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Abstract

In the literature, besides the assumption of strict complementarity, superlinear con-
vergence of implementable polynomial-time interior point algorithms using known search
directions, namely, the HKM direction, its dual or the NT direction, to solve semi-definite
programs (SDPs) is shown by (i) assuming that the given SDP is nondegenerate and mak-
ing modifications to these algorithms [10], or (ii) considering special classes of SDPs, such
as the class of linear semi-definite feasibility problems (LSDFPs) and requiring the initial
iterate to the algorithm to satisfy certain conditions [26, 27]. Otherwise, these algorithms
are not easy to implement even though they are shown to have polynomial iteration com-
plexities and superlinear convergence [14]. The conditions in [26, 27] that the initial iterate
to the algorithm is required to satisfy to have superlinear convergence when solving LS-
DFPs however are not practical. In this paper, we propose a practical initial iterate to an
implementable infeasible interior point algorithm that guarantees superlinear convergence
when the algorithm is used to solve the homogeneous feasibility model of an LSDFP.

Keywords. Linear semi-definite feasibility problem; strict feasibility; homogeneous feasi-
bility model; interior point method; superlinear convergence.

1 Introduction

Many problems in diverse areas, such as optimal control, estimation and signal processing,
communications and networks, statistics, and finance, can be modelled well as semi-definite
programs (SDPs) [5]. Finding effective and efficient ways to solve this class of problems is
hence practically important. Interior point methods (IPMs) have been proven to be successful
in solving SDPs - see for example [1, 12, 15, 33]. Research on interior point methods is active
with recent papers, such as [2, 8, 24, 25]1, proposing contemporary interior point algorithms
to solve SDPs. An important subclass of the class of SDPs is the class of linear semi-definite
feasibility problems (LSDFPs), which also have applicability in diverse areas. This class of
problems includes linear matrix inequalities (LMIs).

*Email address: chee-khian.sim@port.ac.uk
1Note that papers [2, 8, 25] consider symmetric cone problems, which generalize SDPs.
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Among different IPMs, primal-dual path following interior point algorithms are the most
successful and most widely studied. In this paper, we focus on an infeasible predictor-corrector
primal-dual path following interior point algorithm to solve the homogeneous feasibility model
[21] of an LSDFP. Polynomial iteration complexity of the algorithm to solve a primal-dual
SDP pair has been shown in [21]. In this paper, we consider the local convergence behavior of
the algorithm.

It proves not an easy task to show superlinear convergence of an implementable interior
point algorithm that has polynomial iteration complexity on an SDP with minimal assumptions
on the problem and no modifications to the algorithm. This is especially so for the HKM (and
its dual) or the NT search direction used in these algorithms, although superlinear convergence
is quickly established for the AHO search direction [11, 13], when researchers started focusing
their attention on interior point algorithms to solve SDPs. In the literature when the HKM
(and its dual) or the NT search direction is used in an interior point algorithm, such as [10],
in addition to strict complementarity assumption, nondegeneracy assumption at an optimal
solution and modifications to the algorithm, such as solving the corrector-step linear system
in an iteration repeatedly instead of only once (“narrowing” the central path neighborhood2),
need to be imposed for superlinear convergence of the interior point algorithm. In [14], without
assuming nondegeneracy, the feasible interior point algorithm considered in the paper is shown
to have polynomial iteration complexity and superlinear convergence. However, the algorithm
is not easy to implement. The idea behind the algorithm considered in [14] to have superlinear
convergence when solving an SDP is to force the centrality measure of the kth iterate to con-
verge to zero as k tends to infinity. This can be enforced in practice by for example, repeatedly
solving the corrector-step linear system in an iteration, as in [10], so as to “narrow” the neigh-
borhood of the central path in which iterates lie. Hence, either a polynomial-time interior point
algorithm has to be modified or the algorithm is hard to implement for guaranteed superlin-
ear convergence of these algorithms. Otherwise, special structure needs to be imposed on the
SDP, such as considering linear semi-definite feasibility problems (LSDFPs), for superlinear
convergence [26, 27]3. For the latter, we also require additionally that a suitable initial iterate
be chosen. However, the required initial iterate to guarantee superlinear convergence given in
[26, 27] is not practical, since the conditions required in these papers are not easy to achieve
practically. In this paper, we improve on the results in [26, 27] by proposing an initial iterate
that can be obtained in practice (by solving a primal-dual SDP pair), and using this initial
iterate to an implementable interior point algorithm on the homogeneous feasibility model of
the LSDFP, we have superlinear convergence of the algorithm. The novelty in showing this
superlinear convergence result is the nontrivial application of what is known in the literature
[26, 27] to show the result. Two key steps that are needed before we can use relevant results
in the literature [26, 27] are (i) applying the interior point algorithm on the homogeneous
feasibility model of the LSDFP, instead of the LSDFP itself; (ii) suitably reformulating the
homogeneous feasibility model of the LSDFP as a semi-definite linear complementary problem
(SDLCP).

In Section 2, we describe the homogeneous feasibility model of an LSDFP, and in Section
3, we express the homogeneous feasibility model as a semi-definite linear complementarity

2We note that this idea is used in [19] to show superlinear convergence of an interior point algorithm on
a wide class of conic optimization problems. Also, this is related to the sufficient conditions on superlinear
convergence behavior of iterates generated by the algorithm as studied in [22, 23].

3In [26, 27], the search direction used in the interior point algorithm considered is the (dual) HKM and the
NT direction respectively.
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problem (SDLCP). The latter allows us to apply results in the literature in Section 4 to show
superlinear convergence of an implementable interior point algorithm on the homogeneous
feasibility model. We conclude the paper with Section 5.

1.1 Notations

The space of symmetric n × n matrices is denoted by Sn. The cone of positive semi-definite
(resp., positive definite) symmetric matrices is denoted by Sn

+ (resp. Sn
++). The identity matrix

is denoted by In×n, where n stands for the size of the matrix. We omit the subscript when the
size of the identity matrix is clear from the context. The matrix Ei,j ∈ ℜn1×n1 is defined to
have 1/2 in its (i, j) and (j, i) entries, and zero everywhere else.

