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Abstract Stochastic programming (SP) is a well-studied framework for mod-
eling optimization problems under uncertainty. However, despite the significant
advancements in solving large SP models, they are not widely used in industrial
practice, often because SP solutions are difficult to understand and hence not
trusted by the user. Unlike deterministic optimization models, SP models gener-
ally involve recourse variables that can take different values for different scenarios
(i.e. uncertainty realizations), which makes interpreting their solutions a challenge
when large numbers of scenarios and recourse variables are considered. In this
work, we propose scenario and recourse reduction methods that can help enhance
the explainability of SP solutions. Focusing on two-stage linear SP, the goal is to
build reduced models, with much smaller sets of scenarios and recourse variables,
that are easier to analyze yet still capture the key features of the original prob-
lems. Specifically, we explicitly search for reduced models that generate the same
or close to the same first-stage decisions as the original SP models. The efficacy
of the proposed methods is demonstrated in computational case studies involving
problems of industrial relevance and size.

Keywords Stochastic programming · Explainability · Scenario reduction ·
Recourse reduction

1 Introduction

Stochastic programming (SP) (Birge and Louveaux, 2011) is a powerful tool for
modeling optimization problems under uncertainty. The last few decades have
seen tremendous advancement in terms of improving the tractability of large-scale
SP models as well as identifying new applications that can be modeled using
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the SP paradigm. However, despite the progress made, SP is scarcely used in
industrial practice. One of the main reasons for this is the inherent difficulty in
understanding SP solutions. In SP, the uncertainty is commonly represented by
a set of discrete scenarios, and it may require a large number of scenarios to
approximate the underlying probability distribution with a high level of accuracy.
In addition, SP models may involve recourse decisions that vary based on the
chosen scenarios, which makes it challenging for the user to see the relationships
between the different decisions and their impact on the objective function. With
an ever-increasing emphasis on accounting for uncertainty in decision making,
we believe that a structured explainability paradigm is needed to complement the
existing SP methodology that can enhance its applicability to real-world problems.

The idea of improving the interpretability of SP solutions is inspired by a
similar line of research in the field of machine learning (ML), popularly termed
explainable artificial intelligence (XAI). Modern ML models, such as deep neu-
ral networks, can exhibit immense predictive power but tend to be complex and
opaque; hence, they are also often referred to as black-box models. However, in
many applications, the interpretability of the suggested predictions is as important
as the predictions themselves; thus, the need to develop interpretable models or
post hoc methodologies that can explain the outputs of ML models has recently
gained significant attention. Post hoc XAI methods can be model-specific or model-
agnostic. One example of a model-specific approach is the TreeSHAP method
(Lundberg and Lee, 2017) that is particularly designed for tree-based models like
random forests (Breiman, 2001). Model-agnostic explainability methods include
local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016) and
counterfactual explanations (Wachter et al., 2017). Many XAI approaches utilize
surrogate or simplified, more interpretable models to explain the output predic-
tions. For a general overview of existing XAI techniques, we refer the reader to
some of the many recent perspectives and reviews on this topic (Rudin, 2019;
Arrieta et al., 2020; Belle and Papantonis, 2021).

Compared to most ML models, optimization models generally have a higher
degree of interpretability as they consist of constraints that are typically derived
explicitly from physical laws or logical expressions. However, although the model
formulation may be easily interpretable, the process (or algorithm) of obtaining
the optimal solution often is not. In fact, for all practical purposes, an optimiza-
tion algorithm can be viewed as a black box. Especially in large-scale optimization
involving many interacting variables and parameters, the complexity can be over-
whelming and therefore limit the user’s ability to understand why the provided
solution is optimal. Existing sensitivity analysis methods can help better under-
stand the solution by quantifying the impact of model parameters on the objective
function (Ward and Wendell, 1990); however, this inherently local analysis often
fails to provide satisfactory explanations in complex problems. Recently, Bertsimas
and Stellato (2021) proposed a method for interpreting the optimal solution to an
optimization problem via classification trees trained on different model instances.
But for the most part, the interpretability of optimization models is very much an
open research topic. With regard to SP, researchers have developed metrics such
as the value of stochastic solution (Birge and Louveaux, 2011) and the expected
value of perfect information to quantify the quality of an SP solution relative to a
deterministic one. However, they do not offer any physical intuition or reasoning
behind the choice of solution. To the best of our knowledge, so far, no systematic



Enhancing explainability of stochastic programming solutions 3

approach has been developed that specifically aims to improve the explainability
of SP solutions.

In this work, we present an initial attempt in developing structured methods
that aid the process of understanding SP solutions. We consider a general two-
stage linear stochastic program of the following form:

minimize
x,y1,...,y|S|

c⊤x+
∑
s∈S

psq
⊤
s ys (SP)

subject to Ax ≤ b

Tsx+Wsys ≤ hs ∀ s ∈ S
x ≥ 0

ys ≥ 0 ∀ s ∈ S,

where x and y denote the first- and second-stage variables, respectively. While
the first-stage cost vector c and constraint parameters A and b are assumed to
be known, the second-stage costs q and constraint parameters T , W , and h are
generally considered to be uncertain. The uncertainty is represented by a set of
discrete scenarios S, with each scenario s given by the corresponding possible
realization of the uncertainty (qs, Ts,Ws, hs) and the probability ps. While the
first-stage decisions are made before the realization of the uncertainty, the second-
stage decisions, also called recourse decisions, can be made after the true values of
the uncertain parameters are revealed. To model this sequential decision-making
process, the formulation incorporates a separate ys for each scenario s such that
the recourse decisions can vary across the scenarios. The objective is to minimize
the total expected cost.

