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In the context of simulation optimization (SO), Common Random Numbers (CRN) is the
practice of querying the simulation-based oracle with the same random number stream at each
point visited by an SO algorithm. This practice is widely believed to facilitate SO algorithm
efficiency by preserving structure inherent to the objective function and gradient sample-paths.
However, CRN can present coding challenges compared to the widely-used practice of näıve in-
dependent sampling. Is the potential CRN efficiency gain worth the potentially significant cost
of implementation within stochastic trust-region algorithms? Toward answering this question, we
characterize the consistency and complexity of a class of stochastic trust-region algorithms called
ASTRO/ASTRO-DF as a function of the use of CRN. We find that the magnitude of CRN’s
influence depends intimately on the extent of regularity in the underlying sample paths. For
instance, CRN’s effect is most evident in first-order settings with smooth sample paths, where
the algorithm work complexity dramatically improves from O(ϵ−6) to O(ϵ−2). This result is sig-
nificant considering that the best work complexity of first-order (generic) stochastic trust-region
algorithms reported in the literature is O(ϵ−6). CRN’s effect is more muted when the sample
paths are potentially discontinuous, with the work complexity improving from O(ϵ−6) to O(ϵ−5)
in both zeroth-order and first-order settings. In between these extremes, CRN facilitates various
improved complexities depending on prevailing conditions of sample-path regularity. We antic-
ipate similar gains in adaptive sampling algorithms other than ASTRO/ASTRO-DF since the
derived complexities stem less due to specific algorithmic mechanics, and more due to elements
common to all trust-region methods.

1. INTRODUCTION

We consider stochastic optimization problems having the form

min
x∈IRd

f(x) := E[F (x, ξ)] =

∫
Ξ
F (x, ξ)P (dξ), (1)

where f : IRd → IR is smooth and bounded from below, and F : IRd × Ξ → IR is a “random
function” with the random object ξ having distribution P on the measurable space (Ξ,F). The
problem formulation in (1) is the subject of enormous recent attention especially due to the advent
of machine learning and data analytics.

Two popular flavors of (1), loosely called derivative-based or first-order, and derivative-free or
zeroth-order, are of interest in this paper, and reflect the extent of information on F that is available
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to a solution algorithm. In the first-order context, it is assumed that F (·, ξ) is differentiable with
E[∇F (·, ξ)] = ∇f(·), and that an algorithm has access to a first-order stochastic oracle, that is,
the oracle queried at (x, ξ) returns (F (x, ξ),∇F (x, ξ)). In the derivative-free context, F (·, ξ) is
not necessarily differentiable and an algorithm is assumed to have access only to a zeroth-order
stochastic oracle, that is, when queried at (x, ξ) the oracle returns only the function value F (x, ξ).
In both first-order and zeroth-order contexts, the objective f(x), x ∈ IR is assumed to be a
smooth function. (See Assumption 1 for a precise statement of this assumption.)

The random function F (·, ξ) is called a sample-path approximation of f(·); likewise, ∇F (·, ξ),
when it exists, is called a sample-path approximation of ∇f(·). Sample-average approximations
F̄ (·, n) and Ḡ(·, n) of f(·) and ∇f(·), respectively, can be constructed by averaging sample paths
F (·, ξj), j = 1, 2, . . . , n and ∇F (·, ξj), j = 1, 2, . . . , n:

F̄ (x, n) =
1

n

n∑
i=1

F (x, ξi); Ḡ(x, n) =
1

n

n∑
i=1

G(x, ξi), x ∈ IRd.

The estimated variance of F̄ (·, n), and the estimated covariance of Ḡ(·, n), are then computed in
the usual way:

σ̂2
F (x, n) :=

1

n− 1

n∑
j=1

(
F (x, ξi)− F̄ (x, n)

)2
; (2)

σ̂2
G(x, n) :=

1

n− 1

n∑
j=1

(
G(x, ξi)− Ḡ(x, n)

) (
G(x, ξi)− Ḡ(x, n)

)⊺
. (3)

1.1 Consistency, Iteration Complexity, Work Complexity

An iterative solution algorithm having access to either a stochastic zeroth-order or stochastic first-
order oracle, is said to solve Problem (1) if it constructs a stochastic iterate sequence {Xk, k ≥ 1}
that in some rigorous sense converges to a first-order critical point of f , that is, a point x∗ such
that satisfies ∥∇f(x∗)∥ = 0. For the purposes of this paper, such an algorithm is said to be
consistent if the generated sequence Xk → x∗ in probability and strongly consistent if Xk → x∗

almost surely. (See Section 3 for a formal definitions of convergence modes).

Suppose the stochastic process of iterates {Xk, k ≥ 1} is defined on a probability space
(Ω,F , P ) equipped with the filtration {Fk, k ≥ 1}. Suppose also that in generating the iter-
ate Xk, an iterative algorithm expends Nk calls to the stochastic oracle, where Nk is an adaptive
sample size, that is, Nk is Fk-measurable. Then, the total work done after k iterations is also
Fk-measurable and given by

Wk =

k∑
j=1

Nj . (4)

Then, a consistent algorithm is said to exhibit O(ϵ−q) work complexity if

WK(ϵ) ≤ ΛW ϵ−q; K(ϵ) := inf{k : ∥∇f(Xk)∥ ≤ ϵ}, (5)

where ΛW is a well-defined random variable and ∥ · ∥ is the L2 norm. We say the consistent
algorithm exhibits Õ(ϵ−q) complexity if there exists a well-defined random variable ΛW such that

WK(ϵ) ≤ ΛW ϵ−q log ϵ−1; K(ϵ) := inf{k : ∥∇f(Xk)∥ ≤ ϵ}. (6)
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The conditions in (5) and (6) can be loosely interpreted as the iterative algorithm needing at most
O(ϵ−q) calls to the oracle to reach ϵ-accuracy, that is, the generated iterates first enter an ϵ-ball
centered on a first-order critical point. An analogous definition holds for iteration complexity
whereby a consistent algorithm is said to exhibit O(ϵ−q) iteration complexity if there exists a
well-defined random variable ΛT such that

K(ϵ) ≤ ΛT ϵ−q; K(ϵ) := inf{k : ∥∇f(Xk)∥ ≤ ϵ}. (7)

Depending on the prevailing computing environment, one or both of work complexity and iter-
ation complexity may be important to an implementer. Although we include results on iteration
complexity, our emphasis in this paper is on work complexity. Such emphasis is informed by the
fact that the per-iteration effort in most adaptive sampling algorithms varies across iterations,
and is not adequately representative of the total computing effort expended to reach ϵ-accuracy.

1.2 Stochastic Trust-region Algorithms in a Nutshell

Trust-region (TR) algorithms are a family of iterative methods for solving smooth nonconvex
stochastic optimization problems that have recently gained in popularity due primarily to the
robustness stemming their self-tuning nature. All stochastic TR algorithms include the following
four steps in each iteration:

(a) (model construction) a model of the objective f is constructed within a “trust region,”
usually an L2 ball of radius ∆k centered around the incumbent iterate Xk, by appropriately
calling the provided oracle;

(b) (subproblem minimization) the constructed local model of f is approximately minimized

within the trust region to yield a candidate point X̃k+1;

(c) (candidate evaluation) the candidate point X̃k+1 is accepted or rejected based on a sufficient
reduction (of f) test; and

(d) (trust-region management) if accepted, X̃k+1 replaces Xk as the subsequent incumbent and
the trust-region radius ∆k is either increased or stays the same as a vote of confidence in
the model; if X̃k+1 is rejected, the incumbent remains unchanged during the subsequent
iteration, and the trust-region radius shrinks by a factor in an attempt at constructing a
better model in the subsequent iteration.

The difference between existing stochastic TR algorithms, e.g., STRONG [1, 2], STORM [3, 4],
ASTRO/ASTRO-DF [5, 6], and TRiSH [7] largely stem from the particularities of the steps (a)–
(d). As should become clear from our analysis in this paper, the work complexity associated with
stochastic TR models depends especially on step (a), particularly on how the model is constructed,
how much effort is expended, and what is the resulting accuracy.

1.3 CRN and the Random Field Interpretation

The object F (·, ξ) appearing in (1) is a random field, that is, a collection {F (x, ξ), x ∈ IRd}
of random variables labeled by x ∈ IRd. This viewpoint forms the foundation of CRN use in
optimization as a mechanism to preserve inherent structure in F (·, ξ), otherwise lost through
independent sampling.
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Figure 1: Illustration of the effect of CRN on an example problem adapted from [8]. The black
curve is the true function f , the blue curve is f ’s estimate constructed with CRN, and the red
curve is f ’s estimate constructed with independent sampling.

To illustrate, suppose a stochastic TR algorithm attempts to construct a local model (step
(a) in Section 1.2) by calling the oracle at 2d + 1 points denoted x1, x2, . . . , x2d+1. Recall that
executing the oracle once entails specifying two inputs: a point x ∈ IRd and a “random num-
ber” ξ. Using CRN when calling the oracle means “holding the random number fixed” (at say
ξ) as the oracle is called at the points x1, x2, . . . , x2d+1, that is, the inputs to the oracle are
(x1, ξ), (x2, ξ), . . . , (x2d+1, ξ). The oracle will then return F (x1, ξ), F (x2, ξ), . . . , F (x2d+1, ξ). This
is in contrast to independent sampling with (x1, ξ1), (x2, ξ2), . . . , (x2d+1, ξ2d+1) inputs to the ora-
cle, where ξ1, ξ2, . . . , ξ2d+1 are independent and identically distributed random variables. The idea
of CRN extends when calling the oracle multiple, say N , times at each xj , j = 1, 2, . . . , x2d+1 in a
similar manner. The inputs to the oracle become (x1, ξj), (x2, ξj), . . . , (x2d+1, ξj), j = 1, 2, . . . , N
and the resulting function estimates become

F̄ (xi, N) :=
1

N

N∑
j=1

F (xi, ξj), i = 1, 2, . . . , 2d+ 1.