Given a matrix G ∈ ℜn1×n2 , ∥G∥F :=
√

Tr(GGT ) is the Frobenius norm of G, where Tr(·)
is the trace of a square matrix. Gij is the entry of G in the ith row and the jth column of G.
On the other hand, given a vector x ∈ ℜn, ∥x∥ refers to its Euclidean norm, and xi is its ith

entry.
Given X ∈ Sn, svec(X) is defined to be

svec(X) := (X11,
√
2X21, . . . ,

√
2Xn1, X22,

√
2X32, . . . , Xn−1,n−1,

√
2Xn,n−1, Xnn)

T ∈ ℜñ,

where ñ = n(n+ 1)/2. svec(·) sets up a one-to-one correspondence between Sn and ℜñ.
Given a linear map A : Sn → ℜñ, where ñ = n(n+1)/2, we can view A as an ñ× ñ matrix,

where its ith row is given by svec(Ai)
T , i = 1, . . . , ñ. Here, Ai is a symmetric matrix of size n

which can be easily determined from the given map A.

2 A Linear Semi-definite Feasibility Problem and its Homoge-
neous Feasibility Model

Given C,Ai ∈ Sn, i = 1, . . . ,m, and b = (b1, . . . , bm)T ∈ ℜm. A (primal) semi-definite program
(SDP) is given by

min Tr(CX)
subject to Tr(AiX) = bi, i = 1, . . . ,m,

X ∈ Sn
+.

(1)

The dual of (1) is given by

max bT y
subject to

∑m
i=1 yiAi + Y = C,

Y ∈ Sn
+

(2)

where y = (y1, . . . , ym)T ∈ ℜm. We consider the case when (1) and (2) are feasible in this
paper.

A linear semi-definite feasibility problem (LSDFP) is a primal-dual SDP pair (1)-(2) with
C = 0 or b = 0. We call the LSDFP with C = 0, the sLSDFP in this paper. Also, we assume
that bi ̸= 0, for some i = 1, . . . ,m, in the sLSDFP to avoid trivial considerations.

Remark 2.1 A (nonstrict) linear matrix inequality (LMI) has the form

l∑
j=1

zjBj +B0 ∈ Sn
+, (3)
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where zj ∈ ℜ, j = 1, . . . l, are the decision variables, and Bj ∈ Sn, j = 0, . . . , l, are given.
Solving LMIs has wide applicability in diverse areas, as discussed for example in [4]. It is easy
to see that (3) can be written as the primal SDP (1) with C = 0, for suitable Ai, bi, i = 1, . . . ,m,
where we wish to find X ∈ Sn

+ that solves this problem. Hence, by solving the primal SDP (1)
with C = 0, we are able to solve (3)4 .

We impose the following assumptions on the sLSDFP throughout this paper:

Assumption 2.1 (a) There exists (y, Y ) ∈ ℜm × Sn
++ that is feasible to the dual SDP (2)

with C = 0. We call the dual SDP (2) with C = 0, the sDSDP from now onwards.

(b) A1, . . . , Am are linearly independent.

Assumption 2.1(b) is without loss of generality. On the other hand, Assumption 2.1(a) ensures
that the duality gap between the primal SDP (1) and the dual SDP (2) is zero - see for example
[5].

Remark 2.2 We can find (y, Y ) ∈ ℜm × Sn
++ in Assumption 2.1(a) by solving the following

primal-dual SDP pair with a primal-dual path following interior point algorithm5:

min 0
subject to Tr(AiX) = 0, i = 1, . . . ,m,

X ∈ Sn
+,

max 0
subject to

∑m
i=1 yiAi + Y = 0,

Y ∈ Sn
+.

From [27] (see also [23, 26]), we have polynomial iteration complexity and superlinear conver-
gence of an infeasible primal-dual path following interior point algorithm on the above primal-
dual SDP pair to obtain its solution. Hence, we are able to get a strictly feasible solution to
the sDSDP efficiently and fast. Extra computational time is certainly needed to generate this
stricly feasible solution to the sDSDP. Whether it is worth the computational effort for this
when solving practical problems that can be formulated as sLSDFPs depends on the importance
to obtain an accurate solution to the given problem fast.

In this paper, we apply an infeasible interior point algorithm using the (dual) HKM search
direction or the NT search direction to solve the homogeneous feasibility model of the sLSDFP.
Since the algorithm is an interior point algorithm, the initial iterate (X0, y0, Y0) to the algorithm
needs to satisfy X0, Y0 ∈ Sn

++. To prove superlinear convergence of the algorithm on the
homogeneous feasibility model of the sLSDFP, we further require the initial iterate (X0, y0, Y0)
to have (y0, Y0) feasible to the sDSDP. Although this is an additional requirement on the initial
iterate, it can be satisfied in practice, as discussed in Remark 2.2. This superlinear convergence
result improves on what is known in the literature [26, 27], where the initial iterate, (X0, y0, Y0),
is required to satisfy impractical conditions for superlinear convergence.

4It is known that implementable interior point algorithms with polynomial iteration complexities can be
used to solve LMIs [4, 5], but to the best of our knowledge, it is unknown whether these algorithms can solve
(nonstrict) LMIs with proven good local convergence behavior, which we show in this paper.

5In fact, by applying the primal-dual path following interior point algorithm on the primal-dual SDP pair,
we will know whether Assumption 2.1(a) holds by checking the solution the algorithm converges to.
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We now introduce the homogeneous feasibility model of the primal-dual SDP pair (1)-(2),
which first appeared in [21]. We consider the general setting when C is not required to be zero
when describing the model. The model is given by the following homogeneous system:

Tr(AiX) = biτ, i = 1, . . . ,m, (4)∑m
i=1 yiAi + Y = τC, (5)

κ = bT y − Tr(CX), (6)

X ∈ Sn
+, y ∈ ℜm, Y ∈ Sn

+, τ ≥ 0, κ ≥ 0. (7)

The model has been incorporated in the software package SeDuMi, according to [7], to solve
SDPs, and also in the commercial software package MOSEK, according to [6] (see also [3]), to
solve conic optimization problems, which include SDPs.

Observe that (4)-(6) implies that

Tr(XY ) + τκ = 0, (8)

from which we obtain, using (7),

XY = 0,

τκ = 0.

Furthermore, observe that a solution to the homogeneous system is readily available and
is given by (X, y, Y, τ, κ) = (0, 0, 0, 0, 0). However, we cannot derive optimal solutions to (1)
and (2) from this. If there exists a solution (X∗, y∗, Y ∗, τ∗, κ∗) to (4)-(7) such that κ∗ = 0
and τ∗ > 0, then (X∗/τ∗, y∗/τ∗, Y ∗/τ∗) is an optimal solution to the primal-dual SDP pair
(1)-(2) with zero duality gap. Conversely, if (X∗, y∗, Y ∗) is an optimal solution to the primal-
dual SDP pair (1)-(2) with zero duality gap, then (X∗, y∗, Y ∗, 1, 0) solves the system (4)-(7).
Interior point algorithms when applied to the homogeneous feasibility model can be used to find
optimal solutions to the primal-dual SDP pair (1)-(2) by finding a solution (X∗, y∗, Y ∗, τ∗, κ∗)
to (4)-(7) such that κ∗ = 0 and τ∗ > 0. Such an interior point algorithm is discussed in [21],
which is also given in Section 4 below where it is specialized to the case when C = 0. These
interior point algorithms necessarily have to be of the infeasible type in that the initial iterate
and subsequent iterates generated by the algorithm do not always satisfy (4)-(6). This is so
because if an iterate (Xk, yk, Yk, τk, κk) ∈ Sn

++ × ℜm × Sn
++ × ℜ++ × ℜ++ for some k ≥ 0

satisfies (4)-(6), then (8) holds, which is impossible since Xk, Yk ∈ Sn
++ and τk, κk > 0.

