilevel model seems to converge to a local minimum. As expected, we see that this
approach is able to find solutions in-between the points tested by grid search.

The Glass data set illustrates the exact behaviour which makes the bilevel approach
conceptually preferable to grid search. As shown in Table 1, the best hyperparameter
combination found by grid search for this data set is v = 10712 and C' = 10'3. As can be
seen in Figure 4, this is the closest point tested by the grid search to the apparent local
minimum which the bilevel algorithm has correctly located. In other words, there exist a
local minimum between the points tested by grid search and the bilevel algorithm was able
to navigate this space to approximately locate this local minimum.

Similar conclusions can be drawn for PID and Sonar data sets.

32



8 Conclusion and Future Work

We have proposed a bilevel optimization model, that is based on cross-validation prin-
ciple, to calculate hyperparameters for SVM with nonlinear kernel. Then considering
the MPEC/KKT reformulation of the problem, key concepts (namely, the MPEC-MFCQ),
MPEC-LICQ, and MPEC-SSOSC) are studied and can conditions ensuring that they hold
or fail are established. Overall, only the MPEC-MFCQ holds automatically. For the other
ones, the required assumptions are provided, and summarized in Figures 2 and 3.

Despite the usefulness of these results, as illustrated in the context of the Scholtes algo-
rithm (see Section 7), many open questions remain, and will be explored in future works.
For instance, the hinge loss used in the leader’s objective function (2) is essentially for illus-
trative purposes, and did not affect much of our analysis. Our results can easily be adapted
to other loss functions, including the counting loss (to minimize the number of missclassified
points) commonly used in techniques such as grid search and many bilevel hyperparame-
ter optimization for machine learning papers (see Li et al. (2022a) and references therein).
Furthermore, recall that we can easily get a smooth functions in the leader’s objective func-
tion, even in the context of problem (BHO), where the trick used in the lower-level problem
(see (5)) can be applied to eliminate the max operator in the leader’s objective function.
However, in the latter case, such a transformation could lead to a problem with larger size.

Also, in this paper we have used the Gaussian kernel (7) just for illustrative purposes,
as it is also one of the most commonly used in the machine learning literature. However,
it should be possible, to extend our analysis to multiple other typers of kernel functions.
Moreover, we have considered just a single regularization hyperparameter and correspond-
ing f» regularization term. In a future work, we will study the problem with multiple
hyperparameters, possibly associated regularization functions that are nonsmooth.

There are also multiple other types of MPEC-tailored second order sufficient conditions
that could be studied in the context of problem (MPEC-BHO) (see, e.g., Guo et al. (2013)
for an overview of such conditions). Their analysis and consequences will be evaluated in
the future. Various other types of methods (different from tested in Section 7 of this paper)
requiring the theory provided in this paper could be studied; see, e.g., Hoheisel et al. (2013)
for a sample of such methods.
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Appendix A. Proofs for Section 2

Proof of Proposition 1

C = 0 implies wD* = 0 for all i € [k]. Thus, for each i € [k] and j € [2()], we have
Zo, (7, 0®, X0 00) = max {0,1 = 51" (@) 6,(X]7) + D) } = max {0,1 - 5"}

The problem decomposes into k sub-problems, one per split of index i € [k], which reads

. 11 N s
- @y._ L1 ()
i F(0,7,0,6%) = 2o GZ[(_)}maX{O’l 500} (72)
jelnt

We rewrite the summation as the following univariate function:

(W) = Z max{(),l—b(i)}—l— Z maX{O,l—l—b(i)}.

jeAl jeB®

F1(HD) F2(b)

Subsequently, we proceed with a distinction of cases on the value of b(®).

o If b < —1, .71 (HW) = [A(')](l — b)) (smce 1—05@ > 0) and #2(b) = (smce
1+ b < 0). Thus, . (b®) = |AD|(1 — b®). We have ming)y<_q (b (@) = 2|40,
attained at b(?) = —1.

o If -1 < b0 < 1, We have the equalities .71 (b)) = [A®D|(1 — @) (since 1 — b® > 0)
and #2(b()) = |B )(1 4 b@) (since 1+ b)) > 0). Thus, it holds that
(D) = |AD|(1 = b®) + | BO|(14b0) = |AD)| + \B@\ + (|BD| = [AD)p®) . Hence,

min .7(b") =

2| A if | B®| > |A®)|, attained at b®) = —1,
—1<p(O<1

|A®D| 4+ |B®| if |[A®| = |BY)|, attained at any b € [~1,1],
2|BO)| if | BO| < |A®|, attained at b® = 1

o If b > 1, 1 (b)) = 0 (since 1 — b < 0) and .#2(b®) = |BO|(1 + b)) (since
1450 > 0) Thus, . (b)) = [BO|(1 + b)). We have miny 5, #(b@) = 2|B),
attained at b(®) = 1.

Thus, we deduce that

' 2|AD| = 2|BO| if |AD| = |B®D|,@ any b € [-1,1],
min.7 (") = { 2(BO)| it | BO| < |[AD],@ b0 =1,
. 21 A0)] it [BO| > [AD], @ pd) = _1,
where @ stands for “attained at”. O
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Proof of Proposition 2

Let (C,w,b) be a feasible point of problem (4). Note that if C' = 0, the result obviously
follows from Proposition 1. Otherwise, let C' > 0. Then consider a fold ¢ € [k] and introduce
the Lagrangian function of the corresponding problem (5),

Lg) (ﬁ(i)) = %H"J(i)”2 + CZjE[ﬁ(i)] fa(‘i)
+ ey of) [1- €7 7 (@) 0y (27) +09)]
(i) ¢(9)
_Zje[ﬁ] m; fj )

where 90 = (w(i),b(i),f(i),a(i),n(i)) with o and n® being the Lagrange multipliers
associated to the two classes of constraints in problem (5). Based on the above expression,
a fixed fold i € [k], the Lagrangian dual of problem (5) can be written as

max { min Lg) (ﬁ(i))}. (73)
a(), nH>0 (w®, b, () >0

For any i € [k] and fixed oz(’) n® 2 0, assume that the inner minimization problem in (73)
has an optimal solution ( ) pli) ¢l ) then since the constraints of (5) are all linear, then

it follows that the point ( ), p(®) 5 ) is a stationary point; hence, implying that
> e, (X) =0, (74)

JEMRM]

vie@®: ¢-al) g =0, (75)

Recall the upper-level objective function of problem (3)
F(C,w,b) Z Z _(Z 5%, (yé : (),Xy),b(i)), (76)
i€lk] £e[n()

where w == (w®, ... w®)) b= (61, ... 5#), and

= @z’),w(i), £, bm) —maX{O 1 —g? ((W@‘))T% (Xf’) +b<i>>},

Based on (74), we have

(W(i))T% (Xéi)) S a y] %( (z>> &, (Xéz')>

je[nd)]

= ) o y]()eXp<

jelnd)]

A]('z) . Xlgz)

2) | (77)

Next, we consider the complementarity conditions associated to the constraints in (3):

0<af [1-" — 5 () 7oy §’>>+b")] <0, je @], (78)
0< 5]( ) >0, jep®). (79)
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For any i € [k] and j € [3®] such that agi) € (0, C), we have from (75) that nj(-i) > 0 and
therefore, from (79), it follows that fj(-i) = 0, and hence, from (78),

b = ' — (w@)T% (X]()) Vie[k], Vje [ﬁ(ﬂ st. ol € (0, 0).

Considering the expression of w(® from (74), and similarly to (77), it follows that for all
i€[k]and j € [ﬁ(i)] such that ag»l) € (0, C), we have
)

] Z Oét)yf exp( gl

te[n®

’Xt(z) _ X-J(z

To proceed with the final step, take ¢ € [k] and define the sets

The considering any function Q¢ : R — R satisfying Q¢ (¢) = 0 for ¢ < 0 and ¢ > C and
Qc(¢) > 0all ¢ € (0,C), it holds that

o e ) - ()

- Y e (af) e

. ~ (i 3 >(@ > (2 2

with HO (X, 7) = % }aﬁ 1" exp <_7HXt() - X"
te[nl®

b for i € [k], together with (77) in (76), we get the expression in Proposition 2. O

>. Replacing this expression of
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Proof of Proposition 3

Recall the primal form of lower bound problem in (5). The KKT conditions for problem
(5) are written as follows:

Wi = Y ag.i)g)](.i)w(i)Tqﬁ(X](«i)) -0, (80)
€]

O alf—al? =0, < i), s
3 €050 0, je ), (82)

JE[RD]

i’ >0, &7 >0, of’el! =0, j € @), (83)

ol 20, ¢ 21— W To(X]) +49), j e 1), (84)

ol (67 =14 50O To(X ") + b)) =0, j € [a]. (85)

Here o) and o are the Lagrange multipliers corresponding to the first and second part of
inequality constraints in (5). Note that o is also the solution of (LLP?). By assumption,

it holds that [7(®] = I_(a®) UI.(a(?). Hence for each j € I_(a(?), it holds that ay) =0

by definition, and gg-i) = C by (81), which gives 0 = fj(.i) >1- ﬁj(-i) (w(i)T(b(Xj(»i)) + b by
N 2

(83), (84) and (85). Therefore, we obtain that (note (gj](.z)) =1)

b0 > gl — T p(X1), j e 1_(a®). (6)

Similarly, for each j € I.(a(®), it holds that agi) = C by definition, and gg-i) = 0 by (81),
which gives §J(z) =1- g]](-i) (w(i)Tqb(XJ(-i)) + b >0 by (83), (84) and (85). Therefore,

b < i) —wDTe(X1), j € 1(a), (87)

which gives b() e [bffl)m, b%)ax] by the definition of bg)m, b%)ax in (11) and the definition of
H®(X,~) in Proposition 2.
Next, we will show that the lower-level function is a constant function with respect to

b(®. Indeed, the optimal lower-level objective function can be written as follows (the first
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part ||w®]? is not related to b and therefore ignored)

sE@) = ¢ Y €

jeR®)]
= C Z §](‘i)
j€H<(a(i))
= C Z (1_%(@) (w(i)r¢<X]§i)+b(i)>)
J€l< (al®)
= -C > gj](,z‘)b(i)JrC 3 (1_g§i)w(i)'l'd)( ](z))
j€l<(a®) jelc (a®)
= C Z (1_Q§i)w(i)T¢(Xj(i)>
el (al®)

with the second equality based on (10), while the last equality is based on (82) and (10).

Therefore, after obtaining a9 by solving the dual form of lower-level problem, i.e., (LLP?),
any b € [b(l) b%)ax] is an optimal solution of the primal problem (5). O

man’?

Appendix B. Proofs for Section 3

Proof of Proposition 6

It is obvious that the set of vectors in (14) only depends on I; and I3, and does not depend
on v. Therefore, for each i € [k], the vectors in (14) have the same rank (depending on Iy,
I,) for all vectors (C,v,aD) € N@ i e [k]. That is, LCRCQ' holds at (C,7,a), i € [k].
Therefore, LCRCQ holds at v. 0

Proof for Theorem 7

First note that for each i € [k], the lower-level problem (LLP?) is convex in the lower-level
variable a(®. Therefore, it suffices to observe that since all the lower-level constraints are
linear w.r.t. o for all i € [k] and C' > 0, it holds that A(C,~,a) # @ for all vectors

(C,v,a) € R% x R™ such that oV € Sg)(C’, ) for i € [k]. Hence, the proof of the result
directly follows from Dempe and Dutta (2012). O

Proof of Proposition 9

If C =0, then o) = 0 is the only feasible point of problem (LLP?). In this case, the
constraint for lower-level problem become

o =0, (@) T§ =0

and therefore lead to the columns in Z € R*”*#? and 4 are linearly dependent. This
implies that LLICQ? fails.
Next, for (i), note that if I_(a(?) UT(a®) = [#®)], the set of vectors

{15 el (@)} U{—e;|jelc(a?)}
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forms a basis of R?"”. As a result, the set of vectors in (10) are linearly dependent. There-
fore, LLICQ fails at o(9. This gives (ii). A special case of (ii) is I—(a®) = [3®)] and
I (D) = @. In this case, /) = 0. One can verify that oY) = 0 is a feasible point of
(LLP?). Consequently, LLICQ fails at ") = 0, which gives (i).