For a concrete example, Figure 1 depicts the expected waiting time of passengers arriving (to
board a bus) according to a Poisson process as a function of placement x of six buses in a fixed
time interval [0, 30]. The black curve in Figure 1 represents the expected wait time f(x), the
blue curve represents the estimated wait time F̄ (x, N) generated with CRN and the red curve
represents the estimated wait time F̄ (x, N) generated with independent sampling. When looking
to identify bus arrival times that minimize total expected wait time, an estimator obtained by
minimizing the blue curve is likely to be much closer to the true minimum than that obtained by
minimizing the red curve.

Since models in step (a) of Section 1.2 are constructed to stipulated accuracy, CRN often
directly translates to lower overall sampling effort, leading to the widely held opinion that CRN
aids numerical implementation. What is perhaps most interesting is that our results in this paper
suggest that the gains are not just during implementation, but are reflected clearly in the work
complexity of the resulting algorithms.
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2. SUMMARY OF INSIGHT

In what follows, we summarize the principal insights of this paper.

(a) Table 1 presents the work complexities implied by Theorem 7 of the paper organized by
smoothness of the function sample-path (None/Continuous/Smooth), CRN use (or lack
thereof), and oracle information (first-order or zeroth order).

First-order (ASTRO) Zeroth-order (ASTRO-DF)

Function sample-path property

None Continuous Smooth None Continuous Smooth

CRN Õ(ϵ−5) Õ(ϵ−4) Õ(ϵ−2) Õ(ϵ−5) Õ(ϵ−4) Õ(ϵ−4)

No CRN Õ(ϵ−6) Õ(ϵ−6) Õ(ϵ−6) Õ(ϵ−6) Õ(ϵ−6) Õ(ϵ−6)

Table 1: Work complexity rates for ASTRO and ASTRO-DF.

Various aspects of Table 1 are salient. First, when CRN is not used, consistent with the single
existing result in the literature, the work complexity is Õ(ϵ−6) across the board. Second, the
complexity improves dramatically to Õ(ϵ−2) when using CRN in the first-order context with
smooth sample-paths. (It is now well-known that O(ϵ−2) is the best achievable complexity
for stochastic optimization with a first-order stochastic oracle.) Third, there appears to be
a steady progression of benefit due to using CRN, with smooth sample-paths providing the
maximum benefit, followed by contexts having continuous sample-paths, and finally those
having potentially discontinuous sample-paths. Fourth, there appears to no difference in
complexities between between first-order and zeroth-order contexts except in the smooth
context.

(b) Theorem 6 demonstrates that the iteration complexity of both ASTRO and ASTRO-DF is
O(ϵ−2), matching the best achievable for any algorithm that expends a constant amount of
sampling effort in each iteration.

(c) The complexity and consistency proofs in the paper follow from arguably weak conditions.
For instance, no assumptions are made on success probabilities of the underlying model
appearing in Step (a) of Section 1.2, or on its independence from function estimates. (This
is in contrast to proofs in [4] which rely on such “black-box” assumptions.)

(d) The optimal complexity O(ϵ−2) is achieved by classic algorithms such as stochastic gradient
descent (SGD) with independent sampling, whereas the corresponding complexity in Table 1
is Õ(ϵ−6). This large discrepancy in complexities seems to arise from the standard manner
in which the sufficient reduction test (Step (c) in Section 1.2) is conducted in many TR
algorithms using a quality stipulation on both the function and gradient estimates.

3. MATHEMATICAL PRELIMINARIES

In this section, we provide the notation, key definitions, standing assumptions and some supporting
results that will be invoked in the paper.

5



3.1 Notation

We use bold font for vectors; x = (x1, x2, · · · , xd) ∈ IRd denotes a d-dimensional vector of real
numbers. Let ei ∈ IRd for i = 1, . . . , d denote the unit basis vector in the ith coordinate. We
use calligraphic fonts for sets and sans serif fonts for matrices. Our default norm operator ∥ · ∥
is an L2 norm in the Euclidean space. We use a ∧ b := min{a, b} and denote B(x0; ∆) = {x ∈
IRd : ∥x − x0∥2 ≤ ∆} as the closed ball of radius ∆ > 0 with center x0. For a sequence of sets
{An}, the set {An i.o.} denotes lim supnAn. For sequences {ak} and {bk} of nonnegative reals,
ak ∼ bk denotes limk→∞ ak/bk = 1. We say f(x) = O(g(x)) if there exist positive numbers ε and
m such that |f(x)| ≤ mg(x) for all x with 0 < |x| < ε. C(IRd) denotes the set of all continuous
functions on IRd. We use capital letters for random scalars and vectors. XY denotes independent

random variables X and Y . For a sequence of random vectors {Xk}, k ∈ N, Xk
wp1−−→ X denotes

almost sure convergence. “iid” abbreviates independent and identically distributed and “wp1”
abbreviates with probability 1.

3.2 Key Definitions

Progress of TR algorithms relies on a local model constructed using function value estimates, often
as a quadratic approximation:

Mk(Xk + s) = F̄ 0
k (Nk) + s⊺Gk +

1

2
s⊺Hks, for all s ∈ B(0;∆k) (8)

where Gk and Hk are the model gradient and Hessian at the incumbent solution Xk and ∆k is
the size of the neighborhood around Xk where the model is deemed credible.

In the first-order context where we have access to a stochastic first-order oracle, the model
gradient Gk ≡ Ḡk(Nk) = 1

Nk

∑Nk
i=1G(Xk, ξi), is simply the unbiased gradient estimate and Hk

replaced by it approximation using BFGS [9, 10], i.e.,

Bk = Bk−1 − (S⊺
k−1Bk−1Sk−1)

−1Bk−1Sk−1S
⊺
k−1Bk−1 + (Y ⊺

k−1Sk−1)
−1Yk−1Y

⊺
k−1,

where Yk−1 = Ḡk(Nk)− Ḡk−1(Nk−1) and Sk−1 = Xk −Xk−1.

For a zeroth-order stochastic oracle, this local model can be constructed by fitting a quadratic
surface on the function estimates at neighboring points, detailed in Definition 1.

Definition 1. ( stochastic interpolation models) Given Xk = X0
k ∈ IRd and ∆k > 0, let Φ(x) =

(ϕ0(x), ϕ1(x), . . . , ϕq(x)) be a polynomial basis on IRd. With p = q and a design set Xk :=
{X0

k ,X
1
k , . . . ,X

p
k} ⊂ B(Xk; ∆k), we seek αk =

[
αk,0 αk,1 . . . αk,p

]
such that

M(Φ,Xk)αk =
[
F̄ 0
k (Nk) F̄ 1

k (N
1
k ) · · · F̄ p

k (N
p
k )
]⊺

,

where for i = 1, 2, . . . , p, N i
k is the k-th iteration’s adaptive sample size at the i-th design point,

F̄ i
k(N

i
k) := F̄ (Xi

k, N
i
k), and M(Φ,Xk) = [ϕ0

k,ϕ
1
k, . . . ,ϕ

p
k]

⊺ with ϕi
k = [ϕ1(X

i
k), ϕ2(X

i
k), . . . , ϕq(X

i
k)].

If the matrix M(Φ,Xk) is nonsingular, the set Xk is poised in B(Xk; ∆k). The function Mk :
B(Xk; ∆k) → IR, defined as Mk(x) =

∑p
i=0 αk,iϕi(x) is a stochastic polynomial interpolation

model of f on B(Xk; ∆k). For representation of Mk in (8), Gk =
[
αk,1 αk,2 · · · αk,d

]⊺
be the

subvector of αk and Hk be a symmetric matrix of size d × d with elements uniquely defined by
αk,d+1, αk,d+2, · · · , αk,p.
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Taylor bounds for first-order local model errors need to be replicated for the zeroth-order
models for sufficient model quality. This is classically done through the concept of fully-linear
models [11], whose stochastic variant we list in Definition 2.

Definition 2. ( stochastic fully linear models) Given Xk ∈ IRd and ∆k > 0, let model Mk(·)
be obtained following Definition 1 and define mk(·) as its limiting function where N i

k = ∞ for
i = 0, 1, · · · , p. We say Mk is a stochastic fully linear model of f in B(Xk; ∆k) if there exist
positive constants κeg and κef independent of Xk and ∆k such that

∥∇f(x)−∇mk(x)∥ ≤ κeg∆k, and ∥f(x)−mk(x)∥ ≤ κef∆
2
k ∀x ∈ B(Xk; ∆k). (9)

Certain geometry of the design set will fulfill the fully-linear property of the local model [11].
Furthermore, to keep the model gradient in tandem with the trust-region radius ∆k that ultimately
reduces to 0, an additional check of ∥Gk∥ and ∆k is often performed for the zeroth-order oracles
(see criticality steps in (author?) [12]). The minimization is a constrained optimization and
often, solving it to a point of Cauchy reduction is sufficient for TR methods to converge.

Definition 3. (Cauchy reduction) Given Xk ∈ IRd and ∆k > 0 and a model Mk(·) obtained
following Definition 1, Sc

k is called the Cauchy step if

Mk(Xk)−Mk(Xk + Sc
k) ≥

1

2
∥Gk∥

(
∥Gk∥
∥Hk∥

∧∆k

)
. (10)

We assume that ∥Gk∥/∥Hk∥ = +∞ when ∥Hk∥ = 0. We call the RHS of (10), the Cauchy
reduction. The Cauchy step is obtained by minimizing the model Mk(·) along the steepest descent
direction within B(Xk; ∆k) and hence easy and quick to obtain.

With these preliminaries, we assess adaptive sampling rules defined below for function values
and gradients in zeroth and first-order cases.

Definition 4. (Filtration and Stopping Time). A filtration {Fk}k≥1 is defined as an increasing
family of σ-algebras of F ∪ Fg, i.e., Fk ⊂ Fk+1 ⊂ · · · for all k. We interpret Fk as “all the
information available at time k.” A filtered space (Ω, {Fk}k≥1,P) is a probability space equipped
with a filtration. A map N : Ω → {0, 1, 2, . . . ,∞} is called a stopping time with respect to Fk if
the event {N = n} := {ω : N(ω) = n} ∈ Fk for all n ≤ ∞.