The complexity of a two-stage SP and hence the difficulty of interpreting its
solution increases with the numbers of scenarios and recourse variables, even when
the corresponding deterministic problem is relatively easy to comprehend. How-
ever, we often observe that large SP problems can be approximated using a much
smaller set of scenarios. Also, in many instances, we may only need a small subset
of recourse variables to achieve the minimum expected cost. While we do not know
those subsets of scenarios and recourse variables a priori, we have the opportu-
nity to identify them after obtaining the optimal solution, which could allow us
to create a significantly reduced, much more interpretable model. Following this
idea, we propose two explainability methods that aim to reduce the complexity
and hence enhance the explainability of an SP solution: (i) Scenario clustering
and reduction based on similarity in the optimal recourse decisions, which reduces
the number of scenarios and helps identify the features of the uncertainty that
are the most relevant for the optimal SP solution. (ii) Recourse reduction, which
identifies a set of principal recourse variables required to achieve the same optimal
first-stage decisions while reaching the same or close to the same optimal value as
the original SP model.

The literature that is most closely related to our work is the one on scenario
reduction for SP (Dupačová et al., 2003). Existing scenario reduction techniques
apply moment matching (Høyland andWallace, 2001; Zhang and He, 2022; Bounit-
sis et al., 2022), transportation metrics such as Wasserstein and Sinkhorn distances
(Li and Floudas, 2014; Kammammettu and Li, 2023), clustering (Latorre et al.,
2007; Beraldi and Bruni, 2014; Feng and Ryan, 2013; Keutchayan et al., 2021;
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Medina-Gonzalez et al., 2020), or optimization-based methods (Hewitt et al., 2022;
Bertsimas and Mundru, 2022). Often, a combination of these concepts is used to
achieve a reduced scenario set of desired cardinality and properties that closely
resemble the distribution governing the original set of scenarios. Here, the main
goal is to reduce the computational complexity of the SP problem; as such, it
serves a different purpose than our proposed scenario reduction method aimed at
enhancing explainability. For the same reason, the traditional scenario reduction
is performed prior to solving the SP problem, while our method is a post hoc
procedure. Similarly, limiting the choice of recourse variables is another common
strategy for reducing the computational complexity of an SP problem. For exam-
ple, multistage SP models are often approximated using two-stage formulations
(Balasubramanian and Grossmann, 2004; Patriksson et al., 2015), where all re-
course variables beyond the second stage are considered second-stage variables. In
the extreme case, one can also consider all recourse variables to be first-stage (i.e.
here-and-now) decisions, which leads to a static SP problem. Same as the tradi-
tional scenario reduction, this kind of recourse reduction is performed a priori and
typically done in a heuristic fashion. In contrast, our proposed recourse reduction
method is applied after obtaining the SP solution and follows a more rigorous
approach.

The remainder of this paper is organized as follows. In Section 2, we present the
proposed scenario clustering and reduction methods, followed by the development
of the proposed recourse reduction approach in Section 3. To demonstrate the
efficacy of the proposed methods, we conduct three computational case studies
with applications relevant for the industrial gas industry. The results from these
case studies are presented in Section 4. Finally, we close with some concluding
remarks in Section 5.

2 Scenario clustering and reduction

The basic premise for the proposed methods is that we have already solved (SP)
and obtained an optimal solution (x∗, y∗) with the corresponding optimal objective
function value z∗. Naturally, one would now investigate this SP solution to check
its validity and better understand why this particular solution is optimal. To aid
this process, we develop scenario and recourse reduction methods to obtain a less
complex SP model that can be more easily analyzed as well as to gain insights
into the relationships between the uncertainty and the optimal decisions.

To reduce the number of scenarios, we follow the two-step procedure shown in
Fig. 1. Given the full set of scenarios, we first apply k-means clustering to obtain
clusters where the scenarios from the same cluster exhibit similar recourse deci-
sions. Then, given these scenario clusters, we solve a scenario reduction problem
to obtain a representative scenario for each cluster. This leads to a reduced SP
model that only considers the chosen representative scenarios, and we construct it
such that it has the same or close to the same optimal first-stage solution as the
original SP model. The details of the scenario clustering and reduction methods
are provided in the following subsections.
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Fig. 1: Using k-means clustering, the full set of scenarios is first partitioned into k clusters
based on the recourse decisions. Then, one representative scenario is selected from each cluster
by solving the proposed scenario reduction problem.

2.1 Recourse-based scenario clustering

The proposed scenario clustering serves two main purposes: obtaining scenario
clusters to be used in the subsequent scenario reduction step and, equally im-
portant, revealing relationships between features of the uncertain parameters and
the optimal decisions. Traditional scenario clustering methods (Beraldi and Bruni,
2014) assign scenarios with similar uncertainty realizations (i.e. uncertain param-
eter values) to the same cluster; we call this realization-based scenario clustering.
The underlying assumption is that similar realizations lead to similar optimal deci-
sions. However, closeness in uncertain parameter values may not necessarily result
in closeness in decisions; rather it could be some other feature in the data that
is a better predictor of the optimal decisions, but we do not know that feature
a priori. In our case, we have the advantage that we already know the optimal
recourse decisions y∗; hence, we can directly use that information to cluster the
scenarios. We call this recourse-based scenario clustering, which can help the user
identify the features in the uncertain parameters that best explain the optimal
recourse decisions.

To perform the proposed recourse-based scenario clustering, we apply a stan-
dard k-means algorithm where given the full scenario set S and a desired number
of clusters k, we aim to assign scenarios that exhibit the most similar recourse de-
cisions to the same cluster. We obtain k sets of disjoint scenarios S̄ = {S̄1, . . . , S̄k}
with S̄i ⊆ S for i = 1, . . . , k and S = ∪k

i=1S̄i by solving the following optimization
problem:

minimize
S̄

k∑
i=1

∑
s∈S̄i

∥y∗s − µi∥ (SCk )

subject to µi =
1

|S̄i|
∑
s∈S̄i

y∗s ∀ i = 1, . . . , k,

where y∗s are the optimal recourse decisions for scenario s and µi denotes the mean
for scenario cluster i. Note that for the conventional realization-based scenario
clustering, we would replace y∗s in (SCk ) with (qs, Ts,Ws, hs).
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2.2 Scenario reduction

Given k scenario clusters {S̄1, . . . , S̄k}, we now want to find a representative sce-
nario for each cluster such that the difference between the optimal first-stage
solution to the resulting reduced SP problem, denoted by x̃, and the one to the
original SP problem, x∗, is minimized. Ideally, we have x̃ = x∗ as we would like to
use the reduced model to explain the original solution, including elucidating why
it is optimal.

