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Abstract

While the problem of tuning the hyperparameters of a support vector machine (SVM) via
cross-validation is easily understood as a bilevel optimization problem, so far, the corre-
sponding literature has mainly focused on the linear-kernel case. In this paper, we establish
a theoretical framework for the development of bilevel optimization-based methods for tun-
ing the hyperparameters of an SVM in the case where a nonlinear kernel is adopted, which
affords the ability to capture highly-complex relationships between the points in the data
set. By leveraging a Karush-Kuhn-Tucker (KKT)/mathematical program with equilib-
rium constraints (MPEC) reformulation of the (lower-level) training problem, we develop a
theoretical framework for the SVM hyperparameter-tuning problem that established under
which assumptions and conditions suitable qualification conditions including the Mangasar-
ian–Fromovitz, the linear-independence, and the strong second order sufficient conditions
are satisfied. We then illustrate the need for this theoretical framework in the context
of the well-known Scholtes relaxation algorithm for solving the MPEC reformulation of
our bilevel hyperparameter problem for SVMs. Numerical experiments are conducted to
demonstrate the potential of this algorithm for examples of nonlinear SVM problems.

Keywords: support vector classification, hyperparameter optimization, bilevel optimiza-
tion, mathematical program with equilibrium constraints, constraint qualifications, strong
second order sufficient conditions, Scholtes relaxation method

1 Introduction

Support vector machines (SVMs) Hearst et al. (1998) are among the most-used models in
machine learning for tackling both regression and classification tasks. While the most basic
version of the general SVM model (in which the data set is linearly separable and the separa-
tion margin is maximized) features no hyperparameters, many extremely-popular variants
such as soft-margin and kernel SVMs feature one or more hyperparameters—parameters
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of the model which must be selected by the user before fitting the model to data in the
training phase. The standard approach to selecting values for such hyperparameters in such
a way that over-fitting the training data is avoided is to perform cross validation, wherein
a portion of the data set (the validation set) is held out from training and the hyperparam-
eter values are selected such that, after the model is fit to the training data, the model’s
predictions for the hereto unseen validation set minimize a given loss function. For both
classification and regression tasks, the loss function that is typically used is the L1-norm of
the vector of misclassification errors.

The problem of choosing the best hyperparameter values within a cross-validation frame-
work is easily understood as a bilevel optimization problem: it asks for minimizing a loss
function of the model’s predictions evaluated on the validation set (the upper-level or leader’s
objective function) subject to the model parameters minimizing another loss function eval-
uated on the the training set (lower-level or follower’s objective function).

In the general case, such a bilevel program is complex to formulate and often pro-
hibitively hard solve to (local or global) optimality. For this reason, many popular methods
for hyperparameter selection (such as grid search, random search, and Bayesian optimiza-
tion) rely on various schemes for sampling different hyperparameter combinations for which
the training problem is solved and its solution evaluated to measure the loss function of the
resulting trained model’s predictions on the validation set Bishop and Nasrabadi (2006).

While some of such methods work reasonably well in practice, they all are, in essence,
heuristics designed for solving the above-mentioned bilevel optimization problem and, as
such, one may except that a better performance would be achieved if one were to develop
ad hoc techniques for solving it that exploit its bilevel nature within a well-formalized
mathematical optimization framework. Numerous attempts have indeed been made to
formulate and solve the problem in such a way but, to the best of our knowledge, none
studied the case where a nonlinear kernel is employed.

Hyperparameter tuning via bilevel optimization has also been used for classification
models other than SVMs such as ℓp regression Okuno et al. (2021); Nguyen et al. (2023). In
the bilevel optimization literature on hyperparameter tuning, most of the works consider the
linear-kernel case with focus on either the support vector regression (SVR) or the support-
vector classification (SVC) case Bennett et al. (2008, 2006); Moore et al. (2009); Kunapuli
et al. (2008a,b); Li et al. (2022a,b); Wang and Li (2023). The nonlinear-kernel case is
mentioned only in Kunapuli et al. (2008a,b), but it is not studied beyond emphasizing
its importance in many practical applications. Interestingly, some of the aforementioned
works show that, especially when using variants of the SVM model featuring additional
hyperparameters as in Kunapuli et al. (2008b), bilevel methods are able to outperform
sampling-based methods such as grid search.

1.1 Aim and scope of the paper

Since the nonlinear feature-space mapping does not admit a finite algebraic representation,
in the formulation we propose we state the training problem (lower-level problem) in its dual
form. While such a choice substantially complicates the analysis, thanks to the so-called
kernel trick (see, e.g., Bishop and Nasrabadi (2006) the adoption of a dual formulation for
the training problem leads us to a very general formulation that can be flexibly adopted
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to many other choices of a nonlinear feature-space mapping. Among many options for the
choice of a nonlinear kernel, for the study of this paper we focus on the Radial Basis Func-
tion (RBF) kernel (also known as Gaussian kernel). Such a kernel has been used in many
practical applications Prajapati and Patle (2010) and has been shown to outperform many
other kernels such as the linear, polynomial, and sigmoid kernel in numerous cases Nanda
et al. (2018); Yekkehkhany et al. (2014); Feizizadeh et al. (2017); Hong et al. (2017); Tbarki
et al. (2016); Garrett et al. (2003). In particular, we remark that most of our analysis is in-
dependent of the adoption of the RBF kernel, which makes extending it to other (nonlinear)
kernels rather easy.

The bilevel optimization problem we formulate features the SVM hyperparameters and
the cross-validation function as, respectively, upper-level variables and upper-level objective
function, while it features the variables of the dual of the nonlinear SVM training problem
and the corresponding loss function as lower-level variables and objective function. Our
formulation also includes a robust formulation for the bias b, which, while not directly
available due to the adoption of the dual formulation, is crucial for stating the upper-level
objective function.

Due to the way cross validation is defined, our bilevel problem features a single upper-
level problem and a multitude of lower-level problems (one per split—see further) and, as
such, it could be classified as a single-leader multi-follower optimization problem.

We then use the Karush-Kuhn-Tucker (KKT)/mathematical program with equilibrium
constraints (MPEC) reformulation (a classical tool to transform a bilevel optimization prob-
lem into a single-level problem—see, e.g., Dempe and Zemkoho (2012, 2013) and references
therein) to build a single-level formulation which is the core of the theoretical analysis we
carry out in the paper.

In the field of MPEC, three qualification conditions are crucial for the theoretical un-
derstanding of the problem and the development of numerical methods; that is, the MPEC
Mangasarian-Fromovitz constraint qualification (MPEC-MFCQ), the MPEC linear inde-
pendence constraint qualification (MPEC-LICQ), and the MPEC strong second order suffi-
cient condition (MPEC-SSOSC); see, e.g., Dempe and Zemkoho (2012, 2013); Flegel (2005);
Ye et al. (1997); Guo et al. (2013); Kanzow and Schwartz (2013); Hoheisel et al. (2013);
Scholtes (2001). Hence, the fundamental question that we address in this paper is the
following one:

Can the MPEC-MFCQ, MPEC-LICQ, and MPEC-SSOSC be satisfied
for the MPEC reformulation of our bilevel hyperparameter optimization
problem for nonlinear SVMs?

In Section 4, we prove that the MPEC-MFCQ is automatically satisfied for any feasible point
of our MPEC reformulation. As for the MPEC-LICQ and MPEC-SSOSC, in, respectively,
Sections 5 and 6 we carefully consider an exhaustive set of scenarios and construct conditions
and numerical assumptions under which these conditions either fail or hold. Such a study is
crucial for the development of efficient numerical algorithms for our problem, as we illustrate
in Section 7 in the context of an application of the Scholtes relaxation method. In particular,
thanks to our experimental results carried out on a number of real world data sets shows
that our proposed bilevel optimization formulation for selecting the hyperparameter of a
nonlinear SVM (with an RBF kernel) has the potential to outperform grid search.
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1.2 Main contributions of the paper

In summary, the main contributions of the paper are as follows:

1. We introduce a bilevel optimization formulation of the hyperparameter optimization
problem for a nonlinear SVM. A tractable transformation of this problem based on
dual formulation of the SVM is then constructed and a framework ensuring that it
is locally and globally equivalent to the corresponding KKT/MPEC reformulation is
established.

2. We show that MPEC-MFCQ is automatically satisfied for the MPEC reformulation
of the our bilevel hyperparameter optimization problem for nonlinear SVMs.

3. We provide an exhaustive analysis that specifically establish conditions under which
the MPEC-LICQ holds or fails for the our bilevel hyperparameter optimization prob-
lem for nonlinear SVMs.

4. Unlike the MPEC-MFCQ and MPEC-LICQ, which only take the feasible set the
problem under consideration, the MPEC-SSOSC involves the objective function. In
our analysis, we exploit the structure of the feasible set of our bilevel hyperparameter
optimization problem for nonlinear SVMs to establish conditions ensuring the MPEC-
SSOC is satisfied or fail. We also extend our analysis under certain differentiability
assumptions on the upper-level objective function of our problem.

5. We illustrate the need for the study of the MPEC-MFCQ, MPEC-LICQ, and MPEC-
SSOSC in the context of the a Scholtes-relaxation algorithm which we design to solve
the problem.

1.3 Structure of the paper

The remainder of the paper is structured as follows. In the next section, we introduce the
nonlinear SVM (lower-level problem) and its dual form, construct the cross-validation loss
function (upper-level objective) using the dual variables of the lower-level problem, and
subsequently formulate the whole problem of computing optimal hyperparameter values
for a nonlinear SVM via k-fold CV as a bilevel program. In Section 3, we introduce the
KKT/MPEC single-level reformulation of the problem. Sections 4, 5, and 6 are devoted
to the analysis of the MPEC-MFCQ, MPEC-LICQ, and MPEC-SSOSC, respectively. The
need for these conditions is illustrated in Section 7 by showing how they can be utilized in
the analysis of the Scholtes relaxation algorithm, which is then implemented and run on a
collection of real-world data sets. Conclusions and possible future works are discussed in
Section 8. For the sake of readability, almost all the proofs of the paper are relegated to
the appendices.

2 Mathematical Formulation of the Problem

We start this section by establishing the notation we use throughout the paper. Given
positive integer n ∈ N, we denote the set of integers from 1 to n by [n] := {1, . . . , n}. In×n

denotes the identity matrix in Rn×n, while 0m×n denotes the zero matrix in Rm×n and
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0n the zero vector in Rn. Given a matrix X ∈ Rm×n and two sets τ ⊆ [m] and κ ⊆ [n],
X(τ,κ) denotes the submatrix of X with row and column indices in τ and κ, while X(τ, ·)
and X(·, τ) represent the submatrices of X containing, respectively, the rows and columns
indexed by τ . Given a vector x ∈ Rn, xτ denotes the subvector of x with index set τ .

2.1 SVM training problem and k-fold cross validation

Let us consider N data points (Xj , yj)j∈[N ], where Xi ∈ Rl is the l-dimensional feature
vector of the data point of index j and yj ∈ {−1, 1} is a binary label indicating whether
the point belongs to one of two given classes A and B.

In its basic version, a support vector machine (SVM) is a maximum margin (often
called hard-margin) binary classifier for which the training problem is to find a hyperplane
of equation ω⊤x + b = 0 which separates the two classes of points. Here, ω ∈ Rl is the
vector orthogonal to the hyperplane, and b ∈ R is the intercept. The hyperplane should
be such that ω⊤x + b > 0 if x ∈ A and ω⊤x + b < 0 if x ∈ B and the separation margin
(i.e., the slab of width 1

2∥ω∥2 centered about the hyperplane that contains no data points)
associated with it should be as large as possible (Cortes and Vapnik, 1995).

Since in practice it is rarely the case that the two classes A and B are linearly separable
(i.e. separable by a hyperplane), the notion of a soft-margin SVM is often adopted. The goal
of a soft-margin SVM is to find a hyperplane that, at one time, maximizes the separation
margin and minimizes the total misclassification error, the latter being defined as the sum
over all points that end up on the wrong side of the hyperplane of their absolute residual
|ω⊤x− b|. The training problem for a soft-margin SVM reads as

min
ω, b

1

2
∥ω∥2 + C

∑
j∈[N ]

max
{
0, 1− yj

(
ω⊤Xj + b

)}
,

where the hyperparameter C ≥ 0 controls the relative contribution of each of the two
terms: the inverse of the margin and the total misclassification error. We note that the
case C = 0 is of no practical interest. This is because, with C = 0, the problem achieves
an optimal solution (ω∗, b∗) of value 0 by setting ω∗ = 0 for any choice of b∗ ∈ R. Such a
solution induces a degenerate hyperplane with normal vector ω∗ = 0 leading to an infinite
separation margin 1

∥ω∗∥ .

When a k-fold cross-validation framework (with k ≥ 2) is in place, the data set is
partitioned into k folds, from which k splits of the data set are generated. For each split
i ∈ [k], n̄(i) and n̂(i) denote the number of validation points and training points (Note
that n̂(i) + n̄(i) = N holds). Each split of index i ∈ [k] features the ith fold as validation

set, which we denote by {(X̄(i)
j , ȳ

(i)
j )}j∈[n̄(i)] (where, for each j ∈ [n̄(i)], ȳ

(i)
j ∈ {1,−1} is

the label associated with the validation points X̄
(i)
j ) and the union of the k − 1 remaining

folds as training set, which we denote by {(X̂(i)
j , ŷ

(i)
j )}j∈[n̂(i)] (where, for each j ∈ [n̂(i)],

ŷ
(i)
j ∈ {1,−1} is the label associated with the training point X̂

(i)
j ).

Differently from the basic SVM model that we introduced before, we assume that, for

each split i ∈ [k], each training point X̂
(i)
j , j ∈ [n̂(i)], is embedded into a higher-dimensional

feature space of dimension l∗ thanks to the feature-space mapping ϕγ : Rl → Rl∗ , where
l∗ > l and γ > 0 is a parameter of the mapping (a hyperparameter of the SVM model).
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When the RBF kernel is adopted, ϕγ is an infinite-dimensional function (l∗ =∞) whereas in
the linear-SVM case, ϕγ is the identity function. Adopting this notation, the optimization
problem of training a soft-margin SVM on each split i ∈ [k] reads:

min
ω(i), b(i)

1

2
∥ω(i)∥2 + C

∑
j∈[n̂(i)]

Ξϕγ

(
ŷ
(i)
j , ω(i), X̂

(i)
j , b(i)

)
, (1)

where the function Ξϕγ is defined by Ξϕγ (y, ω,X, b) := max
{
0, 1− y

(
ω⊤ϕγ(X) + b

)}
.

2.2 Bilevel optimization problem

We now formally introduce the bilevel hyperparameter optimization problem for nonlinear
SVMs. In it, each lower-level problem belongs to the family of training problems introduced
in (1). In the upper-level problem, the hyperparameters C and γ are tuned in such a way
that the average generalization error evaluated over the k validation sets (across the k splits)
is minimized. This is done by minimizing the following upper-level objective function:

LSVM(ω, b, X̄, ȳ) :=
1

k

∑
i∈[k]

∑
j∈[n̄(i)]

1

n̄(i)
Ξϕγ

(
ȳ
(i)
j , ω(i), X̄

(i)
j , b(i)

)
, (2)

whose value decreases as the performance of the SVM model on the k validation sets in-
creases. For each of the k splits, the lower-level problem will be problem (1) (training
problem) and the upper-level problem will be to minimize the loss function L defined in
equation (2).

Combining the k instances of problem (1) for the lower-level and equation (2) for the
upper level, we obtain the following formulation of the bilevel hyperparameter optimization
problem for nonlinear SVMs:

min
C, γ≥0, ω, b

F (C, γ, ω, b) :=
1

k

∑
i∈[k]

∑
j∈[n̄(i)]

1

n̄(i)
Ξϕγ

(
ȳ
(i)
j , ω(i), X̄

(i)
j , b(i)

)
s.t. (ω(i), b(i)) ∈ argmin

ω(i), b(i)

{
1

2
∥ω(i)∥2

+ C
∑

j∈[n̂(i)]

Ξϕγ

(
ŷ
(i)
j , ω(i), X̂

(i)
j , b(i)

)}
for i ∈ [k],

(3)

where ω :=
(
ω(1), . . . , ω(k)

)
∈ Rkl∗ and b :=

(
b(1), . . . , b(k)

)
∈ Rk.

Differently from the single-level case where, with C = 0, any solution (ω∗, b∗) with
ω∗ = 0 is optimal for any choice of b∗ ∈ R, in the bilevel case b(i)∗ must be chosen in such a
way that the out-of-sample upper-level loss function is minimized. Such a value of b(i)∗ can
be computed in closed-form according to the following proposition:

Proposition 1. With C = 0 and for any choice of γ ∈ R+, problem (3) admits the following
optimal solution:

for all i ∈ [k], ω(i)∗ = 0 and b(i)∗ =


+1 if |B(i)| < |A(i)|,
−1 if |B(i)| > |A(i)|,
any value in [−1, 1] if |B(i)| = |A(i)|,
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where A(i) :=
{
j ∈ [n̄(i)] : y

(i)
j = 1

}
and B(i) :=

{
j ∈ [n̄(i)] : y

(i)
j = −1

}
.

In order to efficiently solve the problem and, in particular, to facilitate the use of the
Karush-Kuhn-Tucker (KKT) reformulation to transform it into a single-level optimization
problem, the first issue to address here is the nonsmoothness of the max operator appearing
in each of the lower-level training problems. To proceed, we transform problem (3) into
a bilevel program featuring a constrained lower-level problem per split of index i ∈ [k]
along the lines of Bishop and Nasrabadi (2006). We do so by applying a commonly-used
lifting operation thanks to which, for each lower-level problem of index i ∈ [k], the max
operator is removed from the objective function at the cost of introducing a linear number
of variables and constraints, one per data point and folder, where, for each split i ∈ [k], the

variable ξ
(i)
j ≥ 0 denotes the misclassification error of data point j ∈ [n̂(i)]. This leads to

the following reformulation:

min
C, γ≥0

F (C, γ, ω, b) s.t.
(
ω(i), b(i), ξ(i)

)
∈ S(i)(C) for i ∈ [k], (4)

where, for each split i ∈ [k], S(i)(C) denotes the set of optimal solutions to the following
reformulation of the ith lower-level problem:

min
ω(i),b(i),ξ(i)

1
2(ω

(i))⊤ω(i) + C
∑

j∈[n̂(i)]

ξ
(i)
j

s.t. ŷ
(i)
j

(
(ω(i))⊤ϕγ(X̂

(i)
j ) + b(i)

)
≥ 1− ξ

(i)
j for j ∈ [n̂(i)],

ξ
(i)
j ≥ 0 for j ∈ [n̂(i)].

(5)

This problem is completely equivalent to problem (1).
Since a finite algebraic expression of ϕγ is not available if ϕγ is infinite-dimensional, one

can define the kernel function

K(Xr, Xs) := ϕγ(Xr)
⊤ϕγ(Xs) for any pair (r, s) ∈ [N ]× [N ] (6)

in terms of the inner product between the maps of any two data points of index r and s
into the (higher- or) infinite-dimensional feature space. In this work, we consider the Radial
Basis Function (RBF) kernel defined by:

K(Xr, Xs) := exp(−γ∥Xr −Xs∥2) for any pair (r, s) ∈ [N ]× [N ]. (7)

Here γ ≥ 0 is the hyperparameter. We recall that, as mentioned above, our analysis can be
easily adapted to many other types of nonlinear kernels besides the RBF one.

By relying on the so-called kernel trick (see, e.g., Bishop and Nasrabadi (2006); Chung
et al. (2003)), equations (6) and (7) can now be applied to the dual of the ith-split training
problem (5) to obtain a completely explicit formulation which does not include the (infinite-
dimensional) map ϕγ :

min
α(i)∈Rn̂(i)

H(i)
(
γ, α(i)

)
:= 1

2(α
(i))⊤Qi(γ)α(i) − (α(i))⊤e(i)

s.t. 0 ≤ α
(i)
j ≤ C for j ∈ [n̂(i)],(

α(i)
)⊤

ŷ(i) = 0.

(LLPi)
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In this formulation, α(i) ∈ Rn̂(i)
denotes the dual variable of the lower-level problem defined

in (5), ŷ(i) :=
(
ŷ
(i)
1 , · · · , ŷ(i)

n̂(i)

)
∈ Rn̂(i)

, and e(i) is the all-one vector in the space Rn(i)
.

Qi(γ) ∈ Rn̂(i)×n̂(i)
is defined as

(Qi(γ))rs := ŷ(i)r ŷ(i)s exp
(
−γ∥X̂(i)

r − X̂(i)
s ∥22

)
for r, s ∈ [n̂(i)], i ∈ [k]. (8)

Note that C = 0 implies α(i) = 0, which leads to a 0-valued objective function, in line
with what we observed before for the primal problem. In particular, Lagrangian duality
shows that, with 0 = α = C = 0, the dual multipliers µ satisfy µ = 0, which allows for
nonegative ξ (and, in particular, arbitrarily large ξ’s, which coincides with entirely ignoring
the misclassification error in the primal problem.

It is important to remark that, in problem LLPi, C and γ are hyperparameters whose
values must be known before the lower-level training problem can be solved. In the con-
text of linear SVMs, the regularization parameter C it typically the only hyperparameter.
However, as it can be seen from (LLPi) and equation (8), the adoption of an RBF kernel
leads to the introduction of the second hyperparameter γ.

From now on, problem (LLPi) will serve as the lower-level problem for each split i ∈ [k].

Proposition 2. For a given C ∈ R+, let ΩC : R→ R be any function satisfying ΩC(ζ) = 0
for ζ ≤ 0 and ζ ≥ C and ΩC(ζ) > 0 all ζ ∈ (0, C). For any point (C,ω, b) that is feasible for
problem (4), there exists a vector (C, γ, α) ∈ R×R×Rn such that the value of the function
F defined in (3) coincides with that of the following function F :

F (C, γ, α) :=



1

k

∑
i∈[k]

1

n̄(i)

∑
j∈[n̄(i)]

max

{
0, 1− ȳ

(i)
j H(i)

(
X̄

(i)
j , γ

)
+

1∑
ℓ∈[n̂(i)]

ΩC

(
αi
ℓ

) ∑
ℓ∈[n̂(i)]

ΩC(α
i
ℓ)
(
ŷ
(i)
ℓ −H(i)

(
X̂

(i)
ℓ , γ

))}
if C > 0,

1

k

∑
i∈[k]

1

n̄(i)
2min

{
|A(i)|, |B(i)|

}
if C = 0,

where α :=
(
α(1), . . . , α(k)

)
∈ Rn̂(1)×···×n̂(k)

, n :=
∑k

i=1 n̂
(i), and for all i ∈ [k] and X ∈ Rl,

A(i) and B(i) are defined as in Proposition 1, while

H(i)(X, γ) :=
∑

j∈n̂(i)

α
(i)
j ŷ

(i)
j exp

(
−γ∥X̂(i)

j −X∥2
)
.

We remark that the proposition holds for any choice of ΩC that satisfies our assumptions,
irrespective of its norm. That is, besides the indicator function ΩC satisfying ΩC(ζ) = 0
for ζ ≤ 0 and ζ ≥ C and ΩC(ζ) = 1 for all ζ ∈ (0, C), which can be an example, we can
also select a scenario, where the value of ΩC on the interval (0, C) is arbitrarily large.

When C > 0 and assuming that there is at least a j ∈ [n̂(i)] with α
(i)
j ∈ (0, C), the second

term in the upper-level objective function F coincides with the bias b(i). It is obtained
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starting from the following formula (cf., for instance, Bishop and Nasrabadi (2006)):

b(i) = ŷ
(i)
j −

(
ω(i)

)⊤
ϕγ

(
X̂

(i)
j

)
, ∀i ∈ [k], ∀j ∈

[
n̂(i)

]
s.t. α

(i)
j ∈ (0, C) ,

and re-expressing it w.r.t. the dual variables (see the proof of Proposition 2 in the appendix
for more details), which results in:

b(i) = ŷ
(i)
j −

∑
t∈[n̂(i)]

α
(i)
t ŷ

(i)
t exp

(
−γ

∥∥∥X̂(i)
t − X̂

(i)
j

∥∥∥2) , (9)

for all i ∈ [k] and for any j ∈
[
n̂(i)

]
such that α

(i)
j ∈ (0, C). The ”any” part of the

last statement requires the introduction of an indicator function which not only identifies,

for each i ∈ [k], all the indices j ∈ n̂(i) where the condition α
(i)
j ∈ (0, C) is satisfied,

but also selects one (and one only) of them. To circumvent the need for arbitrarily

choosing an index j ∈ n̂(i) among those satisfying α
(i)
j ∈ (0, C) and, at the same time,

obtain a formulation that is numerically stable, we optimize for defining (w.l.o.g.) b(i) as

the weighted average of the right-hand sides of the previous expression over all the α
(i)
j that

satisfy the condition α
(i)
j ∈ (0, C). Letting ΩC be the indicator function ΩC : [0, C]→ {0, 1}

with ΩC(x) = 1 if 0 < x < C and ΩC(x) = 0 otherwise, we have that, for each i ∈ [k] the
ratio 1/

∑
l∈[n̂(i)]ΩC

(
αi
ℓ

)
coincides with the number of such variables belonging to (0, C).

Thus, the expression for b(i) used in F coincides the average of the right-hand sides of
equation (9). This avoids the need for selecting a suitable index while also guaranteeing a
numerically more stable formulation due to averaging the value that one would calculate
for b(i) over all the possible indices j ∈ n̂(i) that could be used for it.

If C > 0, and there is some i ∈ [k] such that α
(i)
j ∈ {0, C} for all j ∈ [n̂(i)], we use the

following way to determine b(i). To proceed, we introduce the sets

I=(α(i)) :=
{
j ∈ [n̂(i)] | α(i)

j = 0
}

and I<(α(i)) :=
{
j ∈ [n̂(i)] | α(i)

j = C
}
. (10)

Proposition 3. Let α(i) be the optimal solution of (LLPi) for i ∈ [k]. If α
(i)
j ∈ {0, C} for

all j ∈ [n̂(j)], for some lower-level problem i, then the optimal value of b(i) for lower-level

problem (LLPi) can be any value in [b
(i)
min, b

(i)
max], where

b
(i)
min := max

j∈I=(α(i))

{
ŷ
(i)
j −H(i)(X̂

(i)
j , γ)

}
, b(i)max := min

j∈I<(α(i))

{
ŷ
(i)
j −H(i)(X̂

(i)
j , γ)

}
. (11)

Based on the above result and problem (LLPi) for each split i ∈ [k], the bilevel hyper-
parameter optimization problem for a nonlinear SVM with RBF kernel can be replaced by
the following problem, which will be our focus in the remainder of the paper and to which
we refer by the shorthand BHO as in Bilevel Hyperparameter Optimization (problem):

min
C, γ, α

F (C, γ, α)

s.t. (C, γ, α) ∈ R2
+ × Rn, α(i) ∈ S

(i)
D (C, γ) for i ∈ [k],

(BHO)
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where n :=
∑k

i=1 n̂
(i) and, for each split i ∈ [k], we have

S
(i)
D (C, γ) := argmin

α(i)∈Rn̂(i)

{
H(i)(γ, α(i)) : α(i) ∈ [0, C]n̂

(i)
, (α(i))⊤ŷ(i) = 0

}
.

Remark 4. It is important to note that both C and γ are likely to be positive for any global
solution in the context of any practically relevant data set. This is because the occurrence
of data sets where solutions with either C = 0 or γ = 0 are optimal is extremely unlikely.
Indeed, the existence of an optimal solution with C = 0 would imply that entirely ignoring
the misclassification error leads to a better out-of-sample loss than doing otherwise, which is
rather unlikely for realistic data sets. Similarly, the adoption of γ = 0 would lead to an all-
one kernel matrix. Thus, the existence of an optimal solution with γ = 0 would imply that
adopting a trivial feature-space map thanks to which the distance between every pair of data
points is identical (which, incidentally, makes the data points completely indistinguishable)
leads to best out-of-sample loss, which is absurd.