3.3 Standing Assumptions

The following assumptions specify the nature of the underlying function and random fields that
will be used througout the paper.

Assumption 1. (κLg: Lipschitz constant of gradients) The function f is twice continuously
differentiable in an open domain X ⊇ B (x0; ∆max), ∇f is Lipschitz continuous in X with constant
κLg ∈ (0,∞), i.e., ∥∇f(x1)−∇f(x2)∥ ≤ κLg∥x1 − x2∥, ∀x1,x2 ∈ IRd.

At the end of each iteration k, the stochastic process ({Xi
k}i=0,1,··· ,p, X̃k+1, Ñk+1,∆k+1) be-

comes Fk measurable. On the other hand, the sampling error

Ēi
k(N

i
k) =

1

N i
k

N i
k∑

j=1

Ei
k,j =

1

Nk

N i
k∑

j=1

F (Xi
k, ξj)− f(Xi

k),
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is a martingale with Ei
k,j ∈ Fk,j and E[Ei

k,j |Fk,j−1] = 0, where Fk := Fk,0 ⊂ Fk,1 ⊂ · · · ⊂ Fk+1.
Similarly, in the presence of a first-order stochastic oracle,

Ēg
k(Nk) =

1

Nk

Nk∑
j=1

Eg
k,j =

1

Nk

Nk∑
j=1

G(Xk, ξj)−∇f(Xk),

is a martingale with Eg
k,j ∈ Fk,j and E[Eg

k,j |Fk,j−1] = 0. We make the next two assumptions on
the higher moments of the stochastic noise resembling the Bernstein condition.

Assumption 2. Let the random iterate be Xk ∈ Fk−1 (in ASTRO-DF, let the design set be
{Xi

k}i=0,1,··· ,p ∈ Fk−1). Then the stochastic errors Ei
k,j are independent of Fk−1, E[Ei

k,j |Fk,j−1] =

0, and there exists σ2
f > 0 and bf > 0 such that for a fixed n,

1

n

n∑
j=1

E[|Ei
k,j |m|Fk,j−1] ≤

m!

2
bm−2
f σ2

f , ∀m = 2, 3, · · · , ∀k.

Assumption 3. Let Xk ∈ Fk−1 and [Eg
k ]r be the r-th element of the stochastic gradient error.

Then [Eg
k,j ]rFk−1 for any r ∈ {1, . . . , d} and E

[
[Eg

k,j ]r | Fk,j−1

]
= 0. There also exist σ2

g > 0 and

bg > 0 such that for a fixed n and any r ∈ {1, . . . , d},

1

n

n∑
j=1

E
[
|[Eg

k,j ]r|
m|Fk,j−1

]
≤ m!

2
bm−2
g σ2

g , ∀m = 2, 3, · · · ,∀k.

Random variables fulfilling Assumptions 2 and 3 exhibit a subexponential tail behavior. Next,
to analyze the sums and maxima of the stochastic error estimates, we need characterize the tail
probability of a sequence of dependent random variables.

Assumption 4. For a given solution at iteration k and constant c > 0, there exists a large c0 > 0
such that for all λk ≤ n ≤ Nk,

1
n−1

∑n−1
j=1 |Ek,j | is stochastically decreasing in |Ek,n|, meaning

that for a fixed c2, P{ 1
n−1

∑n−1
j=1 |Ek,j | > c2 | |Ek,n| > c1} is decreasing in c1; and likewise is

1
n−1

∑n−1
j=1 ∥E

g
k,j∥ stochastically decreasing in ∥Eg

k,n∥.

Note, this assumption allows for dependence of the consecutive stochastic error estimates with
certain tail independence structure, in order to be able to apply a similar tail probability result
for heavy-tailed (sub-exponential) random variables. The dependence structure is non-restrictive
leading to the subexponentiality of the summands eliminating the impact of dependence of the
tail behavior of the sums. Now let us introduce two assumptions which are needed to prove
consistency.

3.4 Supporting Results

Lemma 1. (Bernstein’s inequality for martingales). Let Assumption 2 hold. Then, for all c > 0

and a fixed n ∈ N, P
{
Ēk(n) ≥ c

}
≤ exp

{
−nc2

2(cb+σ2)

}
.

Note, Lemma 1 allows for the stochastic errors to be dependent, thereby facilitating using this
result for our estimation error resulting from the stopping time Nk.
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Lemma 2. (Sums and Maxima of Dependent Subexponentials [13, 14]) Let Assumptions 2 and 4
hold for random variables Ek,j. Then ∀n ∈ [λk, Nk],

P

 1

n

n∑
j=1

|Ek,j | > c

 ∼ P

 sup
λk≤n≤Nk

1

n

n∑
j=1

|Ek,j | > c

 ∼ E

 Nk∑
λk

P

 1

n

n∑
j=1

|Ek,j | > c

 | Fk

 .

We review the reduction in the variance of difference between two adjacent points due to the
use of common random numbers and assumptions on the sample-paths, a result that is often used
for the gradients approximated with finite-differencing.

Theorem 1. (Variance in Differences [15]) Let the function value at two adjacent points x and
x+ s be simulated to obtain F (x, ξi) and F (x+ s, ξj). Then the variance of the difference is

Var (F (x+ s, ξj)− F (x, ξi)) =


O(1) if ξiξj,
O(∥s∥) if ξi = ξj,

O(∥s∥2) if ξi = ξj and F (·, ξ) ∈ C(IRd) for each ξ ∈ Ξ.

4. ASTRO and ASTRO-DF

Before describing the details of ASTRO and ASTRO-DF, we focus on the adaptive sampling rule
for each. These rules contain constants βf , βg ∈ [0, 2] that will be determined based on the use of
CRN and sample-path behavior.

Nk = min

n ≥ λk :


√
Tr(σ̂2

G(Xk, n))
√
n

≤ κag
∆

βg

k√
λk

 ∩

(
σ̂F (Xk, n)√

n
≤ κaf

∆
βf

k√
λk

) , (11)

N i
k = min

{
n ≥ λk :

σ̂F (X
i
k, n)√
n

≤ κaf
∆

βf

k√
λk

}
. (12)

The sample sizes specified above are stopping times lower bounded by a deterministically increasing
sequence {λk} that grows logarithmically in k. In particular, O(λk) = (log k)1+ϵλ for some ϵλ ∈
(0, 1). In (11), Tr(·) denotes the trace of the covariance matrix (2), and the adaptive rule intends
to keep a ratio on gradient estimation error reminiscent of a student T bounded by a constant κag
and βg power of the TR radius. Both (11) and (12) ensure that the standard error of the function
estimate at each design point is kept in lock-step with the βf -th power of the TR radius. We
note that βf = 2 in the original version of this algorithm [5]. In both cases, the slow logarithmic
deflation of the right-hand-side thresholds by 1/

√
λk ensures that the sample sizes do not stay

small due to chance. The difficulty of analyzing the algorithms ASTRO and ASTRO-DF thereof
is due to the complexity of analyzing moments estimation errors Ēg

k(Nk) and Ēi
k(N

i
k).

For ease of exposition, we will drop Xk from function and gradient estimates and replace
F̄ (Xk, n), F̄ (X̃k+1, n), and Ḡ(Xk, n) with F̄ 0

k (n), F̄
s
k (n), and Ḡk(n). Hence, the ASTRO and

ASTRO-DF algorithm listings are given in Algorithm 1 and Algorithm 2, respectively, following
the iterative steps (a)-(d) in Section 1.2. The notable differences between the two algorithms are
in model construction and adaptive sample size.
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Algorithm 1 ASTRO – Adaptive Sampling Trust-region Optimization

Require: Initial guess x0 ∈ IRd, initial and maximum radius ∆max > ∆0 > 0, model “fitness”
threshold η ∈ (0, 1), expansion and shrinkage constants γ1 > 1 > γ2 > 0, lower bound λk,
adaptive sampling constants κag, κaf > 0, and criticality threshold µ > 0.

1: for k = 0, 1, 2, . . . do
2: Model Construction: Obtain F̄ 0

k (Nk) and Gk = Ḡk(Nk) with sample size Nk following from
(11), and build a local model Mk as defined in (8).

3: Subproblem Minimization: Approximate the k-th step by minimizing the model inside the
TR with Sk = argmin∥s∥≤∆k

Mk(Xk + s), and set X̃k+1 = Xk + Sk.
4: Candidate Evaluation: Estimate the function at the candidate point using adaptive sampling

to obtain F̄ s
k (Ñk+1). Compute the success ratio

ρ̂k =
F̄ s
k (Ñk+1)− F̄ 0

k (Nk)

Mk(X̃k+1)−Mk(Xk)
. (13)

5: Update: Set

(Xk+1,∆k+1) =

{
(X̃k+1, γ1∆k ∧∆max) if ρ̂k > η and µ∥Gk∥ ≥ ∆k,

(Xk,∆kγ2) otherwise.

Set k = k + 1.
6: end for

Algorithm 2 ASTRO – Derivative-free (ASTRO-DF)

Require: Same as ASTRO.
1: for k = 0, 1, 2, . . . do
2: Model Construction: Select the design set Xk, for all i = 0, 1, · · · , p estimate F̄ i

k(N
i
k), and

build a local model Mk following Definition 1.
3: Subproblem Minimization: Same as ASTRO, find X̃k+1 = Xk + Sk.
4: Candidate Evaluation: Estimate F̄ s

k (Ñk+1) and compute the success ratio (13).
5: Update: Same as ASTRO. Set k = k + 1.
6: end for

4.1 Stochastic noise

The first main result is to control the stochastic error by keeping F̄ 0
k (Nk) bounded wp1. We will

now show that this result holds with a logarithmic λk.

Theorem 2. Let {Xk} be the sequence of solutions generated by Algorithm 1 or 2. Let As-
sumptions 2 and 4 hold and set λk such that O(λk) = (log k)1+ϵλ for some ϵλ ∈ (0, 1). Then

P{lim infk→∞ F̄ 0
k (Nk) = −∞} = 0. Moreover, P{|Ēk(Nk)| ≥ cf∆

βf

k i.o.} = 0.