The scenario reduction problem can be formulated as the following bilevel
program:

minimize
v,x̃,ỹ

∥x̃− x∗∥ (SRk )

subject to (x̃, ỹ) ∈ argmin
x,y

c⊤x+
k∑

i=1

p̄i
∑
s∈S̄i

q⊤s ys

subject to Ax ≤ b vs = 1
Tsx+Wsys ≤ hs

ys ≥ 0

 ∨
[
vs = 0
ys = 0

]
∀ s ∈ S

x ≥ 0∑
s∈S̄i

vs = 1 ∀ i = 1, . . . , k

v ∈ {0, 1}|S|,

where the incorporation of the lower-level problem ensures that x̃ is optimal for
the reduced SP model. The binary variable vs equals 1 if scenario s is selected to
be the representative scenario for the cluster it belongs to. The disjunctions in the
lower-level problem indicate the selection of constraints and costs corresponding to
the representative scenarios. The scenarios that are not selected, i.e., scenarios for
which vs equals 0, have their constraints relaxed and corresponding cost set to 0
(by setting ys = 0). The disjunctions can be reformulated into mixed-integer linear
constraints using standard reformulation techniques (Trespalacios and Grossmann,
2014). Lastly, p̄i denotes the cumulative probability of cluster i, i.e., p̄i =

∑
s∈S̄i

ps.
Given a feasible v, the corresponding reduced SP model is (SP) with S replaced

by Ŝ = {s ∈ S : vs = 1} and ps replaced by p̂s = p̄i where s ∈ S̄i.

Remark 1 Note that even when the optimal first-stage decisions of the original
and reduced SP models are the same, their optimal values may not. Normally, this
does not hinder the interpretation of the solution to the reduced model. However,
one should still check the difference in the optimal values since too large of a
discrepancy may indicate an inadequate number of scenarios or weighting of the
different scenarios in the reduced model.

3 Recourse reduction

The goal of recourse reduction is to obtain an SP formulation that has a signifi-
cantly smaller set of recourse variables but still leads to the same optimal first-stage
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decisions x∗ and the same or almost the same optimal value z∗ as the original SP
problem. The reduced set of recourse variables, which we refer to as the princi-
pal recourse variables, are chosen from the original set of recourse variables; the
remaining variables are treated as first-stage variables in the reduced SP model.
The principal recourse variables represent the decisions that benefit the most from
the flexibility to change in the second stage depending on the realization of the
uncertainty; as such, identifying those decisions immediately provides a valuable
explanation of the SP solution. A smaller set of recourse decisions simplifies the
analysis of the solution in general, and it also eases the implementation of the
solution as the user has fewer decisions to make after observing the realizaed un-
certainty.

3.1 Bilevel formulation

To formulate the recourse reduction problem, we introduce the set of indices of
original recourse variables R and the binary variable vr that equals 1 if yr is
chosen to be a recourse variable in the reduced SP problem. Given a selected set
of recourse variables, encoded in the vector of binaries v, we can formulate the
resulting reduced SP model as follows:

minimize
z,x,y

z (RRSP(v))

subject to (z, x, y) ∈ F(v)

with the feasible region

F(v) =


(z, x, y) :

z = c⊤x+
∑
s∈S

psq
⊤
s ys

Ax ≤ b

Tsx+Wsys ≤ hs ∀ s ∈ S
x ≥ 0

ys ≥ 0 ∀ s ∈ S
yrs − yr,s+1 ≤ Mvr ∀ r ∈ R, s ∈ S\{|S|}
yrs − yr,s+1 ≥ −Mvr ∀ r ∈ R, s ∈ S\{|S|}


,

where all constraints from the full problem (SP) are considered as well as the
cost function in the form of the first equation. In addition, the last two sets of
constraints with the big-M parameter M represent non-anticipativity constraints
that are enforced for each yr for which vr = 0. One can see that if vr = 0, yrs has
to take the same value across all scenarios, which effectively renders yr a first-stage
variable. If vr = 1, however, yr remains a recourse variable as the value of yrs can
vary across different scenarios.

Given a desired number of recourse variables k, the recourse reduction problem
can then be formulated as the following bilevel program:

ẑk = min
v,z̃,x̃,ỹ

z̃ (RRk )

subject to (z̃, x̃, ỹ) ∈ argmin
z,x,y

{z : (z, x, y) ∈ F(v)} (1)
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x̃ = x∗ (2)∑
r∈R

vr = k (3)

v ∈ {0, 1}|R|, (4)

where we minimize the optimal value of the reduced SP problem z̃ such that it
is as close as possible to z∗, the optimal value of (SP). The reduced SP model is
embedded as a lower-level problem in constraint (1) that ensures that (z̃, x̃, ỹ) is
the optimal solution to (RRSP(v)). Equation (2) enforces that x̃ equals x∗, the
optimal first-stage decisions from solving (SP). Equation (3) sets the number of
selected recourse variables to k. Clearly, as we increase the number of recourse
variables k, ẑk will decrease such that ẑ0 ≥ ẑ1 ≥ · · · ≥ ẑ|R| = z∗. Hence, we can
solve (RRk ) for different k’s and choose a solution for which ẑk is sufficiently close
to z∗.

Remark 2 Equation (2) is an important constraint from an explainability stand-
point. It ensures that x∗, the first-stage decisions that the user will implement,
are also optimal for the reduced problem even if ẑk ̸= z∗. This allows the user
to use the reduced SP solution to investigate the relationship between first- and
second-stage decisions and better understand why x∗ is optimal. However, equa-
tion (2) is also what makes (RRk ) particularly difficult to solve, and (RRk ) may
be infeasible for small k’s due to this constraint.

3.2 Lower-bounding problem

The bilevel recourse reduction problem (RRk ) can be difficult to solve, especially
when the original SP problem is large. In the following, we formulate a single-level
lower-bounding problem, which is significantly more computationally efficient, and
simple conditions under which it has the same optimal solution as (RRk ).