Remark 2.3 When C = 0 in (4)-(7), they are given by:

Tr(AiX) = biτ, i = 1, . . . ,m, (9)∑m
i=1 yiAi + Y = 0, (10)

κ = bT y, (11)

X ∈ Sn
+, y ∈ ℜm, Y ∈ Sn

+, τ ≥ 0, κ ≥ 0. (12)

3 Homogeneous Feasibility Model as a Semi-definite Linear
Complementarity Problem

Recall that a semi-definite linear complementarity problem (SDLCP), introduced in [12], is
given by:

Â(X̂) + B̂(Ŷ ) = q, (13)
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X̂Ŷ = 0, (14)

X̂, Ŷ ∈ Sn1
+ , (15)

where Â, B̂ : Sn1 → ℜñ1 are linear operators, q ∈ ℜñ1 , and ñ1 = n1(n1 + 1)/2.
We now proceed to express the homogeneous feasibility model (9)-(12) as an SDLCP.
We can write (9) as  svec(A1)

T −b1
...

...
svec(Am)T −bm

[
svec(X)

τ

]
= 0. (16)

On the other hand, combining (10) and (11) into one equation, we obtain[
−b1 . . . −bm

svec(A1) . . . svec(Am)

]
y +

[
κ

svec(Y )

]
= 0. (17)

Let us now rewrite (16) and (17) in a more compact form. Let

A :=

 svec(A1)
T

...
svec(Am)T

 ∈ ℜm×ñ,

and recall that b = (b1, . . . , bm)T . Then, (16) and (17) can be written as

[A − b]

[
svec(X)

τ

]
= 0 (18)

and [
−bT

AT

]
y +

[
κ

svec(Y )

]
= 0 (19)

respectively.
Let B1 ∈ Sn and d1 ∈ ℜ, d1 ̸= 0, such that[

d1
svec(B1)

]
⊥

{[
−b1

svec(A1)

]
, . . . ,

[
−bm

svec(Am)

]}
.

Since d1 ̸= 0 and bi ̸= 0 for some i = 1, . . . ,m, B1 is necessarily nonzero6.
Furthermore, let the following set of linearly independent vectors in ℜñ

{svec(B2), . . . , svec(Bñ+1−m)}

spans the orthogonal subspace to the space spanned by

{svec(A1), . . . , svec(Am)} ,

where ñ = n(n+ 1)/2.

6We further require B1 to satisfy a more restrictive condition as stated in the appendix.
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Remark 3.1 We have{[
−b1

svec(A1)

]
, . . . ,

[
−bm

svec(Am)

]
,

[
d1

svec(B1)

]
,

[
0

svec(B2)

]
, . . . ,

[
0

svec(Bñ+1−m)

]}
spans ℜñ+1, with elements in{[

−b1
svec(A1)

]
, . . . ,

[
−bm

svec(Am)

]}
orthogonal to elements in{[

d1
svec(B1)

]
,

[
0

svec(B2)

]
, . . . ,

[
0

svec(Bñ+1−m)

]}
.

Let

B :=


svec(B1)

T

svec(B2)
T

...
svec(Bñ+1−m)T

 ∈ ℜ(ñ+1−m)×ñ, d :=


d1
0
...
0

 ∈ ℜñ+1−m. (20)

Then, (19) holds if and only if

[d B]
[

κ
svec(Y )

]
= 0 (21)

since

[d B]
[
−bT

AT

]
= 0.

Remark 3.2 Note that for (y, Y ) feasible to the sDSDP, we have the entries on the left-hand
side of (21) are equal to zero, except possibly the first entry. This follows from the way d is
constructed, and that for such (y, Y ), the left-hand side of (17) (or (19)) has all its entries
equal to zero, except possibly the first entry. By choosing B1 appropriately7, we can then apply
a result in the literature, namely, Theorem 5.1 in [26], to show superlinear convergence of the
interior point algorithm considered in this paper on the homogeneous feasibility model of the
sLSDFP. This is possible when the initial iterate to the algorithm is chosen from a strictly
feasible solution to the sDSDP.

The above development implies that (9)-(11) can be rewritten as

[
A −b 0 0
0 0 B d

]
svec(X)

τ
svec(Y )

κ

 = 0. (22)

7Details are provided in the appendix.
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We have (22) together with

X ∈ Sn
+, Y ∈ Sn

+, τ ≥ 0, κ ≥ 0, (23)

is another way the homogeneous feasibility model of the sLSDFP can be represented.
It is easy to convince ourselves that (22), (23) is also a representation of the homogeneous

feasibility model of the sLSDFP, just like (9)-(12).
We are now ready to express the homogeneous feasibility model of the sLSDFP as SDLCP

(13)-(15) by letting n1 = n+ 1, q = 0, and Â, B̂ such that

(Â(X̂))i := Tr

([
Ai 0
0 −bi

]
X̂

)
, i = 1, . . . ,m,

(Â(X̂))i := Tr(Ei−m,n+1X̂), i = m+ 1, . . . ,m+ n,

(Â(X̂))i := 0, i = m+ n+ 1, . . . , ñ1,

(24)

and

(B̂(Ŷ ))j := 0, j = 1, . . . ,m+ n,

(B̂(Ŷ ))j := Tr

([
Bj−(m+n) 0

0 dj−(m+n)

]
Ŷ

)
, j = m+ n+ 1, . . . , ñ1,

(25)

for X̂, Ŷ ∈ Sn1 .
We call this SDLCP, the sSDLCP from now onwards.

