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We present a novel approach aimed at enhancing the e�cacy of solving both regular and distributionally

robust chance constrained programs using an empirical reference distribution. In general, these programs

can be reformulated as mixed-integer programs (MIPs) by introducing binary variables for each scenario,

indicating whether a scenario should be satisfied. While existing methods have predominantly focused on

either inner or outer approximations, this paper bridges this gap by studying a scheme that e�ectively

combines these approximations via variable fixing. By checking the restricted outer approximations and

comparing them with the inner approximations, we derive optimality cuts that can notably reduce the

number of binary variables by e�ectively setting them to either one or zero. We conduct a theoretical analysis

of variable fixing techniques, deriving an asymptotic closed-form expression. This expression quantifies the

proportion of binary variables that should be optimally fixed to zero. Our empirical results showcase the

advantages of our approach, both in terms of computational e�ciency and solution quality. Notably, we

solve all the tested instances from literature to optimality, signifying the robustness and e�ectiveness of our

proposed approach.

Key words : Chance Constraint; Distributionally Robust; Variable Fixing

1. Introduction
A Regular Chance Constrained Program (RCCP) that commits to a specific probability distribution,
denoted as ‚P, takes on the following form:

vú = min
xœX

Ó
c€x : ‚P

Ó
⇠̃ : ai(x)€⇠̃Æ bi(x),’i œ [I]

Ô
Ø 1 ≠ Á

Ô
; (RCCP)

to minimize a linear objective function c€x subject to a deterministic and compact set X , an uncer-
tain constraint system, defined by possibly multiple linear constraints ai(x)€⇠̃Æ bi(x) for all i œ [I],
must be satisfied with probability 1≠Á. In RCCP, the scalar Á œ (0,1) is commonly referred to as the
“risk parameter.” The distribution ‚P of random parameters ⇠̃ is an equiprobable empirical one gener-
ated from N independent and identically distributed (i.i.d.) samples ‚⇠i

{iœ[N ]}, with ‚P{⇠̃= ‚⇠i} = 1/N .
An RCCP can involve either a single uncertain constraint (I = 1) or multiple uncertain constraints
(I > 1), leading to either a single RCCP or a joint RCCP, respectively. In both cases, the functions
ai(x) and bi(x) associated with each constraint i œ [I] are a�ne, representing linear relationships
between the decision variables x and the uncertain parameters ⇠̃.

When dealing with an RCCP with an arbitrary distribution, we often approximate the distribution
using i.i.d. samples. By doing so, we can transform the problem into a Distributionally Robust Chance
Constrained Program (DRCCP) with a carefully selected ambiguity set, which can achieve better
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out-of-sample performance guarantees (see, e.g., Ji and Lejeune 2021, Wang et al. 2022, Zhao et al.
2023, Ho-Nguyen et al. 2023). Formally, a DRCCP admits the form of

min
xœX

;
c€x : inf

PœP
P

Ó
⇠̃ : ai(x)€⇠̃Æ bi(x),’i œ [I]

Ô
Ø 1 ≠ Á

<
. (DRCCP)

In DRCCP, the uncertain constraints are required to be satisfied with probability 1 ≠ Á for any
probability distribution P from an ambiguity set P , where set P is defined as a subset of probability
distributions P from a measurable space (�,F) equipped with the sigma algebra F and induced
by the random parameters ⇠̃ with support set � ™ Rm. It is worth mentioning that when P is a
singleton, i.e., P = {‚P}, DRCCP reduces to RCCP.

1.1. Overview and Relevant Literature of Regular Chance Constrained Programs
Originating from the work of Charnes et al. (1958), Charnes and Cooper (1963), RCCPs have been
extensively studied and applied in various domains to address uncertain constraints in decision-
making problems. For example, RCCPs can be used to ensure a reliable and high-quality communica-
tion network by reducing the probability of network congestion or data transmission failures (see, e.g.,
Wang et al. 2014). RCCPs can also be employed to ensure that environmental regulations and safety
constraints are met with high probability, e.g., in the area of emissions or pollutant concentrations
when uncertainties are prevalent (see, e.g., Simic 2016). In the context of power systems, RCCPs
address the challenges posed by uncertainties related to renewable energy sources, demand fluctu-
ations, transmission line failures, and other stochastic factors that can impact system performance
(see, e.g., Wu et al. 2014, Lubin et al. 2015, Cho and Papavasiliou 2023). For a comprehensive review
of applications in RCCPs, interested readers are referred to Ahmed and Shapiro (2008), Ahmed and
Xie (2018), Küçükyavuz and Jiang (2022).

Despite their significance and wide applicability, RCCPs face critical challenges arising from their
nonconvex feasible regions. Under finite support, RCCPs can be reformulated as mixed-integer pro-
grams (see, e.g., Ruszczyński 2002, Luedtke and Ahmed 2008). To improve the e�ciency of solving
RCCPs, researchers have focused on reducing the values of big-M coe�cients and strengthening the
corresponding formulations (see, e.g., Qiu et al. 2014, Song et al. 2014, Song and Shen 2016, Deng and
Shen 2016, Zhang et al. 2020). For example, Song et al. (2014) developed a computationally e�cient
big-M coe�cient strengthening procedure for regular chance constrained binary packing problems.
Meanwhile, existing methods focus on either inner or outer approximations of RCCPs (see, e.g.,
Calafiore and Campi 2006, Nemirovski and Shapiro 2006, 2007, Ahmed et al. 2017, Jiang and Xie
2022, 2023). For example, Nemirovski and Shapiro (2007) proposed convex inner approximations of
the chance constraint by using CVaR approximation, which has been recently improved by ALSO-X
and ALSO-X# (Jiang and Xie 2022, 2023). Ahmed et al. (2017) introduced several outer approxima-
tions for RCCPs based on the nonanticipative Lagrangian dual. It has been reported that e�ective
upper and lower bounds based on inner and outer approximations can improve the running time of
the mixed-integer solvers (see, e.g., Fattahi et al. 2018). However, to the best of our knowledge, there
is currently a lack of a systematic approach to e�ectively integrating inner and outer approximations
of an RCCP. We fill this gap by developing a variable fixing procedure that can incorporate the
past e�orts of inner and outer approximations and significantly enhance the solution performances
of solving an RCCP.

1.2. Overview and Relevant Literature of Distributionally Robust Chance Constrained
Programs under Wasserstein Ambiguity Set

DRCCPs have been recently widely studied in the literature (see, e.g., Küçükyavuz and Jiang 2022
and the references therein). Particularly, we study DRCCP under type q-Wasserstein ambiguity
set. The methodology developed in this work can also be directly applied to DRCCPs under other
statistical distance-based ambiguity sets. The type q-Wasserstein ambiguity set where the distance
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between two distributions via the minimum transport plan is no larger than a radius ◊ can be formally
defined as

Pq =
Ó
P : P

Ó
⇠̃ œ �

Ô
= 1,Wq(P, ‚P) Æ ◊

Ô
,

where for any q œ [1,Œ], the q-Wasserstein distance is defined as

Wq(P1,P2) = inf
I5⁄

�◊�
Î⇠1 ≠ ⇠2Îq

p Q(d⇠1, d⇠2)
6 1

q

:
Q is a joint distribution of ⇠̃1 and ⇠̃2

with marginals P1 and P2, respectively

J

,

◊ Ø 0 is the Wasserstein radius, and ‚P denotes the reference distribution induced by random param-
eters ⇠̃. Note that if q = Œ, the Œ-Wasserstein distance is reduced to

WŒ(P1,P2) = inf
I

ess.supÎ⇠1 ≠ ⇠2Îp Q(d⇠1, d⇠2) :
Q is a joint distribution of ⇠̃1 and ⇠̃2

with marginals P1 and P2, respectively

J

.

We thus focus on the following DRCCP:

vú
q = min

xœX

;
c€x : inf

PœPq
P

Ó
⇠̃ : ai(x)€⇠̃Æ bi(x),’i œ [I]

Ô
Ø 1 ≠ Á

<
. (1)

We use the corresponding equivalent reformulations of DRCCP (1) under type Œ-Wasserstein ambi-
guity set and type q-Wasserstein ambiguity set with q œ [1,Œ), which are discussed in detail in the
following sections.

In the literature, DRCCPs have emerged as a popular approach to addressing decision-making
problems under uncertainty when the distributional information is not fully known (see, e.g., Zymler
et al. 2013, Hanasusanto et al. 2015, 2017, Xie and Ahmed 2018, Xie 2021, Ji and Lejeune 2021,
Shen and Jiang 2021, Chen et al. 2022, Ho-Nguyen et al. 2022, Küçükyavuz and Jiang 2022, Jiang
and Xie 2022, Chen et al. 2023, Shen and Jiang 2023, Ho-Nguyen et al. 2023, Jiang and Xie 2023),
such as energy (see, e.g., Xie and Ahmed 2017, Zhou et al. 2021), transportation (see, e.g., Ghosal
and Wiesemann 2020, Zhao and Zhang 2020), and telecommunications (see, e.g., Li et al. 2016, Zhai
et al. 2022, Li et al. 2022a,b, 2023). For instance, in the updated lecture notes of Shapiro et al.
(2021), the authors used DRCCPs to optimize investment portfolios while ensuring the probability
of incurring unacceptable losses stays within a predetermined limit. When designing and optimizing
wireless communication networks (see, e.g., Li et al. 2022a,b, 2023), DRCCPs have been employed
to optimize the reliability and capacity constraints with high confidence. For a comprehensive review
of DRCCPs, interested readers are referred to a recent survey from Küçükyavuz and Jiang (2022).

Despite their apparent popularity, similar to RCCPs, solving DRCCPs to optimality can still be
challenging due to their non-convex feasible regions. Notice that when the reference distribution is
finitely supported, DRCCPs under type q-Wasserstein ambiguity set with q œ {1,Œ} can be refor-
mulated as mixed-integer programs using the big-M method (see, e.g., Chen et al. 2022, Jiang and
Xie 2022, Xie 2021). However, in general, DRCCPs under type q-Wasserstein ambiguity set with
q œ (1,Œ) may not admit a mixed-integer convex programming formulation (see, e.g., Jiang and Xie
2023). Therefore, it is important to explore the e�ective methods of solving DRCCPs under di�erent
type q-Wasserstein ambiguity sets to near optimality. Researchers have also dedicated their e�orts to
enhancing the e�ciency of solving DRCCPs by focusing on two aspects: reducing the values of big-M
coe�cients and strengthening the formulations (see, e.g., Wang et al. 2021, Ho-Nguyen et al. 2022,
2023, Porras et al. 2023). For example, Ho-Nguyen et al. (2022, 2023) applied quantile information
to improve the big-M coe�cients in the DRCCPs. In this work, we extend the approach developed
by Song et al. (2014) to DRCCPs and present e�cient methods for finding better big-M coe�cients.
Moreover, prior literature primarily focused on either inner or outer approximations of DRCCPs (see,
e.g., Xie 2021, Jiang and Xie 2022, 2023, Chen et al. 2023). For example, Xie (2021) introduced VaR
outer approximation for DRCCPs, while Chen et al. (2023) discussed CVaR inner approximation for
DRCCPs. In this work, we unify inner and outer approximations of DRCCPs through variable fixing,
which will significantly benefit the exact methods.



Jiang and Xie: Chance Constrained Programs with Variable Fixing
4

1.3. Relevant Literature of Variable Fixing
Fixing a certain number of variables in the optimization problems is an e�ective approach to acceler-
ate the solution process (see, e.g., Savelsbergh 1994, Anstreicher et al. 1996, 1999, Fischetti and Lodi
2010, Posta et al. 2012, Wu et al. 2018, Atamturk and Gómez 2020, Li et al. 2024). For example, Li
et al. (2024) used variable fixing techniques to derive e�ective optimality cuts on the binary variables
in the D-optimal data fusion problem, resulting in more e�cient branch and cut algorithms. Wu et al.
(2018) developed algorithms in a min-max regret generalized assignment problem based on variable
fixing. As far as we know, our work is the first one that utilizes the variable fixing for the RCCPs or
DRCCPs to enhance the optimization process.

1.4. Summary of Contributions
This paper studies variable fixing techniques for solving RCCPs and DRCCPs. Our main contribu-
tions are summarized below:

(i) We provide a generic framework for variable fixing in RCCPs and DRCCPs, incorporating the
known upper and lower bounds to derive e�cient optimality cuts;

(ii) We extend the big-M coe�cient strengthening approach developed by Song et al. (2014) to DRC-
CPs and present e�cient algorithms for improving big-M coe�cients. Combining the improved
big-M coe�cients with variable fixing, we provide numerical evidence to solve the standard
instances of DRCCPs under type q-Wasserstein ambiguity set to optimality within a much
shorter time, where the parameter q œ {1,Œ};

(iii) Under type q-Wasserstein ambiguity set with q œ (1,Œ), since DRCCPs, in general, may
not admit a mixed-integer convex programming formulation, we introduce a new conservative
approximation to improve the known conservative conditional value-at-risk (CVaR) approxima-
tion while still allowing for a MIP reformulation and maintaining a reasonable solution time;

(iv) We provide theoretical asymptotic analysis of variable fixing. This analysis shows that the
number of scenarios can be fixed under some particular DRCCPs or RCCPs; and

(v) We provide extensive numerical studies to demonstrate the e�ectiveness of our proposed meth-
ods. Our variable fixing methods close the gap for all reported instances.

The roadmap of contributions in our paper is shown in Figure 1. It is worth mentioning that all the
instances in this paper are standard and can be found in Song et al. (2014).

Figure 1 A Roadmap of the Main Results in This Paper.

Organization. The remainder of the paper is organized as follows. Section 2 presents an overview
of variable fixing and reviews how to strengthen big-M coe�cients in RCCPs. Section 3, Section 4,
and Section 5 study variable fixing optimality cuts and big-M coe�cients improvement for DRCCPs
under type q-Wasserstein ambiguity set with q = Œ, q = 1, q œ (1,Œ), respectively. Section 6 provides
a theoretical understanding of variable fixing. Section 7 numerically illustrates the proposed methods.
Section 8 concludes the paper.
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Notation. The following notation is used throughout the paper. We use bold letters (e.g., x,A) to
denote vectors and matrices and use corresponding non-bold letters to denote their components. We
let Î · Îú denote the dual norm of a general norm Î · Î. We let e be the vector or matrix of all ones,
and let ei be the ith standard basis vector. Given an integer n, we let [n] := {1,2, . . . , n}, and use
Rn

+ := {x œ Rn : xi Ø 0,’i œ [n]}. Given a real number · , we let (·)+ := max{·,0}. Given a finite
set I, we let |I| denote its cardinality. We let ⇠̃ denote a random vector and denote its realizations
by ⇠. Given a vector x œ Rn, let supp(x) be its support, i.e., supp(x) := {i œ [n] : xi ”= 0}. Given a
probability distribution P on �, we use P{A} to denote P{⇠̃ : condition A(⇠̃) holds} when A(⇠) is a
condition on ⇠, and to denote P{⇠̃ : ⇠̃ œ A} when A ™ � is P≠measurable. We use ÂxÊ to denote the
largest integer y satisfying y Æ x, for any x œR. For a given set R, the indicator function I(xœ R) = 1
if xœ R, and 0, otherwise. Additional notations are introduced as needed.

2. Variable Fixing in RCCPs
Using the discrete distribution ‚P, we can equivalently rewrite RCCP as

vú = min
xœX

Y
]

[c€x :
ÿ

jœ[N ]
I

Ó
ai(x)€ ‚⇠j Æ bi(x),’i œ [I]

Ô
Ø N ≠ ÂNÁÊ

Z
^

\ , (2)

where Â·Ê denotes the floor function and I(·) is the zero-one indicator function. Introducing binary
variables z to replace the indicator functions and choosing appropriate big-M coe�cients Mi,j for each
i œ [I], j œ [N ] (e.g., Mi,j Ø maxxœX {ai(x)€ ‚⇠j ≠ bi(x)}), RCCP (2) can be written as the following
mixed-integer linear program:

vú = min
xœX ,

zœ{0,1}N

Y
_]

_[
c€x :

ai(x)€ ‚⇠j Æ bi(x) + Mi,j(1 ≠ zj),’i œ [I], j œ [N ],ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ

Z
_̂

_\
. (3)

This section aims to select one or multiple binary variables z of RCCP (3) to restrict them to be
either one or zero and then solve the restricted RCCP to obtain e�ective optimality cuts on these
binary variables if the restricted problem has a higher objective value than vú or the upper bound
from a heuristic approach. This procedure has the potential to significantly decrease the number of
binary variables in RCCP while still attaining the same optimal objective value.

2.1. Variable Fixing for the RCCP
Suppose that sets S0 and S1 represent the index sets of scenarios to be removed (i.e., zj = 0 for
each j œ S0) and selected (i.e., zj = 1 for each j œ S1), respectively. If we introduce the additional
constraints

q
jœS0

zj = 0 and
q

jœS1
zj = |S1| to RCCP (3), the corresponding Restricted RCCP can

be formulated as follows:

v̄(S0,S1) = min
xœX ,

zœ{0,1}N

Y
_]

_[
c€x :

ai(x)€ ‚⇠j Æ bi(x) + Mi,j(1 ≠ zj),’i œ [I], j œ [N ],ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ,

ÿ

jœS0

zj = 0,
ÿ

jœS1

zj = |S1|

Z
_̂

_\
. (Restricted RCCP)

Hence, we can deduce that v̄(S0,S1) Ø vú. For instance, when S0 = S1 = ÿ, both the Restricted RCCP
and the original RCCP (3) coincide, resulting in v̄(S0,S1) = vú. However, in cases where S0 and S1
are not empty, we have v̄(S0,S1) > vú, indicating that at least one constraint in the sets S0 and S1 is
violated by any optimal solution of the RCCP. Consequently, we can derive an e�ective optimality
cut.
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Theorem 1. For any two disjoint sets S0,S1 ™ [N ] with |S0| Æ ÂNÁÊ, if v̄(S0,S1) > vú, then the
following inequality is valid for any optimal solution of RCCP (3):

ÿ

jœS0

zj +
ÿ

jœS1

(1 ≠ zj) Ø 1,

with q
jœ[N ] zj Ø N ≠ ÂNÁÊ,z œ {0,1}N .

Proof. Let zú be an optimal solution of RCCP (3) with
q

jœS0
zú

j = 0,
q

jœS1
zú

j = |S1|, then zú

is feasible to the Restricted RCCP and achieves the same objective value vú, which violates the
assumption that v̄(S0,S1) > vú. This indicates that one of the equality constraints added is violated.
Since zú is binary, we know one of the following inequalities is valid:

ÿ

jœS0

zj Ø 1,
ÿ

jœS1

zj Æ |S1| ≠ 1.

Since sets S0,S1 are disjoint, we obtain a desired optimality cut. ⇤
Notably, in alignment with the convention commonly employed in the variable fixing literature (as
seen in, for example, section 1.2 of Savelsbergh 1994), we designate the process of deriving the
optimality cut in Theorem 1 as the “variable fixing” technique applied to the RCCP (3).

However, performing variable fixing can be computationally expensive, since it necessitates solving
Restricted RCCP to optimality and also requires knowledge of the optimal objective value vú of
RCCP (3). In order to address this issue, we resort to using computationally tractable yet slightly
conservative inner approximations of RCCP (3) and outer approximations of Restricted RCCP. Let
vU be the upper bound of RCCP (3), and v̄L(S0,S1) be the lower bound of Restricted RCCP.
If v̄L(S0,S1) > vU , then the result in Theorem 1 still holds. To find vU , we can use convex inner
approximations such as the CVaR approximation (as described in, for example, Nemirovski and
Shapiro 2007), ALSO-X approximation (explored in Ahmed et al. 2017, Jiang and Xie 2022), or
the more recent ALSO-X# approximation presented in Jiang and Xie (2023). On the other hand,
to compute v̄L(S0,S1), we can employ dual formulations and the primal counterparts from Ahmed
et al. (2017), such as their formulation (23) or formulation (24). Additionally, Ahmed et al. (2017),
Ahmed and Xie (2018) o�er further alternative choices of valid upper bound vU and easily computable
v̄L(S0,S1).