Proposition 1 Consider the following problem:

zk = min
v,z,x,y

z (LBPk )

subject to (z, x, y) ∈ F(v)∑
r∈R

vr = k

v ∈ {0, 1}|R|,

which is a (single-level) mixed-integer linear program (MILP). Its optimal solution
provides a lower bound to (RRk ), i.e. zk ≤ ẑk.

Proof The following formulation is a relaxation of (RRk ) simply obtained by re-
moving equation (2) from (RRk ):

żk = min
v,z̃,x̃,ỹ

z̃

subject to (z̃, x̃, ỹ) ∈ argmin
z,x,y

{z : (z, x, y) ∈ F(v)}
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r∈R

vr = k

v ∈ {0, 1}|R|.

Since it is a relaxation of (RRk ), we have żk ≤ ẑk. In this bilevel program, no con-
straints are imposed in the upper level on variables in the lower level. In addition,
the upper-level objective function is the optimal value of the lower-level problem.
Hence, it can be further reformulated into:

żk = min
v

min
z,x,y

{z : (z, x, y) ∈ F(v)}

subject to
∑
r∈R

vr = k

v ∈ {0, 1}|R|,

which, after merging the two minimizations, leads to (LBPk ). Thus, we have zk =
żk ≤ ẑk.

In our computational experiments, we have observed that often, for sufficiently
large k’s, (RRk ) and (LBPk ) have the same solutions with regard to the choice of
recourse variables. Sometimes this can be immediately verified, as stated in the
following corollary.

Corollary 1 Let (v, zk, x, y) be the optimal solution to (LBPk ). If v is also opti-
mal for (RRk ) and the reduced SP problem (RRSP(v)) with v = v has a unique
optimal solution, then x = x∗ and zk = ẑk.

Proof If v is optimal for (RRk ), then x∗ is an optimal solution to (RRSP(v)) due
to constraints (1) and (2). If x∗ is the unique optimal solution to (RRSP(v)), then
x = x∗ and zk = ẑk since (LBPk ) reduces to (RRSP(v)) for v = v.

The uniqueness condition from Corollary 1 does not always hold. However, in
the general case, we can solve another problem to check if a v̄ that is optimal for
(LBPk ) is also optimal for (RRk ).

Proposition 2 Let (v, zk, x, y) be the optimal solution to (LBPk ). Solve the fol-
lowing verification problem:

z̄k = min
z,x,y

z (VPk )

subject to (z, x, y) ∈ F(v)

x = x∗.

If z̄k = zk, then v is also optimal for (RRk ) and ẑk = zk = z̄k. Otherwise, z̄k > zk.

Proof The purpose of solving (VPk ) is to check whether the first-stage decisions
x∗ are also optimal for (RRSP(v)). This is true if z̄k = zk. In that case, v is
feasible in (RRk ) and the resulting objective function value of (RRk ) is z̄k, which
must also be the optimal value of (RRk ) since zk ≤ ẑk (from Proposition 1) and
z̄k = zk. Hence, we have ẑk = zk = z̄k. Furthermore, since (VPk ) is a restriction
of (LBPk ), we have z̄k ≥ zk, and if x∗ is not optimal for (RRSP(v)), z̄k > zk.
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Given Propositions 1 and 2, we could, instead of solving (RRk ), solve (LBPk )
for different k’s and check if each solution is also optimal for (RRk ) by solving
(VPk ), which is an LP. We may start with k = 0 and keep increasing k until
we obtain a reduced set of recourse variables for which ẑk = zk = z̄k and ẑk is
sufficiently close to z∗. Note that using this heuristic approach, we may terminate
at a k that is larger than the one we would obtain from solving (RRk ). However,
it can be very effective in cases where directly solving (RRk ) is computationally
intractable.

4 Case studies

In this section, we present three case studies that demonstrate how the proposed
scenario and recourse reduction techniques can aid in explaining SP solutions.
First, we consider an illustrative supply chain planning problem where, despite
the simplicity of the supply chain network, the solution to the original SP problem
is difficult to analyze due to the large number of scenarios; here, we demonstrate
the use of scenario reduction and the interpretation of the solution to the reduced
model. The second case study addresses an electricity procurement scheduling
problem, where we show how scenario clustering and reduction can be applied
to obtain insights into the features of the uncertain parameters that affect the
decisions the most. Finally, in the third case study, we use a larger instance of
the supply chain planning problem to demonstrate the effectiveness of the pro-
posed recourse reduction approach in reducing the complexity of the SP model.
All problems were modeled using JuMP v1.1.1 (Dunning et al., 2017) in Julia
v1.6.1 (Bezanson et al., 2017) and solved using Gurobi v9.5.2 (Gurobi Optimiza-
tion, LLC, 2021). Bilevel problems specifically were modeled using BilevelJuMP
v0.5.1 in Julia.

4.1 Supply chain planning with large number of demand scenarios

Consider a set of production plants that manufacture a certain product for which
there are multiple customers with uncertain demands. In this problem, we assume
that the production decisions at the plants need to be made before the demand
uncertainty realizes; hence, these are our first-stage decisions. Once we know the
demand, we can decide how much to transport from each plant to each customer
and how much product we need to purchase externally to meet any shortfall in
demand satisfaction; hence, these are our recourse decisions. This setting is, for ex-
ample, typical for the industrial gas industry where production planning decisions
are commonly made on a monthly basis while distribution decisions are made on
a daily or weekly basis once the order book is finalized for that time period. This
supply chain planning problem can be formulated as the following two-stage linear
SP problem:

minimize
x,y,ȳ

∑
i∈I

cixi +
∑
s∈S

ps
∑
j∈J

[
q̄j ȳjs +

∑
i∈I

qijyijs
]

(5)

subject to xi ≤ Cmax
i ∀ i ∈ I (6)
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i∈I

yijs + ȳjs ≥ ξjs ∀ j ∈ J , s ∈ S (7)

∑
j∈J

yijs ≤ xi ∀ i ∈ I, s ∈ S (8)

xi ≥ 0 ∀ i ∈ I (9)

yijs ≥ 0 ∀ i ∈ I, j ∈ J , s ∈ S (10)