Based on this remark, we would like to highlight our basic setting in terms of data
sets under consideration. Clearly, as we assume that the data sets involved in the model
described here are based on real-world scenarios, it is very unlikely that all the data points
can lie on the separating hyperplane and all be support vectors. Hence, the following basic
settings will be used throughout the paper for data when trained by our nonlinear SVM:

Basic Settings.

(i) For each lower-level problem i ∈ [k], there exists at least one training data with label
1, which is not a support vector in the kernel space, and there also exists at least one
training data with label −1, which is not a support vector in kernel space.

(ii) For each lower-level problem i ∈ [k], there exists at least two training data with label
1, which are support vectors in kernel space, and there also exists at least two training
data with label −1, which are support vectors in kernel space.

In the subsequent sections, we will build a single-level reformulation of (BHO) and study
its theoretical properties.

3 MPEC reformulation

3.1 Single-level reformulation

As it is common in the bilevel optimization literature, the first step in the process of
developing a theoretical framework or numerical solution scheme for a bilevel program is to
reformulate it into a single-level optimization problem. There are three standard approaches
to do so: the implicit function approach, the optimal value (function) approach, and the
Karush-Kuhn-Tucker (KKT) reformulation approach. We refer the reader to Dempe and
Zemkoho (2013) and the references therein for a detailed discussion.

A common point between the implicit function and optimal value function reformula-
tions is that they are both based on implicitly-defined functions, i.e., the lower-level optimal
solution function for the former and the optimal value function for the latter. This means
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that, for each of these two reformulations, we typically might not be able to have a com-
pletely explicit expression of the problem. Hence, our focus in this paper is on applying
the KKT reformulation to KKT reformulation to (BHO). However, throughout, we label
it as mathematical program with equilibrium (MPEC) reformulation, to easily match the
vocabulary of the necessary concepts to the existing literature.

To introduce such a reformulation, we start by noting that, for each split i ∈ [k] and
any γ ≥ 0, the kernel matrix Qi(γ) with Qi(γ)rs defined in (8) is positive semidefinite due
to being a Gram matrix. Since the lower-level constraints of problem (BHO) w.r.t. α(i)

are convex (and, in particular, linear), it follows that each lower-level problem is convex.

This implies that, for each split i ∈ [k], α(i) ∈ S
(i)
D (C, γ) if and only if there exist Lagrange

multipliers ε ∈ Rn̂(i)
, σ(i) ∈ Rn̂(i)

, and ui ∈ R corresponding, respectively, to the lower
bound, upper bound, and equality constraints such that the following system is feasible:

Qi(γ)α(i) − e(i) − ε(i) + σ(i) − uiŷ
(i) = 0, (12a)

0 ≤ α(i) ⊥ ε(i) ≥ 0, (12b)

0 ≤ σ(i) ⊥ Ce(i) − α(i) ≥ 0, (12c)

α(i)⊤ŷ(i) = 0. (12d)

By defining α, σ, and u as follows

α :=

 α(1)

...

α(k)

 , ε :=

 ε(1)

...

ε(k)

 , σ :=

 σ(1)

...

σ(k)

 , and u :=

 u1
...
uk

 , (13)

we deduce the following KKT reformulation of problem (BHO), which we refer to as the
“preliminary mathematical programming with equilibrium constraints” reformulation:

min
C, γ, α, ε, σ, u

F (C, γ, α)

s.t. C ≥ 0, γ ≥ 0,

Qi(γ)α(i) − e(i) − ε(i) + σ(i) − uiŷ
(i) = 0, i ∈ [k],

0 ≤ α(i) ⊥ ε(i) ≥ 0, i ∈ [k],

0 ≤ σ(i) ⊥ Ce(i) − α(i) ≥ 0, i ∈ [k],

α(i)⊤ŷ(i) = 0, i ∈ [k].

(pMPEC-BHO)

Let us note that the reformulation we applied is standard for deriving single-level model
for bilevel hyperparameter optimization problems; see, e.g., Kunapuli et al. (2008a); Li
et al. (2022a,b) and references therein. However, unlike in (Kunapuli et al., 2008a, Section
5) and (Kunapuli et al., 2008b, Section 3), where the MPEC reformulation for a bilevel
hyperparameter optimization problem for a nonlinear SVM is obtained directly from the
primal lower-level problem, to allow for an infinite-dimensional kernel we proceed here from
the dual of the lower-level training problem (LLPi) (defined for each split i ∈ [k]), which,
as mentioned, makes the analysis substantially harder.

3.2 Relationship between (BHO) and (pMPEC-BHO)

To establish the relationship between problems (BHO) and (pMPEC-BHO), recall the index
sets in (10). Note that the set [n̂(i)]\I= coincides with the index set of the support-vectors
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of the i-th lower-level problem (which are called this way as their dual variable α
(i)
j directly

contributes to the construction of the equation of the discriminating hyperplane). Basic
duality theory shows that: (i) every data point with index j ∈ I= is correctly classified
and ends up on or outside the separation margin; (ii) every data point with index j ∈
[n̂(i)]\(I=∪ I<) is correctly classified and ends up on the separation margin; (iii) every data
point with index j ∈ I< may either be misclassified (while being either inside or outside
of the margin) or correctly classified but being within the margin. The two sets will be
needed for some important constraint qualifications, including the lower-level constant rank
constraint qualification (LCRCQ) for problem (LLPi) that we introduce first.

Definition 5. For a split i ∈ [k], a point (C̄, γ̄, ᾱ(i)) satisfies the lower-level constant rank
constraint qualification (LCRCQi) of problem (LLPi) if there exists an open neighborhood
N (i) of (C̄, γ̄, ᾱ(i)) such that, for every pair of index sets I1, I2 with I1 ⊆ I=(ᾱ(i)) and
I2 ⊆ I<(ᾱ(i)), the family of gradient vectors{

e
(i)
j | j ∈ I1

}
∪
{
−e(i)j | j ∈ I2

}
∪
{
y(i)

}
(14)

has the same rank (depending on I1, I2) for all (C, γ, α
(i)) ∈ N (i). The LCRCQ will be said

to hold at (C̄, γ̄, ᾱ) if the LCRCQi holds at (C̄, γ̄, ᾱ(i)) for each i ∈ [k].

Crucially, we can show the following:

Proposition 6. The LCRCQ holds at every feasible point v̄ of (pMPEC-BHO).

Next, we introduce the set of Lagrange multipliers for the lower-level problem. For each

lower-level problem i ∈ [k] and α(i) ∈ S
(i)
D (C, γ), let Λi(C, γ, α(i)) be the set of Lagrange

multipliers (ε(i), σ(i), ui) of problem (LLPi) satisfying (12). Subsequently, let Λ(C, γ, α) :=
×k

i=1Λ
i(C, γ, α(i)), where α is defined as in (13). Based on these definitions, we can establish

the following relationship between problems (BHO) and (pMPEC-BHO):

Theorem 7. The following assertions are satisfied:

(i) Let (C, γ, α) be a global (resp., local) optimal solution of problem (BHO). Then, for
each (ε, σ, u) ∈ Λ(C, γ, α), the point (C, γ, α, ε, σ, u) is a global (resp., local) optimal
solution of problem (pMPEC-BHO).

(ii) Conversely, let (C, γ, α, ε, σ, u) be a global optimal solution (resp., local optimal solu-
tion for all vertices (ε, σ, u) ∈ Λ(C, γ, α)) of problem (pMPEC-BHO). Then, (C, γ, α)
is a global (resp., local) optimal solution of problem (BHO).

Proof The proof can straightforwardly be derived from Dempe and Dutta (2012).

The first observation we can make from this result is that, from a global optimal so-
lution perspective, problems (BHO) and (pMPEC-BHO) are globally equivalent without
any assumptions. However, from a local optimal solution point of view, the tricky aspect is
ensuring that a local optimal solution (C, γ, α, ε, σ, u) of problem (pMPEC-BHO) leads to
a point (C, γ, α) which is locally optimal for problem (BHO). For the latter to happen, we
need the following assumption included in part (ii) of Theorem 7.
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Assumption 1. For all vertices (ε, σ, u) ∈ Λ(C, γ, α), the point (C, γ, α, ε, σ, u) is a local
optimal solution of problem (pMPEC-BHO).

This is crucial, as our analysis in this paper is essentially focused around local optimal
solutions for problem (pMPEC-BHO). So, it is important to know whether such a local
optimal solution has a chance to lead to a local optimal solution of our original problem
(BHO). Clearly, based on Assumption 1, a critical thing to look at is whether there is a
way to reduce the number of vertices (ε, σ, u) ∈ Λ(C, γ, α) that need to be checked. Note
that that Λ(C, γ, α) will reduce to a singleton (ε, σ, u) defined as in (13) if the following
lower-level linear independence constraint qualification is satisfied:

Definition 8. For i ∈ [k], the lower-level linear independence constraint qualification
(LLICQi) for problem (LLPi) is satisfied at the point (C, γ, α(i)) if the following family
of vectors is linearly independent:{

ŷ(i)
}
∪
{
e
(i)
j | j ∈ I=(α(i))

}
∪
{
−ej | j ∈ I<(α(i))

}
.

Here, e
(i)
j is the jth column of the identity matrix I ∈ Rn̂(i)×n̂(i)

. The LLICQ will be said

to hold at (C, γ, α) with α defined as in (13) if the LLICQi holds at (C, γ, α(i)) for all
lower-level problems (LLPi) of index i ∈ [k].

Proposition 9. Let C ≥ 0. If C = 0, then the LLICQi fails at any (C, γ, α(i)) that satisfies
the constraints of the lower-level problem (LLPi) for any i ∈ [k]. Otherwise (i.e., if C > 0),
for any (C, γ, α(i)) that satisfies the constraints of (LLPi) for any i ∈ [k], it holds that:

(i) If I=(α(i)) = [n̂(i)], the LLICQi fails at (C, γ, α(i)).

(ii) If I=(α(i)) ∪ I<(α(i)) = [n̂(i)], the LLICQi fails at (C, γ, α(i)).

(iii) If I=(α(i)) ∪ I<(α(i)) ̸= [n̂(i)], the LLICQi holds at (C, γ, α(i)).

The proposition implies that if the condition

I=(α(i)) ∪ I<(α(i)) ̸= [n̂(i)] for all i ∈ [k] (15)

holds for (C, γ, α) such that α(i) ∈ S
(i)
D (C, γ) for all i ∈ [k], then Λ(C, γ, α) = {(ε, σ, u)},

and problems (BHO) and (pMPEC-BHO) are globally and locally equivalent.
As mentioned before in Remark 4, under the Basic Settings, the case C = 0 is unlikely

to hold in any (globally) optimal solution to (3).

3.3 MPEC preliminaries

By eliminating ε(i) from (12a), we obtain

ε(i) = Qi(γ)α(i) − e(i) + σ(i) + uiŷ
(i) := θ(i)(v) for i ∈ [k].

Substituting it into (12b), we obtain the following reduced form of problem (pMPEC-BHO):

min
v∈Rm

f(v) := F(C, γ, α)
s.t. g(v) ≤ 0, h(v) = 0,

G(v) ≥ 0, H(v) ≥ 0, G(v)⊤H(v) = 0.

(MPEC-BHO)
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Here, the variable v ∈ Rm, while the functions g : R→ R, h : Rm → Rk, G : Rm → Rr, and
H : Rm → Rr are respectively given by

v :=


C
γ
α
σ
u

 , g(v) := −γ, h(v) := Ŷ α, and


G(v) :=

[
G1(v)
G2(v)

]
,

H(v) :=

[
H1(v)
H2(v)

]
,

(16)

where

G1(v) := θ(v) =

 θ(1)(v)
...

θ(k)(v)

 , G2(v) := Ce− α, H1(v) := α, H2(v) := σ,

e :=

 e(1)

...

e(k)

 , Ŷ :=

 (ŷ1)⊤

...
(ŷk)⊤

 , and ŷi :=



0n̂(1)

...
0n̂(i−1)

ŷ(i)

0n̂(i+1)

...
0n̂(k)


for i ∈ [k]. (17)

Above, m := 2+k+2n, r := 2n, and, as before, where n =
∑k

i=1 n̂
(i). Compared to problem

(BHO), it is worth noting that in problem (MPEC-BHO), the nonnegativity of C, which is
explicit in (BHO), is implied by Ce−α ≥ 0 and α ≥ 0 and, thus, is not imposed explicitly.

In the remainder of this section, we introduce some basic MPEC theoretical concepts
on which we will focus our attention in the subsequent sections. Start by recalling that
for a given optimization problem, concepts such as constraint qualifications, and necessary
and sufficient optimality conditions are not only crucial for their theoretical analysis, but
also for the development of various numerical methods. This is no different in the context
of problem (MPEC-BHO). However, for this problem in MPEC form, standard constraint
qualification such as the Mangasarian–Fromovitz constraint qualification (MFCQ) is known
to automatically fail for any of its feasible points; see, e.g., Flegel (2005); Ye et al. (1997).
Hence, to address this issue, specifically tailored constraint qualifications have been intro-
duced in the literature to derive optimality conditions and other relevant properties.

To describe some of these specific types of constraint qualifications, we now introduce
the following decomposition of the index sets involved in the complementarity constraints
featured in the feasible set of problem (MPEC-BHO). Letting v̄ ∈ Rm be a feasible point
of problem (MPEC-BHO), for the inequalities defined by G and H we define:

I0+(v̄) := {i ∈ [r] : Gi(v̄) = 0, Hi(v̄) > 0} ,
I+0(v̄) := {i ∈ [r] : Gi(v̄) > 0, Hi(v̄) = 0} ,
I00(v̄) := {i ∈ [r] : Gi(v̄) = 0, Hi(v̄) = 0} .

(18)

Considering the inequality defined by g, we define the set of active indices as

Ig(v̄) := {i ∈ [1] : gi(v̄) = 0} . (19)
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For the sake of notation, in the sequel instead of I0+(v̄) we will simply write I0+, and
proceed similarly for I+0(v̄), I00(v̄), and Ig(v̄).

Next, we introduce tractable versions of the Mangasarian-Fromovitz and linear indepen-
dence constraint qualifications tailored to (MPEC-BHO).

Definition 10. Let v̄ ∈ Rm be a feasible point of problem (MPEC-BHO) and consider the
following famility of vectors:

{∇Gi(v̄) : i ∈ I0+ ∪ I00} ∪ {∇Hi(v̄) : i ∈ I+0 ∪ I00}
∪ {∇gi(v̄) : i ∈ Ig} ∪ {∇hi(v̄) : i ∈ [k]} .

(20)

The point v̄ will be said to satisfy:

(a) the MPEC Mangasarian-Fromovitz constraint qualification (MPEC-MFCQ) if the
family of vectors in (20) is positively linearly independent;

(b) the MPEC linear independence constraint qualification (MPEC-LICQ) if the family
of vectors in (20) is linearly independent.

We remark that one can easily verify that, if a point satisfies the MPEC-LICQ, then it
automatically satisfies the MPEC-MFCQ as well.

The literature offers a multitude of stationarity concepts which are suitably defined to
handle problems with complementarity conditions among their constraints and that can be
seen as analogues of the KKT conditions for problems that do not feature constraints of
MPEC type. Here, we introduce the three main stationarity concepts for (MPEC-BHO).
To do so, we will rely on the following Lagrangian function of (MPEC-BHO) and defined
for the point v ∈ Rm and the Lagrange multipliers λ ∈ R, µ ∈ Rk, and η, ζ ∈ Rr:

L(v, λ, µ, η, ζ) := f(v) + λg(v) + µ⊤h(v)− η⊤G(v)− ζ⊤H(v).

Definition 11. A feasible point v̄ ∈ Rm of problem (MPEC-BHO) will be said to be

(a) strongly stationary (S-stationary) if there exist Lagrange multipliers λ̄ ∈ R, µ̄ ∈ Rk,
η̄ ∈ Rr, and ζ̄ ∈ Rr such that

∇vL(v̄, λ̄, µ̄, η̄, ζ̄) = 0, (21)

∀i ∈ Ig : λ̄i ≥ 0, ∀i ∈ {1} \ Ig : λ̄i = 0, (22)

∀j ∈ I+0 : η̄j = 0, ∀j ∈ I0+ : ζ̄j = 0, (23)

∀j ∈ I00 : η̄j ≤ 0, ζ̄j ≤ 0, (24)

(b) Mordukhovich stationary (M-stationary) if we can find Lagrange multipliers λ̄ ∈ R,
µ̄ ∈ Rk, η̄ ∈ Rr, and ζ̄ ∈ Rr such that (21)–(23) and

∀j ∈ I00 :
(
η̄j ζ̄j = 0

)
∨

(
η̄j < 0, ζ̄j < 0

)
, (25)

(c) Clarke stationary (C-stationary) if we can find Lagrange Multipliers λ̄ ∈ R, µ̄ ∈ Rk,
η̄ ∈ Rr, and ζ̄ ∈ Rr such that (21)–(23) hold together with

∀j ∈ I00 : η̄j ζ̄j ≥ 0. (26)
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It is well-known that if a local optimal solution v̄ to an MPEC satisfies the MPEC-
MFCQ, then this point is M-stationary. However, if the stronger MPEC-LICQ holds at v̄,
then this point is S-stationary. A point that is S-stationary is also M-stationary, and the
latter implies that C-stationarity holds.

It is also important to note that the S-stationarity concept is equivalent to the KKT
conditions of problem (MPEC-BHO) seen from the perspective of a standard optimization
problem with G(v)⊤H(v) = 0 treated as a usual equality constraint; see, e.g., Flegel (2005).
With this in mind, it clearly makes sense to think that an S-stationary point that satisfies
some strong second order conditions would be locally optimal for problem (MPEC-BHO).
This is indeed the case under the following MPEC-tailored strong second order sufficient
condition (MPEC-SSOSC):

Definition 12. Let v̄ be a S-stationary point of problem (MPEC-BHO) with multiplier
vector (λ̄, µ̄, η̄, ζ̄) is said to satisfy the MPEC-SSOSC if it holds that

∀d ∈ C(v̄) \ {0} : d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d > 0 (27)

with C(v̄) defined as follows (with supp(a) := {i ∈ [n] : ai ̸= 0} for a ∈ Rn) :

C(v̄) :=

d ∈ Rm :

∇gi(v̄)⊤d = 0 ∀i ∈ supp(λ̄)
∇hi(v̄)⊤d = 0 ∀i ∈ [k]
∇Gi(v̄)

⊤d = 0 ∀i ∈ supp(η̄)
∇Hi(v̄)

⊤d = 0 ∀i ∈ supp(ζ̄)

 . (28)

Note, for example, that if v̄ is a S-stationary point of (MPEC-BHO) that satisfies the
MPEC-SSOSC together with the MPEC-LICQ, then there exists a neighborhood U(v̄) of v̄
such that v̄ is the only M-stationary point among all the feasible points of (MPEC-BHO)
in U(v̄); see, e.g., (Kanzow and Schwartz, 2013, Theorem 4.11) and references therein.

4 MPEC–MFCQ

In this section, we analyze the MPEC-MFCQ in the context of (MPEC-BHO). To proceed,
we introduce the following index sets associated to the complementarity conditions involved
in the feasible of problem (MPEC-BHO), which will play an important role in the analysis.

Definition 13. Letting v̄ be a feasible point of (MPEC-BHO), we define the index sets

Λ1(v̄) := {i ∈ [n] : ᾱi = 0, θ(v̄)i = 0, σ̄i = 0}, (29)

Λ2(v̄) := {i ∈ [n] : ᾱi = 0, θ(v̄)i > 0, σ̄i = 0}, (30)

Λ3(v̄) := {i ∈ [n] : 0 < ᾱi ≤ C̄, θ(v̄)i = 0, σ̄i = 0}, (31)

Λ4(v̄) := {i ∈ [n] : ᾱi = C̄, θ(v̄)i = 0, σ̄i > 0}. (32)

Λ3(v̄) is further partitioned as follows:

Λ+
3 (v̄) := {i ∈ [n] : 0 < ᾱi < C̄, θ(v̄)i = 0, σ̄i = 0}, (33)

Λc
3(v̄) := {i ∈ [n] : ᾱi = C̄, θ(v̄)i = 0, σ̄i = 0}. (34)
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Definition 14. Let v̄ be a feasible point of (MPEC-BHO). For each lower-level problem

(LLPi) for i ∈ [k], Λ
+(i)
3 (v̄) and Λ

c(i)
3 (v̄) correspond to the sets Λ+

3 (v̄) and Λc
3(v̄), respectively,

and for r ∈ [4], Λ
(i)
r (v̄) denotes the set corresponding to Λr(v̄).

Definition 15. We define the following partition of the index sets associated to the com-
plementarity conditions involved in the feasible set of problem (MPEC-BHO):

JH1(v̄) := {i ∈ [n] : ᾱi = 0, θ(v̄)i > 0}, (35a)

JH2(v̄) := {i ∈ [n] : σ̄i = 0, C̄ − ᾱi > 0}, (35b)

JG1(v̄) := {i ∈ [n] : ᾱi > 0, θ(v̄)i = 0}, (35c)

JG2(v̄) := {i ∈ [n] : σ̄i > 0, C̄ − ᾱi = 0}, (35d)

JGH1(v̄) := {i ∈ [n] : ᾱi = 0, θ(v̄)i = 0}, (35e)

JGH2(v̄) := {i ∈ [n] : σ̄i = 0, C̄ − ᾱi = 0}. (35f)

For the ease of notation, in the sequel, we will simply write Λi for each i ∈ [4] rather
than Λi(v̄), and proceed similarly for Λ+

3 (v̄) and Λc
3(v̄), and also for JHi(v̄), JGi(v̄), and

JGHi(v̄) for i = 1, 2. We observe that we have the equalities J i = JHi ∪ JGi ∪ JGHi for
i = 1, 2, and it is clear that J1 = J2 = [n].

Next, we give some relationships between the index sets in (35) and the index sets
described in (29)–(32); also see Figure 1 for an illustration.

Proposition 16. The index sets in (35) and (29)− (32) satisfy the following relationships:

(a) JH1 = Λ2, JG1 = Λ3 ∪ Λ4, JGH1 = Λ1;

(b) JH2 = Λ1 ∪ Λ2 ∪ Λ+
3 , JG2 = Λ4, JGH2 = Λc

3.

The proof is the same as in (Li et al., 2022a, Proposition 5), and is therefore omitted.

(a) (b)

Figure 1: Index sets for the complementarity constraints in Proposition 16.

Due to our Basic Settings (i), we have the following properties.
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Proposition 17. For each lower-level problem i ∈ [k], let α(i) be the solution. There exists
at least an index j ∈ [n̂(i)] such that

α
(i)
j = 0 and ŷ

(i)
j = 1. (36)

Similarly, for each lower-level problem i ∈ [k], we can find at least one j ∈ [n̂(i)] such that

α
(i)
j = 0 and ŷ

(i)
j = −1. (37)

Proposition 18. (a) The set of gradient vectors in (20) at a feasible point v̄ of problem
(MPEC-BHO) can be written in matrix form as follows:

Γ :=



0(JG1 ,L1) ∇γθ(v̄)JG1 Q(γ̄)(JG1 ,· ) I(JG1 ,·) P(JG1 ,·)
0(JGH1 ,L1) ∇γθ(v̄)JGH1 Q(γ̄)(JGH1 ,· ) I(JGH1 ,·) P(JGH1 ,·)
0(JH1 ,L1) 0(JH1 ,L2) I(JH1 ,·) 0(JH1 ,L4) 0(JH1 ,L5)

0(JGH1 ,L1) 0(JGH1 ,L2) I(JGH1 ,·) 0(JGH1 ,L4) 0(JGH1 ,L5)

e(JG2 ,L1) 0(JG2 ,L2) −I(JG2 ,·) 0(JG2 ,L4) 0(JG2 ,L5)

e(JGH2 ,L1) 0(JGH2 ,L2) −I(JGH2 ,·) 0(JGH2 ,L4) 0(JGH2 ,L5)

0(JH2 ,L1) 0(JH2 ,L2) 0(JH2 ,L3) I(JH2 ,·) 0(JH2 ,L5)

0(JGH2 ,L1) 0(JGH2 ,L2) 0(JGH2 ,L3) I(JGH2 ,·) 0(JGH2 ,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,L3) 0(Ig ,L4) 0(Ig ,L5)


, (38)

where Lq, with q ∈ [5], are the index sets of the columns that correspond, respectively, to

the variables C, γ, α, σ, and u; P = Ŷ ⊤ with Ŷ given in (17); and

Q(γ) :=

 Q1(γ) · · · 0n̂(1)×n̂(k)

...
. . .

...
0n̂(k)×n̂(1) · · · Qk(γ)

 ∈ Rn×n. (39)

(b) Thanks to Proposition 16, Γ in (38) takes the following form:

Γ =



0(Λ+
3 ,L1)

∇γθ(v̄)Λ+
3

Q(γ̄)(Λ+
3 ,·) I(Λ+

3 ,·) P(Λ+
3 ,·)

0(Λc
3,L1) ∇γθ(v̄)Λc

3
Q(γ̄)(Λc

3,·) I(Λc
3,·) P(Λc

3,·)
0(Λ4,L1) ∇γ̄θ(v̄)Λ4 Q(γ)(Λ4,·) I(Λ4,·) P(Λ4,·)
0(Λ1,L1) ∇γθ(v̄)Λ1 Q(γ̄)(Λ1,·) I(Λ1,·) P(Λ1,·)
0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,L3) 0(Ig ,L4) 0(Ig ,L5)



. (40)
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Remark 19. Note that, if some index set such as, e.g., Λ+
3 , is empty, then by construction,

the corresponding row block does not appear in (40).

We are now ready to present our main theorem about the MPEC-MFCQ.

Theorem 20. The MPEC-MFCQ holds at any point v̄ := (C̄, γ̄, ᾱ, σ̄, ū) that is feasible to
problem (MPEC-BHO).

Proof Assume there exists a nonnegative vector ρ = (ρ1, · · · , ρ10) such that ρ⊤Γ = 0.
Here, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9, ρ10 correspond to the blocks of JG1 , JGH1 , JH1 , JGH1 ,
JG2 , JGH2 , JH2 , JGH2 , [k], Ig in Γ. By (38), we have 0 = ρ⊤Γ := [S1 S2 S3 S4 S5]. Hence,

S1 = ρ⊤5 e(JG2 ,L1) + ρ⊤6 e(JGH2 ,L1) = 0, (41)

S2 = ρ⊤1 ∇γθ(v̄)JG1 + ρ⊤2 ∇γθ(v̄)JGH1 − ρ10e(Ig ,L2) = 0, (42)

S3 = ρ⊤1 (Q(γ))(JG1 ,·) + ρ⊤2 Q(γ̄)(JGH1 ,·) + ρ⊤3 I(JH1 ,·) + ρ⊤4 I(JGH1 ,·)

−ρ⊤5 I(JG2 ,·) − ρ⊤6 I(JGH2 ,·) + ρ⊤9 Ŷ = 0, (43)

S4 = ρ⊤1 I(JG1 ,·) + ρ⊤2 I(JGH1 ,·) + ρ⊤7 I(JH2 ·) + ρ⊤8 I(JGH2 ,·) = 0, (44)

S5 = ρ⊤1 P(JG1 ,·) + ρ⊤2 P(JGH1 ,·) = 0. (45)

With the nonnegativity of ρ, (41) implies that ρ5 = 0, ρ6 = 0. Similarly, (44) implies that
ρ1 = 0, ρ2 = 0, ρ7 = 0, ρ8 = 0. Therefore, by (42), it holds that ρ10 = 0. (43) reduces to

ρ⊤3 I(JH1 ,·) + ρ⊤4 I(JGH1 ,·) + ρ⊤9 Ŷ = 0.