Specifically, to derive the optimality cuts, we start by introducing the constraints
q

jœS0
zj = 0

and
q

jœS1
zj = |S1| into the dual formulation (as presented in, for example, formulation (23) or

formulation (24) in Ahmed et al. 2017). Following the conventions in Ahmed et al. (2017), let us
suppose that X ™ {x : D€x Æ d}. Then, we can solve the following restricted dual formulation (4)
to find the optimality cuts.
Corollary 1. Suppose that set X ™ {x : D€x Æ d}, for any two disjoint sets S0,S1 ™ [N ] with
|S0| Æ ÂNÁÊ. Then one can solve the following problem:

‚v(S0,S1) = min
x,u,

w,zœ[0,1]N ,‚y

Y
_________]

_________[

‚y :

‚y Ø c€uj + vU(1 ≠ zj),’j œ [N ] \ (S1 fi S0),
‚y Ø c€wj + vUzj ,’j œ [N ] \ (S1 fi S0),
zjai

!
uj/zj

"€ ‚⇠j Æ zjbi(uj/zj),’i œ [I], j œ [N ],
D€uj Æ dzj ,’j œ [N ],D€wj Æ d(1 ≠ zj),’j œ [N ],
x=uj +wj ,’j œ [N ],ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ,

ÿ

jœS0

zj = 0,
ÿ

jœS1

zj = |S1|

Z
_________̂

_________\

. (4)

If ‚v(S0,S1) Ø vU , then the following inequality is valid for any optimal solution of RCCP (3):
ÿ

jœS0

zj +
ÿ

jœS1

(1 ≠ zj) Ø 1,

with q
jœ[N ] zj Ø N ≠ ÂNÁÊ,z œ {0,1}N .
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We make the following remarks on Corollary 1:
(i) The result in Corollary 1 can be further extended to DRCCPs under type q-Wasserstein ambi-

guity set. The detailed extensions are presented in the following sections; and
(ii) Alternatively, instead of solving the restricted dual problem (4), one can verify the feasibility

of the restricted dual bound. If the following problem is infeasible, then the same result as in
Corollary 1 holds:

min
x,u,

w,zœ[0,1]N

Y
_______]

_______[

0:

c€uj Æ vUzj ,’j œ [N ],c€wj Æ vU(1 ≠ zj),’j œ [N ],
zjai

!
uj/zj

"€ ‚⇠j Æ zjbi(uj/zj),’i œ [I], j œ [N ],
D€uj Æ dzj ,’j œ [N ],D€wj Æ d(1 ≠ zj),’j œ [N ],
x=uj +wj ,’j œ [N ],ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ,

ÿ

jœS0

zj = 0,
ÿ

jœS1

zj = |S1|

Z
_______̂

_______\

.

It is essential to highlight that, besides the variable fixing procedure described in Corollary 1, there
exists a straightforward and e�ective alternative method. This approach involves fixing the variables
individually for each scenario using the upper bound vU , as summarized below.

Corollary 2. Let ‚÷j = minxœX {c€x : ai(x)€ ‚⇠j Æ bi(x),’i œ [I]} for each j œ [N ]. Suppose that for
some j œ [N ], we have ‚÷j > vU . Then zj = 0.
Proof. The inequality ‚÷j > vU implies that

‚÷j = min
xœX

Ó
c€x : ai(x)€ ‚⇠j Æ bi(x),’i œ [I]

Ô
> vU Ø vú.

If at optimality, scenario j were satisfied, we must have vú Ø ‚÷j , a contradiction. Therefore, we have
zj = 0. ⇤
Notice that the optimality cuts found in Corollary 1 and Corollary 2 can reduce the big-M coe�cients
in RCCP (3), which is detailed in the next subsection.

2.2. Big-M Coe�cients Strengthening for RCCP (3)
By employing variable fixing techniques, we can further enhance the big-M coe�cients in the RCCP
(3). Following the variable fixing procedure outlined in Theorem 1, we can reduce these big-M coe�-
cients using the approach described in section 3.1 of Song et al. (2014). Specifically, after identifying
a subset ‚S0 of scenarios that must be violated via variable fixing (i.e., zj = 0 for each j œ ‚S0), for
each given scenario j œ [N ] \ ‚S0, we calculate

÷i,j(jÕ) := max
x

Ó
ai(x)€ ‚⇠j ≠ bi(x) : ai(x)€ ‚⇠jÕ Æ bi(x),xœ X

Ô
,

then we sort {÷i,j(jÕ)}
jÕœ[N ]\‚S0

in nondecreasing order and select the ÂÁNÊ ≠ | ‚S0| + 1 one as the
corresponding big-M coe�cient. In our numerical study, we see that we can reduce the strengthened
big-M coe�cients significantly by using the simple variable fixing techniques in Corollary 2. We
discuss how to strengthen the big-M coe�cients in DRCCPs, elaborated in the following sections.

2.3. Implementation of the Variable Fixing Procedure
The implementation of the variable fixing procedure involves the following four steps:

1. Pre-compute Upper Bound: Using a reliable approximation algorithm, such as ALSO-X# as
proposed in Jiang and Xie (2023), calculate an upper bound denoted as vU for RCCP (3).

2. Evaluate Restricted Lower Bound: Next, evaluate the restricted lower bound of RCCP (3) by
fixing the values of certain binary variables.
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3. Compare Bounds and Derive Optimality Cuts: Compare the restricted lower bound with the pre-
computed upper bound vU . Based on the comparison results, we can derive e�ective optimality
cuts according to Corollary 1 and Corollary 2.

4. Strengthen Big-M Coe�cients: Reduce the value of big-M coe�cients in RCCP (3) using the
approach proposed by Song et al. (2014).

The detailed variable fixing procedure is provided in Algorithm 1, where the algorithm outlines the
steps for e�ciently handling the binary variables z in RCCP (3). By applying the variable fixing
procedure, the algorithm helps refine the solution space and potentially leads to better performances
when solving RCCP (3).

Algorithm 1 Variable Fixing Procedure for RCCP (3)
1: Pre-compute an upper bound vU for RCCP (3)
2: Fix the variables individually for each scenario based on Corollary 2
3: Apply the optimality cuts from Step 2 and find the optimality cuts based on Corollary 1 by

comparing the restricted lower bound ‚v(S0,S1) of the RCCP (3) and upper bound vU

4: Strengthen big-M coe�cients in RCCP (3) using method in section 3.1 of Song et al. (2014)

We use the following example to illustrate how Algorithm 1 works.
Example 1. Consider an RCCP with 5 equiprobable scenarios (i.e., ‚P{⇠̃ = ‚⇠j} = 1/5 for each j œ
[5]), risk level Á = 1/2, set X = [0,1]2, function a1(x)€ ‚⇠ ≠ b1(x) = ‚›1 ≠ ‚⇠€

2 x, and ‚›1
1 = 1, ‚›2

1 = 2,
‚›3
1 = 3/2, ‚›4

1 = 2, ‚›5
1 = 3/2, ‚⇠1

2 = (2/3,4)€, ‚⇠2
2 = (5/2,2)€, ‚⇠3

2 = (5,2)€, ‚⇠4
2 = (2,3)€, ‚⇠5

2 = (1,8/3)€. In
this case, RCCP (3) reduces to the following mixed-integer linear program:

vú = min
xœ[0,1]2,

zœ{0,1}5

Y
______]

______[

≠x1 ≠ x2 :

2
3x1 + 4x2 Æ z1 + M1,1(1 ≠ z1), 5

2x1 + 2x2 Æ 2z2 + M1,2(1 ≠ z2),

5x1 + 2x2 Æ 3
2z3 + M1,3(1 ≠ z3),2x1 + 3x2 Æ 2z4 + M1,4(1 ≠ z4),

x1 + 8
3x2 Æ 3

2z5 + M1,5(1 ≠ z5),
ÿ

jœ[5]
zj Ø 3

Z
______̂

______\

.

In this particular example, the upper bound, obtained using ALSO-X# from Jiang and Xie
(2023), is vU = ≠0.8571 with an error bound of [≠10≠4,10≠4]. For each scenario, we compute ‚⌘ =
[≠13/12,≠1.0,≠3/4,≠1,≠19/16]. Based on Corollary 2, we derive an optimality cut zú

3 = 0.
Next, let us consider the situation where we add z5 = 0 along with the optimality cut zú

3 = 0. Due
to the chance constraint, this implies that z1 = z2 = z4 = 1. With these fixed values for the binary
variables, we can determine the objective function value, which is found to be v = ≠0.8269 with an
error bound of [≠10≠4,10≠4]. Importantly, we observe that v > vU , which means that after applying
the variable fixing procedure, we find another optimality cut zú

5 = 1.
Notice that big-M coe�cients can be further reduced after fixing zú

3 = 0. Without fixing, we use
the approach described in section 3.1 of Song et al. (2014) and we have

M1,1 = 2,M1,2 = 2
3 ,M1,3 = 11

3 ,M1,4 = 9
16 ,M1,5 = 1

2 .

After fixing zú
3 = 0, we do not need to compute M1,3, and for other four big-M coe�cients, we have

M1,1 = 5
3 ,M1,2 = 2

3 ,M1,4 = 9
16 ,M1,5 = 5

18 .

Two of these coe�cients, M1,1 and M1,5, have been improved. ù
In summary, the variable fixing procedure is instrumental in refining the solution space and can

expedite the solution procedure of exact big-M methods, which is further illustrated in the numerical
study Section 7.
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3. Variable Fixing for DRCCPs under Type Œ-Wasserstein Ambiguity Set
In this section, we consider the variable fixing in DRCCP (1) under type Œ-Wasserstein ambiguity
set with the discrete reference distribution ‚P.

3.1. Variable Fixing Procedure for DRCCPs under Type Œ-Wasserstein Ambiguity Set
According to the equivalent reformulation in proposition 8 of Jiang and Xie (2022), DRCCP (1)
under type Œ-Wasserstein ambiguity set can be written as

vú
Œ = min

xœX

Y
]

[c€x :
ÿ

jœ[N ]
I

Ó
◊ Îai(x)Îú +ai(x)€ ‚⇠j Æ bi(x),’i œ [I]

Ô
Ø N ≠ ÂNÁÊ

Z
^

\ . (5)

Introducing binary variables z to replace the indicator functions and choosing an appropriate big-
M coe�cient Mi,j for each i œ [I], j œ [N ] (e.g., Mi,j Ø maxxœX {◊Îai(x)Îú + ai(x)€ ‚⇠j ≠ bi(x)}),
DRCCP (5) can be written as the following mixed-integer convex program:

vú
Œ = min

xœX ,

zœ{0,1}N

Y
_]

_[
c€x :

◊ Îai(x)Îú +ai(x)€ ‚⇠j Æ bi(x) + Mi,j(1 ≠ zj),’i œ [I], j œ [N ],ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ

Z
_̂

_\
. (6)

Notice that RCCP (2) and DRCCP (6) di�er only by the presence of the term ◊Îai(x)Îú for each
i œ [I] in DRCCP (6). Hence, all the results regarding finding optimality cuts through variable fixing
in Section 2.1 can be readily extended to DRCCP (6). For instance, the optimality cuts can be
derived by comparing the restricted lower bound ‚vŒ(S0,S1) of DRCCP (6) with the upper bound
vU

Œ of DRCCP (6), as detailed below.
Corollary 3. Suppose that X ™ {x : D€x Æ d}, for any two disjoint sets S0,S1 ™ [N ] with |S0| Æ
ÂNÁÊ. Then one can solve the following problem:

‚vŒ(S0,S1) = min
x,u,

w,zœ[0,1]N ,‚y

Y
_________]

_________[

y :

‚y Ø c€uj + vU
Œ(1 ≠ zj),’j œ [N ] \ (S1 fi S0),

‚y Ø c€wj + vU
Œzj ,’j œ [N ] \ (S1 fi S0),

◊
..ai

!
uj

"..
ú + zjai

!
uj/zj

"€ ‚⇠j Æ zjbi(uj/zj),’i œ [I], j œ [N ],
D€uj Æ dzj ,’j œ [N ],D€wj Æ d(1 ≠ zj),’j œ [N ],
x=uj +wj ,’j œ [N ],ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ,

ÿ

jœS0

zj = 0,
ÿ

jœS1

zj = |S1|

Z
_________̂

_________\

. (7)

If ‚vŒ(S0,S1) Ø vU
Œ, where vU

Œ is an upper bound of DRCCP (6), then the following inequality is valid
for any optimal solution of DRCCP (6):

ÿ

jœS0

zj +
ÿ

jœS1

(1 ≠ zj) Ø 1,

with q
jœ[N ] zj Ø N ≠ ÂNÁÊ,z œ {0,1}N .

It is worth noting that when the dual norm is Î · Îú = Î · Îp with p œ (1,Œ), the restricted dual
bound problem (7) comprises a minimum of NI conic constraints, posing a considerable challenge
in numerical computations. As a result, it may be more practical to use this procedure solely when
p takes on values from the set {1,Œ}.

Moreover, the variable fixing technique described in Corollary 2 can be straightforwardly extended
to address DRCCP (6) for any p œ [1,Œ].
Corollary 4. Let ‚÷Œ,j = minxœX {c€x : ◊Îai(x)Îú + ai(x)€ ‚⇠j Æ bi(x),’i œ [I]} for each j œ [N ].
Suppose that for some j œ [N ], we have ‚÷Œ,j > vU

Œ. Then zj = 0.
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In summary, the solution approach for DRCCP (6) involves the following steps. First, we calculate
the upper bound for the problem. Then, we apply the variable fixing technique outlined in Corollary 4
to fix the variables individually for each scenario. If the value of p falls within the set {1,Œ}, we
proceed to check the restricted lower bound of DRCCP (6) and compare it with the upper bound
using Corollary 3. Our numerical study confirms that this systematic approach is highly e�ective in
deriving optimality cuts and significantly expediting the solution process of DRCCP (6).

3.2. Big-M Coe�cients Strengthening for DRCCPs under Type Œ-Wasserstein Ambiguity
Set

In this subsection, we focus on strengthening the big-M coe�cients by building on the insights and
discussions presented in Section 2.2. Specifically, for a given scenario j œ [N ], we compute

÷i,j(jÕ|◊) = max
xœX

Ó
◊ Îai(x)Îú +ai(x)€ ‚⇠j ≠ bi(x) : ◊ Îai(x)Îú +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
, (8)

which is, in general, NP-hard to solve for any convex Lp norm with Î · Îú = Î · Îp and p œ [1,Œ) and
◊ > 0.

Theorem 2. Suppose ◊ > 0. For any dual norm Î · Îú = Î · Îp and p œ [1,Œ), solving Problem (8),
in general, is NP-hard.

Proof. See e-companion EC.1.1. ⇤
Despite the di�culty of computing ÷i,j(jÕ|◊) for general norms, it turns out that for the inf-norm

(i.e., when p = Œ), Problem (8) can be tractable.

Proposition 1. Suppose that in Problem (8), set X is compact and convex, and the dual norm
Î ·Îú = Î ·ÎŒ. Then Problem (8) is equivalent to solving 2n tractable convex programs, i.e., ÷i,j(jÕ|◊) =
max·œ[n] max¸œ[2] ÷i,j(jÕ, ·, ¸|◊), where for each · œ [n], we have

÷i,j(jÕ, ·,1|◊) = max
xœX

Ó
◊ai· (x) +ai(x)€ ‚⇠j ≠ bi(x) : ◊ Îai(x)ÎŒ +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
,

÷i,j(jÕ, ·,2|◊) = max
xœX

Ó
≠◊ai· (x) +ai(x)€ ‚⇠j ≠ bi(x) : ◊ Îai(x)ÎŒ +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
.

Proof. See e-companion EC.1.2. ⇤
In the context of the general dual norm Î · Îú = Î · Îp with p œ [1,Œ), we aim to identify nontrivial

conditions under which Problem (8) becomes more manageable to solve. To accomplish this, we first
employ strong duality and present an equivalent reformulation of Problem (8).

Proposition 2. Suppose that in Problem (8), set X is compact and convex. Let

v̄P
Œ,i,j,1(jÕ|◊) = max

xœX

Ó
ai(x)€

Ë
‚⇠j ≠ ‚⇠jÕÈ : ◊ Îai(x)Îú +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
, (9a)

v̄P
Œ,i,j,2(jÕ|◊) = min

0Æ–Æ1
max
xœX

Y
]

[(– ≠ 1)bi(x) + (1 ≠ –)◊ Îai(x)Îú +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
aik(x)

Z
^

\ . (9b)

Let ÷̄i,j(jÕ|◊) be the minimum between v̄P
Œ,i,j,1(jÕ|◊) and v̄P

Œ,i,j,2(jÕ|◊), i.e., ÷̄i,j(jÕ|◊) =
min{v̄P

Œ,i,j,1(jÕ|◊), v̄P
Œ,i,j,2(jÕ|◊)}. Then

(i) The optimal value of Problem (8) is upper bounded by ÷̄i,j(jÕ|◊), i.e., ÷i,j(jÕ|◊) Æ ÷̄i,j(jÕ|◊); and
(ii) When the inner maximization in Problem (9b) admits a unique solution with – = 0, the optimal

value of Problem (8) is equal to ÷̄i,j(jÕ|◊), i.e., ÷i,j(jÕ|◊) = ÷̄i,j(jÕ|◊).

Proof. See e-companion EC.1.3. ⇤
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We remark that Problem (9a) can be viewed as a convex optimization problem, which is easy to solve.
However, Problem (9b) can still be challenging to solve. For example, suppose ‚⇠j = ‚⇠jÕ = 0,ai(x) =
x, bi(x) = bi > maxxœX ◊ÎxÎú, then optimal –ú in Problem (9b) is –ú = 0 and the remaining problem
(9b) is v̄P

Œ,i,j,2(jÕ|◊) = maxxœX ◊ÎxÎú, which, in general, is hard, according to the proof in Theorem 2.
Consequently, to address this complexity, we further explore the structural properties of set X

such that the upper bound of Problem (8) can be e�ciently computable using the golden section
search method. One such case is when set X = [0,1]n, the dual norm Î · Îú = Î · Îp with p œ (1,Œ),
and ai(x) = x, bi(x) = bi for each i œ [I]. Particularly, if we impose the additional assumption that
the empirical samples are nonnegative, i.e., ‚⇠j Ø 0 for each j œ [N ], in fact, the easily computable
upper bound ÷̄i,j(jÕ|◊) is exact.

Proposition 3. Suppose ai(x) = x, bi(x) = bi for each i œ [I], the dual norm Î · Îú = Î · Îp with
p œ (1,Œ), and set X = [0,1]n. Then
(i) The upper bound of Problem (8) can be e�ciently computable; and

(ii) When the empirical samples are nonnegative ‚⇠j Ø 0 for all j œ [N ], the upper bound ÷̄i,j(jÕ|◊) is
exact.

Proof. See e-companion EC.1.4. ⇤
In recent works on DRCCPs, a common setting that ai(x) =x and bi(x) = bi for each i œ [I] has been
adopted in Chen et al. (2022), Ho-Nguyen et al. (2022, 2023), Xie (2021). This particular setting has
found applications in portfolio optimization (as seen in Chen et al. 2022, Xie and Ahmed 2020) and
transportation problems (as demonstrated in Chen et al. 2022, Luedtke et al. 2010). For simplicity,
we consider the set X = [0,1]n in Proposition 3. It is important to note that there are other possible
choices for the set X , and these alternatives can be investigated through analogous proofs, similar to
those outlined in the proofs of Step 1 and Step 2 in Proposition 3. The summarized outcomes are as
follows.

Corollary 5. Suppose ai(x) = x, bi(x) = bi for each i œ [I], the dual norm Î · Îú = Î · Îp with
p œ (1,Œ). The upper bound of Problem (8) can be e�ciently computable if
(i) X = {x :

q
kœ[n] xk Æ ·,0 Æ xk Æ 1,’k œ [n]}; or

(ii) X = {x :
q

kœ[n] 2k≠1xk Æ ·,0 Æ xk Æ 1,’k œ [n]}.

