
Expected decrease for derivative-free algorithms

using random subspaces

Warren Hare ∗ Lindon Roberts † Clément W. Royer ‡

August 9, 2023

Abstract

Derivative-free algorithms seek the minimum of a given function based
only on function values queried at appropriate points. Although these
methods are widely used in practice, their performance is known to worsen
as the problem dimension increases. Recent advances in developing ran-
domized derivative-free techniques have tackled this issue by working in
low-dimensional subspaces that are drawn at random in an iterative fash-
ion. The connection between the dimension of these random subspaces
and the algorithmic guarantees has yet to be fully understood.

In this paper, we develop an analysis for derivative-free algorithms
(both direct-search and model-based approaches) employing random sub-
spaces. Our results leverage linear local approximations of smooth func-
tions to obtain understanding of the expected decrease achieved per func-
tion evaluation. Although the quantities of interest involve multidimen-
sional integrals with no closed-form expression, a relative comparison for
different subspace dimensions suggest that low dimension is preferable.
Numerical computation of the quantities of interest confirm the benefit of
operating in low-dimensional subspaces.

AMS Subject classification: 65K05, 90C56, 90C60.

1 Introduction

Derivative-free algorithms are designed to minimize a function using solely func-
tion value information. These methods are particularly valuable for optimizing
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functions arising in complex engineering and learning models and, as such, have
been applied in a diversity of fields [1, 6, 18]. However, classical derivative-free
algorithms typically struggle to optimize functions with a large number of vari-
ables, as they must explore a large variable space without the guidance provided
by derivatives. For these algorithms, the number of function evaluations that
are used at each iteration can scale linearly with the problem dimension. As a
result, the use of derivative-free algorithms has historically been restricted to
problems having no more than a hundred variables.

To overcome this fundamental limitation, recent algorithmic proposals have
relied on applying iterations in randomly chosen subspaces. For example, several
derivative-free algorithms based on direct-search methods have been proposed
that use opposite Gaussian directions (effectively a one-dimensional subspace)
in various settings as a way to compute steps using no more than two func-
tion evaluations [2, 9, 21]. Another line of work considered directions uniformly
distributed in the unit sphere [7, 12]. In that setting, it was shown that an
almost-surely convergent algorithm could be designed by using only two func-
tion evaluations per iteration, with the best choice (both in terms of gradient
approximation and practical performance) being to use opposite directions [12].
More recently, a generalized analysis showed that random subspaces of arbitrary
dimension could be used to design globally convergent methods [22]. Similar
ideas were proposed in the context of finite-difference estimates aiming at ap-
proximating directional derivatives [17, 16].

Model-based derivative-free algorithms, that operate by maintaining a model
of the objective function, have also been revisited using random subspaces.
A model-based trust-region algorithm was recently proposed in the context of
nonlinear least squares [4], drawing on similar ideas for derivative-based algo-
rithms [3, 23]. A randomized subspace trust-region method was subsequently
developed for stochastic optimization [10]. We also note the use of sketching
matrices within derivative-free trust-region methods as another setup in which
random subspaces can be employed [19].

In the direct-search setting, empirical performance strongly suggested that
using one-dimensional subspaces provided the best results [12, 22]. The conclu-
sions were not as definitive in the model-based case, where quadratic models
seemingly required sufficiently large subspaces to be built in [4] (but that im-
plementation incorporated numerous extra heuristics), while model-based algo-
rithms using linear interpolation proved efficient using very low dimensions [10].
Although convergence analysis often applies for subspaces of any sufficiently
large—but still O(1)—dimension, it does not provide a clear understanding of
the connection between subspace dimension and practical performance, nor why
extremely low-dimensional spaces (e.g. 1 or 2) are good choices in practice.

In this paper, we examine expected decrease for derivative-free algorithms
based on random subspaces. To our knowledge, our approach of quantifying the
expected per-iteration and per-oracle-call objective decrease is a novel frame-
work for studying the complexity of randomized methods for nonlinear opti-
mization. Our approach allows us to provide information about average-case
algorithm performance, instead of the more common worst-case performance
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analysis typical in complexity analysis (e.g. [12, 4]).
By considering a general algorithmic framework, we are able to handle both

direct-search and model-based strategies. By leveraging local linear approxi-
mations of the function to minimize, we express our problem in terms of linear
functions, which facilitates the derivation of decrease guarantees in expectation.
Our analysis shows that using low subspace dimension leads to the best possi-
ble objective decrease per function evaluation. Since evaluating the objective is
often the computational bottleneck of derivative-free algorithms, such a result
further motivates the use of randomized subspaces in these methods.

The remainder of this paper is structured as follows. The rest of this intro-
ductory section sets the notations and recalls some useful results about uniform
distributions in subspaces. Section 2 provides a general algorithm template
that covers both direct-search and model-based techniques. Section 3 is ded-
icated to analyzing direct-search methods based on random subspaces. The
corresponding results for model-based methods are described in Section 4. Sec-
tion 5 illustrates our theoretical findings with numerical experiments. Finally,
we discuss extensions of our results in Section 6.

1.1 Notations and probability background

Throughout the paper, d and p will always denote integers greater than or equal
to 1 with p ≤ d. The Euclidean norm in Rd will be denoted by ∥·∥. The identity
matrix in Rd×d will be denoted by Id. The unit sphere in Rd will be denoted
by Sd−1. The set of orthogonal d × d matrices will be denoted by O(d). For
p ≤ d, the Stiefel manifold of p× d matrices with orthogonal columns in Rd will
be denoted by Vp,d := {X ∈ Rd×p : XTX = Ip}. Note that V1,d corresponds to
the unit sphere Sd−1 while Vd,d = O(d).

Our main results will really heavily on uniform distributions within the
Stiefel manifold. Key results about this distribution are gathered in the next
lemma, and we omit the proofs as they can be found in reference textbooks on
normed vector spaces [20, Section 1] and manifolds [5, Section 2.2].

Lemma 1.1. For any integers 1 ≤ p ≤ d, the following hold.

(i) The uniform distribution on Vp,d is uniquely defined.

(ii) If X follows a uniform distribution on Vp,d, then so does Q1XQT
2 for any

(possibly random) Q1 ∈ Vd,d and Q2 ∈ Vp,p independent of X.

(iii) If Q follows a uniform distribution on Vd,d, then so does QT.

(iv) We may construct X ∈ Vp,d uniformly distributed by X = Q1X0Q
T
2 for

fixed X0 ∈ Vp,d, and independent and uniformly drawn Q1 ∈ Vd,d and
Q2 ∈ Vp,p.
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2 Framework for derivative-free algorithms in
random subspaces

In this section, we present a general framework for a derivative-free algorithm
that performs steps in randomly drawn subspaces. Section 2.1 discusses our
main framework, while Section 2.2 gives two variations on the general method:
one for direct-search methods and one for model-based methods. Section 2.3
then defines the quantities of interest for analyzing the algorithms.

