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Abstract. Bilevel optimization problems are hierarchical problems with a

constraint set which is a subset of the graph of the solution set mapping of
a second optimization problem. To investigate their properties and derive so-

lution algorithms, their transformation into single-level ones is necessary. For

this, various approaches have been developed. The first and most often used
approach is to replace the lower level problem using its Karush-Kuhn-Tucker

conditions. It has been shown that this results in a nonconvex optimization

problem which is equivalent to the bilevel optimization problem if a global
optimal solution is searched for. In case of local optimal solutions this is no

longer the case: a local optimal solution of the single-level problem does not

need to be related to a local optimal solution of the bilevel optimization prob-
lem. In this article transformation approaches using different dual problems for

the lower level optimization problem are investigated. The resulting noncon-
vex single-level optimization problems are again not equivalent to the bilevel

optimization problem provided their local optimal solutions are considered.

1. Introduction

Bilevel optimization (or bilevel programming) problems are hierarchical opti-
mization problems where the feasible set of the upper level (or leader’s) problem
is constrained by the graph of the solution set mapping of the lower level (or fol-
lower’s) problem. This problem has been first formulated by H.v. Stackelberg [26]
in 1934 in the context of an economic situation. The now so-called Stackelberg
problem is a special case of the bilevel optimization problem where the sets of pos-
sible selections of both players do not depend on their opponents. About 40 years
later, this problem has been introduced to the optimization community, see [4, 13].
A recent bibliography [8] counts more than 1500 references, especially also over 65
Ph.D. thesis at universities from all over the world.

If the solution set mapping of the lower level problem does not reduce to a
(continuous) function, the problem is not well defined. Since, in the Stackelberg
game, the leader cannot influence the follower’s selection, the objective function
value of the leader’s problem is in general not uniquely defined, it can take different
values for different selections of the follower. Different ways out are discussed in
such a situation, best known are the optimistic (or strong) and the pessimistic
(or weak) approaches. The one used here is the optimistic version of the bilevel
optimization problem.

Key words and phrases. bilevel optimization; mathematical programs with complementarity
constraints; necessary optimality conditions; Lagrange dual problem; Wolfe duality; Mond-Weir
dual problem; optimal value function transformation.
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Due to the implicit nature of its constraints, the bilevel optimization problem
needs to be replaced by a single-level one. This can be done using different ap-
proaches: historically the first approach was to replace the lower level problem
using its Karush-Kuhn-Tucker (KKT) conditions. Mirrlees [18] found that this is
only possible if the lower level problem is convex. Then, the KKT conditions are
sufficient and necessary optimality conditions provided that a regularity condition
is satisfied for that problem for all possible selections of the leader. It is easy to
see that this results in an equivalent single-level problem provided that a global
optimal solution is searched for. Bilevel optimization problems are nonconvex ones
which makes the investigation of local optimal solutions important. Dempe and
Dutta investigated in [6] the relations between local optimal solutions of the bilevel
optimization problem and its KKT transformation.

The resulting single-level optimization problem is a so-called mathematical pro-
gram with complementarity (or equilibrium) constraints (MPCC). In [24], Scheel
and Scholtes have shown that the Mangasarian-Fromovitz constraint qualification
(MFCQ) is violated at all feasible solutions. This makes both the derivation of
necessary optimality conditions and the convergence proof of solution algorithms
difficult.

In relation with the derivation of solution algorithms for bilevel optimization
problems the idea of replacing the lower level problem applying Lagrange duality
has been developed, see e.g. White and Anandalingam [27]. Section 3.2 will be
devoted to this transformation in more details. We will especially also find a relation
of this transformation with the one using the optimal value function of the lower
level problem. The latter one has been shown to be fully equivalent with the bilevel
optimization problem by Outrata in [21]. We will see that the MFCQ is again
violated at all feasible points.

Wolfe [28] has suggested another dual problem for convex optimization problems
which has been applied by Li et al. [14] to bilevel optimization problems. Here it
is shown by an example that the MFCQ can be satisfied sometimes. Nevertheless
we will see in Section 3.3 that local optimal solutions of the transformed nonconvex
problem are again in general not related to a local optimal solution of the bilevel
optimization problem.

One further dual problem going back to Mond and Weir [19] has been used to
transform the bilevel optimization problem to a single-level one by Li et al. [?].
Section 3.18 will be devoted to this approach. Again, focus will be on local optimal
solutions for this nonconvex optimization problem.