Proof. Given that f is bounded from below, the postulate will hold if and only if we can show
P{|Ēk(Nk)| > cf i.o.} = 0 for any cf > 0. Observe from Theorem 2.7 and 2.8 in [5] that

10



σ̂F (Xk, Nk)/σF (Xk)
wp1−−→ 1 as k → ∞. Then for a fixed c > 0 and large enough k, we have

P{|Ēk(Nk)| > cf | Fk−1} ≤ P

{
sup
n≥λk

|Ēk(n)| > cf | Fk−1

}

≤
∑
n≥λk

P

 1

n

n∑
j=1

|Ek,j | > cf | Fk−1


≤
∑
n≥λk

2e

(
−n

c2f

2(cf bf+σ2
f
)

)
. (14)

Then for iterates generated from Algorithm 1 or 2 knowing that Nk ≥ σ2
mfλk

2κ2
af∆

2βf
k

for large enough

k, where σmf is such that σ2
mf ≤ infx∈IRd σ2

F (x) ≤ σ2
f , we can write

∑
n≥λk

2 exp

(
−n

c2f
2(cfbf + σ2

f )

)
≤

∑
n≥σ2

mfλk(
√
2κaf∆

βf
k )−2

2 exp

(
−n

c2f
2(cfbf + σ2

f )

)

≤ 2
cb+ σ2

c2
P{Exp( c2

2(cb+ σ2)
) ≥ λk}

≤ 2
cfbf + σ2

f

c2f
exp

−λk

c2f
cfbf + σ2

f

σ2
mf

2κ2af∆
2βf

k


≤ 2

cfbf + σ2
f

c2f

2κ2af∆
2βf
max

σ2
mf

k
−(1+ϵλ)

c2f

cf bf+σ2
f

σ2
mf

2κ2
af

∆
2βf
max .

Using Borel-Cantelli’s Lemma for martingales and observing that the right hand side of (14) is
summable in k (as long as the power of k is less than -1), we conclude that lim infk→∞ |Ēk(Nk)| <
∞ almost surely. We also observe that P{|Ēk(Nk)| > c∆

βf

k i.o.} = 0 since the ∆
2βf

k in the
enumerator of the exponent in the third inequality will ultimately get cancelled out with that in
the denominator.

Remark 1. Because of the way Nk is defined, we observe from the proof of Theorem 2 that
P{|Ēk(Nk)| ≥ cλ∆

2
k |Fk} ≤ λ−1

k for some cλ > 0; i.e., the estimate is accurate with probability
1 − λ−1

k that tends to one as k → ∞. This is in contrast to the assumption of probababilisitcally
accurate estimates with a fixed probability [4] in the STROM algorithm. Although a fixed probability
for accuracy of the estimated values seems less stringent than an increasing probability of accurate
estimates, the latter will more carefully keep the total work involved at bay. We will show in
this paper that we can obtain a canonical work complexity under certain assumptions with this
property. A recent study [16] suggests that STORM enjoys a Õ(ϵ−6) complexity bound for the
first-order stochastic oracles barring any dependence between the stochastic models, the functions
estimates, the function estimates, and the history. In contrast, we will show that ASTRO can
enjoy a stronger complexity analysis and ASTRO-DF will be at least as good as STORM but by
exploiting the dependence and random number generation, it can indeed have an improved work
complexity of Õ(ϵ−5) or better.
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Corollary 3. Let Assumptions 3 and 4 hold. Let {Xk} be the sequence of solutions generated by
Algorithm 1 and set λk such that O(λk) = (log k)1+ϵλ for some ϵλ ∈ (0, 1). Then for any cg > 0

P{∥Ēg
k(Nk)∥ > cg∆

βg

k i.o.} = 0 for βg = 0, 1. (15)

Proof. We begin by noticing that from Assumption 3

P{∥Ēg
k(Nk)∥ > cg∆

βg

k | Fk−1} ≤
d∑

i=1

P

{
|[Ēg

k(Nk)]i| >
cg∆

βg

k

d
| Fk−1

}
,

where [Ēg
k(Nk)]i is the i-th element in the stochastic gradient error. Following the same steps in

the proof for Theorem 2, (15) holds with Nk ≥ σ2
mgλk(2κ

2
af∆

2βg

k )−1 for large enough k, where σmg

is such that σ2
mg ≤ infx∈IRd Tr(σ2

G(x)) ≤ dσ2
g .

Lemma 3. Let {Xk} be the sequence of solutions generated by Algorithm 1 or Algorithm 2. Let
Assumptions 2-4 hold and set λk such that O(λk) = (log k)1+ϵλ for some ϵλ ∈ (0, 1). Then given
any cfd > 0 we obtain that

P{|Ēk(Nk)− Ē(x, Nk)| ≥ cfd∆
2
k i.o.} = 0,

for any x ∈ B(Xk; ∆k) with CRN and either of the following

(i)df βf = 3/2;

(ii)df βf = 1 and F (·, ξ) ∈ C(IRd) for each ξ ∈ Ξ.

Moreover, with ASTRO, we have that given any cgd > 0

P{∥Ēg
k(Nk)− Ēg(x, Nk)∥ ≥ cgd∆k i.o.} = 0, (16)

for any x ∈ B(Xk; ∆k) with CRN and either of the following

(i) βg = 1/2;

(ii) βg = 0 and G(·, ξ) ∈ C(IRd) for each ξ ∈ Ξ.

Proof. We first know that Assumption 2 holds for Ek,j(Xk) − Ek,j(x) with the parameter 2σ2
f

for any x ∈ B(Xk; ∆k) and j ∈ N. The proof is completed trivially using the triangle inequality.
Given that Nk solely relies on the estimates at Xk and not on x, it can be naturally concluded
that Assumption 4 also applies to Ek,j(Xk) − Ek,j(x). Now we obtain that from Theorem 1 for
any x ∈ B(Xk; ∆k) with CRN,

Var
(
Ēk(Nk)− Ē(x, Nk)

)
=

{
O(∆2

k) if F (·, ξ) ∈ C(IRd) for each ξ ∈ Ξ;
O(∆k) otherwise.

(17)

Let us first consider the case under condition (i)df . We know from (17) that 2σ2
f ≤ cσ1∆k for

some cσ1 > 0. Then by substituting cσ1∆k in place of σ2
f and continuing the inequality in (14),

we can show that the theorem is satisfied. For the case under condition (ii)df , we can also obtain
the same result with 2σ2

f ≤ cσ2∆
2
k for some cσ2 > 0. The same steps with Assumption 3 yield (16)

under any one of conditions (i) and (ii).
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5. CONSISTENCY

In this section, we prove the strong consistency of ASTRO and ASTRO-DF for four cases where
the power of the trust-region size in (11) and (12) can vary as a result of lower variance in the
model gradient estimate obtained by common random numbers and continuity assumption of the
function sample-paths. Before delving into the strong consistency, let us introduce an assumption
concerning the random gradient observations paths. This assumption will help us specify one of
the four cases for ASTRO.

Assumption 5. (κubg: path-wise gradient Lipschitz constants) The sample-path function F (·, ξ)
is differentiable ∀x ∈ IRd, wp1. The sample-path gradient function G(·, ξ) is κlcG(ξ)-Lipschitz in
IR, i.e., ∥G(x1, ξ)−G(x2, ξ)∥ ≤ κlcG(ξ)∥x1 − x2∥, ∀x1,x2 ∈ IRd.

5.1 Almost sure convergence for ASTRO and ASTRO-DF

In both ASTRO and ASTRO-DF, the subproblem’s recommended solution is required to obtain
sufficient model reduction. This is formally stated by the following assumption.

Assumption 6. (κfcd: fraction of the Cauchy decrease) There exists a constant κfcd ∈ (0, 1] for
all k such that

Mk(Xk)−Mk(X̃k+1) ≥ κfcd[Mk(Xk)−Mk(Xk + Sc
k)],

where Sc
k is the Cauchy step.

Local model built on quadratic approximation in ASTRO and ASTRO-DF rely on the classic
assumptions on model Hessian below.

Assumption 7. (ASTRO Hessian) ∥Bk∥ ≤ κB ∀k and some κB ∈ (0,∞) wp1.

Assumption 8. (ASTRO-DF Hessian) ∥Hk∥ ≤ κH ∀k and some κH ∈ (0,∞) wp1.

The following result characterizes the stochastic model error with estimation error. This result
with Theorem 2 ensures that, given a sufficiently large number of iterations k, the local model
becomes the stochastic fully linear model almost surely, i.e., achieving (9) wp1.

Lemma 4. (Lemma 2.9 in [5]) Let X = {X0,X1, . . . ,Xp} be a Λ-poised set on B(X0; ∆) and let
Assumption 1 hold. Let m(·) be a polynomial interpolation model of f on B(X0; ∆). Let M(·) be
the corresponding stochastic polynomial interpolation model of f on B(X0; ∆) constructed using
observations F̄ (Xi, n(Xi)) = f(Xi) + Ēi for i = 0, 1, . . . , p.

(i) |M(x)−m(x)| ≤ (p+ 1)Λmaxi=0,1,...,p |F̄ (Xi, n(Xi))− f(Xi)| ∀x ∈ B(X0; ∆);

(ii) There exist constants κeg1 > 0 and κeg2 > 0 such that for x ∈ B(X0; ∆),

∥∇M(x)−∇f(x)∥ ≤ κeg1∆+ κeg2

√∑p
i=1(Ē

i − Ē0)2

∆
. (18)

We now provide the convergence theory for ASTRO and ASTRO-DF under any one of the
four conditions (Table 2). Throughout the analysis of ASTRO and ASTRO-DF, we will refer to
four conditions that play a crucial role in establishing its consistency, iteration complexity, and
work complexity.
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CRN or IS With IS With CRN

Sample-path property None None Continuous Smooth

ASTRO
(a)βf = 2 (b)βf = 1.5 (c)βf = 1 (d)βf = 0

βg = 1 βg = 1 βg = 1 βg = 0

ASTRO-DF (a)dfβf = 2 (b)dfβf = 1.5 (c)dfβf = 1 (d)dfβf = 1

Table 2: Sampling rule conditions for ASTRO and ASTRO-DF.

