
Inexact Newton methods with matrix

approximation by sampling for nonlinear

least-squares and systems

Stefania Bellavia∗, Greta Malaspina∗, Benedetta Morini∗

Abstract

We develop and analyze stochastic inexact Gauss-Newton methods for
nonlinear least-squares problems and inexact Newton methods for non-
linear systems of equations. Random models are formed using suitable
sampling strategies for the matrices involved in the deterministic models.
The analysis of the expected number of iterations needed in the worst case
to achieve a desired level of accuracy in the first-order optimality condi-
tion provides guidelines for applying sampling and enforcing, with fixed
probability, a suitable accuracy in the random approximations. Results
of the numerical validation of the algorithms are presented.

1 Introduction

This work addresses the solution of large-scale nonlinear least-squares problems
and nonlinear systems by inexact Newton methods [14] combined with random
models and the line-search strategy. The Nonlinear Least-Squares problem (NLS)
has the form

min
x∈Rn

f(x) =
1

2m
∥R(x)∥22, (1)

with R : Rn → Rm, m ≥ n, continuously differentiable. As a special case,
problem (1) includes the solution of the square Nonlinear System of Equation
(NSE)

F (x) = 0, (2)

where F : Rn → Rn is continuously differentiable; in fact, the solutions of the
nonlinear system are zero-residual solutions of the problem

min
x∈Rn

f(x) =
1

2
∥F (x)∥22. (3)

∗Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Viale G.B. Mor-
gagni 40, 50134 Firenze, Italia. Members of the INdAM Research Group GNCS. Emails:
stefania.bellavia@unifi.it, greta.malaspina@unifi.it, benedetta.morini@unifi.it

†Work partially supported by INdAM-GNCS under Progetti di Ricerca 2022 and 2023.

1

In case F = ∇G and G is an invex differentiable function, then solving (2) is
equivalent to minimizing G [21].

In the following, we will refer to functions R and F as residual functions,
irrespective of the problem under consideration, and the form (1) or (3) of f
will be understood from the context.

To improve the computational complexity of the deterministic inexact New-
ton methods, the procedures presented here use models inspired by randomized
linear algebra, see e.g., [20, 29], Indeed, random approximations of expensive
derivatives, such as the gradient of f and the Jacobian of the residual function,
and random approximations of the Jacobian-vector product can considerably re-
duce the computational effort of the solvers [1, 2, 3, 4, 5, 6, 7, 9, 12, 20, 27, 30].
We address this issue using matrix approximation by sampling. Specifically,
at each iteration, three major tasks are performed. The first task consists in
building a random linearized model of the residual function; sampling is used for
approximating the Jacobian of the residual function and our approach includes
random compression, random sparsification and standard batch approximations;
the gradient of f is easily obtained as a byproduct. The resulting procedure for
(1) falls in the class of stochastic Gauss-Newton type methods while the proce-
dure for (2) falls in the class of stochastic Newton methods. The second task is
the approximate minimization of the model via a proper Krylov solver in order
to compute the inexact step. The third task is the test acceptance of the trial
step by means of the Armijo condition; function f is supposed to be evaluated
exactly while the gradient of f is random. We discuss the strategies for building
the random models, outline the accuracy requests made with some probability
for such models and obtain a bound on the expected number of performed itera-
tions to achieve a desired level of accuracy in the first order optimality condition.
Further, we provide a preliminary numerical validation of our algorithms.

The recent literature on optimization with random or noisy models is vast,
restricting to line-search approaches some recent contributions are [6, 8, 9, 11,
23]. Referring to problems (1) and (3) and line-search and/or Inexact Newton
methods we are aware of papers [18, 19, 26, 31, 32, 33]. In particular, the de-
terministic method for (3) proposed in [18] is based on a sparsification of the
Jacobian. The inexact Newton-Minimal residual methods proposed in [19, 26]
employ exact function evaluations and are applicable to problem (2) if the Ja-
cobian is symmetric; the exact Jacobian matrix is used in [26] while approxima-
tions of the Jacobian under a deterministic and uniform accuracy requirement
are used in [19]. Globalization strategies are not discussed in [19, 26]. Paper
[31] relies on sketching matrices to reduce the dimension of the Newton system
for possibly non-square nonlinear systems. The method in [32] is a stochastic
regularized Newton method for (2) with batch approximations for the function
and the Jacobian, the resulting trial step is used if it can be accepted by an inex-
act line search condition, otherwise a preset step is taken. Finally, the method
in [33] is a locally convergent Newton-GMRES method for Monte-Carlo based
mappings. Comparing with [18, 19, 26, 31], our contribution consists of the use
of approximations of the derivatives based on randomized linear algebra, and
of globalization via line-search, and includes deterministic and adaptive accu-

2

racy in the limit case where accuracy requirement are satisfied almost surely.
Comparing with [32, 33], we address approximation of the Jacobian matrix via
sparsification besides the considered mini-batch approximation.

The paper is organized as follows. In Section 2 we introduce and discuss our
algorithms for NLS and NSE problems, in Section 3 we perform the theoretical
analysis and obtain the expected number of iterations required to reach an
approximate first-order optimality point, in Section 4 we present preliminary
numerical results for our algorithms and in Section 5 we give some conclusions.

1.1 Notations

We denote the 2-norm as ∥ · ∥, the infinity norm as ∥ · ∥∞, the Frobenius
norm as ∥ · ∥F . The components of the residual functions are denoted as

R(x) =
(
R(x)(1), · · · , R(x)(m)

)T
, F (x) =

(
F (x)(1), · · · , F (x)(n)

)T
. The Ja-

cobian matrix of both R and F is denoted as J with dimension specified by
the problem, i.e., J : Rn → Rm×n for NLS problem and J : Rn → Rn×n for NSE
problem. The probability of an event is denoted as P(event) and 1(event) is the
indicator function of the event.

2 Inexact line-search methods

We introduce the general scheme of our procedure and then specialize the con-
struction of the random model and the computation of the step for the specific
classes of problems considered.

The k-th iteration of our method is sketched in Algorithm 2.1. Given xk ∈
Rn and the positive step-length tk, we linearize the residual function at xk + s
and build a random model m̃k(s) which replaces the deterministic model

mk(s) =
1

2m
∥J(xk)s+R(xk)∥2, (4)

mk(s) = ∥J(xk)s+ F (xk)∥, (5)

for NLS problem and NSE problem, respectively. Along with m̃k we compute a
stochastic approximation gk of the gradient ∇f(xk).

The tentative step sk is then computed minimizing m̃k in a suitable subspace

K(m)
k of Rn

sk = argmin
s∈K(m)

k

m̃k(s). (6)

Once sk is available, we test the Armijo condition (7) using exact evaluations
of f and the stochastic gradient gk. If xk + tksk satisfies such condition we say
that the iteration is successful, accept the step and increase the step-length tk
for the next iteration. Otherwise, the iteration is declared unsuccessful, the step
is rejected and the step-length tk is reduced for the next iteration.

3

Algorithm 2.1. General scheme: k-th iteration

Given xk ∈ Rn, c ∈ (0, 1), τ ∈ (0, 1), tmax > 0, tk ∈ (0, tmax].

Step 1. Form a random model m̃k(s) and the stochastic gradient gk.
Compute the inexact step sk in (6).

Step 2. If tk satisfies condition

f(xk + tksk) ≤ f(xk) + ctks
T
k gk, (7)

Then (successful iteration)
xk+1 = xk + tksk, tk+1 = min{tmax, τ

−1tk}, k = k + 1
Else (unsuccessful iteration)
xk+1 = xk, tk+1 = τtk, k = k + 1.

In the following two sections we describe how we realize Step 1 for the
problems of interest.

2.1 NLS problem: inexact Gauss-Newton method with row
compression of the Jacobian

Our inexact procedure for building the trial step in the case of nonlinear least-
squares problems (1) is based on a random model of reduced dimension with
respect to the dimension m of the linear residual (J(xk)s + R(xk)) in (4). A

weighted random row compression is applied to J(xk); as a result J̃k ∈ Rd×n,
d ≤ m, is formed by selecting a subset of d rows of J(xk) out of m and multi-
plying each selected row by a suitable weight. As for the residual function, the
vector R̃k ∈ Rd is formed by selecting the subset of d entries associated to the
rows of J̃k. A practical way to form J̃k and R̃k is described at the end of this
section. The resulting model

m̃k(s) =
1

2m∥J̃ks+ R̃k∥2 (8)

can be approximately minimized using an iterative method such as LSQR [24].