2. The optimistic bilevel optimization problem

For sufficiently smooth functions f : Rn × Rm → R and g : Rn × Rm → Rp, we
consider the lower level problem

(2.1) min
y
{f(x, y) : g(x, y) ≤ 0},

its optimal value function

(2.2) ϕ(x) := min
y
{f(x, y) : g(x, y) ≤ 0} : Rn → R

and its solution set mapping

(2.3) Ψ(x) := {y : f(x, y) ≤ ϕ(x), g(x, y) ≤ 0} : Rn ⇒ Rm.
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Then, again for sufficiently smooth functions F : Rn × Rm → R and G : Rn → Rq,
the (optimistic) bilevel optimization problem

(2.4) min
x,y
{F (x, y) : G(x) ≤ 0, (x, y) ∈ gph Ψ}

can be defined, where

gph Ψ := {(x, y) : y ∈ Ψ(x)}
denotes the graph of the solution set mapping of (2.1). Problem (2.4) is also called
the upper level optimization problem.

The Mangasarian-Fromovitz constraint qualification (MFCQ) is satisfied for (2.1)
at a point (x, y) if there exists d satisfying

∀ j ∈ I(x, y) : ∇ygj(x, y)d < 0.

Here, I(x, y) := {j : gj(x, y) = 0} is the index set of active constraints.

Definition 2.1. A point-to-set (or multivalued) mapping Z : Rn ⇒ Rm is called
upper semicontinuous at x, if for each open set V with Z(x) ⊆ V there is an open
set U 3 x such that Z(x) ⊆ V for all x ∈ U.

Theorem 2.2 (Bank et al. [2]). Let x with G(x) ≤ 0 be fixed. If for problem (2.1)
the assumption (MFCQ) is satisfied at each ŷ ∈ Y (x) with Y (x) := {y : g(x, y) ≤ 0}
and Y (x) 6= ∅ is compact then, the mapping x 7→ Ψ(x) is upper semicontinuous at
x and the function x 7→ ϕ(x) is continuous at x.

If the assumptions of Theorem 2.2 are satisfied at every point x with G(x) ≤ 0
then, the graph of the mapping Ψ is compact. As a consequence of this fact, using
the famous Weierstraß’ Theorem, we derive

Corollary 2.3. Let X := {x : G(x) ≤ 0} be nonempty and compact. If the
assumptions in Theorem 2.2 are satisfied at all points x ∈ X then, problem (2.4)
has an optimal solution.

Problem (2.4) is an hierarchical, nonconvex optimization problem. For its inves-
tigation, the lower level problem needs to be replaced. This will be the topic in the
rest of the article.

3. Transformations

3.1. Use of Karush-Kuhn-Tucker conditions of the lower level problem. If
the lower level problem (2.1) is replaced using the Karush-Kuhn-Tucker conditions,
the following problem arises:

F (x, y) −→ min
x,y,u

G(x) ≤ 0

∇yf(x, y) + u>∇yg(x, y) = 0

0 ≥ g(x, y) ⊥ u ≥ 0,

(3.1)

where the last line means that gi(x, y) ≤ 0, ui ≥ 0, uigi(x, y) = 0 is satisfied for
all i = 1, 2, . . . , p. Clearly, this is possible, it the Mangasarian-Fromovitz constraint
qualification is satisfied for the lower level problem at all points (x, y) ∈ gphΨ. Prob-
lem (3.1) is a so-called mathematical program with complementarity constraints
(MPCC), see e.g. the monographs [15, 20].
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Using the unconstrained bilevel optimization problem

F (x, y) := (x− 2)2 + (y − 1)2 −→ min

s.t.: y minimizes f(x, y) := −xe−(y+1)2 − e−(y−1)
2

,
(3.2)

Mirrlees [18] has found that the global optimal solution of this problem cannot
be computed using the KKT transformation (3.1). The reason for this is that,
for equivalence between (2.4) and (3.1), the KKT conditions need to be necessary
and sufficient optimality conditions for global optima. Nonconvex optimization
problems can have local optima and even stationary points thus making the feasible
set of (3.1) larger than that of (2.4) in general. Using recent results by Mart́ınez-
Legaz [17], the convexity assumptions can be weakened.

Theorem 3.1 (Dempe, Dutta [6]). Let the lower level problem (2.1) be convex,
MFCQ be satisfied at all points (x, y) ∈ gph Ψ. Then, for each global optimal
solution (x, y) of (2.4) there exists u ∈ Λ(x, y) := {u : ∇yL(x, y, u) = 0, 0 ≤ u ⊥
g(x, y) ≤ 0} such that (x, y, u) is a global optimal solution of (3.1). Vice versa, for
each global optimal solution (x, y, u) of (3.1), the point (x, y) is a global optimal
solution of (2.4).