2.1 General framework

Consider the minimization of a continuously differentiable function f : Rd → R,
where the derivative of f cannot be used for algorithmic purposes. A derivative-
free algorithm is an iterative procedure that explores the variable space by
querying f at finitely many points at every iteration in order to select the
next iterate. In this paper, we are interested in derivative-free algorithms that
produces such iterates by evaluating f in a subspace of dimension p ≤ d at every
iteration, where this subspace is drawn randomly.

Algorithm 1 provides the general framework for our analysis. At each itera-
tion, a random subspace is selected and one iteration of a given derivative-free
method (DFi) is performed on that subspace. As our analysis focuses on ex-
pected decrease per iteration, we intentionally leave the stopping criterion and
the step size update procedure undefined.

Algorithm 1 Derivative-free algorithm with random subspaces

1: procedure DFAwRS(f, x0, δ0, p,maxfc, ϵstop, DFi)
2: % f : the objective function, f : Rd 7→ R
3: % x0: the initial point, x0 ∈ Rd

4: % δ0: the initial step size parameter, δ0 > 0
5: % p: the subspace dimension, p ∈ {1, 2, . . . , n}
6: % DFi: iteration of the chosen DFO algorithm, used on subspaces
7: while stopping conditions not met do
8: Randomly select a subspace of dimension p with orthonormal basis

B = {b1, b2, ..., bp} ⊆ Rd

9: Define fk|p : Rp → R as fk|p(z) = f(xk +
∑p

i=1 zibi)
10: Create z∗ from the output of one iteration of DFi applied to fk|p

using initial point z0 = 0 and step size δk

11: Set xk+1 = xk +
∑p

i=1 z
∗
i bi

12: Select δk+1 and increment k ← k + 1
13: end while
14: end procedure

In order to draw a random subspace at every iteration, we randomly generate
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a random orthonormal basis B for a p-dimensional subspace of Rd. In the rest
of the paper, we will assume that B is generated from the uniform distribution
on the Stiefel manifold Vp,d, which amounts to taking the first p columns of
a uniformly sampled matrix from O(d) [11, Section 2]. More precisely, given
Q = [q1 · · · qd] ∈ O(d) uniformly sampled from the Haar measure, we construct
the basis B by letting bi = qi for all i = 1, . . . , p.

In the next section, we illustrate two variants on this method corresponding
to the two main classes of derivative-free algorithms.

2.2 Direct-search and model-based variants

Our first instance of DFi corresponds to a (directional) direct-search iteration. In
their basic form, direct-search schemes do not attempt to build an approximate
gradient, but merely explore the space along suitably chosen directions. In
a deterministic setting, these directions usually form a positive spanning set,
so that one of them is close to the steepest descent direction [15]. Recent
proposals in a probabilistic setting have replaced this requirement by random
directions, with a particular interest for using directions belonging to a random
subspace [12, 22]. We adopt a similar approach in Algorithm 2 that describes
our direct-search iteration.

Algorithm 2 Direct-search iteration (ds)

1: procedure ds(f |p, z, δ)
2: % f |p: the objective function, f |p : Rp 7→ R
3: % z: the incumbent solution, z ∈ Rp

4: % δ: the step size parameter, δ > 0
5: Consider the canonical basis {e1, e2, . . . , ep} for Rp

6: Return z∗ = argmin{f |p(z + δu) : u ∈ {±ei}pi=1 ∪ {0}}
7: end procedure

Note that we restrict ourselves to using coordinate directions in Algorithm 2.
This is only to simplify presentation. Indeed, applying Lemma 1.1(ii), it is clear
that using a random orthonormal basis of Rp will produce the same expected
decrease. Note also that line 6 of Algorithm 2 states that complete polling is
performed, that is we sample in all directions and return the best point that
can be obtained. We will discuss how this algorithmic choice can be relaxed in
Section 3.

Our second algorithmic variant corresponds to a model-based iteration, and
consists in building a linear interpolation model of the function. To this end,
we leverage the notion of a simplex gradient [1, Chapter 9], which we restate
below in a format tailored to our setup.

Definition 2.1. Consider the function f |p used in Algorithm 1. Let V =[
v1 v2 . . . vp

]
be an invertible matrix in Rp×p. For any z ∈ Rp, the simplex
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gradient of f |p at z based on D is defined by

∇Sf |p(z, V ) = (V T)−1


f |p(z + v1)− f |p(z)
f |p(z + v2)− f |p(z)

...
f |p(z + vp)− f |p(z)

 . (2.1)

The simplex gradient is used to construct a linear interpolation model of
f , that can be used to produce a step from z [1, Chpt 9]. This observation
is at the heart of model-based derivative-free algorithms, where other, more
elaborate models can be employed. In Algorithm 3, we describe a trust-region
model-based iteration based on a simplex gradient. This iteration computes
a step that minimizes the model u 7→ ∇Sf |p(z, Ip)Tu over a ball of radius δ
centered at z, with Ip being the identity matrix in Rp×p. In that simple case,
the minimizer can be found explicitly, yielding formula (2.2).

Algorithm 3 Model-based iteration (mb)

1: procedure mb(f |p, z0, δ0)
2: % f |p: the objective function, f |p : Rp 7→ R
3: % z: the incumbent solution, z ∈ Rp

4: % δ: the trust region radius, δ > 0
5: Evaluate f |p(z) and f |p(z + δei) (i = 1, 2, . . . , p) to construct

u = −
∇Sf |p(z, δIp)
∥∇Sf |p(z, δIp)∥

(2.2)

6: Return z∗ = argmin{f |p(z), f |p(z + δu)}
7: end procedure

Similarly to Algorithm 2, Algorithm 3 employs the coordinate directions in
order to simplify presentation.

2.3 Expected decrease guarantees

Derivative-free algorithms are commonly designed so as to drive the step size or
trust-region parameter δk to zero as the algorithm unfolds. Consequently, pro-
viding guarantees associated to the linear Taylor model of the function around
any given point leads to guarantees about decrease in function values. We
present one such result in Proposition 2.2.

Proposition 2.2. Suppose that f is continuously differentiable with L-Lipschitz
continuous gradient. Consider the kth iteration of Algorithm 1, and suppose that
we find a random unit direction u ∈ Rd such that

E
[
∇f(xk)Tu

]
≤ −γ < 0, (2.3)
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where the expectation is taken over the randomness in u. Then, for sufficiently
small δk,

E
[
f(xk + δku)− f(xk)

]
≤ −γ

2
δk, (2.4)

where the expectation is taken over the randomness in u.

Proof. By Taylor expansion and Lipschitz continuity, one has

f(xk+δku) ≤ f(xk)+δk∇f(xk)Tu+
L

2
(δk)2∥u∥2 = f(xk)+δk∇f(xk)Tu+

L

2
(δk)2.

Taking expectations with respect to the randomness in u leads to

E
[
f(xk + δku)− f(xk)

]
≤ δk E

[
∇f(xk)Tu

]
+

L

2
(δk)2

≤ −γδk +
L

2
(δk)2.

As a result, (2.4) is satisfied as long as δk < 1
L .