Remark 3.3 Note that the above SDLCP representation of the homogeneous feasibility model
has the structure of an LSDFP. Recall that an LSDFP written as the SDLCP (13)-(15) is such
that in (13), (Â(X̂))i = 0 for i = m1 + 1, . . . , ñ1, (B̂(Ŷ ))j = 0 for j = 1, . . . ,m1, and qi = 0
for i = 1, . . . ,m1 or qi = 0 for i = m1 + 1, . . . , ñ1. Here, q = (q1, . . . , qñ1)

T . From (24), (25),
we see that for our SDLCP representation, it has this structure with m1 = m + n and q = 0.
Having q = 0, in particular, qi = 0 for i = 1, . . . ,m1, is the property satisfied by our SDLCP
representation, sSDLCP, that does not hold for the sLSDFP. In fact, having this property is
the key that allows us to apply results in the literature, namely [26], to show the main result
(Theorem 4.1) in this paper on superlinear convergence.

The following proposition relates a solution of the homogeneous feasibility model of the sLS-
DFP to that of its SDLCP representation, sSDLCP:

Proposition 3.1 We have if (X,Y, τ, κ) satisfies (22), (23), then

X̂ =

[
X 0
0 τ

]
, Ŷ =

[
Y ∗
∗ κ

]
, (26)

where the “∗” entries in Ŷ are such that Ŷ ∈ Sn1
+ , satisfies sSDLCP. On the other hand, if

(X̂, Ŷ ) satisfies sSDLCP, then X̂, Ŷ are given by (26), and (X,Y, τ, κ) satisfies (22), (23).

Proof: The proposition is clear based on how Â and B̂ are defined in (24) and (25) respectively.

The following assumptions are imposed on the SDLCP (13)-(15), which we show in Proposition
3.2 to hold for the SDLCP representation, sSDLCP, of the homogeneous feasibility model of
the sLSDFP.
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Assumption 3.1 (a) System (13)-(15) is monotone. That is, Â(X̂)+ B̂(Ŷ ) = 0 for X̂, Ŷ ∈
Sn1 ⇒ Tr(X̂Ŷ ) ≥ 0.

(b) There exists at least one solution to SDLCP (13)-(15).

(c) {Â(X̂) + B̂(Ŷ ) ; X̂, Ŷ ∈ Sn1} = ℜñ1.

When the SDLCP (13)-(15) is studied in some papers in the literature, instead of Assumption
3.1(b), the following assumption is imposed:

Assumption 3.2 There exist X̂, Ŷ ∈ Sn1
++ such that Â(X̂) + B̂(Ŷ ) = q.

Assumptions 3.1(a), (c) and 3.2 are imposed in [12] where the paper studies feasible interior
point algorithms on the SDLCP (13)-(15), while [10, 26] assume Assumption 3.1 in the study
of infeasible interior point algorithms on the SDLCP (13)-(15). In the study of infeasible
interior point algorithms on the SDLCP (13)-(15), it is not necessary to impose Assumption
3.2. A reason is that we do not need a strictly feasible initial iterate to the algorithm. To solve
the primal-dual SDP pair (1)-(2) by applying an interior point algorithm on its homogeneous
feasibility model (4)-(7), the algorithm is necessarily infeasible as discussed near the end of
Section 2. When we express the homogeneous feasibility model as an SDLCP, the interior point
algorithm that is applied to the homogeneous feasibility model can be equivalently applied to
the corresponding SDLCP, and by necessity, the algorithm on the SDLCP is infeasible just
like that for the homogeneous feasibility model. Therefore, having Assumption 3.2 imposed
on the SDLCP is not suitable and in fact can never hold in our case as there cannot exist
an (X,Y ) ∈ Sn

++ × Sn
++ such that (13) holds for the SDLCP obtained from the homogeneous

feasibility model. We therefore have Assumption 3.1(b) in its place. In the context when
the primal-dual SDP pair (1)-(2) has C = 0, we see in Proposition 3.2 below that when the
sLSDFP satisfies Assumption 2.1, the SDLCP representation, sSDLCP, of the homogeneous
feasibility model (9)-(12) satisfies Assumption 3.1.

Proposition 3.2 We have the sSDLCP satisfies Assumption 3.1 when the the sLSDFP sat-
isfies Assumption 2.1.

Proof: We first make two observations. Firstly, if (X,Y, τ, κ) satisfies (22), then Tr(XY ) +
τκ = 0, by Remark 3.1. Secondly, the matrix on the left-hand side of (22) has full row rank by
Assumption 2.1(b), {svec(B2), . . . , svec(Bñ+1−m)} linearly independent, and [svec(B1)

T d1]
T

linearly independent from {[svec(Bi)
T 0]T ; i = 2, . . . , ñ+ 1−m}.

Given the sSDLCP. Suppose

Â(X̂) + B̂(Ŷ ) = 0

for some (X̂, Ŷ ) ∈ Sn1 × Sn1 . Then X̂ and Ŷ are given by

X̂ =

[
X 0
0 τ

]
, Ŷ =

[
Y ∗
∗ κ

]
,

where (X,Y, τ, κ) satisfies (22). Hence, by the first observation above, we have Tr(X̂Ŷ ) =
Tr(XY )+τκ = 0. Therefore, Assumption 3.1(a) holds, since Â(X̂)+ B̂(Ŷ ) = 0 for X̂, Ŷ ∈ Sn1

implies that Tr(X̂Ŷ ) = 0, as argued above. Furthermore, Assumption 3.1(b) holds since a
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solution to the given sSDLCP is X̂ = 0, Ŷ = 0. Finally, the second observation above means
that the matrix [

A −b 0 0
0 0 B d

]
has full row rank. This implies that the matrix (Â B̂), where Â and B̂ are defined by (24) and
(25) respectively, has full row rank, and hence Assumption 3.1(c) holds as well.

4 An Infeasible Interior Point Algorithm on the Homogeneous
Feasibility Model

We describe in this section an infeasible path-following interior point algorithm, Algorithm 4.1,
on the homogeneous feasibility model (9)-(12) (or (22), (23)). It generates iterates that follow
an infeasible central path in a (narrow) neighborhood. This algorithm is a predictor-corrector
type algorithm on the homogeneous feasibility model, and is first considered in [21].

Consider the following (narrow) neighborhood of the central path:

N (β, µ) := {(X, y, Y, τ, κ) ∈ Sn
++ ×ℜm × Sn

++ ×ℜ++ ×ℜ++ ;

(∥Y 1/2XY 1/2 − µI∥2F + (τκ− µ)2)1/2 ≤ βµ, µ = (Tr(XY ) + τκ)/(n+ 1)}.