By Lemma 39 in the Appendix, we obtain that ρ3 = 0, ρ4 = 0, and ρ9 = 0.

The result of Theorem 20 complements what was shown in Li et al. (2022a), i.e., that
the MPEC-MFCQ automatically holds for the version of problem (3) where the kernel is
linear and the lower-level training problem is formulated in the primal space, and therefore
showing that the result holds as well for the case of an RBF kernel with the lower-level
problem stated in the dual space.

5 MPEC–LICQ

In this section, we analyze the MPEC-LICQ for each feasible point of problem (MPEC-BHO).
The following further observations for the lower-level problem, derived from Basic Settings
(ii), will play an important role in the analysis.

Proposition 21. For each lower-level problem (LLPi) for i ∈ [k], there are at least two
positive support vectors and two negative support vectors; i.e., there exist distinct indices
j1, j2, j3, j4 ∈ [n̂(i)] such that

α
(i)
j1

> 0, α
(i)
j2

> 0 with ŷ
(i)
j1

= 1, ŷ
(i)
j2

= 1

and
α
(i)
j3

> 0, α
(i)
j4

> 0 with ŷ
(i)
j3

= −1, ŷ(i)j4
= −1.
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Thanks to this result, we can establish the first main result of this section.

Theorem 22. Let v̄ be a feasible point of problem (MPEC-BHO). Then the MPEC-LICQ
fails at v̄ if one of the following conditions holds:

| JGH1 | + | JGH2 |> 2 and Ig = ∅; (46)

| JGH1 | + | JGH2 |≥ 2 and Ig ̸= ∅. (47)

Based on this result, we can see that the behaviour of the MPEC-LICQ is closely related
to the number of elements in the index sets IGH1 and IGH2 . Hence, next, we first consider
the very special case γ > 0, and IGH1 and IGH2 are both empty. To this end, we make the
following assumptions.

Assumption 2. Ig = ∅, Λ+
3 ̸= ∅, and Q(γ)(Λ+

3 ,Λ+
3 ) positive definite.

Assumption 3. For a feasible point v̄ of problem (MPEC-BHO), assume that LLICQi

holds at ᾱ(i) for each i ∈ [k]. Or equivalently, for each lower-level problem i ∈ [k] with
Λ+i
3 ̸= ∅, there exists j ∈ [n̂(i)] satisfying

0 < ᾱ
(i)
j < C̄, (θ(v̄))

(i)
j = 0, σ̄

(i)
j = 0 for i ∈ [k]. (48)

This assumption is the same as the condition ensuring the LLICQ that we have in (15).
Indeed, note the relationships

I=(α(i)) = Λ
(i)
1 ∪ Λ

(i)
2 and IC<(α(i)) = Λ

(i)
4 ∪ Λ

c(i)
3 for i ∈ [k].

Condition (15) reduces to λ
+(i)
3 ̸= ∅ for i ∈ [k], which coincides with (48) in Assumption 3.

If Assumption 3 does not hold as the LLICQi fails for some lower-level problem i ∈ [k], we
can still show that MPEC-LICQ still holds if LLICQ fails at a single lower-level problem.
To show this, let us first define

K := {i ∈ [k] : Λ
+(i)
3 = ∅} and Kc := [k]\K. (49)

Furthermore, define s := (s1, · · · , sk)⊤ ∈ Rk, where

si :=
∑

j∈JG2∪JGH2

yj for i ∈ [k].

Relying on these definitions, we introduce the following assumption:

Assumption 4. For a feasible point v̄ of problem (MPEC-BHO), assume that there exists
a lower-level problem i ∈ [k] where the LLICQi fails. Further assume that

si ̸= 0 for i ∈ K. (50)

Without (50), Assumption 4 would be the opposite part of Assumption 3. Note that
the two assumptions cannot simultaneously hold; however, they may fail at the same time.
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Theorem 23. For a feasible point v̄ of problem (MPEC-BHO) satisfying Assumption 2
and | JGH1 | + | JGH2 |= 0, it holds that:

(i) If JG1 = JG2, then the MPEC-LICQ fails at v̄;

(ii) If JG2 = ∅, the MPEC-LICQ holds at v̄ if and only if Assumption 3 holds;

(iii) If JG2 ⊂ JG1 and JG2 ̸= ∅, the MPEC-LICQ holds at v̄ if and only if either Assumption
3 or Assumption 4 hold.

Note that | JGH1 | + | JGH2 |= 0 basically implies that the strict complementarity
condition holds in the KKT system of each lower-level problem.

To extend the result to the case where | JGH1 | + | JGH2 |≠ 0, we introduce the

following notation. Let A1 ∈ Rk×|Λ+
3 |, A2 ∈ R|Λc

3|×|Λ+
3 |, A3 ∈ R|Λ4|×|Λ+

3 | and A4 ∈ R|Λ1|×|Λ+
3 |

be matrices satisfying the following conditions:

A1Q(γ̄)(Λ+
3 ,Λ+

3 ) = Ŷ([k],Λ+
3 ), A2Q(γ̄)(Λ+

3 ,Λ+
3 ) = Q(γ̄)(Λc

3,Λ
+
3 ), (51)

A3Q(γ̄)(Λ+
3 ,Λ+

3 ) = Q(γ̄)(Λ4,Λ
+
3 ), A4Q(γ̄)(Λ+

3 ,Λ+
3 ) = Q(γ̄)(Λ1,Λ

+
3 ). (52)

Thanks to Assumptions 2 and 3, Q(γ̄)(Λ+
3 ,Λ+

3 ) is positive definite and, therefore, the above

matrices Ai for i = 1, . . . , 4 are unique. Next, we introduce the following quantities:

a1 :=
[
Q(γ̄)(Λc

3, Λ4∪Λc
3)
−B1Ŷ([k], Λ4∪Λc

3)

+
(
B1A1 −A2

)
Q(γ̄)(Λ+

3 , Λ4∪Λc
3)

]
e|Λ4∪Λc

3|,

a2 :=
[
Q(γ̄)(Λ1, Λ4∪Λc

3)
−B2Ŷ([k], Λ4∪Λc

3)

+
(
B2A1 −A4

)
Q(γ̄)(Λ+

3 , Λ4∪Λc
3)

]
e|Λ4∪Λc

3|,

b1 := ∇γθ(v)Λc
3
+ (B1A1 −A2)∇γθ(v)Λ+

3
,

b2 := ∇γθ(v)Λ1 + (B2A1 −A4)∇γθ(v)Λ+
3
,

b3 := b1 +B3
(
A1∇γθ(v)Λ+

3

)
Kc

,

b4 := b2 +B4
(
A1∇γθ(v)Λ+

3

)
Kc

,

U1 := P(Λc
3, ·) −A2P(Λ+

3 , ·),

U2 := P(Λ1, ·) −A4P(Λ+
3 , ·),

Z := −A1P(Λ+
3 , ·).

(53)

Let now B1 ∈ R|Λc
3|×k, B2 ∈ R|Λ1|×k, B3 ∈ R|Λc

3|×|Kc|, and B4 ∈ R|Λ1|×|Kc| be matrices
satisfying the following conditions:

B1Z = U1, (54)

B2Z = U2, (55)

B3Z(Kc, Kc) = U1
(·, Kc), (56)

B4Z(Kc, Kc) = U2
(·, Kc). (57)

Note that, if Z and Z(Kc,Kc) are nonsingular, B1, B2, B3, and B4 are uniquely defined.
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Theorem 24. Let v̄ be a feasible point of problem (MPEC-BHO) satisfying Assumption 2
and the condition | JGH1 | + | JGH2 |∈ {1, 2}.

(i) If Assumption 3 is satisfied:

(a) If | JGH1 | + | JGH2 |= 2 holds and the matrix M0 :=

[
a1 b1

a2 b2

]
is nonsingular,

then the MPEC-LICQ holds.

(b) If | JGH1 | + | JGH2 |= 1 holds:

i. If | JGH1 |= 1 and (a2, b2) ̸= 0, then the MPEC-LICQ holds.

ii. If | JGH2 |= 1 and (a1, b1) ̸= 0, then the MPEC-LICQ holds.

(ii) If Assumption 4 is satisfied:

• If | JGH1 | + | JGH2 |= 2 and the matrix M1 :=

[
b3 U1

(·, K)

b4 U2
(·, K)

]
is nonsingular,

then the MPEC-LICQ holds.

• If | JGH1 | + | JGH2 |= 1:

– If | JGH1 |= 1 and
(
b4, U2

(·, K)

)
̸= 0, then the MPEC-LICQ holds.

– If | JGH2 |= 1 and
(
b3, U1

(·, K)

)
̸= 0, then the MPEC-LICQ holds.

(iii) If Assumption 3 and Assumption 4 fail, the MPEC-LICQ fails.

To analyze the case where Ig ̸= ∅ and | JGH1 | + | JGH2 |∈ {0, 1}, we need the following
further assumption:

Assumption 5. Assume that | Λ(i)
3 ∪ Λ

(i)
1 |≤ 1 for all i ∈ [k].

Based on Proposition 3 in Li et al. (2022a), Assumption 5 basically means that for
each lower-level problem, the number of correctly classified training data which lies on the
boundary of margin does not exceed one.

Theorem 25. Let v̄ be a feasible point of problem (MPEC-BHO) satisfying Ig ̸= ∅ and
| JGH2 | + | JGH1 |∈ {0, 1}.

(i) If Assumption 5 holds, the MPEC-LICQ holds at v̄ if and only if at least one among
Assumption 3 or 4 holds.

(ii) If Assumption 5 fails, then the MPEC-LICQ fails at v̄.

The above results are summarized in Figure 2, where Assumption C1 in Case 2.3.1 refers
to the requirement that one of the following conditions holds:

• | JGH1 | + | JGH2 |= 2 and the matrix M0 is nonsingular,

• | JGH1 | + | JGH2 |= 1, | JGH1 |= 1 and (a2, b2) ̸= 0,

• | JGH1 | + | JGH2 |= 1, | JGH2 |= 1 and (a1, b1) ̸= 0,
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Figure 2: Summary of the behaviour of MPEC-LICQ for problem (MPEC-BHO), where
A5.i stands for Assumption 5.i with i ∈ {2, 3, 4}. The red (resp. green) color
indicates when the MPEC-SSOSC fails (resp. holds). As for the yellow color, it
represents a transitional leave.

while Assumption C2 in Case 2.3.2 means that one of the following conditions holds:

• | JGH1 | + | JGH2 |= 2 and the matrix M1 is nonsingular,

• | JGH1 | + | JGH2 |= 1, | JGH1 |= 1 and
(
b4, U2

(·, K)

)
̸= 0,

• | JGH1 | + | JGH2 |= 1, | JGH2 |= 1 and
(
b3, U1

(·, K)

)
̸= 0.

Note that in practice, Case 2-1 takes place in most situations as it is often the case
that strict complementarity does not hold for some lower-level problems. In such a case,
the number of indices in | JGH1 | + | JGH2 | easily exceeds two. In other words, for most
feasible points, MPEC-LICQ is likely to fail.

6 MPEC–SSOSC

Our main aim in this section is to study the MPEC-SSOSC in the context of problem
(MPEC-BHO), with the intention of identifying situation where the condition fails or holds.

6.1 No differentiability requirement for leader’s objective function

To proceed with the analysis, let v̄ be the feasible point of (MPEC-BHO) and let η̄ ∈ R2n

and ζ̄ ∈ R2n be the Lagrange multipliers associated to the constraint functions G and H,
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respectively. Consider now the partition

η̄ :=

[
η̄1

η̄2

]
, ζ̄ :=

[
ζ̄1

ζ̄2

]
with η̄i :=


η̄iΛ1

η̄iΛ2

η̄iΛ3

η̄iΛ4

 , ζ̄i :=


ζ̄iΛ1

ζ̄iΛ2

ζ̄iΛ3

ζ̄iΛ4

 for i = 1, 2, (58)

where the sets Λi, i = 1, . . . , 4 are defined in (29)–(32). The following holds:

Proposition 26. If v̄ is a weak stationary point for problem (MPEC-BHO) with Lagrange
multiplier vector (λ̄, µ̄, η̄, ζ̄), then we have

η̄1Λ2
= 0, η̄2Λ1

= 0, η̄2Λ2
= 0, η̄2

Λ+
3
= 0, ζ̄1Λ3

= 0, ζ̄1Λ4
= 0, and ζ̄2Λ4

= 0. (59)

Remark 27. Proposition 26 implies that for a weak stationary point v̄ of problem (MPEC-BHO)
with multipliers (λ̄, µ̄, η̄, ζ̄) the following holds:

supp(η̄1) ⊆ (Λ1 ∪ Λ3) and supp(η̄2) ⊆ (Λc
3 ∪ Λ4); (60)

supp(ζ̄1) ⊆ (Λ1 ∪ Λ2) and supp(ζ̄2) ⊆ (Λ1 ∪ Λ3). (61)

Denote

Λη1

1 := {j ∈ Λ1 : η̄1 ̸= 0}, Λη1

3 := {j ∈ Λ3 : η̄1 ̸= 0},
(Λc

3)
η2 := {j ∈ Λc

3 : η̄2 ̸= 0}, Λη2

4 := {j ∈ Λ4 : η̄2 ̸= 0},
Λζ1

1 := {j ∈ Λ1 : ζ̄1 ̸= 0}, Λζ1

2 := {j ∈ Λ2 : ζ̄1 ̸= 0},
Λζ2

1 := {j ∈ Λ1 : ζ̄2 ̸= 0}, Λζ2

3 := {j ∈ Λ3 : ζ̄2 ̸= 0},

and consider the following set that will play a critical role in the analysis:

Λ0 := (Λ1 ∪ Λ3) \
(
Λη1

1 ∪ Λζ2

1 ∪ Λη1

3 ∪ Λζ2

3

)
. (62)

Theorem 28. The MPEC-SSOSC fails at any weakly stationary point v̄ of problem (MPEC-BHO)
with multiplier vector (λ̄, µ̄, η̄, ζ̄) if one of the following conditions holds:

(i) Λ2 ∪ Λ4 ̸= ∅,

(ii) Λ2 ∪ Λ4 = ∅ and Λ0 ̸= ∅,

where Λi for i = 2, 4 are defined as in (29) and (32).

Note that Theorem 28 does not require any second order information of f . The reason
is that if (i) or (ii) holds, the set (v̄) in (28) reduces to {0}, which means that the MPEC-
SSOSC holds automatically. Based on this result, we next look closely at what happens
under the following assumptions.

Assumption 6. Let v̄ be any weakly stationary point v̄ of problem (MPEC-BHO) with
multipliers (λ̄, µ̄, η̄, ζ̄). At v̄, it holds that Λ2 ∪ Λ4 = ∅ and Λ0 = ∅.
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Next, we discuss the special case where strict complementarity holds for the comple-
mentary constraints in (MPEC-BHO). In other words, we make the following assumption.

Assumption 7. Assume that, for a weakly stationary point v̄ of problem (MPEC-BHO)
with multiplier vector (λ̄, µ̄, η̄, ζ̄), conditions (60) and (61) hold as equalities, i.e.,

Λ1 = Λη1

1 = Λζ1

1 = Λζ2

1 , Λ3 = Λη1

3 = Λζ2

3 , Λ2 = Λη1

2 , Λc
3 = (Λc

3)
η2 , and Λ4 = Λη2

4 .

To proceed with the next assumption, we select for each lower-level problem i ∈ [k], the

smallest index in Λ
(i)
1 , which we denote by ji. The corresponding index in Λ1 is denoted by

j̄i. Based on this, let

J0 :=
⋃
i∈[k]

{j̄i} and J̄0 := Λ1\J0. (63)

Let Ã1 ∈ R|Λ1∪Λc
3|×|Λ+

3 | and Ã2 ∈ Rk×|Λ+
3 | be matrices of suitable sizes such that

Q(γ̄)(Λ1∪Λc
3, Λ

+
3 ) = Ã1Q(γ̄)(Λ+

3 , Λ+
3 ), Ŷ([k], Λ+

3 ) = Ã2Q(γ̄)(Λ+
3 , Λ+

3 ). (64)

Note that, if Q(γ̄)(Λ+
3 , Λ+

3 ) is positive definite, Ã1 and Ã2 are unique. Therefore, below, we

first make the following assumption.

Assumption 8. Let Λ+
3 ̸= ∅ and Q(γ̄)(Λ+

3 ,Λ+
3 ) be positive definite.

Assumption 9. Let J0 and J̄0 be defined as in (63). We assume rank(M̃) = 2, where

M̃ :=

[
āJ̄0 − Ā1āJ0 b̄J̄0 − Ā1b̄J0

ỹ1 − Ā2āJ0 ỹ2 − Ā2b̄J0

]
with Ā1 ∈ R|J̄0|×k and Ā2 ∈ Rk×k being matrices such that

Ā1P̄(J0, ·) = P̄(J̄0, ·) and Ā2P̄(J0, ·) = −Ã2P(Λ+
3 , ·) (65)

respectively, while ā, b̄, P̄ , y̌1, and y̌2 are defined as follows:

ā :=
(
Q(γ̄)(Λ1∪Λc

3, Λ
c
3)
− Ã1Q(γ̄)(Λ+

3 , Λc
3)

)
e|Λc

3|,

b̄ := ∇γθ(v̄)Λ1∪Λc
3
− Ã1∇γθ(v̄)Λ+

3
,

P̄ := P(Λ1∪Λc
3, ·) − Ã1P(Λ+

3 , ·),

y̌1 :=
(
Ŷ([k], Λc

3)
− Ã2Q(γ̄)(Λ+

3 , Λc
3)

)
e|Λc

3|,

y̌2 := −Ã2∇γθ(v̄)Λ+
3
.

(66)

Assumption 10. Let J0 and J̄0 be defined as in (63). rank(M̂) =| Λ+
3 | +1, where

M̂ :=

 Q(γ)(J̄0, Λc
3)
e|Λc

3| − Ā3Q(γ)(J0, Λc
3)
e|Λc

3| Q(γ)(J̄0, Λ+
3 ) − Ā3Q(γ)(J0, Λ+

3 )

Ŷ([k], Λc
3)
e|Λc

3| Ŷ([k], Λ+
3 )


with Ā3 ∈ R(|Λ1|−k)×k being the unique matrix such that

Ā3P(J0, ·) = P(J̄0, ·). (67)
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Assumption 9 and Assumption 10 will lead to the fact that C(v̄) = {0} under proper
situations, which leads to the following result.

Theorem 29. Let v̄ be a strongly stationary point of problem (MPEC-BHO) with multi-
pliers vector (λ̄, µ̄, η̄, ζ̄) satisfying Assumptions 6, 7, 8. Then, it holds that

(i) If Ig = ∅ and Assumption 9 hold at v̄, then the MPEC-SSOSC holds at v̄;

(ii) If Ig ̸= ∅, λ̄ > 0, and Assumption 10 hold, then the MPEC-SSOSC holds at v̄.

6.2 Differentiable leader’s objective function

The working assumption from now on is that the upper-level objective function f of the
problem be at least twice continuously differentiable. There are multiple ways to achieve
this; one is to apply the same trick in (5) to eliminate the max operator from the upper-
level objective function. Secondly, a smooth loss function (e.g., the logistic loss) can be
used instead of the hinge loss used in (3). One could also consider a smooth approximation
of the max operator, such as the well-known smooth-max operator which we will use for
the computational experiments in Section 7.

Note that the upper-level objective function f does not depend on σ or u. Hence, we
automatically have ∇σf(v) = 0 and ∇uf(v) = 0. It is also clear that if we were to apply
the same trick in (5) to eliminate the max operator from the upper-level objective function,
then the function f will be independent from C. Of course, note that if proceed with this
trick, the main change in our analysis of the previous two sections will be the structure
of the function g. However, most of the results could be derived similarly. This will be
carefully analyze in a separate work. Next, we precisely analyze what happens in the latter
scenario; i.e., we make the following assumption:

Assumption 11. Let ∇Cf(v) = 0.

Assumption 12. Let v̄ be a strongly stationary point of (MPEC-BHO) with γ̄ > 0 and

rank(M̃) < 2, and dγ(V̇ f )⊤Ḋf V̇ fdγ > 0 for all dγ ̸= 0. Here,

V̇ f :=

 1
τ

ke|Λc
3|

 and Ḋf :=

[
Ḋf

11 Ḋf
12

(Ḋf
11)

⊤ Ḋf
22

]
, (68)

while (recall η̄ defined in (58))

τ :=
(
Q(γ̄)(Λ+

3 , Λ+
3 )

)−1 (
βQ(γ̄)(Λ+

3 , Λc
3)|Λ

c
3| −∇γθ(v̄)Λ+

3

−P(Λ+
3 , ·)(P̄(J0, ·))

−1(āJ0β − b̄J0)),

Ḋf
11 := ∇2

γγf(v̄) +
∑

i∈Λ3
η̄1i∇2

γγθi(v̄),

Ḋf
12 := ∇2

γαΛ3
f(v̄) +

∑
i∈Λ3

η̄1i∇2
γαΛ3

θi(v̄),

Ḋf
22 := ∇2

αΛ3
αΛ3

f(v̄).

(69)
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Assumption 13. Let v̄ be a strongly stationary point of problem (MPEC-BHO) with γ̄ = 0

and λ̄ > 0, let rank(M̂) <| Λ+
3 | +1 and

d̂⊤(V f )⊤DfV f d̂ > 0 for all d̂ :=

[
dC

dα
Λ+
3

]
̸= 0 with dC , dα

Λ+
3
, du satisfying

[
Q(γ)([n], Λc

3)
e|Λc

3| Q(γ)([n], Λ+
3 ) P([n], ·)

Ŷ([k], Λc
3)
e|Λc

3| Ŷ([k], Λ+
3 ) 0([k],L5)

] dC

dα
Λ+
3

du

 = 0. (70)

Here, we have

V f :=

[
0 I(|Λ+

3 |, |Λ+
3 |)

e|Λc
3| 0

]
and Df := ∇2

αΛ3
αΛ3

f(v̄). (71)

Theorem 30. Let v̄ be a strongly stationary point of (MPEC-BHO) with multipliers vector
(λ̄, µ̄, η̄, ζ̄) satisfying Assumptions 6, 7, 8, and 11.

(i) If Ig = ∅ and Assumption 12 hold at v̄, then MPEC-SSOSC holds;

(ii) If Ig ̸= ∅, λ̄ > 0, and Assumption 13 hold, MPEC-SSOSC holds.

6.3 Summary of main results on the MPEC-SSOSC

The above results about MPEC-SSOSC are summarized in Figure 3.

Figure 3: Partition of different cases for MPEC-SSOSC, where A6.i stands for Assumption
6.i with i ∈ {2, . . . , 8}. The red (resp. green) color indicates when MPEC-SSOSC
fails (resp. holds). As for the yellow color, it represents a transitional leave.

7 Applications to Scholtes’ Relaxation Method

In this section, we introduce the Scholtes relaxation method, and show how the results from
Sections 4–6 can be used to derive its convergence results.
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Recall that the basic idea of the Scholtes relaxation method Scholtes (2001) is as follows.
Let {tj} ↓ 0 be a sequence of relaxation parameters. At each iteration, we replace problem
(MPEC-BHO) by the relaxed mathematical program

min f(v)
s.t. g(v) ≤ 0, h(v) = 0,

G(v) ≥ 0, H(v) ≥ 0, Gi(v)
⊤Hi(v) ≤ tj , i ∈ [2n],

(NLP-tj)

which is clearly a nonlinear program (NLP–for short), even in the case where our original
bilevel program is linear. (NLP-tj) is then solved and tj decreased at each iteration. The
process is repeated until a certain stopping criterion is satisfied. Clearly, (NLP-tj) pa-
rameterized in tj for j = 1, 2, . . ., has a larger feasible set than (MPEC-BHO). Hence, the
decrease in tj leads to a feasible set which gets progressively closer to that of (MPEC-BHO).

Throughout this section, we assume that the function f is continuously differentiable.
Otherwise, a smoothing approximation can be used; see Subsection 7.2 for a possible choice
of a smoothing function. The details of the Scholtes-based global relaxation method (GRM)
are shown in Algorithm 1.

Algorithm 1 The Global Relaxation Method (GRM) (v0, t0, σ, tmin)

1: Require a starting vector v0, an initial relaxation parameter t0, and parameters ρ̂ ∈
(0, 1), tmin > 0.

2: Set j := 0.
3: do
4: Compute an approximate solution vj+1 of problem (NLP-tj) using vj as starting

point.
5: Let tj+1 ← ρ̂ · tj and j ← j + 1.
6: while tj > tmin

7: Return the final iterate vopt := vj , the corresponding function value f(vopt), and the
maximum constraint violation Vio(vopt).

7.1 Convergence results

In this subsection, we provide some convergence results for Algorithm 1, which can be
established thanks to our results from Sections 4–6.

Corollary 31. Let {tj} ↓ 0 and vj be a KKT point of (NLP-tj) with vj → v̄, where v̄ is
feasible point of (MPEC-BHO). Then v̄ is a C-stationary point of (MPEC-BHO).

Proof Considering the fact that MPEC-MFCQ automatically holds at any feasible point
of (MPEC-BHO) (cf. Theorem 20), we get the result; see, e.g., Hoheisel et al. (2013).

This result can be strengthened if we impose assumptions from Section 5 ensuring the
fulfilment of the stronger MPEC-LICQ.

Theorem 32. Let {tj} ↓ 0 and {(vj , λj , µj , ηj , ζj , δj)} be a sequence of KKT points of
(NLP-tj) with vj → v̄. Furthermore, let all the assumptions resulting from one of the green
leaves in Figure 2 be satisfied. Then v̄ M-stationary for problem (MPEC-BHO).
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Proof See Subsection F for the proof.

This is quite an interesting result, as it demonstrates that, unlike in most of the literature,
where it is common to get only C-stationarity points, the stronger M-stationarity could be
obtained from the Scholtes algorithm.

The next results shows that, under stronger assumptions, we can guarantee a unique
M-stationary point in some neighborhood of the point of interest.

Corollary 33. Let v̄ be a S-stationary point of problem (MPEC-BHO) with multipliers
(λ̄, µ̄, η̄, ζ̄) that satisfies assumptions (i) and (ii) below:

(i) All the assumptions resulting from one of the green leaves in Figure 2 are satisfied.

(ii) All the assumptions resulting from one of one of the green leaves in Figure 3 hold.

Then, there exists a neighborhood of v̄, where v̄ is the only M-stationary point.

Proof Recall that assumption (i) ensures the fulfillment of the MPEC-LICQ based on
Theorem 23, Theorem 24, or Theorem 25. Similarly, any assumption in (ii) leads to the
satisfaction of the MPEC-SSOSC according to Theorem 29 or Theorem 30. Therefore, the
result follows by applying (Kanzow and Schwartz, 2013, Theorem 4.11).

Finally, we state the following results, which also requires the MPEC-SSOC and MPEC-
LICQ to ensure that, for a given S-stationary point v̄, we can find a sequence of local optimal
solutions of the relaxed problems (NLP-tj) that converges to this point. Note that, here,
X(tj) denotes the feasible set of the relaxed problem (NLP-tj).

Corollary 34. Let v̄ be a S-stationary point of (MPEC-BHO), with multiplier vector
(λ̄, µ̄, η̄, ζ̄), that satisfies Assumption (ii) in Corollary 33. Then there exists a neighbor-
hood U(v̄) of v̄ such that for every sequence tj ↓ 0 such that the relaxed problems (NLP-tj)
have at least one local minimum vj ∈ U(v̄)∩X(tj) for all j sufficiently large. If additionally,
Assumption (i) in Corollary 33 holds at v̄, then vj → v̄.