ȳjs ≥ 0 ∀ j ∈ J , s ∈ S, (11)

where I, J , and S are the sets of plants, customers, and scenarios, respectively.
The production quantity at plant i is denoted by xi. The amount of product sup-
plied from plant i to customer j in scenario s is captured by yijs. The amount
of product that must be procured externally to meet the demand deficit at cus-
tomer j in scenario s is denoted by ȳjs. The unit production cost at plant i, unit
transportation cost between plant i and customer j, and unit procurement cost at
customer j are represented by coefficients ci, qij , and q̄j , respectively. The demand
for customer j in scenario s is ξjs. The probability of scenario s is denoted by ps.
Constraints (6) limit the production at each plant i by the quantity Cmax

i . Con-
straints (7) ensure that the demand is satisfied at each customer, and constraints
(8) ensure the product distribution from each plant does not exceed the produc-
tion. Constraints (9)-(11) enforce the non-negativity on the decision variables. The
objective function (5) represents the expected overall cost of operating the supply
chain network.

In this case study, we consider a network of two plants (A and B) and three
customers (1, 2, and 3), as shown in Fig. 2. The unit production costs at Plants A
and B are $100 and $150, respectively, and maximum production amount at each
plant, Cmax

i , is set to 38 units. The unit purchase cost at each customer is set to
$500. The unit transportation costs are as follows: $90 for A→1, $67.5 for A→2,
$90 for A→3, $67.5 for B→1, $30 for B→2, and $67.5 for B→3. We consider 50
equally probable demand scenarios where the demand for each customer is sampled
from U(0, 35).

A

B

1

2

3

Fig. 2: A network of two plants and three customers denoted by blue and orange nodes,
respectively. Edge lengths are proportional to the corresponding transportation costs.
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With 50 scenarios, the solution to the SP model is difficult to interpret despite
the rather simple network. Hence, we employ the proposed scenario reduction
strategy to identify a simplified model that is easier to analyze. Setting k = 5,
the recourse-based scenario clustering results in the five scenario clusters shown
in Fig. 3. Here, we depict each scenario in the space of the three recourse vari-
ables yA1, yA2, and yA3. For comparison purposes, we also performed conventional
realization-based clustering and found that the resulting assignment has a within-
cluster sum of squares in the recourse space, i.e.

∑k
i=1

∑
s∈S̄i

(y∗s − µi)
2, that is

about 51% greater than the one obtained from recourse-based clustering. This
clearly indicates that scenarios that are similar in their uncertainty realizations
may not lead to the same optimal recourse decisions.
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Fig. 3: Illustrating clusters obtained from recourse-based clustering for k = 5.

With the five scenario clusters, we solve scenario reduction problem and obtain
the following five representative scenarios: Scenarios 4, 9, 14, 33, and 47 with
probabilities 0.32, 0.24, 0.24, 0.12, and 0.08, respectively. The optimal first-stage
decisions of the resulting reduced SP model are the same as the ones obtained
from the original model with the full set of scenarios, namely 38 and 27 units of
production from Plants A and B, respectively. Additionally, the optimal value of
the reduced model differs from the one of the original model by less than 2%.

We analyze the reduced model’s solution as a means of understanding the
original model’s solution. Fig. 4 shows the optimal decisions for all five scenarios
of the reduced model. Here, the sizes of the plant and customer nodes represent
the production amounts and product demands, respectively. The thickness of the
edge between a plant and a customer indicates the amount of product transported.
We can now make the following observations and draw some useful insights that
help explain the SP solution:

1. We see that Plant A is at its production capacity while Plant B is not. This
prompts us to compare the costs to serve each customer, which consist of
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Fig. 4: Illustrating the first- and second-stage decisions obtained from solving the reduced
model with five representative scenarios – 4 (top left), 9 (top right), 14 (bottom left), 33
(bottom center), and 47 (bottom right). The sizes of the plant and customer nodes correspond
to the production amounts and product demands, respectively. The edge thickness corresponds
to the amount transported between a plant and a customer. The quantity in red font (“+x”)
next to a customer node corresponds to the product purchased externally.

both production and transportation costs, from Plants A and B. Although,
compared to Plant B, Plant A is located farther away from all customers, we
find that the cost to serve any of the given customers is lower for Plant A
due to its considerably lower production cost. This explains why the optimal
solution suggests producing at Plant A as much as possible and use Plant B
only to meet the demand that Plant A cannot.

2. In four out of the five scenarios, the capacities at both plants are sufficient to
satisfy the demands of all customers, implying no external purchase is required
in those scenarios. However, in Scenario 14, additional product is purchased
externally, indicating that Plant B’s production amount is not simply set to
meet the largest demand among the five scenarios. This begs the question why
it is optimal to produce this amount at Plant B.

3. In Scenario 14, Customer 2’s demand exceeds Plant B’s production capacity;
thus, Plant A must pitch in to meet its demand despite being farther away.
Also, the overall demand in the network exceeds the combined capacities of
Plants A and B by 4 units, necessitating the external purchase of 4 units of the
product at Customer 1. This results in a significantly higher second-stage cost
compared to other scenarios, despite just slightly higher average demand per
customer (see Fig. 5). Why do we not increase Plant B’s production amount
by 4 units to satisfy the demand of Customer 1 instead of purchasing the prod-
uct externally, where the latter is certainly more expensive? Recall that the
production rates are first-stage decisions; hence, the corresponding production
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Fig. 5: Illustrating the chosen representative demand scenarios and the corresponding second-
stage costs. The size of the markers is proportional to the representative probabilities of cor-
responding scenarios.

costs incur independent of the realization of the demand uncertainty. Trans-
portation and purchase decisions are recourse decisions and differ across the
five scenarios, so do the corresponding costs. In this case, since the 4 units of
product purchase only occur in Scenario 14, which has a probability of 0.24,
their contribution to the total expected cost is $480. Increasing the capacity
of Plant B by 4 units and transporting them to Customer 1 in Scenario 14, on
the other hand, would increase the total expected cost by about $665. So it is
less expensive to purchase those 4 units of product externally.