Considering the consequences of Proposition 2.2, in the rest of the paper, we
focus on the function

f lin(x) = gTx, (2.5)

where g ∈ Rn. Analyzing such functions is significantly easier than the general
nonlinear case. In particular, note that f lin(x + δd) − f lin(x) = δgTx for any
pair of vectors. As a result, the function variation scales linearly with ∥g∥ and
δ. In addition, upon applying Algorithm 3, note that any simplex gradient
(using a well-poised sample set) will always be equal to the actual gradient g,
regardless of the value of δ [1, Exer 9.4]. Therefore, we also assume without loss
of generality that δ = ∥g∥ = 1.

We are interested in the expected decrease that one can achieve over one
iteration of a derivative-free algorithm regardless of the value of g. This leads
us to the following definition.

Definition 2.3. Consider applying one iteration Algorithm 1 using either Algo-
rithm 2 or Algorithm 3, denoted by DFi ∈ {ds, mb}, to a function f lin|p obtained
from f lin defined in (2.5) with a vector g uniformly distributed on the unit sphere
Sd−1, using δ = 1 and p ≤ n. We define the expected decrease EDFi[p, d] as

EDFi[p, d] := E
[
f lin(xk)− f lin(xk+1)

]
, (2.6)

where the expected value is taken over g and B.

Our key results, presented in Sections 3 and 4, aim at providing formulae
for the quantity (2.6). In both cases, we will see that B does not influence the
value of the expected decrease.
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3 Analysis in the direct-search setting

In this section, we examine the expected decrease for an iteration described by
Algorithm 2. Our main result will be obtained in Section 3.1 using bounds on
multidimensional integrals, and we will discuss consequences in Section 3.2 in
terms of relative decrease per function evaluation.

3.1 Expected decrease formula

As a preliminary result, we show that the expected decrease produced by Algo-
rithm 2 is independent of the random subspace basis B.

Proposition 3.1. Consider the linear function f lin with g ∼ Sd−1, and sup-
pose that Algorithm 1 is applied using Algorithm 2 as DFi (which we denote by
DFi=ds). Then, for any k, the expected decrease satisfies

Eds[p, d] = Eg̃∼Sd−1

[
max

i=1,...,p
|g̃i|
]
. (3.1)

Proof. We first note that xk = xk+1 only when B is orthogonal to g, and this
occurs with probability 0. Therefore, without loss of generality we assume that
xk ̸= xk+1 so that f(xk) − f(xk+1) > 0. In that case, letting B = [b1 · · · bp],
we have

f(xk)− f(xk+1) = max
i=1,...,p

gTxk − gT(xk ± bi)

= max
i=1,...,p

|gTbi|

= ∥BTg∥∞.

As a result,
Eds[p, d] = EB∼Vp,d

g∼V1,d

[
∥BTg∥∞

]
.

Let Id,p := [e1, . . . , ep] ∈ Vp,d be the matrix containing the first p coordinate
directions in Rd. By Lemma 1.1(iv), we have B = QId,p for some Q ∼ Vd,d.
Moreover, by Lemma 1.1(ii) and (iii), the random vector QTg follows the same
distribution than g, i.e. uniform distribution in V1,d. Therefore, we obtain

Eds[p, d] = EB∼Vp,d

g∼V1,d

[
∥BTg∥∞

]
= EQ∼Vd,d

g∼V1,d

[
∥ITd,pQTg∥∞

]
= Eg̃∼V1,d

[
∥ITd,pg̃∥∞

]
= Eg̃∼V1,d

[
max

i=1,...,p
|g̃i|
]
,

proving (3.1).
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We will now obtain a mathematical expression for the expectation (3.1).
When d = 1, we necessarily have p = 1 and

Eds[1, 1] = 1.

Our main result will thus focus on the case d > 1. In general, the expected
decrease formula is considerably more intricate, as it involves multiple Gamma
functions as well as the solution to a complex trigonometry integral.

Theorem 3.2. Under the assumptions of Proposition 3.1, suppose further that
d > 1. Then, the expected decrease is given by

Eds[p, d] =
p

2

2p

(
√
π)p

Γ(d/2)Γ(p/2 + 1/2)

Γ(d/2 + 1/2)
I(p), (3.2)

where I(p) is given by I(1) := 1 and

I(p) :=
∫
R(p)

[
p−1∏
i=1

sini(φi)

]
dφp−1 · · · dφ1, if p > 1, (3.3)

with the integration region R(p) is {φ1 ∈ [π/4, π/2]} if p = 1 and(φ1, . . . , φp−1) ∈ [π/4, π/2]×
p−1∏
i=2

arctan
i−1∏

j=1

cscφj

 ,
π

2

 (3.4)

otherwise.

Proof. By Proposition 3.1, we seek to evaluate the expectation (3.1), i.e.,

Eds[p, d] = Eg̃∼Sd−1

[
max

i=1,...,p
|g̃i|
]
.

To this end, it suffices to evaluate the integral over the region

R(p, d) :=
{
g̃ ∈ Sd−1

∣∣ g̃1 ≥ g̃i ≥ 0 ∀i = 1, . . . , p
}
,

i.e., vectors in the nonnegative orthant for which the first coordinate is the
largest. By symmetry, one can construct p2d similar regions with the same
integral value by selecting a maximal absolute value coordinate and an orthant.
Thus, integrating over R(p, d) gives 1/(p2d) of the total integral. Moreover, for
any g̃ ∈ R(p, d), we get the simplification

max{|g̃1|, . . . , |g̃p|} = g̃1,

and therefore (3.1) can be rewritten as

Eds[p, d] =
p2d

|Sd−1|

∫
R(p,d)

g̃1 dS(g̃), (3.5)
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where dS is the surface element for Sd−1 and |Sd−1| is the volume of the unit
sphere in Rd.

To evaluate (3.5), we use hyperspherical coordinates (φ1, . . . , φd−1) for Sd−1:

xd = cos(φ1),

xd−1 = sin(φ1) cos(φ2),

...

x2 = sin(φ1) · · · sin(φd−2) cos(φd−1),

x1 = sin(φ1) · · · sin(φd−2) sin(φd−1),

with surface element

dS = sind−2(φ1) sin
d−3(φ2) · · · sin(φd−2)dφ1dφ2 · · · dφd−1.

Note that this choice is a reverse of the traditional ordering of the axes, that
will result in a simpler proof.

With these coordinates, the constraints defining the region R(p, d) ⊂ Sd−1

translate into the following constraints on (φ1, . . . , φd−1):

• g̃i ≥ 0 yields φi ∈ [0, π/2] for all i = 1, . . . , d− 1;

• g̃1 ≥ g̃2 yields sin(φd−1) ≥ cos(φd−1), which simplifies to φd−1 ≥ π/4;

• g̃1 ≥ g̃3 yields sin(φd−2) sin(φd−1) ≥ cos(φd−2), which simplifies to

φd−2 ≥ arctan(csc(φd−1)).