In Algorithm 4.1, which is described below, iterates always stay within a neighborhood of
the central path. We consider the dual Helmberg-Kojima-Monteiro (HKM) search direction in
the algorithm, even though our results also hold for the Nesterov-Todd (NT) search direction
- see Remark 4.3. Among different search directions used in interior point algorithms on SDL-
CPs/SDPs, the Alizadeh-Haeberly-Overton (AHO) [1], Helmberg-Kojima-Monteiro (HKM)
[9, 12, 15] and Nesterov-Todd (NT) [17, 18] search directions are better known, with the latter
two being implemented in SDP solvers, such as SeDuMi [29] and SDPT3 [30]. It is worth
noting that the HKM direction has also been implemented in the SDPA package to solve SDPs
[31, 32].

Before describing the algorithm, let us consider the following system of equations for
(∆X,∆y,∆Y,∆τ,∆κ) ∈ Sn × ℜm × Sn × ℜ × ℜ which plays an important role in the al-
gorithm:

Y 1/2(X∆Y +∆XY )Y −1/2 + Y −1/2(∆Y X + Y∆X)Y 1/2 = 2(σµI − Y 1/2XY 1/2), (27)

κ∆τ + τ∆κ = σµ− τκ, (28)

Tr(Ai∆X)− bi∆τ = −ri, i = 1, . . . ,m, (29)∑m
i=1∆yiAi +∆Y = −s, (30)

∆κ− bT∆y = −γ, (31)

where µ = (Tr(XY )+τκ)/(n+1). Note that (27) and (28) arise upon linearizing the perturbed
equations to XY = 0 and τκ = 0 when we use the dual HKM search direction. Furthemore,
it can be shown that in Algorithm 4.1, (∆X,∆y,∆Y,∆τ,∆κ) in (27)-(31) is always uniquely
determined - see for example [21].

The infeasible predictor-corrector path-following interior point algorithm on the homoge-
neous feasibility model (9) - (12) is described as follows:
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Algorithm 4.1 (See Algorithm 5.1 of [21]) Given ϵ > 0, and β1 < β2 with β2
2/(2(1−β2)

2) ≤
β1 < β2 < β2/(1−β2) < 1. Choose (X0, y0, Y0, τ0, κ0) ∈ N (β1, µ0) with (n+1)µ0 = Tr(X0Y0)+
τ0κ0. For k = 0, 1, . . ., perform (a1) through (a5):

(a1) Set X = Xk, y = yk, Y = Yk, τ = τk, κ = κk, and define

ri := Tr(AiX)− biτ, i = 1, . . . ,m,

s :=
m∑
i=1

yiAi + Y,

γ := κ− bT y.

(a2) If max{(Tr(XY ) + τκ)/τ2, |r1/τ |, . . . , |rm/τ |, ∥s/τ∥} ≤ ϵ, then report (X/τ, y/τ, Y/τ)
as an approximate solution to the sLSDFP, and terminate. If τ is sufficiently small,
terminate with no optimal solutions to the sLSDFP.

(a3) [Predictor Step] Find the solution (∆Xp,∆yp,∆Yp,∆τp,∆κp) of the linear system
(27)-(31), with σ = 0, ri = ri, i = 1, . . . ,m, s = s and γ = γ.
Define

X = X + α∆Xp, y = y + α∆yp, Y = Y + α∆Yp, τ = τ + α∆τp, κ = κ+ α∆κp,

where the step length α satisfies

α1 ≤ α ≤ α2. (32)

Here,

α1 =
2√

1 + 4δ/(β2 − β1) + 1
, (33)

δ =
1

µ

∥∥∥∥∥
[
Y 0
0 κ

]1/2 [
∆Xp 0
0 ∆τp

] [
∆Yp 0
0 ∆κp

] [
Y 0
0 κ

]−1/2
∥∥∥∥∥
F

, (34)

where

µ =
Tr(XY ) + τκ

n+ 1
,

and

α2 = max{α̃ ∈ [0, 1] ; (X + α∆Xp, y + α∆yp, Y + α∆Yp, τ + α∆τp, κ+ α∆κp)

∈ N (β2, (1− α)µ) ∀ α ∈ [0, α̃]}.

(a4) [Corrector Step] Find the solution (∆Xc,∆yc,∆Yc,∆τc,∆κc) of the linear system
(27)-(31), with X = X, y = y, Y = Y , τ = τ , κ = κ, σ = 1−α, ri = 0, i = 1, . . . ,m, s = 0
and γ = 0. Set

X+ = X +∆Xc, y+ = y +∆yc, Y+ = Y +∆Yc, τ+ = τ +∆τc, κ+ = κ+∆κc,
µ+ = (1− α)µ.
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(a5) Set

Xk+1 = X+, yk+1 = y+, Yk+1 = Y+, τk+1 = τ+, κk+1 = κ+,
µk+1 = µ+.

Polynomial iteration complexity for a general version of Algorithm 4.1 used to solve (4)-(7) is
shown in [21] where the HKM direction is considered. The result there also holds for the dual
HKM direction. Hence, Algorithm 4.1 has polynomial iteration complexity when it is used to
solve (9)-(12). Furthermore, we remark that Algorithm 4.1 can easily be adapted to solve the
sLSDFP instead of its homogeneous feasibility model. An advantage of applying the algorithm
to its homogeneous feasibility model is that we have guaranteed superlinear convergence of
iterates generated by the algorithm, as shown in Theorem 4.1.

Remark 4.1 For all k ≥ 0, we have

(Xk, yk, Yk, τk, κk) ∈ N (β1, µk).

Remark 4.1 holds by [21] - see also [23, 26].

Remark 4.2 Throughout this paper, we consider Algorithm 4.1 with initial iterate (X0, y0, Y0,
τ0, κ0) ∈ N (β1, µ0) such that (y0, Y0) ∈ ℜm × Sn

++ is feasible to the sDSDP. Therefore, in the
algorithm, we have

∑m
i=1(y0)iAi + Y0 = 0 while Tr(AiX0) − biτ0, i = 1, . . . ,m, and κ0 − bT y0

are generally nonzero.

Algorithm 4.1 can be written in an equivalent way as Algorithm 4.2, which we present below.
We use Algorithm 4.2 to solve the sSDLCP. Before describing the algorithm, we first define
an analogous (narrow) neighborhood of the central path of the SDLCP representation:

N1(β, µ̂) := {(X̂, Ŷ ) ∈ Sn1
++ × Sn1

++ ; ∥(Ŷ )1/2X̂(Ŷ )1/2 − µ̂I∥F ≤ βµ̂, µ̂ = Tr(X̂Ŷ )/n1}.