When the dual norm Î ·Îú = Î ·Î1, Problem (8) can be solved more e�ciently using sorting without
the need to resort to the dual formulation or employ the golden search method in Proposition 3 (see
the details in Appendix EC. 1.4).

Proposition 4. Suppose ai(x) =x, bi(x) = bi for each i œ [I], the dual norm Î · Îú = Î · Î1, and set
X = [0,1]n. Problem (8) can be e�ciently computable.

Proof. See e-companion EC.1.5. ⇤
To conclude, in this subsection, we present conditions when Problem (8) becomes more manageable
to solve. Subsequently, we outline the implementation procedure for variable fixing in DRCCP (6).

3.3. Implementation of the Variable Fixing Procedure
Similar to Algorithm 1, a step-by-step procedure for the variable fixing process aimed at solving
the DRCCP (6) is shown in Algorithm 2. It is important to note that the findings discussed in this
section have been utilized in the numerical implementation in Section 7.

4. Variable Fixing in DRCCPs under Type 1-Wasserstein Ambiguity Set
In this section, we discuss the variable fixing under type 1-Wasserstein ambiguity set. To begin with,
we first introduce the notions of value-at-risk (VaR) and conditional value-at-risk (CVaR). Given
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Algorithm 2 Variable Fixing Procedure for DRCCP (6)
1: Pre-compute an upper bound vU

Œ for DRCCP (6)
2: Fix the variables individually for each scenario based on Corollary 4
3: When p œ {1,Œ}, apply the optimality cuts from Step 2 and find the optimality cuts based on

Corollary 3 by comparing the restricted lower bound ‚vŒ(S0,S1) of the DRCCP (6) and upper
bound vU

Œ
4: Strengthen big-M coe�cients in DRCCP (6)

a random variable X̃, let ‚P and F‚P(·) be its probability distribution and cumulative distribution
function, respectively. For a given risk level Á œ (0,1), (1 ≠ Á) VaR of X̃ is

‚P-VaR1≠Á(X̃) := min
s

Ó
s : F‚P(s) Ø 1 ≠ Á

Ô
,

and the corresponding CVaR is defined as

‚P-CVaR1≠Á(X̃) := min
—

;
— + 1

Á
E‚P[X̃ ≠ —]+

<
.

In this section, we follow the assumptions in recent DRCCP literature such as Xie (2021), Chen et al.
(2022). Specifically, we adopt the assumption that Îai(x)Îú = Îa1(x)Îú holds for all i œ [I]. Notice
that under the condition that Îai(x)Îú = Îa1(x)Îú for i œ [I], we still consider the joint DRCCP
rather than the single DRCCP. According to the equivalent reformulations in Xie (2021), Chen et al.
(2022), the DRCCP (1) under type 1-Wasserstein ambiguity set can be equivalently reformulated as:

vú
1 = min

xœX ,⁄,“,
s,y,z

c€x, (10a)

s.t. ◊⁄ ≠ Á“ Æ 1
N

ÿ

jœ[N ]
yj , (10b)

yj + “ Æ sj ,’j œ [N ], (10c)
sj Æ bi(x) ≠ai(x)€ ‚⇠j + Mi,j,1(1 ≠ zj),’i œ [I], j œ [N ], (10d)
sj Æ Mi,j,2zj ,’i œ [I], j œ [N ], (10e)
Îa1(x)Îú Æ ⁄,’i œ [I], (10f)
ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} , (10g)

⁄ > 0,“ Ø 0, sj Ø 0,’j œ [N ], yj Æ 0,’j œ [N ],z œ {0,1}N , (10h)

where for each i œ [I], j œ [N ], we define

Mi,j,1 Ø max
xœX

Ó
ai(x)€ ‚⇠j ≠ bi(x)

Ô
,Mi,j,2 Ø max

xœX

Ó
bi(x) ≠ai(x)€ ‚⇠j

Ô
.

4.1. A Big-M Free Formulation and Its Corresponding Variable Fixing
Inspired by the “big-M free” formulations introduced in Ahmed et al. (2017) using disjunctive pro-
gramming, we present an equivalent reformulation for the DRCCP (10) under the conditions that
the compact set X ™ {x : D€x Æ d} and Îai(x)Îú = Îa1(x)Îú for each i œ [I]. This reformulation
takes the form:

vú
1 = min

x,u,w,z,“,

s,y,“,‚y
‚y, (11a)
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s.t. ‚y Ø c€uj + ¸1(1 ≠ zj),’j œ [N ], ‚y Ø c€wj + ¸1zj ,’j œ [N ], (11b)

◊ Îa1(x)Îú ≠ Á“ Æ 1
N

ÿ

jœ[N ]
yj , (11c)

D€uj Æ dzj ,’j œ [N ],D€wj Æ d(1 ≠ zj),’j œ [N ], (11d)
x=uj +wj ,’j œ [N ], (11e)
yj + “ Æ sj ,’j œ [N ], zjai

!
uj/zj

"€ ‚⇠j + sj Æ zjbi(uj/zj),’i œ [I], j œ [N ], (11f)
ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} , (11g)

z œ {0,1}N ,“ Ø 0,sØ 0,y Æ 0, (11h)

where ¸1 is a lower bound of DRCCP (10), e.g., one can use the quantile bound (see, e.g., Song et al.
2014) as a valid lower bound. The validity of reformulation (11) is provided through the following
theorem.

Theorem 3. Suppose that set X ™ {x :D€xÆ d} and Îai(x)Îú = Îa1(x)Îú for all i œ [I]. Then the
DRCCP (10) and DRCCP (11) are equivalent.
Proof. According to the reformulation in corollary 1 of Xie (2021), we can rewrite DRCCP (1) under
type 1-Wasserstein ambiguity set as:

vú
1 = min

xœX

Y
_]

_[
c€x :

◊Á≠1 Îa1(x)Îú + ‚P-CVaR1≠Á

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠

2

+

6
Æ 0,

‚P
Ó
ai(x)€ ‚⇠≠ bi(x) Æ 0,’i œ [I]

Ô
Ø 1 ≠ Á

Z
_̂

_\
.

By the dual representation of CVaR1≠Á(·) (see, e.g., Shapiro and Ahmed 2004), we have

vú
1 = min

xœX

Y
_____]

_____[

c€x :
◊Á≠1 Îa1(x)Îú + max

0ÆpjÆ 1

NÁ ,’jœ[N ],q
jœ[N ]

pj=1

S

U
ÿ

jœ[N ]
pj

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠j

2

+

6T

V Æ 0,

‚P
Ó
ai(x)€ ‚⇠≠ bi(x) Æ 0,’i œ [I]

Ô
Ø 1 ≠ Á

Z
_____̂

_____\

.

Introducing a binary variable zj for each j œ [N ] to denote the (·)+ function, we have

vú
1 = min

xœX ,zœ{0,1}N

Y
_____]

_____[

c€x :
◊Á≠1 Îa1(x)Îú + max

0ÆpjÆ 1

NÁ ,’jœ[N ],q
jœ[N ]

pj=1

S

U
ÿ

jœ[N ]
pj

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠j

2
zj

6T

V Æ 0,

‚P
Ó
ai(x)€ ‚⇠≠ bi(x) Æ 0,’i œ [I]

Ô
Ø 1 ≠ Á

Z
_____̂

_____\

.

In DRCCP (10), we know that
q

jœ[N ] zj must be at least N ≠ ÂNÁÊ + 1 when ◊ > 0. On the other
hand, in its RCCP counterpart (i.e., ◊ = 0 in DRCCP (10)),

q
jœ[N ] zj must be at least N ≠ ÂNÁÊ.

Therefore, we can incorporate these conditions:

vú
1 = min

xœX ,z

Y
______]

______[

c€x :

◊Á≠1 Îa1(x)Îú + max
0ÆpjÆ 1

NÁ ,’jœ[N ],q
jœ[N ]

pj=1

S

U
ÿ

jœ[N ]
pj

5
max
iœ[I]

1
ai(x)€ ‚⇠jzj ≠ bi(x)zj

26T

V Æ 0,

ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} ,z œ {0,1}N

Z
______̂

______\

.
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Dualizing the inner maximum of the first constraint, we have

vú
1 = min

xœX ,z

Y
____]

____[

c€x :
◊Á≠1 Îa1(x)Îú + min

—Æ0

S

U— + 1
NÁ

ÿ

jœ[N ]

5
max
iœ[I]

1
ai(x)€ ‚⇠jzj ≠ bi(x)zj

2
≠ —

6

+

T

V Æ 0,

ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} ,z œ {0,1}N

Z
____̂

____\

.

Replacing the minimum operator over — Æ 0 with the existence of —, we have

vú
1 = min

xœX ,—Æ0,z

Y
___]

___[
c€x :

◊ Îa1(x)Îú + Á— + 1
N

ÿ

jœ[N ]

5
max
iœ[I]

1
ai(x)€ ‚⇠jzj ≠ bi(x)zj

2
≠ —

6

+
Æ 0,

ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} ,z œ {0,1}N

Z
___̂

___\
.

Introducing slack variables � and  , we have

vú
1 = min

xœX ,—Æ0,z,�Ø0, Æ0

Y
_________]

_________[

c€x :

◊ Îa1(x)Îú + Á— + 1
N

ÿ

jœ[N ]
„j Æ 0,

„j Ø Âj ≠ —,’j œ [N ],
Âj Ø ai(x)€ ‚⇠jzj ≠ bi(x)zj ,’i œ [I], j œ [N ],
ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} ,z œ {0,1}N

Z
_________̂

_________\

.

However, the reformulation above is bilinear due to terms {ai(x)€ ‚⇠jzj}iœ[I],jœ[N ], {bi(x)zj}iœ[I],jœ[N ].
To address this, we use the extended formulation from proposition 9 in Ahmed et al. (2017). With
the presumption that set X ™ {x :D€xÆ d}, we obtain the following equivalent reformulation:

vú
1 = min

x,u,w,z,

—Æ0,�Ø0, Æ0,‚y

Y
_______________]

_______________[

‚y :

‚y Ø c€uj + ¸1(1 ≠ zj),’j œ [N ], ‚y Ø c€wj + ¸1zj ,’j œ [N ],

◊ Îa1(x)Îú + Á— + 1
N

ÿ

jœ[N ]
„j Æ 0,

„j Ø Âj ≠ —,’j œ [N ],Âj Ø zjai

!
uj/zj

"€ ‚⇠j ≠ zjbi(uj/zj),’i œ [I], j œ [N ],
D€uj Æ dzj ,’j œ [N ],D€wj Æ d(1 ≠ zj),’j œ [N ],
x=uj +wj ,’j œ [N ],
ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} ,z œ {0,1}N

Z
_______________̂

_______________\

,

where ¸1 is a lower bound of DRCCP (10). Let “ = ≠—, y = ≠�, and s = ≠ , then we have the
desired result in (11). This completes the proof. ⇤

To solve DRCCP (11) to optimality, we employ variable fixing techniques to generate optimality
cuts. To facilitate this process, we first propose a computationally e�cient lower bound for DRCCP
(11). In literature, Ahmed et al. (2017) introduced a nonlinear programming formulation to calculate
a lower bound for the RCCP. Further details can be found in section 5.2 of Ahmed et al. (2017). We
extend this approach to suit DRCCP (11):

¸NLP
1 = min

x,u,w,z,

“Ø0,sØ0,yÆ0,‚y

;
‚y : c€uj Æ ‚yzj ,’j œ [N ],c€wj Æ ‚y(1 ≠ zj),’j œ [N ],

(11c)-(11g),z œ [0,1]N
<

. (12)

According to proposition 7 and proposition 8 in Ahmed et al. (2017), one can use a linear programming
based approach for solving ¸NLP

1 (12) as summarized below.
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Corollary 6. Let ¸NLP
1 = ¸ú

1, then vL
1 (¸ú

1) = ¸ú
1, where

vL
1 (¸1) = min

x,u,w,z,

“Ø0,sØ0,yÆ0,‚y

;
y : ‚y Ø c€uj + ¸1(1 ≠ zj),’j œ [N ], ‚y Ø c€wj + ¸1zj ,’j œ [N ],

(11c)-(11g),z œ [0,1]N
<

. (13)

It is important to recognize that an iterative approach can be used to solve (13) until the convergence.
Following the convention in Ahmed et al. (2017), we denote the optimal value of Problem (12) as
the dual bound for DRCCP (10).

We consider the restricted Problem (13) to generate optimality cuts, where we replace ¸1 with vU
1

(i.e., the upper bound of DRCCP (10)) and add the constraints
q

jœS1
zj = |S1| and

q
jœS0

zj = 0. For
the restricted problem, if the optimal value is no less than vU

1 , we can successfully identify optimality
cuts. The result is shown below.
Corollary 7. Suppose that set X ™ {x : D€x Æ d}, Îai(x)Îú = Îa1(x)Îú for all i œ [I], and vU

1
denotes an upper bound of DRCCP (11). For any two disjoint sets S0,S1 ™ [N ] with |S0| Æ ÂNÁÊ,
one can solve the following problem:

‚v1(S0,S1) = min
x,u,w,zœ[0,1]N ,

“Ø0,sØ0,yÆ0,‚y

Y
__]

__[
‚y :

‚y Ø c€uj + vU
1 (1 ≠ zj),’j œ [N ] \ (S1 fi S0),

‚y Ø c€wj + vU
1 zj ,’j œ [N ] \ (S1 fi S0),

(11c)-(11g),
ÿ

jœS0

zj = 0,
ÿ

jœS1

zj = |S1|

Z
__̂

__\
. (14)

If ‚v1(S0,S1) Ø vU
1 , then the following inequality is valid for any optimal solution of DRCCP (11):

ÿ

jœS0

zj +
ÿ

jœS1

(1 ≠ zj) Ø 1,

with q
jœ[N ] zj Ø N ≠ ÂNÁÊ + I{◊ > 0},z œ {0,1}N .

Proof. Note that if we let ¸1 = vU
1 in vL(¸1) (13), we have vL

1 (vU
1 ) < vU

1 . Therefore, if we have
‚v1(S0,S1) Ø vU

1 , following the similar proof as Theorem 1, we can obtain an optimality cut. ⇤
Similarly, the variable fixing technique outlined in Corollary 2 can be easily extended to DRCCP

(10).
Corollary 8. Let ‚÷j = minxœX {c€x : ai(x)€ ‚⇠j Æ bi(x),’i œ [I]} for each j œ [N ]. If for some
j œ [N ], the value ‚÷j > vU

1 , then we must have zj = 0.

4.2. VaR Outer Approximation
The VaR outer approximation (see, e.g., theorem 3 in Xie 2021) can provide a di�erent lower bound
for DRCCP (10), which admits the following formulation:

vVaR
1 = min

xœX ,‚z
c€x, (15a)

s.t. ◊Á≠1 Îai(x)Îú +ai(x)€ ‚⇠j Æ bi(x) + MVaR,1
i,j (1 ≠ ‚zj),’i œ [I], j œ [N ], (15b)

ÿ

jœ[N ]
‚zj Ø N ≠ ÂNÁÊ, ‚z œ {0,1}N , (15c)

where for each i œ [I], j œ [N ], we have

MVaR,1
i,j Ø max

xœX

Ó
◊Á≠1 Îai(x)Îú +ai(x)€ ‚⇠j ≠ bi(x)

Ô
.

Note that the big-M coe�cients {MVaR,1
i,j }iœ[I],jœ[N ] can be strengthened e�ciently following the dis-

cussions in Section 3.
However, it might be di�cult to find the optimal objective value of VaR outer approximation (15).

Nonetheless, we can derive the valid inequalities by observing that the feasible region of DRCCP
(10) is included in that of the VaR outer approximation (15).
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Proposition 5. Suppose the Wasserstein radius ◊ > 0. For a given DRCCP feasible solution ‚xœ X ,
let ‚z be a solution of VaR outer approximation (15) induced by ‚x and z̄ be a solution of DRCCP
(10) induced by ‚x, respectively. Then, we have ‚zj Æ z̄j for each j œ [N ].
Proof. For a DRCCP feasible solution ‚xœ X , since ‚z is a solution of VaR outer approximation (15)
induced by ‚x. Suppose ‚zj = 1 for a given j œ [N ], then we have

◊Á≠1 Îai(‚x)Îú +ai(‚x)€ ‚⇠j Æ bi(‚x),’i œ [I],

which implies that we cannot have ai(‚x)€ ‚⇠j > bi(x̄) for each i œ [I]. Correspondingly, since z̄ is a
solution of DRCCP (10) induced by ‚x, the value of z̄j must be set to 1 and we have ‚zj Æ z̄j .

On the other hand, suppose z̄j = 1, the inequality always holds ‚zj Æ z̄j . This completes the proof.
⇤

Proposition 5 can help enhance the VaR lower bound (15). Specifically, we can combine VaR outer
approximation (15) with the relaxed DRCCP (10) to get an improved VaR lower bound, that is,

v̄L
1 = min

xœX ,⁄,“,

s,y,zœ[0,1]N ,‚zœ{0,1}N

I

c€x :
(10b)-(10c), (10f)-(10h), (10d)-(10e), (15b)-(15c),
‚zj Æ zj ,’j œ [N ]

J

. (16)

In the numerical implementation, we choose the maximum between this improved VaR lower bound
(16) and the dual bound (13) as the best lower bound of DRCCP (10).

4.3. Coe�cients Strengthening for DRCCP (10)
Similarly, we can strengthen big-M coe�cients in DRCCP (10). Di�erent from the previous method
described in Section 2.2, we strengthen the big-M coe�cients using the relaxed VaR outer approxi-
mation, that is,

Mi,j,1 Ø max
xœX ,‚z

Y
]

[ai(x)€ ‚⇠j ≠ bi(x) : (15b),
ÿ

jœ[N ]
‚zj Ø N ≠ ÂNÁÊ, ‚z œ [0,1]N

Z
^

\ , (17a)

Mi,j,2 Ø max
xœX ,‚z

Y
]

[bi(x) ≠ai(x)€ ‚⇠j : (15b),
ÿ

jœ[N ]
‚zj Ø N ≠ ÂNÁÊ, ‚z œ [0,1]N

Z
^

\ . (17b)

We remark that although Ho-Nguyen et al. (2023) introduced a big-M coe�cient strengthening
procedure based on mixing inequalities, our proposed strengthening procedure (18) di�ers from theirs
in the following two aspects: (i) While the strengthening procedure in section 4.2 of Ho-Nguyen
et al. (2023) relies on the sorting, we obtain the values of Mi,j,1, Mi,j,2 by incorporating the relaxed
VaR approximation; (ii) Ho-Nguyen et al. (2023) focused solely on strengthening Mi,j,1 and did not
strengthen Mi,j,2. In contrast, our approach involves strengthening both Mi,j,1 and Mi,j,2. Through
our numerical study, we observe that strengthening Mi,j,2 improves e�ciency. We provide detailed
comparisons in our numerical study in Section 7 and e-companion EC.3.

It is worth mentioning that the parameter “ plays a vital role in solving DRCCP (10), i.e., the
high-quality lower and upper bounds of “ can speed up the solution process. Hence, to enhance the
e�ectiveness, we employ the following lower and upper bounds for “ to strengthen DRCCP (10):

“L = min
xœX ,⁄,“,s,y,zœ{0,1}N

)
“ : c€xÆ vU

1 , (10b)-(10c), (10f)-(10h), (10d)-(10e)
*

, (18a)

“U = max
xœX ,⁄,“,s,y,zœ{0,1}N

)
“ : c€xÆ vU

1 , (10b)-(10c), (10f)-(10h), (10d)-(10e)
*

. (18b)

We demonstrate the e�ectiveness of strengthening “ for solving DRCCP (10) in Section 7.
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Algorithm 3 Variable Fixing Procedure for DRCCP (10)
1: Pre-compute lower bound vL

1 and upper bound vU
1 for DRCCP (10)

2: Fix the variables individually for each scenario based on Corollary 8
3: Apply the optimality cuts from Step 2 and find additional optimality cuts based on Corollary 7

by comparing the restricted lower bound ‚v1(S0,S1) of the DRCCP (10) and upper bound vU
1

4: Solve the improved VaR lower bound (16)
5: Strengthen big-M coe�cients (17) and the coe�cient “ (18)

4.4. Implementation of the Variable Fixing Procedure
In summary, the variable fixing procedure to address DRCCP (10) is outlined in Algorithm Algo-
rithm 3. It is important to note that the results presented in this section have been implemented in
the numerical study Section 7.