The following example shows that the relations between both problems are more
difficult in case of local optimal solutions.

Example 3.2 (Dempe, J. Dutta, [6]). Consider the linear lower level problem

(3.3) min
y
{−y : x+ y ≤ 1, −x+ y ≤ 1}

and the upper level problem

(3.4) min{(x− 1)2 + (y − 1)2 : (x, y) ∈ gph Ψ}

This problem has the unique optimal solution (x, y) = (0.5, 0.5) and no local optimal
solutions.

Consider the point (x0, y0) = (0, 1). Then,

Λ(x0, y0) =

 {(1, 0)} if x > 0
{(0, 1)} if x < 0

conv {(1, 0), (0, 1)} if x = 0

where convA denotes the convex hull of the set A.
Take (x0, y0, u01, u

0
2) = (0, 1, 0, 1)

u2 > 0 implies y = x+ 1⇒ x ≤ 0⇒ (x− 1)2 + (y − 1)2 = (x− 1)2 + x2 ≥ 1.
Hence, this point is a local optimal solution of the MPCC but does not correspond

to a local optimal solution of the bilevel optimization problem.

Based on results by Gauvin [10] and Robinson [23] it can be shown that the
point-to-set mapping (x, y) 7→ Λ(x, y) is upper semicontinuous at (x, y) ∈ gph Ψ
provided that (MFCQ) is satisfied at all points y ∈ Ψ(x). Let (x, y, u) be a local
minimum of (3.1) and {(xk, yk)}∞k=1 ⊂ gph Ψ converging to (x, y) ∈ gph Ψ. Then,
there exists a sequence {uk}∞k=1 with uk ∈ Λ(xk, yk) for all k converging to û ∈
Λ(x, y). Unfortunately, if Λ(x, y) does not reduce to a singleton, u 6= û implying
that (xk, yk, uk) does not converge to (x, y, u) implying that (x, y) is in general not
a local minimum of (2.4). This implies
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Theorem 3.3 (Dempe, Dutta, [6]). Let the lower level problem (2.1) be convex,
MFCQ be satisfied at all points (x, y) ∈ gph Ψ. Then, the point (x, y) is a local
optimal solution of problem (2.4) if and only if (x, y, u) is a local optimal solution
for problem (3.1) for all u ∈ Λ(x, y).

The situation in Example 3.2 that a local optimal solution of problem (3.1) is
not related to a local optimal solution of the bilevel problem (2.4) is possible in the
case when the set of Lagrange multipliers in the lower level problem (2.1) does not
reduce to a singleton which is not possible when the linear independence constraint
qualification is satisfied.

Let (x, y) ∈ grp Ψ. The linear independence constraint qualification (LICQ) is
satisfied at (x, y) if the gradients ∇ygi(x, y) : i ∈ I(x, y) are linearly independent.
The LICQ is in nonlinear differentiable optimization generically satisfied at local
optimal solutions of differentiable optimization problems, see e.g. [25]. The same
result with other words is given in

Theorem 3.4 ([11]). Consider the (sufficiently smooth) optimization problem

(3.5) min
x
{f(x) + b>x : h(x) + d1 = 0, g(x) + d2 ≤ 0}

depending on (b, d1, d2) ∈ Rn × Rq × Rp. Then, the set of perturbations (b, d1, d2)
such that LICQ fails at some feasible point of (3.5) has Lebesgue measure equal to
zero.

Using the parameterized Sard lemma [11] and linear perturbations it can be
shown that the LICQ is satisfied for almost all feasible points of the lower level
problem (2.1) provided that the functions gi do not depend on x, see Aussel et
al. [1]. Example 3.2 explains that this is not the case in general if the constraints
depend also on x even if g(x, y) = Ax+By − b.

3.2. Lagrange duality. We can also use the related Lagrange duality for the lower
level problem. Let, for u ≥ 0,

(3.6) ϕL(x, u) := min
y
{L(x, y, u)}

with L(x, y, u) = f(x, y) + u>g(x, y). The dual optimization problem is

(3.7) max
u
{ϕL(x, u) : u ≥ 0}

and we have weak duality:

Theorem 3.5. For x = x̂ let ŷ be feasible for (2.1) and û ≥ 0. Moreover, let
y 7→ f(x̂, y) and y 7→ gi(x̂, y) be convex for all i. Then,

f(x̂, ŷ) ≥ ϕL(x̂, û).