By continuing the process, we obtain the following description of R(p, d) when
p = 1:

R(p, d) = {φi ∈ [0, π/2] ∀i = 1, . . . , d− 1} .
When p ≥ 2, then R(p, d) is defined via the constraints

φd−1 ∈ [π/4, π/2], (3.6a)

φd−i ∈

arctan
i−1∏

j=1

csc(φd−j)

 ,
π

2

 , i = 2, . . . , p− 1, (3.6b)

φi ∈ [0, π/2], i = 1, . . . , d− p. (3.6c)

Thus, returning to equation (3.5), we find that

Eds[p, d] =
p2d

|Sd−1|

∫
R(p,d)

g̃1 dS(g̃),

=
p2d

|Sd−1|

∫
R(p,d)

(
d−1∏
i=1

sin(φi)

)(
d−2∏
i=1

sind−i−1(φi)

)
dφ1 · · · dφn−1,

=
p2d

|Sd−1|

∫
R(p,d)

(
d−1∏
i=1

sind−i(φi)

)
dφ1 · · · dφd−1.
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When p = 1, the integral is fully separable, and we obtain

Eds[1, d] =
2d

|Sd−1|

d−1∏
i=1

(∫ π/2

0

sind−i(θ)dθ

)
. (3.7)

When p > 1, we can factor out the integration with respect to φ1, . . . , φd−p ∈
[0, π/2], yielding

Eds[p, d] =
p2d

|Sd−1|

[
d−p∏
i=1

∫ π/2

0

sind−i(θ)dθ

]
·

∫
R̂(p,d)

 d−1∏
i=d−p+1

sind−i(φi)

 dφd−p+1 · · · dφd−1,

(3.8)

where the reduced integration region R̂(p, d) is parameterized by inclusions (3.6a)
and (3.6b) only. For simplicity, we now relabel the variables φd−i 7→ φi in the
reduced integral over R̂(p, d) so as to get∫

R̂(p,d)

 d−1∏
i=d−p+1

sind−i(φi)

 dφd−p+1 · · · dφd−1

=

∫
R(p)

(
p−1∏
i=1

sini(φi)

)
dφp−1 · · · dφ1,

(3.9)

where the integration region R(p) is defined by φ1 ∈ [π/4, π/2] and (3.4). Com-
bining (3.7) for p = 1 with (3.8) and (3.9) for p > 1, we obtain overall that

Eds[p, d] =
p2d

|Sd−1|

[
n−p∏
i=1

∫ π/2

0

sind−i(θ)dθ

]
I(p), (3.10)

where I(p) is defined in (3.3).
Finally, we can simplify (3.10) using the identity∫ π/2

0

sind−i θdθ =

√
π

2

Γ((d− i)/2 + 1/2)

Γ((d− i)/2 + 1)
, (3.11)

for any i = 1, . . . , d− p. We then obtain

d−p∏
i=1

∫ π/2

0

sind−i(θ)dθ =
π(d−p)/2

2(d−p)

Γ(d/2)

Γ(d/2 + 1/2)

Γ(d/2− 1/2)

Γ(d/2)
· · · Γ(p/2 + 1/2)

Γ(p/2 + 1)
,

=
π(d−p)/2

2(d−p)

Γ(p/2 + 1/2)

Γ(d/2 + 1/2)
. (3.12)

Finally, applying (3.12) and |Sd−1| = 2πd/2

Γ(d/2) to (3.10), we arrive at

Eds[p, d] =
p

2

2p

(
√
π)p

Γ(d/2)Γ(p/2 + 1/2)

Γ(d/2 + 1/2)
I(p),

which is the desired result.
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We observe that the expression (3.2) is separable in p and d. This property
allows for simplified expressions for certain values of p, and also results in sim-
plifications while comparing two pairs of values for (p, d) as only one of the two
dimension varies. We summarize these observations in the corollary below.

Corollary 3.3. Let d1, d2, p1, p2 be integers greater than or equal to 1 such that
max{p1, p2} ≤ max{d1, d2}. Then, the following properties hold:

(i) Eds[1, d1] =
1√
π

Γ(d1/2)
Γ(d1/2+1/2) ;

(ii) if d1 > 2, then Eds[2, d1] =
√
2√
π

Γ(d1/2)
Γ(d1/2+1/2) ;

(iii) Eds[p1,d1]
Eds[p2,d1]

= Eds[p1,d2]
Eds[p2,d2]

;

(iv) Eds[p1,d1]
Eds[p1,d2]

= Eds[p2,d1]
Eds[p2,d2]

.

Proof. The proofs of (i) and (ii) follow directly from (3.2) by using I(1) = 1,

Γ(1) = 1, I(2) =
∫ π/2

π/4
sin(φ1)dφ1 = 1/

√
2, and Γ(3/2) =

√
π
2 .

The proofs of (iii) and (iv) exploit the separability of the expression (3.2).
For any pair (p, d) of integers greater than or equal to 1, define

E(p) =
p

2

2p

(
√
π)p

Γ(p/2 + 1/2)I(p) and Ê(d) =
Γ(d/2)

Γ(d/2 + 1/2)

so that Eds[p, d] = E(p)Ê(d). Then,

Eds[p1, d1]

Eds[p2, d1]
=

E(p1)

E(p2)
=

Eds[p1, d2]

Eds[p2, d2]
, (3.13)

proving (iii), and

Eds[p1, d1]

Eds[p1, d2]
=

Ê(d1)

Ê(d2)
=

Eds[p2, d1]

Eds[p2, d2]
,

proving (iv).

Another consequence of the separable nature of the expression (3.2) is that
the asymptotic behaviour of this quantity as d→∞ depends entirely on p. To
establish this property, we rely on the following lemma.

Lemma 3.4. Asymptotically,

Γ(d/2)

Γ(d/2 + 1/2)
→
√
2√
d
as d→∞.

Proof. Gautschi’s inequality [8, Eq. (5.6.4)] states

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)

1−s
,

12



for all x > 0 and s ∈ (0, 1). Setting x = d
2 and s = 1

2 provides

√
d√
2
<

Γ(d/2 + 1)

Γ(d/2 + 1/2)
<

√
d+ 2√
2

. (3.14)

Applying Γ(d/2 + 1) = d
2Γ(d/2) now shows

√
2√
d
<

Γ(d/2)

Γ(d/2 + 1/2)
<

√
2
√
d+ 2

d
.

Passing to a limit provides the asymptotic.

Combining the result of Lemma 3.4 with Corollary 3.3(i) and (ii) leads to
the following asymptotics.

Corollary 3.5. Under the same assumptions as Corollary 3.3, asymptotically

Eds[1, d1]→
√
2

√
π
√
d1

as d1 →∞

and for d1 > 2, asymptotically

Eds[2, d1]→
2

√
π
√
d1

as d1 →∞.

3.2 Expected decrease per function evaluation

Derivation-free algorithms are typically used in situations where function eval-
uations are considered to be expensive calculations. As such, the effectiveness
of a derivative-free algorithm is not gauged by expected decrease per iteration,
but expected decrease per function evaluation. We thus wish to account for this
cost in our formula for expected decrease.