Starting from the null initial guess s
(0)
k = 0, LSQR generates a sequence of

iterates {s(ℓ)k }, ℓ ≥ 0, such that

∥J̃ks(ℓ)k + R̃k∥2 = min
s∈K

(ℓ)
k

∥J̃ks+ R̃k∥2, (9)

with
K

(ℓ)
k = span

{
J̃T
k R̃k, (J̃

T
k J̃k)J̃

T
k R̃k, . . . , (J̃

T
k J̃k)

ℓ−1J̃T
k R̃k

}
for some integer ℓ ≥ 0. As a stopping criterion we use

∥J̃T
k rk∥ ≤ ηk∥J̃T

k R̃k∥ with rk = J̃ksk + R̃k, (10)

4

and ηk ∈ (0, η̄), η̄ < 1, named forcing term [14]. We summarize this procedure
in the following algorithm.

Algorithm 2.2. Step 1 of Algorithm 2.1 for NLS

Given xk ∈ Rn.

Step 1.1 Choose ηk ∈ (0, η̄), d ∈ N, 1 ≤ d ≤ n.

Form J̃k ∈ Rd×n, R̃k ∈ Rd and gk = 1
m J̃T

k R̃k.

Step 1.2 Apply LSQR method with null initial guess to mins m̃k(s)
with m̃k(s) given in (8) and compute sk satisfying (10).

Lemma 2.1. Let sk, J̃k, gk as in Algorithm 2.2. Then sTk gk ≤ 0.

Proof. By construction, sk = s
(m)
k for some m ≥ 0 and equation (9) gives that

the residual vector rk in (10) is orthogonal to any vector in J̃kK
(m)
k . Then,

sTk J̃
T
k rk = 0 and

1

m
sTk J̃

T
k rk =

1

m
sTk J̃

T
k

(
J̃ksk + R̃k

)
=

1

m

(
sTk J̃

T
k J̃ksk + sTk gk

)
= 0. (11)

The thesis follows since J̃T
k J̃k is symmetric positive semidefinite.

We conclude this section discussing the construction of the random model.
We form the matrix J̃k by sampling the rows of J(xk) and the vector R̃k by

sampling the components of R(xk) accordingly. We can build J̃k and R̃k as a
byproduct of the gradient approximation following [20, §7.3.2]. In particular,
denoting the i-th row of J(xk) as J(xk)(i,:) and the i-th component of R(xk) as
R(xk)(i), the gradient ∇f(xk) can be expressed as

∇f(xk) =
1

m
J(xk)

TR(xk) =
1

m

m∑
i=1

(J(xk)(i,:))
TR(xk)(i).

Let pk1 , . . . , p
k
m be a probability distribution associated to (J(xk)(i,:))

TR(xk)(i),
i = 1, . . . ,m, and let Mk ⊂ {1, . . . ,m} be a random subset of indices such that
index i is chosen with probability pki . We define Jk ∈ Rm×n as the matrix whose
i-th row is such that

(Jk)(i,:) =

{
1

|Mk|pk
i

(J(xk)(i,:)) if i ∈ Mk

0 otherwise
,

and denote with J̃k ∈ R|Mk|×n the compressed matrix obtained by retaining
the rows of Jk that correspond to indices in Mk. We remark that Jk is an
unbiased estimator of the Jacobian J(xk) and that J̃k = SkP

−1
k J(xk), with

5

Pk = |Mk|diag(pk1 , . . . , pkm), and Sk ∈ R|Mk|×m being a suitable submatrix of
the identity matrix of dimension m.

A stochastic approximation of ∇f(xk) can then be defined as

gk =
1

m
J̃T
k R̃k =

1

m
J
T

kRk =
1

m|Mk|
∑

i∈Mk

1

pki
(J(xk)(i,:))

TR(xk)(i). (12)

As for probabilities, they can be uniform, i.e., pki = 1/m, i = 1, . . . ,m,
or correspond to the so-called importance sampling [20, §7.3]. The Bernstein
inequality [20, Th. 7.2] indicates how large the cardinality of |Mk| should be
to ensure

P (∥∇f(xk)− gk∥ ≤ ρ) ≥ 1− δg, (13)

given given an accuracy requirement ρ > 0 and a probability δg ∈ (0, 1). A
general formulation of the Bernstein inequality is given below.

Theorem 2.2. [20, Th. 7.2] Let B ∈ Rq1×q2 be a fixed matrix and let the
random matrix X ∈ Rq1×q2 satisfy E[X] = B and ∥X∥ ≤ MX . Define the
per-sample second moment v(X) = max

{
∥E

[
XTX

]
∥, ∥E

[
XXT

]
∥
}
. Form the

matrix sampling estimator X̄ℓ = 1
ℓ

∑ℓ
i=1 Xi, where Xi are i.i.d and have the

same distribution as X. Then, for all ρ > 0

P
(∥∥B − X̄ℓ

∥∥ ≤ ρ
)
≥ 1− δ,

if

ℓ ≥
(
2v(X)

ρ2
+

4MX

3ρ

)
log

(
q1 + q2

δ

)
.

Summarizing, the cardinality of the set Mk can be ruled by the accuracy
requirement in probability specified above; once the set Mk is chosen, J̃k ∈
R|Mk|×n consists of the rows of J(xk) with index i ∈ Mk, multiplied by suitable

weights, and R̃k is the subvector ofR(xk) formed by the components with indices
i ∈ Mk. With respect to the notation in Algorithm 2.2, it holds d = |Mk|.

2.2 NSE problem: inexact Newton method with Jacobian
sampling

In this section we consider problem (2) and specialize Algorithm 2.1. Given xk,
the Newton equation has the form

J(xk)s = −F (xk). (14)

Denoting J̃k a random estimate of J(xk) and gk = J̃T
k F (xk) the corresponding

estimate of the gradient of ∇f(xk), an inexact Newton step sk satisfies

∥rk∥ ≤ ηk∥F (xk)∥ with rk = J̃ksk + F (xk), (15)

6

for some ηk ∈ [0, η̄), 0 < η̄ < 1. With respect to Algorithm 2.1 the model has
the form

m̃k(s) = ∥J̃ks+ F (xk)∥, (16)

and it represents the random counterpart of (5).
The inexact Newton step sk can be computed applying Krylov methods to

the linear system J̃ks = −F (xk); in particular, starting from the null initial

guess s
(0)
k = 0, we can apply MINRES if the Jacobian is symmetric, GMRES

otherwise. Letting r
(0)
k = F (xk) + J̃ks

(0)
k = F (xk) be the initial residual and

K
(m)
k be the Krylov subspace

K
(m)
k = span{r(0)k , J̃kr

(0)
k , . . . , J̃

(m−1)
k r

(0)
k },

a sequence {s(m)
k } ∈ K

(m)
k , m ≥ 0 , is generated and s

(m)
k satisfies (6) for each

m. By construction, the residual rk in (15) is orthonormal to J̃kK
(m)
k ([10]).

Algorithm 2.3 describes the procedure sketched above. Taking into account
that J̃k may be singular, if the matrix is symmetric we employ the variant
MINRES-QLP of MINRES which finds the minimum norm solution of (6), see
[13]. If the matrix is singular and unsymmetric, we employ GMRES [28]. Taking
into account that GMRES may break down before an acceptable approximate
solution has been determined [25], in this case we take a step of the form sk =

−χgk for some positive χ. The strategy used for building J̃k is discussed at the
end of this section

Algorithm 2.3. Step 1 of Algorithm 2.1 for NSE

Given xk ∈ Rn, χ > 0.

Step 1.1 Choose ηk ∈ (0, η̄). Form J̃T
k ∈ Rn×n, gk = J̃T

k F (xk).

Step 1.2 If J̃k is symmetric
apply MINRES-QLP with null initial guess to J̃ks = −F (xk)
and compute the minimum-norm solution sk satisfying (15).

Else
apply GMRES with null initial guess to J̃ks = −F (xk)
and compute sk satisfying (15).
If GMRES breaks down, set sk = −χgk.

Lemma 2.3. Let sk, J̃k, gk as in Algorithm 2.3. Then sTk gk ≤ 0.