5. Variable Fixing for DRCCPs under Type q-Wasserstein Ambiguity Set with
q œ (1,Œ)

In this section, we discuss the variable fixing under type q-Wasserstein ambiguity set with q œ (1,Œ).
According to reformulation in Jiang and Xie (2023), under type q-Wasserstein ambiguity set with
q œ (1,Œ), DRCCP (1) can be simplified to

vú
q = min

xœX

Y
_]

_[
c€x :

◊qÁ≠1 Îa1(x)Îq
ú + ‚P-CVaR1≠Á

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠

2q

+

6
Æ 0,

‚P
Ó
ai(x)€ ‚⇠≠ bi(x) Æ 0,’i œ [I]

Ô
Ø 1 ≠ Á

Z
_̂

_\
, (19)

where the corresponding CVaR approximation with ◊ > 0 is

vCVaR
q = min

xœX

;
c€x : ◊Á≠ 1

q Îa1(x)Îú + ‚P-CVaR1≠Á

5
max
iœ[I]

Ó
ai(x)€ ‚⇠≠ bi(x)

Ô6
Æ 0

<
. (20)

Regarding DRCCP (19) and CVaR approximation (20), there are two primary limitations: (i) DRCCP
(19) may not admit a mixed-integer convex programming reformulation (see, e.g., proposition 3 in
appendix A.3 of Jiang and Xie 2023); and (ii) CVaR approximation can be quite conservative (see
the discussions in Nemirovski and Shapiro 2007, Chen et al. 2023).

5.1. A New Inner Approximation of DRCCP (19)
To address the limitations of DRCCP (19) and CVaR approximation (20), we introduce a new conser-
vative approximation that enhances CVaR approximation while still allowing for a MIP reformulation
with ◊ > 0, that is,

‚vq = min
xœX

;
c€x : ◊Á≠ 1

q Îa1(x)Îú + ‚P-CVaR1≠Á

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠

2

+

6
Æ 0

<
. (21)

For comparison purposes, we use VaR outer approximation for DRCCP (19). According to theorem
3 in Xie (2021), VaR outer approximation of DRCCP (19) can be written as

vVaR
q = min

xœX

Ó
c€x : ‚P

Ó
⇠̃ : ◊Á≠ 1

q Îa1(x)Îú +ai(x)€ ‚⇠Æ bi(x),’i œ [I]
Ô

Ø 1 ≠ Á
Ô

. (22)

Theorem 4. When Îai(x)Îú = Îa1(x)Îú for all i œ [I] and ◊ > 0, under type q-Wasserstein ambi-
guity set with q œ (1,Œ), the following inequalities hold:

vVaR
q Æ vú

q Æ ‚vq Æ vCVaR
q .
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Proof. Based on theorem 3 in Xie (2021), we have vVaR
q Æ vú

q . By the definition of (·)+ function,we
conclude that ‚vq Æ vCVaR

q . Then, it remains to prove vú
q Æ ‚vq. Since CVaR1≠Á[·] is a coherent convex

measure (see the details in Rockafellar et al. 2000) and according to Jensen inequality (see, e.g.,
theorem 3.3 in Rudin 1987), for all xœ X , we have

≠ ‚P-CVaR1≠Á

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠

2

+

6
Æ

5
≠‚P-CVaR1≠Á

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠

2

+

6q6 1
q

,

which implies that
;
x : ◊Á≠ 1

q Îa1(x)Îú Æ ≠‚P-CVaR1≠Á

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠

2

+

6<

™
I

x : ◊Á≠ 1
q Îa1(x)Îú Æ

5
≠‚P-CVaR1≠Á

5
≠min

iœ[I]

1
bi(x) ≠ai(x)€ ‚⇠

2

+

6q6 1
q
J

.

Thus, we have vú
q Æ ‚vq. This completes the proof. ⇤

It is important to note that the inner approximation (21) and the recent convex approximation–
ALSO-X# from Jiang and Xie (2023) may not be directly comparable. Below is an example.
Example 2. Consider a single DRCCP under type 2-Wasserstein ambiguity set with ◊ = 0.8 and
the dual norm Î · Îú = Î · Î2. Assume that the empirical distribution has 4 equiprobable scenarios
(i.e., N = 4, ‚P{⇠̃ = ‚⇠i} = 1/N), risk parameter Á = 1/2, set X = [0,1]3, c = (≠2,≠3,≠2)€, function
a1(x)€ ‚⇠ ≠ b1(x) = x€ ‚⇠ ≠ 3, ‚⇠1 = (2,2,6)€, ‚⇠2 = (3,3,2)€, ‚⇠3 = (6,4,8)€, and ‚⇠4 = (7,2,2)€. In
this example, numerically, we can solve ALSO-X# vA#

2 and the inner approximation ‚v2, where the
approximated objective values are vA#

2 = ≠1.9531 and ‚v2 = ≠1.9433 with error bound [≠10≠4,10≠4].
ù

In the numerical implementation, we choose the minimum between the inner approximation (21) and
ALSO-X# as the upper bound of DRCCP (19).

5.2. Variable Fixing for Inner Approximation (21)
According to the discussions from the previous subsection, with the aim of e�ciently solving the
inner approximation (21), we proceed by introducing its equivalent reformulation. Particularly, when
set X ™ {x : D€x Æ d} and Îai(x)Îú = Îa1(x)Îú for all i œ [I], according to Theorem 3, inner
approximation (21) can be written as

‚vq = min
x,u,w,z,“,s,y,‚y

‚y, (23a)

s.t. ‚y Ø c€uj + ¸q(1 ≠ zj),’j œ [N ], ‚y Ø c€wj + ¸qzj ,’j œ [N ], (23b)

◊Á1≠ 1
q Îa1(x)Îú ≠ Á“ Æ 1

N

ÿ

jœ[N ]
yj , (23c)

D€uj Æ dzj ,’j œ [N ],D€wj Æ d(1 ≠ zj),’j œ [N ], (23d)
x=uj +wj ,’j œ [N ], (23e)
yj + “ Æ sj ,’j œ [N ], zjai

!
uj/zj

"€ ‚⇠j + sj Æ zjbi(uj/zj),’i œ [I], j œ [N ], (23f)
ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} , (23g)

z œ {0,1}N ,“ Ø 0,sØ 0,y Æ 0, (23h)

where ¸q is a lower bound of DRCCP (19), e.g., one can use VaR outer approximation (22) as a
lower bound. Building upon Corollary 7, we can leverage the inner approximation formulation (23)
to derive optimality cuts.
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Corollary 9. Suppose that set X ™ {x : D€x Æ d} and Îai(x)Îú = Îa1(x)Îú for all i œ [I], for
any two disjoint sets S0,S1 ™ [N ] with |S0| Æ ÂNÁÊ. Then one can solve the following problem:

‚vq(S0,S1) = min
x,u,w,zœ[0,1]N ,

“Ø0,sØ0,yÆ0,‚y

Y
__]

__[
y :

‚y Ø c€uj + vU
q (1 ≠ zj),’j œ [N ] \ (S1 fi S0),

‚y Ø c€wj + vU
q zj ,’j œ [N ] \ (S1 fi S0),

(23c)-(23g),
ÿ

jœS0

zj = 0,
ÿ

jœS1

zj = |S1|

Z
__̂

__\
. (24)

If ‚vq(S0,S1) Ø vU
q , where vU

q is an upper bound of DRCCP (19), then the following inequality is valid
for any optimal solution of inner approximation (21):

ÿ

jœS0

zj +
ÿ

jœS1

(1 ≠ zj) Ø 1,

with q
jœ[N ] zj Ø N ≠ ÂNÁÊ + I{◊ > 0},z œ {0,1}N .

It is noteworthy that the only di�erence between the inner approximation (21) and DRCCP (11)
pertains to the coe�cient q in the constraint (23c). As such, the discussions closely mirror those
presented in Section 4 and are therefore omitted for brevity.

6. Theoretical Analysis of Variable Fixing
In this section, we study the theoretical perspective on variable fixing. We examine several specific
DRCCPs (5) under type Œ-Wasserstein ambiguity set. Notably, since these DRCCPs degenerate to
RCCPs when the Wasserstein radius ◊ = 0, the results in this section also hold for the corresponding
RCCPs. More specifically, for every case presented, we conduct an asymptotic analysis to determine
the proportion of scenarios whose corresponding binary variables z can be fixed to zero.

6.1. Joint DRCCPs with a Continuous Reference Distribution
In this subsection, we consider a joint DRCCP with right-hand uncertainty and a continuous reference
distribution. In particular, we assume that set X =Rn, the uncertainty constraint is ai(x)€⇠≠bi(x) =
›i ≠ xi for each i œ [I], the random parameter ›̃i is continuous for each i œ [n], and I = n. That is, we
consider the following DRCCP:

vú
Œ = min

xœRn

;
c€x : inf

PœPŒ
P

Ó
⇠̃ : ›̃i Æ xi,’i œ [I]

Ô
Ø 1 ≠ Á

<
,

which is equivalent to

vú
Œ = min

xœRI

Y
]

[
ÿ

iœ[I]
xi : ‚P

Ó
‚›i + ◊ Æ xi,’i œ [I]

Ô
Ø 1 ≠ Á

Z
^

\ . (25a)

Suppose the reference distribution ‚P is log-concave independent and identically distributed (see, e.g.,
Prékopa 1973, 1980). Then, an optimal solution of DRCCP (25a) is xú

1 = xú
2 = · · · = xú

I and the optimal
objective value of DRCCP (25a) is

vú
Œ =

ÿ

iœ[I]
xú

i = I◊ + IF ≠1
‚›

1
[1 ≠ Á]

1

I

2
,

where F ≠1
‚› (·) denotes the inverse cumulative distribution function of ‚›.

Then, we provide the theoretical analysis of Corollary 4 to demonstrate its e�cacy in variable
fixing.
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Proposition 6. Suppose that in a joint DRCCP (25a), the reference distribution ‚P is independent
and identically distributed. Let ‚F (·) denote the cumulative distribution function of e

€ ‚⇠. Then, using
the variable fixing technique described in Corollary 4, asymptotically (1 ≠ ‚F (IF ≠1

‚› ([1 ≠ Á] 1

I ))) ◊ 100%
of scenarios can be successfully identified, and their corresponding binary variables can be fixed to
zero.
Proof. Let us consider the variable fixing based on Corollary 4. For one particular scenario ‚⇠, we fix
the variables if

‚÷Œ = min
x

Y
]

[
ÿ

iœ[I]
xi : ‚›i + ◊ Æ xi,’i œ [I]

Z
^

\ > vú
Œ,

which implies that scenario ‚⇠ has to be violated if e
€ ‚⇠ > vú

Œ ≠ I◊. Hence, asymptotically, we fix
‚P{e

€ ‚⇠> vú
Œ ≠ I◊} proportion of scenarios to be zero, that is,

‚P
Ó

e
€ ‚⇠> vú

Œ ≠ I◊
Ô

=1 ≠ ‚P
Ó

e
€ ‚⇠Æ IF ≠1

‚›
1
[1 ≠ Á]

1

I

2Ô
= 1 ≠ ‚F

1
IF ≠1

‚›
1
[1 ≠ Á]

1

I

22
.

⇤
We remark that the result in Proposition 6 depends on the number of uncertain constraints, denoted
as I, and risk parameter Á. With additional assumptions on the distribution of ‚›, where the cumulative
distribution of e

€ ‚⇠ can be easy to evaluate, we are able to simplify the result in Proposition 6. For
example, ‚›i follows a normal distribution or an exponential distribution for each i œ [I].
Corollary 10. Under the same assumptions in Proposition 6, the followings must hold:
(i) suppose each ‚›i follows a normal distribution, i.e., ‚›i s N (µ,‡) for all i œ [I]. Then, asymp-

totically (1 ≠ �(
Ô

I�≠1[(1 ≠ Á) 1

I ])) ◊ 100% of scenarios can be successfully identified, and their
corresponding binary variables can be fixed to zero; and

(ii) suppose each ‚›i follows an exponential distribution, i.e., for all i œ [I], ‚›i s Exp(‚⁄) with cumu-
lative distribution function F (‚›, ‚⁄) = 1 ≠ e≠‚⁄‚› when ‚› Ø 0, 0 otherwise. Then, asymptotically

C

1 ≠
Ë
1 ≠ (1 ≠ Á) 1

I

ÈI
A

I≠1ÿ

i=0

1
i!

1
≠I log

Ë
1 ≠ (1 ≠ Á) 1

I

È2i
BD

◊ 100%

of scenarios can be successfully identified, and their corresponding binary variables can be fixed
to zero.

To illustrate the result, we plot the curves with some particular choices of I and Á in case (i) of
Corollary 10. When the dimension of x is small, or the risk parameter Á is not very small, simply
applying the variable fixing technique described in Corollary 4 can be quite e�ective. We observe
that when n increases or Á decreases, the proportion of scenarios we can fix decreases.

6.2. Binary Single DRCCPs with i.i.d. Bernoulli Random Parameters
Let us consider a single distributional robust chance constrained set covering problem (5), where
the set X ™ {0,1}n, the a�ne mappings are a1(x) = ≠x, b1(x) = b1 Ø 0, and the binary support
� ™ {0,1}n. That is, we consider the following single DRCCP:

vú
Œ = min

xœ{0,1}n

;
c€x : inf

PœPŒ
P

Ó
x€⇠̃Ø b1

Ô
Ø 1 ≠ Á

<
. (26)

We first present an equivalent reformulation of DRCCP (26).
Lemma 1. Suppose the binary support � ™ {0,1}n. Then DRCCP (26) is equivalent to

vú
Œ = min

xœ{0,1}n

Ó
c€x : ‚P

Ó
x€ ‚⇠Ø b1 + Â◊pÊ

Ô
Ø 1 ≠ Á

Ô
. (27)
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Figure 2 Proportion of Violated Scenarios Identified by Part (i) in Corollary 10.

Proof. By the definition of type Œ-Wasserstein ambiguity set, we write DRCCP (26) as

vú
Œ = min

xœ{0,1}n

;
c€x : ‚P

;
min

⇠œ{0,1}n

Ó
x€⇠ : Î⇠≠ ‚⇠Îp Æ ◊

Ô
Ø b1

<
Ø 1 ≠ Á

<
.

Since the support is binary, we can write the norm constraint as Î⇠≠ ‚⇠Îp = (
q

iœ[n] |›i ≠ ‚›i|p)1/p =
(
q

iœ[n] |›i ≠ ‚›i|)1/p Æ ◊, which can be simplified as
q

iœ[n] |›i ≠ ‚›i| Æ ◊p. For a given binary decision
x, let us consider the minimization problem: min⇠œ{0,1}n{

q
iœ[n] ›ixi :

q
iœ[n] |›i ≠ ‚›i| Æ ◊p}. Denote

T = {k œ [n] : xk = 1}; we have

min
⇠œ{0,1}n

Y
]

[
ÿ

iœT
›ixi +

ÿ

iœ[n]\T

›ixi :
ÿ

iœT
|›i ≠ ‚›i| Æ ◊p

Z
^

\ = max
Ó
x€ ‚⇠≠ Â◊pÊ,0

Ô
.

Therefore, we arrive at DRCCP (27). ⇤
Lemma 1 motivates us to study a special DRCCP in favor of variable fixing analysis.
Proposition 7. Suppose that in a single DRCCP (26), the reference distribution ‚P is independent
and identically distributed with ‚›i s Binomial(1, ‚p) for each i œ [n]. Assume c = e. Then, by the
variable fixing technique described in Corollary 4, asymptotically qb1+Â◊pÊ≠1

i=0
!n

i

"
(1 ≠ ‚p)n≠i ‚pi ◊ 100%

of scenarios can be successfully identified, and their corresponding binary variables can be fixed to
zero.
Proof. Since ‚⇠ is independent and identically distributed for each i œ [n] and c= e, we have

vú
Œ = min

xœ{0,1}n

Y
]

[
ÿ

iœ[n]
xi : ‚P

Y
]

[
ÿ

iœ[n]

‚›ixi Ø b1 + Â◊pÊ

Z
^

\ Ø 1 ≠ Á

Z
^

\ .

For one particular scenario ‚⇠, we fix the variables if ‚÷Œ = minx

Óq
iœ[n] xi :

q
iœ[n]

‚›ixi Ø b1 + Â◊pÊ
Ô

>

vú
Œ. Notice that the value of ‚÷Œ is either b1 + Â◊pÊ or Œ. Then, if

q
iœ[n]

‚›i < b1 + Â◊pÊ, we can fix the
corresponding scenario; that is, asymptotically

‚P

Y
]

[
ÿ

iœ[n]

‚›i < b1 + Â◊pÊ

Z
^

\ ◊ 100% =
b1+Â◊pÊ≠1ÿ

i=0

A
n

i

B

(1 ≠ ‚p)n≠i ‚pi ◊ 100%

of scenarios can be identified, and their corresponding binary variables can be fixed to zero. ⇤
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Surprisingly, Proposition 7 shows that the variable fixing technique presented in Corollary 4 is more
or less independent of the risk parameter Á. To illustrate the result, we let b1 = 1, ◊ œ (0,1) in DRCCP
(27), and we present the corresponding curves with varying n and ‚p in Figure 3. Notably, we observe
that when ‚p increases or n increases, the proportion of scenarios we can fix decreases.
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Figure 3 Proportion of Violated Scenarios Identified by Corollary 4 in Proposition 7 with b1 = 1, ◊ œ (0, 1).

6.3. Single DRCCPs with Elliptical Reference Distributions
In this subsection, we consider a single DRCCP (5) with the elliptical reference distribution. An
elliptical distribution ‚PE(µ,�, ‚g) is characterized by three parameters: a location parameter µ, a
positive semi-definite matrix �, and a generating function ‚g; its probability density function ‚f can
be expressed as:

‚f(x) = k̄ · ‚g
31

2(x≠µ)€
�

≠1(x≠µ)
4

,

where k̄ is a positive normalization scalar. Specifically, for standard univariate elliptical distribution
‚PE(0,1, ‚g), its probability density function is Ï(z) = k̄‚g(z2/2) and the corresponding cumulative
distribution function is denoted as �(·) =

s ·
≠Œ k̄‚g(z2/2)dz. In DRCCP (5), suppose that the a�ne

mappings are a1(x) = x, b1(x) = b1, the random parameters ‚⇠ follow a joint elliptical distribution
with ‚⇠s ‚PE(µ,�, ‚g), and the norm defining the Wasserstein distance is the generalized Mahalanobis
norm associated with the matrix �, i.e., ÎyÎ =

Ò
y€�

†y, for some y œ Rn, where �
† is the pseudo-

inverse. According to the reformulation in proposition 10 of Jiang and Xie (2022), DRCCP (5) can
be simplified as

vú
Œ = min

xœX

Ó
c€x : µ€x+

!
�≠1(1 ≠ Á) + ◊

" Ô
x€�x≠ b1 Æ 0

Ô
,

which allows us to conduct a theoretical analysis of Corollary 4 to demonstrate its e�ectiveness in
variable fixing.
Proposition 8. Suppose that in a single DRCCP (5), the reference distribution ‚P is elliptical with
a�ne mappings a1(x) =x, b1(x) = b1 > 0, � = I, µ = µ̄e, c= ≠e, set X =Rn. Then, by the variable
fixing technique described in Corollary 4, asymptotically

‚P

Y
]

[
ÿ

iœ[n]

‚›i +


‚“ >
#
nµ̄ +

Ô
n

#
◊ + �≠1(1 ≠ Á)

$$ ----‚“ Ø 0

Z
^

\ ◊ 100%
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of scenarios can be successfully identified, and their corresponding binary variables can be fixed to
zero, where ‚“ = (

q
iœ[n]

‚›i)2 ≠ n
q

iœ[n]
‚›2
i + n◊2.