Returning to Algorithm 2, we assume that the function value of the incum-
bent solution xk is already known from the output of the previous iteration. As
such, one iteration of Algorithm 2 will evaluate the function at 2p new points,
where p is the subspace dimension. In this section, we are thus interested in the
quantity

EF
ds[p, d] :=

Eds[p, d]

2p
. (3.15)

Our goal is then to study the variation of the quantity EF
ds[p, d] as a function of

p. In order to derive such a result, we require the following lemma.

Lemma 3.6. Let the assumptions of Theorem 3.2 hold, and I(p) be defined as
in this theorem. Then, for any p ≤ d− 1,

2√
π

Γ(p/2 + 1)

Γ(p/2 + 1/2)
<

I(p)
I(p+ 1)

.
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Proof. If p = 1, using the values of I(1) and I(2) from the proof of Corollary 3.3
gives

I(p+ 1) = I(2) = 1√
2
< 1 =

√
π

2

Γ(1)

Γ(3/2)
I(1) =

√
π

2

Γ(p/2 + 1/2)

Γ(p/2 + 1)
I(p).

Suppose now that p > 1. Using the definition of I(p) (3.3), we have

I(p+ 1) =

∫
R(p)

∫ π/2

arctan(csc(φ1)··· csc(φp))

[
p∏

i=1

sini(φi)

]
dφpdφp−1 · · · dφ1, (3.16)

showing that I(p+ 1) is formed by including an extra inner integral inside the
expression for I(p). We now bound the lower limit of region of integration for
φp through induction. From the definition of R(p), we have φ1 ∈ [π/4, π/2].
Inductively, suppose that the region of integration of φi is a subset of [π/4, π/2]
for i = 1, . . . , k−1. In that case, we have csc(φi) ∈ [1,

√
2] for all i = 1, . . . , k−1

and so
φk ≥ arctan(csc(φ1) · · · csc(φk−1)) ≥ arctan(1) = π/4,

which implies that the region of integration for φk is a subset of [π/4, π/2].
By the principles of mathematical induction, we have thus established that

the region of integration of φp is a subset of [π/4, π/2]. Applying this to the
region of integration approximation to (3.16), we find

I(p+ 1) ≤
∫
R(p)

∫ π/2

π/4

[
p∏

i=1

sini(φi)

]
dφpdφp−1 · · · dφ1,

=

(∫
R(p)

[
p−1∏
i=1

sini(φi)

]
dφp−1 · · · dφ1

)(∫ π/2

π/4

sinp(φp)dφp

)
,

= I(p)
∫ π/2

π/4

sinp(θ)dθ.

The result now follows from∫ π/2

π/4

sinp(θ)dθ <

∫ π/2

0

sinp(θ)dθ =

√
π

2

Γ(p/2 + 1/2)

Γ(p/2 + 1)
,

where the last equality uses the identity (3.16).

Using the previous result, we can approximate the rate at which I decreases
as a function of p.

Proposition 3.7. Let the assumptions of Theorem 3.2 hold, and I(p) be defined
as in Theorem 3.2. Then, for any p ≤ d− 1,

I(p+ 1) <

√
π√

2
√
p
I(p).

14



Proof. By Gautschi’s inequality (see equation (3.14)), we have that

Γ(p/2 + 1/2)

Γ(p/2 + 1)
<

√
2
√
p
.

Combining this with Lemma 3.6 completes the proof.

We can now prove that the expected decrease per function evaluation is a
strictly decreasing function of p.

Theorem 3.8. Let the assumptions of Theorem 3.2 hold, and I(p) be defined
as Theorem 3.2. Then, for any p ≤ d− 1,

Eds[p, d]

2p
>

Eds[p+ 1, d]

2(p+ 1)

Proof. It suffices to show that

Eds[p, d]

Eds[p+ 1, d]
>

p

p+ 1
.

As in the proof of Corollary 3.3, we define

E1(p) =
p

2

2p

(
√
π)p

Γ(p/2 + 1/2)I(p).

From equation (3.13), we have

Eds[p, d]

Eds[p+ 1, d]
=

E1(p)

E1(p+ 1)

=
(p/2)(2p/

√
π
p
)Γ(p/2 + 1/2)I(p)

(p/2 + 1/2)(2p+1/
√
π
p+1

)Γ(p/2 + 1)I(p+ 1)

=
p

p+ 1

√
π

2

Γ(p/2 + 1/2)

Γ(p/2 + 1)

I(p)
I(p+ 1)

>
p

p+ 1

√
π

2

Γ(p/2 + 1/2)

Γ(p/2 + 1)

2√
π

Γ(p/2 + 1)

Γ(p/2 + 1/2)

=
p

p+ 1
,

where the strict inequality arises from applying Lemma 3.6.

The result of Theorem 3.8 suggests that performing direct-search iterations
is more beneficial with low-dimensional subspaces, and that p = 1 provides the
best return on investment. Although our result applies to a linear function, we
emphasize again that it can be connected to general smooth functions through
arguments such as that of Proposition 2.2.

To end this section, we discuss how our analysis can be adapted to classical
considerations for direct-search methods in practice.
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Opportunistic polling: In Algorithm 2, all candidate points are sampled
in order to select the best one, i.e., complete polling is performed. In a serial
environment, a cheaper practice called opportunistic polling consists in accept-
ing the first point that yields decrease. Remarkably, this strategy does not
jeopardize convergence and can bring significant savings in practice [15][22].

Our analysis can be adapted to account for opportunistic polling under the
assumption that Algorithm 2 evaluates the directions in the order {e1,−e1, . . .}
(or more generally by evaluating pairs of opposite directions consecutively). In
that case, with probability 1 either e1 or −e1 will lead to a decrease in f lin, and
thus the step will be accepted. The expected decrease guarantees are therefore
equivalent to those in the case p = 1. In fact, one can go one step further
by considering that on average, one performs 3/2 evaluations as e1 has a 50%
chance of being a direction of decrease. With that consideration, the expected
decrease guarantee becomes

2

3
√
π

Γ(d/2)

Γ(d/2 + 1/2)
,

which improves over the quantity (3.15) for p = 1. As this result even holds
for p = d, this provides a novel explanation for the performance of direct-search
approaches using opportunistic polling (with or without random subspaces).

Parallel processing: Using multiple cores to perform function evaluations
in parallel is a common paradigm that affects the per-iteration workload. If
c cores are dedicated to distinct function evaluations and complete polling is
performed, then one can consider that Algorithm 2 has an evaluation cost of
⌈2p/c⌉, where ⌈·⌉ denotes the ceiling function. Since the expected decrease
Eds[p, d] is a decreasing function of p (see, Corollary 3.3) and assuming 2p/c is
an integer number, Theorem 3.8 implies that

Eds[p, d]

⌈2p/c⌉
≥ c

Eds[p, d]

2p
> c

Eds[p+ c/2, d]

2(p+ c/2)
=

Eds[p+ c/2, d]

⌈2(p+ c/2)/c⌉
.