Proof Given that Assumption (ii) in Corollary 33 ensures that MPEC-SSOSC holds, and
similarly, as we have the satisfaction of the MPEC-LICQ under Assumption (i) in Corollary
33, the result directly follows by applying (Kanzow and Schwartz, 2013, Theorem 4.12).

7.2 Illustrative numerical examples

In this section we will provide illustrative examples of our bilevel hyperparameter tuning
model in action on real data sets from the Cleveland Heart Disease, Glass Classification
data set, Pima Indians Diabetes and the Sonar, Mines vs. Rocks data sets from the UCI
Machine Learning Repository. In this paper we perform k-fold using k = 3 as is suggested
in similar works on bilevel optimization for SVM hyperparameter tuning Kunapuli et al.
(2008b); Bennett et al. (2006, 2008). In these experiments we use the following smooth
approximation of the function max(0, x):

SmoothMax (x) := x+
√

x2 + ζ,
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Table 1: Solutions found by each hyperparameter tuning method. Here, PID stands for
Pima Indians Diabetes.

Data Set Tuning Method Objective Value Time(s) γ C

Cleveland Bilevel 1.0979 5311.0 0.0147 9.6651
Grid Search 1.1110 5245.0 0.0100 857.70

Glass Bilevel 1.5215 2252.3 0.0989 11.195
Grid Search 1.5666 4203.4 0.0631 21.544

PID Bilevel 2.0420 6530.5 0.0211 5.7434
Grid Search 2.0851 4552.6 0.0016 73.564

Sonar Bilevel 1.8078 5779.6 0.0066 11.691
Grid Search 1.8252 5211.5 0.0100 251.19

where ζ > 0 is a small perturbation. As for the function ΩC , for C > 0, we adopt the
following smooth quadratic function on (0, C):

ΩC(α) := 1−
(
2α

C
− 1

)2

+ τ for all α ∈ (0, C),

where τ is a small perturbation parameter used to in order to avoid dividing by 0 (see the
proof of Proposition 2 in Section A of the appendix).

In order to keep the size of the bievel program manageable, we sample n = 100 pairs of
data points and labels. This means that each fold will contain either 33 or 34 pairs of data
points and labels. To ensure that class imbalance did not play a role in our analysis our
100 point data sets contain 50 data point, label pairs from each class. As scaling can effect
the performance of RBF kernel SVMs, we apply standard scaling to each variable.

We compare our bilevel hyperparameter tuning algorithm with grid search. This grid
search will be performed by iteratively selecting values or γ and C from a grid of hyper-
parameter combinations, solving the lower-level training problem (LLPi) using fmincon in
MATLAB and then using the output values for α together with the selected values for γ
and C to compute the value of the objective function of problem (NLP-tj).

The hyperparameter grid used here has the shape 16 × 16 and is comprised of a loga-
rithmic range of values of

C ∈ {10−4+8(i−1)/16−1 ∀i ∈ [16]} and γ ∈ {10−6+12(i−1)/16−1 ∀i ∈ [16]}.

The size of this grid was chosen as it resulted in the most similar run-times to those of our
bilevel algorithm across the data sets in our experiments. The comparison of our bilevel
algorithm and grid search on the aforementioned data sets can be found in Table 1.

Figure 4 shows how our bilevel hyperparameter tuning algorithm navigates the hyper-
parameter space for two of the data sets. The path taken by our bilevel hyperparameter
tuning algorithm is shown in yellow with the yellow cross being it’s finial solution. The
black crosses represent the points tested by the grid search described previously. Of course,
most of the points evaluated by this grid search do not lie in the region shown in these
plots. The heatmap shown in the background was generated by conducting a very fine grid
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(a) Cleveland (b) Glass

(c) PID (d) Sonar

Figure 4: Performance comparison for grid search and our method for tuning hyperparam-
eters for the Cleveland, Glass, PID (Pima Indian Diabetes), and Sonar datasets.

search of this local region, the run time of which was orders or magnitude greater than that
of either the previous grid search or our bilevel algorithm. As can be seen, in each instance
the bilevel model seems to converge to a local minimum. As expected, we see that this
approach is able to find solutions in-between the points tested by grid search.

The Glass data set illustrates the exact behaviour which makes the bilevel approach
conceptually preferable to grid search. As shown in Table 1, the best hyperparameter
combination found by grid search for this data set is γ = 10−1.2 and C = 101.3̇. As can be
seen in Figure 4, this is the closest point tested by the grid search to the apparent local
minimum which the bilevel algorithm has correctly located. In other words, there exist a
local minimum between the points tested by grid search and the bilevel algorithm was able
to navigate this space to approximately locate this local minimum.

Similar conclusions can be drawn for PID and Sonar data sets.
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8 Conclusion and Future Work

We have proposed a bilevel optimization model, that is based on cross-validation prin-
ciple, to calculate hyperparameters for SVM with nonlinear kernel. Then considering
the MPEC/KKT reformulation of the problem, key concepts (namely, the MPEC-MFCQ,
MPEC-LICQ, and MPEC-SSOSC) are studied and can conditions ensuring that they hold
or fail are established. Overall, only the MPEC-MFCQ holds automatically. For the other
ones, the required assumptions are provided, and summarized in Figures 2 and 3.

Despite the usefulness of these results, as illustrated in the context of the Scholtes algo-
rithm (see Section 7), many open questions remain, and will be explored in future works.
For instance, the hinge loss used in the leader’s objective function (2) is essentially for illus-
trative purposes, and did not affect much of our analysis. Our results can easily be adapted
to other loss functions, including the counting loss (to minimize the number of missclassified
points) commonly used in techniques such as grid search and many bilevel hyperparame-
ter optimization for machine learning papers (see Li et al. (2022a) and references therein).
Furthermore, recall that we can easily get a smooth functions in the leader’s objective func-
tion, even in the context of problem (BHO), where the trick used in the lower-level problem
(see (5)) can be applied to eliminate the max operator in the leader’s objective function.
However, in the latter case, such a transformation could lead to a problem with larger size.

Also, in this paper we have used the Gaussian kernel (7) just for illustrative purposes,
as it is also one of the most commonly used in the machine learning literature. However,
it should be possible, to extend our analysis to multiple other typers of kernel functions.
Moreover, we have considered just a single regularization hyperparameter and correspond-
ing ℓ2 regularization term. In a future work, we will study the problem with multiple
hyperparameters, possibly associated regularization functions that are nonsmooth.

There are also multiple other types of MPEC-tailored second order sufficient conditions
that could be studied in the context of problem (MPEC-BHO) (see, e.g., Guo et al. (2013)
for an overview of such conditions). Their analysis and consequences will be evaluated in
the future. Various other types of methods (different from tested in Section 7 of this paper)
requiring the theory provided in this paper could be studied; see, e.g., Hoheisel et al. (2013)
for a sample of such methods.
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Appendix A. Proofs for Section 2

Proof of Proposition 1

C = 0 implies ω(i)∗ = 0 for all i ∈ [k]. Thus, for each i ∈ [k] and j ∈ [n̄(i)], we have

Ξϕγ

(
ȳ
(i)
j , ω(i), X̄

(i)
j , b(i)

)
= max

{
0, 1− ȳ

(i)
j

(
(ω(i))⊤ϕγ(X̄

(i)
j ) + b(i)

)}
= max

{
0, 1− ȳ

(i)
j b(i)

}
.

The problem decomposes into k sub-problems, one per split of index i ∈ [k], which reads

min
γ≥0, b(i)

F (0, γ, 0, b(i)) :=
1

k

1

n̄(i)

∑
j∈[n̄(i)]

max
{
0, 1− ȳ

(i)
j b(i)

}
. (72)

We rewrite the summation as the following univariate function:

S (b(i)) :=
∑

j∈A(i)

max
{
0, 1− b(i)

}
︸ ︷︷ ︸

S 1(b(i))

+
∑

j∈B(i)

max
{
0, 1 + b(i)

}
︸ ︷︷ ︸

S 2(b(i))

.

Subsequently, we proceed with a distinction of cases on the value of b(i).

• If b(i) ≤ −1, S 1(b(i)) = [A(i)](1 − b(i)) (since 1 − b(i) ≥ 0) and S 2(b(i)) = 0 (since
1 + b(i) ≤ 0). Thus, S (b(i)) = |A(i)|(1 − b(i)). We have minb(i))≤−1 S (b(i)) = 2|A(i)|,
attained at b(i) = −1.

• If −1 ≤ b(i) ≤ 1, we have the equalities S 1(b(i)) = |A(i)|(1− b(i)) (since 1− b(i) ≥ 0)
and S 2(b(i)) = |B(i)(1 + b(i)) (since 1 + b(i) ≥ 0). Thus, it holds that
S (b(i)) = |A(i)|(1− b(i))+ |B(i)|(1+ b(i)) = |A(i)|+ |B(i)|+(|B(i)| − |A(i)|)b(i). Hence,

min
−1≤b(i)≤1

S (b(i)) =


|A(i)|+ |B(i)| if |A(i)| = |B(i)|, attained at any b(i) ∈ [−1, 1],
2|A(i)| if |B(i)| > |A(i)|, attained at b(i) = −1,
2|B(i)| if |B(i)| < |A(i)|, attained at b(i) = 1.

• If b(i) ≥ 1, S 1(b(i)) = 0 (since 1 − b(i) ≤ 0) and S 2(b(i)) = |B(i)|(1 + b(i)) (since
1 + b(i) ≥ 0). Thus, S (b(i)) = |B(i)|(1 + b(i)). We have minb(i))≥1 S (b(i)) = 2|B(i)|,
attained at b(i) = 1.

Thus, we deduce that

min
b(i)

S (b(i)) =


2|A(i)| = 2|B(i)| if |A(i)| = |B(i)|,@ any b(i) ∈ [−1, 1],
2|B(i)| if |B(i)| < |A(i)|,@ b(i) = 1,

2|A(i)| if |B(i)| > |A(i)|,@ b(i) = −1,

where @ stands for “attained at”. □
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Proof of Proposition 2

Let (C,ω, b) be a feasible point of problem (4). Note that if C = 0, the result obviously
follows from Proposition 1. Otherwise, let C > 0. Then consider a fold i ∈ [k] and introduce
the Lagrangian function of the corresponding problem (5),

L
(i)
C

(
ϑ(i)

)
:= 1

2∥ω
(i)∥2 + C

∑
j∈[n̂(i)] ξ

(i)
j

+
∑

j∈[n̂(i)] α
(i)
j

[
1− ξ

(i)
j − ŷ

(i)
j

((
ω(i)

)⊤
ϕγ

(
X̂

(i)
j

)
+ b(i)

)]
−
∑

j∈[n̂] η
(i)
j ξ

(i)
j ,

where ϑ(i) :=
(
w(i), b(i), ξ(i), α(i), η(i)

)
with α(i) and η(i) being the Lagrange multipliers

associated to the two classes of constraints in problem (5). Based on the above expression,
a fixed fold i ∈ [k], the Lagrangian dual of problem (5) can be written as

max
α(i), η(i)≥0

{
min

ω(i), b(i), ξ(i)≥0
L
(i)
C

(
ϑ(i)

)}
. (73)

For any i ∈ [k] and fixed α(i), η(i) ≥ 0, assume that the inner minimization problem in (73)
has an optimal solution

(
w(i), b(i), ξ(i)

)
, then since the constraints of (5) are all linear, then

it follows that the point
(
w(i), b(i), ξ(i)

)
is a stationary point; hence, implying that

ω(i) −
∑

j∈[n̂(i)]

α
(i)
j ŷ

(i)
j ϕγ(X̂

(i)
j ) = 0, (74)

∀j ∈ [n̂(i)] : C − α
(i)
j − η

(i)
j = 0. (75)

Recall the upper-level objective function of problem (3)

F (C,ω, b) :=
1

k

∑
i∈[k]

∑
ℓ∈[n̄(i)]

1

n̄(i)
Ξϕγ

(
ȳ
(i)
ℓ , ω(i), X̄

(i)
ℓ , b(i)

)
, (76)

where ω :=
(
ω(1), . . . , ω(k)

)
, b :=

(
b(1), . . . , b(k)

)
, and

Ξϕγ

(
ȳ
(i)
ℓ , ω(i), X̄

(i)
ℓ , b(i)

)
:= max

{
0, 1− ȳ

(i)
ℓ

((
ω(i)

)⊤
ϕγ

(
X̄

(i)
ℓ

)
+ b(i)

)}
.

Based on (74), we have(
ω(i)

)⊤
ϕγ

(
X̄

(i)
ℓ

)
=

∑
j∈[n̂(i)]

α
(i)
j ŷ

(i)
j ϕγ

(
X̂

(i)
j

)⊤
ϕγ

(
X̄

(i)
ℓ

)
=

∑
j∈[n̂(i)]

α
(i)
j ŷ

(i)
j exp

(
−γ

∥∥∥X̂(i)
j − X̄

(i)
ℓ

∥∥∥2) .
(77)

Next, we consider the complementarity conditions associated to the constraints in (3):

0 ≤ α
(i)
j ·

[
1− ξ

(i)
j − ŷ

(i)
j

(
(ω(i))⊤ϕγ(X̂

(i)
j ) + b(i)

)]
≤ 0, j ∈ [n̂(i)], (78)

0 ≤ ξ
(i)
j · η

(i)
j ≥ 0, j ∈ [n̂(i)]. (79)
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For any i ∈ [k] and j ∈ [n̂(i)] such that α
(i)
j ∈ (0, C), we have from (75) that η

(i)
j > 0 and

therefore, from (79), it follows that ξ
(i)
j = 0, and hence, from (78),

b(i) = ŷ
(i)
j −

(
ω(i)

)⊤
ϕγ

(
X̂

(i)
j

)
, ∀i ∈ [k], ∀j ∈

[
n̂(i)

]
s.t. α

(i)
j ∈ (0, C) .

Considering the expression of ω(i) from (74), and similarly to (77), it follows that for all

i ∈ [k] and j ∈
[
n̂(i)

]
such that α

(i)
j ∈ (0, C), we have

b(i) = ŷ
(i)
j −

∑
t∈[n̂(i)]

α
(i)
t ŷ

(i)
t exp

(
−γ

∥∥∥X̂(i)
t − X̂

(i)
j

∥∥∥2) .

To proceed with the final step, take i ∈ [k] and define the sets

Ī(i) :=
{
j ∈ [n̂(i)] : 0 < α

(i)
j < C

}
,

Î(i) :=
{
j ∈ [n̂(i)] : α

(i)
j = 0 or α

(i)
j = C

}
.

The considering any function ΩC : R → R satisfying ΩC(ζ) = 0 for ζ ≤ 0 and ζ ≥ C and
ΩC(ζ) > 0 all ζ ∈ (0, C), it holds that

1∑
j∈[n̂(i)]

ΩC

(
α
(i)
j

) ∑
j∈[n̂(i)]

ΩC

(
α
(i)
j

)(
ŷ
(i)
j −H(i)

(
X̂

(i)
j , γ

))

=
1∑

j∈Ī(i)
ΩC

(
α
(i)
j

) ∑
j∈Ī(i)

ΩC

(
α
(i)
j

)(
ŷ
(i)
j −H(i)

(
X̂

(i)
j , γ

))

+
1∑

j∈Ī(i)
ΩC

(
α
(i)
j

) ∑
j∈Î(i)

ΩC

(
α
(i)
j

)(
ŷ
(i)
j −H(i)

(
X̂

(i)
j , γ

))

=
1∑

j∈Ī(i)
ΩC

(
α
(i)
j

) ∑
j∈Ī(i)

ΩC

(
α
(i)
j

)
b(i)

= b(i)

with H(i)
(
X̂

(i)
j , γ

)
:=

∑
t∈[n̂(i)]

α
(i)
t ŷ

(i)
t exp

(
−γ

∥∥∥X̂(i)
t − X̂

(i)
j

∥∥∥2). Replacing this expression of

b(i) for i ∈ [k], together with (77) in (76), we get the expression in Proposition 2.
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Proof of Proposition 3

Recall the primal form of lower bound problem in (5). The KKT conditions for problem
(5) are written as follows:

w(i) −
∑

j∈[n̂(i)]

α
(i)
j ŷ

(i)
j ω(i)⊤ϕ(X̂

(i)
j ) = 0, (80)

C − α
(i)
j − α

(i)
j = 0, j ∈ [n̂(i)], (81)∑

j∈[n̂(i)]

ξ
(i)
j ŷ

(i)
j = 0, j ∈ [n̂(i)], (82)

α
(i)
j ≥ 0, ξ

(j)
j ≥ 0, α

(i)
j ξ

(i)
j = 0, j ∈ [n̂(i)], (83)

α
(i)
j ≥ 0, ξ

(j)
j ≥ 1− ŷ

(i)
j (ω(i)⊤ϕ(X̂

(i)
j ) + b(i)), j ∈ [n̂(i)], (84)

α
(i)
j

(
ξ
(i)
j − 1 + ŷ

(i)
j (ω(i)⊤ϕ(X̂

(i)
j ) + b(i))

)
= 0, j ∈ [n̂(i)]. (85)

Here α(i) and α(i) are the Lagrange multipliers corresponding to the first and second part of
inequality constraints in (5). Note that α(i) is also the solution of (LLPi). By assumption,

it holds that [n̂(i)] = I=(α(i)) ∪ I<(α(i)). Hence for each j ∈ I=(α(i)), it holds that α
(i)
j = 0

by definition, and α
(i)
j = C by (81), which gives 0 = ξ

(i)
j ≥ 1 − ŷ

(i)
j (ω(i)⊤ϕ(X̂

(i)
j ) + b(i) by

(83), (84) and (85). Therefore, we obtain that (note
(
ŷ
(i)
j

)2
= 1)

b(i) ≥ ŷ
(i)
j − ω(i)⊤ϕ(X̂

(i)
j ), j ∈ I=(α(i)). (86)

Similarly, for each j ∈ I<(α(i)), it holds that α
(i)
j = C by definition, and α

(i)
j = 0 by (81),

which gives ξ
(i)
j = 1− ŷ

(i)
j (ω(i)⊤ϕ(X̂

(i)
j ) + b(i) ≥ 0 by (83), (84) and (85). Therefore,

b(i) ≤ ŷ
(i)
j − ω(i)⊤ϕ(X̂

(i)
j ), j ∈ I<(α(i)), (87)

which gives b(i) ∈ [b
(i)
min, b

(i)
max] by the definition of b

(i)
min, b

(i)
max in (11) and the definition of

H(i)(X, γ) in Proposition 2.
Next, we will show that the lower-level function is a constant function with respect to

b(i). Indeed, the optimal lower-level objective function can be written as follows (the first
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part ∥w(i)∥2 is not related to b(i) and therefore ignored)

S(b(i)) := C
∑

j∈[n̂(i)]

ξ
(i)
j

= C
∑

j∈I<(α(i))

ξ
(i)
j

= C
∑

j∈I<(α(i))

(
1− ŷ

(i)
j

(
ω(i)⊤ϕ(X̂

(i)
j + b(i)

))
= −C

∑
j∈I<(α(i))

ŷ
(i)
j b(i) + C

∑
j∈I<(α(i))

(
1− ŷ

(i)
j ω(i)⊤ϕ(X̂

(i)
j

)
= C

∑
j∈I<(α(i))

(
1− ŷ

(i)
j ω(i)⊤ϕ(X̂

(i)
j

)
with the second equality based on (10), while the last equality is based on (82) and (10).
Therefore, after obtaining α(i) by solving the dual form of lower-level problem, i.e., (LLPi),

any b(i) ∈ [b
(i)
min, b

(i)
max] is an optimal solution of the primal problem (5). □

Appendix B. Proofs for Section 3

Proof of Proposition 6

It is obvious that the set of vectors in (14) only depends on I1 and I2, and does not depend
on v. Therefore, for each i ∈ [k], the vectors in (14) have the same rank (depending on I1,
I2) for all vectors (C, γ, α(i)) ∈ N (i), i ∈ [k]. That is, LCRCQi holds at (C̄, γ̄, ᾱi), i ∈ [k].
Therefore, LCRCQ holds at v̄.

Proof for Theorem 7

First note that for each i ∈ [k], the lower-level problem (LLPi) is convex in the lower-level
variable α(i). Therefore, it suffices to observe that since all the lower-level constraints are
linear w.r.t. α(i) for all i ∈ [k] and C ≥ 0, it holds that Λ(C, γ, α) ̸= ∅ for all vectors

(C, γ, α) ∈ R2
+ × Rn such that α(i) ∈ S

(i)
D (C, γ) for i ∈ [k]. Hence, the proof of the result

directly follows from Dempe and Dutta (2012).

Proof of Proposition 9

If C = 0, then α(i) = 0 is the only feasible point of problem (LLPi). In this case, the
constraint for lower-level problem become

α(i) = 0, (α(i))⊤ŷ(i) = 0

and therefore lead to the columns in I ∈ Rn̂(i)×n̂(i)
and ŷ(i) are linearly dependent. This

implies that LLICQi fails.
Next, for (ii), note that if I=(α(i)) ∪ I<(α(i)) = [n̂(i)], the set of vectors

{e(i)j | j ∈ I=(α(i))} ∪ {−ej | j ∈ I<(α(i))}
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forms a basis of Rn̂(i)
. As a result, the set of vectors in (10) are linearly dependent. There-

fore, LLICQ fails at α(i). This gives (ii). A special case of (ii) is I=(α(i)) = [n̂(i)] and
I<(α(i)) = ∅. In this case, α(i) = 0. One can verify that α(i) = 0 is a feasible point of
(LLPi). Consequently, LLICQ fails at α(i) = 0, which gives (i).

If I=(α(i)) ∪ I<(α(i)) ̸= [n̂(i)], one can see that the set of vectors in (10) are linearly
independent, which implies that LLICQ holds at α(i).

Appendix C. Proofs for Section 4

We first introduce the set

(Λ+
3 )

c(v̄) := [n]\Λ+
3 = (Λ1 ∪ Λ2 ∪ Λc

3 ∪ Λ4) . (88)

Proof of Proposition 18

(a) Based on Definition 10, we can write the set of gradient vectors in (20) at a feasible
point v̄ in the rows of the matrix Γ as

Γ =



(∇G1(v̄)JG1 )
⊤

(∇G1(v̄)JGH1 )
⊤

(∇H1(v̄)JH1 )
⊤

(∇H1(v̄)JGH1 )
⊤

(∇G2(v̄)JG2 )
⊤

(∇G2(v̄)JGH2 )
⊤

(∇H2(v̄)JH2 )
⊤

(∇(H2(v̄)JGH2 )
⊤

(∇h(v̄))⊤
(∇gIg(v̄))⊤


. (89)

Now, we can easily show that the matrix Γ in (89) is equivalent to the more specific form
in (38). To proceed, first note that by (13), it holds that

H(v) = LHv + bH , h(v) = Lhv, g(v) = Lg(v),

where (noting that m = 2n)

LH :=

[
0n×1 0n×1 In×n 0n×n 0n×k

0n×1 0n×1 0n×n In×n 0n×k

]
∈ R2n×m, bH :=

[
−en
0n×1

]
∈ R2n,

Lh :=
[
0k×1 0k×1 Ŷ 0k×n 0k×k

]
∈ Rk×m,

Lg :=
[
0Ig×1 −eIg×1 0Ig×n 0Ig×n 0Ig×k

]
∈ R|Ig |×m.

Note that both H(v) and h(v) are linear. Consequently, it is easy to see that

(∇H(v))⊤ = LH and (∇h(v))⊤ = Lh.
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However, G(v) is nonlinear due to the kernel operator, and based on (16), it holds that

G1(v) = Q(γ)α− en + σ + Pu with P =

 ŷ(1) · · · 0n̂(1)×1
...

. . .
...

0n̂(k)×1 · · · ŷ(k)

 ∈ Rn×k,

and Q(γ) ∈ Rn×n is defined by (39). Therefore, we have G(v) = LG(γ)v, where

LG(γ) :=

[
0n×1 0n×1 Q(γ) In×n P
en×1 0n×1 −In×n ′n×n 0n×k

]
∈ R2n×m.

For ∇G(v), it holds that

(∇G2(v))⊤ =
[
en×1 0n×1 −In×n 0n×0 0n×k

]
,

(∇G1(v))⊤ =
[
0n×1 ∇γθ(v) Q(γ) In×n P

]
,

where ∇γθ(v) is given as follows. Assume that i corresponds to the li-th sample in the
training set of the n(si)-th lower-level problem. That is, i =

∑si−1
ℓ=1 n̂(ℓ) + li. Hence,

(∇γθ(v))i = −
n̂(si)∑
j=1

yliyj

∥∥∥X(si)
li
−X

(si)
j

∥∥∥2
2
exp

(
−γ

∥∥∥X(si)
li
−X

(si)
j

∥∥∥2
2

)
αsi
j .

Finally, it is easy to verify that P = Ŷ ⊤. Hence, the form of the matrix Γ in (38).
(b) follows easily by the results in Proposition 16 and (a). □

Lemma 35. The row vectors in the following matrix Γ1 are positively linearly independent,
where Γ1 is the submatrix of Γ in (38) (in green) defined by

Γ1 :=

 I(JH1 ,·)
I(JGH1 ,·)

Ŷ

 .

Proof Assume there exists nonzero nonnegative η = (ηJH1 , ηJGH1 , η5) such that η⊤Γ1 = 0.

Here, ηJH1 , ηJGH1 , η5 correspond to the blocks of JH1 , JGH1 , [k] in Γ1. Then we have

0 = η⊤Γ1 = η⊤JH1
I(JH1 ,·) + η⊤JGH1

I(JGH1 ,·) + η⊤5 Ŷ . (90)

First, we analyze the connections of JH1 and JGH1 . By Proposition 16, we have

JH1 = Λ2, JGH1 = Λ1.

(90) can be written as

0 = η⊤JH1
I(Λ2,·) + η⊤JGH1

I(Λ1,·) + η⊤5 Ŷ

=

 (
ηJ

GH1

)(
ηJ

H1

) ⊤

I(Λ1
⋃

Λ2,·) +
(
(η5)1ŷ

(1), · · · , (η5)kŷ(k)
)

:= η̂⊤I(Λ1
⋃

Λ2,·) +
(
(η5)1ŷ

(1), · · · , (η5)kŷ(k)
)
.
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Denote ŷ = (ŷ(1); · · · ; ŷ(k)) ∈ Rn be the labels of test data for all lower-level problems and

Λ̂
(i)
+ :=

(
Λ
(i)
1

⋃
Λ
(i)
2

)⋂{
j ∈ [n̂(i)] : ŷ

(i)
j = 1

}
,

Λ̂+ :=
(
Λ1

⋃
Λ2

)⋂
{j ∈ [n] : ŷj = 1} .

Let Λ̂c = [n]\Λ̂+. By Proposition 17 and Definition 13, we have(
Λ
(i)
1

⋃
Λ
(i)
2

)⋂{
j ∈ [n̂(i)] : y

(i)
j = 1

}
̸= ∅

and |
(
Λ
(i)
1

⋃
Λ
(i)
2

)
|≥ 2, for each fold i ∈ [k]. It follows that

Λ̂+ ̸= ∅, and Λ1

⋃
Λ2 = Λ̂+

⋃(
Λ̂c

⋂(
Λ1

⋃
Λ2

))
:= Λ̂+

⋃
Λ̂0,

which gives

η̂⊤I(Λ1
⋃

Λ2,·) = η̂⊤
Λ̂+
I
(Λ̂+,·) + η̂⊤

Λ̂0
I
(Λ̂0,·).