Proof. Equation (15) gives

J̃T
k J̃ksk = −J̃T

k F (xk) + J̃T
k rk = −gk + J̃T

k rk, (17)

and since rk is orthogonal to J̃kKk and sk ∈ Km, it follows sTk J̃
T
k rk = 0 and

sTk J̃
T
k J̃ksk = −sTk gk + sTk J̃

T
k rk = −sTk gk. (18)

7

The thesis follows since J̃T
k J̃k is symmetric positive semidefinite. If sk = −χgk

with χ > 0 then the claim is trivial.

To complete the description of Algorithm 2.3, we focus on the construction of
J̃k. We apply sampling interpreting J(xk) as the sum of matrices and consider
two different approximations; in one case J(xk) is the sum of sparse and rank-1
matrices and we form a sparse approximation, in the other case J(xk) is the
sum of Jacobians, as in finite sum-minimization, and we construct a standard
batch approximation [7, 9].

The use of a sparse approximations of a dense Jacobian reduces the storage
requirement and the cost of matrix-vector computations needed in the Krylov
iterative solver. It can be effective on dense Jacobians that contain redundant
information and when the Jacobian is too large to handle. Sparsification can
be performed randomly selecting a small number of entries from the original
matrix [29, §6.3]. Let denote Eij the matrix that has the element in position
(i, j) equal to 1 and zeros otherwise, and denote J(xk)(i,j) the (i, j) entry of
J(xk), then

J(xk) =

n∑
i=1

n∑
j=1

J(xk)(i,j)Eij .

Following [29, §6.3] we can generate a random approximation J̃k by sampling
as

J̃k =
1

|Mk|
∑

(i,j)∈Mk

1

pki,j
J(xk)(i,j)Eij . (19)

Matrix J̃k is an unbiased estimator of J(xk).
The probability distribution can be assumed uniform, pkij = 1

n2 ∀i, j, or of
the form associated to the so-called importance sampling [29, §6.3.3]. Given an
accuracy requirement ρ > 0 and δJ ∈ (0, 1), it holds

P(∥J(xk)− J̃k∥ ≤ ρ) ≥ 1− δJ

whenever the size of the sample Mk is sufficiently large according to Theorem
2.2.

As a second type of sampling, we suppose that J(xk) is the average of N

matrices, J(xk) =
1
N

∑N
i=1 ∇2ϕi(xk), for some functions ϕi, i = 1, . . . , N , and

let pki = 1
N , i = 1, . . . , N , denote the uniform probability distribution associated

to matrices ∇2ϕi(xk). Given a set Mk generated by randomly sampling the set
of indices {1, . . . , N}, it holds

J̃k =
1

|Mk|
∑

i∈Mk

∇2ϕi(xk). (20)

This matrix is an unbiased estimator of J(xk) and the sample size |Mk| which
provides (20) is again provided by Theorem 2.2.

8

3 Iteration complexity for first-order optimality

The algorithms introduced in the previous sections generate a stochastic process.
Following [11], we denote Tk the random step size parameter, Sk the random
search direction, Xk the random iterate, and Jk the random matrix used either
in (8) or in (16). Given ωk from a proper probability space, we denote the
realizations of the random variables above as tk = Tk(ωk), sk = Sk(ωk), xk =

Xk(ωk), and J̃k = Jk(ωk). For brevity we will omit ωk in the following. Given xk

and tk, the Jacobian estimator Jk generates the gradient estimator Gk of f . We
use Fk−1 = σ(J0, . . . ,Jk−1) to denote the σ-algebra generated by J0, . . . ,Jk−1,
up to the beginning of iteration k.

In this section we study the properties of the presented algorithms and pro-
vide the expected number of iterations required to reach an ϵ-approximate first-
order optimality point, i.e., a point xk such that ∥∇f(xk)∥ ≤ ϵ for some positive
scalar ϵ.

Our analysis first derives technical results on the relationship between the
trial step sk and the stochastic gradient gk, then analyzes the occurrence of suc-
cessful iterations, and finally obtains the expected iteration complexity bound
relying on the framework provided in [11]. We start by making the following
basic assumption.

Assumption 3.1. (Existence of a solution) There exist a solution of problem
(1). Problem (2) admits a zero residual solution.

Moreover, for any realization of the algorithm, given the Jacobian J(xk)
of the residual functions at xk, we denote its singular value decomposition as
J(xk) = UkΣkV

T
k , where Uk, Vk are orthonormal, Σk = diag(σk,1, . . . , σk,n),

σk,1 ≥ . . . ≥ σk,r > σk,r+1 = . . . = σk,n = 0, with r being the rank of the
matrix; concerning matrix dimensions, it holds Uk ∈ Rm×m, Vk ∈ Rn×n for
problem (1), Uk, Vk ∈ Rn×n for (3). The rank retaining factorization is denoted
as

J(xk) = Uk,rΣk,rV
T
k,r, (21)

where Uk,r, Vk,r denote the first r columns of Uk, Vk and Σk,r = diag(σk,1, . . . , σk,r).

For matrix J̃k we denote its rank with r̃, its singular values with σ̃k,i and let

J̃k = ŨkΣ̃kṼ
T
k be the singular value decomposition and

J̃k = Ũk,r̃Σ̃k,r̃Ṽ
T
k,r̃ (22)

be the rank retaining factorization.

3.1 Analysis of the trial step

We establish bound on the trial step sk that are necessary to characterize suc-
cessful iterations and consequently the generated sequence {xk}. These bounds

hold whenever the nonzero eigenvalues of J̃T
k J̃k are uniformly bounded from

below and above for some sufficiently small σmin and for some sufficiently large
σmax. Then, let us introduce the following event.

9

Definition 3.2. (Spectral properties of J̃k) Let Jk be generated in either Algo-
rithm 2.2 or Algorithm 2.3, and Ek be the event

Ek = 1

(
σmin ≤ σi(J T

k Jk) ≤ σmax, i = 1, . . . , R̃
)

where 1 denotes the indicator function of an event, R̃ is the random variable
whose realization is r̃ in (22) and 0 < σmin ≤ σmax.

In the following Lemma we provide conditions that ensure that Ek = 1.

Lemma 3.3. Let xk be given, J̃k be generated by either Algorithm 2.2 or 2.3
and r and r̃ be the rank of J(xk) and J̃k, respectively. Assume that Σk,r defined
in (21) satisfies

2σminIr ⪯ Σ2
k,r ⪯ σmax

2
Ir,

with σmin, σmax as in Definition 3.2.

i) Consider the NLS problem and Algorithm 2.2. Let J̄k ∈ Rm×n be the matrix

obtained by setting to zero the m−d rows which do not appear in J̃k. Then
Ek = 1 if Jk is a sufficiently accurate approximation of J(xk).

ii) Consider the NSE problem and Algorithm 2.3. Then Ek = 1 if r̃ ≤ r and J̃k
is a sufficiently accurate approximation of J(xk).

Proof. i) Let Jk and J̃k be the matrices introduced in §2.1. The interlacing
property of singular values decomposition gives that the rank of J̄k is at most r,
[15, Theorem 7.3.9]. Further, letting Ek = J(xk)− J̄k and σk,i, σ̄k,i, i = 1 . . . , n,
be the singular vales of J(xk), J̄k respectively, we know that |σk,i−σ̄k,i| ≤ ∥Ek∥,
∀i [15, Corollary 7.3.8]. Thus, from the assumption on Σk,r it follows that the
singular values σ̄k,i, i = 1, . . . , r are uniformly bounded from below and above
by σmin and σmax respectively when ∥Ek∥ ≤ min{σk,r̃ −

√
σmin,

√
σmax − σk,1}.

Since the singular values of J̄k and J̃k are equal, the thesis follows.
ii) Letting Ek = J(xk)− J̃k and σk,i, σ̃k,i, i = 1 . . . , n, be the singular values

of J(xk), J̃k respectively, we know that |σk,i − σ̃k,i| ≤ ∥Ek∥, ∀i [15, Corollary
7.3.8]. Thus, from the assumption on Σk,r it follows that Ek = 1 whenever
∥Ek∥ ≤ min{σk,r̃ −

√
σmin,

√
σmax − σk,1} .

The following lemma establishes useful technical results on sk.