If the MFCQ is satisfied for (2.1) and x = x̂ then,

ϕ(x̂) = max
u
{ϕL(x̂, u) : u ≥ 0}

provided that ϕ(x̂) is finite.
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This makes it possible to replace (2.4) by

F (x, y)→ min
x,y,u

G(x) ≤ 0

g(x, y) ≤ 0

u ≥ 0

f(x, y) ≤ ϕL(x, u),

(3.8)

provided that the last inequality can be satisfied, i.e., there is no duality gap.

Theorem 3.6. Let the problem (2.1) be convex for fixed x and let the MFCQ be
satisfied for all feasible y . Then we have:

(1) If (x, y) is a global optimal solution of (2.4) then there is u such that (x, y, u)
is a global optimal solution of (3.8) and the optimal objective function values
coincide.

(2) Vice versa, if (x, y, u) is a global optimal solution of (3.8) then, (x, y) is a
global optimal solution of (2.4).

(3) If (x, y) is a local optimal solution of (2.4) and u ∈ Λ(x, y) then, (x, y, u)
is a local optimal solution of (3.8).

Proof. (1) If (x, y) is a global optimal solution of (2.4) then, due to strong
duality, there is u such that (x, y, u) is feasible for (3.8). If (x, y, u) would
not be globally optimal then, there exists a feasible point (x̂, ŷ, û) for (3.8)
with F (x̂, ŷ) < F (x, y) and ŷ ∈ Ψ(x̂) by weak duality. This violates global
optimality of (x, y) for (2.4).

(2) If (x, y, u) is a global optimal solution of (3.8) then, by weak duality y ∈
Ψ(x) and (x, y) is feasible for (2.4). If this point would not be globally
optimal then, there exists a feasible point (x̂, ŷ) for (2.4) and, due to our
assumptions, û ≥ 0 such that (x̂, ŷ, û) is feasible for (3.8) with F (x̂, ŷ) <
F (x, y). Since this violates our assumptions, the assertion is correct.

(3) If u ∈ Λ(x, y) = {u : ∇yL(x, y, u) = 0, 0 ≤ u ⊥ g(x, y) ≤ 0} then

f(x, y) = L(x, y, u) = ϕL(x, u)

by convexity. Consequently, (x, y, u) is feasible for (3.8). If (x, y, u) is not
locally optimal then, there exists a sequence (xk, yk, uk) of feasible points
with F (xk, yk) < F (x, y) for all k converging to (x, y, u). Then, by weak
duality, (xk, yk) is a sequence of feasible points for (2.4). This violates local
optimality of (x, y).

�

Example 3.7. Consider Example (3.2). Then,

L(x, y, u) = −y+u1(x+y−1)+u2(−x+y−1) = y(−1+u1+u2)+x(u1−u2)−u1−u2
which has a finite minimum only for u1 + u2 = 1. Then,

min
y
L(x, y, u) = x(u1 − u2)− u1 − u2.

We consider points near (x, y, u) = (0, 1, 0, 1). Then, the last inequality in (3.8)
reads

−y ≤ x(u1 − u2)− u1 − u2 or x(u1 − u2) + y = x(1− 2u2) + y ≥ 1
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by u1 + u2 = 1. Since the constraints x + y ≤ 1, −x + y ≤ 1 of the lower level
problem are also part of (3.8) we derive 1 ≤ x+ y− 2u2x ≤ 1− 2u2x. Near u2 = 1
we have u2 > 0. This implies x ≤ 0 or that (0, 1, 0, 1) is a local minimum of (3.8).

By convexity, problem (3.8) can equivalently be written as follows:

F (x, y)→ min
x,y,u

G(x) ≤ 0

g(x, y) ≤ 0

u ≥ 0

f(x, y) ≤ L(x, z, u),

∇zL(x, z, u) = 0

(3.9)

The last inequality in (3.8) implies

f(x, y) ≤ f(x, ŷ) + u>g(x, ŷ) ∀ ŷ.
For g(x, ŷ) ≤ 0 we especially obtain

f(x, y) ≤ ϕ̂(x) := min
y
{f(x, y) : g(x, y) ≤ 0}.

Note that this is correct for all Lagrange multipliers at the same time. This has
the consequence formulated above in Theorem 3.3.

The transformation using the optimal value function of the lower level problem
follows:

F (x, y) −→ min
x,y

G(x) ≤ 0

g(x, y) ≤ 0

f(x, y) ≤ ϕ̂(x).

(3.10)

Problem (3.10) is fully equivalent to (2.4) even without convexity assumption for
the lower level problem [21]. Note that we avoided the explicit use of the Lagrange
multiplier here.