Similarly, it holds that(
(η5)1ŷ

(1), · · · , (η5)kŷ(k)
)

=

(
(η5)1ŷ

(1)

Λ̂
(1)
+

,0
Λ̂
(1)
c
, · · · , (η5)kŷ

(k)

Λ̂
(k)
+

,0
Λ̂
(k)
c

)
+

(
0
Λ̂
(1)
+

, (η5)1ŷ
(1)

Λ̂
(1)
c

, · · · ,0
Λ̂
(k)
+

, (η5)kŷ
(k)

Λ̂
(k)
c

)
:= ŷΛ̂+

(η5) + ŷΛ̂c
(η5).

Therefore, we have

0 = η̂⊤
Λ̂+
I
(Λ̂+, ·) + ŷΛ̂+

(η5) + ŷΛ̂c
(η5) + η̂⊤

Λ̂0
I
(Λ̂0, ·).

This implies that

η̂⊤
Λ̂+
I
(Λ̂+, ·) + ŷΛ̂+

(η5) = 0 and ŷΛ̂c
(η5) + η̂⊤

Λ̂0
I
(Λ̂0, ·) = 0. (91)

By the definition of Λ̂+ and the nonnegativity of η̂
Λ̂+

as well as η5, and noting that ŷ
(i)

Λ̂
(i)
+

= 1,

the first equation in (91) gives η̂Λ̂+
= 0 and η5 = 0. The second equation in (91) reduces to

the following η̂⊤
Λ̂0
I
(Λ̂0,·) = 0, implying that η̂

Λ̂0
= 0. Overall, we obtain that η = 0. In other

words, the row vectors in Γ1 are positively linearly independent. Hence, the proof.
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Appendix D. Proofs for Section 5

Proof of Theorem 22

(i) Note that the number of columns in Γ is R1 = 2 + 2n+ k, while the number of rows in
Γ can be obtained as

R2 = | JG1 | + | JH1 | +2 | JGH1 | + | JG2 | + | JH2 | +2 | JGH2 | +k+ | Ig |
= 2n+ k+ | Ig | + | JGH1 | + | JGH2 | .

The rank of Γ is denoted by rank(Γ), which satisfies

rank(Γ) ≤ min{R1, R2} = min{2 + 2n+ k, 2n+ k+ | JGH1 | + | JGH2 | + | Ig |}.

Note that | Ig | is either 0 or 1. If (46) holds, it holds that

2n+ k+ | JGH1 | + | JGH2 | + | Ig |> 2 + 2n+ k.

As a result, it holds that rank(Γ) ≤ 2 + 2n + k, meaning that the row vectors in Γ are
linearly independent. In other words, the MPEC-LICQ fails at v̄.

(ii) Since | Ig |= 0, therefore, by similar argument as in (i), we have

2n+ k+ | JGH1 | + | JGH2 | + | Ig |> 2 + 2n+ k,

implying that rank(Γ) ≤ 2+2n+k. Therefore, the row vectors in Γ are linearly dependent.
This implies that the MPEC-LICQ fails at v̄. □

Proof of Lemma 38

By multiplying the first (resp. second, thrid, fourth) row block from the left by −Y([k],Λ2

(resp. −Y([k], Λ1
, Y([k], Λ4

, Y([k], Λc
3
), and add it to the fifth row block, we reach the matrix

P1 =


0(Λ2, L1) I(Λ2, ·)
0(Λ1, L1) I(Λ1, ·)
e(Λ4, L1) −I(Λ4, ·)
e(Λc

3, L1) −I(Λc
3, ·)

Ŷ([k], Λ4∪Λc
2)
eΛ4∪Λc

3
Y1

 with Y1 :=
[
0([k], Λ2∪Λ1∪Λ4∪Λc

3)
, Ŷ([k], Λ+

3 )

]
.

For ρ = (ρ1, · · · , ρ5), let ρ1, · · · , ρ5 correspond to the first row block to the fifth row
block in P1. If ρ satisfies ρ⊤P1 = 0, it holds that

ρ⊤5 Y([k],Λ4∪Λc
2)
eΛ4∪Λc

3
= 0, (92)

ρ⊤1 I(Λ2,·) + ρ⊤2 I(Λ1,·) − ρ⊤3 I(Λ4,·) − ρ⊤4 I(Λc
3,·) + ρ⊤5 Y1 = 0. (93)

(i) If Assumption 3 holds, it holds that rank(Ŷ([k],Λ+
3 )) = k. Therefore, (93) gives that

ρj = 0 for j = 1, . . . , 5. In other words, the row vectors in P1 are linearly independent.
Therefore, the row vectors in P are linearly independent.
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(ii) By (93), it holds that ρj = 0 for j = 1, . . . , 4. Hence, (93) reduces to ρ⊤5 Y1 = 0. If

Assumption 4 holds, rank(Ŷ([k],Λ+
3 )) = k − 1. Therefore, Ŷ([k],Λ+

3 ) takes the following form

(assuming that K = {1}):

Ŷ([k],Λ+
3 ) =


0 0(1,Λ+2

3 ) . . . 01,Λ+k
3

0 (ŷ
(2)

Λ+2
3

)⊤ . . . 01,Λ+k
3

...
...

...
...

0 0(1,Λ+2
3 ) . . . (ŷ

(k)

Λ+k
3

)⊤

 .

Therefore, ρ⊤5 Y1 = 0 gives (ρ5)j = 0, j = 2, . . . , k. On the other hand, by the definition of
si, i ∈ K, (92) reduces to (ρ5)jsj = 0, j ∈ [k]. Hence, (rho5)1 = 0. In other words, the row
vectors in both P1 and P are linearly independent.

(iii) If Assumptions 3 and 4 fail, the row vectors in P are linearly dependent, given that
the row vectors of 

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)


obtained from Γ (40) are linearly dependent. This gives (iii). □

We need the following proposition and lemmas in order to prove Theorem 23.

Proposition 36. The following holds for the lower-level problems:

(i) There are at least two lower-level subproblems; i.e., k ≥ 2.

(ii) By Proposition 17 as well as Proposition 16, it holds that

| J (i)
H1 ∪ J

(i)
GH1 |≥ 2, i ∈ [k].

Here J
(i)
H1 (resp. J

(i)
GH1) corresponds to JH1 (resp. JGH1) in the i-th lower-level prob-

lem, i ∈ [k]. That is, for each lower-level problem, there exists at least one positive
sample data which is an unsupported vector, and at least one negative sample data
which is an unsupported vector.

(iii) | JGj | + | JHj | + | JGHj |= n for j = 1, 2.

(iv) If for each lower-level problem, strict complementarity conditions hold for the corre-
sponding KKT systems, then it holds that

JGHj = ∅, | JGj | + | JHj |= n, and JHj = [n]\JGj for j = 1, 2.

(v) For each (LLPi), i ∈ [k], Proposition 21 implies that | J (i)
G1 |≥ 4, i ∈ [k] where J

(i)
G1

corresponds to JG1 in the i-th lower-level problem, i ∈ [k]. Therefore, | JG1 |≥ 4k.
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Lemma 37. Let v̄ be feasible to (MPEC-BHO) with corresponding Γ defined in Proposition
18. Assume that we do some basic row transformations to Γ and obtain Γ. Then,

(i) rank(Γ) = rank(Γ),

(ii) MPEC-LICQ holds at v̄ if and only if the row vectors in Γ are linearly independent.

Proof As the basic row transformations will not change the rank of a matrix, we obtain (i).
For (ii), by the definition of MPEC-LICQ, this condition is satisfied at v̄ if and only if the
row vectors in Γ are linearly independent. Due to (i), the row vectors in Γ are linearly inde-
pendent if and only if the row vectors in Γ are linearly independent. Therefore, (ii) holds.

To proceed next, let

P :=


0(Λ2,L1) I(Λ2,·)
0(Λ1,L1) I(Λ1,·)
e(Λ4,L1) −I(Λ4,·)
e(Λc

3,L1) −I(Λc
3,·)

0([k],L1) Ŷ

 . (94)

Lemma 38. Let v̄ be a feasible point of problem (MPEC-BHO) with C̄ > 0.

(i) If Assumption 3 holds, the row vectors in P are linearly independent.

(ii) If Assumption 4 holds, the row vectors in P are linearly independent.

(iii) If Assumptions 3 and 4 fail, the rows vector in P are linearly dependent.

At a feasible point v̄ of problem (MPEC-BHO), denote

ȧ1 := Q(γ̄)(Λ+
3 , Λ4∪Λc

3)
e|Λ4∪Λc

3|, ȧ2 := Q(γ̄)(Λc
3, Λ4∪Λc

3)
e|Λ4∪Λc

3|,

ȧ3 := Q(γ̄)(Λ4, Λ4∪Λc
3)
e|Λ4∪Λc

3|, ȧ4 := Q(γ̄)(Λ1, Λ4∪Λc
3)
e|Λ4∪Λc

3|,

ȧ5 := ȧ2 −A2ȧ1, ȧ6 := ȧ3 −A3ȧ1, ȧ7 = ȧ4 −A4ȧ1,

ḃ1 := ∇γθ(v̄)Λc
3
−A2∇γθ(v̄)Λ+

3
,

ḃ2 := ∇γθ(v̄)Λ4 −A3∇γθ(v̄)Λ+
3
,

ḃ3 := ∇γθ(v̄)Λ1 −A4∇γθ(v̄)Λ+
3
,

U̇1 := P(Λ4,·) −A3P(Λ+
3 ,·),

ẏ1 := Ŷ([k],Λ4∪Λc
3)
e|Λ4∪Λc

3|, ẏ2 := ẏ1 −A1ȧ1,

ẏ3 := −A1∇γθ(v̄)Λ+
3
.

(95)
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Lemma 39. Let v̄ be a feasible point of problem (MPEC-BHO) that satisfies Assumption
2. | JGH2 | + | JGH1 |∈ {0, 1, 2}. Define Γ̂ and Γ respectively as follows:

Γ̂ :=



ȧ1 ∇γθ(v̄)Λ+
3

Q̂ 0(Λ+
3 ,L4)

P(Λ+
3 ,·)

ȧ2 ∇γθ(v̄)Λc
3

Q̂1 0(Λc
3,L4) P(Λc

3,·)
ȧ3 ∇γθ(v̄)Λ4 Q̂2 I(Λ4,·) P(Λ4,·)
a4 ∇γθ(v̄)Λ1 Q̂3 I(Λ1,·) P(Λ1,·)

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

ẏ1 0([k],L2) Ŷ 1 0([k],L4) 0([k],L5)



, (96)

Γ :=



ȧ1 ∇γθ(v̄)Λ+
3

Q̂ 0(Λ+
3 ,L4)

P(Λ+
3 ,·)

ȧ5 ḃ1 0(Λc
3,L3) 0(Λc

3,L4) U1

ȧ6 ḃ2 0(Λ4,L3) I(Λ4,·) U2

ȧ7 ḃ3 0(Λ1,L3) 0(Λ1,L4) U3

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

ẏ2 ẏ3 0([k],L3) 0([k],L4) ẏ4



. (97)

Here, Q̂ is defined as in (104), Ŷ 1 is given in (106), ȧi for i = 1, . . . , 7, while ḃi, Q̂i, and
ẏi for i = 1, 2, 3 are defined in (95).

(a) It holds that rank(Γ) = rank(Γ̂).

(b) If Λ+
3 ̸= ∅, we further have the following results:

(i) rank(Γ) = rank(Γ),

(ii) For ρ = (ρ1, · · · , ρ13), let ρ1, · · · , ρ13 correspond to the first row block to the
thirteenth row block in Γ. If ρ satisfies ρ⊤Γ = 0, the following holds:

ρi = 0 for i = 1, 3, 5, 6, 7, 8, 9, 10, 11, 12 (98)
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and

ρ⊤2 ȧ
5 + ρ⊤4 ȧ

7 + ρ⊤13ẏ
2 = 0, (99)

ρ⊤2 ḃ
1 + ρ⊤4 ḃ

3 + ρ⊤13ẏ
3 = 0, (100)

ρ⊤2 U
1 + ρ⊤4 U

2 + ρ⊤13Z = 0. (101)

Here U1, U2 and Z are defined in (53).

(iii) MPEC-LICQ holds at v̄ if and only if the row vectors in the following matrix

M :=

 ȧ5 ḃ1 U1

ȧ7 ḃ3 U2

ẏ2 ẏ3 Z

 (102)

are linearly independent.

(iv) If v̄ satisfies Assumption 3, ẏ3 defined by (95) is negative definite.

(v) Following (iv), it holds that rank(M) = rank(M0), where M0 is defined by

M0 :=

 a1 b1 0
a2 b2 0
ẏ2 ẏ3 Z

 . (103)

Here a1, a2, b1, and b2 are defined as in (53).

Proof (a) By Proposition 16 (b) and γ > 0, Γ in (40) takes the following form:

Γ =



0(Λ+
3 ,L1)

∇γθ(v̄)Λ+
3

Q(γ̄)(Λ+
3 ,· ) I(Λ+

3 ,·) P(Λ+
3 ,·)

0(Λc
3,L1) ∇γθ(v̄)Λc

3
Q(γ̄)(Λc

3,· ) I(Λc
3,·) P(Λc

3,·)
0(Λ4 L1) ∇γθ(v̄)Λ4 Q(γ̄)(Λ4,· ) I(Λ4,·) P(Λ4,·)
0(Λ1,L1) ∇γθ(v̄)Λ1 Q(γ̄)(Λ1,· ) I(Λ1,·) P(Λ1,·)
0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)



.

Substracting the eleventh row block from the first row block, substracting the twelveth row
block from the second row block, and substracting the ninth row block from the fourth row
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block, we reach the following matrix:

Γ0 =



0(Λ+
3 ,L1)

∇γθ(v̄)Λ+
3

Q(γ̄)(Λ+
3 ,· ) 0(Λ+

3 ,L4)
P(Λ+

3 ,·)
0(Λc

3,L1) ∇γθ(v̄)Λc
3

Q(γ̄)(Λc
3,· ) 0(Λc

3,L4) P(Λc
3,·)

0(Λ4,L1) ∇γθ(v̄)Λ4 Q(γ̄)(Λ4,· ) I(Λ4,·) P(Λ4,·)
0(Λ1,L1) ∇γθ(v̄)Λ1 Q(γ̄)(Λ1,· ) 0(Λ+

1 ,L4)
P(Λ1,·)

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)



.

Moreover, it holds that [n] = Λ1∪Λ2∪Λ+
3 ∪Λc

3∪Λ4. Next, we conduct the following process.
Process A(1, 5): Multiplying the fifth (j = 5) row block by −Q(γ̄)(Λ+

3 ,Λ2)
from the

left and adding it to the first (i = 1) row block, we can obtain the first row block with
Q(γ̄)(Λ+

3 ,Λ2)
replaced by zero. We denote this process as A(1, 5).

Process A(1, 6): This leads to the first row block with Q(γ̄)(Λ+
3 ,Λ1)

replaced by zero.

Process B(1, 7): Multiplying the fifth (j = 7) row block by Q(γ̄)(Λ+
3 ,Λ4)

from the left and

adding it to the first (i = 1) row block, we can obtain the first row block with Q(γ̄)(Λ+
3 ,Λ4)

replaced by zero. Meanwhile, 0(Λ+
3 ,L1)

is replaced by Q(γ̄)(Λ+
3 ,Λ4)

e|Λ4|.

Process B(1, 8): This leads to the first row block with Q(γ̄)(Λ+
3 ,Λc

3)
replaced by zero, and

Q(γ̄)(Λ+
3 ,Λ4)

e|Λ4| replaced by Q(γ̄)(Λ+
3 ,Λ4∪Λc

3)
e|Λ4∪Λc

3|, which is exactly ȧ1 defined in (95).

Now the first row block in Γ0 is replaced by the following row block[
ȧ1 ∇γθ(v̄)Λ+

3
Q̂ 0(Λ+

3 ,L4)
P(Λ+

3 ,·)

]
with

Q̂ =
[
0(Λ+

3 ,Λ+
3 ), Q(γ̄)(Λ+

3 ,(Λ+
3 )c)

]
. (104)

Carrying on to conduct process A(2, 5), A(2, 6),B(2, 7), B(2, 8),A(3, 5),A(3, 6), B(3, 7),
B(3, 8),A(4, 5),A(4, 6), B(4, 7),B(4, 8),A(13, 5), A(13, 6),B(13, 7), and B(13, 8), we arrive
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at the following matrix:

ȧ1 ∇γθ(v̄)Λ+
3

Q̂ 0(Λ+
3 ,L4)

P(Λ+
3 ,·)

ȧ2 ∇γθ(v̄)Λc
3

Q̂1 0(Λc
3,L4) P(Λc

3,·)
ȧ3 ∇γθ(v̄)Λ4 Q̂2 I(Λ4,·) P(Λ4,·)
ȧ4 ∇γθ(v̄)Λ1 Q̂3 I(Λ1,·) P(Λ1,·)

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

ẏ1 0([k],L2) Ŷ 1 0([k],L4) 0([k],L5)



,

where ȧi for i = 2, 3, 4 and ẏ1 are defined as in (95), and

Q̂1 :=
[
Q(γ̄)(Λc

3, Λ
+
3 ), 0(Λc

3, (Λ
+
3 )c)

]
, Q̂2 :=

[
Q(γ̄)(Λ4, Λ

+
3 ), 0(Λ4, (Λ

+
3 )c)

]
, (105)

Q̂3 :=
[
Q(γ̄)(Λ1, Λ

+
3 ), 0(Λ1,(Λ

+
3 )c)

]
, Ŷ 1 :=

[
Ŷ([k], Λ+

3 ), 0([k], (Λ+
3 )c)

]
. (106)

Therefore, we obtain Γ̂ in (96). (a) is proved.
(b) If Λ+

3 ̸= ∅, then we can conduct further row transformation on Γ̂. Note that by
assumption, Q(γ)(Λ+

3 ,Λ+
3 ) is positive definite. Therefore, the rows in Q(γ)(Λ+

3 ,Λ+
3 ) can fully

express the rows in Ŷ([k],Λ+
3 ) and the rows in Q(γ)(Λ4,Λ

+
3 ), Q(γ)(Λ1,Λ

+
3 ) and Q(γ)(Λc

3,Λ
+
3 ). In

other words, by conducting basic row transformation, we can make Ŷ 1, Q̂1, Q̂2 and Q̂3

replaced by zeros. Specifically, there exists A1 ∈ Rk×|Λ+
3 |, A2 ∈ R|Λc

3|×|Λ+
3 |, A3 ∈ R|Λ4|×|Λ+

3 |

and A4 ∈ R|Λ1|×|Λ+
3 | satisfy (51) and (52).

By multiplying the first row block by −A1 (−A2, −A3, −A4 respectively) from left and
add them to the last (first, second, third, respectively) row block, we obtain the following
matrix in which Q̂1, Q̂2, Q̂3, and Ŷ 1 are replaced by zeros:

ȧ1 ∇γθ(v̄)Λ+
3

Q̂ 0(Λ+
3 ,L4)

P(Λ+
3 ,·)

ȧ5 ḃ1 0(Λc
3,L3) 0(Λc

3,L4) U1

ȧ6 ḃ2 0(Λ4,L3) I(Λ4,·) U̇1

ȧ7 ḃ3 0(Λ1,L3) 0(Λ1,L4) U2

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5

ẏ2 ẏ3 0([k],L3) 0([k],L4) Z



,
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which is exactly Γ. Here, ȧj for j = 5, 6, 7, ḃj for j = 1, 2, 3, ẏj for j = 2, 3, and U̇1 are
given by (95), while U1, U2, and Z are defined in (53). Therefore, we have (i) from

rank(Γ) = rank(Γ0) = rank(Γ̂) = rank(Γ).

(ii) For ρ = (ρ1, · · · , ρ13) such that ρ⊤Γ = 0, 0 = ρ⊤Γ := [S1 S2 S3 S4 S5]. Hence,

S1 = ρ⊤1 ȧ
1 + ρ⊤2 ȧ

5 + ρ⊤3 ȧ
6 + ρ⊤4 ȧ

7 + ρ⊤7 e(Λ4,L1) + ρ⊤8 e(Λc
3,L1) + ρ⊤13ẏ

2 = 0, (107)

S2 = ρ⊤1 ∇γθ(v̄)Λ+
3
+ ρ⊤2 ḃ

1 + ρ⊤3 ḃ
2 + ρ⊤4 ḃ

3 + ρ⊤13ẏ
3 = 0, (108)

S3 = ρ⊤1 Q̂+ ρ⊤5 I(Λ2,·) + ρ⊤6 I(Λ1,·) − ρ⊤7 I(Λ4,·) − ρ⊤8 I(Λc
3,·) = 0, (109)

S4 = ρ⊤3 I(Λ4,·) + ρ⊤9 I(Λ1,·) + ρ⊤10I(Λ2,·) + ρ⊤11I(Λ+
3 ,·) + ρ⊤12I(Λc

3,·) = 0, (110)

S5 = ρ⊤1 P(Λ+
3 ,·) + ρ⊤2 U

1 + ρ⊤3 U̇
1 + ρ⊤4 U

2 + ρ⊤13Z = 0. (111)

By (109) and (110), we have ρi = 0 for i = 1, 3, 5, 6, 7, 8, 9, 10, 11, 12. Hence, (107), (108)
and (111) reduce to (99)-(101). This gives (ii).

(iii) Assume that ρ = (ρ1, · · · , ρ13) satisfies ρ⊤Γ = 0, by (ii), the row vectors in Γ are
linearly dependent if and only if we can derive ρi = 0 for i = 2, 4, 13 from (99)-(101).
Having ρi = 0 for i = 2, 4, 13 is equivalent to that the row vectors in M are linearly
independent. Therefore, (iii) is proved.

(iv) If Assumption 3 holds, let us first show rank(A1) = [k]. By Assumption 3,

| Λ+
3 |=

k∑
i=1

| Λ+(i)
3 |≥ k. (112)

Therefore, Ŷ([k],Λ+
3 ) takes the following form

Ŷ([k],Λ+
3 ) =



(
ŷ
(1)

Λ
+(1)
3

)⊤
· · · 0

(1,Λ
+(k)
3 )

...
. . .

...

0
(1,Λ

+(1)
3 )

· · ·
(
ŷ
(k)

(1,Λ
+(k)
3 )

)⊤

 ,

implying that rank
(
Ŷ([k],Λ+

3 )

)
= k. On the other hand, it holds that

rank
(
Ŷ([k],Λ+

3 )

)
≤ min

{
rank(A1), rank

(
Q(γ)(Λ+

3 ,Λ+
3 )

)}
=

{
rank(A1), | Λ+

3 |
}
.

Together with (112), rank(A1) ≥ k. Recall that for A1 ∈ Rk×|Λ+
3 |, we obtain rank(A1) = k.

Next, we will show that −Z is definite. To proceed, recall that P = Ŷ ⊤ in Proposition
18, together with (51), we have

Z = −A1P(Λ+
3 , ·) = −A

1
(
Ŷ([k], Λ+

3 )

)⊤
= −A1Q(γ̄)(Λ+

3 , Λ+
3 )

(
A1

)⊤
.

By the positive definiteness of Q(γ)(Λ+
3 , Λ+

3 ) as well as rank(A
1) = k, −Z is positive definite.
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(v) Following (iv), let B1, B2 be the coefficient matrix such that (54) and (55) hold.
By multiplying the third row block in M by −B1 and adding it to the first row block, then
multiplying the third row block in M by −B2 and adding it to the second row block, we
can transfer M to the following matrix: ȧ5 −B1ẏ2 ḃ1 −B1ẏ3 0

ȧ7 −B2ẏ2 ḃ3 −B2ẏ3 0
ẏ2 ẏ3 Z

 .

By the definition of ȧi for i = 5, 7, ẏi for i = 2, 3, and ḃi for i = 1, 3, we reach M0. By
Lemma 37 (i), M and M0 have the same rank. Hence, (iv) is proved.

Proof of Theorem 23

By Proposition 16 and | JGH1 | + | JGH2 |= 0, we have the following relationship for
different index sets:

Λc
3 = ∅, Λ1 = ∅, JGH1 = ∅, JGH2 = ∅, and Λ3 = Λ+

3 ;

JH1 = Λ2, JG1 = Λ+
3 ∪ Λ4, JH2 = Λ2 ∪ Λ+

3 , and JG2 = Λ4. (113)

As a result, it holds that

[n] = Λ4 ∪ Λ2 ∪ Λ3 and (Λ+
3 )

c = Λ4 ∪ Λ2. (114)

By Lemma 39 (a), Γ̂ reduces the form

Γ̂ =



ȧ1 ∇γθ(v̄)Λ+
3

Q̂ 0(Λ+
3 ,L4)

P(Λ+
3 ,·)

ȧ3 ∇γθ(v̄)Λ4 Q̂2 I(Λ4,·) P(Λu,·)
0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

ẏ1 0([k],L2) Ŷ 1 0([k],L4) 0([k],L5)


.

(i) If JG1 = JG2 , together with (113) and (114), it holds that

Λ+
3 = ∅, [n] = Λ4 ∪ Λ2, and (Λ+

3 )
c = [n].

Λ+
3 = ∅ implies that Assumptions 3 and 4 fail. By Lemma 38, MPEC-LICQ fails at v̄.
(ii) Due to JG2 = ∅, (113) and (114) reduce to the following Λ4 = ∅, JH1 = Λ2, JG1 = Λ+

3 ,
JH2 = Λ2 ∪ Λ+

3 , JG2 = ∅, [n] = Λ2 ∪ Λ+
3 , (Λ

+
3 )

c = Λ2. By Lemma 36 (b) (v), Λ+
3 ̸= ∅. By

Lemma 39 (b) (i), Γ takes the following form

Γ =


ȧ1 ∇γθ(v̄)Λ+

3
Q̂ 0(Λ+

3 ,L4)
P(Λ+

3 ,·)
0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

ẏ2 ẏ3 0([k],L3) 0([k],L4) Z

 .
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with ẏ2, ȧ1 in (95) and Q̂ in (104) reduce to the following form

ẏ2 = 0, ȧ1 = 0, and Q̂ =
[
Q(γ̄)(Λ+

3 , Λ+
3 ), 0(Λ+

3 , Λ2)

]
.

By Lemma 39 (b) (ii), ρi for i = 2, 3, 4, 6, 7, 8, 9, 12 do not appear in ρ. Hence, the
system (98)-(100) reduces to

ρi = 0 for i = 1, 5, 10, 11, ρ⊤13ẏ
3 = 0, and ρ⊤13Z = 0.

If Assumption 3 holds, by Lemma 39 (b) (iv), −Z is positive definite, we obtain that
ρ13 = 0. It implies that the row vectors in Γ are linearly independent. By Lemma 37 (ii),
MPEC-LICQ holds at v̄.

If Assumption 3 fails, by the definition of K, K ̸= ∅. Note that Λ4 = ∅ and Λc
3 = ∅, it

holds that Si = 0, i ∈ K. In other words, Assumption 4 fails as well. By Lemma 38 (iii),
MPEC-LICQ fails at v̄.

(iii) If JG2 ⊂ JG1 and JG2 ̸= ∅, it holds that Λu ̸= ∅ and Λ+
3 ̸= ∅. By Lemma 39 (b) (i),

Γ reduces to the following form

Γ =



a1 ∇γθ(v̄)Λ+
3

Q̂ 0(Λ+
3 ,L4)

P(Λ+
3 ,·)

ȧ6 ḃ2 0(Λ4,L3) I(Λ4,·) U̇1

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

ẏ2 ẏ3 0([k],L3) 0([k],L4) Z


.