If I_(a®) UT- (D) # [A®], one can see that the set of vectors in (10) are linearly
independent, which implies that LLICQ holds at a(?). O

Appendix C. Proofs for Section 4

We first introduce the set

(AD)°(D) = [n\Af = (A1 UAs UASUAy). (88)

Proof of Proposition 18

(a) Based on Definition 10, we can write the set of gradient vectors in (20) at a feasible
point v in the rows of the matrix I' as

Now, we can easily show that the matrix I" in (89) is equivalent to the more specific form
in (38). To proceed, first note that by (13), it holds that

H(v) = L"v 40", h(v) = L', g(v) = L9(v),
where (noting that m = 2n)

O0nx1 Onx1 7, 0 Onxk 2 H —e 2
LH = nx nx nXn nxn nx cR n><m’ pH .— n cR n,
|: Onx1 Onx1 Onxn Znxn Onxk 0nx1

Lh = [ Orx1 Opx1 Y Opxpn Opxi } € RFxm,

Ig|%
L9:=[05x1 —er,x1 Onxn Onxn Opxk | € Rlfslxm,

Note that both H(v) and h(v) are linear. Consequently, it is easy to see that

(VH))" =L and (Vh(v))" = LM
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However, G(v) is nonlinear due to the kernel operator, and based on (16), it holds that

g 071
G'(v) = Q(y)a—en+o+ Pu with P= : : e R,

0.0y, - P
and Q(v) € R™ " is defined by (39). Therefore, we have G(v) = LY (y)v, where

0 0 Q) I P
LG — nx1 nx1 nXxn e Ranm.
(7) enxi Onx1 —Znxn  ’nxn  Onxk

For VG(v), it holds that
(VGZ(U))T = [ enx1 Onx1 —Znxn Opxo O xk ],
(VG ()" = [ Onx1 V40(v) Q(Y) Tuxn P,

where V,0(v) is given as follows. Assume that ¢ corresponds to the [;-th sample in the
training set of the n)_-th lower-level problem. That is, i = 251_1 A0 +1;. Hence,

2 5
2
9 Oéj .

Finally, it is easy to verify that P = YT, Hence, the form of the matrix I' in (38).
(b) follows easily by the results in Proposition 16 and (a). O

alsd)

00 == 3w - 5

exp( fyHX 5i) —X](Si)

Lemma 35. The row vectors in the following matriz T'' are positively linearly independent,
where Tt is the submatriz of T in (38) (in green) defined by

Ly,

Lirggn )
Y

.=

Proof Assume there exists nonzero nonnegative n = (1s,,,, 7,1, 75) such that n'T! =0.
Here, 17, Mgy 15 correspond to the blocks of Jy1, Japg1, [k] in I''. Then we have

0=n"T" =0} T+ 0L T8 Y (90)
First, we analyze the connections of Jg1 and Jgg1. By Proposition 16, we have
Jgr = No, Ja = Ay
(90) can be written as

+n)

GHl

0 = ?7}— I(A2,~)
()]

= < > Ty UAs,) T ((775)1@(1)7 EE 7(775)k?9(k)>

I(A1,~) -+ ng—y

= 0 T Uhes) + ((ns)ly() v(US)kQ(k)>-
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gt )) € R" be the labels of test data for all lower-level problems and
RO = (AP UMY N e @)« g =1},
K+ = (A1UA2>ﬂ{j€[n} : :l)JZI}

Let A, = [n]\A4. By Proposition 17 and Definition 13, we have
(UM N6 =1} 4o
i UA§“> > 2, for each fold i € [k]. It follows that

and | (A()
Ay #0,and Ay UA2 :/A\JFU (/A\cﬂ (A1UA2)> = K+LJ1A\0»

Denote ¢ = (Z)(l), cee

which gives

T _ AT T
N LA UAe,) = 77K+I(7\+,-) + UKOI(KO,-)-
Similarly, it holds that
. N (1 _(k
((775)13/(1),"' »(775)ky(k)) = ((ﬁs)lyg%p%g)w- 7(775)1?2/[(1%)»0,12@)

(1) o (k)
+ <0A<+1>, (1)1950 5 030 075)’?%2’”)

= Ji, (5) + 5, (n5)-

Therefore, we have
T, 5+ 04, (05) + 35, (05) + 13 T3, -

0= nA+(

This implies that
i3, L@, U4, (1) =0 and g5 (55) +iig Lz, ) =0 (91)
By the definition of A+ and the nonnegativity of 7+ R, 8 well as 75, and noting that y(f() y =1,

the first equation in (91) gives 75 = 0 and 75 = 0. The second equation in (91) reduces to

+
the following ﬁ[{ I(Ko 3= 0, implying that ﬁ/A\O = 0. Overall, we obtain that n = 0. In other
0 )
words, the row vectors in I'! are positively linearly independent. Hence, the proof |
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Appendix D. Proofs for Section 5
Proof of Theorem 22

(i) Note that the number of columns in I" is Ry = 2 4 2n + k, while the number of rows in
I" can be obtained as

Ry = |Jar [+ Jm |2 Jom |+ [ Je2 | + | Ty | +2 | Jomz | +h+ | Iy |
= 2n+k+’Ig‘+’JGH1|+‘JGH2|

The rank of I" is denoted by rank(I"), which satisfies
rank(I') < min{Ry, Ro} = min{2 4+ 2n + k,2n+ k+ | Jom | + | Jomz | + | 14 |}-
Note that | I, | is either 0 or 1. If (46) holds, it holds that
2n+k+ | Jom [+ | Jom | + [ 1y [> 2+ 2n+ k.

As a result, it holds that rank(I') < 2 + 2n + k, meaning that the row vectors in I' are
linearly independent. In other words, the MPEC-LICQ fails at v.
(ii) Since | I, |= 0, therefore, by similar argument as in (i), we have

implying that rank(I') < 24 2n+ k. Therefore, the row vectors in I are linearly dependent.
This implies that the MPEC-LICQ fails at ©. U

Proof of Lemma 38

By multiplying the first (resp. second, thrid, fourth) row block from the left by —Y{(3 A,
(resp. —Y((x), Ars Y([k], Ags Y{([], Ag)a and add it to the fifth row block, we reach the matrix

O(az, L) L(ns, )
. O(Ah L) I(Ah ) . .
P = €(A4, Ly) ~ZL(ny, ) | with V' = [0([@, A2UATUAQUAS)> Y[k, AJ)} '
_ €(As, L) —Z(as, )
| Y, aoageagong - YU
For p = (p1, -+, ps), let p1,---, ps correspond to the first row block to the fifth row
block in PL. If p satisfies p" P! = 0, it holds that
ps Yk, naung)€nsng =0, (92)
P 0oy + 03 Ty = P3 Z(as) — P L(ag) + 3 V! =0, (93)

(i) If Assumption 3 holds, it holds that mnk(ff([k] A;)) = k. Therefore, (93) gives that

pj = 0 for j =1,...,5. In other words, the row vectors in Pl are linearly independent.
Therefore, the row vectors in P are linearly independent.
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(ii) By (93), it holds that p; = 0 for j = 1,...,4. Hence, (93) reduces to pd V! = 0. If
Assumption 4 holds, rank(Y([kL A;)) = k — 1. Therefore, Y, AD) takes the following form
(assuming that K = {1}):

i 0 0(17A§—2) e OI,A;k
N 0 (Q/(\Q_az)T cee 0tk
Yo aty = 3 o
([k],A3) :
(k
| 0 O g2y - (yfx;k)—r ]

Therefore, pd Y = 0 gives (p5); =0, j = 2,...,k. On the other hand, by the definition of
si, 1 € K, (92) reduces to (p°)js; = 0, j € [k]. Hence, (rhos); = 0. In other words, the row
vectors in both P! and P are linearly independent.

(iii) If Assumptions 3 and 4 fail, the row vectors in P are linearly dependent, given that
the row vectors of

O(azz) Orziz)  Zasy)  O(aszy) Oas,Ls)
0Ly Omnzo) L) OwnLy) OayLs)
s ) OmirLy) —Zas) Omgry) Oas L
ems.L)  Owmsro) —Zas) Owmsry Ogrs)
Ok1,Ly)  O(k,La) Y Oqunyy OgwlLs)
obtained from I" (40) are linearly dependent. This gives (iii). O

We need the following proposition and lemmas in order to prove Theorem 23.
Proposition 36. The following holds for the lower-level problems:
(i) There are at least two lower-level subproblems; i.e., k > 2.

(ii) By Proposition 17 as well as Proposition 16, it holds that
JOUID =2 ek
|H1 GH1|_,Z€[]-

Here Jg)l (resp. ngql) corresponds to Jy1 (resp. Jgyt) in the i-th lower-level prob-
lem, i € [k]. That is, for each lower-level problem, there exists at least one positive
sample data which is an unsupported vector, and at least one negative sample data

which is an unsupported vector.
(iii)
(iv)

| Jai | + | Jpi | + | Jgmi |[=n for j =1, 2.

If for each lower-level problem, strict complementarity conditions hold for the corre-
sponding KK'T systems, then it holds that
Jari =0, | Jgi | + | Jgi |=n, and Jg; = [n]\Jgi for j =1, 2.

For each (LLPY), i € [k], Proposition 21 implies that | Jgf |> 4, i € [k] where ng
corresponds to Jgi in the i-th lower-level problem, i € [k]. Therefore, | Jou |> 4k.
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Lemma 37. Let v be feasible to (MPEC-BHO) with corresponding I' defined in Proposition

18. Assume that we do some basic row transformations to I' and obtain T'. Then,

(i) rank(T) = rank(T),

(i) MPEC-LICQ holds at v if and only if the row vectors in T are linearly independent.

Proof As the basic row transformations will not change the rank of a matrix, we obtain (i).
For (ii), by the definition of MPEC-LICQ), this condition is satisfied at v if and only if the
row vectors in I" are linearly independent. Due to (i), the row vectors in I" are linearly inde-
pendent if and only if the row vectors in T are linearly independent. Therefore, (ii) holds. B

To proceed next, let

As.L) —Leas.)
O,y X

O0(rs,t1) — ZAsy)

Oar,y) -~ LAy,
Pi=| enyL) —Las

€

(

Lemma 38. Let v be a feasible point of problem (MPEC-BHO) with C > 0.

(i) If Assumption 3 holds, the row vectors in P are linearly independent.

(ii) If Assumption 4 holds, the row vectors in P are linearly independent.

(iii) If Assumptions 3 and 4 fail, the rows vector in P are linearly dependent.