Consequently, in this parallel setting, the expected decrease per unit of work is
maximized for p = c/2, i.e. the smallest subspace dimension that exploits all c
cores. Such a result shows that our analysis can be adapted to the computational
power available to perform function evaluations.

4 Analysis in the model-based setting

In this section, we examine expected decrease for Algorithm 3, i.e., when a
model-based strategy is used to perform steps in the random subspace. The
analysis is similar to that of Section 3 yet presents significant differences, as we
will discuss below. Section 4.1 establishes the main expected decrease result,
while Section 4.2 considers the results in light of per-iteration evaluation cost.
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4.1 Expected decrease formula

We begin by deriving an expression for the expected decrease that does not
depend on the selected basis for the random subspace.

Proposition 4.1. Consider the linear function f lin with g ∼ Sd−1, and sup-
pose that Algorithm 1 is applied using Algorithm 3 as DFi (which we denote by
DFi=mb) with δk = 1. Then, for any k, the expected decrease guarantee satisfies

Emb[p, d] = Eg̃∼Sd−1

√ ∑
i=1,...,p

g̃2i

 . (4.1)

Proof. As in the proof of Proposition 3.1, we assume without loss of generality
that xk+1 ̸= xk. Let B = [b1 · · · bp] with bi ∈ Rd. Since δk = 1, the simplex
gradient calculated by Algorithm 3 is given by

∇Sf
lin|p(xk, Ip) = Ip×p

f
lin(xk + b1)− f(xk)

...
f lin(xk + bp)− f(xk)

 = BTg.

Therefore, the decrease obtained for δk = 1 is

f(xk)− f(xk+1) = f(xk)− f

(
xk −B

BTg

∥BTg∥

)
= gTB

BTg

∥BTg
= ∥BTg∥.

In terms of expected decrease, we therefore obtain

Emb[p, d] = EB∼Vp,d

g∼V1,d

[
∥BTg∥

]
.

By the same argument as in the proof of Proposition 4.1, we can write B = QId,p
with Q ∼ Vd,d and Id,p containing the first p coordinate directions in Rd, and
QTg is uniformly distributed in V1,d. This leads to

Emb[p, d] = EB∼Vp,d

g∼V1,d

[
∥BTg∥

]
= Eg̃∼V1,d

[
∥ITd,pg̃∥

]
= Eg̃∼V1,d

√ ∑
i=1,...,p

g̃2i

 ,

proving (4.1).

We now derive an expression for (4.1). Similarly to the direct-search case,
when d = p = 1, the expected decrease has a trivial expression

Emb[1, 1] = 1.
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We assume in the rest of this section that d > 1. In that case, the general
form of the expected decrease is surprisingly elegant in that it does not include
a trigonometric integral.

Theorem 4.2. Under the assumptions of Proposition 4.1, suppose further that
d > 1. Then, the expected decrease is given by

Emb[p, d] =
Γ(d/2) Γ(p/2 + 1/2)

Γ(d/2 + 1/2) Γ(p/2)
. (4.2)

Proof. Our goal consists in evaluating the expression (4.1), i.e.

Emb[p, d] = Eg̃∼V1,n

√ ∑
i=1,...,p

g̃2i

 .

Consider first the case p = d. Since g̃ ∈ Sd−1, we have
√∑p

i=1 g̃
2
i = ∥g̃∥ = 1,

and thus
Emb[d, d] = Eg̃∼V1,d

[1] = 1.

Noting that formula (4.2) also returns 1 when p = d shows that it is valid in
that case. Thus, in the rest of the proof, we suppose that p < d.

In order to compute the expectation, we restrict ourselves to vectors in the
nonnegative orthant, i.e. we consider R := {g̃ ∈ Sd−1 | g̃i ≥ 0 ∀i = 1, . . . , d}.
As in the proof of Theorem 3.2, we introduce hyperspherical coordinates

xd = cos(φ1),

xd−1 = sin(φ1) cos(φ2),

...

x2 = sin(φ1) · · · sin(φd−2) cos(φd−1),

x1 = sin(φ1) · · · sin(φd−2) sin(φd−1),

with surface element

dS = sind−2(φ1) sin
d−3(φ2) · · · sin(φd−2)dφ1dφ2 · · · dφd−1.

(As before, we use the reverse of the traditional ordering in order to create a
simpler proof.) Then, for any g̃ in the nonnegative orthant, we have√√√√ p∑

i=1

g̃2i =

d−p∏
k=1

sin(φk).

Given that there are 2d orthants in Rd, we obtain by symmetry that

Emb[p, d] =
2d

|Sd−1|

∫
R

(
d−p∏
k=1

sin(φk)

)(
d−2∏
k=1

sind−k−1(φk)

)
dφ1 · · · dφd−1,
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where |Sd−1| denotes the volume of the unit sphere in Rd. By exploiting partial
separability of this integral, we obtain

Emb[p, d] =
2d

|Sd−1|

∫
R

(
d−p∏
k=1

sin(φk)

)(
d−2∏
k=1

sind−k−1(φk)

)
dφ1 · · · dφd−1,

=
2d π

2|Sd−1|

∫
R

(
d−p∏
k=1

sin(φk)

)(
d−2∏
k=1

sind−k−1(φk)

)
dφ1 · · · dφd−2,

=
2d π

2|Sd−1|

(
d−p∏
k=1

∫ π/2

0

sind−k(θ)dθ

) d−2∏
k=d−p+1

∫ π/2

0

sind−k−1(θ)dθ

 .

(4.3)

Recalling identity (3.11), we compute

d−2∏
k=d−p+1

∫ π/2

0

sind−k−1(θ)dθ =

p−2∏
k=1

∫ π/2

0

sinp−k−1(θ)dθ

=

p−2∏
k=1

∫ π/2

0

sink(θ)dθ,

=

p−2∏
k=1

√
π Γ(k/2 + 1/2)

2 Γ(k/2 + 1)
,

=

(√
π

2

)p−2
1

Γ(p/2)
.

Also recalling (3.12) and substituting both into (4.3), we find that

Emb[p, d] =
2d π

2|Sd−1|

(√
π

2

)d−p
Γ(p/2 + 1/2)

Γ(d/2 + 1/2)

(√
π

2

)p−2
1

Γ(p/2)

=
2 πd/2

|Sd−1|
Γ(p/2 + 1/2)

Γ(d/2 + 1/2)

1

Γ(p/2)

=
Γ(p/2 + 1/2)

Γ(d/2 + 1/2)

Γ(d/2)

Γ(p/2)
,

where the final line comes from the substitution |Sd−1| = 2πd/2/Γ(d/2). We
have thus proved that (4.2) also holds in the case p < d, and the proof is
complete.

We examine several particular properties of the expression (4.2) in the next
corollary. As in Section 3.1, we leverage the fact that the expression (4.2) has
a separable structure.