By Lemma 39 (b) (ii), ρi for i = 2, 4, 6, 8, 9, 12 do not appear in ρ. Hence, (98)–(100)
reduces to ρi = 0 for i = 1, 3, 5, 7, 10, 11 and

ρ⊤13ẏ
2 = 0, ρ⊤13ẏ

3 = 0, and ρ⊤13Z = 0. (115)

If Assumption 3 holds, by Lemma 39 (b) (iv), −Z is positive definite. As a result, we
have ρ13 = 0. Therefore, we obtain ρ = 0. It implies that the row vectors in Γ are linearly
independent. By Lemma 37 (ii), MPEC-LICQ holds at v̄.

If Assumption 4 holds, we will derive ρ13 = 0 by (115) under Assumption 4. Since
K ̸= ∅, without loss of generality, assume that K = {1, · · · , l}. Therefore, for i ∈ K, it

holds that Λ
+(i)
3 = ∅. Note that from J

(i)
G1 = Λ

+(i)
3 ∪ Λ

(i)
4 and Lemma 36 (v), J

(i)
G1 = Λ

(i)
4 ,

| Λ(i)
4 |≥ 4, i ∈ K. As a result, JGH2 = Λc

3 = ∅ and | JG2 |=| Λ4 |≥ 4k. It follows that

Ŷ(i,Λ4)e|Λ4| = (ŷ
(i)

Λ
(i)
4

)⊤e|Λ(i)
4 | = (ŷ

(i)

J
(i)

G2

)⊤e|J(i)

G2 |
= si for i ∈ K.
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Ŷ([k],Λ+
3 ) reduces to the expression

Ŷ([k],Λ+
3 ) =



0
(1,Λ

+(l+1)
3 )

0
(1,Λ

+(l+2)
3 )

· · · 0
(1,Λ

+(k)
3 )

· · · · · · . . . · · ·
0(1,(Λ+

3 )(l+1)) 0(1,(Λ+
3 )(l+2)) · · · 0(1,(Λ+

3 )(k))(
ŷ
(l+1)

(1,Λ
+(l+1)
3 )

)⊤
0
(1,Λ

+(l+2)
3 )

· · · 0
(1,Λ

+(k)
3 )

· · · · · · . . . · · ·

0
(1,Λ

+(1)
3 )

0
(1,Λ

+(2)
3 )

· · ·
(
ŷ
(k)

(1,Λ
+(k)
3 )

)⊤


. (116)

Therefore, A1 ∈ Rk×|Λ+
3 | takes the partition

A1 =

[
0(l,|Λ+

3 |)
A1

2

]
. (117)

Moreover, recall ẏ3 in (95), it holds that

ẏ3 = −A1∇γθ(v̄)Λ3 =

[
0(K,1)

−A1
2∇γθ(v̄)Λ3

]
:=

[
0(K,1)

ẏ3Kc

]
, (118)

and

Z = −A1P(Λ3,·) = −

[
0(K,K) 0(K,Kc)

0⊤(K,Kc) A1
2Q(γ̄)(Λ3,Λ3)

(
A1

2

)⊤ ]
:=

[
0(K,K) 0(K,Kc)

0⊤(K,Kc) Z(Kc,Kc)

]
. (119)

Let ρ13 take the following partition

ρ13 =

[
ρK
ρKc

]
. (120)

The equations in (115) reduces to the following equations

ρ⊤KsK + ρ⊤Kc ẏ2Kc = 0, ρ⊤Kc ẏ3Kc = 0, ρ⊤KcZ(Kc,Kc) = 0. (121)

Similar to the argument in Lemma 39 (b) (iv), we can obtain that rank(A1
2) =| Kc |, and

rank(Z(Kc,Kc)) =| Kc |, implying that −Z(Kc,Kc) is positive definite. Therefore, we obtain

ρKc = 0, and (121) reduces to ρ⊤KsK = 0.
Note that | K |≥ 1. If | K |= 1 and si ̸= 0, i ∈ K, it holds that ρK = 0. In this case,

we obtain that ρ = 0. It implies that the row vectors in Γ are linearly independent. By
Lemma 37 (ii), MPEC-LICQ holds at v̄.

If both Assumptions 3 and 4 fail, by Lemma 38, MEPC-LICQ fails at v̄. □
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Proof of Theorem 24

(i) By Lemma 39 (b) (iii) and (v), if Assumption 3 holds, we can easily obtain (i).
For (ii), similar to the proof in Theorem 23 (iii), since K ̸= ∅, without loss of generality,

assume that K = {1, · · · , l}. Then for i ∈ K, it holds that Λ
+(i)
3 = ∅. As a result,

Ŷ(i,Λ4)e|Λ4| + Ŷ(i,Λc
3)
e|Λc

3| =

(
ŷ
(i)

Λ
(i)
4

)⊤
e|Λ(i)

4 | +

(
ŷ
(i)

Λ
+(i)
3

)⊤
e|Λ+(i)

3 | = si for i ∈ K.

Moreover, Ŷ([k],Λ+
3 ) takes the form in (116). Therefore, we have A1 ∈ Rk×|Λ+

3 | takes the form

in (117). By the definition of ẏ2, it holds that

ẏ2 =

[
Ŷ(K,Λ4)e|Λ4| + Ŷ(K,Λc

3)
e|Λc

3|
Ŷ(Kc,Λ4)e|Λ4| + Ŷ(Kc,Λc

3)
e|Λc

3|

]
−

[
0(K,1)

A1
2Q(γ̄)(Λ+

3 ,Λ+
3 )e|Λ+

3 |

]

:=

[
sK
ẏ2Kc

]
. (122)

Similarly, we obtain the partition of ẏ3 and Z, which are the same as in (118) and (119).
Hence M reduces to the form

Ṁ1 =


a1 b1 U1

(·,K) U1
(·,Kc)

a2 b2 U2
(·,K) U2

(·,Kc)

sK 0(K,1) 0(K,K) 0(K,Kc)

y2Kc y3Kc 0(Kc,K) Z(Kc,Kc)

 .

Similar to the argument in Lemma 39 (b) (iv), we can obtain that −Z(Kc,Kc) is positive
definite. Therefore, there exist B3 and B4 such that (54) holds. By multiplying −B3 from
the left to the fourth row block and add it to the first row block, multiplying −B4 from the
left to the fourth row block and add it to the second row block, we obtain

Ṁ2 :=


ȧ8 b3 U1

(·,K) 0(Λc
3,K

c)

ȧ9 b4 U2
(·,K) 0(Λ4,Kc)

sK 0(K,1) 0(K,K) 0(K,Kc)

ẏ2Kc ẏ3Kc 0(Kc,K) Z(Kc,Kc)

 .

Here b3, b4 are defined as in (53) and

ȧ8 = a1 −B3ẏ2Kc , ȧ9 = a2 −B4ẏ2Kc .

By Assumption 4, for K = 1 and sK ̸= 0, we can similarly do row transformation to Ṁ2 to
make ȧ8, ȧ9, ẏ2Kc zero. Then we obtain the following

Ṁ3 :=


0(Λc

3,1)
b3 U1

(·,K) 0(Λc
3,K

c)

0(Λ4,1) b4 U2
(·,K) 0(Λ4,Kc)

sK 0(K,1) 0(K,K) 0(K,Kc)

0([k],1) ẏ3Kc 0(Kc,K) Z(Kc,Kc)

 .

53



Next, for ρ̄ = (ρ1, · · · , ρ4), let ρ1, · · · , ρ4 correspond to the first row block to the fourth
row block in Ṁ3. If ρ satisfies ρ⊤Ṁ3 = 0, it holds that

ρ⊤3 sK = 0, ρ⊤1 b
3 + ρ⊤2 b

4 + ρ⊤4 ẏ
3
Kc = 0,

ρ⊤1 U
1
(·,K) + ρ⊤2 U

2
(·,K) = 0, ρ⊤4 Z(Kc,Kc) = 0.

We obtain that ρ3 = 0, ρ4 = 0 by sK ̸= 0 and the positive definiteness of −Z(Kc,Kc). The
above equations reduce to the following

ρ⊤1 b
3 + ρ⊤2 b

4 = 0, ρ⊤1 U
1
(·,K) + ρ⊤2 U

2
(·,K) = 0.

Therefore, it can be easy to obtain the following results.
If | JGH1 | + | JGH2 |= 2 and the matrix M1 defined in (ii) is nonsingular, MPEC-LICQ

holds. If | JGH1 |= 1, | JGH2 |= 0, it holds that | Λ1 |= 1,Λc
3 = ∅. If (b4, U2

(·,K)) ̸= 0,

MPEC-LICQ holds. If | JGH2 |= 1, | JGH1 |= 0, it holds that | Λc
3 |= 1, Λ1 = ∅. If

(b3, U1
(·,K)) ̸= 0, MPEC-LICQ holds.

Otherwise, it can be seen that MPEC-LICQ fails. This concludes the proof. □

Proof of Theorem 25

Since | Ig |̸= ∅, by Proposition 18 (b), we have Γ as in (40). By substracting the eleventh
(resp. twelfth, ninth) row block from the first (resp. second, fourth) row block, by multi-
plying the last blcok by −∇γθ(v̄)(Λ+

3 ,·) (resp. −∇γθ(v̄)(Λc
3,·), −∇γθ(v̄)(Λ4,·), −∇γθ(v̄)(Λ1,·))

and adding it to the first (resp. second, third, fourth) block, we reach the matrix

Γ0 =



0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

Q(γ̄)(Λ+
3 ,· ) 0(Λ+

3 ,L4)
P(Λ+

3 ,·)
0(Λc

3,L1) 0(Λc
3,L2) Q(γ̄)(Λc

3,· ) 0(Λc
3,L4) P(Λc

3,·)
0(Λ4,L1) 0(Λ4,L2) Q(γ̄)(Λ4,· ) I(Λ4,·) P(Λ4,·)
0(Λ1,L1) 0(Λ1,L2) Q(γ̄)(Λ1,· ) 0(Λ+

1 ,L4)
P(Λ1,·)

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,L3) 0(Ig ,L4) 0(Ig ,L5)



.

We discuss the following two cases:
(i) If Assumption 5 holds, without loss of generality, assume that

| Λ(i)
3 ∪ Λ

(i)
4 |= 1 and Λ

(i)
3 ∪ Λ

(i)
4 = li for i = 1, · · · , l with l ≤ k.
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The submatrix T defined by

T := [T1, T2] with T1 :=

 Q(γ̄)(Λ+
3 , · )

Q(γ̄)(Λc
3,· )

Q(γ̄)(Λ1,· )

 and T2 :=

 P(Λ+
3 ,·)

P(Λc
3, ·)

P(Λ1, ·)


takes the following form:

T =


ŷ
(1)
l1

(ŷ(1))⊤ 0(1,n̂(2)) · · · 0 ŷ
(1)
l1

0 0

0(1,n̂(1)) ŷ
(2)
l2

(ŷ(2))⊤ · · · 0(1,n̂(k)) 0 ŷ
(2)
l2

0
...

...
. . .

...
...

. . .
...

0(1,n̂(1)) 0(1,n̂(2)) · · · ŷ
(r)
lr

(ŷ(r))⊤ 0 · · · ŷ
(r)
lr

 .

We can observe that T has full row rank and also

rank(T ) = rank(T1) = rank(T2) = l. (123)

Note that γ̄ = 0 and in this situation, Qi(γ̄) = ŷ(i)
(
ŷ(i)

)⊤
, which is a rank one matrix,

i ∈ [k]. Due to the special structure of Qi(γ̄), we can eliminate Q(γ̄)(Λ+
3 ,·), Q(γ̄)(Λc

3,·),

Q(γ̄)(Λ4,·), Q(γ̄)(Λ1,·) by applying a proper row transformation based on the thirteenth block

where three is Ŷ . Then conducting A(13, 5), A(13, 6), B(13, 7), and B(13, 8), the matrix
becomes (recalling that [n] = Λ1 ∪ Λ2 ∪ Λ+

3 ∪ Λc
3 ∪ Λ4):

Γ1 =



0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

0(Λ+
3 ,L4)

P(Λ+
3 ,·)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λ+
3 ,L3)

0(Λc
3,L4) P(Λc

3,·)
0(Λ4,L1) 0(Λ4,L2) 0(Λ4,L3) I(Λ4,·) P(Λ4,·)
0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) 0(Λ1,L4) P(Λ1,·)
0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ+
3 ,L1)

0(Λ+
3 ,L2)

0(Λ+
3 ,L3)

I(Λ+
3 ,·) 0(Λ+

3 ,L5)

0(Λc
3,L1) 0(Λc

3,L2) 0(Λc
3,L3) I(Λc

3,·) 0(Λc
3,L5)

ẏ1 0([k],L2) Ŷ 1 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,L3) 0(Ig ,L4) 0(Ig ,L5)



,

where (Λ+
3 )

c, Ŷ 1, and ẏ1 are defined as in (88), (106), (95) respectively. Therefore,

rank(Γ) = rank(Γ0) = rank(Γ1).
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For ρ = (ρ1, · · · , ρ14) such that 0 = ρ⊤Γ1 := [S1 S2 S3 S4 S5], it holds that

S1 = ρ⊤7 e(Λ4,L1) + ρ⊤8 e(Λc
3,L1) + ρ⊤13ẏ

1 = 0, (124)

S2 = −ρ14 = 0, (125)

S3 = ρ⊤5 I(Λ2,·) + ρ⊤6 I(Λ1,·) − ρ⊤7 I(Λ4,·) − ρ⊤8 I(Λc
3,·) + ρ⊤13Ŷ

1 = 0, (126)

S4 = ρ⊤3 I(Λ4,·) + ρ⊤9 I(Λ1,·) + ρ⊤10I(Λ2,·) + ρ⊤11I(Λ+
3 ,·) + ρ⊤12I(Λc

3,·) = 0,

S5 = ρ⊤1 P(Λ+
3 ,·) + ρ⊤2 P(Λc

3,·) + ρ⊤3 P(Λ2,·) + ρ⊤4 P(Λ1,·) = 0. (127)

By (125), (126), and (127), we have ρi = 0 for i = 3, 5, 6, 7, 8, 9, 10, 11, 12, 14. Hence,
(127) reduces to the following form:

ρ⊤1 P(Λ+
3 ,·) + ρ⊤2 P(Λc

3,·) + ρ⊤4 P(Λ1,·) = 0.

By (123), the row vectors in T2 are linearly independent, given that ρi = 0 for i = 1, 2, 4.
Recall the definition of Ŷ 1 in (106), (124), and (126) reduce to

ρ⊤13ẏ
1 = 0, ρ⊤13Ŷ([k],Λ+

3 ) = 0.

By the definition of K, without loss of genearity, let Kc = {1, · · · , l} and Λ
+(i)
3 = ji, i ∈ Kc.

Let ρ13 takes the partition as in (120). We know that by Assumption 5, Ŷ(k,Λ+
3 ) can be

partitioned as follows:

Y(k,Λ+
3 ) =



ŷ
(1)
j1

0 · · · 0

0 ŷ
(2)
j2
· · · 0

...
...

. . .
...

0 0 · · · ŷ
(l)
jl

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


:=

[
ȳKc

0(k−l,1)

]
.

If Assumption 3 holds, | K |= 0. Therefore, Kc = [k], and Y([k],Λ+
3 ) = ȳKc . It gives that

ρ⊤13Y([k],Λ+
3 ) = ((ρ13)1ŷ

(1)
j1

, · · · , (ρ13)kŷ
(k)
jk

) = 0. We obtain that ρ13=0. MPEC-LICQ holds.

If Assumption 4 holds, it holds that | K |= 1. ρ⊤13Y([k,Λ+
3 ]) = 0 reduces to

ρ⊤Kc ȳKc =
(
(ρ13)1ŷ

(1)
j1

, · · · , (ρ13)k−1ŷ
(k−1)
jk−1

)
= 0,

which gives ρKc = 0. Note that

ẏ1 = Ŷ([k],Λc
3∪Λ4)e|Λc

3∪Λ4| = Ŷ([k],Λ4)e|Λ4| =

[
Ŷ(K,Λ4)e|Λ4|
Ŷ(Kc,Λ4)e|Λ4|

]
:=

[
sK
ẏ1Kc

]
.

Hence, ρ⊤13ẏ
1 = 0 reduces to ρ⊤KsK = 0. By sK ̸= 0, we obtain that ρK = 0. Therefore, the

MPEC-LICQ holds at v̄.
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If both Assumptions 3 and 4 fail, by Lemma 38 (iii), MPEC-LICQ fails at v̄.
(ii) If Assumption 5 fails, we have that the submatrix T has at least two row vectors

which are linearly dependent. To show this, without loss of generality, assume that there

exists one i ∈ [k], say i = 1, with 1, 2 ∈ Λ
(1)
3 ∪ Λ

(1)
1 . Then we have that two rows in T take

the following form:[
ŷ
(1)
1 (ŷ(1))⊤ 0(1,n(2)) · · · 0(1,n(k)) ŷ

(1)
1 0 0(1,k−2)

ŷ
(1)
2 (ŷ(1))⊤ 0(1,n(2)) · · · 0(1,n(k)) ŷ

(1)
2 0 0(1,k−2)

]
.

The two row vectors are linearly dependent. Therefore, we can find two row vectors in Γ
such that they are linearly dependent. Therefore, in this case, MPEC-LICQ fails. □

Appendix E. Proofs for Section 6

Proof of Proposition 26

Note that we have

I0+ = JG1 ∪ {n+ JG2} = Λ3 ∪ Λ4 ∪ {n+ Λ4},
I+0 = JH1 ∪ {n+ JH2} = Λ2 ∪ {n+ (Λ1 ∪ Λ2 ∪ Λ+

3 )},
I00 = JGH1 ∪ {n+ JGH2} = Λ1 ∪ {n+ Λc

3}.

By the definition of weak stationary point, it holds that

η̄i = 0 for i ∈ I+0 = Λ2 ∪ {n+ (Λ1 ∪ Λ2 ∪ Λ+
3 )},

w̄i = 0 for i ∈ I0+ = Λ3 ∪ Λ4 ∪ {n+ Λ4}.

Hence, we get (59). □

In the next result, we provide some precise representations of ∇2
vvL(·) and C(·) in the

context of our bilevel hyperparameter optimization problem from the perspective of the
KKT/MPEC reformulation in (MPEC-BHO).

Proposition 40. If v̄ be a weakly stationary point v̄ of problem (MPEC-BHO) with asso-
ciated Lagrange multiplier (λ̄, µ̄, η̄, ζ̄), the following statements hold true:

(i) ∇2
vvL(v, λ̄, µ̄, η̄, ζ̄) = ∇2

vvf(v)−∆(v) with

∇2
vvf(v) =


∇2

CCf(v) ∇2
Cγf(v) ∇2

Cαf(v) 0(L1,L4) 0(L1,L5)

∇2
γCf(v) ∇2

γγf(v) ∇2
γαf(v) 0(L2,L4) 0(L2,L5)

∇2
Cαf(v)

⊤ ∇2
γαf(v)

⊤ ∇2
ααf(v) 0(L3,L4) 0(L3,L5)

0(L4,L1) 0(L4,L2) 0(L4,L3) 0(L4,L4) 0(L4,L5)

0(L5,L1) 0(L5,L2) 0(L5,L3) 0(L5,L4) 0(L5,L5)


and

∆(v) :=



0(L1,L1) 0(L1,L2) 0(L1,L3) 0(L1,L4) 0(L1,L5)

0(L2,L1)

∑
i∈Λ1∪Λ3

η̄1i∇2
γγθi(v)

∑
i∈Λ1∪Λ3

η̄1i∇2
γαθi(v) 0(L2,L4) 0(L2,L5)

0(L3,L1)

∑
i∈Λ1∪Λ3

η̄1i∇2
γαθi(v)

⊤ 0(L3,L3) 0(L3,L4) 0(L3,L5)

0(L4,L1) 0(L4,L2) 0(L4,L3) 0(L4,L4) 0(L4,L5)

0(L5,L1) 0(L5,L2) 0(L5,L3) 0(L5,L4) 0(L5,L5)

 .
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(ii) C(v̄) =
{
d :=

(
dC , dγ , (dα)⊤, (dσ)⊤, (du)⊤

)⊤ ∈ Rm : Wd = 0
}
, where

W :=



0
(Λ

η1

1 ,L1)
∇γθ

Λ
η1

1

(v̄) Q(γ̄)
(Λ

η1

1 ,·)
I
(Λ

η1

1 ,·)
P
(Λ

η1

1 ,·)
0
(Λ

η1

3 ,L1)
∇γθ

Λ
η1

3

(v̄) Q(γ̄)
(Λ

η1

3 ,·)
I
(Λ

η1

3 ,·)
P
(Λ

η1

3 ,·)
0
(Λ

ζ1

1 ,L1)
0
(Λ

ζ1

1 ,L2)
I
(Λ

ζ1

1 ,·)
0
(Λ

ζ1

1 ,L4)
0
(Λ

ζ1

1 ,L5)

0
(Λ

ζ1

2 ,L1)
0
(Λ

ζ1

2 ,L2)
I
(Λ

ζ1

2 ,·)
0
(Λ

ζ1

2 ,L4)
0
(Λ

ζ1

2 ,L5)

e
((Λc

3)
η2

,L1)
0
((Λc

3)
η2

,L2)
−I

((Λc
3)

η2
,·) 0

((Λc
3)

η2
,L4)

0
((Λc

3)
η2

,L5)

e
(Λ

η2

4 ,L1)
0
(Λ

η2

4 ,L2)
−I

(Λ
η2

4 ,·)
0
(Λ

η2

4 ,L4)
0
(Λ

η2

4 ,L5)

0
(Λ

ζ2

1 ,L1)
0
(Λ

ζ2

1 ,L2)
0
(Λ

ζ2

1 ,L3)
I
(Λ

ζ2

1 ,·)
0
(Λ

ζ2

1 ,L5)

0
(Λ

ζ2

3 ,L1)
0
(Λ

ζ2

3 ,L2)
0
(Λ

ζ2

3 ,L3)
I
(Λ

ζ2

3 ,·)
0
(Λ

ζ2

3 ,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)

0(Ig,L1) −e(Ig,L2) 0(Ig,L3) 0(Ig,L4) 0(Ig,L5)



.

Proof (i) Since v̄ is a weakly stationary, we obtain (59). We discuss the following 2 cases.
(a) If γ̄ > 0, we have λ̄ = 0. If γ̄ = 0 and λ̄ = 0, we also have λ̄ = 0. Substituting (59)

into the Lagrange function, we obtain that

L(v̄, λ̄, µ̄, η̄, ζ̄) = f(v̄) +
k∑

i=1

µ̄ihi(v̄)−
∑

i∈Λ1∪Λ3∪Λ4

η̄1iG
1
i (v̄)

−
∑

i∈Λc
3∪Λ4

η̄2iG
2
i (v̄)−

∑
i∈Λ1∪Λ2

ζ̄1i H
1
i (v̄)

−
∑

i∈Λ1∪Λ2∪Λ3

ζ̄2i H
2
i (v̄). (128)

By ∇vL(v̄, λ̄, µ̄, η̄, ζ̄) = 0, we have

0 = ∇f(v̄) +
k∑

i=1

µ̄i∇hi(v̄)−
∑

i∈Λ1∪Λ3∪Λ4

η̄1i∇G1
i (v̄)−

∑
i∈Λc

3∪Λ4

η̄2i∇G2
i (v̄)

−
∑

i∈Λ1∪Λ2

ζ̄1i∇H1
i (v̄)−

∑
i∈Λ1∪Λ2∪Λ3

ζ̄2i∇H2
i (v̄).

Denote by

ρ :=



1
−η̄1Λ1

−η̄1Λ3

−η̄1Λ4

−ζ̄1Λ1

−ζ̄1Λ2

−η̄2Λc
3

−η̄2Λ4

−ζ̄2Λ1

−ζ̄2Λ2

−ζ̄2Λ3

µ̄



.
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The above conditions can be equivalently written as

0 =



1
−η̄1Λ1

−η̄1Λ3

−η̄1Λ4

−ζ̄1Λ1

−ζ̄1Λ2

−η̄2Λc
3

−η̄2Λ4

−ζ̄2Λ1

−ζ̄2Λ2

−ζ̄2Λ3

µ̄



⊤

·



∇Cf(v̄) ∇γf(v̄) ∇αf(v̄)
⊤ 0(1,n) 0(1,k)

0(Λ1,L1) ∇γθ(v̄)Λ1 Q(γ̄)(Λ1,· ) I(Λ1,·) P(Λ1,·)
0(Λ3,L1) ∇γθ(v̄)Λ3 Q(γ̄)(Λ3,· ) I(Λ3,·) P(Λ3,·)
0(Λ4,L1) ∇γθ(v̄)Λ4 Q(γ̄)(Λ4,· ) I(Λ4,·) P(Λ4,·)
0(Λ1,L1) 0(Λ1,L2) I(Λ1,·) 0(Λ1,L4) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) I(Λ2,·) 0(Λ2,L4) 0(Λ2,L5)

e(Λc
3,L1) 0(Λc

3,L2) −I(Λc
3,·) 0(Λc

3,L4) 0(Λc
3,L5)

e(Λ4,L1) 0(Λ4,L2) −I(Λ4,·) 0(Λ4,L4) 0(Λ4,L5)

0(Λ1,L1) 0(Λ1,L2) 0(Λ1,L3) I(Λ1,·) 0(Λ1,L5)

0(Λ2,L1) 0(Λ2,L2) 0(Λ2,L3) I(Λ2,·) 0(Λ2,L5)

0(Λ3,L1) 0(Λ3,L2) 0(Λ3,L3) I(Λ3,·) 0(Λ3,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)



:=


S1

S2

S3

S4

S5

 ,

where

S1 := ∇Cf(v̄)−
(
η̄2Λc

3

)⊤
e(Λc

3,L1) −
(
η̄2Λ4

)⊤
e(Λ4,L1) = 0,

S2 := ∇γf(v̄)−
(
η̄1Λ1

)⊤∇γθ(v̄)Λ1 −
(
η̄1Λ3

)⊤∇γθ(v̄)Λ3

−
(
η̄1Λ4

)⊤∇γθ(v̄)(Λ4,·) = 0, (129)

S3 := ∇αf(v̄)
⊤ −

(
η̄1Λ1

)⊤
(Q(γ))(Λ1,·) −

(
η̄1Λ3

)⊤
(Q(γ))(Λ3,·)

−
(
η̄1Λ4

)⊤
(Q(γ))(Λ4,·) −

(
ζ̄1Λ1

)⊤ I(Λ1,·) −
(
ζ̄1Λ2

)⊤ I(Λ2,·)

+
(
η̄2Λc

3

)⊤
I(Λc

3,·) +
(
η̄2Λ4

)⊤ I(Λ4,·) + µ̄⊤Ŷ = 0, (130)

S4 := −
(
η̄1Λ1

)⊤ I(Λ1,·) −
(
η̄1Λ3

)⊤ I(Λ3,·) −
(
η̄1Λ4

)⊤ I(Λ4,·) −
(
ζ̄2Λ1

)⊤ I(Λ1,·)

−
(
ζ̄2Λ2

)⊤ I(Λ2,·) −
(
ζ̄2Λ3

)⊤ I(Λ3,·) = 0, (131)

S5 := −
(
η̄1Λ1

)⊤
P(Λ1,·) −

(
η̄1Λ3

)⊤
P(Λ3,·) −

(
η̄1Λ4

)⊤
P(Λ4,·) = 0. (132)

By (131), η̄1Λ4
= 0, w̄2

Λ2
= 0. Substituting them into the Lagrangian function in (128),

L(v, λ̄, µ̄, η̄, ζ̄) = f(v) +

k∑
i=1

µ̄ihi(v)−
∑

i∈Λ1∪Λ3

η̄1iG
1
i (v)−

∑
i∈Λc

3∪Λ4

η̄2iG
2
i (v)

−
∑

i∈Λ1∪Λ2

ζ̄1i H
1
i (v)−

∑
i∈Λ1∪Λ3

ζ̄2i H
2
i (v). (133)
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It holds that

∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄) = ∇2

vvf(v̄) +
k∑

i=1

µ̄i∇2
vvhi(v̄)−

∑
i∈Λ1∪Λ3

η̄1i∇2
vvG

1
i (v̄)

−
∑

i∈Λc
3∪Λu

η̄2i∇2
vvG

2
i (v̄)−

∑
i∈Λ1∪Λ2

ζ̄1i∇2
vvH

1
i (v̄)

−
∑

i∈Λ1∪Λ3

ζ̄2i∇2
vvH

2
i (v̄)

:= ∇2
vvf(v̄)−∆(v̄).