Lemma 3.4. Let xk be given, J̃k be generated either in Algorithm 2.2 or in
Algorithm 2.3. Suppose that Ek = 1 and that

∥Ṽ T
k,r̃sk∥ ≥ µ∥sk∥, (23)

with Ṽk,r̃ defined in (22).

i) Consider the NLS problem and let sk, gk as in Algorithm 2.2. Then,

κ2∥gk∥ ≤ ∥sk∥ ≤ κ3∥gk∥, −gTk sk ≥ 1

κ3
∥sk∥2, (24)

for some positive constants κ2, κ3 independent of k.

10

ii) Consider the NSE problem and let sk, gk as in Algorithm 2.3. If the step
satisfies (15) then

∥F (xk)∥ ≤ κ1∥sk∥ (25)

and (24) hold for some positive constants κ1, κ2, κ3 independent of k.

If GMRES breaks down and

∥J̃T
k F (xk)∥ ≥ 1

ν
∥F (xk)∥, (26)

for some positive scalar ν, then (24) and (25) hold for some positive con-
stants κ1, κ2, κ3 independent of k.

Proof. i) By (10) we have gk = J̃T
k R̃(xk) = J̃T

k (−J̃ksk + rk) and

∥gk∥ ≤ σmax∥sk∥+ ηk∥J̃T
k R̃(xk)∥ ≤ σmax∥sk∥+ η̄∥gk∥.

Thus, the leftmost inequality in (24) holds with κ2 = 1−η̄
σmax

. Further, (11) and
(23) imply

−sTk gk = sTk Ṽk,rΣ̃
2
k,rṼ

T
k,rsk ≥ σmin∥Ṽ T

k,rsk∥2 ≥ σminµ
2∥sk∥2,

i.e., the second inequality and the rightmost part of (24) hold with κ3 = 1
σminµ2 .

ii) If the step satisfies (15) we have

∥F (xk)∥ = ∥ − J̃ksk + rk∥ ≤
√
σmax∥sk∥+ ηk∥F (xk)∥,

i.e.,

∥F (xk)∥ ≤
√
σmax

1− ηk
∥sk∥ ≤

√
σmax

1− η̄
∥sk∥,

and (25) holds with κ1 =
√
σmax

1−η̄ .

Using (25) we derive

∥gk∥ = ∥J̃T
k F (xk)∥ ≤

√
σmax∥F (xk)∥ ≤ σmax

1− η̄
∥sk∥,

and the leftmost part of (24) holds with κ2 = 1−η̄
σmax

. Further, (18) and (23)
imply

−sTk gk = sTk Ṽk,rΣ̃
2
k,rṼ

T
k,rsk ≥ σmin∥Ṽ T

k,rsk∥2 ≥ σminµ
2∥sk∥2,

i.e., the second inequality in (24) and the rightmost part of (24) hold with
κ3 = 1

σminµ2 .

Finally in case sk = −χgk, if (26) is satisfied then (25) holds with κ1 = ν/χ
and (24) holds with κ2 = 1/χ and κ3 = χ.

We remark that conditions (23) and (26) trivially hold when J̃k is nonsin-
gular.

11

3.2 Fulfillment of the line-search condition

The study of the stochastic sequence {xk} depends on characterizing successful
iterations and requires to assume accurate derivatives with fixed probability.
In case of least-squares problems we assume that the stochastic gradient is
sufficiently accurate with respect to ∇f(xk) in probability.

Assumption 3.5. (gradient estimate, least-squares problems) Let α be a pos-
itive constant and consider the NLS problem. The estimator Jk is (1 − δg)-
probabilistically sufficient accurate in the sense that the indicator variable

Ik = 1 (∥∇f(Xk)− Gk∥ ≤ αtk∥Gk∥) (27)

satisfies the submartingale condition

P (Ik = 1|Fk−1) ≥ 1− δg, δg ∈ (0, 1). (28)

This requirement can be satisfied approximating ∇f(xk) by sampling as
described in §2.1. In this regard, note that the cardinality |Mk| depends on
ρ = αtk∥gk∥ in (13) with ∥gk∥ given in (12) but gk is unknown. In practice, one
can enforce condition (28) proceeding as in [1, Algorithm 4.1].

In the case of nonlinear systems, the Jacobian is supposed to be probabilis-
tically accurate.

Assumption 3.6. (Jacobian estimate, nonlinear systems) Let α be a posi-
tive constant and consider the NSE problem. The estimator Jk is (1 − δJ)-
probabilistically sufficient accurate in the sense that the indicator variable

Ik = 1 (∥J(Xk)− Jk∥ ≤ αtk) (29)

satisfies the submartingale condition

P (Ik = 1|Fk−1) ≥ 1− δJ , δJ ∈ (0, 1). (30)

This accuracy requirement above can be fulfilled proceeding as in §2.2.
Now we introduce the case where Ek = Ik = 1 holds and denote such occur-

rence as a true iteration.

Definition 3.7. (True iteration) Iteration k is true when EkIk = 1.

For true iterations a relevant bound on ∇f(xk) holds.

Lemma 3.8. Consider any realization xk of Algorithm 2.1 and suppose that
iteration k is true. Suppose that Assumptions 3.5, 3.6 hold.

i) Consider the NLS problem. It holds

∥∇f(xk)∥ ≤ (1 + τtk) ∥gk∥, (31)

for some positive scalar τ .

12

ii) Consider the NSE problem and suppose that the assumption of Lemma 3.4
holds. Then (31) holds for some positive scalar τ .

Proof. i) For the NLS problem, the claim follows trivially by the Assumption
(3.5) with τ = α.
ii) Concerning the NSE problem, using Assumption 29 we obtain

∥∇f(xk)∥ ≤ ∥∇f(xk)− gk∥+ ∥gk∥
= ∥(J(xk)− J̃T

k)TF (xk)∥+ ∥gk∥
≤ αtk∥F (xk)∥+ ∥gk∥.

Then by (25) and (24) we get ∥∇f(xk)∥ ≤ (1 + ακ1κ3tk) ∥gk∥ and the claim
holds with τ = ακ1κ3.

Now we prove that if the iteration is true and tk is small enough, the line-
search condition is satisfied; namely, the iteration is successful. Thereafter we
make the following assumption.

Assumption 3.9. (gradient of f Lipschitz-continuous) The gradient ∇f of f
is Lipschitz-continuous with constant L

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ Rn. (32)

Lemma 3.10. Consider any realization of Algorithm 2.1 and suppose that it-
eration k is true. Suppose that Assumptions 3.5, 3.6 and 3.9 hold and that the
assumption of Lemma 3.4 hold. Then there exists a positive scalar t̄ independent
of k such that the iteration is successful whenever tk ≤ t̄.

Proof. Let k be an arbitrary iteration. Assumptions 3.9 implies, using the
standard arguments for functions with bounded Hessians,

f(xk + tksk) = f(xk) +

∫ 1

0

(∇f(xk + ytksk))
T (tksk)dy

= f(xk) +

∫ 1

0

tk(∇f(xk + ytksk)−∇f(xk))
T skdy + tk∇f(xk)

T sk

≤ f(xk) +

∫ 1

0

tk∥∇f(xk + ytksk)−∇f(xk)∥∥sk∥dy + tk∇f(xk)
T sk

≤ f(xk) +
L

2
t2k∥sk∥2 + tk∇f(xk)

T sk.

In the case of the NLS problem, (33) and the definition of true iteration yield

f(xk + tksk) ≤ f(xk) +
L

2
t2k∥sk∥2 + tk[∇f(xk)− gk]

T sk + tkg
T
k sk

≤ f(xk) +
L

2
t2k∥sk∥2 + αt2k∥gk∥∥sk∥+ tkg

T
k sk

≤ f(xk) +
L

2
t2k∥sk∥2 +

α

κ2
t2k∥sk∥2 + tkg

T
k sk.

13

Using (24) we have −(1− c)gTk sk ≥ (1− c) 1
κ3
∥sk∥2. Thus, if

tk∥sk∥2
(
L

2
+

α

κ2

)
≤ (1− c)

1

κ3
∥sk∥2,

then (7) holds and the claim follows with tk ≤ t̄ = 2(1−c)κ2

(κ2L+2α)κ3
.