Proof. Under this case, we can simplify the DRCCP as

vú
Œ = min

x

)
c€x : µ€x+

!
�≠1(1 ≠ Á) + ◊

"
ÎxÎ2 ≠ b1 Æ 0

*
. (28a)

Let — be its dual variable of the constraint in (28a). Then its dual problem is

max
—Ø0

;
≠b1

—
: Î≠—e +µÎ2 Æ ◊ + �≠1(1 ≠ Á)

<
. (28b)

We construct the dual solution as —max = µ̄ + [◊ + �≠1(1 ≠ Á)]/
Ô

n and the primal solution as xi =
b1/[nµ̄ +

Ô
n[◊ + �≠1(1 ≠ Á)]] for each i œ [n]. These two solutions yield the same objective value.

Hence, we have the optimal objective value vú
Œ = ≠b1/—max.

From the variable fixing technique described in Corollary 4, for one particular ‚⇠, we fix the variables
if

‚÷Œ = min
x

Ó
≠e

€x : ‚⇠€x+ ◊ ÎxÎ2 ≠ b1 Æ 0
Ô

> vú
Œ. (28c)

Let – be its dual variable of the constraint in (28c). Then its dual problem is

max
–Ø0

Ó
≠b1/– :

...≠–e + ‚⇠
...

2
Æ ◊

Ô
. (28d)

Conditioning on ‚“ Ø 0, i.e., (
q

iœ[n]
‚›i)2 Ø n[

q
iœ[n]

‚›2
i ≠ ◊2], following the same discussions above, an

optimal solution of (28d) is

–max = 1
n

S

WWU
ÿ

iœ[n]

‚›i +

ı̂ııÙ

Q

a
ÿ

iœ[n]

‚›i

R

b
2

≠ n

S

U
ÿ

iœ[n]

‚›2
i ≠ ◊2

T

V

T

XXV ,

with the optimal objective value ‚÷Œ = ≠b1/–max.
Therefore ‚÷Œ > vú

Œ is equivalent to –max > —max, which implies that

ÿ

iœ[n]

‚›i +

ı̂ııÙ

Q

a
ÿ

iœ[n]

‚›i

R

b
2

≠ n

S

U
ÿ

iœ[n]

‚›2
i ≠ ◊2

T

V > nµ̄ +
Ô

n
#
◊ + �≠1(1 ≠ Á)

$
.

Asymptotically, we fix

‚P

Y
]

[
ÿ

iœ[n]

‚›i +


‚“ >
#
nµ̄ +

Ô
n

#
◊ + �≠1(1 ≠ Á)

$$ ----‚“ Ø 0

Z
^

\ ◊ 100%

of the scenarios to be zero. This completes the proof. ⇤
We then generate 3 ◊ 106 samples to assess the fixing probability as outlined in Proposition 8.

For every instance, we assign µ̄ = ≠10. The results of this evaluation are showcased in Figure 4. A
notable observation is that as n increases or Á diminishes, the proportion of scenarios that can be
fixed decreases.
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Figure 4 Proportion of Violated Scenarios Identified by Corollary 4.

7. Numerical Study
In this section, we numerically demonstrate the e�ectiveness of the proposed methods. All the
instances in this section are executed in Python 3.9 with calls to solver Gurobi (version 9.5.2 with
default settings) on a personal PC with an Apple M1 Pro processor and 16G of memory. We use
“UB” and “LB” to denote the best upper bound and the best lower bound found by the big-M model,
and use “GAP” to denote its optimality gap as GAP (%) = (|UB ≠ LB|)/(|LB|) ◊ 100. In all our
experiments, we set the time limit of each instance to 14,400 seconds (i.e., 4 hours) with the default
optimality gap tolerance of 0.01%. We evaluate proposed methods on two sets of instances, 1-7-1
and 1-7-5 from Song et al. (2014) with set X = [0,1]n, n = 50, risk parameter Á œ {0.10,0.20}, and
Wasserstein radius ◊ œ {0,0.10,0.20}. For each instance, we solve each method 5 times and report the
average performance. We separate our discussions into four cases: an RCCP, a DRCCP under type
Œ-Wasserstein ambiguity set, a DRCCP under type 1-Wasserstein ambiguity set, and a DRCCP
under type 2-Wasserstein ambiguity set. We aim to find two categories of optimality cuts: Category
(A), which consists of the type zj = 0 cuts, indicating that scenario j œ [N ] is violated at optimality;
and Category (B), which comprises the type zj + zj+1 Æ 1 cuts, indicating that at least the scenario
j œ [N ≠1] or (j +1) œ [N ] is violated at optimality. Codes of the numerical experiments are available
at Jiang and Xie (2024).
Case I. Testing an RCCP. The RCCP that we test admits the following form:

vú = min
xœ[0,1]n

Y
]

[c€x : 1
N

ÿ

jœ[N ]
I

S

U
ÿ

iœ[n]
›j

i xi Æ bj

T

V Ø 1 ≠ Á

Z
^

\ .

To solve each testing instance, our approach comprises the following three steps:
Step 1. We use the dual bound (see, e.g., Ahmed et al. 2017) as the outer approximation vL and
ALSO-X# (see, e.g., Jiang and Xie 2023) as the inner approximation vU , respectively. Then, we
identify the cuts based on Corollary 2. We use “P” to denote the running time of this step.
Step 2. We strengthen the big-M coe�cients according to the discussions in Section 2.2. We use “S”
to denote the running time of this step.
Step 3. We execute the big-M method.

We compare the numerical results for the following three methods: (i) Big-M method with fixing &
strengthening; (ii) Big-M method with strengthening; (iii) Vanilla big-M method. In the first method,
we initialize the solver with the solution ALSO-X#. Additionally, we incorporate the inequalities
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c€x Ø vL and c€x Æ vU into the solver. From Step 1, we identify Category (A) optimality cuts by
Corollary 2 and record the number of Category (A) optimality cuts as “# Cuts (A)” in our numerical
results. For the second method, we implement the above Step 2 and Step 3. For the third method,
we implement Step 3. The result is displayed in Table 1. Our method consistently exhibits superior
performance compared to other approaches, achieving faster and more stable solutions across all
instances. A total of 20 instances are reported in Table 1; we also provide its performance profile
for all instances in Figure 5. That is, we use the horizontal axis to represent the logarithmic scale
of running time and use the vertical axis to represent the number of instances solved to optimality
up to that time point. Our method demonstrates the ability to close the gap with a shorter total
running time, while other methods perform worse and are unable to close the gap even with a longer
total running time. If we only compare the solver’s running time, our method performs much better
than other methods.

Table 1 Numerical Results of an RCCP with Instances 1-7-1-1000 and 1-7-5-1000 from Song et al. (2014) and

N = 1000

Dataset Á Case

Big-M & Fixing & Strengthening Big-M & Strengthening Vanilla big-M

GAP
# of

Cuts (A)

Time (s)
GAP

Time (s)
GAP Time (s)

P S Solver Total S Solver Total

1-7-1-1000

0.1

1 0.00% 44 31.68 11.13 30.83 73.64 0.00% 11.81 6517.51 6529.32 0.05% 14400.00

2 0.00% 41 35.03 11.00 145.27 191.31 0.00% 12.00 468.20 480.20 0.12% 14400.00

3 0.00% 47 36.45 10.79 44.33 91.57 0.00% 11.68 567.21 578.89 0.00% 977.33

4 0.00% 10 35.77 11.59 117.57 164.93 0.00% 12.00 207.80 219.80 0.00% 464.58

5 0.00% 40 33.73 10.87 127.89 172.48 0.00% 12.05 210.45 222.51 0.00% 6248.18

0.2

1 0.00% 100 31.82 9.53 2305.09 2346.44 0.24% 12.19 14387.81 14400.00 0.36% 14400.00

2 0.00% 96 29.59 9.57 2056.57 2095.73 0.02% 11.87 14388.13 14400.00 0.25% 14400.00

3 0.00% 91 28.72 9.73 2713.46 2751.91 0.05% 12.01 14387.99 14400.00 0.13% 14400.00

4 0.00% 95 29.35 9.88 905.32 944.54 0.09% 11.80 14388.20 14400.00 0.24% 14400.00

5 0.00% 88 30.10 9.84 4102.81 4142.74 0.00% 12.49 9356.12 9368.61 0.05% 14400.00

1-7-5-1000

0.1

1 0.00% 45 39.56 10.54 27.99 78.09 0.00% 11.47 51.17 62.64 0.00% 163.70

2 0.00% 42 41.22 11.16 23.82 76.20 0.00% 12.05 31.81 43.86 0.00% 432.92

3 0.00% 34 37.89 11.21 42.87 91.96 0.00% 11.97 81.67 93.64 0.00% 450.59

4 0.00% 12 37.16 11.62 34.35 83.12 0.00% 12.12 54.17 66.29 0.00% 70.68

5 0.00% 15 35.43 11.57 191.56 238.56 0.00% 11.90 81.87 93.77 0.00% 4464.96

0.2

1 0.00% 101 38.97 9.68 67.07 115.72 0.00% 12.12 190.62 202.74 0.00% 5175.37

2 0.00% 104 37.06 9.55 100.23 146.84 0.00% 11.79 305.37 317.17 0.00% 4161.60

3 0.00% 89 36.49 9.81 119.32 165.62 0.00% 11.91 209.46 221.36 0.00% 3246.94

4 0.00% 96 34.15 9.84 131.87 175.86 0.00% 11.92 141.97 153.89 0.00% 343.38

5 0.00% 90 31.74 9.91 160.46 202.12 0.00% 11.99 265.62 277.61 0.00% 6225.72

(a) Total Running Time Comparisons of Table 1 (b) Big-M Running Time Comparisons of Table 1

Figure 5 Comparisons among di�erent methods to solve an RCCP. The horizontal axis represents the logarithmic

scale of running and the vertical axis represents the number of instances solved to optimality.
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Case II. Testing a DRCCP under type Œ-Wasserstein ambiguity set. Let us consider the
following DRCCP:

vú
Œ = min

xœ[0,1]n

Y
]

[c€x : 1
N

ÿ

jœ[N ]
I

S

U◊ÎxÎ2 +
ÿ

iœ[n]
›j

i xi Æ bj

T

V Ø 1 ≠ Á

Z
^

\ .

For each instance, the following three steps are employed:
Step 1. We solve the quantile bound (see, e.g., Song et al. 2014, Ahmed et al. 2017) as the outer
approximation vL

Œ and ALSO-X# (see, e.g., Jiang and Xie 2023) as the inner approximation vU
Œ,

respectively. Then, we identify the cuts based on Corollary 4. We use “P” to denote the running time
of this step.
Step 2. We implement the algorithms in Proposition 3 to strengthen the big-M coe�cients and use
“S” to denote the running time of this step.
Step 3. We execute the big-M method.

We compare the numerical results for the following three methods: (i) Big-M method with fixing
& strengthening, (ii) Big-M method with strengthening, and (iii) Vanilla big-M method. For the first
method, we initialize the solver with the ALSO-X# solution. Next, we add the inequalities c€xØ vL

Œ
and c€x Æ vU

Œ to the solver. From Step 1, we identify Category (A) optimality cuts by Corollary 4.
We then record the number of Category (A) optimality cuts as “# Cuts (A)” in our numerical results.
The results are displayed in Table 2 and Table 3. It is seen that in terms of the solver’s running time,
the “Big-M & Fixing & Strengthening” approach is significantly faster than the other two methods.
For most instances, the “Big-M & Fixing & Strengthening” approach consistently outperforms the
others in terms of the total running time. This suggests that incorporating the variable fixing step
greatly reduces computational time. We observe that for some instances, the Vanilla big-M method
outperforms the other two methods in terms of the total running time since strengthening the big-M
coe�cients takes longer. However, after applying fixing and strengthening, all the instances can be
consistently easier to solve. In Figure 6, we provide the performance profile for the instances in Table 2
and Table 3, where the horizontal axis represents the logarithmic scale of running and the vertical
axis represents the number of instances solved to optimality up to the time point. It is seen that our
method consistently outperforms other approaches by solving all instances significantly faster.

Table 2 Numerical Results of a DRCCP under Type Œ-Wasserstein Ambiguity Set with Instances 1-7-1-1000
from Song et al. (2014) and N = 1000

Á ◊ Case

Big-M & Fixing & Strengthening Big-M & Strengthening Vanilla big-M

GAP
# of

Cuts (A)

Time (s)
GAP

Time (s)
GAP Time (s)

P S Solver Total S Solver Total

0.1 0.1

1 0.00% 44 2.74 239.24 26.52 268.49 0.00% 261.84 63.20 325.033 0.10% 14400.00

2 0.00% 41 2.86 237.00 40.01 279.87 0.00% 257.21 73.13 330.342 0.00% 4212.78

3 0.00% 47 2.68 234.02 36.81 273.50 0.00% 256.90 56.77 313.667 0.00% 278.92

4 0.00% 10 2.69 250.78 55.20 308.67 0.00% 261.72 110.74 372.453 0.00% 358.35

5 0.00% 40 2.53 236.95 31.77 271.26 0.00% 261.75 202.66 464.407 0.19% 14400.00

0.1 0.2

1 0.00% 44 2.50 238.73 25.97 267.19 0.00% 260.30 89.92 350.22 0.00% 271.27

2 0.00% 41 2.74 242.71 192.00 437.44 0.00% 263.32 65.60 328.92 0.00% 222.88

3 0.00% 47 2.84 235.15 33.57 271.56 0.00% 257.72 68.55 326.27 0.00% 504.59

4 0.00% 10 2.53 254.07 75.24 331.84 0.00% 260.69 74.70 335.39 0.00% 371.44

5 0.00% 40 2.39 271.12 39.32 312.82 0.00% 292.17 9192.53 9486.70 0.21% 14400.00

0.2 0.1

1 0.00% 100 2.62 210.77 151.44 364.83 0.00% 260.61 455.25 715.86 0.49% 14400.00

2 0.00% 96 2.59 211.94 484.01 698.54 0.00% 260.62 502.13 762.75 0.00% 5982.19

3 0.00% 91 2.42 212.90 422.22 637.55 0.00% 258.47 451.12 709.59 0.00% 7459.28

4 0.00% 95 2.55 214.82 89.69 307.06 0.00% 262.07 233.01 495.08 0.00% 392.11

5 0.00% 88 2.33 219.20 220.01 441.54 0.00% 264.26 530.54 794.80 0.24% 14400.00

0.2 0.2

1 0.00% 100 2.88 208.39 103.26 314.53 0.00% 260.99 435.21 696.21 0.71% 14400.00

2 0.00% 96 2.34 212.54 269.56 484.44 0.00% 263.49 3972.70 4236.19 0.00% 6940.54

3 0.00% 91 2.41 213.92 361.15 577.48 0.00% 263.30 7284.95 7548.25 0.00% 9282.48

4 0.00% 95 2.75 212.74 142.21 357.70 0.00% 261.96 419.94 681.90 0.29% 14400.00

5 0.00% 88 2.43 240.98 181.49 424.90 0.00% 294.98 7274.92 7569.90 0.26% 14400.00

Case III. Testing a DRCCP under type 1-Wasserstein ambiguity set. Let us consider the
following DRCCP with the dual norm Î · Îú = Î · ÎŒ:

vú
1 = min

xœ[0,1]n

;
c€x : inf

PœP1

P
Ó
⇠̃ : x€⇠̃Æ b̃

Ô
Ø 1 ≠ Á

<
.
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Table 3 Numerical Results of a DRCCP under Type Œ-Wasserstein Ambiguity Set with Instances 1-7-5-1000
from Song et al. (2014) and N = 1000

Á ◊ Case

Big-M & Fixing & Strengthening Big-M & Strengthening Vanilla big-M

GAP
# of

Cuts (A)

Time (s)
GAP

Time (s)
GAP Time (s)

P S Solver Total S Solver Total

0.1 0.1

1 0.00% 45 2.62 243.35 28.96 274.93 0.00% 267.71 38.09 305.80 0.00% 251.34

2 0.00% 42 2.69 241.76 22.53 266.98 0.00% 267.38 38.78 306.16 0.00% 144.18

3 0.00% 34 2.63 246.36 20.42 269.42 0.00% 268.88 61.48 330.36 0.00% 181.80

4 0.00% 12 2.67 259.55 17.20 279.42 0.00% 264.62 36.64 301.26 0.00% 5154.11

5 0.00% 15 2.93 257.68 36.02 296.63 0.00% 267.17 38.60 305.77 0.00% 106.51

0.1 0.2

1 0.00% 45 2.60 239.54 28.93 271.07 0.00% 269.44 55.83 325.27 0.00% 58.34

2 0.00% 42 2.95 246.17 25.96 275.08 0.00% 269.18 26.86 296.04 0.00% 241.52

3 0.00% 34 2.67 250.12 26.22 279.01 0.00% 269.78 41.56 311.34 0.00% 5176.38

4 0.00% 12 2.58 260.35 36.96 299.89 0.00% 266.61 48.48 315.09 0.00% 158.37

5 0.00% 15 2.39 256.24 43.78 302.41 0.00% 263.31 54.89 318.20 0.00% 256.57

0.2 0.1

1 0.00% 99 2.58 215.57 49.21 267.36 0.00% 269.53 74.96 344.49 0.00% 1836.19

2 0.00% 105 2.34 213.36 51.84 267.54 0.00% 270.77 81.40 352.16 0.00% 2357.91

3 0.00% 89 2.63 222.09 80.94 305.66 0.00% 268.43 99.39 367.82 0.00% 310.70

4 0.00% 96 2.51 219.01 122.26 343.78 0.00% 266.99 145.37 412.36 0.00% 1260.25

5 0.00% 90 2.42 217.30 97.60 317.32 0.00% 265.28 171.24 436.52 0.00% 3081.89

0.2 0.2

1 0.00% 99 2.70 217.55 44.16 264.41 0.00% 271.13 153.52 424.65 0.00% 6335.77

2 0.00% 105 2.53 216.60 41.19 260.32 0.00% 267.03 266.67 533.70 0.34% 14400.00

3 0.00% 89 2.77 218.84 116.33 337.93 0.00% 265.86 126.36 392.23 0.00% 8313.88

4 0.00% 96 2.40 221.32 97.16 320.88 0.00% 273.84 222.65 496.50 0.00% 3867.32

5 0.00% 90 3.71 225.89 68.13 297.72 0.00% 275.18 264.43 539.62 0.00% 6240.27

(a) Total Running Time Comparisons of Table 2 (b) Big-M Running Time Comparisons of Table 2

(c) Total Running Time Comparisons of Table 3 (d) Big-M Running Time Comparisons of Table 3

Figure 6 Comparisons among di�erent methods to solve a DRCCP under type Œ-Wasserstein ambiguity set. The

horizontal axis represents the logarithmic scale of running and the vertical axis represents the number

of instances solved to optimality.
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Again, we use the instances 1-7-1 and 1-7-5 from Song et al. (2014). For each instance, we follow
the five steps below:
Step 1. We solve the quantile bound and use ALSO-X# (see, e.g., Jiang and Xie 2023) as the inner
approximation. Then, we identify the cuts based on Corollary 8. We use “P” to denote the running
time of this step.
Step 2. We solve the dual bound (13) as the outer approximation. We use “DB” to denote the
running time of this step.
Step 3. We fix the variables based on Corollary 7. We sort the values {‚÷j}jœ[N ] in descending
order, i.e., ‚÷‡1

Ø ‚÷‡2
Ø · · · Ø ‚÷‡N

. For the first 0.1 ◊ ÂNÁÊ scenarios in the sorted sequence, we
identify Category (A) optimality cuts; specifically, we check whether zj = 0 at optimality or not
for j œ {‡1,‡2, · · · ,‡0.1◊ÂNÁÊ}. For the subsequent 0.2 ◊ ÂNÁÊ scenarios in the sorted sequence, we
identify Category (B) optimality cuts, verifying whether zj + zj+1 Æ 1 at optimality or not for j œ
{‡0.1◊ÂNÁÊ+1,‡0.1◊ÂNÁÊ+2, · · · ,‡0.2◊ÂNÁÊ}. We use “F” to denote the running time of this step.
Step 4. We solve the improved VaR lower bound (16) and an improved upper bound presented in
e-companion EC.2 respectively. Then, we strengthen the coe�cient “ from (18) and big-M coe�cients
from (17). We use “S” to denote the running time of this step.
Step 5. We execute the big-M method.