At a feasible point @ of problem (MPEC-BHO), denote

Q('_Y)(/ﬁ A4UAS) CIA4UAS|» a? = Q" )AJ,A4UAC)e|A4uAC|a

Q(’Y)(A4,A4UAC)G\A4UAC\, at Q( )Al,A4UAC ©iAauAS)
— A%, a6—a3 A3, a’ =a* — A'al,

00 — APV,0(0)
Vo0(0)n, — AV,0(0) 5
V,0(0)p, — A4V76(1‘;)A3+,

]j(A4,~) - AgP(A;,.)a

Y{(k],A40A5) €| A4UAS)» g2 =gt — Alal,
— A1, 0(0) -
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Lemma 39. Let v be a feasible point of problem (MPEC-BHO) that satisfies Assumption
2. | Jamz | + | Jom |€ {0,1,2}. Define T' and T respectively as follows:

at V0(0) s Q  Oupry Pus
a? VFYQ(T))Ag Cgl Oag.Ly) Pl
@ Vy0(0a @ Ty Pagy
at  Va0(0)n, @ I,y Pa
Ors,z)  Oala)  Z(a)  O(anLy)  Oasrs)
_ Oz Oz Zary)  OwmiLy Oy
=1 en,z;) Owurs) L) Owmary Owmars) |- (96)
WL Owmszy)  —Zag)  Owgry 0Ly
O(Al,Ll) 0(A17L2) O(Al,LS) I(Ah ) 0(A17L5)
0(A27L1) O(A27L2) 0(A27L3) (A2,7) 0(A27L5)
wfr) o Oatz)  Ouire Loy Ongre
Oag,r)  Omgza)  Owmsra)  Zaag)  Ows.irs)
L9 Oy Y'  Oqgry  Ogurs)
[ al V,y@‘(@)Ajt Q O(A;F,L4) P(A;,) i
@ b! Oag,Ls) Oy U
a 1?2 0(A4,L3) I(A47 ) U*
a’ b* O(Al,Ls) O(Al,L4) U?
0(A2,L1) 0(A27L2) I(Am') 0(A27L4) 0(A27L5)
_ O(Al,Ll) O(A1,L2) (A1,) 0(A1,L4) 0(A17L5)
U= emnir)  Omiz)  —Za) Owars) OwasLs) (97)
engL)  Omgry)  —Zagy Owmgiry  Owmsgis)
Oz Omizy)  Owizs)  Ziaw) Oy
Orp,z)  OanLy)  Oars)  Zas)  Oasrs)
(A+ ) Oniry Oniire Zng  Oniine
O O ra) 0<A L) Tag)  OwsLs)
LY Y O((k],Ls)  O(k],La) y i

Here, Q is defined as in (104), Y1 is given in (106), a* fori=1,...,7, while b, Q', and
gt fori=1,2, 3 are defined in (95).

(a) It holds that rank(I") = rcmk(f).

(b) If AT # 0, we further have the following results:

(i) rank(T) = rank(T),

(ii) For p = (p1,---,p13), let p1,---, p13 correspond to the first row block to the
thirteenth row block in T. If p satisfies p'T = 0, the following holds:

p; =0 fori=1,3,5,6,7,8,09, 10, 11, 12 (98)
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and

psd®+pla’ +plsy® = 0, (99)
pa b+ pib* +plsi® = 0, (100)

pa U+ pi U + plsZ

—~
—_
]
—_

~—

Here U, U? and Z are defined in (53).
(ili) MPEC-LICQ holds at v if and only if the row vectors in the following matriz

a® b U
M:=|a" b U? (102)
vy Z

are linearly independent.
(iv) If v satisfies Assumption 3, ¥ defined by (95) is negative definite.
(v) Following (iv), it holds that rank(M) = rank(M?), where M° is defined by

a' bt 0
M= | a2 ¥ 0 |. (103)
vy Z

Here a', a?, b', and b* are defined as in (53).
Proof (a) By Proposition 16 (b) and v > 0, I" in (40) takes the following form:

z

airy V00 @QWar. )y Tupy  FPaiy
Onszy) VA0 Q@Vs. ) gy  Pagy
0, 1) VA0(0)a, QM) Ziawy P
Oa Ly VA0@0)A, QW) Ty Py
O(nzz1)  O(As,Lo) I(Azw) O(rz,za)  O(rz,Ls)
OarL)  O(asLy) (Ao O@nz OgLs)
=1 ensr) Ownuio) Zas)  O@sLy OasLs)
ems.L)  OmgL)  —Zagy  OwmgLs  OcgLs)
OarL) Oz Owmirs) L) Ours)
Or2,L1)  OzLz)  Oaniz)  Z(ae)  O(asLs)
Oy Ouiry  Ouiry  Zago Ouiiy
Ougzy)  Ougzy)  Ougrs)  Zaag)  Owgrs)
L Oqe,z) Ok, Lo) Y Ok),Le)  Oik),Ls) |

Substracting the eleventh row block from the first row block, substracting the twelveth row
block from the second row block, and substracting the ninth row block from the fourth row
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block, we reach the following matrix:

Oungoy VA0@ay @Mag, ) Ouiry Fagy |
Ons,r) VA0(0)ag QMg ) Owmery  FPagy
Oryny VA00)as QMas )  Ziawy  Pag
Oz VA0@a QW) Ourry P
Or2,21)  Oag,Ly) Zrs,)  Oasnza) O(asLs)
. O,z O,y Ziay) Ownzay 0Ly
=1 ennr) Oy —Zry)  Oszy) OagLs)
ens.L)  Omgz)  —Zugy  Owsry  Ownsgis)
0(A17L1) O(Al Lo) O(AlaLB) I(Al ) 0(A17L5)
O(A27L1) 0(A2 Lo) 0(A2»L3) I(A2 ) 0(A27L5)
O(A;:Ll) O(A;Ja) O(A;,La) I(A;,rf) O(A§7L5)
Oms.c)  Owsz)  Ougrs)  Zaagy  Owmg.is

L O,y Ok, Lo) Y Ok1,La)  Oqik),Ls)

Moreover, it holds that [n] = AjUAs UA;UA§UA4. Next, we conduct the following process.

Process A(1,5): Multiplying the fifth (j = 5) row block by _Q(:Y)(A;,AQ) from the
left and adding it to the first (¢ = 1) row block, we can obtain the first row block with
QW)(AQ’,AZ) replaced by zero. We denote this process as A(1,5).

Process A(1,6): This leads to the first row block with Qﬁ)(A;,Al) replaced by zero.

Process B(1,7): Multiplying the fifth (7 = 7) row block by QW)(A;M) from the left and
adding it to the first (i = 1) row block, we can obtain the first row block with Q('_V)(A;,M)
replaced by zero. Meanwhile, O(A:{,Ll) is replaced by Q(ﬁ)(A;’A4)e|A4|.

Process B(1,8): This leads to the first row block with Q(ﬁ)( AFLAS) replaced by zero, and
Q('V)(A:,T,Auell\anl replaced by Q(7)(A;,A4U/\§)9|A4UA§\: which is exactly @' defined in (95).

Now the first row block in I'? is replaced by the following row block

with
c):| . (104)

), B(2,8),.A(3,5), A(3,6), B(3,7),
,B(13,7), and B(13,8), we arrive

Q= [O(A;,A“' ,

QG )
Carrying on to conduct process A(2,5), A(2,6), B(2,7
B(3,8),.A(4,5), A(4,6), B(4,7),B(4,8),A(13,5), A(13,6)

T af
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at the following matrix:

[ ah V@ Q0 Ougy,y F <A+ 5 ]
@ VyB0)ag QY Ougry (Ag )
@ Va0(@)a, Q@ Iy Pauy
at V,0(0)a, Q? Ziay,) P(Al, N
Orpz)  Oazy)  Z(as)  OasLy)  Oasrs)
0Ly Oz L) Owmizy)  Oiis)
L) Omarly)  ~Zas) Owary Owmurs) |-
ens.L)  Omgry)  —Zngy Owmgry  Owmgis)
Oarz)  Omizs)  Omnzs)  Zar)  OarLs)
0asz)  OrsLs)  O(as,Ly) I(Az, ST
Oty Onfir Onire) Zag. Onfrs)
Oag.i)  Omgro)  Oeas.Ls) I(A ) 0<A Ls)
L Oy Y' Oy Oqurs) -
where @’ for i = 2, 3, 4 and g are defined as in (95), and
Q= | QMg a1 Qg )]+ Q%= | QD as, ) Opar, i) (105)
Q= QM apy Onntn ] V= [Tty O, apo - (106)

Therefore, we obtain I in (96). (a) is proved. R
(b) If AJ # 0, then we can conduct further row transformation on I'. Note that by
assumption, Q(V)(A; AD) is positive definite. Therefore, the rows in Q(V)(A; Af) can fully

express the rows in Y([k]yA;) and the rows in Q('y)(A4’A;), Q('V)(Al,/\;) and Q('y)(Ang;). In

other words, by conducting basic row transformation, we can make }A/l, Ql, Q2 and Q3
replaced by zeros. Specifically, there exists Al € RkX‘Ay, A% e R‘AgMA;', A3 ¢ RIAaIXIAS]
and A4 € RIAIXIA]] satisfy (51) and (52).

By multiplying the first row block by —A! (— A2, —A3, — A% respectively) from left and
add them to the last (first, second, third, respectively) row block, we obtain the following
matrix in which Q', Q?, @3, and Y are replaced by zeros:

[ Vi) Q@ Oupry Papy
a° b! Oagzs) Oagry U

a° Z?Q 0(A4,L3) I(A4,') Ut
a b* O(Al,LS) O(Al,L4) U?
Oro,z)  Oanzy)  Zasy)  OasLy)  Oasrs)
Oz Omizy)  Zaw  OmuLy  Oais)
ensL))  Oarly)  ~Zu) Owary Owmaurs) |-
ems.L)  Owmgry)  —Zag) Owmgry  OagLs)
Oarz)  Oize)  Owuzs)y  Zar)  Ocaurs)
Oro,z)  Oaaa)  Oazs)  Zas)  Oasrs)
Oty Ouiiy Ouiry Zagn Oair
0(A§,L1> Os,L)  Omgza)  Zwag)  Ongis
L) y° O Ls) O@ry  Z |



which is exactly T. Here, &’ for j =5, 6,7, b for j =1, 2, 3, ¢/ for j = 2, 3, and U! are
given by (95), while U', U?, and Z are defined in (53). Therefore, we have (i) from

rank(T) = rank(I'°) = rank(T) = rank(T).

(ii) For p = (p1,--- ,p13) such that p'T =0,0=p'T := [S; Sy S3 S4 S5]. Hence,

S1 = plat+pya®+p3a° +pia’ + prea, ) + s g + o190 =0, (107)
So = plVA0(0) s +p3 bt + pg 0 + pi b + pigi® = 0, (108)
Ss = plQ+p3 Lngy + 06 Lar,) — P1 L(any) — P8 Liag,) = 0, (109)
Si = p3Tiag) TP Lar) + P10Line,) + P T(as ) T PlaZ(ag,) = 0, (110)
Ss = pl Pty traU +psU +piU° +pl3Z = 0. (111)

By (109) and (110), we have p;, =0 fori =1, 3,5, 6, 7, 8, 9, 10, 11, 12. Hence, (107), (108)
and (111) reduce to (99)-(101). This gives (ii).

(iii) Assume that p = (p1,-- -, p13) satisfies p' T = 0, by (ii), the row vectors in T are
linearly dependent if and only if we can derive p; = 0 for i = 2, 4, 13 from (99)-(101).
Having p; = 0 for ¢ = 2, 4, 13 is equivalent to that the row vectors in M are linearly
independent. Therefore, (iii) is proved.

(iv) If Assumption 3 holds, let us first show rank(A!) = [k]. By Assumption 3,

k
AT =3 A9 > k. (112)
=1

Therefore, }A/([k]’ AD) takes the following form

r T
~(1)
<y/\;r(l>> e O(I,A;(k))

Yap = : : )
.
(LA3Y) (LA;J{( )) i

implying that rank (17([14 A+)> = k. On the other hand, it holds that

Az

0

rank (2[@,1\;{)) < min {mnk(Al), rank (Q('y)(A;’A;))} = {rank:(Al)7 AT |}
Together with (112), rank(A') > k. Recall that for A! € RF*IA51) we obtain rank(A') = k.