Consider now the NSE problem. By (33) and the definition of true iteration
we obtain

f(xk + tksk) ≤ f(xk) +
L

2
t2k∥sk∥2 + tk∇f(xk)

T sk ± tkg
T
k sk (33)

= f(xk) +
L

2
t2k∥sk∥2 + tk[J

T
k Fk − J̃T

k Fk]
T sk + tkg

T
k sk

= f(xk) +
L

2
t2k∥sk∥2 + tkF

T
k [Jk − J̃k]sk + tkg

T
k sk

≤ f(xk) +
L

2
t2k∥sk∥2 + αt2k∥Fk∥∥sk∥+ tkg

T
k sk.

Then, using (25) we obtain

f(xk + tksk) ≤ f(xk) +
L

2
t2k∥sk∥2 + αt2kκ1∥sk∥2 + tkg

T
k sk.

Proceeding as above, the claim follows with tk ≤ t̄ = 2(1−c)
(L+2ακ1)κ3

.

3.3 Complexity analysis of the stochastic process

In this section we provide a bound on the expected number of iterations that our
procedures take in the worst case before they achieve a desired level of accuracy
in the first-order optimality condition. The formal definition for such a number
of iteration is given below.

Definition 3.11. Given some ϵ > 0, Nϵ is the number of iterations required
until ∥∇f(Xk)∥ ≤ ϵ occurs for the first time.

The number of iterations Nϵ is a random variable and it can be defined
as the hitting time for our stochastic process. Indeed it has the property
σ(1 (Nϵ > k)) ⊂ Fk−1.

Following the notation introduced in Section 3.2 we let Xk, k ≥ 0, be the
random variable with realization xk = Xk(ωk) and consider the following mea-
sure of progress towards optimality:

Zk = f(X0)− f(Xk). (34)

Further, we let
Zϵ = f(X0)− flow = f(X0), (35)

be an upper bound for Zk for any k < Nϵ, with flow = 0 being the global lower
bound of f . We denote with zk = Zk(ωk) a realization of the random quantity
Zk.

14

Lemma 3.12. Suppose that Assumptions 3.1, 3.5, 3.6 and 3.9 hold. Suppose
that the assumptions of Lemma 3.4 hold. Suppose that iteration k is true and
consider any realization of Algorithm 2.1. If the k-th iteration is true and suc-
cessful, then

zk+1 ≥ zk + c
κ2
2

κ3

tk
(1 + τtmax)2

∥∇f(xk)∥2, (36)

whenever k < Nϵ.

Proof. For every true and successful iteration, using (7), (24) and (31), we have

f(xk+1) ≤ f(xk) + ctks
T
k gk

≤ f(xk)− ctk
κ2
2

κ3
∥gk∥2

≤ f(xk)− ctk
κ2
2

κ3

1

(1 + τtk)2
∥∇f(xk)∥2

≤ f(xk)− c
κ2
2

κ3

tk
(1 + τtmax)2

∥∇f(xk)∥2,

and the last inequality holds since tk ≤ tmax. Now, changing the sign and adding
f(x0) we conclude the proof.

Lemma 3.13. Consider any realization of Algorithm 2.2. For every iteration
that is false and successful, we have

zk+1 > zk.

Moreover zk+1 = zk for any unsuccessful iteration.

Proof. For every false and successful iteration, using (7) and sTk gk ≤ 0 (see
Lemma 2.1, Lemma 2.3) we have

f(xk+1) ≤ f(xk) + ctks
T
k gk ≤ f(xk).

Now, changing the sign and adding f(x0), the first part of the proof is completed.
Finally for any unsuccessful iteration, Step 2 of Algorithm 2.1 gives xk+1 = xk;
hence it holds f(xk+1) = f(xk) and zk+1 = zk.

To complete our analysis we need to assume that true iterations occur with
some fixed probability.

Assumption 3.14. (probability of true iterations) There exists some δ ∈
(
0, 1

2

)
such that

P (IkEk = 1|Fk−1) ≥ 1− δ

Now we can state the main result on the expected value of the hitting time.

15

Theorem 3.15. Suppose that Assumptions 3.1, 3.5, 3.6 and 3.9 and 3.14 hold.
Suppose that the assumptions of Lemma 3.4 hold. Let t̄ given in Lemma 3.10
and suppose t̄ < t0. Then the stopping time Nϵ of Algorithm2.1 for the NLS and
NSE problems is bounded in expectation as follows

E[Nϵ] ≤
2(1− δ)

(1− 2δ)2

[
M

ϵ2
+ logτ

t̄

t0

]
,

with M = (f(x0)−f∗)(1+τtmax)
2κ3

cκ2
2 t̄

.

Proof. Let

h(t) = c
κ2
2

κ3

t

(1 + τtmax)2
ϵ2, (37)

and note that h(t) is non decreasing for t ∈ [0, tmax] and that h(t) > 0 for
t ∈ [0, tmax]. For any realization zk of Zk in (34) of Algorithm 2.2 the following
hold for all k < Nϵ:

(i) If iteration k is true and successful, then zk+1 ≥ zk + h(tk) by Lemma
3.12.

(ii) If tk ≤ t̄ and iteration k is true then iteration k is also successful, which
implies tk+1 = τ−1tk by Lemma 3.10.

(iii) zk+1 ≥ zk, for all k (zk+1 ≥ zk for all successful iterations by Lemma 3.12
and 3.13); zk+1 = zk for all unsuccessful iteration k by Lemma 3.13).

Moreover, our stochastic process {Tk, Zk} obeys the expressions below. By
Lemma 3.10 and the definition of Algorithm 2.2 the update of the random
variable Tk such that tk = Tk(ωk) is

Tk+1 =

τ−1Tk if Ik = 1, Tk ≤ t̄ (i.e., successful)
τ−1Tk if the iteration is successful, Ik = 0, Tk ≤ t̄
τ Tk if the iteration is unsuccessful, Ik = 0, Tk ≤ t̄
τ−1Tk if the iteration is successful, Tk > t̄
τ Tk if the iteration is unsuccessful, Tk > t̄

By Lemma 3.10 Lemma 3.12 and Lemma 3.13 the random variable Zk obeys
the expression

Zk+1 ≥

Zk + h(Tk) if Ik = 1, Tk ≤ t̄ (i.e., successful)
Zk if the iteration is successful, Ik = 0, Tk ≤ t̄
Zk if the iteration is unsuccessful, Ik = 0, Tk ≤ t̄
Zk + h(Tk) if the iteration is successful, Ik = 1, Tk > t̄
Zk if the iteration is unsuccessful, Ik = 1, Tk > t̄
Zk if the iteration is unsuccessful, Ik = 0, Tk > t̄

Then Lemma 2.2–Lemma 2.7 and Theorem 2.1 in [11] hold which gives the
thesis along with the assumption δ < 1

2 .

16

4 Numerical Results

In this section, we study the numerical performance of the proposed methods
and denote as Algorithm SGN RC (Stochastic inexact Gauss-Newton method
with Row Compression) the procedures for the NLS problem, i.e., Algorithm
2.1 coupled with Algorithm 2.2, and as Algorithm SIN JS (Stochastic inexact
Newton method with Jacobian Sampling) the procedure for the NSE problem,
i.e., Algorithm 2.1 coupled with Algorithm 2.3. For the sake of comparison, we
compare such algorithms with their full accuracy counterparts, i.e. employing
exact Jacobians and indicate this case “full”. The parameters used in step 2 of
Algorithm 2.1 are given by c = 10−4, tmax = 1. The values δg in (28) and δJ in
(30) are equal to 0.4.

4.1 Solution of least-squares problems

We consider the following least-squares problem

min
x∈Rn

f(x) = ∥R(x)∥22, R(x)(i) = bi −
1

1 + e−x⊤ai
i = 1, . . . ,m (38)

where ai ∈ Rn, bi ∈ {0, 1}, i = 1, . . . ,m, are the features vectors and the labels
of the training set of a given binary classification problem.