We again have a system of equations for (∆X̂,∆Ŷ ) ∈ Sn1 × Sn1 that plays an important role
in the algorithm, just like the system of equations (27)-(31) for Algorithm 4.1:

(Ŷ )1/2(X̂∆Ŷ +∆X̂Ŷ )(Ŷ )−1/2 + (Ŷ )−1/2(∆Ŷ X̂ + Ŷ∆X̂)(Ŷ )1/2

= 2(σµ̂I − (Ŷ )1/2X̂(Ŷ )1/2), (35)

Â(∆X̂) + B̂(∆Ŷ ) = −r. (36)

Note that in Algorithm 4.2, it can be shown that (∆X̂,∆Ŷ ) obtained by solving (35), (36)
always exists and is unique [23, 26].

Below, we describe the algorithm:

Algorithm 4.2 (See Algorithm 4.1 of [26]; Algorithm 2.1 of [23]) Given ϵ > 0, and β1 < β2
with β2

2/(2(1− β2)
2) ≤ β1 < β2 < β2/(1− β2) < 1. Choose (X̂0, Ŷ 0) ∈ Sn1

++ × Sn1
++ such that

X̂0 =

[
X0 0
0 τ0

]
, Ŷ 0 =

[
Y0 0
0 κ0

]
, (37)

where X0, Y0, τ0, κ0 are from the initial iterate in Algorithm 4.1. For k = 0, 1, . . ., perform (a1)
through (a5):
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(a1) Set X̂ = X̂k, Ŷ = Ŷ k, and define

r := Â(X̂) + B̂(Ŷ ).

(a2) If max{Tr(X̂Ŷ )/(X̂)2n1,n1
, ∥r/X̂n1,n1∥} ≤ ϵ, then terminate with the solution (X̂, Ŷ ).

If X̂n1,n1 is sufficiently small, terminate with no optimal solutions to the sLSDFP.

(a3) [Predictor Step] Find the solution (∆X̂p,∆Ŷ p) of the linear system (35), (36), with
σ = 0, r = r.
Define

X̂ = X̂ + α∆X̂p, Ŷ = Ŷ + α∆Ŷ p,

where the step length α satisfies

α1 ≤ α ≤ α2. (38)

Here,

α1 =
2√

1 + 4δ/(β2 − β1) + 1
, (39)

δ =
1

µ̂
∥(Ŷ )1/2∆X1

p∆Y 1
p (Ŷ )−1/2∥F , (40)

where

µ̂ =
Tr(X̂Ŷ )

n1
,

and

α2 = max{α̃ ∈ [0, 1] ; (X̂ + α∆X̂p, Ŷ + α∆Ŷ p) ∈ N1(β2, (1− α)µ̂) ∀ α ∈ [0, α̃]}.

(a4) [Corrector Step] Find the solution (∆X̂c,∆Ŷ c) of the linear system (35), (36), with

X̂ = X̂, Ŷ = Ŷ , σ = 1− α and r = 0. Set

X̂+ = X̂ +∆X̂c, Ŷ + = Ŷ +∆Ŷ c,
µ̂+ = (1− α)µ̂.

(a5) Set

X̂k+1 = X̂+, Ŷ k+1 = Ŷ +,
µ̂k+1 = µ̂+.

We see that Algorithm 4.2 is similar to Algorithm 4.1. We present the two algorithms in full
above as the proof of Proposition 4.1 requires us to make a comparison between them. Having
details of both algorithms presented serves the purpose to improve readability of the proof of
the proposition.

The following proposition relates the kth iterate in the two algorithms:
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Proposition 4.1 For all k ≥ 0,

X̂k =

[
Xk 0
0 τk

]
, Ŷ k =

[
Yk 0
0 κk

]
. (41)

Consequently, µ̂k = µk and (X̂k, Ŷ k) ∈ N1(β1, µ̂k).

Proof: We show (41) holds by induction on k ≥ 0. It is clear that (41) holds when k = 0, by
the choice of X̂0, Ŷ 0. Suppose (41) holds for k = k0 ≥ 0. Then, at the (k0 + 1)th iteration of
Algorithm 4.2, by comparing the system of equations (27)-(31) and (35), (36), it can be seen
easily that

∆X̂p =

[
∆Xp 0
0 ∆τp

]
, ∆Ŷ p =

[
∆Yp 0
0 ∆κp

]
satisfy (35), (36) when σ = 0, r = r = Â(X̂) + B̂(Ŷ ). Furthermore, the step length α in the
(k0 + 1)th iteration of both algorithms are the same. These lead to

X̂ =

[
X 0
0 τ

]
, Ŷ =

[
Y 0
0 κ

]
(42)

in the two algorithms. With (42), again comparing the system of equations (27)-(31) and (35),
(36), it is also easy to see that

∆X̂c =

[
∆Xc 0
0 ∆τc

]
, ∆Ŷ c =

[
∆Yc 0
0 ∆κc

]
satisfy (35), (36) when σ = 1−α and r = 0. Hence, we conclude that (41) holds for k = k0+1.
Therefore, by induction, (41) holds for all k ≥ 0. Furthermore, we have

µ̂k =
Tr(X̂kŶ k)

n1
=

Tr(XkYk) + τkκk
n+ 1

= µk.

Finally, by (41), comparing the definition of the neighborhood N (β, µ) and the neighborhood
N1(β, µ̂), and that µk = µ̂k, we see that since (Xk, yk, Yk, τk, κk) ∈ N (β1, µk) (Remark 4.1),
we have (X̂k, Ŷ k) ∈ N1(β1, µ̂k).

4.1 Superlinear Convergence

We show in this subsection that Algorithm 4.1 applied to the homogeneous feasibility model of
sLSDFP when the initial iterate (X0, y0, Y0, τ0, κ0) ∈ N (β1, µ0) is such that (y0, Y0) ∈ ℜm×Sn

++

is feasible to the sDSDP leads to superlinear convergence of iterates generated by the algorithm,
besides polynomial iteration complexity. First, we state an additional assumption, Assumption
4.1, which is the assumption of strict complementarity, on the primal-dual SDP pair (1)-(2)
with C = 0 that is needed for this result to hold. Note that strict complementarity assumption
is generally considered the minimal requirement for superlinear convergence of interior point
algorithms, as investigated for example in [16].

Assumption 4.1 There exists an optimal solution (X∗, y∗, Y ∗) to the primal-dual SDP pair
(1)-(2) with C = 0 such that X∗ + Y ∗ ∈ Sn

++.
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A consequence of the above assumption on the homogeneous feasibility model (9)-(12) is that
it has a solution (X∗, y∗, Y ∗, τ∗, κ∗) with X∗ + Y ∗ ∈ Sn

++ and τ∗ + κ∗ > 0. This then implies

that its SDLCP representation, sSDLCP, has a solution (X̂∗, Ŷ ∗) such that X̂∗ + Ŷ ∗ ∈ Sn1
++,

that is, the sSDLCP has a strictly complementary solution.
We consider local superlinear convergence using Algorithm 4.1 in the sense of

µk+1

µk
→ 0, as k → ∞. (43)

Consideration of superlinear convergence in the form (43) is typical in the interior point lit-
erature, such as [10, 14, 23]. It is closely related to local convergence behavior of iterates, as
studied for example in [20].