Next, we will show that —Z is definite. To proceed, recall that P = YT in Proposition
18, together with (51), we have

-
1 1 (5> 1~ 1T
Z=-A'Pps =AYy an) =400y (4

By the positive definiteness of Q(V)(A; Af) B8 well as rank(A') = k, —Z is positive definite.
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(v) Following (iv), let B!, B? be the coefficient matrix such that (54) and (55) hold.
By multiplying the third row block in M by —B! and adding it to the first row block, then
multiplying the third row block in M by —B? and adding it to the second row block, we
can transfer M to the following matrix:

C'L5 _ BlyQ i)l _ BlyS 0
(.17 _ B2y2 b3 _ B2y3 0
9 9 Z

By the definition of &' for i = 5, 7, 4 for i = 2, 3, and b for i = 1, 3, we reach M°. By
Lemma 37 (i), M and M° have the same rank. Hence, (iv) is proved. [ |

Proof of Theorem 23

By Proposition 16 and | Jgui | + | Jguz |= 0, we have the following relationship for
different index sets:

g = @, A1 = @, JGHl = @, JGH2 = @, and Ag = A;,
Jg = Ao, Jon = Agr U Ay, Jg2 = Ao UA;, and Jo2 = Ay (113)

As a result, it holds that
[n] =AsUAyUA3 and (A;)C = A4 U Ao, (114)
By Lemma 39 (a), ' reduces the form

G VW@)A; Q O(A;,L4) P(A;,.)
d3 V'yg(ﬂ)/u Q2 I(A47.) P(Au,~)

N Ors,t)  Oasila)  Z(azy)  Oeasiiy)  O(as,Ls)
=1 easr) Ownizy) —Zas) Omury Osrs)
Ors,i)  O(asiLo)  Oasza)  Z(asy)  O(as,Ls)
°<A;1,L1> O(af L) °<AgiL3> Tiagsy Owg L)
L ¥ O([k],L2) Y O(tk),La)  O(h,Ls)
(i) If Jo, = Jg,, together with (113) and (114), it holds that
AT =0, [n] = A4 UAy, and (AT)° = [n].

Ag‘ = () implies that Assumptions 3 and 4 fail. By Lemma 38, MPEC-LICQ fails at .

(ii) Due to Jg2 = 0, (113) and (114) reduce to the following Ay = 0, Jy1 = Ao, Jon = A7,
Jg2 = Ay UAS, Je = 0, [n] = Ao U AT, (AT)¢ = Aa. By Lemma 36 (b) (v), A # 0. By
Lemma 39 (b) (i), T takes the following form

dl V,y@(’l_))A; Q O(A*,L4) P(A;r,-)
Orpz)  Oary)  Z(as)  OasLi) Oanrs)
Oroz)  OnLy)  Oars)  Zas)  Oasrs)
Oagry Oupr Oufrg Zago Ougrs

s 7 Oy Oy 7

|
I
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with ¢2, @ in (95) and Q in (104) reduce to the following form

y2 =0, al = 0, and Q = Q('V)(A;,A;)a 0(A;,A2):| .

By Lemma 39 (b) (ii), p; for i = 2, 3,4, 6,7, 8,9, 12 do not appear in p. Hence, the
system (98)-(100) reduces to

pi=0 for i=1,5,10, 11, p35> =0, and p{3Z = 0.

If Assumption 3 holds, by Lemma 39 (b) (iv), —Z is positive definite, we obtain that
p13 = 0. It implies that the row vectors in ' are linearly independent. By Lemma 37 (ii),
MPEC-LICQ holds at v.

If Assumption 3 fails, by the definition of K, K # ). Note that Ay = () and A§ = 0, it
holds that S; = 0, ¢ € K. In other words, Assumption 4 fails as well. By Lemma 38 (iii),
MPEC-LICQ fails at .

(i) If Jgo C Jen and Jg2 # 0, it holds that A, # () and A # (. By Lemma 39 (b) (i),
T reduces to the following form

al VVG'(qj)A; Q O(AQ,LAL) P(/‘\;)ry_)

d° b O(nsLs)  Z(Asy Ut

_ O(as,L1)  O(az,Ly) Z(nsy)  OazLa)  O(Az,Ls)
I'= i) Omurl)  ~Zau) Owury OwyLs)
OanL)  OoLy)  Oasls)  Z(as,)  O(asLs)
Oumiry Ouiry iy Tuioy OniL
L 7 Oy Oy 2

By Lemma 39 (b) (ii), p; for i = 2, 4, 6, 8, 9, 12 do not appear in p. Hence, (98)-(100)
reduces to p; =0 fori=1, 3,5, 7, 10, 11 and

pir?)y2 = 07 plT?)yd = 07 and plTSZ = 0. (115)

If Assumption 3 holds, by Lemma 39 (b) (iv), —Z is positive definite. As a result, we
have pi3 = 0. Therefore, we obtain p = 0. It implies that the row vectors in I are linearly
independent. By Lemma 37 (ii), MPEC-LICQ holds at .

If Assumption 4 holds, we will derive p13 = 0 by (115) under Assumption 4. Since
K # (), without loss of generality, assume that K = {1,---,l}. Therefore, for i € K, it
holds that A;r(i) = (). Note that from Jéfz = A;(i) U Ag) and Lemma 36 (v), J9 = Ay),
| Aff) |>4,ie€ K. As aresult, Jgy2 = A§ =0 and | Jg2 |=| A4 |> 4k. Tt follows that

% _ (70 \T _ (7@ T _ .
YA €Al = (yAfl”) e = (yJ(ig) eng%\ =s; for i € K.
G
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~

Y([k]’ AD) reduces to the expression

0 0

(LA ) (LAg ) (1,A5%)
Oapermy  Oaaperny  Ouagym)
Y — (1) ‘
Y([k],A;') (y(l,Ang(Hl))) 0(17A;<l+2)) e O(I,A;(k)) (116)
~(k)
O1a3) Ouagey (y<1,A;<k>>> |
Therefore, At € RFXIAT| takes the partition
0, A+
Al = (LIAS]) 117
Moreover, recall 93 in (95), it holds that
0 0
3 g1 _ o (K,1) L (K,1)
=-A'V.0 = _ = ; 118
’ 0= [ b, | = | ] e
and
O k) Ok K)

szamn:[

= [ Ocre) D } (119)

= T
OEFK,KC) A%Q(Py)(/\&Ag) (A%) O(K,KC) Z(KC’KC)

Let p13 take the following partition

pmz[gi]. (120)

The equations in (115) reduces to the following equations

pIT(SK =+ p%cy%(c = O, p%cy%c = 0, p}cZ(KC7KC) = 0 (121)

Similar to the argument in Lemma 39 (b) (iv), we can obtain that rank(A}) =| K¢ |, and
rank(Z e iey) =| K¢ |, implying that —Z e e is positive definite. Therefore, we obtain
pre =0, and (121) reduces to pjsx = 0.

Note that | K |> 1. If | K |=1 and s; # 0,7 € K, it holds that px = 0. In this case,
we obtain that p = 0. It implies that the row vectors in ' are linearly independent. By
Lemma 37 (ii), MPEC-LICQ holds at o.

If both Assumptions 3 and 4 fail, by Lemma 38, MEPC-LICQ fails at . O
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Proof of Theorem 24

(i) By Lemma 39 (b) (iii) and (v), if Assumption 3 holds, we can easily obtain (i).
For (ii), similar to the proof in Theorem 23 (iii), since K # (), without loss of generality,
assume that K = {1,--- ,l}. Then for i € K, it holds that A;(Z) = (). As a result,

T

v % I PN 0)) - (%) _ .
Y(i,A4)e\A4| + Y(i,Ag)emg‘ = <y[\ly)> e|A§1¢)‘ + (y;;m) e|Ag—(i)| =g; for i € K.
Moreover, Y

(kAT takes the form in (116). Therefore, we have A! € RFXIAS T takes the form
in (117). By the definition of 32, it holds that

Yueanen +Yaeagens | _
Yirce, na) €] + Y(ree,a5)€ )

= [ ;%f: } . (122)

Similarly, we obtain the partition of ¢* and Z, which are the same as in (118) and (119).

0(k)
A3Q(V) (g A1) ®1a

Hence M reduces to the form

a0 Ul Ul

| ¢V Uk Uik
sk Ok Owkr)y Ok ke

Yke Uke Oker) Z(keke)

Similar to the argument in Lemma 39 (b) (iv), we can obtain that —Z (e gy is positive
definite. Therefore, there exist B and B* such that (54) holds. By multiplying —B? from

the left to the fourth row block and add it to the first row block, multiplying —B* from the
left to the fourth row block and add it to the second row block, we obtain

58

a bg U(l.’K) O(Ag,KC)
M2 — dg b4 U(2~,K) 0(A47Kc)

sk Ok Oy Ok ke

-2 3

Yge Ygke

O(KC,K) Z(KC’KC)
Here b3, b* are defined as in (53) and
a® =a' — B3y%.,a° = a®> — BYyj3..

By Assumption 4, for K = 1 and sg # 0, we can similarly do row transformation to M? to
make &%, a?, y'g(c zero. Then we obtain the following

é,m 0(ag, k<)
(-.K) 0(A4,KC)
sk Ok Ok k)

0k, Ke)
O((x),1) Use  Ogxe i)

Z(KC’KC)
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Next, for p :_(pl, < pa), let pr, -++, pa correspond to the first row block to the fourth
row block in M3. If p satisfies p" M3 = 0, it holds that

p3 sk = 0,p] b + ps b* + p] G = 0,
We obtain that p3 = 0,p4 = 0 by sk # 0 and the positive definiteness of —Z e ge). The
above equations reduce to the following

pLb° +p3 bt =0, pl Ul o)+ p3 UZ gy = 0.

Therefore, it can be easy to obtain the following results.

If | Jogn | + | Jope |= 2 and the matrix M?! defined in (ii) is nonsingular, MPEC-LICQ
holds. If | Jgm |= 1, | Jggz |= 0, it holds that | Ay |= 1,A§ = 0. If (b4,U(2.7K)) # 0,
MPEC-LICQ holds. If | Jgp2 |= 1, | Jgm |= 0, it holds that | A§ |= 1, Ay = 0. If
(b3, U({ k) # 0, MPEC-LICQ holds.