Theorem 3.8 ([22, 29]). The (nonsmooth) Mangasarian-Fromovitz-constraint qual-
ification is violated at all feasible points of problem (3.10).

The proof of this theorem is not very difficult. It is well known that the
Mangasarian-Fromowitz CQ is satisfied iff there is no irregular Lagrange multi-
plier. The existence of an irregular Lagrange multiplier for (3.10) follows since each
feasible point for problem (3.10) is a global optimal solution of the problem

min
x,y
{f(x, y)− ϕ(x) : g(x, y) ≤ 0}

with optimal objective function value zero. The resulting necessary Fritz-John
optimality conditions determine an irregular Lagrange multiplier for (3.10).

3.3. Wolfe duality. Wolfe [28] has formulated a dual problem for the differentiable
convex optimization problem (2.1):

f(x, y) + u>g(x, y)→ max
y,u

∇yL(x, y, u) = 0, u ≥ 0.
(3.11)
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Again, L(x, y, u) = f(x, y) +u>g(x, y). Weak duality for the pair of problems (2.1)
and (3.11) can be shown as follows for feasible points ŷ of (2.1) and (y, u) of (3.11)
using convexity, see Wolfe [28]:

f(x, ŷ)− f(x, y) ≥ ∇yf(x, y)(ŷ − y)

= −
p∑
i=1

ui∇ygi(x, y)(ŷ − y) ≥ −
p∑
i=1

ui(gi(x, ŷ)− gi(x, y))

≥
p∑
i=1

uigi(x, y).

Without convexity this is not correct since the local optimal solution of (2.1) with
the largest objective function value is an optimal solution of (3.11).

Strong duality can be verified provided that a constraint qualification as Slater’s
condition is satisfied, cf. Wolfe [28]. Then, ŷ is an optimal solution of (2.1) if and
only if the saddle point inequalities are satisfied:

L(x, ŷ, u) ≤ L(x, ŷ, û) ≤ L(x, y, û) ∀ u ≥ 0, ∀y.
Since y 7→ L(x, y, u) is convex we have

L(x, ŷ, u)− L(x, y, u) ≥ ∇yL(x, y, u)(ŷ − y)

implying L(x, ŷ, u) = L(x, y, u) for all ŷ, y satisfying

∇yL(x, y, u) = 0.

Consequently, for all optimal solutions ŷ of (2.1) there exists û ≥ 0 with

L(x, ŷ, û) = max
u
{L(x, ŷ, u) : u ≥ 0}

≥ max
u
{L(x, ŷ, u) : ∇yL(x, ŷ, u) = 0, u ≥ 0}

= max
y,u
{L(x, y, u) : ∇yL(x, y, u) = 0, u ≥ 0}

≥ L(x, ŷ, û).

The reverse result is not correct in general.

Theorem 3.9 ([28, 5]). Let ŷ be an optimal solution of the convex problem (2.1)
and let Slater’s constraint qualification be satisfied. Then, there exists û ≥ 0 such
that (ŷ, û) is an optimal solution of problem (3.11). Conversely, let (ŷ, û) be an
optimal solution of (3.11) and assume ∇2

yf(x, ŷ) + û∇2g(x, ŷ) be regular. Then, ŷ
is an optimal solution of (2.1).

The first assertion has been shown above. For the second one: By Fritz-John
optimality conditions, there exist α ≥ 0, v, w ≤ 0 such that:

α(∇yf(x, ŷ) + û>∇yg(x, ŷ)) + v>(∇2
yf(x, ŷ) + û>∇2

yg(x, ŷ)) = 0(3.12)

αg(x, ŷ) + v>∇yg(x, ŷ)− w = 0(3.13)

w>û = 0(3.14)

(α, v, w) 6= 0(3.15)

Using the equality in (3.11), equation (3.12) gives v = 0 due to the regularity
assumption. If α = 0, then w = 0 contradicting (3.15). Equation (3.13) implies
then g(x, ŷ) = w

α ≤ 0 which means that ŷ is feasible for (2.1) and, inserting this

into (3.14), that complementarity slackness û>g(x, ŷ) = 0 is satisfied. Now, weak
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duality or (3.12) show that the Karush-Kuhn-Tucker conditions are satisfied which
are sufficient for optimality of ŷ.

Clearly, the regularity condition in the last theorem can be replaced by strong
convexity of the objective function with respect to y in (2.1), see Kanniappan [12].