Since f is a function only related to C, γ, α, it holds that ∂f
∂σ = 0 and ∂f

∂u = 0. Therefore,

∇2
vvf(v̄) =


∇2

CCf(v̄) ∇2
Cγf(v̄) ∇2

Cαf(v̄) 0(L1,L4) 0(L1,L5)

∇2
γCf(v̄) ∇2

γγf(v̄) ∇2
γαf(v̄) 0(L2,L4) 0(L2,L5)

∇2
Cαf(v̄)

⊤ ∇2
γαf(v̄)

⊤ ∇2
ααf(v̄) 0(L3,L4) 0(L3,L5)

0(L4,L1) 0(L4,L2) 0(L4,L3) 0(L4,L4) 0(L4,L5)

0(L5,L1) 0(L5,L2) 0(L5,L3) 0(L5,L4) 0(L5,L5)

 .

Note that H(v), h(v) are both linear. Moreover, the (n+1)-th component to 2n-th compo-
nent in G are also linear. Therefore, we have

∆(v̄) =
∑

i∈Λ1∪Λ3

η̄1i∇2
vvG

1
i (v̄),

which reduces to the form in (i).
(b) If γ̄ = 0 and λ̄ > 0, it is easy to modify the above result, where (133) is replaced by

L(v, λ̄, µ̄, η̄, ζ̄) = f(v) +

k∑
i=1

µ̄ihi(v)−
∑

i∈Λ1∪Λ3

η̄1iG
1
i (v)−

∑
i∈Λc

3∪Λ4

η̄2iG
2
i (v)

−
∑

i∈Λ1∪Λ2

ζ̄1i H
1
i (v)−

∑
i∈Λ1∪Λ3

ζ̄2i H
2
i (v) + λ̄∇g(v).

Again, we obtain the result in (i).
(ii) If γ̄ > 0 (or γ̄ = 0 with λ̄ = 0), by Proposition 27, it holds that

supp(η̄1) = Λη1

1 ∪ Λη1

3 , supp(η̄2) = (Λc
3)

η2 ∪ Λη2
4 ,

supp(ζ̄1) = Λζ1

1 ∪ Λζ1

2 , supp(ζ̄2) = Λζ2

1 ∪ Λζ2

3 .

By the definition of C(v̄), it holds that

C(v̄) = {d ∈ Rm : ∇hi(v̄)⊤d = 0, i ∈ [k];

Gi(v̄)
⊤d = 0, ∀i ∈ supp(η̄);∇Hi(v̄)

⊤d = 0, ∀ i ∈ supp(ζ̄)}
= {d ∈ Rm : ∇hi(v̄)⊤d = 0, i ∈ [k];

∇G1
i (v̄)

⊤d = 0, ∀ i ∈ Λη1

1 ∪ Λη1

3 ;G2
i (v̄)

⊤d = 0,∀ i ∈ (Λc
3)

η2 ∪ Λη2

4 ;

∇H1
i (v̄)

⊤d = 0,∀ i ∈ Λζ1

1 ∪ Λζ1

2 ,∇H2
i (v̄)

⊤d = 0, ∀ i ∈ Λζ2

1 ∪ Λζ2

3 }.
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It gives that d ∈ C(v̄) if and only if d is the solution of linear system Wd = 0, where

W :=



0
(Λη1

1 ,L1)
∇γθ(v̄)

Λη1

1

Q(γ̄)
(Λη1

1 ,·)
I
(Λη1

1 ,·)
P
(Λη1

1 ,·)
0
(Λη1

3 ,L1)
∇γθ(v̄)

Λη1

3

Q(γ̄)
(Λη1

3 ,·)
I
(Λη1

3 ,·)
P
(Λη1

3 ,·)
0
(Λζ1

1 ,L1)
0
(Λζ1

1 ,L2)
I
(Λζ1

1 ,·)
0
(Λζ1

1 ,L4)
0
(Λζ1

1 ,L5)

0
(Λζ1

2 ,L1)
0
(Λζ1

2 ,L2)
I
(Λζ1

2 ,·)
0
(Λζ1

2 ,L4)
0
(Λζ1

2 ,L5)

e
((Λc

3)
η2 ,L1)

0
((Λc

3)
η2 ,L2)

−I
((Λc

3)
η2 ,·) 0

((Λc
3)

η2 ,L4)
0
((Λc

3)
η2 ,L5)

e
(Λη2

4 ,L1)
0
(Λη2

4 ,L2)
−I

(Λη2

4 ,·)
0
(Λη2

4 ,L4)
0
(Λη2

4 ,L5)

0
(Λζ2

1 ,L1)
0
(Λζ2

1 ,L2)
0
(Λζ2

1 ,L3)
I
(Λζ2

1 ,·)
0
(Λζ2

1 ,L5)

0
(Λζ2

3 ,L1)
0
(Λζ2

3 ,L2)
0
(Λζ2

3 ,L3)
I
(Λζ2

3 ,·)
0
(Λζ2

3 ,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)



.

If γ̄ = 0 with λ̄ > 0, then ∇gIg(v̄) should be added into the row of W , which give the
last row block in W in (ii). Overall, we obtain (ii).

Proof of Theorem 28

(i) If Λ2 ∪ Λ4 ̸= ∅, by Proposition 40 (ii), we can see that dσΛ2∪Λ4
does not appear in the

equation Wd = 0. Therefore, by Proposition 40 (ii), we can choose d with dσΛ2∪Λ4
̸= 0 but

the remaining components in d are zero. For such a vector d, we always have

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = 0

by the special structure of∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄) based on Proposition 40 (i). Hence, the MPEC-

SSOSC fails at v̄.
(ii) If Λ2 ∪ Λ4 = ∅, and Λ0 ̸= ∅, similar to the argument in (i), we can choose d with

dσΛ0 ̸= 0 but the rest of d are zero. Now we found d ̸= 0 such that

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = 0.

Therefore, MPEC-SSOSC does not hold at v̄. □

Proof of Theorem 29

First start by observing that by Assumption 6,

Λη1

1 ∪ Λζ2

1 = Λ1 and Λη1

3 ∪ Λζ2

3 = Λ3.

We do the following partition associated to the index sets Λη1

1 , Λζ2

1 , (Λ+
3 )

η1 , (Λc
3)

η1 , Λζ1

1 ,

(Λc
3)

η2 , (Λ+
3 )

ζ2 , and (Λc
3)

ζ2 . Let

Π1 := Λη1

1 \Λ
ζ2

1 , Π2 := Λη1

1 ∩ Λζ2

1 , Π3 := Λζ2

1 \Λ
η1

1 ,

Πi1 := Πi ∩ Λζ1

1 , Π̄i1 := Πi\Λζ1

1 , i = 1, 2, 3;

ϕγ1 := (Λ+
3 )

η1\(Λ+
3 )

ζ2 , ϕγ2 := (Λ+
3 )

η1 ∩ (Λ+
3 )

ζ2 , ϕγ3 := (Λ+
3 )

ζ2\(Λ+
3 )

η1 ,

Θ1 := (Λc
3)

η1\(Λc
3)

ζ2 , Θ2 := (Λc
3)

η1 ∩ (Λc
3)

ζ2 , Θ3 := (Λc
3)

ζ2\(Λc
3)

η1 ,

Θi2 := Θi ∩ (Λc
3)

η2 , Θ̄i2 := Θi\(Λc
3)

η2 , i = 1, 2, 3.
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See the following figure for the partitions of the above sets:

Figure 5: Partitions of Λ1, Λ
+
3 , and Λc

3, respectively.

We have the following relationships:

Λ1 = ∪i=1,2,3Πi, Λη1

1 = Π1 ∪Π2, Λζ2

1 = Π2 ∪Π3, Λζ1

1 = ∪i=1,2,3Πi1,

Λ+
3 = ∪i=1,2,3ϕγi, Λc

3 = ∪i=1,2,3Θi, Λη1

3 = ϕγ1 ∪ ϕγ2 ∪Θ1 ∪Θ2,

Λζ2

3 = ϕγ2 ∪ ϕγ3 ∪Θ2 ∪Θ3, (Λc
3)

η2 = ∪i=1,2,3Θi2.
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Proposition 41. Let v̄ be a weakly stationary for (MPEC-BHO) with multiplier vector
(λ̄, µ̄, η̄, w̄). With Assumption 6, W in Proposition 40 (ii) reduces to the form

W =



0(Π11,L1) ∇γθ(v̄)Π11 Q(γ̄)(Π11,·) I(Π11,·) P(Π11,·)
0(Π̄11,L1) ∇γθ(v̄)Π̄11

Q(γ̄)(Π̄11,·) I(Π̄11,·) P(Π̄11,·)
0(Π21,L1) ∇γθ(v̄)Π21 Q(γ̄)(Π21,·) I(Π21,·) P(Π21,·)
0(Π̄21,L1) ∇γθ(v̄)Π̄21

Q(γ̄)(Π̄21,·) I(Π̄21,·) P(Π̄21,·)
0(ϕγ1,L1) ∇γθ(v̄)ϕγ1 Q(γ̄)(ϕγ1,·) I(ϕγ1,·) P(ϕγ1,·)
0(ϕγ2,L1) ∇γθ(v̄)ϕγ2 Q(γ̄)(ϕγ2,·) I(ϕγ2,·) P(ϕγ2,·)
0(Θ12,L1) ∇γθ(v̄)Θ12 Q(γ̄)(Θ12,·) I(Θ12,·) P(Θ12,·)
0(Θ̄12,L1) ∇γθ(v̄)Θ̄12

Q(γ̄)(Θ̄12,·) I(Θ̄12,·) P(Θ̄12,·)
0(Θ22,L1) ∇γθ(v̄)Θ22 Q(γ̄)(Θ22,·) I(Θ22,·) P(Θ22,·)
0(Θ̄22,L1) ∇γθ(v̄)Θ̄22

Q(γ̄)(Θ̄22,·) I(Θ̄22,·) P(Θ̄22,·)
0(Π11,L1) 0(Π11,L2) I(Π11,·) 0(Π11,L4) 0(Π11,L5)

0(Π21,L1) 0(Π21,L2) I(Π21,·) 0(Π21,L4) 0(Π21,L5)

0(Π31,L1) 0(Π31,L2) I(Π31,·) 0(Π31,L4) 0(Π31,L5)

e(Θ12,L1) 0((Θ12,L2) −I(Θ12,·) 0(Θ12,L4) 0(Θ12,L5)

e(Θ22,L1) 0((Θ22,L2) −I(Θ22,·) 0(Θ22,L4) 0(Θ22,L5)

e(Θ32,L1) 0((Θ32,L2) −I(Θ32,·) 0(Θ32,L4) 0(Θ32,L5)

0(Π21,L1) 0(Π21,L2) 0(Π21,L3) I(Π21,·) 0(Π11,L5)

0(Π̄21,L1) 0(Π̄21,L2) 0(Π̄21,L3) I(Π̄21,·) 0(Π̄21,L5)

0(Π31,L1) 0(Π31,L2) 0(Π31,L3) I(Π31,·) 0(Π31,L5)

0(Π̄31,L1) 0(Π̄31,L2) 0(Π̄31,L3) I(Π̄31,·) 0(Π̄31,L5)

0(ϕγ2,L1) 0(ϕγ2,L2) 0(ϕγ2,L3) I(ϕγ2,·) 0(ϕγ2,L5)

0(ϕγ3,L1) 0(ϕγ3,L2) 0(ϕγ3,L3) I(ϕγ3,·) 0(ϕγ3,L5)

0(Θ22,L1) 0(Θ22,L2) 0(Θ22,L3) I(Θ22,·) 0(Θ22,L5)

0(Θ32,L1) 0(Θ32,L2) 0(Θ32,L3) I(Θ32,·) 0(Θ32,L5)

0(Θ̄22,L1) 0(Θ̄22,L2) 0(Θ̄22,L3) I(Θ̄22,·) 0(Θ̄22,L5)

0(Θ̄32,L1) 0(Θ̄32,L2) 0(Θ̄32,L3) I(Θ̄32,·) 0(Θ̄32,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,L3) 0(Ig ,L4) 0(Ig ,L5)



. (134)

Proof Note that in this case, W reduces to the following form

W =



0
(Λη1

1 ,L1)
∇γθ(v̄)

Λη1

1

Q(γ̄)
(Λη1

1 ,·)
I
(Λη1

1 ,·)
P
(Λη1

1 ,·)
0
(Λη1

3 ,L1)
∇γθ(v̄)

Λη1

3

Q(γ̄)
(Λη1

3 ,·)
I
(Λη1

3 ,·)
P
(Λη1

3 ,·)
0
(Λζ1

1 ,L1)
0
(Λζ1

1 ,L2)
I
(Λζ1

1 ,·)
0
(Λζ1

1 ,L4)
0
(Λζ1

1 ,L5)

e
((Λc

3)
η2 ,L1)

0
((Λc

3)
η2 ,L2)

−I
((Λc

3)
η2 ,·) 0

((Λc
3)

η2 ,L4)
0
((Λc

3)
η2 ,L5)

0
(Λζ2

1 ,L1)
0
(Λζ2

1 ,L2)
0
(Λw2

1 ,L3)
I
(Λζ2

1 ,·)
0
(Λζ2

1 ,L5)

0
(Λζ2

3 ,L1)
0
(Λζ2

3 ,L2)
0
(Λζ2

3 ,L3)
I
(Λζ2

3 ,·)
0
(Λζ2

3 ,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,L3) 0(Ig ,L4) 0(Ig ,L5)


The result is obvious by directly applying the assumption.
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Recall the definition of Ã1 and Ã2 in (64) and consider

ā1 := −(Q(γ̄)(I1,I1))
−1Q(γ̄)(I1,I3)e|I3|, ā2 := Q(γ̄)(I′,I3)e|I3| − Ã1Q(γ̄)(I1,I3)e|I3|,

b̄1 := −(Q(γ̄)(I1,I1))
−1∇γθ(v̄)I1 , b̄2 := ∇γθ(v̄)I′ − Ã1∇γθ(v̄)I1 ,

Q̄1 := −(Q(γ̄)(I1,I1))
−1Q(γ̄)(I1,I2), Q̄2 := Q(γ̄)(I′,I2) − Ã1Q(γ̄)(I1,I2),

P̄ 1 := −(Q(γ̄)(I1,I1))
−1P(I1,·), P̄ 2 := P(I′,·) − Ã1P(I1,·),

ỹ1 := Ŷ([k],I3)e|I3|−̃A2Q(γ̄)(I1,I3)e|I3|, ỹ2 := −Ã2∇γθ(v̄)I1 ,

ỹ3 := −Ã2P(I1,·), Y1 := Ŷ([k],I2) − Ã2Q(γ̄)(I1,I2).
(135)

Furthermore, let

I1 := Π̄21 ∪ ϕγ2 ∪ Θ̄22, I2 := Π̄11 ∪ ϕγ1 ∪ Θ̄12 ∪ Π̄31 ∪ ϕγ3 ∪ Θ̄32,
I3 := ∪

i=1,2,3
Θi2, I ′ := Π21 ∪Θ22.

Ī := [n]\(I1 ∪ I2 ∪ I3), I0 := Π11 ∪ Π̄11 ∪Θ12 ∪ Θ̄12 ∪ ϕγ1, Ī0 := [n]\I0.

Proposition 42. Let Λ̄ζ1

1 := I\Λζ1

1 . It holds that Λ̄ζ1

1 = I1 ∪ I2 ∪ I3.

Proof By the definition of I1, I2 and I3, it is easy to see that

I1 ∪ I2 ∪ I3 = Π̄21 ∪ ϕγ2 ∪ Θ̄22 ∪ Π̄11 ∪ ϕγ1 ∪ Θ̄12 ∪ Π̄31 ∪ ϕγ3 ∪ Θ̄32 ∪ ( ∪
i=1,2,3

Θi2)

= ( ∪
i=1,2,3

Θi) ∪ ( ∪
i=1,2,3

ϕγi) ∪ ( ∪
i=1,2,3

Π̄i1)

= Λ+
3 ∪ Λc

3 ∪ (Λ1\Λζ1

1 )

= I\Λζ1

1

= Λ̄ζ1

1 .

This concludes the proof.

Lemma 43. Let v̄ be a weakly stationary point of problem (MPEC-BHO) with (λ̄, µ̄, η̄, ζ̄)
as a corresponding Lagrange multiplier vector. Let Assumption 6 hold.

(i) If γ̄ > 0, for any d ∈ C(v̄), it holds that

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = d̄⊤V ⊤DV d̄

with

d̄ :=


dC

dγ

dαI2
du

 and V :=


1 0 0 0
0 1 0 0
ā1 b̄1 Q̄1 P̄ 1

0 0 I(I2,I2) 0

e|I3| 0 0 0

 . (136)
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Here, dαI2, d
C , dγ, and du satisfy

Md̄ = 0 with M :=

[
ā2 b̄2 Q̄2 P̄ 2

ỹ1 ỹ2 Y1 ỹ3

]
(137)

and D := D1 −D2, where

D1 :=


∇2

CCf(v̄) ∇Cγf(v̄) ∇2
Cα

Λ̄
ζ1

1

f(v̄)

∇2
γCf(v̄) ∇2

γγf(v̄) ∇2
γα

Λ̄
ζ1

1

f(v̄)

∇2
Cα

Λ̄
ζ1

1

f(v̄)⊤ ∇2
γα

Λ̄
ζ1

1

f(v̄)⊤ ∇2
α
Λ̄
ζ1

1

α
Λ̄ζ1

1

f(v̄)

 , (138)

D2 :=


0 0 0
0

∑
i∈Λ3

η̄1i∇2
γγθi(v̄)

∑
i∈Λ3

η̄1i∇2
γα

Λ̄
ζ1

1

θi(v̄)

0
∑
i∈Λ3

η̄1i∇2
γα

Λ̄
ζ1

1

θi(v̄)
⊤ 0

(Λ̄ζ1

1 ,Λ̄ζ1

1 )

 . (139)

(ii) If γ̄ = 0 and λ̄ > 0, for any d ∈ C(v̄), we have

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = d̄⊤V ⊤DV d̄ > 0, ∀d̄ (140)

with

d̄ :=

 dC

dαI1
dαI2

 and V :=


1 0 0
0 I(|I1|,|I1|) 0

0 0 I(|I2|,|I2|)
e|I3| 0 0

 . (141)

Here dαI1 , d
α
I2
, dC , du satisfy

 Q(γ̄)(I1,I3)e|I3| Q(γ̄)(I1,I1) Q(γ̄)(I1,I2) P(I1,·)
Q(γ̄)(I′,I3)e|I3| Q(γ̄)(I′,I1) Q(γ̄)(I′,I2) P(I′,·)
Ŷ([k],I3)e|I3| Ŷ([k],I1) Ŷ([k],I2) 0([k],L5)

 ·


dC

dαI1
dαI2
du

 = 0,

D :=

 ∇2
CCf(v̄) ∇2

Cα
Λ̄
ζ1

1

f(v̄)

∇2
Cα

Λ̄
ζ1

1

f(v̄)⊤ ∇2
α
Λ̄
ζ1

1

α
Λ̄
ζ1

1

f(v̄)

 .

(142)

Proof (i) Firstly, by the basic row transformations, W in Proposition 41 can be equivalently
written as the following form
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W =



0(Π11,L1) ∇γθ(v̄)Π11 Q(γ̄)(Π11,·) I(Π11,·) P(Π11,·)
0(Π̄11,L1) ∇γθ(v̄)Π̄11

Q(γ̄)(Π̄11,·) I(Π̄11,·) P(Π̄11,·)
0(Π21,L1) ∇γθ(v̄)Π21 Q(γ̄)(Π21,·) 0(Π21,L4) P(Π21,·)
0(Π̄21,L1) ∇γθv̄Π̄21

Q(γ̄)(Π̄21,·) 0(Π̄21,L4) P(Π̄21,·)
0(ϕγ1,L1) ∇γθ(v̄)ϕγ1 Q(γ̄)(ϕγ1,·) I(ϕγ1,L4) P(ϕγ1,·)
0(ϕγ2,L1) ∇γθv̄ϕγ2 Q(γ̄)(ϕγ2,·) 0(ϕγ2,L4) P(ϕγ2,·)
0(Θ12,L1) ∇γθ(v̄)Θ12 Q(γ̄)(Θ12,·) I(Θ12,L4) P(Θ12,·)
0(Θ̄12,L1) ∇γθ(v̄)Θ̄12

Q(γ̄)(Θ̄12,·) I(Θ̄12,L4) P(Θ̄12,·)
0(Θ22,L1) ∇γθ(v̄)Θ22 Q(γ̄)(Θ22,·) 0(Θ22,L4) P(Θ22,·)
0(Θ̄22,L1) ∇γθv̄Θ̄22

Q(γ̄)(Θ̄22,·) 0(Θ̄22,L4) P(Θ̄22,·)
0(Π11,L1) 0(Π11,L2) I(Π11,·) 0(Π11,L4) 0(Π11,L5)

0(Π21,L1) 0(Π21,L2) I(Π21,·) 0(Π21,L4) 0(Π21,L5)

0(Π31,L1) 0(Π31,L2) I(Π31,·) 0(Π31,L4) 0(Π31,L5)

e(Θ12,L1) 0((Θ12,L2) −I(Θ12,·) 0(Θ12,L4) 0(Θ12,L5)

e(Θ22,L1) 0((Θ22,L2) −I(Θ22,·) 0(Θ22,L4) 0(Θ22,L5)

e(Θ32,L1) 0((Θ32,L2) −I(Θ32,·) 0(Θ32,L4) 0(Θ32,L5)

0(Π21,L1) 0(Π21,L2) 0(Π21,L3) I(Π21,·) 0(Π11,L5)

0(Π̄21,L1) 0(Π̄21,L2) 0(Π̄21,L3) I(Π̄21,·) 0(Π̄21,L5)

0(Π31,L1) 0(Π31,L2) 0(Π31,L3) I(Π31,·) 0(Π31,L5)

0(Π̄31,L1) 0(Π̄31,L2) 0(Π̄31,L3) I(Π̄31,·) 0(Π̄31,L5)

0(ϕγ2,L1) 0(ϕγ2,L2) 0(ϕγ2,L3) I(ϕγ2,·) 0(ϕγ2,L5)

0(ϕγ3,L1) 0(ϕγ3,L2) 0(ϕγ3,L3) I(ϕγ3,·) 0(ϕγ3,L5)

0(Θ22,L1) 0(Θ22,L2) 0(Θ22,L3) I(Θ22,·) 0(Θ22,L5)

0(Θ32,L1) 0(Θ32,L2) 0(Θ32,L3) I(Θ32,·) 0(Θ32,L5)

0(Θ̄22,L1) 0(Θ̄22,L2) 0(Θ̄22,L3) I(Θ̄22,·) 0(Θ̄22,L5)

0(Θ̄32,L1) 0(Θ̄32,L2) 0(Θ̄32,L3) I(Θ̄32,·) 0(Θ̄32,L5)

0([k],L1) 0([k],L2) Ŷ 0([k],L4) 0([k],L5)



=



Q(γ̄)(I0,I3)e|I3| ∇γθ(v̄)I0 Q(γ̄)(I0,I1∪I2) 0(I0,I3∪Ī) I(I0,L4) P(I0,·)
Q(γ̄)(I1,I3)e|I3| ∇γθ(v̄)I1 Q(γ̄)(I1,I1∪I2) 0(I1,I3∪Ī) 0(I1,L4) P(I1,·)
Q(γ̄)(I′,I3)e|I3| ∇γθ(v̄)I′ Q(γ̄)(I′,I1∪I2) 0(I′,I3∪Ī) 0(I′,L4) P(I′,·)

0(Ī,L1) 0(Ī,L2) 0(Ī,I1∪I2) −I(Ī,I3∪Ī) 0(Ī,L4) 0(Ī,L5)

e(I3,L1) 0(I3,L2) 0(I3,I1∪I2) −I(I3,I3∪Ī) 0(I3,L4) 0(I3,L5)

0(Ī0,L1) 0(Ī0,L2) 0(Ī0,I1∪I2) 0(Ī0,I3∪Ī) I(Ī0,·) 0(Ī0,L5)

Ŷ([k],I3)e|I3| 0([k],L2) Ŷ([k],I1∪I2) 0([k],I3∪Ī) 0([k],L4) 0([k],L5)


.

By solving Wd = 0, we obtain that dα
Ī
= 0, dαI3 = −e|I3|dC , dσ

Ī0
= 0, which gives

dαΠi1
= 0 and dαΘi2

= −e|Θi2|d
C for i = 1, 2, 3, (143)

dσΠi1
= 0, dσΠ̄i1

= 0, dσϕγi
= 0, dσΘi2

= 0, and dσΘ̄i2
= 0 for i = 2, 3, (144)

dσI0 = −Q(γ̄)(I0,I3)e|I3|d
C −∇γθ(v̄)I0d

γ −Q(γ̄)(I0,I1∪I2)d
α
I1∪I2 − P(I0,·)d

u, (145)
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and

0 =

 Q(γ̄)(I1,I3)e|I3| ∇γθ(v̄)I1 Q(γ̄)(I1,I1) Q(γ̄)(I1,I2) P(I1,·)
Q(γ̄)(I′,I3)e|I3| ∇γθ(v̄)I′ Q(γ̄)(I′,I1) Q(γ̄)(I′,I2) P(I′,·)
Ŷ([k],I3)e|I3| 0([k],L2) Ŷ([k],I1) Ŷ([k],I2) 0([k],L5)

 ·


dC

dγ

dαI1
dαI2
du


Note that Q(γ̄)(I1,I1) is positive definite. Let Ã1 and Ã2 be matrices of suitable sizes such
that (64) holds. After proper basic row transformations, it holds that

 Q(γ̄)(I1,I3)e|I3| ∇γθ(v̄)I1 Q(γ̄)(I1,I1) Q(γ̄)(I1,I2) P(I1,·)
ā2 b̄2 0(I′,I1) Q̄2 P̄ 2

ỹ1 ỹ2 0([k],I1) Y1 ỹ3




dC

dγ

dαI1
dαI2
du

 = 0. (146)

Here ā2, b̄2, Q̄2, P̄ 2, ỹ1, ỹ2, Y1, and ỹ3 are defined in (66). Then we obtain that

dαI1 = ā1d
C + b̄1d

γ + Q̄1dαI2 + P̄ 1du, (147)

where dαI2 , d
C , dγ , and du satisfy the following linear system of equations:

ā2dC + b̄2dγ + Q̄2dαI2 + P̄ 2du = 0,

ỹ1dC + ỹ2dγ + Y1dαI2 + ỹ3du = 0.

(145) reduces to the following

dσI0 = z1dC + z2dγ + z3dαI2 + z4du, (148)

where

z1 := Q(γ̄)(I0,I3)e|I3| −Q(γ̄)(I0,I1)ā
1, z2 := −∇γθ(v̄)I0 −Q(γ̄)(I0,I1)b̄

1,

z3 := −Q(γ̄)(I0,I2) −Q(γ̄)(I0,I1)Q̄
1, z4 := −Ω(I0,L5) −Q(γ̄)(I0,I1)P̄

1.