Otherwise, it can be seen that MPEC-LICQ fails. This concludes the proof. O

Proof of Theorem 25

Since | I, |# 0, by Proposition 18 (b), we have I' as in (40). By substracting the eleventh
(resp. twelfth, ninth) row block from the first (resp. second, fourth) row block, by multi-
plying the last blcok by —VVH(T))(A;’.) (resp. —V0(0)(as,), —V40(0)(A4,): —VA0(0)(A4,)
and adding it to the first (resp. second, third, fourth) block, we reach the matrix

Oty Oatmy QWn:y Owrry Fary
Ons.zy) | Omszy)y @V s ) Oumsry  Puas,)
Oaszy) [ O@nts) | QM) Ziwy  Plagy
OarLy) [O@nte) | QW) Outry Pl
OrpL)  Oary) © Zass)  Onry) O(as,Ls)
Oz Ouizy) © Zans  Owizy)  Oway,Ls)
70 — | €Ly 0(a4,Ls) ~ZL(as,) O(nsLa) Oersrs)
ems.L)  Owgry)  —Zagy  Owmgry  Owms.is)
Oz Ouizy)  Ouiizs)  Zasy)  OwanLs)
Ors,z)  Oazy)  Omoizs)  Zasy)  O(as,Ls)
Oatey Outi  Oufiy  Zatn  Ouire
Oas.L)  Omgr)  Omgrs)  Zag)  Owmg.Ls)
Oi,Ly) O], L) Y Ok),a) Ok, Ls)
L 04y —@UpLe)  Ougrs)  Oupry)  Ou,rs) |

We discuss the following two cases:
(i) If Assumption 5 holds, without loss of generality, assume that

AD UAY 1= 1and AY UAY =1, for i=1,--- 1 with I <.
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The submatrix 7" defined by

Q('_Y)(A;r,. ) P(A;,.)
T:=[T1, Tp] with T} := Q(’?)(Ac’_ and Ty := P(Ag’ )
QW) Pias, )
takes the following form:
i PEMNT 0gaey - 0 g 00
L(2) )~ (2

T — 0(1,ﬁ(1>) yl(z)(y@))T T 0(1,ﬁ(k>) 0 yl(2) 0

0(1,71(1)) 0(1773(2)) e @;:)(@(T))T 0 T Ql(:)

We can observe that T has full row rank and also
rank(T) = rank(Ty) = rank(Ty) = 1. (123)

Note that 7 = 0 and in this situation, Q*(7) = §* (@(i))T, which is a rank one matrix,
i € [k]. Due to the special structure of Q*(¥), we can eliminate Q('_y)(A;.), Q(V)(as,)s
Q) (A4, R(7)(a,, by applying a proper row transformation based on the thirteenth block

where three is Y. Then conducting A(13,5), A(13,6), B(13,7), and B(13,8), the matrix
becomes (recalling that [n] = Ay UAs UAT UA§UAy):

Ogon 0@tz Ontiry Outrirny Pt
Oas.L) [ O@MSE) | Oty Ousry Flas
Oaszy) | O@uLs) | Orszs)  Zauy)  Flau
O(ALLI) O(Al,Lz) 0(A17L3) 0(A1,L4) P(Al,')
OroL)  Oaory)  Z(aos)  Oaszy) O(as,Ls)
OarLy)  Omnzy) © L) Oiza)  OcayLs)
! o— | ey Onsze)  ~Zaw 0wz Omsrs)

eins,n)  Omgry)  —Zag) Ougrs Ougrs) |
Oarzy)  O@nza)  Owira)  Zar)  OcasLs)
Ors,L)  OaLs)  Oars)  Z(Asy)  O(as,Ls)
OatLy Outio) Outis Tt Outirs
Os.L)  OmgLo)  Owszs)  Zagy)  Owag.is)
g Oy Y Oqry Ok

L 0y)  —€UpLa) O(fpLs)  OpLa)  OfLs)

where (A;)C, V1, and ¢! are defined as in (88), (106), (95) respectively. Therefore,

rank(l') = rank(T%) = rank(I'!).
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For p = (p1,--- , p14) such that 0 = p'T'! := [S] S S3 Sy Ss], it holds that

S1 = pregL) P eag L) +pizit =0, (124)
Sy = —pa=0, (125)
Ss = p3Tiagy + P6 Lias) — P7 L(ass) — P8 Lng,) + p1Y " =0, (126)
St = p3Tiag) + P Lar) + P1oLins,) + P Zas )+ PlaZ(ag,) = 0,

S5 = pl Pns.y 03 Pagy + 03 Pay) + 04 Py ) = 0. (127)

By (125), (126), and (127), we have p; = 0 for ¢ = 3, 5,6, 7, 8,9, 10, 11, 12, 14. Hence,
(127) reduces to the following form:

L Pty 2 P,y + i Piay ) = 0.

By (123), the row vectors in T3 are linearly independent, given that p; =0 for ¢ = 1, 2, 4.
Recall the definition of Y'! in (106), (124), and (126) reduce to

plzy' =0, P1T3Y([k],Ag) = 0.

By the definition of K, without loss of genearity, let K¢ = {1,--- 1} and A;r(i) = j;, 1 € K°.
Let p13 takes the partition as in (120). We know that by Assumption 5, Y(k,A,i) can be
partitioned as follows: (

~(2)
0 Y5,
— : : h A:l — ch
o) 0 0 - yj('z) ' |:0(kl,1) '
0 0 0
L0 0 0 |

If Assumption 3 holds, | K [= 0. Therefore, K = [k], and Y}, Ay = Y Tt gives that

LY sy = (1) (pr13)idl)) = 0. We obtain that p1z=0. MPEC-LICQ holds.

If Assumption 4 holds, it holds that | K |= 1. pngY([h afy) = 0 reduces to

m ~(1 (k=1
piceYre = ((013)19](-1), o 7(p13)k_1y§»k_1)) =0,
which gives pxe = 0. Note that

~ o~

7' = Y as0nn €As0As = Y(]A0 A =

Vi @il ::[ 5K ]
Y(Ke,nq) €A Yge

Hence, pngy'l = 0 reduces to p}sK = 0. By sx # 0, we obtain that px = 0. Therefore, the
MPEC-LICQ holds at v.
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If both Assumptions 3 and 4 fail, by Lemma 38 (iii), MPEC-LICQ fails at .
(ii) If Assumption 5 fails, we have that the submatrix T has at least two row vectors
which are linearly dependent. To show this, without loss of generality, assume that there

exists one i € [k], say i = 1, with 1,2 € A:(,)I) U Agl). Then we have that two rows in T take
the following form:

GO 0gney o Onamy B0 0y
3G 0gney o Onamy 35 0 0y

The two row vectors are linearly dependent. Therefore, we can find two row vectors in I’
such that they are linearly dependent. Therefore, in this case, MPEC-LICQ fails. O

Appendix E. Proofs for Section 6

Proof of Proposition 26
Note that we have

Ipy = Jmn U {n + Jg2} =A3UA U {n + A4},
I,g = JHlU{n+JH2}:AQU{n—i‘(AlUAQUAg—)},
I(]O = JGHl U{?’L+JGH2} AlU{ﬂ-FA }

By the definition of weak stationary point, it holds that
i =0 for i € Iio=AU{n+ (At UAs UAJ)},
w; =0 for i € Ipy :A3UA4U{H+A4}.
Hence, we get (59). O

In the next result, we provide some precise representations of V2,IL(-) and C(-) in the
context of our bilevel hyperparameter optimization problem from the perspective of the
KKT/MPEC reformulation in (MPEC-BHO).

Proposition 40. If v be a weakly stationary point v of problem (MPEC-BHO) with asso-
ciated Lagrange multiplier (X, i, 7, (), the following statements hold true:

(i) V3L(v, A i, 7,¢) = V3, f(v) — A(v) with

v%‘cf(v) V%Wf(v) V (U) 0(L1,L4) 0(L17L5)
) VZof(v) 2 f) V2 f) O(ryny O(rs,Ls)
vvvf(v): v%’af(v)T ( ) VQ f( ) 0(L3,L4) 0(L37L5)
0(L4,L1) (L47L2) 0(L4,L3) 0(L4,L4) 0(L47L5)
O(Ls,Ll) (L57L2) 0(L5,L3) O(Ls,L4) 0(L57L5)
and
O(z,,Ly) 0(z,,L,) 0z, Ly O,y Ozy,Ls)
O,y oo WmVA0i(v) 3 BiVEL0:i(v) O, r. O(rsrs)
1€EA1UA3 1€EA1UA3
A):= | Oy > 0 V20:(v)" 0(Ls.Ls) 0(zs.r.) O(LsLs)
1€EAUA3
O(L4,L4) O(L,,12) 0(L,.Ls) 0ri,0) OLss)
0(Ls,Ly) 0(Ls,L,) 0(Ls,Ls) O(zs.Ls) O(zs.Ls)
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(i) C(3) = {d = (d, 47, (d)7, (d°)7, (@)T)" eR™: Wd= o}, where

- O(A;’I,Ll) V»YGA;,l(’TI) Q(’?)(A?l’_) I(Nfl") P(A;’I,.)
Ongt oy MA@ Q0D ) Ty Piagt
Onsy  %nétn, Lagt Ons' 2y O o)
Onst iy %gtn Liagt Ons 2 Ogt o)

W= | €9ty Oty Liagmry Oagmry Ouagn? s
Cary  Ourin  Turn  Purin Cwrion
Onstin  Cufin Qo Tafn | Cufi
Oug iy %0 %agis Tig Oag? o)
O((k).1) Ok, L,) Y O((x),L4) O((k),L5)

L Ou,.Ly) —€(Iy,Lo) O(r,,L3) O(r,,14) Ory.L5)

Proof (i) Since v is a weakly stationary, we obtain (59). We discuss the following 2 cases.
(a) If ¥ > 0, we have A = 0. If ¥ =0 and A = 0, we also have A = 0. Substituting (59)
into the Lagrange function, we obtain that

k
L(o,\, i, 7,0) = Z > #Gl®)

1€A1UA3UAY
- > 77302 - > GHI@
’LEACUA4 €A 1UAo
- ) GH). (128)

i€A1UAUA3

By V,L(v, 7,¢) = 0, we have

k
0 = Vi@ +> mVh@) - Y aiVGi@ - >, nVG(0)
=1

i€A1UA3UAy ieAgUA4

i€A1UAo 1€A1UASUA3

Denote by




The above conditions can be equivalently written as

- T -

}1 Vef(@®)  Vayf(@)  Vaof(®)'  0qn  Oap
_71/1\1 O(Al,Ll) V’YQ(T)) 1 Q(’_Y)(Alf ) I(Al,) P(A1,~)
_77/1\3 0(A37L1) V’YH(E)A:‘s Q(’_y)(,\&‘ ) I(AB,) P(A37)
_’rzjl\4 O(A4,L1) V’YH(,U)AAL Q(ﬁ/)(A%- ) I(A4,) P(A47‘) Sl
__/1X1 O(AlaLl) 0(A17L2) I(Ah') O(A17L4) 0(A1,L5) S,

0 = | "% Otzz) Oty T Zan - Onons) Orars) | _ | g,
~lg ems.Ly)  Omgry)  —Zwg)  Owsira Owmgrs o |
—7A, et Omir  “Tnu) Oy OasLs) S5
_712\1 O(Alle) 0(A17L2) 0(A17L3) I(Al,') O(Al,Ls)

__/2X2 0(A27L1) 0(A27L2) 0(A27L3) I(Az,') 0(A2,L5)
_sz\g 0(A37L1) 0(A37L2) O(A;,\,Lg,) I(A3,') O(Ag,L5)
LA 1 L0y Ogw.ro Y Ok),L4)  O(h1.Ls)
where
_ ) T 2\ T
S1 = Veof(v) - (77/\;) €(AS,Ly) — (1%,) €@yr1) =0,
_ 1 N\T _
Sy = vvf(v) _( /1\1) \Y% 9( A1 (771\3) V’Y‘9<v)/\3
1 N\T _
()" T-0(0) 100y = 0. (129)
_ 1 NT 1 A\T
Sz = Vof (@' —(@,) QM) — (M) (Q(Y))(as
1 NT 1 \T S AT
— (1) QM) as) = () Ziary = (Chy) Zias,
9\ T o T TS
+(7s) Toago + () Ty +877 =0, (130)
AT 1 N\T o \T
Sy = — (77/1\1) I(Aly') - (77/1\3) I(A37') - (n/\4) I(A4 (C/2\1) I(Alf)
o \T -5 \T
- (C/2X2) I(A27') - ( 12\3) I(AB,') =Y (131)
1 NT 1 N\T
S5 = —(1h) " Pl — () Piagsy — (7h,) " Piagsy =0, (132)
By (131), 7, = 0, wA = 0. Substituting them into the Lagrangian function in (128),
) ) k
L(v, A i,7,¢) = f(v)+thi(v) - > WG - ) mGW)
i€A1UA3 ZEACUA4
- > GH@w - Y GH(v (133)
i€A1UA2 1€A1UA3
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It holds that

k
VRL@ALD.C) = Vi f(0)+ ) mVihi(@) — Y 0iVi,Gi(v)
=1 1€A1UA3
- Y Aew- Y avhae
iEAgUA 1€A1UA2
- > GViH®)
1€EA1UA3