Theorem 4 (Strong Consistency). Considering the sampling conditions in Table 2, the sequence
{Xk} of iterates satisfies the following wp1:

lim inf
k→∞

∥∇f(Xk)∥ = 0; (19)

lim
k→∞

∥∇f(Xk)∥ = 0, (20)

• for ASTRO: if Assumptions 2-6, and 7 hold and under conditions (a)-(d).

• for ASTRO-DF: if Assumptions 1, 2, 4, 6, and 8 hold and under conditions (a)df -(d)df .

Before delving into the proof of Theorem 4 we make some observations.

(sc-a) An important result needed for the strong consistency is showing that if the trust-region
radius becomes too small with respect to the gradient (of the function or model for ASTRO
and ASTRO-DF respectively), then a success event and progress in optimization must occur
leading to expansion in the trust-region in the proceeding iteration. This will lead to stating
that before ∥∇f(Xk)∥ hits an ϵ-distance from 0, the TR radius remains bounded below
as a function of ϵ. For both ASTRO and ASTRO-DF, we demonstrate this in Section 5.2,
specifically in Lemma 5 and the proof for ASTRO-DF, respectively.

(sc-b) In the conditions, βg and βf represent the order of sampling size in (11) and (12), exerting
a substantial influence on the work complexity. When considering ASTRO, βf takes prece-
dence over βg across all conditions (a)-(d) (Table 2). This observation naturally leads to the
conclusion that the work complexity of ASTRO is primarily determined by βf rather than
βg. This aspect will be further discussed in Section 6.3.

5.2 Proof of Theorem 4

We first prove the wp1 convergence of ASTRO, i.e., Theorem 4. Our first result for consistency
of ASTRO proves that iterations where the TR radius becomes small compared to the estimated
gradient will become very successful iterations wp1.

Lemma 5. Let Assumptions 2-6, and 7 hold. Define the set

V1 :=

{
ω : ∃ {kj} s.t.

(
∆kj (ω) ≤

∥Ḡkj (Nkj )∥κfcd(1− η)

κLg + κB

)⋂(
ρ̂kj (ω) < η

)}
.

Then P
{
V1

}
= 0 under any one of the conditions (a)-(d).
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Proof. First, let us delve into the cases marked as conditions (a)-(c). For the purpose of deriving
a contradiction, suppose that the set V1 has positive measure, and let ω ∈ V1. We suppress ω in
the following statements for ease of notation. Recall the stochastic model defined on Step 2 of
Algorithm 1,

Mk(X̃k+1) = F̄ 0
k (Nk) + Ḡk(Nk)

⊺Sk +
1

2
S⊺
kBkSk. (21)

where the step size, Sk, satisfies ∥Sk∥ ≤ ∆k, for all k. Now, we see that

F̄ s
k (Ñk+1) = F̄ 0

k (Nk) +∇f(Xk)
⊺Sk+

∫ 1

0

[
∇f(Xk + τSk)−∇f(Xk)

]⊺
Sk dτ

+ Ēs
k − Ē0

k + Ḡk(Nk)
⊺Sk − Ḡk(Nk)

⊺Sk,

(22)

where Ēs
k = F̄ s

k (Ñk+1) − f(X̃k+1) and Ē0
k = F̄ 0

k (Nk) − f(Xk). For sufficiently large k and any
cg > 0 and cfd > 0, (21) and (22) along with the triangle inequality imply that wp1:

∣∣F̄ s
k (Ñk+1)−Mk(X̃k+1)

∣∣ ≤ ∣∣∣∣∣
∫ 1

0
[∇f(Xk + τSk)−∇f(Xk)

]⊺
Sk dτ − 1

2
S⊺
kBkSk

∣∣∣∣
+ |Ēs

k − Ē0
k |+ |[∇f(Xk)− Ḡk(Nk)]

⊺Sk|

≤
∫ 1

0

∥∥∇f(Xk + τSk)−∇f(Xk)
∥∥∥∥Sk

∥∥dτ +
1

2
∥Sk∥2κB

+ |Ēs
k − Ē0

k |+ ∥∇f(Xk)− Ḡk(Nk)∥∥Sk∥

≤
∫ 1

0
κLg∥Sk∥2τdτ +

1

2
κB∆

2
k + cfd∆

2
k + cg∆k∥Sk∥

≤ 1

2
(κLg + κB + 2cfd + 2cg)∆

2
k,

(23)

where the first inequality follows from the Cauchy-Schwartz, the second inequality follows from
Assumption 7, the third inequality follows from Theorem 2, 3, and 3, and Assumption 1. Without
loss of generality, we can set 2cg + 2cfd = κLg + κB. Define the set

D1 :=
{
|F̄ s

k (Nk)−Mk(X̃k+1)| ≤
(
κLg + κB

)
∆2

k, for large enough k
}
,

where P{D1} = 1. Select ω ∈ D1 ∩ V1 for the following arguments. Recall κfcd ∈ (0, 1] and
η ∈ (0, 1), and so, κfcd(1−η) < 1. For a subsequence {kj} that meets the criteria in the definition
of V1, we can write

∆kj ≤
∥Ḡkj (Nkj )∥κfcd(1− η)

κLg + κB
<

∥Ḡkj (Nkj )∥
κLg + κB

≤
∥Ḡkj (Nkj )∥

∥Bkj∥
. (24)

We then observe that

|ρ̂kj − 1| =

∣∣∣∣∣ F̄
s
kj
(Nkj )−Mkj (X̃kj+1)

Mkj (Xkj )−Mkj (X̃kj+1)

∣∣∣∣∣
≤

(κLg + κB)∆
2
kj

κfcd∥Ḡkj (Nkj )∥
(∥Ḡkj

(Nkj
)∥

∥Bkj
∥ ∧∆kj

) ≤
(κLg + κB)∆kj

κfcd∥Ḡkj (Nkj )∥
≤

(κLg + κB)(1− η)

κLg + κB
,

(25)
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where the equality follows from the fact we assumedMk(Xk) = F̄ 0
k (Nk) for all k, the first inequality

follows from the Cauchy decrease condition (10) and the definition of D1, and the second inequality
follows from (24). Thus, we can conclude from (25) that ρ̂kj ≥ η, whereas ω ∈ V1 implies that
ρ̂kj < η. Therefore, P

{
V1

}
= 0, and hence, the assertion of the theorem holds.

Now let us explore the situation, where the sample-path gradient function is Lipschitz continuous,
which corresponds to the condition (d). By Assumption 5 and the fact that F̄ 0

k (Nk) and F̄ s
k (Nk)

are constructed as the sample mean of Nk i.i.d copies of F (Xk, ξ) and F (X̃k+1, ξ) with the same
ξ1, . . . , ξNk

(CRN), we see that

F̄ s
k (Nk) = F̄ 0

k (Nk) + Ḡk(Nk)
⊺Sk +

∫ 1

0

[
Ḡ(Xk + τSk, Nk)− Ḡk(Nk)

]⊺
Sk dτ. (26)

For sufficiently large k and given any cgd > 0, (21) and (26) along with the triangle inequality
imply that wp1:

∣∣F̄ s
k (Nk)−Mk(X̃k+1)

∣∣ = ∣∣∣∣∣
∫ 1

0
[Ḡ(Xk + τSk, Nk)− Ḡk(Nk)]

⊺Skdτ − 1

2
S⊺
kBkSk

∣∣∣∣∣
≤
∫ 1

0

∥∥Ḡ(Xk + τSk, Nk)− Ḡk(Nk)
∥∥∥∥Sk

∥∥dτ +
1

2
∥Sk∥2κB

≤
∫ 1

0

∥∥∇f(Xk + τSk)−∇f(Xk)∥∥Sk∥dτ

+

∫ 1

0

∥∥Ēg(Xk + τSk, Nk)− Ēg(Xk, Nk)
∥∥∥∥Sk

∥∥dτ +
1

2
∥Sk∥2κB

≤
∫ 1

0
(κLg + cgd)∥Sk∥2τdτ +

1

2
κB∆

2
k ≤ 1

2
(κLg + cgd + κB)∆

2
k,

where the second inequality follows from Assumption 5 and Theorem 3. Hence, we have a similar
results with (23) under condition (d) by defining cgd := κLg+κB. Afterward, the remainder of the
proof follows a similar line of reasoning as the previous cases mentioned under condition (a)-(c),
albeit with one crucial modification: the utilization of κubg in place of κLg.

The next corollary asserts that for iterates with true gradient larger than ϵ, we can characterize
a bound for ∆k in terms of ϵ. This corollary guarantees that if the gradient estimate is bounded
away from zero, the TR radius cannot be too small, wp1Thus, as long as a sequence, {Xk},
generated by ASTRO is not close to a first-order critical point, the size of the search space will
not crash to zero. This result will set the ground for ASTRO’s global convergence theorem.

Corollary 5. Let Assumptions 2-6, and 7 hold. For some κlbg > 0, define the sets

V2 := {ω : ∃ ϵ0(ω) > 0 s.t. ∥∇f(Xk(ω))∥ ≥ ϵ0 ∀ k} ,

V3 :=

{
ω : ∃ {kj} s.t.

(
∥Ḡkj (Nkj (ω))∥ ≥ κlbg

)⋂ (
∆kj (ω) < κlbd :=

γ2κfcdκlbg(1− η)

1 + κLg + κB

)}
.