We consider problem (38) for the gisette dataset [17], with n = 5000 and
m = 6000. We also used a validation set of 1000 instances to evaluate the
reliability of the classification model. We run Algorithm SGN RC varying the
parameter α ∈ {1, 10, 100} in (27) and setting τ = 0.5 and constant forcing

term ηk = η = 10−1, ∀k. The matrix J̃k was generated by subsampling the
rows of J(xk), with uniform probability, see §2.1. Concerning the cardinality of
Mk we make use of Theorem 2.2, (27) and (28), and choose Mk as follows:

|Mk| = max

(
0.01m,min

(
mmax, 2γ

(
∥R(xk)∥2

ρ2k
+

2∥R(xk)∥∞
3ρk

)
log

(
n+ 1

δg

)))
,

(39)
with δg = 0.4, ρk = αtk∥gk−1∥, 10−2m ≤ mmax ≤ m, γ ∈ (0, 1]. Note that the
accuracy request (27) is implicit and that ρk in (39) employs ∥gk−1∥ instead of
∥gk∥ to make the evaluation of |Mk| explicit with respect to the norm of the
stochastic gradient. We will report results varyingmmax and γ, namelymmax =
0.75m, m and γ = 10−1, 1. The choice mmax = m and γ = 1 allows Mk to
reach the full sample with the increase dictated by the Bernstein inequality,
while with the choice mmax = m and γ = 10−1 we retain the increase rate of
the Bernstein inequality but employing smaller sample sizes. Clearly, the choice
mmax = 0.75m prevents the method from reaching the full sample. Note also
that the size of the sample is forced to be at least 1% of m.

The initial guess x0 = 0 ∈ Rn was used and termination was declared when
either the number of full Jacobian evaluations is equal to 100, or the following
stabilization condition holds for a number of iterations that corresponds to at

17

least 5 full evaluations of the Jacobian

|f(xk+1)− f(xk)| ≤ ϵf(xk) + ϵ

with ϵ = 10−3 [5].
As for the computational cost, we assigned cost m to the evaluation of the

residual vector R(x), cost n to the evaluation of one row the Jacobian, and
cost |Mk|n to the execution of one iteration of LSQR method, the resulting
total cost was then scaled by the number of variables n. To summarize, the
per-iteration cost of the method is given by

m

n
+ ℓk|Mk|+ |Mk|,

where ℓk is the number of inner iterations performed by the Krylov solver at
k-th iteration.

In Figure 1 we report the objective function value, in logarithmic scale,
versus the computational cost of the Algorithm SGN RC with α = 10 and varying
the values of mmax and γ. To account for the randomness of the Jacobian
approximation, we run Algorithm SGN RC for each choice of the parameters 21
times and plot the results that correspond to the median run with respect to
the total computational cost at termination. We also plot the objective function
value, in logarithmic scale, versus the computational cost of the full counterpart
employing exact Jacobians. With respect to this latter method, we see that the
Algorithm SGN RC compares well in the initial stage of the convergence history
and that attains smaller final values of ∥R∥ when mmax = m. Runs with
mmax = 0.75m, i.e., runs where full sample is not achieved, present a total
computational cost at termination that is comparable to that of the algorithms
with mmax = m but larger values of the objective function at termination.
We also remark that the initial sample size is given by 600 and 60 for γ = 1
and γ = 0.1 respectively, and that all the runs reach sample size mmax when
approaching termination.

In Figure 2 we report the accuracy, i.e., the percentage of entries of the
validation set correctly classified versus the computational cost. In all runs,
0.94% of the entries of the validation set is correctly classified and the figure
shows that using row compression provides computational savings with respect
to using the full Jacobian. The figure displays the median run. A similar
behaviour is observed with α = 1.

4.2 Solution of nonlinear systems

We presents results on two types of nonlinear systems. The first type of systems
arises from the discretization of integral equations, the second type of systems
represents the first-order optimality conditions of an invex objective function.
We set χ = 1 in Algorithm 2.3 but the step −χgk was never taken.

18

Figure 1: Algorithm SGN RC, α = 10, varying mmax and γ. Median run in terms
of cost: logarithmic norm of the residual versus computational cost.

Figure 2: Algorithm SGN RC, α = 10, varying mmax and γ. Median run in terms
of cost: accuracy versus computational cost.

4.2.1 Nonlinear systems

In this section we apply Algorithm SIN JS to nonlinear systems arising from
the discretization of two integral equations. The first nonlinear system, named
IE 1, has equations of the form

F (x)(i) = xi +
(1− hi)

2

i∑
j=1

hj (xj + hj + 1)
3
+

hi

2

n∑
j=i+1

(1− hj) (xj + hj + 1)
2
,

where i = 1, . . . , n, n is the dimension of the system and hj = j/(n+ 1), [22].
The second nonlinear system, denoted IE 2, has components

F (x)(i) = cx2
i −

1

2n

n∑
j=1

xi cos
(xi

n
(i− 0.5)

)
+

1

2
sin(1)− c,

19

where i = 1, . . . , n, n is the dimension of the system [16], and c > 0 is a
parameter.

We set n = 5000 and applied Algorithm SIN JS using τ = 0.5 and GMRES
as the linear solver. The Jacobian approximation J̃k was formed interpreting
J(xk) as the sum of its diagonal part and its off-diagonal part and approximating
the off-diagonal part of J(xk) by using (19) with importance sampling, i.e.,

pkij =
1

2

(|J(xk)(i,j)|2

∥J(xk)∥2F
+

|J(xk)(i,j)|
∥J(xk)∥ℓ1

)
, i, j = 1, n (40)

with ∥J(xk)∥ℓ1 =
∑n

i=1

∑n
j=1 |J(xk)(i,j)|, and

n(n− 1) ≥ |Mk| ≥
(
8∥J(xk)∥ℓ1

3αtk
+

4n∥J(xk)∥2F
α2t2k

)
log

(
2n

δJ

)
, (41)

which follows from Theorem 2.2 and the requirements (29), (30).
The initial guess x0 was drawn from the normal distribution N (0, 100). Ter-

mination of Algorithm SIN JS was declared when ∥F (xk)∥ ≤ 10−6.
Figure 3 displays the results obtained in the solution of problem IE 1 testing

three choices of the scalar α in (29), α ∈ {1, 10, 100}, and two choices of constant
forcing terms, ηk = η, ∀k, η ∈ {10−3, 10−1}. We plot the computational cost
and the norm of the residual ∥F (xk)∥ in logarithmic scale, on the x- and the y-
axis respectively. The computational cost per iteration is evaluated as follows.
We assign cost 1 to the evaluation of the vector F ∈ Rn, cost n to the evaluation
of J ∈ Rn×n as well as to the computation of the probabilities {pkij}ni,j=1. Each

iteration of GMRES requires a matrix vector product with matrix J̃k, and has
therefore cost |Mk|. To account for the randomness in the sparsification, each
algorithm and parameter setting is run 21 times. In the plot we report the
median run in terms of total computational cost at termination.

Figure 3: Algorithm SIN JS and Integral Equation IE 1. Importance sampling.
Median run in terms of cost: logarithmic norm of the residual versus computa-
tional cost.

20

accuracy cost it min cost max cost
full 1.90010e+05 11

α = 1 1.32964e+05 13 1.32958e+05 1.32972e+05
α = 10 1.82417e+05 18 1.82361e+05 1.82511e+05
α = 100 2.02482+05 20 2.02423e+05 2.12670e+05

Table 1: Algorithm SIN JS and Integral equation IE 1. Importance sampling,
η = 10−1. Statistics on multiple runs.

We first note the for α = 1 and α = 10, our algorithm is more convenient
than Newton method with exact Jacobian and that the best results are obtained
using η = 10−1; for η = 10−1 all the runs with sparsification achieve the re-
quested accuracy in an amount of computation that is either smaller (α = 1, 10)
or comparable (α = 100) to that resulting from the use of the exact Jacobian.

As expected, enlarging α reduces the accuracy of J̃k and deteriorates the per-
formance of our algorithm. The most effective run corresponds to the use of
α = 1 and η = 10−1, and employed sparsified Jacobians with density varying
between 10−2 and 1.4 · 10−1.

Table 1 summarizes the results of multiple runs. For different values of α,
including the use of the exact Jacobian, it displays the median cost of the runs,
the number of Newton iterations performed in the run with median cost, the
minimum and maximum cost of the multiple runs. We observe that expectedly
the number of iterations increases with α since the accuracy in the Jacobian
approximation decreases. We also observe that the minimum and maximum
value of the computational cost are close to the median values.