This can be a bit generalized, see [14]:

Definition 3.10. A differentiable function f : Rn → R is called pseudoconvex if
∇f(x2)>(x1 − x2) ≥ 0 implies f(x1) ≥ f(x2).

Theorem 3.11 (Li et al. [14]). Assume that the function y 7→ L(x, y, u) is pseu-
doconvex for any u ≥ 0. Then, weak duality holds for the pair (2.1) and (3.11).

If (x, y, u) are feasible for (3.11) then ∇yL(x, y, u) = 0 which implies L(x, z, u) ≥
L(x, y, u) for all feasible solutions z of (2.1). Thus, by u ≥ 0,

f(x, z) ≥ f(x, z) + u>g(x, z) = L(x, z, u) ≥ L(x, y, u)

which implies the assertion.
We also have strong duality provided some constraint qualification is satisfied.

Theorem 3.12 (Strong Wolfe duality, Li et al. [14]). Assume that y 7→ L(x, y, u)
is pseudoconvex for any u ≥ 0 and that Slater’s condition is satisfied for the primal
problem (2.1), and y is an optimal solution of (2.1). Then, there exists an optimal
solution (z, u) of (3.11) such that

min
y
{f(x, y) : g(x, y) ≤ 0} = f(x, y) =

L(x, z, u) = max
y,u
{L(x, y, u) : ∇yL(x, y, u) = 0, u ≥ 0}.

Since Slater’s condition is satisfied, for an optimal solution y of (2.1) there exists
û ≥ 0 such that

∇yL(x, y, û) = 0, û ≥ 0, û>g(x, y) = 0.

Hence, (x, y, û) is feasible for (3.11). Assume that this point is not a global optimal
solution of (3.11). The, there exists a feasible point (x, y, u) such that

L(x, y, u) > L(x, y, û) = f(x, y)

which contradicts weak duality. Hence, the theorem is true.
Pseudoconvexity can be replaced by invexity [3] which essentially means that

validity of the Karush-Kuhn-Tucker conditions at some point (y, u) implies that y
is a global minimum. Also, the Slater condition can be replaced by the Guignard
constraint qualification.

Note that the optimal solution of (3.11) does not need to be an optimal solution
of (2.1) unless we have more assumptions, cf. the remarks above.

Now, replace the bilevel optimization problem by problem (3.9):

F (x, y)→ min
x,y,z,u

G(x) ≤ 0

g(x, y) ≤ 0, u ≥ 0

f(x, y) ≤ L(x, z, u)

∇zf(x, z) + u>∇zg(x, z) = 0

(3.16)
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Theorem 3.13 (Li et al. [14]). Let strong Wolfe duality be satisfied for the problems
(2.1) and (3.11). Then, a global optimal solution (x0, y0) of (2.4) is related to a
global optimal solution (x0, y0, z0, u0) of (3.9) and vice versa.

This is a reformulation of the first two assertions in Theorem 3.6.
Strong Wolfe duality cannot be satisfied if the lower level problem has local

optimal solutions which are not globally optimal since weak duality is violated in
that case. Moreover, if g(x, y) 6≡ 0, problem (3.9) is a nonconvex optimization
problem.

Example 3.14. Consider the problem in Example 3.2. Then, problem (3.9) reads
as

min{(x− 1)2 + (y − 1)2 : −y ≤ −z + u1(x+ z − 1) + u2(−x+ z − 1),

− 1 + u1 + u2 = 0, u ≥ 0, x+ y ≤ 1, −x+ y ≤ 1}
= min{(x− 1)2 + (y − 1)2 : −y ≤ (u1 − u2)x− 1, −1 + u1 + u2 = 0, u ≥ 0,

x+ y ≤ 1, −x+ y ≤ 1}

.

(3.17)

Consider the point (0, 1, 0, 1)>. In a neighborhood of this point, u1−u2 < 0. Hence,
if x > 0, we have y > 1 from the first constraint. But this violates x+ y ≤ 1. This
means that x ≤ 0 in a neighborhood of this point. Adding the constraint x ≤ 0
to the last problem, the point (0, 1, 0, 1)> is optimal. This implies that the point
(0, 1, 0, 1)> is a local optimum of problem (3.17). But this point is not a local
optimal solution in Example 3.2.

Theorem 3.15. Assume that problem (2.1) is convex and that Slater’s condition is
satisfied for the lower level problem. Let (x, y) be a local optimal solution for (2.4).
Then, (x, y, z, u) is a local optimal solution for each strong Wolfe dual solution
(z, u) to y.