(27)

Then P{V2 ∩ V3} = 0 under any one of the conditions (a)-(d).
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Proof. We begin by noticing that limk→∞ ∥Ḡk(Nk)−∇f(Xk)∥ = 0, almost surely from Theorem
3. Now, assume by contradiction that the set V2 ∩V3 has a positive measure. Let ω ∈ V2 ∩V3 and
ϵ0(ω) and {kj(ω)} be as defined. From the fact that limk→∞ ∥Ḡk(Nk)−∇f(Xk)∥ = 0 wp1, there
exists K(ω) > 0 such that

∥∥Ḡk(Nk(ω))
∥∥ ≥ ϵ0(ω)/2 for all k ≥ K(ω). Now let κlbg = ϵ0(ω)/2 and

choose t > K(ω) such that t /∈ {kj(ω)} but t+ 1 ∈ {kj(ω)}. Therefore the following hold:∥∥Ḡt(Nt(ω))
∥∥ ≥ κlbg; ∆t(ω) ≥ κlbd∥∥Ḡt+1(Nt+1(ω))
∥∥ ≥ κlbg; ∆t+1(ω) < κlbd.

(28)

From (28) we observe that ∆t(ω) > ∆t+1(ω). On the other hand, from Step 5 of Algorithm 1 we
know it is true that

∆t(ω) ≤
∆t+1(ω)

γ2
≤

κfcd(1− η)

1 + κLg + κB

∥∥Ḡt(Nt(ω))
∥∥⇒ ∆t(ω)∥∥Ḡt(Nt(ω))

∥∥ ≤
κfcd(1− η)

1 + κLg + κB
.

Given that Lemma 5 holds true for any of the conditions, we must have ω ∈ Vc
1. This implies that

ρ̂t(ω) is greater than η, indicating the success of iteration t. Consequently, we have ∆t(ω) being
less than ∆t+1(ω), leading to a contradiction. Therefore, we can conclude that P{V2 ∩ V3} = 0
holds true under any one of the conditions (a)-(d).

We have now reached a point where we can confidently establish the wp1 convergence of
ASTRO. The following proof solidifies our claim.

Proof. [of Theorem 4 for ASTRO.] We first proceed to prove (19) by contradiction under any
one of the conditions (a)-(c). We need to assume at least one sample path for which the true
gradient is bounded from below for all k. We observe that this is the same as assuming V2, as
defined in the statement of Corollary 5 has a positive probability. From Lemma 5 and Corollary
5, we observe that Vc

1 ∩ V2 ∩ Vc
3 has a nonzero measure. We let ω0 ∈ Vc

1 ∩ V2 ∩ Vc
3 and ϵ0(ω0)

as defined in (27), and we suppress ω0 in the following statements for ease of notation. Since
limk→∞ ∥Ḡk(Nk) − ∇f(Xk)∥ = 0 wp1, we can find K1 > 0 such that ∥Ḡk(Nk)∥ ≥ ϵ1 > ϵ0 for
all k ≥ K1. Moreover, ω0 ∈ Vc

3 implies that there exists K2 > 0 such that for all k ≥ K :=
max{K1,K2},

∆k ≥
γ2κfcd(1− η)

1 + κLg + κB
ϵ1. (29)

We now split the analysis in two cases, depending on whether the choice of ω0 has finite or infinite
number of successful iterations.

Case I – ω0 has finitely many success events: Let K3 > 0 be such that ∆k < ∆k+1 for all k ≥ K3.
This implies that ∆k → 0 for k ≥ max{K,K3} which contradicts (29).

Case II – ω0 has an infinite number of successful iterations: Let S = {k : ρ̂k ≥ η} and in this case
|S| = ∞. We observe from Assumption 6 and the constant lower bound on TR in (29) that for
all k ∈ S and k ≥ K,

F̄ 0
k (Nk)− F̄ s

k (Ñk+1) ≥ ηκfcdϵ
2
1min

{
1

1 + κB
,
γ2κfcd(1− η)

1 + κLg + κB

}
. (30)

Let the right-hand-side of (30) be called u and SK,k be for the set of indices of successful iterations
between K and k. Moreover, we know from Theorem 2 that there exists K4 such that |Ē0

k |+|Ēs
k| <
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u/2 for all k ≥ K4. Without loss of generality, we can assume that K4 > K. We can then obtain

u|SK,k| ≤
∑

i∈SK,k

(F̄ 0
i (Ni)− F̄ s

i (Ñi+1)) =
∑

i∈SK,k

(f(Xi)− f(Xi+1) + Ē0
i − Ēs

i )

≤ f(x0)− f∗ +
∑

i∈SK,k

(|Ē0
i |+ |Ēs

i |)

≤ f(x0)− f∗ +
∑

i∈SK,K4

(|Ē0
i |+ |Ēs

i |) + u|SK4,k|/2,

⇒ (u− 2c)|SK,k| ≤ f(x0)− f∗.

where the first inequality comes from (30). We then obtain

u

2
|SK,k| ≤ f(x0)− f∗ +

∑
i∈SK,K4

(|Ē0
i |+ |Ēs

i |). (31)

As k → ∞ we observe that |SK,k| → ∞ implying that the right-hand side of (31) diverges as well,
which contradicts the statement f(x0) − f∗ +

∑
i∈SK,K4

(|Ē0
i | + |Ēs

i |) is finite. Hence, (19) must

hold. Similarly, for condition (d), we can obtain same result by applying the same steps, but this
time we use Ñk+1 = Nk for all k ∈ N.
We now proceed to prove (20) under condition (a). We first need to assume that there is at
least a subsequence that has gradients bounded away from zero for contradiction. Particularly,
suppose that there exists a set, D̂, of positive measure, ω1 ∈ D̂, ϵ0(ω1) > 0, and a subsequence
of successful iterates, {tj(ω1)}, such that ∥∇f(Xtj(ω1)(ω1))∥ > 2ϵ0(ω1), for all j ∈ N. We denote
tj = tj(ω1) and suppress ω1 in the following statements for ease of notation. Due to the lim-
inf type of convergence just proved in (19), for each tj , there exists a first successful iteration,
ℓj := ℓ(tj) > tj , such that, for large enough k,

∥∇f(Xk)∥ > 2ϵ0, tj ≤ k < ℓj , (32)

and
∥∇f(Xℓj )∥ < ϵ0. (33)

Define Aj :=
{
k ∈ S : tj ≤ k < ℓj

}
⊂ S. Let j be sufficiently large and let k ∈ Aj . We then

obtain from the fact that limk→∞ ∥Ḡk(Nk)−∇f(Xk)∥ = 0 wp1,

∥Ḡk(Nk)∥ > ϵ0. (34)

Since k is a successful iteration, we know from Step 5 of Algorithm 1 that ρ̂k ≥ η. Furthermore,
Step 5 of Algorithm 1, Assumption 6 and (34) then imply that

f(Xk)− f(Xk+1) + Ē0
k − Ēs

k = F̄ 0
k (Nk)− F̄ s

k (Ñk+1)

≥ η[Mk(Xk)−Mk(Xk)]

≥ η1κfcd∥∇f(Xk, Nk)∥min

{
∥∇f(Xk, Nk)∥

1 + ∥Bk∥
,∆k

}

≥ 1

2
ηκfcdϵ0min

{
ϵ0

1 + κB
,∆k

}
.

(35)
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Notice that from Theorem 2 and the fact that f is bounded from below, left-hand side of (35)
must tend to zero as k tends to infinity. This implies that

lim
j→∞

∆kIk∈Aj
= 0. (36)

As a consequence of (35) and (36), the minimum operator in (35) becomes binding at ∆k, yielding

that for sufficiently large j and k ∈ Aj , ∆k ≤ 2

ηκfcdϵ0
(f(Xk) − f(Xk+1) + Ē0

k − Ēs
k). From this

bound, and using the fact that ∥Xk −Xk+1∥ ≤ ∆k for all k, we deduce that

∥Xtj −Xℓj∥ ≤
∑
i∈Aj

∥Xi −Xi+1∥ ≤
∑
i∈Aj

∆i ≤
2(f(Xtj )− f(Xℓj ))

ηκfcdϵ0
+
∑
i∈Aj

(Ē0
i − Ēs

i ). (37)

Recall from Theorem 2 and boundedness of f from below that right-hand side of (37) converges
to 0 as j goes to infinity. We can conclude from (37) that lim

j→∞
∥Xtj −Xℓj∥ = 0. Consequently,

by continuity of the gradient we obtain that lim
j→∞

∥∇f(Xtj ) − ∇f(Xℓj )∥ = 0. However, this

contradicts ∥∇f(Xtj ) − ∇f(Xℓj )∥ > ϵ0, obtained from (32) and (33). Thus, (20) must hold.
Similarly, under any one of the conditions (b) − (d), we can obtain same result by applying the
same steps, but this time we use Ñk+1 = Nk for all k ∈ N.

We now shift towards proving the wp1 convergence of ASTRO-DF. Our initial step involves
demonstrating that the trust-region radius converges to 0 as k goes to infinity almost surely in
Lemma 6. This result can be invoked to deduce that the model gradient error also converges to 0
as k approaches infinity almost surely.

Lemma 6. Let Assumptions 1, 2, 4, 6, and 8 hold. Then, ∆k
wp1−−→ 0 as k → ∞ under any one

of the conditions (a)df -(d)df .

Proof. Let S = {k : ρ̂k ≥ η} and ω ∈ Ω. We suppress ω in the following statements for
ease of notation. Following similar steps as the proof of Theorem 4.5 in [6], we can obtain
θ
∑

k∈S ∆2
k ≤ f(x0)− f∗ +

∑
k∈S(Ē

0
k − Ēs

k), for any k ∈ S where θ = (ηκfcd(2µ)
−1((µκH)

−1 ∧ 1)),
from which we obtain

∞∑
k=0

∆2
k <

γ21
1− γ22

(
∆2

0

γ22
+

f(x0)− f∗ +
∑∞

k=0(Ē
0
k − Ēs

k)

θ

)
. (38)

The details to obtain (38) can be found in [6]. Moreover, we know from Theorem 2 and 3 that
P{|Ēk − Ēk+1| ≥ cfd∆

2
k i.o.} = 0 for any cfd > 0 under any one of the conditions (a)df -(d)df . It

implies that there must exists a sufficiently large K∆ such that |Ēk − Ēk+1| < c∆∆
2
k for any given

c∆ > 0 and every k ≥ K∆. Following similar steps outlined in the proof of Theorem 4.5 in [6], we
can derive

∞∑
k=K∆

∆2
k <

γ21
1− γ22

(
∆2

0

γ22
+

f(x0)− f∗ + Ẽ0,K∆−1

θ

)(
1− γ21

1− γ22

c∆
θ

)−1

< ∞.

where Ẽ0,K∆−1 =
∑K∆−1

k=0 (|Ēk− Ēk+1|). Therefore, ∆k
wp1−−→ 0 as k → ∞. As a result, the theorem

is satisfied under any one of the condition (a)df -(d)df .
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Lastly, we present the proof of the strong consistency for ASTRO-DF.