The following result, which is the main result in this paper, ends this subsection:

Theorem 4.1 Given an initial iterate (X0, y0, Y0, τ0, κ0) ∈ N (β1, µ0) to Algorithm 4.1, with
(y0, Y0) ∈ ℜm × Sn

++ feasible to the sDSDP. Iterates generated by Algorithm 4.1 converge
superlinearly in the sense of (43).

Proof: Let us show the result in the theorem by considering iterates generated by Algorithm
4.2 instead. These iterates are related to those generated by Algorithm 4.1 in a close way as
shown in Proposition 4.1. We note that Algorithm 4.2 is Algorithm 4.1 in [26], and Assumptions
2.1 and 3.1 in [26] are satisfied for the SDLCP representation, sSDLCP, of the homogeneous
feasibility model (9)-(12) (Proposition 3.2 and strict complementarity). Hence, results in [26]
are applicable to our SDLCP representation. The SDLCP representation that Algorithm 4.2
is solving has the structure of an LSDFP (Remark 3.3), and therefore Theorem 5.18 in [26] can
be applied on our SDLCP representation provided that Condition (52) in the theorem ((45)
in the appendix) is satisfied.
Our choice of initial iterate (X0, y0, Y0, τ0, κ0) to Algorithm 4.1 leads to an initial iterate,
(X̂0, Ŷ 0), to Algorithm 4.2 that satisfies B̂(Ŷ 0) = 0 except possibly the (m + n + 1)th entry9

of B̂(Ŷ 0). Therefore, Condition (52) of Theorem 5.1 in [26] is satisfied, and by the theorem,
we have superlinear convergence in the sense that

µ̂k+1

µ̂k

→ 0, as k → ∞.

This implies by Proposition 4.1, where we have µ1
k = µk, superlinear convergence in the sense

of (43) using Algorithm 4.1 to solve the homogeneous feasibility model (9)-(12) for the given
initial iterate.

Remark 4.3 Similar result as Theorem 4.1 also holds when the HKM search direction or the
NT search direction is used in Algorithm 4.1 instead of the dual HKM search direction. The
equivalent algorithm on the SDLCP representation for the NT search direction is Algorithm 1 in
[27]. We can then apply Theorem 4 or Corollary 1 in [27] to conclude superlinear convergence
of iterates when the initial iterate to Algorithm 4.1 with the NT search direction is from a
strictly feasible solution to the sDSDP. The process to show this is analogous to what we have
discussed and we will not repeat it here again.

8This theorem is reproduced in our context as Theorem A.1 in the appendix.
9Remark 3.2 and the appendix.
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5 Conclusion

In this paper, we show superlinear convergence of an implementable polynomial-time infeasible
predictor-corrector primal-dual path following interior point algorithm (Algorithm 4.1) on the
homogeneous feasibility model of an LSDFP for a suitable choice of initial iterate to the
algorithm. This initial iterate can be obtained efficiently and fast by solving a primal-dual
SDP pair using a primal-dual path following interior point algorithm.

References

[1] F. Alizadeh, J. A. Haeberly, and M. Overton. Primal-dual interior-point methods for
semidefinite programming: convergence rates, stability and numerical results. SIAM Jour-
nal on Optimization, 8:746–768, 1998.

[2] B. Alzalg. A primal-dual interior-point method based on various selections of displacement
step for symmetric optimization. Computational Optimization and Applications, 72:363–
390, 2019.

[3] E. D. Anderson, C. Roos, and T. Terlaky. On implementing a primal-dual interior-
point method for conic quadratic optimization. Mathematical Programming, Series B,
95:249–277, 2003.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM Studies in Applied Mathematics. SIAM, Philadelphia,
1994.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[6] J. Dahl and E. D. Anderson. A primal-dual interior-point algorithm for nonsymmetric
exponential-cone optimization. Mathematical Programming, Series A, 194:341–370, 2022.

[7] E. de Klerk, T. Terlaky, and K. Roos. Self-dual embeddings. In Handbook of Semidefinite
Programming (Eds: H. Wolkowicz, R. Saigal, L. Vandenberghe), volume 27 of Interna-
tional Series in Operations Research & Management Science, pages 111–138. Springer,
Boston, 2000.

[8] L. Faybusovich and C. Zhou. Long-step path-following algorithm for solving symmetric
programming problems with nonlinear objective functions. Computational Optimization
and Applications, 72:769–795, 2019.

[9] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point method for
semidefinite programming. SIAM Journal on Optimization, 6:342–361, 1996.

[10] M. Kojima, M. Shida, and S. Shindoh. Local convergence of predictor-corrector infeasible-
interior-point algorithms for SDPs and SDLCPs. Mathematical Programming, Series A,
80:129–160, 1998.

[11] M. Kojima, M. Shida, and S. Shindoh. A predictor-corrector interior-point algorithm for
the semidefinite linear complementarity problem using the Alizadeh-Haeberly-Overton
search direction. SIAM Journal on Optimization, 9:444–465, 1999.

16



[12] M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices. SIAM Journal on Optimization,
7:86–125, 1997.

[13] Z. Lu and R. D. C. Monteiro. A note on the local convergence of a predictor-corrector
interior-point algorithm for the semidefinite linear complementarity problem based on the
Alizadeh-Haeberly-Overton search direction. SIAM Journal on Optimization, 15:1147–
1154, 2005.

[14] Z.-Q. Luo, J. F. Sturm, and S. Zhang. Superlinear convergence of a symmetric primal-dual
path following algorithm for semidefinite programming. SIAM Journal on Optimization,
8:59–81, 1998.

[15] R. D. C. Monteiro. Primal-dual path following algorithms for semidefinite programming.
SIAM Journal on Optimization, 7:663–678, 1997.

[16] R. D. C. Monteiro and S. J. Wright. Local convergence of interior-point algorithms for
degenerate monotone LCP. Computational Optimization and Applications, 3:131–155,
1994.

[17] Y. Nesterov and M. Todd. Self-scaled barriers and interior-point methods for convex
programming. Mathematics of Operations Research, 22:1–42, 1997.