Corollary 4.3. Let d1, d2, p1, p2 be integers greater than or equal to 1 such that
max{p1, p2} ≤ max{d1, d2}. Then, the following properties hold:
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(i) Emb[1, d1] =
1√
π

Γ(d1/2)
Γ(d1/2+1/2) ;

(ii) if d1 > 2, then Emb[2, d1] =
√
π
2

Γ(d1/2)
Γ(d1/2+1/2) ;

(iii) Emb[p1,d1]
Emb[p2,d1]

= Emb[p1,d2]
Emb[p2,d2]

;

(iv) Emb[p1,d1]
Emb[p1,d2]

= Emb[p2,d1]
Emb[p2,d2]

.

Notice that Emb[1, d] = Eds[1, d] for any d, which should not come as a
surprise since Algorithms 2 and 3 perform identically for p = 1. Comparing
Emb[2, d] and Eds[2, d], however, we observe that

√
2√
π
≈ 0.797 < 0.886 ≈

√
π

2
,

implying that Algorithm 3 is providing a higher expected decrease than Algo-
rithm 2 when a two-dimensional subspace is used.

We end this subsection with asymptotic results akin to Corollary 3.5, that
follows from combining Lemma 3.4 with Corollary 4.3.

Corollary 4.4. Under the same assumptions as Corollary 4.3, asymptotically

Emb[1, d1]→
√
2

√
π
√
d1

as d1 →∞,

and

Emb[2, d1]→
√
π√

2
√
d1

as d1 →∞.

4.2 Expected decrease per function evaluation

We now examine the expected decrease guarantee of Algorithm 3 by taking its
function evaluation cost into account. While Algorithm 2 was evaluating 2p new
points per iteration, Algorithm 3 only evaluates p+ 1 new points per iteration.
Indeed, the construction of the simplex gradient requires p + 1 function values
but only p new ones since that of the incumbent solution xk is re-used from the
past iteration. One final evaluation is used in line 6 of Algorithm 3, so the total
amounts to p+ 1 new evaluations. As a result, we define

EF
mb[p, d] =

Emb[p, d]

p+ 1
(4.4)

for p ≥ 2, and investigate its behavior as p varies in Theorem (4.5) (the case
p = 1 will be discussed separately).

Theorem 4.5. Under the same assumptions as Theorem 4.2, suppose further
than d > 2. Then, for any p = 2, . . . , d− 1,

Emb[p, d]

p+ 1
>

Emb[p+ 1, d]

p+ 2
. (4.5)
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Proof. To obtain the desired result, it suffices to prove that

Emb[p, d]

Emb[p+ 1, d]
=

Γ(p/2 + 1/2)2

Γ(p/2)Γ(p/2 + 1)
>

p+ 1

p+ 2
.

To this aim, we require a tighter version of Gautschi’s inequality than the one
used to prove Lemma 3.6. By Kershaw’s extension to Gautschi’s inequality [14],
for all x > 0 and s ∈ (0, 1), it holds that

(x+ s/2)
1−s

<
Γ(x+ 1)

Γ(x+ s)
<
(
x− 1/2 + (s+ 1/4)1/2

)1−s

. (4.6)

Applying x = p/2 and s = 1/2 in equation (4.6) yields

Γ(p/2 + 1)

Γ(p/2 + 1/2)
<

√
p+
√
3− 1√

2
.

Using Γ(p/2 + 1) = (p/2)Γ(p/2), we also have

Γ(p/2)

Γ(p/2 + 1/2)
<

√
2
√

p+
√
3− 1

p
.

Inverting both inequalities and multiplying the results shows that

Γ(p/2 + 1/2)2

Γ(p/2)Γ(p/2 + 1)
>

p

p+
√
3− 1

.

We can easily verify that p

p+
√
3−1
≥ p+1

p+2 whenever p ≥
√
3+1 ≈ 2.73. The case

of p = 2 is easily checked, as

Emb[2, d]

Emb[3, d]
=

π

4
>

2 + 1

3 + 1
,

and therefore (4.5) holds.

The result of Theorem 4.2 leads to similar conclusions than that of Theo-
rem 3.8, in the sense that using low-dimensional subspace dimension leads to
better expected decrease guarantees up to p ≥ 2. We comment thereafter on
other settings.

The case p = 1: The inequality (4.5) does not apply for p = 1, as

Emb[1, d]

Emb[2, d]
=

2

π
<

1 + 1

2 + 1
,

seemingly indicating that p = 2 is the best choice. However, when p = 1,
the simplex gradient is necessarily equal to b1 or −b1. In the former case,
Algorithm 3 will not require an additional value on line 6, since the value at
z + δu = z + δb1 was already computed and used to form the simplex gradient.
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As a result, the average number of function evaluations used when p = 1 is
3/2 (similar to the case of opportunistic polling discussed in Section 3.2). By
extending (4.4) to p = 1 using this cost, we obtain

EF
mb[1, d] :=

Emb[1, d]

3/2
=

2

3
√
π

Γ(d/2)

Γ(d/2 + 1/2)
> EF

mb[2, d],

suggesting that one-dimensional subspaces also provide a better return on in-
vestment in model-based approaches based on simplex gradients, i.e., linear
models of the function.

Parallel processing: Similarly to the direct-search case, we can consider the
situation where c parallel cores are used to compute distinct function evalua-
tions. This paradigm reduces the per-iteration cost of Algorithm 3 to ⌈p/c⌉+1,
where the gain is necessarily achieved only on the evaluations used to form the
simplex gradient (the final evaluation on Line 6 must be done after the others).
Then, assuming p/c is an integer, we obtain

Emb[p, d]

⌈p/c⌉+ 1
= c

Emb[p, d]

p+ c
and

Emb[p+ c, d]

⌈(p+ c)/c⌉+ 1
= c

Emb[p+ c, d]

p+ 1 + c
.

Although the result of Theorem 4.5 does not directly apply to this new quantity

(unless c = 1), a simple numerical inspection confirms that Emb[p,d]
⌈p/c⌉+1 is maximized

for p = c for all values c ∈ {1, 2, . . . , 256} and p ∈ {c, 2c, . . . , 100c}. This strongly
suggests that the expected decrease per unit of work is maximized when you
use the smallest subspace that uses all cores, as in the direct-search setting.
However, this maximum is not uniquely obtained, since when d ≥ 4 and c = 2,
we have

Emb[2, d]

⌈2/2⌉+ 1
=

√
π

4
· Γ(d/2)

Γ(d/2 + 1/2)
=

Emb[4, d]

⌈4/2⌉+ 1
,

hence both p = 2 and p = 4 achieve the maximum expected decrease per unit
of work.

5 Numerical estimation of expected decrease

In Sections 3 and 4, we showed that the expected decrease per function evalu-
ation is strictly decreasing as a function of p. Considering Corollaries 3.3 and
4.3, we see that the expected decrease improves from p = 1 to p = 2. Indeed,

Emb[2, d]

Emb[1, d]
=

π

2
> 1 and

Eds[2, d]

Eds[1, d]
=
√
2 > 1.