4. Why should we not further reduce Plant B’s production amount? Here, it
helps to look at the total demands in all five scenarios, which are 62, 65, 69,
64, and 65 units, respectively. This means that if we produce less than 27
units at Plant B (in addition to the 38 units at Plant A), we will need to
purchase additional product externally in Scenarios 9, 14, and 47. These three
scenarios have a combined probability of 0.56; hence, purchasing one unit of
product in these three scenarios would contribute $280 to the total expected
cost. This is in contrast to about $179 for producing that one unit at Plant
B and transporting it to Customers 1, 2, and 3 in Scenarios 9, 14, and 47,
respectively, which explains why the optimal production amount at Plant B is
27 units.

The above analysis precisely explains the optimal first-stage decisions of the
SP problem, which was relatively easy given the reduced set of scenarios. It would
have been much more difficult if we tried to do so using the original full set of 50
scenarios.

4.2 Electricity procurement scheduling under price uncertainty

Electricity procurement is an important consideration in power-intensive indus-
tries. In operating such industrial plants, one typically needs to decide whether
to purchase electricity from power contracts or from spot markets (Fig. 6). Power
contract prices are relatively stable; however, the decision to purchase from them
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Fig. 6: Electricity can be purchased through the spot market or a contract. Contract prices
are more stable but require ordering well ahead of time, whereas spot prices are more volatile
but allow for short-notice purchases. We consider 40 price scenarios for the spot market over
a 24-hour scheduling horizon.

needs to be made well ahead of time. On the other hand, spot electricity prices,
in general, are highly time-sensitive and uncertain (may be lower or higher than
the power contract price) and become known only shortly before the time of de-
livery. Hence, there is a trade-off to be optimized in purchasing electricity from
power contracts and spot markets, which can be formulated as a two-stage SP
problem. Here, we consider a simplified version of the model proposed by Zhang
et al. (2016):

minimize
x,y,v

∑
t∈T

ctxt +
∑
s∈S

ps
∑
t∈T

[
rtsyts + atvts

]
(12)

subject to imin ≤ i0 +
t∑

t′=1

(vt′s − dt′) ≤ imax ∀ t ∈ T , s ∈ S (13)∑
t∈T

(vts − dt) ≥ 0 ∀ s ∈ S (14)

mvts ≤ xt + yts ∀ t ∈ T , s ∈ S (15)

xt ≥ 0 ∀ t ∈ T (16)

yts, vts ≥ 0, ∀ t ∈ T , s ∈ S, (17)

where T and S denote the sets of time periods and spot price scenarios, respec-
tively. The probability of occurrence of a scenario s is denoted by ps. Electricity
purchased from the power contract in time period t is denoted by xt, whereas
electricity purchased from the spot market and the production amount in time
period t and scenario s are denoted by yts and vts, respectively. Note that x are
the first-stage decisions while y and v constitute the recourse decisions. The unit
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cost of purchase from the power contract, cost of purchase from the spot market,
and cost of production are represented by parameters ct, rts, and at, respectively.
The product demand in time period t and the initial inventory are denoted by
dt and i0, respectively. Constraints (13) ensure that the inventory lies within the
minimum (imin) and maximum (imax) permitted values at all times. Constraints
(14) ensure the net production is at least as much as the overall demand during
the scheduling horizon. The (minimum) electricity consumption in time period t
and scenario s is assumed to be linearly dependent on the production amount de-
fined by the coefficient m. The non-negativity bounds on the decision variables are
enforced via constraints (16) and (17). The objective function captures the goal
of minimizing the overall expected cost of purchasing electricity and production.

We consider a 24-hour scheduling horizon with hourly time discretization, min-
imum and maximum product inventory levels of 75 and 100 units, respectively, and
an initial inventory of 50 units. The product demand in each time period is sam-
pled randomly from U(28, 42). The contract and spot market electricity prices are
shown in Fig. 6, while the unit production cost is set to $3. We consider 40 equally
probable scenarios for the spot prices, and the coefficient, m, defining the linear
relationship between production and electricity consumption, is assumed to be 2.

4.2.1 Scenario clustering

We want to use this example to demonstrate that often, with just simple sce-
nario clustering, we can already gain valuable insights that help us explain the SP
solution. To show the advantage of the proposed recourse-based scenario cluster-
ing method in this regard, we also compare the results with those obtained from
conventional realization-based clustering.

We start by setting the desired number of clusters, k, to 39. Since we have
40 scenarios, setting k = 39 returns 39 clusters where one of them consists of
the two most similar scenarios. We perform both realization- and recourse-based
clustering for which the two scenarios that are grouped into one cluster are shown
in Fig. 7a and Fig. 7b, respectively. The figures show the corresponding spot price
profiles along with the recourse decisions of purchasing electricity from the spot
market and production. We see that the two scenarios found via realization-based
clustering (Scenarios 21 and 34) are very similar in their spot price profiles, yet the
associated recourse decisions differ significantly in time periods 2-6. In contrast,
recourse-based clustering returns two scenarios (Scenarios 9 and 34) whose spot
price profiles look quite different; however, they exhibit the exact same recourse
decisions.

The above observation seems counter-intuitive at first, but after further inves-
tigation, we arrive at an explanation with the following two key insights:

1. The spot price trend is a better predictor of the recourse decisions than the
price magnitude. The reason is that for a fixed product demand, once the
electricity purchase from the contract (first-stage decision) is finalized, we must
purchase the remaining required electricity from the spot market, regardless of
its price, to meet the product demand. Hence, the total amount of electricity
purchased from the spot market is the same in all scenarios, and it is merely
the timing of the electricity purchases that is optimized, which depends on
how the spot price changes over time. This explains why the recourse decisions
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(a) Realization-based clustering.
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(b) Recourse-based clustering.
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Fig. 7: Illustrating two scenarios that get grouped together for the k = 39 case. Realization-
based clustering reveals that scenarios that are very similar in magnitude do not necessarily
have to have the same recourse decisions. In contrast, if there is a non-zero purchase from the
spot market, then having a similar trend seems to play a more prominent role in having the
same decisions across two scenarios.

in Scenarios 9 and 34 are the same in time periods 1-12 as their price trends
are the same despite the price values being quite different (see Fig. 7b). In
Scenarios 21 and 34, on the other hand, the price profiles exhibit very similar
magnitudes but often opposite trends in time periods 2-6 (see Fig. 7a); hence,
the recourse decisions in those time periods are very different.