= V%}vf(’l_)) - A(Q_})

Since f is a function only related to C,~, «, it holds that g—g =0 and a—f = 0. Therefore,
\'%; Cf@) V ( ) V f@) 0(L1,L4) 0(L17L5)
Vch(@) V2 f(@) V2 F@®) Owyry) O(roLs)
Vouf(0) = Wf (@07 V2 f@)7 aaf( ) Ors,Ls) O(Ls,Ls)
(L4 Ly) 0(L47L2) OLsLs)  O(LaLa) O(LaLs)
O(Ls,L1) 0(Ls,L2) OLs,Ls)  O(Ls.La) O(Ls,Ls)

Note that H(v), h(v) are both linear. Moreover, the (n 4+ 1)-th component to 2n-th compo-
nent in G are also linear. Therefore, we have

A) = ) wVLGHw),
1€EA1UA3

which reduces to the form in (i).
(b) If y = 0 and A > 0, it is easy to modify the above result, where (133) is replaced by

k
L(Uaj‘yﬂvﬁ’g) = f(U)+Z_ i - Z ﬁzlel(U)_ Z 7712G12(U)
i€A1UA3 iGAgUA4
- > GH(v)— ) GH(v)+AVg(v).
1€A1UA2 1€A1UA3

Again, we obtain the result in (i).
(ii) If ¥ > 0 (or 4 = 0 with A = 0), by Proposition 27, it holds that

supp(n) = AT UAL, supp(i?) = (A§)™ U AT,
supp(Cl) =AY UAS', supp(¢?) = Af UAS .
By the definition of C(v), it holds that
C(t) = {deR™:Vhi(v)'d=0,ic [k];
Gi(v )Td =0, Vi € supp(7 );VHi(@)Td =0, Vi€ supp(()}
= {deR™ : Vhi(v)'d=0,i€ [k];
VG @) Td=0, Vie Al UAL ;G2(0)Td=0,¥ie (A" UAT;
VH 5)Td=0Vie Ay UAS  VH2(5)Td=0,¥iec A UAS ).
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It gives that d € C(v) if and only if d is the solution of linear system Wd = 0, where

[ Oy ny (NAO@IGE Q) ) Tw ) Py ]
Onr 1y MA@ O ) Ty Ty
O(Aﬁl,m Oni' iy Tty Oudiy Ond L
Onstoy  Onstoy - Tagn  Cudny C0go
We=1emgrry Qmgpriy ~Lagey Omgeiy Oagd iy
Carny  Cwriy  Tars  %wrny  Curo
Oy Y0ty Cufiy | Tafy  Qufiy
Ong iy Oy Oufi | Tags  Cugo
L Oqw,L1) O k), L2) Y Ok, L) Ok),L5)
If ¥ = 0 with A > 0, then Vg, (v) should be added into the row of W, which give the
last row block in W in (ii). Overall, we obtain (ii). [ |

Proof of Theorem 28

(i) If Ao U Ayq # 0, by Proposition 40 (ii), we can see that df,ua, does not appear in the
equation Wd = 0. Therefore, by Proposition 40 (ii), we can choose d with d3,un, # 0 but
the remaining components in d are zero. For such a vector d, we always have

d' V3, L(v, X, i, 7, ¢)d =
by the special structure of V2, IL(v, A, fi, 77, ¢) based on Proposition 40 (i). Hence, the MPEC-

SSOSC fails at .
(ii) If Ao U Ay = 0, and A° # (), similar to the argument in (i), we can choose d with
d%o # 0 but the rest of d are zero. Now we found d # 0 such that

d"V2,L(v, X, 1,7, ¢)d =
Therefore, MPEC-SSOSC does not hold at v. O

Proof of Theorem 29

First start by observing that by Assumption 6,

AT UAS = Ay and A UAS = A

We do the following partition associated to the index sets A71717 Agg, (A;‘)"l, (Ag)”l, A%l,

(A7, (AD)E, and (AS)S”. Let

H1 = A;]l\AgQ,

1L, :=1I; N All,
o1 = (AT \(AF)S
o1 = (A" \(A§),
O := ©; N (A7,

1L, .= A?l N Af,
_ 1
Hﬂ = Hl\Ag 5

¢z == (A)" N (AT,

O = (A§)" N (A5)S",
B2 1= 0;\(A§)"’
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2 1
I3 := AS \AY,

i=1,2,3;
Bys o= (AD\(AD),
O3 := (A5)\ (A9,
i=1,2,3.



See the following figure for the partitions of the above sets:

Ay iy Ty jach 1, s s,
L
I
1
A
(A
PR
AT &y L) &3
i J
aH”
(as)"
|
Ag O12 O (CF% [E2% O3sz O3,
\ J
\
(A5)°
1
S Af s (ag)”

Figure 5: Partitions of Ay, Az{, and A§, respectively.
We have the following relationships:
n* ¢ ¢t
Ay = Uiz 231, A =1L UL, A} =1l Ulls, A} = Uiz 2314,

1
AT =Uiz1 230, A§=Ui21230i, Al = ¢y Udyo UO; UBOq,

2
A§ =2 U3 UB2 U O3, (A;?,)”2 = U;j=1,2,302.
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Proposition 41. Let v be a weakly stationary for (MPEC-BHO) with multiplier vector
(A, @i, m,w). With Assumption 6, W in Proposition 40 (ii) reduces to the form

0(H11,L1)
0(1:[11,L1)
0(H21,L1)
0(1:[21,L1)
0(6.1,21)

O(Hll,L2) I(Hu,')
O(Hzl,L2) I(Hm,')
0(113,,1.0) Lray
0(012.L2)  ~L©12.)

0((02.L2)  ~L©2.)
0((0s.L2)  ~L(©32.)
0(H21,L2) O(H21,L3)
0(1:[21,132) O(ﬁm,Ls)
0(H31,L2) O(H31,L3)

O(ﬁsl,L2) O(T—I31,L3)
0(65,L2)  O(652,L5)

N

(M1,
I(fhh
I(H217
L1z,
L)
I(d"y?f)
Z1,.)
Loy,
Loy,.)
Z(61,)
O(Hll,L4)
O(Hzl,L4)
O(H31,L4)
0(@12,L4)
0(@22,L4)
0(045,L4)
L(i1y,)
L1,
I(Hsl,')
L.,
L(p,s,)
I(d"ys,')
Z(©,s,)
I(@sz,')
L(62:,)
L@,

)
)
)

Proof Note that in this case, W reduces to the following form

Oar' 1)
Oy 1)
O ¢t 1)
w o= | S(9r.L)
0a¢ 1)
0ag 1)

P(Hllr)
Pty
P(Hzlr)

0(H11,L5)
O(Hzl,L5)
0(H31,L5)
0(@12,L5)
0(60,5,L5)
0(04s,L5)
O(Hn,Ls)
0(1:[21,L5)
0(H31,L5)
0(1:[31,L5)
0(6,2.L5)
0(6,5.L5)
0(@22,L5)
0(04s,L5)
0((:322,145)
0((:)32 ,Ls)

- Qs Tary  Fary
gy Ty Fagy
Ons' ey Tadn  %udin Ong i
Oagrersy ~Liagy Oagmray Ouag? Ls)
Oae iy Cartin | Ta®y  Cnd i
Ongis  Yafiiy | Fagn g

The result is obvious by directly applying the assumption.
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Recall the definition of A and A2 in (64) and consider

( f_ll —(Q ) ry,r) " (7)(11,13)e|13|, Q) (1, 15)€115) — AQA) (1. 15)@114)
b ( Nr,1)) ' VA0(0) 1, 9(17) — A1V,0(0) 1y,
—(QW)(r,1)) ' Q) (11.,12) C_22 = QV)(1,1) - 4Q(®) (I, I2)>
QM 1y,10)) " Py, P? = Py — APy,
= YU )€ —A2Q(V) (1 1€, § = —AV,0(0)1,,
(7 = —A2P, ), Y1 = Y m) — A2Q(3) (1)
(135)
Furthermore, let
I :=1p1 U pya U Oga, Iy :=1II11 U ¢y U O12 UIl3; U py3 U O3,
Is:= U O;o, I’ :=1Iy; U Og9.
1=1,2,3
I:= [n]\([l uUl,U Ig), IV .= I, U 1:[11 UB U élg U (f)fﬂ, IV .= [n]\IO.
Proposition 42. Let AS := I\AS . It holds that AS =1, U T, U Is.
Proof By the definition of I1, I> and I3, it is easy to see that
LULUI; = Tl Uy UBOg Ul Ugy UBia UIls; Upasg UBOs0 U (i:% 3912)
= (1:%2,3@’) (_ %z) (Y Y 311,-1)
= A UASU <A1\A§ )
1
= I\AS
— 1
= AS.
This concludes the proof. |

Lemma 43. Let 0 be a weakly stationary point of problem (MPEC-BHO) with (X, i, 7, ()
as a corresponding Lagrange multiplier vector. Let Assumption 6 hold.

(i) If ¥ > 0, for any d € C(v), it holds that

d"V2 L(®,\ 1,7, )d=d V' DVd

with
pe 1 0 0
I 0 1 0 0
di=| L and V.= | a* b Q' P! (136)
dllf 0 0 1(12,12) 0
e|]3‘ 0 0 0
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Here, df,, d°, d, and d* satisfy

B -2 12 A2 P2
Md=0 with M := “yfl 22 gl ];3 (137)
and D := D' — D?, where
cf(v) Vey f() Via o f(@)
1
Dl (2) Vi @) Vi o f@) (138)
1
Veo JOT Vie f@)T Vi aaf(9)
¢ A$ AS 1
0 0 0
P |0 ZAVEAG) T, 60 )
. 1€A3 1EN3 1 :
0 0k (D) T 0 -
Z'Gzlggnl v”“ﬁl ) (A A
(i) If ¥y =0 and X\ > 0, for any d € C(v), we have
d"V2 L(5, N\, fi,7,()d=d"V'DVd >0, Vd (140)
with
& 1 0 0
- 0 I 0
d:=|d§ | and V.= (2], 112]) : (141)
{ & ] 0 0 Iinjn)
. ey 0 0
Here df ,d3,, dC,d" satisfy
( dC
QY .yes; Ry QMun) Py g
(7) I',15)€| I3 Q(:Y)(If,ll) @)(1, P dé“l =0,
Y@l (K], 1) (K, 12) Ok, Ls) v (142)
Vecf(@) Vi, f()
D= 2 AT 2 SN
vC’a_Cl f('U) va’cla’cl f(U)
\ A Ar A

Proof (i) Firstly, by the basic row transformations, W in Proposition 41 can be equivalently
written as the following form
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(II11,L1) V’Ye('l_))nu Q(r}/)(ﬂu,-) I(Hu,-) P(Hu,-)
Otz | Vabl@my @My Liny B
O(H21,L1) V’Ye(’l_))nm Q(:y)(ﬂm,') 0(H21,L4) P(HZL')
0(1:[21,L1) V’Ym—)ﬁm Q(:Y)(ﬁm, ) 0(H21,L4) P(l:[m,')
0(¢>w1,L1) - Q(:Y)(%u) I(¢«,17L4) P(%l;)
0(g,5,L1) QM(gr2) Orale)  Llona)
0(@127111) v')’e(@)@m Q(:Y)(Qu,) I(®12,L4) P(®12,')
0(é12,L1) V'Ye(@)élz Q(fy)(ém, ) Z'—(@12 Ly) P(ém,-)
0(05,11) | Val(0)6ss Q(V)(€2,) 0(©22.24) Fl©32.)
0(9227111) V’Yel_)ézz QM (O22,°) 0(922,L4) P(ézm-)
0(H11,L1) O(Hll,L2) I(Hll,') 0(H117L4) O(Hll,Ls)
0(H21,L1) O(H21,L2) I(Hm,') 0(H21,L4) 0(H21,L5)
0(H31,L1) O(H31,L2) I(H31,~) 0(H31,L4) O(H31,L5)