[18] Y. Nesterov and M. Todd. Primal-dual interior-point methods for self-scaled cones. SIAM
Journal on Optimization, 8:324–364, 1998.
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A Appendix

For the sake of completeness, let us write down Theorem 5.1 in [26] in our context:

Theorem A.1 (see Theorem 5.1 in [26]) Assume that there exists a solution (X̂∗, Ŷ ∗) ∈
Sn1
+ × Sn1

+ to an LSDFP (expressed as SDLCP (13)-(15)) such that X̂∗ + Ŷ ∗ ∈ Sn1
++. Let

(X̂k, Ŷ k) be iterates generated by Algorithm 4.2 on the LSDFP with the initial iterate (X̂0, Ŷ 0)
satisfying 

svec

 0 0 0

0 ((Â)j1+j2+1)22 0
0 0 0

T

...

svec

 0 0 0

0 ((Â)m1)22 0
0 0 0

T


svec(X̂0) = 0 (44)
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or 

svec

 ((B̂)k1+k2+1)11 0 ((B̂)k1+k2+1)13
0 0 0

((B̂)k1+k2+1)
T
13 0 ((B̂)k1+k2+1)33

T

...

svec

 ((B̂)ñ1−m1)11 0 ((B̂)ñ1−m1)13
0 0 0

((B̂)ñ1−m1)
T
13 0 ((B̂)ñ1−m1)33

T


svec(Ŷ 0) = 0, (45)

where qi = 0 for i = m1 + 1, . . . , ñ1 in (13) when (44) holds, and qi = 0 for i = 1, . . . ,m1 in
(13) when (45) holds. Here, ñ1 = n1(n1 + 1)/2. Then the iterates converge superlinearly.

To put things in perspective, under the assumption that there exists a solution (X̂∗, Ŷ ∗) ∈
Sn1
+ × Sn1

+ to the LSDFP (expressed as SDLCP (13)-(15)) such that X̂∗ + Ŷ ∗ ∈ Sn1
++, we can

assume that X̂∗ and Ŷ ∗ are given by

X̂∗ =

 Λ∗
11 0 0
0 0 0
0 0 λ∗

k0

 , Ŷ ∗ =

 0 0 0
0 Λ∗

22 0
0 0 0

 ,

where Λ∗
11 = Diag(λ∗

1, . . . , λ
∗
k0−1) ∈ Sk0−1

++ and Λ∗
22 = Diag(λ∗

k0+1, . . . , λ
∗
n1
) ∈ Sn1−k0

++ . Here,
λ∗
1, . . . , λ

∗
n1

are real numbers greater than zero. In this appendix, we always partition a matrix

S ∈ Sn1 in the way X̂∗ and Ŷ ∗ are partitioned, i.e., S is partitioned as

 S11 S12 S13

ST
12 S22 S23

ST
13 ST

23 S33

,

where S11 ∈ Sk0−1, S22 ∈ Sn1−k0 , S33 ∈ ℜ and S12 ∈ ℜ(k0−1)×(n1−k0), S13 ∈ ℜk0−1, S23 ∈
ℜn1−k0 . Using this partition, we perform block Gaussian eliminations and row operations on
Â, B̂ : Sn1 → ℜñ1 in (13) so that they can be written in matrix form as:

Â =

(
Ā
0

)
, B̂ =

(
0
B̄

)
,
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where

Ā =



svec

 ((Â)1)11 ((Â)1)12 ((Â)1)13
((Â)1)

T
12 ((Â)1)22 ((Â)1)23

((Â)1)
T
13 ((Â)1)

T
23 ((Â)1)33

T

...

svec

 ((Â)j1)11 ((Â)j1)12 ((Â)j1)13
((Â)j1)

T
12 ((Â)j1)22 ((Â)j1)23

((Â)j1)
T
13 ((Â)j1)

T
23 ((Â)j1)33

T

svec

 0 ((Â)j1+1)12 0

((Â)j1+1)
T
12 ((Â)j1+1)22 ((Â)j1+1)23

0 ((Â)j1+1)
T
23 0

T

...

svec

 0 ((Â)j1+j2)12 0

((Â)j1+j2)
T
12 ((Â)j1+j2)22 ((Â)j1+j2)23

0 ((Â)j1+j2)
T
23 0

T

svec

 0 0 0

0 ((Â)j1+j2+1)22 0
0 0 0

T

...

svec

 0 0 0

0 ((Â)m1)22 0
0 0 0

T
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and

B̄ =



svec

 ((B̂)1)11 ((B̂)1)12 ((B̂)1)13
((B̂)1)T12 ((B̂)1)22 ((B̂)1)23
((B̂)1)T13 ((B̂)1)T23 ((B̂)1)33

T

...

svec

 ((B̂)k1)11 ((B̂)k1)12 ((B̂)k1)13
((B̂)k1)T12 ((B̂)k1)22 ((B̂)k1)23
((B̂)k1)T13 ((B̂)k1)T23 ((B̂)k1)33

T

svec

 ((B̂)k1+1)11 ((B̂)k1+1)12 ((B̂)k1+1)13
((B̂)k1+1)

T
12 0 ((B̂)k1+1)23

((B̂)k1+1)
T
13 ((B̂)k1+1)

T
23 ((B̂)k1+1)33

T

...

svec

 ((B̂)k1+k2)11 ((B̂)k1+k2)12 ((B̂)k1+k2)13
((B̂)k1+k2)

T
12 0 ((B̂)k1+k2)23

((B̂)k1+k2)
T
13 ((B̂)k1+k2)

T
23 ((B̂)k1+k2)33

T

svec

 ((B̂)k1+k2+1)11 0 ((B̂)k1+k2+1)13
0 0 0

((B̂)k1+k2+1)
T
13 0 ((B̂)k1+k2+1)33

T

...

svec

 ((B̂)ñ1−m1)11 0 ((B̂)ñ1−m1)13
0 0 0

((B̂)ñ1−m1)
T
13 0 ((B̂)ñ1−m1)33

T



.

Details on the above reformulation of Â and B̂ can be found in [26, 27, 28].
In the context of our SDLCP representation, sSDLCP, of the homogeneous feasibility

model of the sLSDFP, where we have m1 = m + n, n1 = n + 1, and Â, B̂ are given by (24),
(25) respectively, we choose B1 such that (B1)22 ̸= 0. In this way, when we perform block
Gaussian eliminations and row operations on B̂, its final position with respect to other rows in

B̄ remains unchanged, that is, svec

(
B1 0
0 d1

)T

remains in the first row of B̄ or the (m1+1)th

row of B̂. We see that (45) (which is (52) of Theorem 5.1 in [26]) then holds when Ŷ 0 is from
a strictly feasible solution to the sDSDP.
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