2. The price trends in Scenarios 9 and 34 are not always the same in time periods
13-24, yet the recourse decisions in those time periods are the same. A quick
look at the first-stage decisions, as shown in Fig. 7c, reveals that the electricity
purchased from the power contract in time periods 13-24 is enough to meet
all electricity demand in that time frame so that no purchase from the spot
market is needed. As a result, the trend in spot price in those time periods
does not affect the recourse decisions.

To quantify and strengthen our reasoning behind our conclusions, we calculate
the bivariate correlation coefficient, ρ, for every additional group of scenarios from
k = 39 to k = 35, as shown in Table 1. Positive (similar trend) and negative
(opposite trend) correlations are indicated by ρ > 0 and ρ < 0, respectively. In
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periods 1-24, for the most part, we see that the clustered scenarios are highly
correlated, implying they follow a similar trend. The only ambiguous case is the
one of k = 36, where the negative ρ for Scenarios 7 and 20 indicate a negative
correlation despite being grouped together for having similar decisions. However,
as we reasoned earlier that trends are immaterial in periods 13-24, it is more
appropriate to calculate ρ only for periods 1-12 to avoid obtaining a misleading
correlation. This correctly leads to ρ > 0, reiterating our observation of scenarios
with similar trends leading to similar decisions. Finally, as shown in Fig. 8, this
can also be observed in the grouped scenarios for cases k = 38 and k = 37.

Clusters (k) Clustered scenarios Correlation coefficient (ρ)

1-24 hr 1-12 hr

39 (9,34) 0.13 0.82
38 (9,34), (26,35) 0.73 0.94
37 (9,34), (5,31,37) 0.86 0.82
36 (9,34), (5,31,37), (7,20) -0.42 0.36
35 (9,34), (5,31,37), (7,20), (23,30) 0.85 0.81

Table 1: Positive correlation between scenarios grouped together by recourse-based clustering
indicates that similar price trends lead to similar decisions. Because trends are irrelevant during
periods 13-24, ρ for periods 1-12 provides a more accurate representation of the correlation
between scenarios. Mean ρ, i.e., the average of ρ between all possible pairs of scenarios, is
reported for clusters with three scenarios.
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Fig. 8: Illustrating scenarios grouped together via recourse-based clustering and the corre-
sponding recourse decisions for cases k = 38 and k = 37. Again, we see very similar decisions,
especially in time periods where the scenarios have similar trends, even if the scenarios differ
considerably in magnitude.
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Fig. 9: Representative scenarios and first-stage decisions for k = 5.

4.2.2 Scenario reduction

To analyze the overall SP solution, we apply the proposed scenario reduction
approach to reduce the number of spot electricity price scenarios from 40 to 5.
As depicted in Fig. 9, Scenarios 2, 6, 12, 28, and 30 are chosen as representative
scenarios, with respective probabilities of 0.175, 0.1, 0.225, 0.225, and 0.275. Fig.
9 also shows that the optimal purchase amounts from the power contract, i.e. the
first-stage decisions, are the same for the original and reduced models. In addition,
we show, as examples, the second-stage solutions, i.e. the spot market purchase
and production scheduling decisions, for Scenarios 6 and 30 in Fig. 10. Note that
the subfigures on the right in Fig. 10 depict the production amounts as positive
values while product demands are shown as negative numbers.

Now that we only have 5 scenarios to consider, we can more easily explain the
first-stage decisions. Particularly, in time periods 13-24, the expected unit spot
price lies in the range [$23.3/kWh, $34.3/kWh], which clearly exceeds the unit
contract price of $19.6/kWh, resulting in only electricity purchases from the con-
tract in the second half of the day. In contrast, in time periods 7-12, the expected
unit spot price lies in [$25.8/kWh, $33.5/kWh], which is lower than the contract
price of $33.6/kWh, making the spot market the preferred option for purchasing
electricity in that time frame, as can be seen in Fig. 10.

The situation in time periods 1-6 is more complicated as we purchase electricity
from both the contract and the spot market. Especially for the analysis here, it
helps to be able to focus on a small number of scenarios. For example, from Fig.
10b, we can see that for Scenario 30, the spot electricity price is consistently higher
than the contract price in time periods 1-6, yet we still purchase from the spot
market. This, of course, can only be explained by realizing that the spot price
in other scenarios, such as Scenario 6 (see Fig. 10a), is significantly lower. As a
result, to minimize the overall expected cost, we should also purchase electricity
from the contract in that time frame in order to balance hedging against the risk
of high-price scenarios like Scenario 30 and allowing flexibility to take advantage
of low-price scenarios like Scenario 6.
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(a) Scenario 6.

(b) Scenario 30.

Fig. 10: Second-stage solutions for two of the five representative scenarios.

4.3 Supply chain planning with large number of recourse decisions

In this third case study, we consider a larger instance of the supply chain planning
problem presented in Section 4.1, with 10 plants (A to J) and 15 customers. As
shown in Fig. 11, the resulting network has 165 recourse decisions (150 transporta-
tion decisions plus 15 purchase decisions). The purchase cost at each customer node
is set to $125 per unit of product, and the maximum production limit at each plant
is set to 12 units. Finally, we consider four demand scenarios with probabilities
0.05, 0.15, 0.30, and 0.50, and the demand for each customer is sampled from
U(0, 12).