We compare the total running time for the following three methods: (i) Big-M method with fix-
ing & strengthening; (ii) Big-M method with strengthening; and (iii) Vanilla big-M method. For
the first method, we initialize the solver with the solution of the improved upper bound from e-
companion EC.2. Next, we add the inequalities c€x Ø vL

1 and c€x Æ vU
1 . We set the time limits

for each optimization problem in Step 4 as 1200 seconds. We referred to Steps 1 to 4 collectively
as the “Pre-compute” process. We record the number of cuts and sort them into two categories:
category (A) represents the number of type zj = 0 cuts, and category (B) represents the number of
type zj + zj+1 Æ 1 cuts. Although the cuts identified from category (A) are based on Corollary 7
and Corollary 8, it is important to note that other types of cuts can be derived from Corollary 7.
However, since category (A) and category (B) are su�cient to close the gap, for the sake of time,
we do not explore these alternative cuts in our experiments. In the second method, we use (17) to
strengthen big-M coe�cients to optimality. We also compare this big-M coe�cient strengthening
technique with the approach outlined in section 4.2 of Ho-Nguyen et al. (2023). The results can be
found in e-companion EC.3. Based on our numerical study findings, it is evident that both the big-M
method with strengthening and the Vanilla big-M method are unable to e�ectively close the gap in
nearly all instances when N = 500. To ensure a fair comparison, we use N = 500 for this numerical
case. Table 4 and Table 5, we report the detailed numerical results. In all instances, we show that
our “Big-M & Fixing & Strengthening” approach consistently and dramatically outperforms other
approaches. In Figure 7, we provide the performance profile for the instances in Table 4 and Table 5,
where the horizontal axis represents the logarithmic scale of running and the vertical axis represents
the number of instances solved to optimality up to the time point. Our approach succeeds in closing
the gap for all the instances within a reasonable time. In contrast, other methods can only achieve
optimality for a limited number of instances and may fail to close the gap within the time limit.
Case IV. Testing a DRCCP under type 2-Wasserstein ambiguity set. Let us consider the
following DRCCP with the dual norm Î · Îú = Î · ÎŒ:

vú
2 = min

xœ[0,1]n

;
c€x : inf

PœP2

P
Ó
⇠̃ : x€⇠̃Æ b̃

Ô
Ø 1 ≠ Á

<
.

Since this DRCCP may not admit a mixed-integer convex programming reformulation (see the proof
in Appendix A.3 of Jiang and Xie 2023), we report the gap between the best lower bound and
best upper bound for this DRCCP from numerical experiments, where the best upper bound is the
minimum of inner approximation (21) and ALSO-X#, and the best lower bound is the improved VaR
lower bound (see the formulation in e-companion EC.4. We employ the same instances as in Case III
and follow similar steps accordingly. Since the big-M method with strengthening and Vanilla big-M
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Table 4 Numerical Results of a DRCCP under Type 1-Wasserstein Ambiguity Set with Instances 1-7-1-500
from Song et al. (2014) and N = 500

Á ◊ Case

Big-M & Fixing & Strengthening Big-M & Strengthening Vanilla big-M

GAP
Pre-compute Time (s) # of Cuts Time (s)

GAP
Time (s)

GAP Time (s)
P DB F S A B Solver Total S Solver Total

0.1 0.1

1 0.00% 1.07 131.70 131.30 282.14 15 8 6.31 552.51 0.00% 259.68 9007.25 9266.92 0.00% 9312.72

2 0.00% 1.08 119.27 115.28 288.78 13 5 32.23 556.64 0.08% 261.48 14138.52 14400.00 0.11% 14400.00

3 0.00% 1.09 111.99 149.58 287.28 17 4 18.91 568.84 0.00% 265.26 8364.19 8629.45 0.00% 8866.28

4 0.00% 1.07 129.41 127.80 280.15 18 2 5.42 543.85 0.00% 262.52 7550.28 7812.80 0.04% 14400.00

5 0.00% 1.04 143.04 105.86 273.19 15 7 16.35 539.47 0.21% 259.86 14140.14 14400.00 0.35% 14400.00

0.1 0.2

1 0.00% 1.06 96.40 116.41 279.63 13 5 69.84 563.34 0.23% 274.32 14125.68 14400.00 0.31% 14400.00

2 0.00% 1.08 99.35 118.37 466.57 15 1 290.73 976.10 0.39% 258.33 14141.67 14400.00 0.45% 14400.00

3 0.00% 1.03 90.97 120.51 312.16 14 1 55.43 580.09 0.27% 261.94 14138.06 14400.00 0.29% 14400.00

4 0.00% 1.10 115.32 133.41 293.75 16 1 17.61 561.19 0.17% 266.36 14133.64 14400.00 0.20% 14400.00

5 0.00% 1.07 110.84 112.57 329.76 11 6 56.86 611.11 0.33% 275.13 14124.87 14400.00 0.58% 14400.00

0.2 0.1

1 0.00% 1.09 186.54 248.18 312.26 53 6 41.32 789.39 0.35% 262.58 14137.42 14400.00 0.38% 14400.00

2 0.00% 1.09 161.48 231.14 346.23 42 21 628.72 1368.66 0.42% 261.92 14138.08 14400.00 0.55% 14400.00

3 0.00% 1.04 189.11 264.79 347.50 43 4 231.93 1034.36 0.42% 265.94 14134.06 14400.00 0.49% 14400.00

4 0.00% 1.03 140.10 223.83 289.08 50 6 148.65 802.69 0.48% 262.21 14137.79 14400.00 0.54% 14400.00

5 0.00% 1.01 161.13 245.58 282.36 51 4 55.78 745.86 0.19% 266.94 14133.07 14400.00 0.28% 14400.00

0.2 0.2

1 0.00% 1.06 153.79 259.54 359.54 50 6 496.22 1270.14 0.59% 258.22 14141.78 14400.00 0.62% 14400.00

2 0.00% 1.07 126.78 223.90 661.17 41 14 3329.93 4342.85 0.81% 261.01 14139.00 14400.00 0.83% 14400.00

3 0.00% 1.07 152.61 247.71 1705.61 39 6 9132.78 11239.78 1.19% 257.82 14142.18 14400.00 1.27% 14400.00

4 0.00% 1.03 135.50 231.21 513.65 49 3 578.11 1459.50 0.72% 258.79 14141.21 14400.00 0.84% 14400.00

5 0.00% 1.04 132.26 244.91 314.52 48 6 226.93 919.65 0.45% 259.01 14140.99 14400.00 0.63% 14400.00

Table 5 Numerical Results of a DRCCP under Type 1-Wasserstein Ambiguity Set with Instances 1-7-5-500
from Song et al. (2014) and N = 500

Á ◊ Case

Big-M & Fixing & Strengthening Big-M & Strengthening Vanilla big-M

GAP
Pre-compute Time (s) # of Cuts Time (s)

GAP
Time (s)

GAP Time (s)
P DB F S A B Solver Total S Solver Total

0.1 0.1

1 0.00% 1.02 104.00 103.44 273.98 14 4 1.88 484.32 0.18% 258.23 14141.77 14400.00 0.19% 14400.00

2 0.00% 1.06 102.47 97.27 267.75 20 4 5.39 473.94 0.16% 258.27 14141.73 14400.00 0.24% 14400.00

3 0.00% 1.01 113.95 97.72 272.34 17 2 4.75 489.78 0.08% 261.58 14138.42 14400.00 0.15% 14400.00

4 0.00% 1.03 113.83 123.10 270.59 15 0 17.48 526.03 0.00% 264.27 9837.24 10101.51 0.00% 13829.29

5 0.00% 0.99 108.99 105.60 277.11 17 7 3.24 495.94 0.02% 264.54 14135.46 14400.00 0.04% 14400.00

0.1 0.2

1 0.00% 1.02 91.64 115.85 282.33 11 1 7.77 498.61 0.23% 265.56 14134.44 14400.00 0.28% 14400.00

2 0.00% 1.13 101.97 100.21 283.16 18 4 19.47 505.93 0.19% 271.49 14128.51 14400.00 0.44% 14400.00

3 0.00% 1.01 93.21 96.29 282.30 15 2 13.21 486.02 0.12% 261.27 14138.73 14400.00 0.19% 14400.00

4 0.00% 1.07 108.98 107.96 291.32 15 0 38.24 547.57 0.22% 270.09 14129.91 14400.00 0.27% 14400.00

5 0.00% 1.01 97.35 113.14 302.47 12 3 70.04 584.00 0.08% 265.96 14134.04 14400.00 0.12% 14400.00

0.2 0.1

1 0.00% 1.06 180.16 220.73 300.57 46 11 59.24 761.75 0.24% 257.38 14142.62 14400.00 0.31% 14400.00

2 0.00% 1.13 218.80 215.88 261.07 53 13 13.97 710.85 0.19% 264.99 14135.01 14400.00 0.33% 14400.00

3 0.00% 1.05 186.46 191.07 255.93 59 11 25.02 659.51 0.18% 265.56 14134.45 14400.00 0.20% 14400.00

4 0.00% 1.12 227.73 235.35 271.96 52 13 21.65 757.81 0.19% 268.32 14131.68 14400.00 0.24% 14400.00

5 0.00% 1.04 148.83 214.04 271.05 50 11 9.77 644.73 0.34% 259.83 14140.17 14400.00 0.38% 14400.00

0.2 0.2

1 0.00% 1.04 142.22 226.21 511.78 40 10 2564.28 3445.53 0.28% 264.13 14135.87 14400.00 0.32% 14400.00

2 0.00% 1.03 159.95 224.37 296.90 50 10 53.51 735.76 0.41% 273.49 14126.51 14400.00 0.41% 14400.00

3 0.00% 1.05 152.54 210.72 276.82 54 10 210.72 851.85 0.26% 279.46 14120.54 14400.00 0.28% 14400.00

4 0.00% 1.06 172.02 217.10 500.34 46 10 221.59 1112.11 0.31% 281.83 14118.17 14400.00 0.32% 14400.00

5 0.00% 1.03 137.40 224.02 312.50 46 7 165.99 840.94 0.44% 269.85 14130.15 14400.00 0.45% 14400.00

method may not be able to solve the inner approximation (21) to optimality, we only provide the
numerical results of the best “Big-M & Fixing & Strengthening” approach. We denote the best upper
bound and best lower bound as “BestUB” and “BestLB, ” respectively. The term “Bound GAP”
represents the gap between the best upper bound and best lower bound, i.e., BoundGAP (%) =
(|BestUB ≠ BestLB|)/(|BestLB|) ◊ 100. The detailed numerical results are displayed in Table 6 and
Table 7, which highlight the e�ectiveness of our “Big-M & Fixing & Strengthening” approach in
providing upper and lower bounds for this DRCCP. We observe that the gap between the best upper
bound and best lower bound achieved by our approach is very small, typically from 0.20% to 0.50%.
This indicates that our method can accurately approximate the optimal solution of the DRCCP,
ensuring a high level of precision in the obtained bounds.

Finally, we remark that we also evaluate proposed methods on a joint RCCP with two sets of
instances, 1-4-multi-500 and 1-6-multi-500 from Song et al. (2014). The detailed numerical compar-
isons can be found in e-companion EC.5.

8. Conclusion
This study introduced a systematic framework for implementing variable fixing techniques within
the context of Robust Chance-Constrained Programs (RCCPs) and Distributionally Robust Chance-
Constrained Programs (DRCCPs) by integrating inner or outer approximations. We derived opti-
mality cuts by checking the restricted outer approximations and comparing them with the inner ones
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(a) Total Running Time Comparisons of Table 4 (b) Big-M Running Time Comparisons of Table 4

(c) Total Running Time Comparisons of Table 5 (d) Big-M Running Time Comparisons of Table 5

Figure 7 Comparisons among di�erent methods to solve a DRCCP under type 1-Wasserstein ambiguity set. The

horizontal axis represents the logarithmic scale of running and the vertical axis represents the number

of instances solved to optimality.

Table 6 Numerical Results of a DRCCP under Type 2-Wasserstein Ambiguity Set with Instances 1-7-1-500
from Song et al. (2014) and N = 500

Á ◊ Case

Big-M & Fixing & Strengthening for Solving (21)

Best UB Best LB Bound GAP
GAP

Pre-compute Time (s) # Cuts Time (s)

P DB F S A B Solver Total

0.1 0.1

1 0.00% 1.00 151.43 120.86 272.96 21 7 4.95 551.20 -16668.21 -16722.67 0.33%

2 0.00% 1.02 111.84 125.19 285.44 17 5 7.70 531.19 -16747.49 -16796.13 0.29%

3 0.00% 0.99 106.68 126.00 269.67 20 3 4.08 507.42 -16731.69 -16785.97 0.32%

4 0.00% 1.01 137.94 120.94 267.21 21 9 4.97 532.07 -16624.30 -16680.61 0.34%

5 0.00% 1.00 140.13 114.63 271.22 22 2 5.84 532.81 -16683.48 -16743.52 0.36%

0.1 0.2

1 0.00% 1.02 134.89 110.37 279.67 17 7 4.65 530.60 -16646.54 -16717.80 0.43%

2 0.00% 1.01 112.28 111.09 276.58 15 3 10.27 511.23 -16723.72 -16791.25 0.40%

3 0.00% 1.00 102.80 122.81 289.94 17 6 6.04 522.59 -16702.37 -16782.72 0.48%

4 0.00% 1.03 140.01 113.99 276.68 20 5 4.85 536.55 -16607.48 -16675.05 0.41%

5 0.00% 1.07 129.90 139.29 285.56 19 6 8.61 564.43 -16661.95 -16738.96 0.46%

0.2 0.1

1 0.00% 1.06 209.38 228.97 274.72 57 4 19.75 733.88 -16901.22 -16954.33 0.31%

2 0.00% 1.02 178.04 224.29 285.65 50 13 54.59 743.57 -16953.85 -17014.68 0.36%

3 0.00% 1.02 175.48 234.49 287.16 44 8 42.19 740.33 -16904.58 -16953.15 0.29%

4 0.00% 1.02 171.44 230.95 267.87 54 5 18.27 689.54 -16886.35 -16950.49 0.38%

5 0.00% 1.05 185.68 242.01 260.23 53 8 19.18 708.14 -16945.52 -17010.20 0.38%

0.2 0.2

1 0.00% 1.04 180.43 238.24 305.59 53 6 116.68 841.97 -16880.38 -16951.33 0.42%

2 0.00% 1.06 151.58 232.85 328.36 43 19 1040.28 1754.13 -16930.07 -17012.18 0.48%

3 0.00% 1.05 189.25 244.83 308.81 43 5 133.22 877.15 -16879.91 -16950.54 0.42%

4 0.00% 1.06 148.14 233.32 299.55 50 6 151.33 833.39 -16862.51 -16947.86 0.50%

5 0.00% 1.06 156.36 250.08 276.14 51 5 40.85 724.48 -16922.36 -17007.05 0.50%
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Table 7 Numerical Results of a DRCCP under Type 2-Wasserstein Ambiguity Set with Instances 1-7-5-500
from Song et al. (2014) and N = 500

Á ◊ Case

Big-M & Fixing & Strengthening for Solving (21)

Best UB Best LB Bound GAP
GAP

Pre-compute Time (s) # Cuts Time (s)

P DB F S A B Solver Total

0.1 0.1

1 0.00% 1.03 145.43 106.21 277.18 17 3 2.26 532.11 -17720.04 -17750.66 0.17%

2 0.00% 0.99 127.75 86.94 273.61 23 3 4.53 493.82 -17730.25 -17769.61 0.22%

3 0.00% 0.99 153.60 96.65 274.31 20 2 3.37 528.92 -17648.42 -17681.15 0.19%

4 0.00% 1.02 106.77 100.03 264.54 17 1 2.59 474.95 -17727.31 -17773.25 0.26%

5 0.00% 0.99 140.94 104.81 275.91 22 2 3.49 526.14 -17685.80 -17722.59 0.21%

0.1 0.2

1 0.00% 1.02 127.02 121.02 280.43 15 3 1.86 531.34 -17705.08 -17747.31 0.24%

2 0.00% 1.02 124.69 96.94 274.68 21 5 4.43 501.75 -17713.00 -17761.34 0.27%

3 0.00% 1.02 129.21 97.06 280.77 18 4 4.61 512.68 -17630.60 -17675.75 0.26%

4 0.00% 1.05 126.53 103.50 268.79 15 0 4.69 504.56 -17710.79 -17768.22 0.32%

5 0.00% 1.01 152.76 95.96 280.55 20 4 4.17 534.45 -17671.31 -17719.75 0.27%

0.2 0.1

1 0.00% 1.03 198.18 209.06 262.69 54 12 12.63 683.59 -17863.89 -17910.53 0.26%

2 0.00% 1.03 217.31 197.77 264.09 61 9 16.47 696.67 -17890.76 -17933.41 0.24%

3 0.00% 1.08 196.37 171.72 252.30 64 5 7.54 629.00 -17841.16 -17876.78 0.20%

4 0.00% 1.07 228.12 215.07 254.33 57 13 8.13 706.71 -17889.62 -17946.26 0.32%

5 0.00% 1.02 180.28 199.29 262.13 54 8 18.44 661.16 -17849.98 -17890.32 0.23%

0.2 0.2

1 0.00% 1.00 179.21 221.24 278.02 46 12 32.82 712.29 -17845.53 -17907.38 0.35%

2 0.00% 1.03 212.11 222.44 276.53 55 11 10.85 722.96 -17875.92 -17929.19 0.30%

3 0.00% 1.07 183.77 203.32 267.90 60 10 15.15 671.21 -17826.09 -17875.66 0.28%

4 0.00% 1.00 220.57 210.83 262.55 53 12 38.28 733.23 -17870.43 -17945.19 0.42%

5 0.00% 1.01 148.74 183.22 268.41 51 10 11.85 613.22 -17834.13 -17887.57 0.30%

for RCCPs or DRCCPs under type q-Wasserstein ambiguity set with q œ {1,Œ}. We provided a new
conservative approximation for DRCCP under type q-Wasserstein ambiguity set with q œ (1,Œ). We
conducted a theoretical analysis of variable fixing techniques to evaluate the proportion of scenarios
that should be fixed to be violated. We showcased the e�ectiveness of our proposed methods by
reducing the running time and closing the gap for all reported instances. For a future study, it will be
interesting to integrate the proposed variable fixing procedure into the branch-and-cut framework,
which may further enhance the e�ciency of the proposed methods.
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EC. 1 Proofs
Proofs in Section 3

EC. 1.1 Proof of Theorem 2
Theorem 2. Suppose ◊ > 0. For any dual norm Î · Îú = Î · Îp and p œ [1,Œ), solving Problem (8),
in general, is NP-hard.
Proof. This poof reduces Problem (8) to an NP-hard problem — Norm maximization over a polytope
(see theorem 1 in Ge et al. 2011), which asks

Norm maximization over a polytope. Given the polytope {x :DxÆ d}, where D œ R·◊n

and d œR· , what is the optimal value of the problem maxx {ÎxÎú : DxÆ d} with p œ [1,Œ)?
In Problem (8), suppose ‚⇠j = ‚⇠jÕ = 0,ai(x) = x, bi(x) = bi > maxxœX ◊ÎxÎú. In this case, the con-
straint of Problem (8) is redundant and Problem (8) reduces to

÷i,j(jÕ|◊) = max
xœX

◊ÎxÎú,

which is exactly the norm maximization problem over a polytope for any p œ [1,Œ). Hence, solving
Problem (8) is NP-hard. ⇤

EC. 1.2 Proof of Proposition 1
Proposition 1. Suppose that in Problem (8), set X is compact and convex, and the dual norm
Î ·Îú = Î ·ÎŒ. Then Problem (8) is equivalent to solving 2n tractable convex programs, i.e., ÷i,j(jÕ|◊) =
max·œ[n] max¸œ[2] ÷i,j(jÕ, ·, ¸|◊), where for each · œ [n], we have

÷i,j(jÕ, ·,1|◊) = max
xœX

Ó
◊ai· (x) +ai(x)€ ‚⇠j ≠ bi(x) : ◊ Îai(x)ÎŒ +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
,

÷i,j(jÕ, ·,2|◊) = max
xœX

Ó
≠◊ai· (x) +ai(x)€ ‚⇠j ≠ bi(x) : ◊ Îai(x)ÎŒ +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
.