Proof. [of Theorem 4 for ASTRO-DF.] Let ω ∈ Ω. We suppress ω in the following statements for
ease of notation. We know from Theorem 3 that given any cfd > 0, there exists sufficiently large
K such that |Ēi

k − Ē0
k | < cfd∆

2
k for any k ≥ K and any i ∈ {1, 2, . . . , p} under any one of the

conditions (a)df -(d)df . We then obtain from Lemma 4 given small enough cfd > 0,

∥∇f(Xk)−Gk∥ < (κeg1 +
√
pcfdκeg2)∆k, (39)

for any k ≥ K. Now define the set

V :=

{
ω : ∃ {kj} s.t.

(
∆kj (ω) ≤

∥Gkj∥κfcd(1− η)

κLg + κH + κeg1

)⋂(
ρ̂kj (ω) < η

)}
.

Following the same steps in the proof of Lemma 5, we have that wp1 for sufficiently large k, any
cfd > 0, and any cf > 0

∣∣F̄ s
k (Nk)−Mk(X̃k+1)

∣∣ ≤ ∫ 1

0

∥∥∇f(Xk + τSk)−∇f(Xk)
∥∥∥∥Sk

∥∥dτ +
1

2
∥Sk∥2κH

+ |Ēs
k − Ē0

k |+ ∥∇f(Xk)−Gk∥∥Sk∥

≤
∫ 1

0
κLg∥Sk∥2τdτ +

(
1

2
κH + cfd + κeg1 +

√
pcfdκeg2

)
∆2

k

≤
(
1

2
(κH + κLg) + cfd + κeg1 +

√
pcfdκeg2

)
∆2

k,

where the second inequality comes from (18). Without loss of generality, we can set (1 +√
pκeg2)cfd = 2−1(κLg + κH). We have P{V} = 0 by again following the rest steps in the proof

of Lemma 5. We have from Lemma 6 and (39) that ∥Gk −∇f(Xk)∥
wp1−−→ 0 as k → ∞. We then

obtain lim inf ∥∇f(Xk)∥
wp1−−→ 0 as k → ∞ with ∥Gk−∇f(Xk)∥

wp1−−→ 0 as k → ∞, Lemma 6, and
P{V} = 0. The proof follows from that of Theorem 4.6 in [6]. The wp1 convergence of Algorithm
2 holds by lim infk→∞ ∥∇f(Xk)∥ = 0 wp1 and Lemma 6. The proof is completed following steps
in Theorem 5.5 in [5].

6. COMPLEXITY

In this section, we present the iteration and work complexity analysis for ASTRO and ASTRO-DF
under different adaptive sampling rules that correspond to the use of CRN and existing properties
of the sample paths. We remark that the iteration complexity results ofO(ϵ−2) proven in this paper
are consistent with the literature, and in particular, those of STORM (the competing method)
with an advantage. ASTRO and ASTRO-DF algorithms make explicit use of the sampling rules
to ensure accurate estimates and high-quality models.

6.1 Iteration complexity

We present the wp1 iteration complexity for ASTRO and ASTRO-DF. We denote the iteration
stopping at ϵ-optimality as Tϵ.
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Theorem 6 (Iteration Complexity). Given small enough ϵ > 0, Tϵ ≤ cT ϵ
−2 almost surely for

some well-defined random variable cT > 0 and

• for ASTRO: if Assumptions 2-6, and 7 hold and under conditions (a)-(d);

• for ASTRO-DF: if Assumptions 1, 2, 4, 6, and 8 hold and under conditions (a)df -(d)df .

We make two observations before presenting the proof of Theorem 6.

(ic-a) Both algorithms achieve an iteration complexity rate of O(ϵ−2) under corresponding criteria.
This implies that, under certain conditions, the algorithms can achieve the same convergence
rate in terms of iterations with a smaller order of sampling, represented by smaller values of
βg and βf .

(ic-b) Theorem 6 shows the wp1 iteration complexity, which is stronger than the claim that the
random variable ϵ2Tϵ is Op(1). Moreover, if we impose specific regularity conditions on the
random variable cT , such as having finite first moments, we can achieve the L1 results,
which aligns with the similar finding presented in [4]. However, we achieve this canonical
rate without relying on assumptions such as probabilistically fully linear models, or their
independence.

6.2 Proof of Theorem 6

By directly employing Corollary 5, we can establish the wp1 convergence of ASTRO.

Proof. [of Theorem 6 for ASTRO.] Let us first focus on the scenario where any one of the condition
(a)-(c) holds. Let f∗ := minx∈Rd f(x) > −∞ be the optimal function value and ω ∈ Ω. We
suppress ω in the following statements for ease of notation. We know from Theorem 2 and 3 and
Corollary 5 that there exists sufficiently large K < Tϵ such that given small enough ϵ and any
cfd > 0, for all k ∈ [K,Tϵ), ∥∇f(Xk)∥ > ϵ, ∥Ḡk(Nk)∥ > ϵ/2, |Ē0

k − Ēs
k| ≤ cfd∆

2
k, and

∆k ≥ 1

2

(
γ2κfcd(1− η)

1 + κLg + κB

)
ϵ. (40)

Then Assumption 6 and the condition for a successful iteration yeild for any k ∈ STϵ(ω),

F̄ 0
k (Nk)− F̄ s

k (Ñk+1) ≥
ηκfcd
2µ

min

{
1

µκB
, 1

}
∆2

k, (41)

where STϵ := {Tϵ > k ≥ K : ρ̂k ≥ η}. Let us denote the RHS of (41) as cfcd∆
2
k and the RHS of

(40) as clbϵ. We then obtain

|STϵ |clbcfcdϵ2 ≤
∑

k∈STϵ

cfcd∆
2
k ≤

∑
k∈STϵ

(F̄k(Nk)− F̄k+1(Ñk)) ≤ f(x0)− f∗ +
∑

k∈STϵ

(|Ē0
k − Ēs

k|).

Then we obtain from the definition of K that given any cfd > 0, |Ē0
k − Ēs

k| < cfd∆
2
k for any

k ∈ STϵ . Hence, we obtain |STϵ |(clbcfcd − cfd)ϵ
2 ≤ f(x0)− f∗. Due to (40), a success event occurs

after a finite number of unsuccessful iterations, allowing us to define the maximum portion of the
unsuccessful iterations between K and Tϵ as cusp ∈ (0, 1), i.e., |STϵ | ≥ (1− cusp)(Tϵ−K). Then we
obtain (1−cusp)(Tϵ−K)(clbcfcd−cfd)ϵ

2 ≤ f(x0)−f∗. As a result, the assertion of the theorem has
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to hold under any one of (a)-(c). Now let us consider the scenario where the condition (d) holds.
We know from Theorem 3 and 3 and Corollary 5 that there exists sufficiently large Ksf < Tϵ such
that given small enough ϵ and any cgd > 0, for all k ∈ [Ksf , Tϵ), ∥∇f(Xk)∥ > ϵ, ∥Ḡk(Nk)∥ > ϵ/2,
(40), and ∥Ḡ(x, Nk)− Ḡ(x+ Sk, Nk)∥ ≤ cgd∥Sk∥. We note that

F̄ s
k (Nk)− F̄ 0

k (Nk) = 2

[
Ḡ0

k(Nk)−
1

2
Ḡs

k(Nk)

]⊺
Sk+2

∫ 1

0

[
Ḡ(Xk + τSk, Nk)− Ḡ0

k(Nk)
]⊺
Sk dτ

−
∫ 1

0

[
Ḡ(Xk + τSk, Nk)− Ḡs

k(Nk)
]⊺
Sk dτ.

Then, we obtain from the definition of Ksf that given any cgd1 > 0, cgd2 > 0, and cgd3,

2[Ḡ0
k(Nk)− 2−1Ḡs

k(Nk)]
⊺Sk < cgd1∆

2
k, [Ḡ(Xk + τSk, Nk)− Ḡ0

k(Nk)
]⊺
Sk < cgd2τ∆

2
k,

and
[Ḡ(Xk + τSk, Nk)− Ḡs

k(Nk)
]⊺
Sk < 2cgd3τ∆

2
k,

for sufficiently large k. Then following similar steps for conditions (a)-(c), and setting Ssg
Tϵ

:=
{Tϵ > k ≥ K : ρ̂k ≥ η}, we obtain∑

k∈Ssg
Tϵ

cfcd2∆
2
k ≤

∑
k∈Ssg

Tϵ

F̄ s
k (Nk)− F̄ 0

k (Nk) ≤
∑

k∈Ssg
Tϵ

(cgd1 + cgd2 + cgd3)∆
2
k.

It implies that (1− cusp)(Tϵ −Kg)(cfcd − (cgd1 + cgd2 + cgd3))ϵ
2 = 0. As a result, the assertion of

the theorem has to hold under condition (d).

Now we will focus on proving the iteration complexity of ASTRO-DF. As a first step we need
the derivative free counterpart of Corollary 5. It guarantees that as the gradient is constrained
to a lower bound, the TR radius is also ensured to have a lower bound, thereby facilitating the
occurrence of successful iterations over time.

Lemma 7. Let Assumptions 1, 2, 4, 6, and 8 hold and ϵ > 0 be given. Then there exists clb > 0
where P {∆k < clbϵ for large k < Tϵ ⇒ k ∈ S} = 1 under any one of (a)df -(d)df .