Solving the two-stage SP model corresponding to this large network results in
decisions that are difficult to reason because of the complex network structure,
which leads to a large number of recourse decisions. To alleviate this difficulty,
we employ the recourse reduction method proposed in Section 3. Varying the
desired number of recourse decisions k from 0 to 30, we solve both the lower-
bounding problem (LBPk ) and the verification problem (VPk ). The results are
plotted in Fig. 12, which shows the optimal values obtained from solving both
problems as well as the optimal value of the original SP problem as a reference.
Looking at the optimal values for (LBPk ), one can see that with only 18 recourse
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Fig. 11: Illustrating the original network consisting of 10 plants (A, B, ..., J) and 15 customers.
The production cost at each plant and the procurement cost are shown on the right.

variables, we can already achieve the same optimal value as the original SP model.
However, the solution to (VPk ) has a higher optimal value, which tells us that
the selected 18 recourse variables do not yet result in the same optimal first-stage
decisions. As we further increase k, we find that at k = 23, (LBPk ) and (VPk )
have the same optimal value, indicating that this is also the optimal solution to
the bilevel program (RRk ). As such, we can now account for these 23 recourse
variables, treat the remaining original recourse decisions as first-stage variables,
and still ensure the same total expected cost and production decisions as with
all 165 recourse variables. In the network depicted in Fig. 12, the 23 principal
recourse decisions are highlighted in green, i.e. green edges and customer nodes
represent the transportation and purchase decisions treated as recourse variables
in the reduced model, respectively.
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Fig. 12: On the left, optimal values obtained from solving the lower-bounding problem (LBPk )
and the verification problem (VPk ) for varying k’s. On the right, a reduced network with only
14% (23 of 165) of the original recourse variables; selected recourse decisions are shown in
green.
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The solution to the reduced model with only the selected 23 recourse variables
is shown in Fig. 13. The sizes of the plant and customer nodes (Figs. 13b-13e)
indicate the production and demand at these nodes, respectively. The thickness
of an edge between a plant and a customer is proportional to the transportation
amount. The following are some key points regarding decisions made in the first
stage: (i) As shown in Fig. 13a, some transportation decisions (red edges) are
now made before the uncertainty in demand is realized. (ii) Plants A and F are
chosen to not manufacture any product. The high production costs, combined with
their relatively isolated locations (higher transportation costs), contribute to the
decision to have no production at these plants.

The user may now be interested in learning how product distribution varies
with demand at a specific customer node and why the participating plants were
selected. Now that we have a sparser network to analyze, it is much easier to answer
such questions. We try to explain decisions involving Customer 8 as an example.
In Scenario 1, the demand at Customer 8 is satisfied by Plant D. Plant C, despite
being closer to Customer 8, is not chosen to meet its demand because it has only
three units of production (due to the high production cost), all of which are used to
meet the demand at Customer 3. In Scenario 2, we decide to buy 1 unit of product
externally for Customer 8, which may be questionable due to the high purchase
price. The reason for this is that Plants C and H, two other potential candidates to
satisfy Customer 8’s demand, are using all of their capacity to meet the demands
of other nearby customers. Next, one might wonder why not externally purchase
1 unit of product for Customer 12 and transfer the 1 unit of product saved at
Plant B to Customer 8. However, because the purchase price is the same for all
customers, a more distant customer will always be preferred if a non-zero purchase
decision must be made. Similarly, we can examine decisions involving any customer
or plant of interest in any scenario. In summary, the reduction in recourse decisions
significantly simplifies the analysis and hence the explainability of the SP solution.

5 Conclusion

In this work, we addressed the challenge of low interpretability of decisions output
by large SP models, which has for long hindered their use in real-world applica-
tions. We developed systematic approaches that enhance the explainability of a
given SP solution by reducing the complexity of the model to an extent where it
becomes easier to visualize the decisions and infer the reasons for making these de-
cisions. The proposed techniques reduce the complexity of the problem along two
dimensions – the number of scenarios and the number of recourse variables. For
scenario reduction, our approach clusters scenarios based on the optimal recourse
decisions and selects representative scenarios for the scenario clusters such that
the optimal first-stage decisions of the resulting reduced SP model are close to the
ones obtained from the original larger SP model. In recourse reduction, we identify
a small set of principal recourse variables required to achieve the same optimal
first-stage decisions while reaching the same or close to the same optimal value as
the original SP model. The efficacy of the proposed explainability techniques was
demonstrated in computational case studies involving problems of industrial rele-
vance, namely supply chain planning and electricity procurement scheduling. We
showed how the significant complexity reduction that could be obtained with min-
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(b) Scenario 1.
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(c) Scenario 2.
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(d) Scenario 3.
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(e) Scenario 4.

Fig. 13: Illustrating solution obtained by solving the reduced SP model with the 23 principal
recourse decisions. Distribution or procurement decisions, which take the value zero, are omit-
ted for brevity. Additionally, the thickness of an edge corresponds to the amount transferred
from a plant to a customer.
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imally dissimilar solutions ultimately made it much easier to explain the original
SP solutions.
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Michael Patriksson, Ann-Brith Strömberg, and AdamWojciechowski. The stochas-
tic opportunistic replacement problem, part ii: a two-stage solution approach.
Annals of Operations Research, 224(1):51–75, 2015.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why should I trust
you?” Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data min-
ing, pages 1135–1144, 2016.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature machine intelligence, 1
(5):206–215, 2019.

Francisco Trespalacios and Ignacio E Grossmann. Review of mixed-integer non-
linear and generalized disjunctive programming methods. Chemie Ingenieur
Technik, 86(7):991–1012, 2014.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explana-
tions without opening the black box: Automated decisions and the gdpr. Harv.
JL & Tech., 31:841, 2017.

James E Ward and Richard E Wendell. Approaches to sensitivity analysis in linear
programming. Annals of Operations Research, 27(1):3–38, 1990.

Qi Zhang, Jochen L Cremer, Ignacio E Grossmann, Arul Sundaramoorthy, and
Jose M Pinto. Risk-based integrated production scheduling and electricity pro-
curement for continuous power-intensive processes. Computers & chemical en-
gineering, 86:90–105, 2016.

Weiguo Zhang and Xiaolei He. A new scenario reduction method based on higher-
order moments. INFORMS Journal on Computing, 34(4):1903–1918, 2022.


	Introduction
	Scenario clustering and reduction
	Recourse reduction
	Case studies
	Conclusion