Figure 4 displays the results obtained in the solution of problem IE 2 with
c=1. Algorithm SIN JS was applied setting α = 1 and η = 10−1 which gave
the best result in the previous experiments. The results are again in favour of
the stochastic algorithm which is significantly more efficient than the algorithm
with full Jacobian. Regarding the sparsification of the Jacobian, the density of
J̃k varied between 2 · 10−2 and 3 · 10−2.

We also solved IE 2 with c = 0.01 obtaining a more challenging problem.
With this value of c both the Jacobian matrix J and the Jacobian estimator
J̃ are close to singularity (as a reference, the three smallest singular values of
J(x0) and J̃0 were equal to 5.21535e-5, 1.54400e-4, 2.35191e-4, and to 4.58937e-
5, 6.70361e-5, 1.56938e-4, respectively) and it was necessary to use τ = 0.1 in
Step 2 of Algorithm SIN JS rather than τ = 0.5 as in all other experiments.
The same value of τ was used in the full Algorithm. We also used α = 1 and
η = 10−1 as in the previous experiments. Figure 5 shows that also in this case
Algorithm SIN JS outperforms the algorithm with full Jacobian.

As a further experiment, we solved IE 1 approximating the Jacobian with
uniform sampling and prefixed sample size. Given a scalar s ∈ (0, 1), we let J̃k be
the matrix with the diagonal equal to the diagonal of J(xk) and |Mk| = sn2−n
off-diagonal elements uniformly sampled from J(xk). Consequently, s represents

21

Figure 4: Algorithm SIN JS and Integral Equation IE 2 with c = 1. Importance
sampling. Median run in terms of cost: logarithmic norm of the residual versus
computational cost.

the density of J̃k. In Figure 6 we plot the results of the median run obtained
corresponding to s = 0.1 and s = 0.25 and the median run with exact Jacobian.
The forcing term used is constant, ηk = 10−1. We can see from Figure 6 that,
using sparsification, the required accuracy is achieved with a smaller amount of
computation than using the full Jacobian and that the best result is achieved
with s = 0.25. The number of Newton iterations performed is 11 for the run
with exact Jacobian, 46 for the run with s = 0.25, and 149 for the run with
s = 149.

We conclude this section with some comments on the potential savings re-
sulting from random sparsification. The use of importance sampling and prob-
abilities pkij in (40) does not allow a matrix-free implementation and has a cost
that was taken into account in our measure for the computational burden. On
the other hand, sparsification by sampling provides saving in the Krylov solver
and our experiments show that random models are overall advantageous. Fi-
nally, we underline that in case of uniform probabilities, forming J̃k calls only
for the evaluation of selected entries.

4.2.2 Softmax loss function

Solving the unconstrained optimization problem minx∈Rn φ(x), with φ : Rn → R
being an invex function is equivalent to solving the linear system of equations
F (x) = ∇φ(x) = 0, see e.g., [26]. A binary classification problem performed
via machine learning and the softmax cross-entropy convex loss function falls in
such class and we solve such a problem in this section.

The function φ takes the form

φ(x) =

N∑
i=1

φi(x), φi(x) = log
(
1 + ea

⊤
i x

)
− 1(bi = 1)a⊤i x, (42)

22

Figure 5: Algorithm SIN JS and Integral Equation IE 2 with c = 0.01. Impor-
tance sampling. Median run in terms of cost: logarithmic norm of the residual
versus computational cost.

where {ai, bi}, i = 1, . . . , N , is the dataset, ai ∈ Rn, bi ∈ {1, 2} and it is twice-
continuously differentiable. In this section we report the results of the binary
classification dataset a9a [17], with n = 14 and N = 30162.

In the following, we apply Algorithm SIN JS to the system F (x) = ∇φ(x) =
0; since J(x) is symmetric the iterative linear solver is MINRES-QLP. The

approximate Jacobian J̃k is formed by subsampling as in (20) using uniform
probability distribution. Using Theorem 2.2, (29) and (30), the rule for Mk is

|Mk| ≥ min

{
N,

4ζ(xk)

αtk

(
2ζ(xk)

αtk
+

1

3

)
log

(
2n

δJ

)}
(43)

with maxi∈{1,...,N} ∥∇2ϕi(xk)∥ ≤ ζ(xk). It is know that such rule is expensive
to apply as well as pessimistic, in the sense that it provides excessively large
values for |Mk|, Hence we applied (43) setting ζ(xk) = 1,∀k, and

|Mk| = max{Mmin,min{N, M̂k}},

Mmin = ξN, ξ ∈ (0, 1], M̂k =
4

αtk

(
1

αtk
+

1

3

)
log

(
2n

δ

)
.

The parameter ξ affects the value of |Mk|, letting ξ = 1 gives |Mk| = N at

every iteration, i.e., J̃k = J(xk), ∀k; reducing ξ may promote a reduction of
|Mk|.

We measure the computational cost at each iteration as follows. Let the
cost of evaluating ∇2φi for any i ∈ {1, . . . , N} be equal to 1, thus evaluating
∇φ costs N. Each iteration of MINRES-QLP requires the computation of one
Jacobian-vector product of the form J̃kv =

∑
j∈Mk

∇2φi(xk)v, i.e., it requires
|Mk| Hessian-vector products. Assuming that these products are computed
with finite differences and taking into account that ∇φi(xk) has already been
computed at the beginning of the iteration to form F (xk), one MINRES-QLP

23

Figure 6: Algorithm SIN JS and Integral Equation IE 1. Uniform sampling,
density of the sparsified Jacobian equal to s. Median run in terms of cost:
logarithmic norm of the residual versus computational cost.

iteration costs |Mk|. Consequently, the k-th iteration of our algorithm costs
N + |Mk|ℓk with ℓk being the number of MINRES-QLP iterations.

The analysis above indicates that the computational cost of our solver de-
pends on: the number of nonlinear iteration performed; the cardinality of Mk;
the forcing terms {ηk}. We investigate the choice of ξ and ηk’s by applying
Algorithm SIN JS with ξ ∈ {1, 10−1, 10−2, 10−3, 0}, and constant forcing term
ηk = η,∀k, η ∈ {0.5, 10−1, 10−2, 10−3, 10−4}. Further, we set α = 1 in (29).
The initial guess is x0 = 0 and the stopping criterion for the algorithm is
∥F (xk)∥ ≤ 10−3. To account for the randomness in the method, for each setting
of ξ and η out of the fifteen considered, the algorithm is run 21 times.

On the x-axis of Figures 7 and 8 we plot the computational cost, while on the
y-axis we plot ∥F (xk)∥ in logarithmic scale. Each picture in Figure 7 refers to
the median run in terms of computational cost corresponding to a specific value
of ξ and varying forcing terms. Figures (b), (c) and (d) display that, for varying
values of η, the convergence behaviour of the stochastic method is analogous
to that of the inexact Newton method with full sample shown in Figure (a);
on the other hand the stochastic algorithm is computationally more convenient
than using the exact Jacobian. Moreover, we note that the performance of the
method is poor for large values of the forcing terms and improves as η reduces
but then deteriorates again after a certain point. This latter phenomenon is
known as oversolving and indicates that a very accurate solution of the linear
systems is pointless [14].

In general we know that as the forcing terms decrease, the number of outer
iterations decreases as well, while the number of inner iterations for the solution
of the linear system increases. Therefore the most effective choice of the forcing
term depends on the trade-off between the number of inner and outer iterations.
This can be clearly noted comparing the three subplots in Figure 7: while
η = 10−2 is the optimal choice for the case ξ = 1, i.e. for the Inexact Newton

24

method with exact Jacobian, the numerical results suggest to choose η = 10−3

for the remaining values of ξ, i.e. for the methods employing subsampling.
To summarize, in Figure 8 we compare Algorithm SIN JS and the line-search

Inexact Newton method with exact Jacobian. For each value of the scalar ξ,
ξ ∈ {1, 10−1, 10−2, 10−3, 0}, we show the best result in terms of cost obtained
varying η. In Figure (a) we show that, for any value of ξ < 1, Algorithm SIN JS

outperforms the line-search Inexact Newton method with exact Jacobian (ξ =
1). In Figure (b), for each run of Figure (a), we plot the value of the sample size
|Mk| along the iterations. Note that the number of Newton iterations performed
with ξ = 10−2, ξ = 10−1 and ξ = 1 is comparable but ξ = 10−2 provides the
smallest sample size. As a result using ξ = 10−2 provides computational savings
with respect to using ξ = 10−1 and ξ = 1. The methods with ξ = 10−3 and
ξ = 0 clearly work with small sample sizes but requires a number of outer
iterations that is significantly higher than in the runs with larger values of ξ.
In these cases, the per-iteration computational saving that derives from small
sample, is not sufficient to balance the increase in the number of iterations, and
the runs are overall more expensive than the runs with ξ = 10−2.