Proof. Let ω be fixed and we suppress ω in the following statements for ease of notation. For the
case under condition (a)df , the theorem is satisfied trivially. The proof is completed by trivially
following steps in the proof of Lemma 4.8 in [6]. Now let us focus on the case under any one
of the conditions (b)df -(d)df . We first obtain from the proof of ASTRO-DF convergence that for
sufficiently large k, any cfd > 0, and any cf > 0

∣∣F̄ s
k (Nk)−Mk(X̃k+1)

∣∣ ≤ ∫ 1

0

∥∥∇f(Xk + τSk)−∇f(Xk)
∥∥∥∥Sk

∥∥dτ +
1

2
∥Sk∥2κH

+ |Ēs
k − Ē0

k |+ ∥∇f(Xk)−Gk∥∥Sk∥

≤
∫ 1

0
κLg∥Sk∥2τdτ +

(
1

2
κH + cf + κeg1 +

√
pcfdκeg2

)
∆2

k

≤
(
1

2
(κH + κLg) + cf + κeg1 +

√
pcfdκeg2

)
∆2

k wp1,

(42)
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and ∥∇f(Xk)−Gk∥ < (κeg1 +
√
pcfdκeg2)∆k wp1 Then, if ∆k(ω) < clbϵ for large k < Tϵ(ω) and

some clb > 0, we get

∥Gk∥ ≥ ∥∇f(Xk)∥ − ∥Gk −∇f(Xk)∥ >

(
1

clb
− κeg1 −

√
pcfdκeg2

)
∆k, (43)

where the last inequality comes from ∥∇f(Xk(ω))∥ > ϵ since k < Tϵ. To complete the proof we
need to show the model will lead to success.

|1− ρ̂k| =

∣∣∣∣∣ F̄ s
k (Nk)−Mk(X̃k+1)

Mk(Xk)−Mk(X̃k+1)

∣∣∣∣∣
≤

(
1

2
(κH + κLg) + cf +

√
pκeg2cfd + κeg1

)
∆2

k

κfcd

2 ∥Gk∥
(
|Gk∥κ−1

H ∧∆k

)
<

(
1

2
(κH + κLg) + cf +

√
pκeg2cfd + κeg1

)
∆2

k

κfcd

2

(
c−1
lb − κeg1 −

√
pcfdκeg2

) ((
c−1
lb − κeg1 −

√
pcfdκeg2

)
κ−1
H ∧ 1

)
∆2

k

,

where the first inequality comes from (42) and the second inequality comes from (43). Then there
must exists sufficiently small clb > 0 such that |1− ρ̂k| < 1− η for large k < Tϵ.

Proof. [of Theorem 6 for ASTRO-DF.] For a fixed ω and WLOG, we obtain ∆k(ω) ≥ clb(ω)ϵ for
all k < Tϵ(ω). This is true by Lemma 7 with the choice of clb(ω) = γ2clb for large k < Tϵ(ω). For
small k, we can make clb(ω) > 0 small enough to be notwithstanding this lower bound. Then,

we can write
∑∞

k=0∆
2
k(ω) >

∑Tϵ(ω)−1
k=0 ∆2

k(ω) > c2lb(ω)ϵ
2Tϵ(ω). We know from Lemma 6 that∑Tϵ(ω)−1

k=0 ∆2
k(ω) is finite wp1, which then implies that ϵ2Tϵ(ω) < cdfT (ω) for all ϵ ≤ ϵ0(ω) and some

finite cdfT (ω) > 0 under any one of the conditions (a)df -(d)df .

6.3 Work Complexity

We show the wp1 work complexity for Algorithm 1 and 2. We denote the work complexity, i.e.,
total number of oracle calls until Tϵ, for Algorithm 1 as Wϵ :=

∑Tϵ
k=0(Nk+ Ñk), and for Algorithm

2 as Wϵ :=
∑Tϵ

k=0(
∑p

i=0N
i
k + Ñk).

Theorem 7 (Work Complexity). Given small enough ϵ > 0,

Wϵ ≤ cW ϵ(−2−2max{βf ,βg})(log 1/ϵ)−1, (44)

wp1 for some well-defined random variable cW > 0 and

• for ASTRO: if Assumptions 2-6, and 7 hold and under conditions (a)-(d);

• for ASTRO-DF: Assumptions 1, 2, 4, 6, and 8 hold and under conditions (a)df -(d)df .

We make some observations before providing the proof of Theorem 7.

(wc-a) ASTRO’s work complexity (Table 1) depends on βf , not βg. Precise gradients from the
first-order oracle (smaller βg) differ from interpolation models, but Step 5 needs accurate
function estimates for strong consistency.
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(wc-b) Recently, the first-order STORM has revealed to have a work complexity as O(ϵ−6) [16]. In
contrast, ASTRO under condition (a) achieves Õ(ϵ−6). The reason is that the increasing
sequence {λk} in (11) and (12) gives rise to (log 1/ϵ)−1 in the RHS of (44). However, the
sequence {λk} enables us to achieve strong consistency and the wp1 complexities without
requiring any additional assumptions as stated in (ic-b).

(wc-c) In situations where the sample path exhibits smoothness, the work complexity for ASTRO
is Õ(ϵ−2). However, when considering ASTRO-DF, the complexity scales as Õ(ϵ−4). This
implies that when the sample-path gradient remains continuous and CRN is implemented,
the first-order oracle gains an advantageous position. The crux of this advantage lies in the
fact that (26) can replace (22) so that (16) holds with βg = 0.

6.4 Proof of Theorem 7

Proof. [of Theorem 7 for ASTRO.] Let ω be any sample path in Ω. We suppress ω in the following
statements for ease of notation. We first know from Theorem 2.8 in [5] that, σ̂F (x, N) → σF (x)
almost surely as N goes to ∞. Since λk is lower bound for N and converges to ∞ as k goes to
∞, σ̂F (x, λk) → σF (x) almost surely as k goes to ∞. As a result, there exists sufficiently large
Kf such that σ̂F (x, λk) ≤ 2σf for any k ≥ Kf and x ∈ IRd. Moreover, we know from Theorem
2.8 in [5] and Assumption 3 that Tr(σ̂2

G(x, n)) → Tr(σ2
G(x)) almost surely as n goes to ∞. Then

there exists sufficiently large Kg such that Tr(σ̂2
G(x, λk)) ≤ 2dσ2

g for any k ≥ Kg and x ∈ IRd.
Lastly, let K and clb be the ones defined in the proof of 6. Without loss of generality, we now
assume that ϵ is small enough such that Kσ < Tϵ, where Kσ := max{Kg,Kf ,K}. Without loss of
generality, we now assume that ϵ is small enough such that Kσ < Tϵ. Then, we obtain from (11)
for all k ∈ {Kσ,Kσ + 1, . . . , Tϵ}

max{Nk, Ñk+1} ≤ max

{
2Tr(σ2

G)

κ2(cdblb (ω))
2βg

,
2σ2

f

κ2(cdblb (ω))
2βf

}
ϵ2max{βf ,βg}λk, (45)

Let us denote the RHS of (45) as cubϵ
−2max{βf ,βg}λk. Then we obtain

Tϵ∑
k=0

(Nk + Ñk+1) ≤
Kσ∑
k=0

(Nk + Ñk+1) +

Tϵ∑
k=Kσ+1

2cubϵ
−2max{βf ,βg}λk

≤
Kσ∑
k=0

(Nk + Ñk+1) + 2cubϵ
−2max{βf ,βg}TϵλTϵ ,

(46)

where the first inequality comes from (45). As a result, we obtain from Theorem 6 that the RHS of
(46) can be upper bounded by cW ϵ(−2−2max{βf ,βg})(log 1/ϵ)−1 almost surely, where cW is a finite
positive random variable.

Proof. [of Theorem 7 for ASTRO-DF.] Let ω be any sample path in Ω. Let Kf (ω) be the same as
before. Without loss of generality, we now assume that ϵ is small enough such that Kf (ω) < Tϵ(ω).

We also know from the proof of Theorem 6 that there exists small enough cdflb (ω) > 0 such that

∆k(ω) ≥ cdflb (ω)ϵ for all k < Tϵ(ω). Then, we obtain for all k ∈ {Kf (ω),Kf (ω) + 1, . . . , Tϵ(ω)},

max

{
max

i∈{0,1,...,p}
N i

k, Ñk+1

}
≤ max

{
1,

2σf

κ2af (c
df
lb (ω))

2βf

}
ϵ−2βfλk. (47)
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Let us denote the RHS of (47) as cdfub(ω)ϵ
−2βfλk. Then we obtain

Tϵ∑
k=0

(
p∑

i=0

N i
k + Ñk

)
≤

Kf∑
k=0

(
p∑

i=0

N i
k + Ñk

)
+

Tϵ∑
k=Kf+1

(p+ 2)cdfub(ω)ϵ
−2βfλk

≤
Kf∑
k=0

(
p∑

i=0

N i
k + Ñk

)
+ (p+ 2)cdfub(ω)ϵ

−2βfTϵλTϵ ,

(48)

where the first inequality comes from (47). As a result, we obtain from Theorem 6 that the RHS of

(46) can be upper bounded by cdfW ϵ(−2−2βf )(log 1/ϵ)−1 almost surely, where cdfW is a finite positive
random variable.

7. CONCLUDING REMARKS

We make three remarks in closing.

1. In simulation folklore, CRN is crucial for the implementation efficiency of any SO algorithm.
The complexity results in this paper seem to corroborate such folklore, suggesting that CRN
may be remarkably important especially in adaptive-sampling TR algorithms operating in
contexts with smooth sample-paths.

2. The heavy discrepancy between the complexity of ASTRO/ASTRO-DF and SGD in the
non-CRN context suggests simple alterations in the sufficient reduction test used within
standard TR algorithms.

3. We anticipate that the insights obtained from the complexity analysis of ASTRO/ASTRO-
DF will transfer to other adaptive sampling TR algorithms because the bulk of our com-
plexity calculations arise out of a generic step within TR rather than algorithmic mechanics
specific to ASTRO/ASTRO-DF.
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