Proof. When the dual norm Î · Îú = Î · ÎŒ, we have Îai(x)ÎŒ = ◊ max{ai· (x),≠ai· (x)}·œ[n]. In this
case, we write Problem (8) as

÷i,j(jÕ|◊) = max
xœX

◊ max{ai· (x),≠ai· (x)}·œ[n] +ai(x)€ ‚⇠j ≠ bi(x),

s.t. ◊ Îai(x)ÎŒ +ai(x)€ ‚⇠jÕ Æ bi(x).

Then we can simplify it as

÷i,j(jÕ|◊) = max
·œ[n]

Y
_]

_[

max
xœX

Ó
◊ai· (x) +ai(x)€ ‚⇠j ≠ bi(x) : ◊ Îai(x)ÎŒ +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
,

max
xœX

Ó
≠◊ai· (x) +ai(x)€ ‚⇠j ≠ bi(x) : ◊ Îai(x)ÎŒ +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô

Z
_̂

_\
,

which is equivalent to solving 2n tractable convex programs and selecting the best one with the
largest optimal value. ⇤

EC. 1.3 Proof of Proposition 2
Proposition 2. Suppose that in Problem (8), set X is compact and convex. Let

v̄P
Œ,i,j,1(jÕ|◊) = max

xœX

Ó
ai(x)€

Ë
‚⇠j ≠ ‚⇠jÕÈ : ◊ Îai(x)Îú +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
, (9a)

v̄P
Œ,i,j,2(jÕ|◊) = min

0Æ–Æ1
max
xœX

Y
]

[(– ≠ 1)bi(x) + (1 ≠ –)◊ Îai(x)Îú +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
aik(x)

Z
^

\ . (9b)

Let ÷̄i,j(jÕ|◊) be the minimum between v̄P
Œ,i,j,1(jÕ|◊) and v̄P

Œ,i,j,2(jÕ|◊), i.e., ÷̄i,j(jÕ|◊) =
min{v̄P

Œ,i,j,1(jÕ|◊), v̄P
Œ,i,j,2(jÕ|◊)}. Then
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(i) The optimal value of Problem (8) is upper bounded by ÷̄i,j(jÕ|◊), i.e., ÷i,j(jÕ|◊) Æ ÷̄i,j(jÕ|◊); and
(ii) When the inner maximization in Problem (9b) admits a unique solution with – = 0, the optimal

value of Problem (8) is equal to ÷̄i,j(jÕ|◊), i.e., ÷i,j(jÕ|◊) = ÷̄i,j(jÕ|◊).
Proof. Let – be the dual variable of constraint in Problem (8). Then the Lagrangian function for
Problem (8) is

L(x,–) = (– ≠ 1)bi(x) + (1 ≠ –)◊ Îai(x)Îú +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
aik(x),

and its dual problem can be written as

min
–Ø0

max
xœX

L(x,–) = min
;

min
0Æ–Æ1

max
xœX

L(x,–),min
–Ø1

max
xœX

L(x,–)
<

.

By weak duality, we have

÷i,j(jÕ|◊) Æ min
–Ø0

max
xœX

L(x,–).

We split the proof into three steps.
Step 1. For – Ø 1, we provide an equivalent reformulation of the dual problem we consider; that is,
the dual problem we consider is

min
–Ø1

max
xœX

L(x,–) = min
–Ø1

max
xœX

Y
]

[(– ≠ 1)bi(x) + (1 ≠ –)◊ Îai(x)Îú +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
aik(x)

Z
^

\ ,

which is convex in – for a given x œ X and is concave in x for a given – Ø 1. Since set X is convex
and compact, we apply Sion’s minimax theorem (see, e.g., Sion 1958) and interchange the min and
max operators, that is,

max
xœX

min
–Ø1

Y
]

[(– ≠ 1)bi(x) + (1 ≠ –)◊ Îai(x)Îú +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
aik(x)

Z
^

\ .

Assuming –̄ = – ≠ 1 Ø 0, we have

max
xœX

min
–̄Ø0

Ó
ai(x)€

Ë
‚⇠j ≠ ‚⇠jÕÈ ≠ –̄

Ë
◊ Îai(x)Îú +ai(x)€ ‚⇠jÕ ≠ bi(x)

ÈÔ
.

Optimizing over –̄, we have

max
xœX

Ó
ai(x)€

Ë
‚⇠j ≠ ‚⇠jÕÈ : ◊ Îai(x)Îú +ai(x)€ ‚⇠jÕ Æ bi(x)

Ô
:= v̄P

Œ,i,j,1(jÕ|◊).

Step 2. For 0 Æ – Æ 1, the dual problem we consider is

min
0Æ–Æ1

max
xœX

L(x,–) = min
0Æ–Æ1

max
xœX

Y
]

[(– ≠ 1)bi(x) + (1 ≠ –)◊ Îai(x)Îú +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
aik(x)

Z
^

\

:= v̄P
Œ,i,j,2(jÕ|◊).

Thus, Part (i) is directly followed by the weak duality.
Step 3. It remains to prove that when the inner maximization in Problem (9b) admits a unique
solution with – = 0, we have ÷i,j(jÕ|◊) = ÷̄i,j(jÕ|◊). By weak duality, we have ÷̄i,j(jÕ|◊) Ø ÷i,j(jÕ|◊).
Thus, we only need to show that ÷̄i,j(jÕ|◊) Æ ÷i,j(jÕ|◊). There are two cases to consider.
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• Case 1. Suppose that there exists one optimal solution xú of Problem (8) such that the con-
straint in Problem (8) is not binding, i.e., ◊Îai(xú)Îú +ai(xú)€ ‚⇠jÕ

< bi(xú), then Problem (8)
has the same optimal value as

÷i,j(jÕ|◊) = max
xœX

Ó
◊ Îai(x)Îú +ai(x)€ ‚⇠j ≠ bi(x)

Ô
,

which is the exactly same problem by setting – = 0 in v̄P
Œ,i,j,2(jÕ|◊) (9b). Thus, ÷i,j(jÕ|◊) Ø

v̄P
Œ,i,j,2(jÕ|◊) Ø ÷̄i,j(jÕ|◊).

• Case 2. For any optimal solution of Problem (8), the constraint in Problem (8) is binding, i.e.,
let xú be an arbitrary optimal solution to Problem (8), we have ◊Îai(xú)Îú +ai(xú)€ ‚⇠jÕ = bi(xú).
We split the following discussions into two subcases.
Case 2.1. Suppose that there exists an optimal solution of Problem (9a) such that the con-
straint in Problem (9a) is binding. In this subcase, Problem (9a) and Problem (8) coincide.
Then, we must have ÷i,j(jÕ|◊) = v̄P

Œ,i,j,1(jÕ|◊) Ø ÷̄i,j(jÕ|◊).
Case 2.2. Suppose that for any optimal solution of Problem (9a), the constraint in Problem
(9a) is not binding. In this case, we suppose that v̄P

Œ,i,j,1(jÕ|◊) > ÷i,j(jÕ|◊) (otherwise, the proof
is done). It remains to show that v̄P

Œ,i,j,2(jÕ|◊) Æ ÷i,j(jÕ|◊). Let us define

v̄P
Œ,i,j,2(jÕ|◊,–) = max

xœX

Y
]

[(– ≠ 1)bi(x) + (1 ≠ –)◊ Îai(x)Îú +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
aik(x)

Z
^

\ ,

and v̄P
Œ,i,j,2(jÕ|◊, ‚–ú) = v̄P

Œ,i,j,2(jÕ|◊). Obviously, v̄P
Œ,i,j,1(jÕ|◊) = v̄P

Œ,i,j,2(jÕ|◊,– = 1) > ÷i,j(jÕ|◊) and
÷i,j(jÕ|◊) Æ v̄P

Œ,i,j,2(jÕ|◊,– = 0). If ÷i,j(jÕ|◊) = v̄P
Œ,i,j,2(jÕ|◊,– = 0), then the proof is done. Hence,

suppose that ÷i,j(jÕ|◊) < v̄P
Œ,i,j,2(jÕ|◊,– = 0). The subdi�erential of v̄P

Œ,i,j,2(jÕ|◊,–) with respect
to – is

ˆ–v̄P
Œ,i,j,2(jÕ|◊,–) = conv

;
bi(x̄ú) ≠ ◊ Îai(x̄ú)Îú ≠ai(x̄ú)€ ‚⇠jÕ : x̄ú œ arg max

xœX
L(x,–)

<
.

According to our presumption, for any x̄ú œ arg maxxœX L(x,1), we have bi(x̄ú) ≠ ◊ Îai(x̄ú)Îú ≠
ai(x̄ú)€ ‚⇠jÕ

> 0. Hence, ˆ–v̄P
Œ,i,j,2(jÕ|◊,1) ™ R++. On the other hand, when the inner

maximization in Problem (9b) admits a unique solution with – = 0, we have x̄ú
0 œ

arg maxxœX v̄P
Œ,i,j,2(jÕ|◊,0), that is,

x̄ú
0 œ arg max

xœX

Y
]

[≠bi(x) + ◊ Îai(x)Îú +
ÿ

kœ[n]

‚›j
kaik(x)

Z
^

\ .

The subdi�erential of v̄P
Œ,i,j,2(jÕ|◊,–) with respect to – at – = 0 is

ˆ–v̄P
Œ,i,j,2(jÕ|◊,0) =

Ó
bi(x̄ú

0) ≠ ◊ Îai(x̄ú
0)Îú ≠ai(x̄ú

0)€ ‚⇠jÕÔ
.

Given that optimizing over – in v̄P
Œ,i,j,2(jÕ|◊,–) is a one-dimension convex optimization problem

and the assumption that ÷i,j(jÕ|◊) < v̄P
Œ,i,j,2(jÕ|◊,– = 0), we have

ˆ–v̄P
Œ,i,j,2(jÕ|◊,0) ™R≠≠.

Therefore, the optimal ‚–ú of v̄P
Œ,i,j,2(jÕ|◊,–) must be in the interior of [0,1], i.e., ‚–ú œ (0,1).

Then, we have the following necessary and su�cient KKT conditions:

0 œ ˆ–v̄P
Œ,i,j,2(jÕ|◊, ‚–ú),

which implies that there exists an optimal solution x̄ú œ arg maxxœX L(x, ‚–ú) such that bi(x̄ú)≠
◊ Îai(x̄ú)Îú ≠ai(x̄ú)€ ‚⇠jÕ = 0. Thus, we have v̄P

Œ,i,j,2(jÕ|◊, ‚–ú) = ÷i,j(jÕ|◊).
This completes the proof. ⇤
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EC. 1.4 Proof of Proposition 3
Proposition 3. Suppose ai(x) = x, bi(x) = bi for each i œ [I], the dual norm Î · Îú = Î · Îp with
p œ (1,Œ), and set X = [0,1]n. Then
(i) The upper bound of Problem (8) can be e�ciently computable; and

(ii) When the empirical samples are nonnegative ‚⇠j Ø 0 for all j œ [N ], the upper bound ÷̄i,j(jÕ|◊) is
exact.

Proof. With the presumptions, Problem (8) reduces to

÷i,j(jÕ|◊) = max
xœ[0,1]n

Ó
◊ ÎxÎp +x€ ‚⇠j ≠ bi : ◊ ÎxÎp +x€ ‚⇠jÕ Æ bi

Ô
. (30a)

According to Proposition 2, we are going to verify that v̄P
Œ,i,j,1(jÕ|◊) and v̄P

Œ,i,j,2(jÕ|◊) can be e�ciently
computable. We split the proof into three steps.
Step 1. For 0 Æ – Æ 1, we know

v̄P
Œ,i,j,2(jÕ|◊) = min

0Æ–Æ1
max

xœ[0,1]n

Y
]

[(– ≠ 1)bi + (1 ≠ –)◊ÎxÎp +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
xk

Z
^

\ . (30b)

Given that the inner maximization problem is a convex maximization problem, it follows that its
solution must lie in the set of extreme points, which can be represented as xœ {0,1}n. Therefore, for
a given 0 Æ – Æ 1, we can recast the inner maximization problem as:

‚f(–) = max
xœ{0,1}n

Y
]

[(– ≠ 1)bi + (1 ≠ –)◊ÎxÎp +
ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k

2
xk

Z
^

\ . (30c)

Notice that in this case, when – = 0, Problem (30c) reduces to

max
xœ{0,1}n

Ó
≠bi + ◊ÎxÎp +x€ ‚⇠j

Ô
.

Then, we sort {‚›j
k ≠ –‚›jÕ

k }kœ[n] in nonincreasing order, i.e., let āk = ‚›j
k ≠ –‚›jÕ

k for all k œ [n], for a
permutation ‡ of [n] such that ā‡1

Ø ā‡2
Ø · · · Ø ā‡·̄ Ø ā‡·̄+1

Ø · · · Ø ā‡n , where

·̄ = min
jœ[n]

Ó
j : (1 ≠ –)◊

Ë
j1/p ≠ (j ≠ 1)1/p

È
+ ā‡j

< 0
Ô

.

Thus, an optimal solution of Problem (30c) is

xú
‡k

=
I

1, ’k œ [·̄ ],
0 ’k œ [·̄ + 1, n],

and the objective value of Problem (30c) is

‚f(–) = (– ≠ 1)bi + (1 ≠ –)◊·̄ 1/p +
ÿ

jœ[·̄ ]
ā‡j

. (30d)

For the outer minimization problem over –, we apply the golden section search to find the optimal
– e�ciently, which is detailed in Algorithm 4.
Step 2. Given that optimizing over – in the outer minimization of Problem (30a) is a one-dimension
convex optimization problem, we can apply the golden section search Algorithm 4 to find the optimal
– e�ciently. Thus, it remains to show that inner maximization can be solved e�ciently. For any given
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– > 1, by introducing Lagrangian multipliers for the constraints ◊|x|p + x€ ‚⇠jÕ Æ bi and x œ [0,1]n,
the Lagrangian function for Problem (30a) can be formulated as:

L(x,–,�,µ) = (– ≠ 1)bi + (1 ≠ –)◊ÎxÎp + e
€� +

ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k ≠ “k + µk

2
xk, (30e)

and its corresponding dual problem can be written as

min
–>1,�Ø0,

µØ0

max
x

Y
]

[(– ≠ 1)bi + (1 ≠ –)◊ÎxÎp + e
€� +

ÿ

kœ[n]

1
‚›j
k ≠ –‚›jÕ

k ≠ “k + µk

2
xk

Z
^

\ . (30f)

Letting 1/p + 1/q̄ = 1, according to Hölder’s inequality, the dual problem (30f) is equivalent to

‚f(–) = min
�Ø0,µØ0

Y
_]

_[
(– ≠ 1)bi + e

€� :

S

U
ÿ

kœ[n]

---‚›j
k ≠ –‚›jÕ

k ≠ “k + µk

---
q̄

T

V

1

q̄

Æ (– ≠ 1)◊

Z
_̂

_\
. (30g)

Here, we define āk = ‚›j
k ≠ –‚›jÕ

k for each k œ [n] and S2 = {k : āk > 0,’k œ [n]}. We sort the elements in
ā with a nonincreasing order, i.e., ā‡1

Ø ā‡2
Ø · · · Ø ā‡|S2|≠1

Ø ā‡|S2| and let ‡t1
be the largest scenario

with t1 Æ |S2| such that

ā‡t1
≠ 1

t
1

q̄
1

S

U(– ≠ 1)q̄◊q̄ ≠
‡|S2|ÿ

j=‡t1+1

āq̄
j

T

V

1

q̄

> 0.

We further define S3 ™ S2 with S3 = {‡1,‡2, . . . ,‡t1
} and |S3| = t1. Then, we construct a primal

feasible solution x̄ as

x̄i = 1,’i œ S3, x̄i = ā
q̄
p
i t1

1
p

[(– ≠ 1)◊]
q̄
p

5
1 ≠

q‡|S2|
j=‡t1+1

āq̄
j

(–≠1)q̄◊q̄

6 1
p

,’i œ S2 \ S3, x̄i = 0,’i œ [n] \ S2,

while a dual feasible solution (�̄, µ̄) is

“̄i = 0,’i œ [n] \ S3, “̄i = āi ≠ 1

t
1

q̄
1

S

U(– ≠ 1)q̄◊q̄ ≠
‡|S2|ÿ

j=‡t1+1

āq̄
j

T

V

1

q̄

,’i œ S3,

µ̄i = 0,’i œ S2, µ̄i = ≠āi,’i œ [n] \ S2.

In this way, both solutions yield the same objective value as

(– ≠ 1)bi +
ÿ

iœS3

S

WUāi ≠ |S3|1≠ 1

q̄

S

U(– ≠ 1)q̄◊q̄ ≠
ÿ

jœS2\S3

āq̄
j

T

V

1

q̄
T

XV .

Therefore, according to the weak duality, both primal and dual solutions are optimal. We can conclude
that for a given – > 1, the optimal objective value of Problem (30g) is

‚f(–) = (– ≠ 1)bi +
ÿ

iœS3

S

WUāi ≠ |S3|1≠ 1

q̄

S

U(– ≠ 1)q̄◊q̄ ≠
ÿ

jœS2\S3

āq̄
j

T

V

1

q̄
T

XV . (30h)

Step 3. For Part(ii), with the nonnegative empirical samples ‚⇠j Ø 0 for all j œ [N ], x = e is the
unique solution of Problem (30c) when – = 0, which satisfies the uniqueness assumption in Part
(ii) of Proposition 2. Therefore, by calculating the values of v̄P

Œ,i,j,1(jÕ|◊) and v̄P
Œ,i,j,2(jÕ|◊), we can

determine the exact optimal value of ÷i,j(jÕ|◊). This completes the proof. ⇤
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Algorithm 4 Golden Section Search Method
1: Input: Let – and – denote the lower and upper bounds of the optimal value of –, respectively,

and let ”1 denote the stopping tolerance parameter
2: while – ≠ – > ”1 do

3: –1 = ((
Ô

5 ≠ 1)– + (3 ≠
Ô

5)–)/2, –2 = ((3 ≠
Ô

5)– + (
Ô

5 ≠ 1)–)/2
4: Calculate ‚f(–1) and ‚f(–2) using (30d) for the cases where 0 Æ –1 Æ 1 or 0 Æ –2 Æ 1, and using

(30h) for the cases where –1 Ø 1 or –2 Ø 1
5: if ‚f(–1) Ø ‚f(–2) set – = –1; else set – = –2
6: end while

7: Output: –ú = (– + –)/2

EC. 1.5 Proof of Proposition 4
Proposition 4. Suppose ai(x) =x, bi(x) = bi for each i œ [I], the dual norm Î · Îú = Î · Î1, and set
X = [0,1]n. Problem (8) can be e�ciently computable.
Proof. With the presumptions, Problem (8) can be written as

÷i,j(jÕ|◊) = max
xœ[0,1]n

Y
]

[◊
ÿ

kœ[n]
xk +x€ ‚⇠j ≠ bi : ◊

ÿ

kœ[n]
xk +x€ ‚⇠jÕ Æ bi

Z
^

\ . (31)

We first define the following four sets:

S+,+ =
Ó

k œ [n] : ‚›j
k + ◊ Ø 0, ‚›jÕ

k + ◊ Ø 0
Ô

,S≠,≠ =
Ó

k œ [n] : ‚›j
k + ◊ < 0, ‚›jÕ

k + ◊ < 0
Ô

,

S+,≠ =
Ó

k œ [n] : ‚›j
k + ◊ Ø 0, ‚›jÕ

k + ◊ < 0
Ô

,S≠,≠ =
Ó

k œ [n] : ‚›j
k + ◊ < 0, ‚›jÕ

k + ◊ Ø 0
Ô

.