5 Conclusions

We presented stochastic line-search inexact Newton-like methods for nonlinear
least-squares problems and nonlinear systems of equations and analyzed their
theoretical properties. Preliminary numerical results indicate that our algo-
rithms are competitive with the methods employing exact derivatives. This
work suggests further developments: the generalization of our algorithms to the
case where the residual functions are not evaluated exactly, further investiga-
tion of practical rules for fixing the size of the sample, strategies alternative to
sampling, such as sketching techniques, for building the models.

References

[1] S. Bellavia, G. Gurioli, Stochastic analysis of an adaptive cubic regular-
ization method under inexact gradient evaluations and dynamic Hessian
accuracy, Optimization, 71, pp. 227–261, 2022.

[2] S. Bellavia, G. Gurioli, B. Morini, Adaptive cubic regularization methods
with dynamic inexact Hessian information and applications to finite-sum
minimization, IMA Journal of Numerical Analysis, 41, pp. 764–799, 2021.

[3] S. Bellavia, N. Krejic, N. Krklec Jerinkic, Subsampled Inexact Newton
methods for minimizing large sums of convex functions, IMA Journal of
Numerical Analysis, 40, pp. 2309–2341, 2020.

[4] S. Bellavia, N. Krejić, B. Morini, Inexact restoration with subsampled trust-
region methods for finite-sum minimization, Computational Optimization
and Applications, 76, pp. 701–736, 2020.

25

[5] S. Bellavia, N. Krejić, B. Morini, S. Rebegoldi, A stochastic first-order
trust-region method with inexact restoration for finite-sum minimization,
Computational Optimization and Applications, 84, pp. 53–84 2023.

[6] S. Bellavia, E. Fabrizi, B. Morini, Linesearch Newton-CG methods for con-
vex optimization with noise, Annali dell’Università di Ferrara, 68, pp. 483–
504, 2022.

[7] A.S. Berahas, R. Bollapragada, J. Nocedal, An Investigation of Newton-
Sketch and Subsampled Newton Methods, Optimization Methods and Soft-
ware, 35, pp. 661–680, 2020.

[8] A.S. Berahas, L. Cao, K. Scheinberg, Global convergence rate analysis of a
generic line search algorithm with noise, SIAM Journal on Optimization,
31, 2021.

[9] R. Bollapragada, R. Byrd, J. Nocedal, Exact and Inexact Subsampled New-
ton Methods for Optimization, IMA Journal Numerical Analysis, 39, pp.
545–578, 2019.

[10] P.N. Brown and Y. Saad, Convergence Theory of Nonlinear Newton-Krylov
Algorithms SIAM Journal on Optimization, 1994.

[11] C. Cartis, K. Scheinberg, Global convergence rate analysis of unconstrained
optimization methods based on probabilistic model, Mathematical Program-
ming, 169, pp. 337–375, 2017.

[12] R. Chen, M. Menickelly, K. Scheinberg, Stochastic optimization using a
trust-region method and random models, Mathematical Programming, 169,
pp. 447-487, 2018.

[13] S.C.T. Choi, M.A. Saunders, Algorithm 937: MINRES-QLP for symmetric
and Hermitian linear equations and least-squares problems, ACM Transac-
tions on Mathematical Software, 40, pp. 1—12, 2014.

[14] R.S. Dembo, S.C. Eisenstat, T. Steinhaug, Inexact Newton method, SIAM
Journal on Numerical Analysis 19, pp. 400–409, 1982.

[15] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press,
1985.

[16] C.T. Kelley, J. I. Northrup, A Pointwise Quasi-Newton Method for Integral
Equations, SIAM Journal on Numerical Analysis 25, pp. 1138—1155, 1988.

[17] M. Kelly, R. Longjohn, K. Nottingham, The UCI Machine Learning Repos-
itory, https://archive.ics.uci.edu.

[18] H. Liu, Q. Ni, Incomplete Jacobian Newton method for nonlinear equations,
An International Journal of Computers & Mathematics with Applications,
56, pp. 218–227, 2008.

26

[19] Y. Liu, F. Roosta, Convergence of Newton-MR under inexact hessian in-
formation, SIAM Journal on Optimization, 31, pp. 59–90, 2021.

[20] P.G. Martinsson, J. A. Tropp, Randomized numerical linear algebra: Foun-
dations and algorithms, Acta Numerica, 29, pp. 403–572, 2020.

[21] S.K. Mishra, G. Giorgi, Invexity and optimization, Vol. 88, Springer Science
& Business Media, 2008.

[22] J.J. Moré, M.Y. Cosnard, Numerical solution of nonlinear equations, ACM
Transactions on Mathematical Software, 5, pp. 64–85, 1979.

[23] C. Paquette, K. Scheinberg, A Stochastic Line Search Method with Expected
Complexity Analysis, SIAM Journal of Optimization, 30, pp. 349–376, 2020.

[24] C.C. Paige and M.A. Saunders, LSQR: An algorithm for sparse linear equa-
tions and sparse least squares, ACM Transactions on Mathematical Soft-
ware 8, pp. 43–71, 1982.

[25] L. Reichel, Q. Ye, Breakdown-free GMRES for singular systems, SIAM
Journal on Matrix Analysis and Applications, 26, pp. 1001–1021, 2005.

[26] F. Roosta, Y. Liu, P. Xu, M.W. Mahoney, Newton-MR: Inexact Newton
Method with minimum residual sub-problem solver, EURO Journal on Com-
putational Optimization, 10, 2022, 100035.

[27] F. Roosta-Khorasani, M.W. Mahoney, Sub-Sampled Newton Methods,
Mathematical Programming, 174, pp. 293–326, 2019.

[28] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual method for
solving nonsymmetric linear systems, SIAM Journal Sci. Stat. Comput., 6
(1985), pp. 856–869.

[29] J.A. Tropp, An Introduction to Matrix Concentration Inequalities, Foun-
dations and Trends in Machine Learning, 8, pp. 1–230, 2015.

[30] P. Xu, F. Roosta-Khorasani, M.W. Mahoney, Newton-Type Methods for
Non-Convex Optimization Under Inexact Hessian Information, Mathemat-
ical Programming, 184, pp. 35–70, 2020.

[31] R. Yuan, A. Lazaric, R. M. Gower, Sketched Newton–Raphson, SIAM Jour-
nal on Optimization, 32, 2022.

[32] J. Wang, X. Wang, L. Zhang, Stochastic Regularized Newton Methods for
Nonlinear Equations, Journal of Scientific Computing, 94, article number
51, 2023.

[33] J. Willert, X. Chen, C T. Kelley, Newton’s method for Monte Carlo-based
residuals, SIAM Journal of Numerical Analysis, 53, pp. 1738–1757, 2015.

27

(a) ξ = 1 (full sample) (b) ξ = 10−1

(c) ξ = 10−2 (d) ξ = 10−3

(e) ξ = 0

Figure 7: Algorithm SIN JS and binary classification for the dataset a9a. Exact
Jacobian (ξ = 1) and stochastic variant with varying ξ and η. Median run in
terms of cost: logarithmic norm of the residual versus computational cost.

28

(a) (b)

Figure 8: Algorithm SIN JS and binary classification for the dataset a9a. Exact
Jacobian (ξ = 1) and stochastic variant with varying ξ and η. Median run in
terms of cost: logarithmic norm of the residual versus the computational cost
(left), logarithm of Mk versus iterations (right).

29

	Introduction
	Notations

	Inexact line-search methods
	NLS problem: inexact Gauss-Newton method with row compression of the Jacobian
	 NSE problem: inexact Newton method with Jacobian sampling

	Iteration complexity for first-order optimality
	Analysis of the trial step
	Fulfillment of the line-search condition
	Complexity analysis of the stochastic process

	Numerical Results
	Solution of least-squares problems
	Solution of nonlinear systems
	Nonlinear systems
	Softmax loss function

	Conclusions