Proof. That is a repetition of the third assertion in Theorem 3.6. �

For the opposite implication we need to assume that (x, y, z, u) is locally optimal
for all (z, u) which satisfy strong Wolfe duality for (2.1) at (x, y).

Lemma 3.16. Let g, h : Rm 7→ Rk be differentiable functions and

{x : g(x) ≤ 0} ⊆ {x : h(x) ≤ 0}.
If, for x0 with g(x0) ≤ 0 the Mangasarian-Fromowitz CQ is violated for {x : h(x) ≤
0} then, it is also violated for {x : g(x) ≤ 0}.

If, arguing by contradiction,

∇gi(x0)d0 < 0 for all i with gi(x
0) = 0,

then g(x0 + αd0) < 0 for sufficiently small α > 0. Existence of that direction and
the assumed inclusion would imply that h(x0 + αd0) < 0, too.

This implies the following result:

Theorem 3.17. Assume that the lower level problem (2.1) is convex, Slater’s
condition be satisfied. Let (x0, y0) be a feasible solution of problem (2.4). Let
(x0, y0, z0, u0) be feasible for (3.9). If y0 = z0 then, the Mangasarian-Fromovitz
CQ is violated.
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Proof. Since z0 = y0 we derive

f(x0, y0) ≤ L(x0, z0, u0) = L(x0, y0, u0) = f(x0, y0) + u0>g(x0, y0)

and the feasible set of (3.9) is a subset of the set

{(x, y, z, u) : g(x, y) ≤ 0, u ≥ 0, u>g(x, y) ≥ 0}.
Since the MFCQ is violated for this set, it is also violated for (3.9). �

This is no longer correct in the case that y0 6= z0. In that case, the MFCQ is
not necessarily violated at all feasible solutions, see [14] for an example.

3.4. Mond-Weir duality. In [19] another duality concept has been introduced
for the lower level problem (2.1).

Definition 3.18. A differentiable function f is called quasiconvex if

f(y)− f(x) ≤ 0⇒ ∇f(x)>(y − x) ≤ 0.

Mangasarian [16] points out that whereas some results (such as sufficiency and
converse duality) hold if, in (2.1) for fixed x, f is only pseudoconvex and g quasi-
convex in y, Wolfe duality does not hold for such functions.

Mond and Weir [19] formulated the following problem using the data of (2.1):

f(x, y)→ max
y,u

∇yf(x, y) + u>∇yg(x, y) = 0

u>g(x, y) ≥ 0

u ≥ 0.

(3.18)

Theorem 3.19. [Mond and Weir [19]] If y is feasible for (2.1), (y0, u0) is feasible
for (3.18), f is pseudoconvex and all gi are quasiconvex. Then, f(x, y) ≥ f(x, y0).

Proof. For u ≥ 0, for a feasible points (y0, u0) for (3.18) and y for (2.1), we have

u0>g(x0, y)− u0>g(x, y0) ≤ 0.

Quasiconvexity then implies

u0>∇yg(x, y0)>(y − y0) ≤ 0.

Feasibility for (3.18) then leads to

∇yf(x, y0)>(y − y0) ≥ 0.

Using pseudoconvexity we get f(x, y) ≥ f(x, y0). �

Weak duality in Theorem 3.19 implies the following: If, under the assumptions
of Theorem 3.19 we have f(x, y) ≤ f(x, y0) then, y ∈ Ψ(x) and (x, y0, u0) is a
global optimal solution of (3.18).

Theorem 3.20. [Egudo and Mond [9]] Let y be an optimal solution of (2.1) for
fixed x and let Slater’s condition be satisfied for the optimization problem (2.1)
satisfying the assumptions of Theorem 3.19. Then, there exists u such that (y, u)
is an optimal solution of (3.18) and both objective function values coincide.

Proof. Since Slater’s condition is satisfied and y is an optimal solution, the Karush-
Kuhn-Tucker conditions are satisfied guaranteeing existence of u. Then, (y, u) is
feasible for (3.18). Weak duality proves the theorem. �
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This makes it possible to replace the bilevel optimization problem by

F (x, y)→ min
x,y,z,u

G(x) ≤ 0

g(x, y) ≤ 0

u>g(x, z) ≥ 0

u ≥ 0

∇yf(x, z) + u>∇yg(x, z) = 0

f(x, y) ≤ f(x, z).

(3.19)

Theorem 3.21. Let (x, y) be a global optimal solution of (2.4) with a lower level
problem satisfying Slater’s condition and the assumptions of Theorem 3.19. Then,
there exists (z, u) such that (x, y, z, u) is a global optimal solution of (3.19) and
both optimal objective function values are the same.