W = €(012,L1) 0((@12,132) _I(@my) 0(912,L4) 0(@12,L5)
€(022,L1) O((@227L2) _1(6227') 0(922,L4) 0(@22,L5)
€(©32,L1) 0((@32,L2) _I(6327') 0(932,L4) 0(@32,L5)
0(H21,L1) O(H217L2) O(Hzl,L:s) I(H21,-) O(Hu,Ls)
0(1:[21,131) O( H21,L2) 0(1:[217113) I(l:[21,~) O(ﬁzl,Ls)
O(Hsl,L1) O(H31,L2) 0(H31,L3) I(H31,~) O(H31,L5)
0(ﬁ31,L1) O(H31,L2) 0(1:13171/3) I(ﬁ31,~) 0(ﬁ317L5)
0,2,01)  O62L2)  Ow2Le)  Ligra)  O(osa,ls)
Or5.01)  Odnsle)  Ooraile)  Lidns)  Ods.s)
0(@22,L1) 0(9227132) 0(@22,L3) 1(922,') 0(922,L5)
0(@32,L1) 0(@32,L2) 0(932,L3) 1(932,') 0(@32,L5)
0((:3227111) 0(@22,1/2) O(ézz,Ls) I(C:)zz,') 0(@22,L5)
0(@527L1) 0(@32,L2) O(Q:Q,Ls) I((:)32,~) 0(@32,L5)

L OLyy Oie ) Y O,y Ok, Ls)
[ QY oy VA0(@) 0 QW) o nun) w0 ru
QM mer V00 QW u,nun Ou,nun
QM .mye V490 r QW nun  Ow nun
= 07,0, 01 Ly) Oinun)  —Linun
©(I3,L1) 0(15,1,) O, nun)  —Ziny, 1,00
Ojo,y) 0701, 0(70,1,u1) 070, 1,00
Ymmen Oz Yoo Ogwzun

I(IO7L4) P(IO,)
0Ly P,
Oy Fuy
0Ly O(Ls)
0(5,4)  O(15,L5)
Lo,y Opo,Ls)
Ok),La) Ok, Ls)

By solving Wd = 0, we obtain that df =0, d7, = —e|13‘dc, d%, = 0, which gives

%il = O’ d%11 - 0’ d;’yz = 07

o _
0 —

—0 and d3,,

e|@2|d for Z—l 2 3

o
d@m

Q) (10.1)©1514° — V40(0) od” —
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=0, and

I

g =0 for i =23,

QM) (10,nur)dTur, —

P(IO7,)du,

(143)

(144)

(145)



and

dC

QY n.mern V0900 n QWu,n)y QMm,n  Pu d’

0 = QW men Vy00r QW an QWMuw Fu dg,
(kL1085 Okle)  Y(wLn) (kl.12)  O(k),Ls) Cclz%

Note that Q(7)(s,,1,) is positive definite. Let Ay and A, be matrices of suitable sizes such
that (64) holds. After proper basic row transformations, it holds that

QM e Vo
aQ
gl

dC
0_(1_])]1 Q(ﬁ)(h,h) Q(i’)ﬁ(h,h) P([l,) d?
b2 O(I’,Il) 2 P2 d%l — O
7 O([k), 1) Y? Tk dr,

qv

Here a2, b2, Q?, P2, ', %, Y!, and ¢ are defined in (66). Then we obtain that
¢ =a1d” + bid” + Q'dg, + Prd*,

where df, , d®, d, and d* satisfy the following linear system of equations:

a*d® + b*d + Q*d§, + P2d"
+ ngu

§ld” + g + Y'dg,

(145) reduces to the following
%o = 2dC + 2d + z3d s+ z4d“

where

Zhi= QW) 0,13

= —Q(¥) (o0

€13

) — Q)o@ 2=

Then C (T)) can be characterized as follows

C(v)

{d=:

(d®, 7, d*, d°, d*):

— QW) o, ma", 2*:=-=V,0(0)p

_Q(IO7L5)

0,
= 0.

- Q(’V)([O,Il)l;l’
— Q) (0.1, P".

d satisfies (137), (143), (148), other components in d are 0}.

Therefore, we have

d® T 10 0
dY 0 1 0
d%l al Bl A1
d% 0 0 I (Iz,I)
d% = e| I3 | 0 0
d% 0 0 0

‘}0 0 0 0
d}fo 0 0 0
d* L 0 0 0

=2
Q3

0 A
0
0 Y
0 £
0 2
0 d
0

Ixy |

(146)

(147)

(148)



By the definition in (136), it is easy to verify that

Recall that V2 ]L(v A, fi,7,7) is 0 with respect to the block A, and u. Therefore, we obtain
that dTV%UIL(v M\ i,7,7)d = d"VTDVd, where D = D' — D2, with D! and D2 given by
(138) and (139). By Prpopsotion 42, Iy U [, U I3 = A% . We obtain the result in (i).

(ii) The proof is similar to that in (i) but with the fact that d” = 0. Firstly, by basic
row transformations, W can be equivalently written as the following form

0o,y Ouor,y QMWauonun QW uonun Zuory Fuo

0n.r) Oy Q@Vununy QW nun 0(11,L4) P,

0(1/ L) 0(1/ ) QWMw.nun Q) mun (1' Ly Puy

wl = (I L1) (I Lo) 0( I,[LUI,) I(I,IJUI) (1 Ly) O(I_,L5)

e([g,Ll) 0([3,L2) 0([3,[1U12) _I(Ig,lguf) 0(13,[/4) 0(137[/5)
Oor,y Ouory)  Ouonum) 0o, un Lo,y O,y
0Ly OkL)  Y(kLLul) Y 00 O(kl,La) Ok, Ls)
L 0gy,21)  —©(pL2)  Ouy,num) 0,0 OgLs) OyLs)

By conducting basic row transformations, we obtain the following matrix

QY (10,15) 0(10 L) QMuonuw) Ouorun Zaowy Fuo,
Q)€ Oy Q@MW unun) Ounun Owrey P
QY (r,15)€|13| 0(1/ ) QMWunuw) Owrun Owry Pu
W 07,1, 07,1, 0(7,r,u1) Linun Odry  O@rs
B €(15,L1) 0(15,1,) 05, nun)  Zayun) Ouszy)  Ous,Ls)
Oory) O Oonumy  Ououn - Loy Ogory)
YirLs)ers)  Ow.Lo)  Y(k.num)  Owgrun O(klLy  Ok.Ls)

L Oun) €Ul Ou,nun) Oug,mun  O(grs)  O(r,Ls)

By solving Wd = 0, we obtain that (143), (144), d” = 0,

% = —QMo1€r1d° — Q) (0, nun)dtur, — Prro,yd"
1Y + 2dy, + 22§, + 4dv, (149)
and
_ _ _ dc
QY. men QMmn QW u.n P, o
0 = | CWu e QUw,n) (7)(1/ py Puo || g | (150)
I
Yimmes Y Yk Ow.zs) q
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Then C(v) can be characterized as follows

C(o) = {d:=(dd"d*d® d*):

d satisfies (150), (149), other components in d are 0}.

Therefore, we have

d¢ ! 0
d” 0 0
dg, UNES FTARTA)
g 0 0
d = d% = e|]3‘ 0
o 0 0
g 21 22
]0
ds, 0 0
| d* | L0 0

Vd=

[an)

1(15),112))

[an)

)

[N
w

o O

0
0
0 pre
0 g
0 h
da
0 d{f
54
0
Txr |

Recall that V3, L(o, A fi,7,C) is 0 w.r.t. the blocks A and u. Therefore, we obtain that
d"V2,L(v,\ i,7,()d = d" VT D'Vd, where with D' given by (165). Hence, the proof. M

Proposition 44. For a weakly stationary point v of the (MPEC-BHO) with multiplier
vector (A, 1, 7, C) satisfying Ao U Ay = (0. Let Assumption 6 and Assumption 7 hold.

(i) If ¥ > 0 satisfying | Jam | + | Jamg2 |= 0 for any d € C(v), the following result holds

d'V3,L(@®,\ ,10,¢)d =d VI DVd, (151)

where d and V are defined by

dC

d:=| dv and V :=

d’LL

Here d©, d7, d* satisfy

Md=0 with M :=
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a

|13

0
1

| — |
L

0
1

Bl

0

S

¢
[\

0
o (152)
0

P

-, ] (153)



and D := D!

D' .=

D? .=

[0
0

Vicf ()

| Vi, f@)7

0
Z TA%N

Vg, f (o)
V2 f(v)
V2, f@)7

YOA3

0:(v)

i€EA3

> T

CaA

’YOéA

VZ

1v2

OéA3OCA3

0

YOA3

— D?, where D' and D? are respectively given by

Ve f(0) f@

f(@
f(

) ]
)
v)

0:(v)

(154)

(155)

0 Z 1v'2yaA i(0) 0(A5.A5)
L i€A3 .

(i) If ¥ = 0 with X > 0, for any d € C(v), the following result holds

d"V2 L(5,\ [

_ dc¢
d == le%
[ Nt

V2. f(0)
Vo, f@)"

d" satisfy condition (70).

7,)d=d'"V'DVd,

1 0
O Tgagpiagny | >

€|Ag| 0

where

<
I

(156)

D 1is given by
CaA ( )
v

V2, oy ) ] ’ 150

and d°, chg,

Proof If AyUA4 = 0, by Assumption 7, TI; = 0, ¢+; =0, ©; =0, i = 1,3; Ty =0, O =
0, o1 = A1, 040 = A;, ©22 = A§. By the definition of I;,i = 1,2,3, I and I’, we have

11:/\;,]2:@,[3:/\%, I_:Al, ]I:A1UA§.

Hence @', b' and P! reduce to the following form

6—}1 - (Q@)(A;,A;)) Q(’?)(Ag,/\g)\/\gl’

= —QWgan) VAl @y e
i -1

Pt = — (Q(’?)(A?Aé{)) Pty

a?, b?, P? ', 4% in (135) reduce to a, b, P, §*, %* in (66), respectively If ¥ > 0, by Lemma
43 (i), we have the results in (i).

If 4 = 0, by Lemma 43 (ii), note that A3 U A; = [n], the coefficient matrix in the first
equation system in (142) reduces to the following matrix

)
)(1,1)
)(

Y e v P, . - -
@(“3 DGR A [ QM magens Qg Pl
(’Y) I'.I3)€|I3] Q(A’Y I' 1) I, = v L Ae1€IAe % . 0.1
Yk 1) @155 Y Ok.Ls) ([K],A5) ®1Ag] ((k],A9) ([Kl,Ls)
We obtain the results in (ii). This concludes the proof. |
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Proof of Theorem 29
(i) By Proposition 18 and Assumption 6, it holds that Ay = (), which gives

AP UAD =AY 1> 2, i [kl

Therefore, | Ay UAS [Z] Ay |= 35y | Agz) |> 2k. On the other hand, by Proposition 44
(i), for M defined in (153), M € REHMUADX(E+2) - Therefore, k+ | Ay UAS [> 3k > k +2,
which gives rank(M) < k + 2.

Let J% and J° be defined as in (63). We can rewrite matrix M in (153) as follows

i ajo §JO E(J()’,)
M= ajp bj P(jo’.)
A A T
Note that -
Y, 0
_ o 3P .. 0
P(JO“) - : J:Q - : ’
: . B
L0 0 R

implying that Tank(P(J07,)) = k. Let A', Ay be defined as in (65). By conducting basic row
transformations, we obtain that (153) is equivalent to

ajo l_)Jo p(Jo’_) d®
ap— Ay bp- A% 0 || e | =0
gt — A%a50 9 — A% 0 da*

Then we obtain that (recall M defined in Assumption 9)

d* = —(p(t]ov.))_l (C_LJodC + l_)Jodv) , (159)
—~ [ 4%
M[ e } =0. (160)

If Assumption 9 holds, the solution to (160) is d° = 0, d” = 0; hence, implying that
d* =0, dgc = 0. Therefore, C(v) = {0}, and the MPEC-SSOSC holds automatically.