Then C(v̄) can be characterized as follows

C(v̄) = {d =: (dC , dγ , dα, dσ, du) :

d satisfies (137), (143), (148), other components in d are 0}.

Therefore, we have

d =



dC

dγ

dαI1
dαI2
dαI3
dα
Ī

dσI0
dσ
Ī0

du


=



1 0 0 0
0 1 0 0
ā1 b̄1 Q̄1 P̄ 1

0 0 I(I2,I2) 0

e|I3| 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Ik×k


·


dC

dγ

dαI2
du

 .
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By the definition in (136), it is easy to verify that

V d̄ =


dC

dγ

dαI1
dαI2
dαI3

 .

Recall that ∇2
vvL(v̄, λ̄, µ̄, η̄, η̄) is 0 with respect to the block λ, and u. Therefore, we obtain

that d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, η̄)d = d̄⊤V ⊤DV d̄, where D = D1 −D2, with D1 and D2 given by

(138) and (139). By Prpopsotion 42, I1 ∪ I2 ∪ I3 = Λ̄ζ1

1 . We obtain the result in (i).
(ii) The proof is similar to that in (i) but with the fact that dγ = 0. Firstly, by basic

row transformations, W can be equivalently written as the following form

W 1 :=



0(I0,L1) 0(I0,L2) Q(γ̄)(I0,I1∪I2) Q(γ̄)(I0,I3∪Ī) I(I0,L4) P(I0,·)
0(I1,L1) 0(I1,L2) Q(γ̄)(I1,I1∪I2) Q(γ̄)(I1,I3∪Ī) 0(I1,L4) P(I1,·)
0(I′,L1) 0(I′,L2) Q(γ̄)(I′,I1∪I2) Q(γ̄)(I′,I3∪Ī) 0(I′,L4) P(I′,·)
0(Ī,L1) 0(Ī,L2) 0(Ī,I1∪I2) −I(Ī,I3∪Ī) 0(Ī,L4) 0(Ī,L5)

e(I3,L1) 0(I3,L2) 0(I3,I1∪I2) −I(I3,I3∪Ī) 0(I3,L4) 0(I3,L5)

0(Ī0,L1) 0(Ī0,L2) 0(Ī0,I1∪I2) 0(Ī0,I3∪Ī) I(Ī0,·) 0(Ī0,L5)

0([k],L1) 0([k],L2) Ŷ([k],I1∪I2) Ŷ([k],I3∪Ī) 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,I1∪I2) 0(Ig ,I3∪Ī) 0(Ig ,L4) 0(Ig ,L5)


.

By conducting basic row transformations, we obtain the following matrix

W :=



Q(γ̄)(I0,I3) 0(I0,L2) Q(γ̄)(I0,I1∪I2) 0(I0,I3∪Ī) I(I0,L4) P(I0,·)
Q(γ̄)(I1,I3)e|I3| 0(I1,L2) Q(γ̄)(I1,I1∪I2) 0(I1,I3∪Ī) 0(I1,L4) P(I1,·)
Q(γ̄)(I′,I3)e|I3| 0(I′,L2) Q(γ̄)(I′,I1∪I2) 0(I′,I3∪Ī) 0(I′,L4) P(I′,·)

0(Ī,L1) 0(Ī,L2) 0(Ī,I1∪I2) I(Ī,I3∪Ī) 0(Ī,L4) 0(Ī,L5)

e(I3,L1) 0(I3,L2) 0(I3,I1∪I2) I(I3,I3∪Ī) 0(I3,L4) 0(I3,L5)

0(Ī0,L1) 0(Ī0,L2) 0(Ī0,I1∪I2) 0(Ī0,I3∪Ī) I(Ī0,·) 0(Ī0,L5)

Ŷ([k],I3)e|I3| 0([k],L2) Ŷ([k],I1∪I2) 0([k],I3∪Ī) 0([k],L4) 0([k],L5)

0(Ig ,L1) −e(Ig ,L2) 0(Ig ,I1∪I2) 0(Ig ,I3∪Ī) 0(Ig ,L4) 0(Ig ,L5)


By solving Wd = 0, we obtain that (143), (144), dγ = 0,

dσI0 = −Q(γ̄)(I0,I3)e|I3|d
C −Q(γ̄)(I0,I1∪I2)d

α
I1∪I2 − P(I0,·)d

u

:= z̃1dC + z̃2dαI1 + z̃3dαI2 + z̃4du, (149)

and

0 =

 Q(γ̄)(I1,I3)e|I3| Q(γ̄)(I1,I1) Q(γ̄)(I1,I2) P(I1,·)
Q(γ̄)(I′,I3)e|I3| Q(γ̄)(I′,I1) Q(γ̄)(I′,I2) P(I′,·)
Ŷ([k],I3)e|I3| Ŷ([k],I1) Ŷ([k],I2) 0([k],L5)

 ·


dC

dαI1
dαI2
du

 . (150)
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Then C(v̄) can be characterized as follows

C(v̄) = {d := (dC dγ dα dσ du) :

d satisfies (150), (149), other components in d are 0}.

Therefore, we have

d =



dC

dγ

dαI1
dαI2
dαI3
dα
Ī

dσI0
dσ
Ī0

du


=



1 0 0 0
0 0 0 0
0 I(|I1|,|I1|) 0 0

0 0 I(|I2|,|I2|) 0

e|I3| 0 0 0

0 0 0 0
z̃1 z̃2 z̃3 z̃4

0 0 0 0
0 0 0 Ik×k


·


dC

dαI1
dαI2
du

 .

By the definition in (141), it is easy to verify that

V d̄ =


dC

dαI1
dαI2
dαI3

 .

Recall that ∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄) is 0 w.r.t. the blocks λ and u. Therefore, we obtain that

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = d̄⊤V ⊤D1V d̄, where with D1 given by (165). Hence, the proof.

Proposition 44. For a weakly stationary point v̄ of the (MPEC-BHO) with multiplier
vector (λ̄, µ̄, η̄, ζ̄) satisfying Λ2 ∪ Λ4 = ∅. Let Assumption 6 and Assumption 7 hold.

(i) If γ̄ > 0 satisfying | JGH1 | + | JGH2 |= 0 for any d ∈ C(v̄), the following result holds

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = d̄⊤V ⊤DV d̄, (151)

where d̄ and V are defined by

d̄ :=

 dC

dγ

du

 and V :=


1 0 0
0 1 0
ā1 b̄1 P̄ 1

e|I3| 0 0

 . (152)

Here dC , dγ , du satisfy

Md̄ = 0 with M :=

[
ā b̄ P̄
y̌1 y̌2 ỹ3

]
(153)
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and D := D1 −D2, where D1 and D2 are respectively given by

D1 :=

 ∇2
CCf(v̄) ∇2

Cγf(v̄) ∇2
CαΛ3

f(v̄)

∇2
γCf(v̄) ∇2

γγf(v̄) ∇2
γαΛ3

f(v̄)

∇2
CαΛ3

f(v̄)⊤ ∇2
γαΛ3

f(v̄)⊤ ∇2
αΛ3

αΛ3
f(v̄)

 , (154)

D2 :=


0 0 0
0

∑
i∈Λ3

η̄1i∇2
γγθi(v̄)

∑
i∈Λ3

η̄1i∇2
γαΛ3

θi(v̄)

0
∑
i∈Λ3

η̄1i∇2
γαΛ3

θi(v̄)
⊤ 0(Λ3,Λ3)

 . (155)

(ii) If γ̄ = 0 with λ̄ > 0, for any d ∈ C(v̄), the following result holds

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = d̄⊤V ⊤DV d̄,

where

d̄ =

[
dC

dα
Λ+
3

]
, V =

 1 0
0 I(|Λ+

3 |,|Λ+
3 |)

e|Λc
3| 0

 , (156)

D is given by [
∇2

CCf(v̄) ∇2
CαΛ3

f(v̄)

∇2
CαΛ3

f(v̄)⊤ ∇2
αΛ3

αΛ3
f(v̄)

]
, (157)

and dC , dα
Λ+
3

, du satisfy condition (70).

Proof If Λ2∪Λ4 = ∅, by Assumption 7, Πi = 0, ϕγi = 0, Θi = 0, i = 1, 3; Π̄21 = 0, Θ̄22 =
0, Π21 = Λ1, ϕγ2 = Λ+

3 ,Θ22 = Λc
3. By the definition of Ii, i = 1, 2, 3, Ī and I ′, we have

I1 = Λ+
3 , I2 = ∅, I3 = Λc

3, Ī = Λ1, I ′ = Λ1 ∪ Λc
3.

Hence ā1, b̄1 and P̄ 1 reduce to the following form
ā1 = −

(
Q(γ̄)(Λ+

3 ,Λ+
3 )

)−1
Q(γ̄)(Λ+

3 ,Λc
3)|Λ

c
3|,

b̄1 = −Q(γ̄)(Λ+
3 ,Λ+

3 ))
−1∇γθ(v̄)Λ+

3
,

P̄ 1 = −
(
Q(γ̄)(Λ+

3 ,Λ+
3 )

)−1
P(Λ+

3 ,·).

(158)

ā2, b̄2, P̄ 2 ỹ1, ỹ2 in (135) reduce to ā, b̄, P̄ , y̌1, y̌2 in (66), respectively If γ̄ > 0, by Lemma
43 (i), we have the results in (i).

If γ̄ = 0, by Lemma 43 (ii), note that Λ3 ∪ Λ1 = [n], the coefficient matrix in the first
equation system in (142) reduces to the following matrix Q(γ̄)(I1,I3)e|I3| Q(γ̄)(I1,I1) P(I1,·)

Q(γ̄)(I′,I3)e|I3| Q(γ̄)(I′,I1) P(I′,·)
Ŷ([k],I3)e|I3| Ŷ([k],I1) 0([k],L5)

 =

[
Q(γ̄)([n],Λc

3)
e|Λc

3| Q(γ̄)([n],Λ+
3 ) P([n],·)

Ŷ([k],Λc
3)
e|Λc

3| Ŷ([k],Λ+
3 ) 0([k],L5)

]
.

We obtain the results in (ii). This concludes the proof.
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Proof of Theorem 29

(i) By Proposition 18 and Assumption 6, it holds that Λ2 = ∅, which gives

| Λ(i)
1 ∪ Λ

(i)
2 |=| Λ

(i)
1 |≥ 2, i ∈ [k].

Therefore, | Λ1 ∪ Λc
3 |≥| Λ1 |=

∑
i∈[k] | Λ

(i)
1 |≥ 2k. On the other hand, by Proposition 44

(i), for M defined in (153), M ∈ R(k+|Λ1∪Λc
3|)×(k+2). Therefore, k+ | Λ1 ∪Λc

3 |≥ 3k > k+2,
which gives rank(M) ≤ k + 2.

Let J0 and J̄0 be defined as in (63). We can rewrite matrix M in (153) as follows

M =

 āJ0 b̄J0 P̄(J0,·)
āJ̄0 b̄J̄0 P̄(J̄0,·)
y̌1 y̌2 ỹ3

 .

Note that

P̄(J0,·) =


ŷ
(1)
j1

0 · · · 0

0 ŷ
(2)
j2
· · · 0

...
...

. . .
...

0 0 · · · ŷ
(k)
jk

 ,

implying that rank(P̄(J0,·)) = k. Let Ā1, Ā2 be defined as in (65). By conducting basic row
transformations, we obtain that (153) is equivalent to āJ0 b̄J0 P̄(J0,·)

āJ̄0 − Ā1āJ0 b̄J̄0 − Ā1b̄J0 0
y̌1 − Ā2āJ0 y̌2 − Ā2b̄J0 0

 ·
 dC

dΛ
+
3

du

 = 0.

Then we obtain that (recall M̃ defined in Assumption 9)

du = −(P̄(J0,·))
−1

(
āJ0dC + b̄J0dγ

)
, (159)

M̃

[
dC

dγ

]
= 0. (160)

If Assumption 9 holds, the solution to (160) is dC = 0, dγ = 0; hence, implying that
du = 0, dαΛc

3
= 0. Therefore, C(v̄) = {0}, and the MPEC-SSOSC holds automatically.

(ii) By Proposition 44 (ii), note that | Λ3 ∪Λ1 |= n, for the coefficient matrix defined in

(70), it is in R(k+n)×(1+k+|Λ+
3 |). Similar to the argument in (i-i), define J0 and J̄0 by (63).

We can rewrite the coefficient matrix in (70) as follows Q(γ̄)(J0,Λc
3)
e|Λc

3| Q(γ̄)(J0,Λ+
3 ) P(J0,L5)

Q(γ̄)(J̄0,Λc
3)
e|Λc

3| Q(γ̄)(J̄0,Λ+
3 ) P(J̄0,L5)

Ŷ([k],Λc
3)
e|Λc

3| Ŷ([k],Λ+
3 ) 0([k],L5)

 .
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Observe that

P(J0,L5) =


ŷ
(1)
j1

0 · · · 0

0 ŷ
(2)
j2
· · · 0

...
...

. . .
...

0 0 · · · ŷ
(k)
jk

 ,

implying that rank(P(J0,L5)) = k. Assume that there exists Ā3, such that (67) holds. By
conducting basic row transformations, (70) is equivalent to Q(γ̄)(J0,Λc

3)
e|Λc

3| Q(γ̄)
(J0,Λ+

3 )
P(J0,L5)

Q(γ̄)(J̄0,Λc
3)
e|Λc

3| − Ā3Q(γ̄)(J0,Λc
3)
e|Λc

3| Q(γ̄)
(J̄0,Λ+

3 )
− Ā3Q(γ̄)

(J0,Λ+
3 )

0

Ŷ([k],Λc
3)
e|Λc

3| Ŷ
([k],Λ+

3 )
0([k],L5)


 dC

dα
Λ+
3

du

 = 0.

Hence, we obtain that

du = −(P(J0,L5))
−1

(
Q(γ̄)(J0,Λc

3)
e|Λc

3|d
C +Q(γ̄)(J0,Λ+

3 )d
α
Λ+
3

)
, (161)

where dC and dα
Λ+
3

satisfy

M̂

[
dC

dα
Λ+
3

]
= 0. (162)

Here M̂ is defined in Assumption 10. Therefore, if Assumption 10 holds, the solution to
(162) is dC = 0, dα

Λ+
3

= 0, implying that dαΛc
3
= 0. Therefore, C(v̄) = {0}. This means that

MPEC-SSOSC holds automatically.
To prove Theorem 30, we need the following proposition.

Proposition 45. Let f(v) satisfy Assumption 11. Consider a weakly stationary point v̄ of
(MPEC-BHO) with multiplier vector (λ̄, µ̄, η̄, ζ̄) satisfying Assumptions 6 and 7.

(i) For γ̄ > 0 satisfying | JGH1 | + | JGH2 |= 0, if rank(M̃) < 2, for any d ∈ C(v̄), it
holds that

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = dγ(V̇ f )⊤Ḋf V̇ fdγ ,

where V̇ f , Ḋf are defined by (68).

(ii) For γ̄ = 0 and λ̄ > 0, if rank(M̂) <| Λ+
3 | +1, for any d ∈ C(v̄), we have

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄)d = d̂⊤(V f )⊤DfV f d̂

with d̂, V f and Df given in Assumption 13, dC , dα
Λ+
3

, du satisfying (70).

Proof (i) For γ̄ > 0, we conduct the same process as in the proof of Theorem 30 (i), one

can also obtain (159) and (160). If rank(M̃) < 2, there exists β ̸= 0 such that(
āJ̄0 − Ā1āJ0 ; ỹ1 − Ā2āJ0

)
= β

(
b̄J̄0 − Ā1b̄J0 ; ỹ2 − Ā2b̄J0

)
.

Hence, we have dC = −βdγ and equation (159) reduces to

du = z̄1dγ and dα
Λ+
3
= τdγ , (163)
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where z̄1, τ are defined by  τ := −ā1β + b̄1 + P̄ 1z̄1,

z̄1 := (P̄J0)−1(āJ0β − b̄J0).

Note that with ā1, b̄1 and P̄ 1 in (158), we obtain that the above τ takes the form in (69).
Let V be defined by

V :=


−β
1
τ

ke|Λc
3|

 . (164)

It is easy to calculate that V dγ = (dC ; dγ ; dα
Λ+
3

; dαΛc
3
). Therefore, for any d ∈ C(v̄),

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, ζ̄))d = dγV ⊤DV dγ ,

where D := D1 −D2, D1 and D2 are given by (165) and (155).
Moreover, if f(v) satisfies Assumption 11, D1 reduces to the following form

D1 =

 0 0 0(1,|Λ3|)
0 ∇2

γγf(v̄) ∇2
γαΛ3

f(v̄)

0(|Λ3|,1) ∇2
γαΛ3

f(v̄)⊤ ∇2
αΛ3

αΛ3
f(v̄)

 . (165)

It is easy to check that dγV ⊤DV dγ = dγ(V̇ f )⊤Ḋf V̇ fdγ , where V̇ f , Ḋf are defined by (68).
This gives (i).

(ii) If rank(M̂) < 1+ | Λ+
3 |, by Proposition 44 (ii), for d ∈ C(v̄), we have

d⊤∇2
vvL(v̄, λ̄, µ̄, η̄, w̄)d = d̄⊤V ⊤DV d̄,

where d̄ is given by (156), D is given by (157), and dC , dα
Λ+
3

, du satisfy (70). Moreover, if

f(v) satisfies Assumption 11, D in (157) reduces to the following form

D =

[
0 0(1,|Λ3|)

0(|Λ3|,1) ∇2
αΛ3

αΛ3
f(v̄)

]
.

By calculation, it is easy to obtain that d̄⊤V ⊤DV d̄ = d̂⊤(V f )⊤DfV f d̂ where d̂, V f and Df

are given in Assumption 13, dC , dα
Λ+
3

, du satisfy the linear system in (70).

Proof of Theorem 30

The results follow directly from Proposition 45. □
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Appendix F. Proofs for Section 7

To show Theorem 32, we need to define the following index sets for problem (NLP-tj).
Recall that r = 2n and define

IG(v) := {i ∈ [r] : Gi(v) = 0},
IH(v) := {i ∈ [r] : Hi(v) = 0},

IGH(v, tj) := {i ∈ [r] : Gi(v)Hi(v)− tj = 0}.

Proof of Theorem 32

Obviously, v̄ is feasible for (MPEC-BHO), and for all j ∈ N sufficiently large,

Ig(v
j) ⊆ Ig(v̄), IG(v

j) ⊆ I00(v̄)
⋃

I0+(v̄), IH(vj) ⊆ I00(v̄)
⋃

I+0(v̄). (166)

Moreover, we have the following relationship between different index sets. For i ∈ IG(v
j),

we have G(vj) = 0, implying that Gi(v
j)Hi(v

j)− tj < 0 and δji = 0; i.e.,

IG(v
j)
⋂

IGH(vj , tj) = ∅ and δji = 0 for all i ∈ IG(v
j). (167)

Similarly, we have

IH(vj)
⋂

IGH(vj , tj) = ∅ and δji = 0 for all i ∈ IH(vj). (168)

Since all (vj , λj , µj , γj , wj , δj) are KKT points of (NLP-tj), we have

0 = ∇f(vj) +
∑p

i=1 λ
j
igi(v

j) +
∑j

i=1 µ
j
i∇hi(vj)

−
∑r

i=1 η
j
i∇Gi(v

j)−
∑r

i=1w
j
i∇Hi(v

j)

−
∑r

i=1 δ
j
i

(
−Hi(v

j)∇Gi(v
j)−Gi(v

j)∇Hi(v
j)
) (169)

with

λj
i = 0, ∀i /∈ Ig(v

j) and λj
i ≥ 0, ∀i ∈ Ig(v

j),

ηji = 0, ∀i /∈ IG(v
j) and ηji ≥ 0, ∀i ∈ IG(v

j), (170)

ζji = 0, ∀i /∈ IH(vj) and ζji ≥ 0, ∀i ∈ IH(vj),

δji = 0, ∀i /∈ IGH(vj , tj) and δji ≥ 0, ∀i ∈ IGH(vj , tj). (171)

Respectively define δG,j and δH,j as

δG,j
i :=

{
δjiHi(v

j) i ∈ IGH(vj , tj),
0 otherwise,

and δH,j
i :=

{
δjiGi(v

j) i ∈ IGH(vj , tj),
0 otherwise.

(172)

We can rewrite (169) as follows

0 = ∇f(vj) +
∑p

i=1 λ
j
igi(v

j) +
∑k

i=1 µ
j
i∇hi(vj)−

∑r
i=1 η

j
i∇Gi(v

j)

−
∑r

i=1 ζ
j
i∇Hi(v

j) +
∑r

i=1 δ
G,j
i ∇Gi(v

j) +
∑r

i=1 δ
H,j
i ∇Hi(v

j).
(173)
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Note that the multipliers δG,j and δH,j are nonnegative too. Our next step is to prove that
the sequence {(λj , µj , ηj , wj , δG,j , δH,j)} is bounded. If we assume the contrary, we can find
a subsequence J such that

(λj , µj , ηj , ζj , δG,j , δH,j)

∥(λj , µj , ηj , ζj , δG,j , δH,j)∥
→J (λ̂, µ̂, η̂, ζ̂, δ̂

G, δ̂H) ̸= 0.

Dividing by ∥(λj , µj , ηj , ζj , δG,j , δH,j)∥ and taking this limit in equation (173) yields (note
that the functions g, h, G and H are continuously differentiable):

0 =
∑p

i=1 λ̂igi(v̄) +
∑k

i=1 µ̂∇hi(v̄)−
∑r

i=1 η̂i∇Gi(v̄)−
∑r

i=1 ŵi∇Hi(v̄)

+
∑r

i=1 δ̂
G
i ∇Gi(v̄) +

∑r
i=1 δ̂

H
i ∇Hi(v̄),

i.e., the gradients{
∇gi (v̄) : i ∈ supp(λ̂)

}
∪ {∇hi (v̄) : i ∈ supp(µ̂)}∪{

∇Gi (v̄) : i ∈ supp(η̂) ∪ supp(δ̂G)
}
∪
{
∇Hi (v̄) : i ∈ supp(ζ̂) ∪ supp(δ̂H)

} (174)

are linearly dependent, which is a contradiction to MPEC-LICQ. Here we used the fact that
IG(v

j)
⋂

IGH(vj , tj) = ∅ in (167) and IH(vj)
⋂
IGH(vj , tj) = ∅ in (168), which implies1

supp(η̂) ∩ supp(δ̂G) = ∅ and supp(ŵ) ∩ supp(δ̂H) = ∅. (175)

We also used the observations that2 supp(λ̄) ⊆ Ig(v̄) and

supp(η̂) ∪ supp(δ̂G) ⊆ I00(v̄) ∪ I0+(v̄) and supp(ζ̄) ∪ supp(δ̄H) ⊆ I00(v̄) ∪ I+0(v̄).

Consequently, the sequence {(λj , µj , ηj , ζj , δG,j , δH,j)} is bounded. Therefore, it is con-
vergent to some limit (ū, λ̄, η̂, ζ̂, δ̂G, δ̂H). In fact, convergence holds on the whole sequence

1. For contradiction, assume that there exists i0 ∈ supp(η̂) ∩ supp(δ̂G). For j sufficiently large and j ∈ J ,
it holds that ηj

i0
> 0 and δG,j

i0
> 0. By (170), we have i0 ∈ IG(v

j), i.e., Gi0(v
j) = 0. On the other hand,

by the definition of δG,j in (172), we have δji0Hi0(v
j) > 0, implying that δji0 > 0. Again by (171), we

have i0 ∈ IGH(vj), meaning that Gi0(v
j)Hi0(v

j) − tj = 0. However, this contradicts to Gi0(v
j) = 0.

Therefore, we have supp(η̄) ∩ supp(δ̄G) = ∅. Similarly, we have supp(ŵ) ∩ supp(δ̂H) = ∅.
2. First, note that for j ∈ J sufficiently large, it holds that supp(λ̂) ⊆ supp(λj) ⊆ Ig(v

j) ⊆ Ig(v̄). Therefore,
supp(λ̂) ⊆ Ig(v̄) holds. Next we show that supp(η̂) ⊆ I00(v̄) ∪ I0+(v̄). Note that for i ∈ supp(η̂), there
exists ϵ1 > 0 such that for j sufficiently large and j ∈ J , ηj

i > ϵ1. Therefore, it holds that Gi(v
j) = 0, i.e.,

i ∈ IG(v
j). By (166), it holds that supp(η̂) ⊆ I00(v̄) ∪ I0+(v̄). To show supp(δ̂G) ⊆ I00(v̄) ∪ I+0(v̄), we

will show supp(δ̂G) ⊆ I+0(v̄). Denote χk = (λj , µj , ηj , wj , δG,j , δH,j). Since { χj

∥χj∥} is bounded, we have

{ ηj

∥χj∥} and { δG,j

∥χj∥} are bounded as well. For i ∈ supp(δG), there exists ϵ2 > 0 such that for j sufficiently

large and j ∈ J ,
δ
G,j
i

∥χj∥ > ϵ2. By the definition of δG,j
i in (172), it holds that δjHi(v

j)

∥χj∥ > ϵ2. Now we

claim that for such i, Hi(v̄) > 0. Indeed, if Hi(v̄) = 0, it holds that Hi(v
k) →J 0. By the boundedness

of { δG,j

∥χk∥}, we obtain that δjHi(v
j)

∥χj∥ →K 0, which contradicts to
δ
G,j
i

∥χj∥ > ϵ2. Therefore, we obtain that

for i ∈ supp(δG), i ∈ I0+(v̄), i.e., supp(δ̄
G) ⊆ I0+(v̄). Therefore, supp(η̄) ∪ supp(δ̄G) ⊆ I00(v̄) ∪ I0+(v̄).

Similarly, we can show that supp(w̄) ∪ supp(δ̄H) ⊆ I00(v̄) ∪ I+0(v̄).
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since the existence of two different accumulation points would again result in a contradiction
to MPEC-LICQ. Due to (175), we respectively define the multipliers η̄ and ζ̄ as follows

η̄i :=


η̂i, i ∈ supp(η̂),

−δ̂Gi , i ∈ supp(δ̂G),
0, otherwise,

ζ̄i :=


ζ̂i, i ∈ supp(ζ̂),

−δ̂Hi , i ∈ supp(δ̂H),
0, otherwise.

By taking the limit in (169), we obtain that

0 = ∇f(v̄) + λ̄igi(v̄) +

p∑
i=1

λ̄igi(v̄) +

k∑
i=1

µ̄∇hi(v̄)−
r∑

i=1

η̄i∇Gi(v̄)−
r∑

i=1

ζ̄i∇Hi(v̄).

Here, λ̄ ≥ 0 and

supp(λ̄) ⊆ Ig(v
j) ⊆ Ig(v̄),

supp(η̄) = supp(η̂) ∪ supp(δ̂G) ⊆ I00(v̄) ∪ I0+(v̄),

supp(ζ̄) = supp(ζ̂) ∪ supp(δ̂H) ⊆ I00(v̄) ∪ I+0(v̄).

Consequently, we have

η̄i = 0 for all i ∈ I+0(v̄) and ζ̄i = 0 for all i ∈ I0+(v̄). (176)

That is, (v̄, λ̄, µ̄, η̄, ζ̄) is at least a weakly stationary point of (MPEC-BHO). To prove M-
stationarity, assume that it holds that an i ∈ I00(v̄) with η̄i < 0 and ζ̄i ̸= 0 (the case
η̄i ̸= 0 and w̄i < 0 can be treated in a symmetric way). The condition η̄i < 0 implies
i ∈ supp(δ̂G) ⊆ I0+(v̄) for all j sufficiently large3. We have ζ̄i = 0 by (176), which is a
contradiction. Hence, the result. □
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