Based on the principle of monotonicity, there exists an optimal solution xú for Problem (31) that
must possess the following property:

xú
k = 1,’k œ S+,≠, and xú

k = 0,’k œ S≠,≠.

Then, Problem (31) can be reduced to

max
xœ[0,1]|S+,+fiS≠,≠|

ÿ

kœS+,+fiS≠,≠

1
‚›j
k + ◊

2
xk +

ÿ

kœS+,≠

1
‚›j
k + ◊

2
≠ bi,

s.t.
ÿ

kœS+,+fiS≠,≠

1
‚›jÕ

k + ◊
2

xk Æ bi ≠
ÿ

kœS+,≠

1
‚›jÕ

k + ◊
2

.

Since the coe�cients in set S≠,≠ are negative, we change the variables as xi = 1≠xi for each i œ S≠,≠.
In this way, Problem (31) is equivalent to

max
xœ[0,1]|S+,+fiS≠,≠|

ÿ

kœS+,+fiS≠,≠

1
‚›j
k + ◊

2
xk +

ÿ

kœS+,≠

1
‚›j
k + ◊

2
≠

ÿ

kœS≠,≠

---‚›j
k + ◊

--- ≠ bi,

s.t.
ÿ

kœS+,+fiS≠,≠

---‚›jÕ

k + ◊
--- xk+ Æ bi +

ÿ

kœS≠,≠

---‚›jÕ

k + ◊
--- +

ÿ

kœS+,≠

---‚›jÕ

k + ◊
--- .

We then compute the ratio (|‚›j
k + ◊|)/(|‚›jÕ

k + ◊|) for each k œ S+,+ fi S≠,≠ and then sort these values
in nonincreasing order, i.e., for a permutation ‡ of set S+,+ fi S≠,≠, we have

|‚›j
‡1

+ ◊|
|‚›jÕ

‡1
+ ◊|

Ø
|‚›j

‡2
+ ◊|

|‚›jÕ
‡2

+ ◊|
Ø · · · Ø

|‚›j
‡|S+,+fiS≠,≠|

+ ◊|

|‚›jÕ
‡|S+,+fiS≠,≠| + ◊|

.
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Therefore, with xœ [0,1]|S+,+fiS≠,≠|, an optimal solution of xú is

xú
‡k

=

Y
___]

___[

1, ’k œ [¸],
1---◊+‚›jÕ
‡¸+1

---

Ë
bi +

q
kœS≠,≠fiS+,≠

---‚›j
k + ◊

--- ≠
q

kœ[¸]

---◊ + ‚›jÕ
‡k

---
È

, k = ¸ + 1,

0, ’k œ [¸ + 2, |S+,+ fi S≠,≠|],

where
q

kœ[¸] |◊ + ‚›jÕ
‡k

| Æ bi +
q

kœS≠,≠fiS+,≠
|‚›j

k + ◊| <
q

kœ[¸+1] |◊ + ‚›jÕ
‡k

|.
This completes the proof. ⇤

EC. 2 An Improved Upper Bound of DRCCP (10) under Type 1-Wasserstein
Ambiguity Set

Let (xL,⁄L,“L,sL,yL,zL, ‚zL) be an optimal solution of the improved VaR lower bound (16), then
we use ‚zL information to DRCCP (10). This integration allows us to obtain an improved upper
bound, that is,

v̄U
1 = min

xœX ,⁄,“,

s,y,zœ{0,1}N

I

c€x :
(10b)-(10c), (10f)-(10h), (10d)-(10e),
‚zL

j Æ zj ,’j œ [N ]

J

. (32)

In the numerical implementation, we choose the minimum of improved upper bound (32) and
ALSO-X# as the best upper bound of DRCCP (10). And we use the solution from the improved
upper bound (32) to warm-start the big-M method.

EC. 3 Numerical Comparisons of Di�erent Strengthen Techniques with
Ho-Nguyen et al. (2023) under Type 1-Wasserstein Ambiguity Set

To compare the e�ectiveness of the coe�cient strengthening, we implement the big-M coe�cient
strengthening procedure in section 4.2 of Ho-Nguyen et al. (2023). We consider the same setting in
Case III of Section 7 and report the detailed numerical comparisons in Table 8 and Table 9. For
all the instances, when evaluating the gap or the running time, we find that the big-M coe�cient
strengthening method in Section 4.3 can outperform that of the one in section 4.2 of Ho-Nguyen
et al. (2023). However, we remark that both strengthening methods may not be able to close the
gap in most reported instances, while our “Big-M & Fixing & Strengthening” approach can solve all
instances and significantly reduce the total running time.

EC. 4 An Improved VaR Lower Bound under Type q-Wasserstein Ambiguity
Set with q œ (1,Œ)

Similar to the discussions in the previous sections, inner approximation (21) can be written as

‚vq = min
xœX ,⁄,“,s,y,zœ{0,1}N

c€x, (33a)

s.t. ◊Á1≠ 1
q ⁄ ≠ Á“ Æ 1

N

ÿ

jœ[N ]
yj , (33b)

yj + “ Æ sj ,’j œ [N ], (33c)
sj Æ bi(x) ≠ai(x)€ ‚⇠j + Mi,j,1(1 ≠ zj),’i œ [I], j œ [N ], (33d)
sj Æ Mi,j,2zj ,’i œ [I], j œ [N ], (33e)
Îa1(x)Îú Æ ⁄,’i œ [I], (33f)
ÿ

jœ[N ]
zj Ø N ≠ ÂNÁÊ + I{◊ > 0} , (33g)
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Table 8 Numerical Comparisons of Big-M Coe�cient Strengthening Methods for a DRCCP under Type

1-Wasserstein Ambiguity Set with Instances 1-7-1-500 from Song et al. (2014) and N = 500

Á ◊ Case

Big-M & Fixing & Strengthen

in Case III of Section 7

Big-M & Strengthening

in Case III of Section 7

Big-M & Strengthening

from Section 4.2 of Ho-Nguyen et al. (2023)

GAP Total Time (s) GAP
Time (s)

GAP
Time (s)

S Solver Total S Solver Total

0.1 0.1

1 0.00% 552.51 0.00% 259.68 9007.25 9266.92 0.00% 2.82 9760.62 9763.44

2 0.00% 556.64 0.08% 261.48 14138.52 14400.00 0.10% 2.87 14397.13 14400.00

3 0.00% 568.84 0.00% 265.26 8364.19 8629.45 0.00% 2.85 8673.92 8676.77

4 0.00% 543.85 0.00% 262.52 7550.28 7812.80 0.03% 2.88 14397.12 14400.00

5 0.00% 539.47 0.21% 259.86 14140.14 14400.00 0.24% 2.93 14397.07 14400.00

0.1 0.2

1 0.00% 563.34 0.23% 274.32 14125.68 14400.00 0.26% 2.87 14397.13 14400.00

2 0.00% 976.10 0.39% 258.33 14141.67 14400.00 0.39% 2.95 14397.05 14400.00

3 0.00% 580.09 0.27% 261.94 14138.06 14400.00 0.27% 2.90 14397.10 14400.00

4 0.00% 561.19 0.17% 266.36 14133.64 14400.00 0.18% 2.91 14397.09 14400.00

5 0.00% 611.11 0.33% 275.13 14124.87 14400.00 0.41% 2.87 14397.13 14400.00

0.2 0.1

1 0.00% 789.39 0.35% 262.58 14137.42 14400.00 0.36% 2.99 14397.01 14400.00

2 0.00% 1368.66 0.42% 261.92 14138.08 14400.00 0.49% 2.94 14397.06 14400.00

3 0.00% 1034.36 0.42% 265.94 14134.06 14400.00 0.44% 2.85 14397.15 14400.00

4 0.00% 802.69 0.48% 262.21 14137.79 14400.00 0.52% 2.88 14397.12 14400.00

5 0.00% 745.86 0.19% 266.94 14133.07 14400.00 0.20% 2.92 14397.08 14400.00

0.2 0.2

1 0.00% 1270.14 0.59% 258.22 14141.78 14400.00 0.59% 2.91 14397.09 14400.00

2 0.00% 4342.85 0.81% 261.01 14139.00 14400.00 0.81% 2.90 14397.10 14400.00

3 0.00% 11239.78 1.19% 257.82 14142.18 14400.00 1.20% 2.88 14397.12 14400.00

4 0.00% 1459.50 0.72% 258.79 14141.21 14400.00 0.80% 2.84 14397.16 14400.00

5 0.00% 919.65 0.45% 259.01 14140.99 14400.00 0.52% 2.88 14397.12 14400.00

Table 9 Numerical Comparisons of Big-M Coe�cient Strengthening Methods for a DRCCP under Type

1-Wasserstein Ambiguity Set with Instances 1-7-5-500 from Song et al. (2014) and N = 500

Á ◊ Case

Big-M & Fixing & Strengthen

in Case III of Section 7

Big-M & Strengthening

in Case III of Section 7

Big-M & Strengthening

from Section 4.2 of Ho-Nguyen et al. (2023)

GAP Total Time (s) GAP
Time (s)

GAP
Time (s)

S Solver Total S Solver Total

0.1 0.1

1 0.00% 484.32 0.18% 258.23 14141.77 14400.00 0.19% 2.84 14397.16 14400.00

2 0.00% 473.94 0.16% 258.27 14141.73 14400.00 0.19% 2.84 14397.16 14400.00

3 0.00% 489.78 0.08% 261.58 14138.42 14400.00 0.09% 2.86 14397.14 14400.00

4 0.00% 526.03 0.00% 264.27 9837.24 10101.51 0.00% 2.83 11384.92 11387.75

5 0.00% 495.94 0.02% 264.54 14135.46 14400.00 0.02% 2.85 14397.15 14400.00

0.1 0.2

1 0.00% 498.61 0.23% 265.56 14134.44 14400.00 0.24% 2.84 14397.16 14400.00

2 0.00% 505.93 0.19% 271.49 14128.51 14400.00 0.36% 2.86 14397.14 14400.00

3 0.00% 486.02 0.12% 261.27 14138.73 14400.00 0.15% 2.80 14397.20 14400.00

4 0.00% 547.57 0.22% 270.09 14129.91 14400.00 0.22% 2.81 14397.19 14400.00

5 0.00% 584.00 0.08% 265.96 14134.04 14400.00 0.09% 2.84 14397.16 14400.00

0.2 0.1

1 0.00% 761.75 0.24% 257.38 14142.62 14400.00 0.25% 2.85 14397.15 14400.00

2 0.00% 710.85 0.19% 264.99 14135.01 14400.00 0.29% 2.82 14397.18 14400.00

3 0.00% 659.51 0.18% 265.56 14134.45 14400.00 0.18% 2.84 14397.16 14400.00

4 0.00% 757.81 0.19% 268.32 14131.68 14400.00 0.22% 2.84 14397.16 14400.00

5 0.00% 644.73 0.34% 259.83 14140.17 14400.00 0.35% 2.83 14397.17 14400.00

0.2 0.2

1 0.00% 3445.53 0.28% 264.13 14135.87 14400.00 0.28% 2.81 14397.19 14400.00

2 0.00% 735.76 0.41% 273.49 14126.51 14400.00 0.41% 2.83 14397.17 14400.00

3 0.00% 851.85 0.26% 279.46 14120.54 14400.00 0.26% 2.80 14397.20 14400.00

4 0.00% 1112.11 0.31% 281.83 14118.17 14400.00 0.32% 2.86 14397.14 14400.00

5 0.00% 840.94 0.44% 269.85 14130.15 14400.00 0.45% 2.85 14397.15 14400.00

⁄ > 0,“ Ø 0, sj Ø 0,’j œ [N ], yj Æ 0,’j œ [N ]. (33h)

It is worth noting that the lower bound of DRCCP (19) can be found by using the improved VaR
lower bound, that is,

v̄L
q = min

xœX ,⁄,“,

s,y,z,‚z

Y
____]

____[

c€x :

◊Á≠ 1
q Îai(x)Îú +ai(x)€ ‚⇠j Æ bi(x) + MVaR,q

i,j (1 ≠ ‚zj),’i œ [I], j œ [N ],
ÿ

jœ[N ]
‚zj Ø N ≠ ÂNÁÊ, ‚z œ {0,1}N ,z œ [0,1]N , ‚zj Æ zj ,’j œ [N ],

(33b)-(33h)

Z
____̂

____\

,

where for each i œ [I], j œ [N ], we have

MVaR,q
i,j Ø max

xœX

Ó
◊Á≠ 1

q Îai(x)Îú +ai(x)€ ‚⇠j ≠ bi(x)
Ô

.
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EC. 5 Numerical Comparisons of Joint RCCP
The joint RCCP that we test admits the following form:

vú = min
xœ[0,1]n

Y
]

[c€x : 1
N

ÿ

jœ[N ]
I

S

Umax
iœ[I]

Y
]

[
ÿ

kœ[n]
›j

i,kxk ≠ bi

Z
^

\ Æ 0

T

V Ø 1 ≠ Á

Z
^

\ .

We evaluate the proposed method on two sets of joint RCCP instances, 1-4-multi-500 and 1-6-multi-
500 from Song et al. (2014). We compare the numerical results of the following three methods: (i)
Big-M method with fixing & strengthening; (ii) Big-M method with strengthening; (iii) Vanilla big-M
method, where the first method is our proposed one. We aim to identify two categories of optimality
cuts: Category (A) consists of the type zj = 0 cuts, which implies that scenario j œ [N ] is violated at
optimality; and Category (B) comprises the type zj + zj+1 Æ 1 cuts, which implies that at least the
scenario j œ [N ≠1] or (j +1) œ [N ] is violated at optimality. Particularly, the first method comprises
the following three steps:

Step 1. We use the dual bound (see, e.g., Ahmed et al. 2017) as the outer approximation value vL

and ALSO-X# (see, e.g., Jiang and Xie 2023) as the inner approximation value vU , respectively. We
first identify the cuts based on Corollary 2. Next, we fix the variables following Corollary 1. Recall
that for each scenario j œ [N ], we define ‚÷j := minxœ[0,1]n{c€x :

q
kœ[n] ›

j
i,kxk Æ bi,’i œ [I]}. We sort

the values {‚÷j}jœ[N ] in descending order, i.e., ‚÷‡1
Ø ‚÷‡2

Ø · · · Ø ‚÷‡N
. For the first 0.1 ◊ ÂNÁÊ scenarios

in the sorted sequence, we identify Category (A) optimality cuts; specifically, we check whether
zj = 0 at optimality or not for j œ {‡1,‡2, · · · ,‡0.1◊ÂNÁÊ}. For the subsequent 0.3 ◊ ÂNÁÊ scenarios
in the sorted sequence, we identify Category (B) optimality cuts, verifying whether zj + zj+1 Æ 1 at
optimality or not for j œ {‡0.1◊ÂNÁÊ+1,‡0.1◊ÂNÁÊ+2, · · · ,‡0.3◊ÂNÁÊ}. We use “P” to denote the running
time of this step.

Step 2. We strengthen the big-M coe�cients according to the discussions in Section 2.2. We use
“S” to denote the running time of this step.

Step 3. We execute the big-M method.
For the first method (i.e., Big-M method with fixing & strengthening), we initialize the solver with

the solution ALSO-X# and incorporate the inequalities c€x Ø vL and c€x Æ vU into the solver.
Then we implement Steps 1-3. For the second method (i.e., Big-M method with strengthening), we
implement the above Steps 2 and 3. For the third method (i.e., Vanilla big-M method), we implement
Step 3.

The results are displayed in Table 10. A total of 20 instances are reported in Table 10. It is seen
that our proposed method (i.e., the first method) consistently performs better than others, achieving
faster and more stable running time across almost all instances. We also illustrate the performance
profile of each method in Figure 8. That is, we use the horizontal axis to represent the logarithmic
scale of running time and the vertical axis to represent the number of instances solved to optimality
up to that time point for a given method. The two instance sets 1-4-multi-500 and 1-6-multi-500
from Song et al. (2014) are quite di�cult to solve to optimality within the given time limit, and
thus, our proposed method can only solve 17 out of 20 instances. One specific reason is that we only
generate fewer optimality cuts in the 1-6-multi-500 instances based on the restricted dual formulation
(4), which implies that we may need to further improve the quality of the lower bound to generate
more optimality cuts. Nevertheless, our methods significantly outperform the other two methods,
solving many more instances within the time limit.
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Table 10 Numerical Results of a joint RCCP with Instances 1-4-multi-500 and 1-6-multi-500 from Song et al.

(2014) and N = 500

Dataset Á Case

Big-M & Fixing & Strengthening Big-M & Strengthening Vanilla big-M

GAP
Pre-compute Time (s) # of Cuts Time (s)

GAP
Time (s)

GAP Time (s)
P S A B Solver Total S Solver Total

1-4-multi-500

(n = 20, I = 10)

0.1

1 0.00% 18.53 19.21 13 8 48.62 86.36 0.00% 19.48 59.13 78.61 0.00% 96.33

2 0.00% 18.38 19.23 10 7 62.71 100.32 0.00% 20.65 83.27 103.92 0.00% 440.01

3 0.00% 17.24 18.96 10 6 106.39 142.59 0.00% 20.56 246.92 267.48 0.00% 892.46

4 0.00% 18.08 19.42 9 8 93.68 131.18 0.00% 19.86 1022.87 1042.73 0.00% 2302.15

5 0.00% 18.93 18.88 8 5 53.53 91.34 0.00% 19.52 147.81 167.33 0.00% 1408.83

0.2

1 0.00% 29.03 17.56 25 14 456.26 502.85 0.25% 19.95 14380.05 14400.00 0.73% 14400.00

2 0.00% 31.65 19.41 26 20 392.45 443.51 0.18% 20.27 14379.73 14400.00 0.66% 14400.00

3 0.00% 27.79 18.35 17 19 204.56 250.70 0.03% 19.67 14380.33 14400.00 0.59% 14400.00

4 0.00% 30.49 17.65 20 11 587.68 635.82 0.12% 19.77 14380.24 14400.00 0.93% 14400.00

5 0.00% 29.36 18.84 17 16 241.85 290.05 0.06% 19.79 14380.21 14400.00 0.62% 14400.00

1-6-multi-500

(n = 39, I = 5)

0.1

1 0.00% 38.04 13.16 1 3 1289.36 1340.56 0.00% 13.20 1728.78 1741.98 0.00% 4543.04

2 0.00% 37.79 13.29 1 9 3699.47 3750.55 0.00% 13.78 10349.53 10363.31 0.35% 14400.00

3 0.00% 38.45 13.11 2 7 273.92 325.48 0.00% 13.23 6671.96 6685.19 0.67% 14400.00

4 0.00% 36.99 12.75 3 2 913.46 963.20 0.00% 13.26 7118.81 7132.07 0.45% 14400.00

5 0.00% 38.35 13.75 1 7 246.08 298.18 0.00% 13.67 5492.95 5506.61 0.10% 14400.00

0.2

1 0.00% 62.53 13.01 7 16 6548.79 6624.33 0.72% 13.30 14386.70 14400.00 1.34% 14400.00

2 0.04% 64.61 13.76 5 14 14321.63 14400.00 1.03% 13.52 14386.48 14400.00 1.76% 14400.00

3 0.08% 64.39 13.36 6 15 14322.25 14400.00 0.96% 13.85 14386.15 14400.00 1.47% 14400.00

4 0.13% 69.24 13.05 7 9 14317.71 14400.00 1.35% 13.62 14386.38 14400.00 1.85% 14400.00

5 0.00% 64.16 13.12 9 17 10069.52 10146.80 0.83% 13.55 14386.45 14400.00 1.59% 14400.00

(a) Total Running Time Comparisons of Table 10 (b) Big-M Running Time Comparisons of Table 10

Figure 8 Comparisons among di�erent methods to solve a joint RCCP. The horizontal axis represents the loga-

rithmic scale of running and the vertical axis represents the number of instances solved to optimality.
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