However, the expected decrease per function evaluation actually worsens from
p = 1 to p = 2. Indeed,

EF
ds[2, d]

EF
ds[1, d]

=
√
2/2 < 1 and

EF
mb[2, d]

EF
mb[1, d]

=
π

4
< 1.
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Computing these ratios becomes increasingly cumbersome as p increases. In this
section, we thus investigate the behavior of the expected decrease quantities Eds,
Emb, EF

ds and EF
mb numerically, by way of to Monte Carlo simulations.

Algorithm 4 describes our estimation procedure applied to evaluate the ex-
pected decrease quantities. Note that it samples both a vector g uniformly
distributed on the unit sphere and a random basis B for the subspace, as in
the original definition (2.6). (As such, we also numerically verify the results in
Proposition 3.1 and 4.1.) The estimated quantity is obtained by averaging the
decrease formulas for every sample (g,B). In our subsequent experiments, we
use Nsims = 104 samples.

Algorithm 4 Monte Carlo estimation of expected decrease MCestim)

1: procedure MCtest(Nsims, b, p, DFi)
2: % Nsims number of simulations to run, positive integer
3: % d problem dimension, positive integer
4: % p subspace dimension, p ∈ {1, 2, . . . , d}
5: % DFi: DFO step on subspaces DFi ∈ {ds,mb}
6: for k = 1 to Nsims do
7: Randomly select g ∈ Sd−1

8: Randomly select a subspace of dimension p with orthonormal basis

B = [b1, b2, ..., bp]

9: if DFi=ds then
10: Set D(k) = max{gTd : d = ±bi, i = 1, 2, . . . , p}
11: else
12: Compute the subspace gradient ĝ = BTg
13: Set D(k) = (−B(ĝ/∥ĝ∥))Tg
14: end if
15: end for
16: Return

∑Nsims

k=1 D(k)/Nsims as an estimate of EDFi[p, d]
17: end procedure

5.1 Direct-search case

We first look at the results for estimating Eds. Note that we can compute the
integral symbolically for low values of p using Mathematica [13], yielding

Eds[3, d] = Γ(d/2)
Γ(d/2+1/2)

[
12 arctan(

√
2)+3 arctan(460

√
2/329)

2
√
2(

√
π)3

]
≈ 0.938 Γ(d/2)

Γ(d/2+1/2)
,

Eds[4, d] = Γ(d/2)
Γ(d/2+1/2)

[
12

√
2 arctan( 1

2
√

2
)

(
√
π)3

]
≈ 1.036 Γ(d/2)

Γ(d/2+1/2)
.

Further estimation of the Gamma functions leads to the approximations

EF
ds[3, d]

EF
ds[2, d]

≈ 0.784 and
EF
ds[4, d]

EF
ds[3, d]

≈ 0.828.
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These values suggest that the gain in expected decrease between p and p + 1
reduces as the value of p increases.

Numerical estimations of the expected decrease for direct-search are given
in Figure 1. 1 Figure 1a presents the output of Algorithm 4 (with DFi=ds)
for varying dimensions d ∈ {8, 16, 32, . . . , 1024} using subspace dimension p ∈
{1, 2, d/2, d}. For p ∈ {1, 2} we superimpose the exact formula for the expected
decrease as given by Corollary 3.3. For large values of d, floating-point and
overflow errors occur when evaluating Γ(d/2)/Γ(d/2 + 1/2), thus we only plot
the values from Corollary 3.3 up to occurrence of these errors. For comparison,
we also show the large-d asymptotic results from Corollary 3.5. We note that
the Monte-Carlo simulation aligns nearly perfectly with the formulas for p ∈
{1, 2}, while the large-d asymptotics are essentially indistinguishable from the
simulations for d ≥ 100.

Figure 1b shows the output of Algorithm 4 (with DFi=ds) for varying sub-
space size p ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 500, 1000} and fixed dimension
d = 1000. As expected, we observe that choosing p = 1 provides the worst
expected decrease and that p = d leads to the best expected decrease. Note also
that the expected decrease diminishes as d increases.
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Figure 1: Expected decrease (Eds[p, d]) versus average decrease based on Monte
Carlo simulation for varying dimension (a) and subspace dimension (b).
(a) Lines with “(MC)” are the Monte Carlo simulation results, “(exact)” is the result from

Theorem 3.2 and “(asymp.)” is the large-d asymptotic result from Corollary 3.5.

(b) Ambient dimension d = 1000.

In Theorem 3.8, we showed that the expected decrease per function evalu-
ation EF

ds[p, d] was strictly decreasing as a function of the subspace dimension
p. In Figure 2, we plot the expected decrease per unit work for varying dimen-
sions and varying subspace dimensions. Those results confirm our theoretical
findings, in that setting p = 1 gives the largest expected decrease per function
evaluation. Note that the gap between EF

ds[p, d] and EF
ds[p, d] is the largest for

1In all figures it should be recognized that lines adjoining points are for visualization only.
The values of d and p are always integers.
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p = 1, and that it decreases as p increases.
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(b) Varying subspace dimension p

Figure 2: Expected decrease per function evaluation EF
ds[p, d] (3.2) versus aver-

age decreased based on Monte Carlo simulation for varying dimension (a) and
subspace dimension (b).

5.2 Model-based case

We now discuss the output of Algorithm 4 using DFi=mb. Figures 3 and 4
present results analogous to that of Figures 1 and 2.
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Figure 3: Expected decrease (Emb[p, d]) versus the average decreased based on
Monte Carlo simulation for varying dimension (a) and subspace dimension (b).

As in the direct-search case, we match exact results for p ∈ {1, 2} (see
Corollary 4.3) and large d-asymptotics (see Corollary 4.4) quite closely. We
also observe empirically that p = 1 is worst in terms of expected decrease but
best in terms of expected decrease per function evaluation (with our choice
of EF

mb[1, d] = Emb[1, d]/(3/2) explained in Section 4.2). Finally, we see from
Figure 4b that the gap between p = 1 and p = 2 is the largest among all
consecutive values of p.
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Figure 4: Expected decrease per unit work EF
mb[p, d] versus the average based on

Monte Carlo simulation for varying dimension (a) and subspace dimension (b).

6 Discussion

We have established expected decrease formulae for derivative-free iterations
using random subspaces when applied to linear functions. As explained in Sec-
tion 2.3, our analysis can be employed to show expected decrease guarantees
for more general classes of smooth functions that admit a linear model approx-
imation. We have established that performing iterations of derivative-free algo-
rithms in randomly generated subspaces is more beneficial as the dimension of
the subspaces decreases. This arguably surprising result arises from properties
of the uniform distribution over subspaces, and goes some way to understanding
the strong empirical performance of low-dimensional subspace approximations
(e.g. in [12, 22]).

Extending our analysis to handle quadratic models is a natural continuation
of this paper, that poses a number of challenges related to the theory of random
quadratic functions. Nevertheless, such results seem necessary to understand
derivative-free methods that rely on quadratic models and beyond. In addition,
elaborate implementations of derivative-free algorithms can reuse past evalua-
tions to produce better trial points, which introduces non-trivial dependencies
between iterations. Finally, we expect our theory to apply in the case of stochas-
tic function evaluations, provided those satisfy common probabilistic properties
appearing in the literature.
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