Vice versa, if (x, y, z, u) is a global optimal solution of (3.19) then, (x, y) is a
global optimal solution of (2.4) with the same objective function value.

Proof. (1) Let (x, y) be a global optimal solution of (2.4). By Theorem 3.20
there exists (z, u) such that (x, y, z, u) is feasible for (3.19).

If (x, y, z, u) would not be optimal for (3.19) then, there exists a fea-
sible point (x0, y0, z0, u0) with F (x0, y0) < F (x, y). By Theorem 3.20,
f(x0, z0) = ϕ(x0) and y0 ∈ Ψ(x0) by feasibility, i.e. the point (x0, y0)
is feasible for (2.4) violating the assumption.

(2) In the opposite direction, let (x, y, z, u) be a global optimal solution of
(3.19). Then, by Theorem 3.20, the optimal objective function values of
(3.18) and (2.1) coincide. Hence, since f(x, y) = f(x, z) and g(x, y) ≤ 0
the point (x, y) is feasible for (2.4).

If (x, y) is assumed to be not globally optimal for (2.4) then there exists
a feasible point (x0, y0) with F (x0, y0) < F (x, y). By Theorem (3.20)
there is (z1, u1) such that (x0, y0, z1, u1) is feasible for (3.19) with the same
objective function value. This is a contradiction to the assumed global
optimality of (x, y, z, u).

�

Theorem 3.22. Let (x, y) be a local optimal solution of (2.4) and Slater’s condition
as well as the assumptions of Theorem 3.19 be satisfied for the lover level problem
(2.1). Then, all feasible points (x, y, z, u) of (3.19) are locally optimal solutions of
(3.19).

Proof. Arguing by contradiction, let (x, y, z, u) be not locally optimal, i.e. let there
exist a sequence (xk, yk, zk, uk) of feasible points for (3.19) converging to (x, y, z, u)
with

F (xk, yk) < F (x, y) ∀ k.

Then, due to weak Mond-Weir duality in Theorem 3.19, yk ∈ Ψ(xk) for all k
violating local optimality of (x, y) for (2.4). �

The opposite implication is not correct in general.
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Example 3.23. Consider again Example 3.2. Then, problem (3.19) reads as fol-
lows:

(x− 1)2 + (y − 1)2 → min

x+ y ≤ 1

−x+ y ≤ 1

u1, u2 ≥ 0

u1(x+ z − 1) + u2(−x+ z − 1) ≥ 0

u1 + u2 = 1

−y ≤ −z.

(3.20)

Consider the point (x, y, z, u) = (0, 1, 1, 0, 1). This point is feasible for (3.20). The
last inequality implies

z ≤ y ≤ 1 by the constraints of the lower level problem.

Hence,

u1(x+y−1)+u2(−x+y−1) = x(u1−u2)+(u1+u2)y−u1−u2 ≥ x(u1−u2)+z−1 ≥ 0

or

u1(x+ y − 1) = 0, u2(−x+ y − 1) = 0.

If u1 > 0, u2 > 0 then, y = 1, x = 0. Otherwise, since z − 1 ≤ 0 and u1 − u2 ≤ 0
near (x, y, z, u) = (0, 1, 1, 0, 1) we have x ≤ 0.

Hence, the point (x, y, z, u) = (0, 1, 1, 0, 1) is a local minimum.

4. Conclusion

Bilevel optimization problems have a constraint set which is a subset of the
graph of the solution set mapping of a second, parameter dependent optimization
problem. To investigate them, this solution set mapping needs to be substituted.
For doing that, various approaches can be found in literature as the use of the (nec-
essary and sufficient) Karush-Kuhn-Tucker conditions for the lower level problem
or certain duality relations. In the article, the Lagrange, Wolfe and Mond-Weir
dual problems are suggested for replacing the lower level problem. Assumptions
have been proposed guaranteeing that the bilevel optimization problem proves to
be equivalent to the transformed ones. The latter problems are all nonconvex ones
implying the need to investigate local optimal solutions. Local optimal solutions of
the bilevel optimization are related to local optimal solutions of its replacements.
The opposite relation is in general not correct which can be shown using the same
example as for the respective investigation with respect to the KKT transforma-
tion. The transformed problem using the Lagrange dual problem for the lower level
problem is closely related with the optimal objective function value transforma-
tion. Moreover, it reduces to the one using the Wolfe dual problem. For the KKT
transformed problem an algorithm for computing a local optimal solution of the
bilevel optimization problem can be found in Dempe and Franke [7]. The respective
investigations remain open for the other approaches.
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