(ii) By Proposition 44 (ii), note that | A3 U Ay |= n, for the coefficient matrix defined in
(70), it is in REF)XA+k+IATD - Similar to the argument in (i-i), define JO and JO by (63).
We can rewrite the coefficient matrix in (70) as follows

QMM oagpeng QW oasy Fluors)
QYo agyeng QW) oasy Fiors)
Y((.a9)€13) Yigan  Oww.Ls)
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Observe that

y;,” 0
- (2)
0 4
Py = 72 :
0 0 W

implying that mnk(P( Jo, L5)) = k. Assume that there exists A3, such that (67) holds. By
conducting basic row transformations, (70) is equivalent to

Q(7)(s0,a5)€s] QM) o s Pryo L) d®
Q) (j0,a5 €185 — AgQW)(JO,Ag)e\Aé\ QW)(J&AI) N AsQ(W)UO«A;) 0 dis* =0
Y(ik),a5)€1a5] Yirah) O((k].L5) da*
Hence, we obtain that
d* = —(Po )" (Q(;Y)(JO,Ag)e|A§|dC + Q(’V)(JoyA;)dX;) , (161)
where d° and i+ satisfy
3 - do
M da — 0 (162)
Af

Here M is defined in Assumption 10. Therefore, if Assumption 10 holds, the solution to
(162) is d“ = 0, df, =0, implying that dif. = 0. Therefore, C(v) = {0}. This means that
3
MPEC-SSOSC holds automatically. O
To prove Theorem 30, we need the following proposition.

Proposition 45. Let f(v) satisfy Assumption 11. Consider a weakly stationary point v of

(MPEC-BHO) with multiplier vector (A, 1,1, C) satisfying Assumptions 6 and 7.

(i) For 5 > 0 satisfying | Jog | + | Jamz |= 0, if rcmk(]TJ/) < 2, for any d € C(v), it
holds that B B . o
'V L@, A 7, Q)d = & (V) DIV,
where VI, DI are defined by (68).
(ii) Fory =0 and X\ > 0, if mnk(]\/f\) <| AT | +1, for any d € C(v), we have
dTV%UL<’I_)7 5‘7 Fs 1, C_-)d = dT(Vf)TDfoCZ
with d, VI and D' given in Assumption 13, d°, dXJr, d" satisfying (70).
3

Proof (i) For 4 > 0, we conduct the same process as in the proof of Theorem 30 (i), one
can also obtain (159) and (160). If rank(M) < 2, there exists § # 0 such that

(Eljo - AldJo;gl - A2ELJ0) =4 (Bjo - 11_116]0; QZ - A26J0) .
Hence, we have d® = —fd” and equation (159) reduces to

d*=z'd" and dY, = 7d", (163)
3
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1

where Z*, 7 are defined by

Ti=—a'f+ b + P2,
21 = (PJO)_I(aJOﬂ - BJO).
Note that with @', b' and P! in (158), we obtain that the above 7 takes the form in (69).
Let V be defined by
V= . (164)
kejag)
It is easy to calculate that VdY = (d%;d"; di+; dﬁg) Therefore, for any d € C(v),
3
A"V, L(®, X 1,1,{)d =V DV,

where D := D! — D2 D! and D? are given by (165) and (155).
Moreover, if f(v) satisfies Assumption 11, D! reduces to the following form

0 , 0 (2’(1,\A3|>
Z)1 = O V'y’yf(@) - vg"/aAsf(@) . (165)
0asl 1) Vaan, [(0) ' Vay,an, f(0)

It is easy to check that AV DVdY = dY(VH)TDIVIdr, where VI, Df are defined by (68).
This gives (i).
(ii) If rank(M) < 1+ | AJ |, by Proposition 44 (ii), for d € C(v), we have

d"V2 L(v,\, i, 7, w)d = d' V' DVd,

where d is given by (156), D is given by (157), and d°, diyy,d" satisfy (70). Moreover, if
3
f(v) satisfies Assumption 11, D in (157) reduces to the following form

p_| 0 Jins)) -
0(as11)  Van,an, f(0)

By calculation, it is easy to obtain that d' V' DVd = d" (V)T D/V/d where d, VI and Df

are given in Assumption 13, d, dii’ d" satisfy the linear system in (70). |

Proof of Theorem 30

The results follow directly from Proposition 45. U
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Appendix F. Proofs for Section 7

To show Theorem 32, we need to define the following index sets for problem (NLP-¢;).

Recall that » = 2n and define

Ig(v) = {ier] :
Ig(v) = {ie]r] :
Igu(v,t;) = {ier] :

Proof of Theorem 32

Obviously, v is feasible for (MPEC-BHO), and for all j € N sufficiently large,

Ufo+

I,(v") € Iy(v), Ig(v’) € Too(o

Gi(v) =

0},
Hi(v) = 0},
Gi(v)Hi(v) =1

j =0}

IH U] CI()O UI+O

(166)

Moreover, we have the following relationship between different index sets. For i € Ig(v?),

we have G(v’) = 0, implying that G;(v7)

H;(v)) —t; < 0 and (55 =05 i.e.,

Ig(v?) ﬂIGH(Uj,tj) = () and 5? =0 for all i € Ig(v?).

Similarly, we have

1(0?) (e, t;) = 0 and 8 =0 for all i € Iy(v?).

Since all (v, M, /47, w?, 67) are KKT points of (NLP-¢;), we have

0 = Vf()+0 ng(v”)JrZZ L 1V hi(07)

Zz 1771
Zz 1 ”L(

with

¢l =0, Vi¢ Iy@

Respectively define 67 and 77 as

5Gi . [ STHi(v)) i€ Ion(v,ty),
v 0 otherwise,

We can rewrite (169) as follows

0 = Vf()+30, 192(1}])‘*‘2@ 1/‘th( 7) —

Gi(v?) —

and
and
and

and

— i 1CJVH (V1) + >0 151GJVG
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2
H;(v7)VGi(v?) —

A\

m
C]
!

T

T w!VH;(v)
Gi(vI)VH;(v7))

>0, Vi € I,(v7),
>0, Vi € Ig(v?),
>0, Vi € Ig(v?),

>0, Vi € I (v’ ,tj).

and 677 .= 55Gi(vj) i€ IGH(Uj’tj)’
v 0 otherwise.

Zz lnzVG( )
() + iy 6 VH; (o).

(167)

(168)

(169)

(170)

(171)

(172)

(173)



Note that the multipliers 67 and 677 are nonnegative too. Our next step is to prove that
the sequence {(M, p?, 7, w, §97, 673} is bounded. If we assume the contrary, we can find
a subsequence J such that

(N, o, ¢, 6949, 5H)
||()‘J? ,LL], nja C‘jv 6G’j7 5H7])”

=1 (A 1,9, ¢, 09,68 £ 0.

Dividing by [|(M, u?, 77, 7,67, 657)|| and taking this limit in equation (173) yields (note
that the functions g, h, G and H are continuously differentiable):

0 = 37, Xigi(0) + X, AVAi(0) = Yi_, iV Gi(0) = Yi_, @iV H;i(0)
+Zzlz ()+Zzlz ('l)),

i.e., the gradients

Vi (0) + i € supp(A)} U{Vhi (@) i € supp()}U

) . 174
VG; (v) - iEsupp(ﬁ)Usupp@G)}U{VHi (0) : i € supp(¢) Usupp(o H)} r

are linearly dependent, which is a contradiction to MPEC-LICQ. Here we used the fact that
Ic(v) N Ieu(v,t;) = 0 in (167) and Iy (v7) () Igu(v?,t;) = 0 in (168), which implies’
supp (7)) Nsupp(6%) = 0 and supp(w) N supp(67) = 0. (175)
We also used the observations that? supp()\) C I,(v) and
supp () U supp(6“) C Ioo(?) U T4 (9) and supp(¢) Usupp(87) C Too(0) U Io(D).

Consequently, the sequence {()\J pnd, ¢8G9, 6H:9)} is bounded. Therefore, it is con-
vergent to some limit (@, A, 7, ¢, 66,61 ). In fact, convergence holds on the whole sequence

1. For contradiction, assume that there exists io € supp(7) N supp(gc). For j sufficiently large and j € J,
it holds that 7750 > 0 and 5%;‘ > 0. By (170), we have ip € Ig(v?), i.e., G4 (v?) = 0. On the other hand,
by the definition of §7 in (172), we have (W 10 (v?) > 0, implying that 6j > 0. Again by (171)7 we
have ig € Igm(v?), meaning that G,O (v!)H, (v ') —t; = 0. However, this contradlcts to Gy (v?) = 0.
Therefore, we have supp(7j) N supp(6©) = 0. Similarly, we have supp () N supp(6?) = 0.

2. First, note that for j € J sufficiently large, it holds that supp()\) C supp(M) C I,(v?) C I, (7). Therefore,
supp(A) C I,(9) holds. Next we show that supp(#) C Ioo( ) U Io4 (7). Note that for ¢ € supp(7}), there
exists €1 > 0 such that for j sufficiently large and j € J, ] > e1. Therefore, it holds that G;(v?) = 0, i.e.,
i € Ic(v?). By (166), it holds that supp( ) C Ioo( ) U Io, (v). To show supp(6%) C Ioo(9) U I10(D), we
will show supp(dc) C I10(). Denote x* = (M, p?, 7 ,w?, 899, §17). Since {ﬁ} is bounded, we have

{HXJ “} and {HXJ I } are bounded as well. For i € supp(d“), there exists ez > 0 such that for j sufficiently

large and j € J, H—];I > €2. By the definition of 5-G] in (172), it holds that 67“‘Hj<fl S e2. Now we

claim that for such ¢, H;(?) > 0. Indeed, if H;(v) = 0, it holds that H (v¥) = 0. By the boundedness

of {%}, we obtain that % W
for i € supp(d9), i € Ip+ (), i.e., supp(6%) C Io+( ). Therefore, supp(7) U supp(6¢) C Ioo(7) U Lo+ (D).

Similarly, we can show that supp( YU supp(87) C Ioo(?) U I10(9).

—xk 0, which contradicts to > e2. Therefore, we obtain that
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since the existence of two different accumulation points would again result in a contradiction
to MPEC-LICQ. Due to (175), we respectively define the multipliers 77 and ¢ as follows

i, iesupp(i), G, i esupp(C),
=1 —6C, iesupp(69), =4 —6/, iesupp(6™),
0, otherwise, 0, otherwise.

By taking the limit in (169), we obtain that

0= Vf(0) + Xigi(v +szgz +ZWh ZWG ZCNH

Here, A > 0 and

supp(A) € Iy(v7) C I,(v),
supp(7) = supp(i) Usupp(6F) C Ioo() U Io1 (),
supp(() = supp(C) Usupp(6?) C Ioo(d) U L1o(D).

Consequently, we have
7 =0 for all i € I o(v) and §; =0 for alli € Iny (). (176)

That is, (7, \, i, 7, () is at least a weakly stationary point of (MPEC-BHO). To prove M-
stationarity, assume that it holds that an i € Ino(v) with 7; < 0 and (; # 0 (the case
7; # 0 and w; < 0 can be treated in a symmetric way). The condition 7; < 0 implies
i € supp(6€) C Io, () for all j sufficiently large3. We have (; = 0 by (176), which is a
contradiction. Hence, the result. ]
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