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Abstract

Watson and Woodruff [29] developed a heuristic for computing variable-dependent values

of the penalty parameter ρ from the model itself. We combine this heuristic with a gradient-

based method, in order to obtain a new method for calculating ρ values. We then introduce

a method for iteratively computing variable-dependent ρ values. This method is based on a

first-order condition, and can be implemented with criteria that allow the parameter to be

updated as the algorithm progresses. These new approaches for selecting and updating ρ can

have an important impact on overall convergence, and on the behavior of decision variables

and dual weights.

1 Introduction

1.1 Motivation and context

Stochastic programs efficiently model many optimization problems involving uncertainty. This

is the case, for example, in planning and electricity generation unit commitment [27], network

interdiction [9, 16], and other problems [4, 21]. A standard way of modeling stochastic pro-

grams is based on a discretization of uncertainty. Uncertainty is decomposed into a number of

deterministic scenarios, each of which has an associated probability representing the likelihood

of occurrence. Decisions are divided into stages, depending on the information available to the

decision-maker and the time of the decision. Standard models use non-anticipativity constraints

to ensure that decisions are not taken based on information that is not yet available. The algo-

rithms used to solve these stochastic programs lend themselves to the use of parallel-computing

because each scenario or sub-problem can be solved independently, enabling the computational

load to be distributed using parallel processing units. Such algorithms make it possible to solve

large, real-world stochastic programs in tractable time frames [19].

This work focuses on one such algorithm in particular, the Progressive Hedging (PH) al-

gorithm proposed by Rockafellar and Wets [24]. The PH algorithm is efficient for solving

multi-stage stochastic programs, especially those with integer variables at each stage [14]. It

is sometimes referred to as a horizontal decomposition method, as it decomposes the program

into scenarios. Its performance has been shown to be highly sensitive to the selection of the

quadratic penalty parameter ρ [1, 12, 21, 23]. To tackle convergence and efficiency issues, the

penalty parameter is sometimes increased at each iteration in the case of the Alternating Di-

rection Method of Multipliers (ADMM) [2, 3, 6], but also in the case of PH [11]. Watson and

Woodruff [29] have developed a heuristic for computing variable-dependent values of the penalty

parameter ρ from the model itself. We propose to combine this heuristic with a gradient-based

method, in order to obtain a new method for calculating ρ values. We then introduce a method

for iteratively computing variable-dependent ρ values. This method is based on a first-order

condition, and can be implemented with criteria that allow the parameter to be updated as the

algorithm progresses. These new approaches for selecting and updating ρ have an impact on

overall convergence, and on the behavior of decision variables and dual weights.

For this paper’s experiments, we make use of the open source mpi-sppy package as sup-

port. It is comprehensively described in [19], and can be found at https://github.com/Pyomo/
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mpi-sppy, which enables us to use parallel decomposition to solve stochastic programs with al-

gorithms such as progressive hedging. The formulation of stochastic programs in mpi-sppy

relies on the open-source algebraic modeling language Pyomo [7] http://www.pyomo.org/. The

architecture provides high parallel efficiency by supporting high-scale parallelism. It enables us,

for example, to compute upper and lower bounds without negatively impacting computation

times. The implementation of this work is done within mpi-sppy and can be found on the

corresponding github.

1.2 Notation

Our notation is similar to the one used in [19]. We denote by T the number of decision stages

and we use t ∈ {1, . . . , T} to index stages; however, we observe that these stages do not always

correspond to time periods. Let ξt a random variable, which may be vector valued, associated

with each decision stage t. This random variable represents the stochastic aspect of the problem.

In the case of time periods, we consider that the decisions for stage t are made once the values

of the random variables for stages up to and including t are known. Hence we will mostly refer

the value ξt to only for stage 2, . . . , T .

Definition 1.1. We denote by
→
ξ

t
the realized values of all ξt up to and including stage t. In

particular,
→
ξ

T
= (ξt, t = 2, . . . , T )

refers to a full scenario. We will simply use the notation ξ.

Definition 1.2. We denote by Ξ the full set of scenarios, where each scenario ξ has probability

πξ. We define a tree corresponding to the set of realizations ξ such that different scenarios with

the same realization up to stage t share a node corresponding to that stage t. Hence,
→
ξ

t
refers

also to a node in the scenario tree.

We denote by Gt the set of all nodes for stage t and by Gt(ξ) the node corresponding to

scenario ξ. If D is a given node, we denote by D−1 the set of scenarios that define the node.

Similarly, we denote by xt the decision variable at stage t ∈ {1, . . . , T}, and →
x t the decisions

for all stages up to and including t ∈ {1, . . . , T}.

Definition 1.3. Let f be the cost function. More specifically, f1(x
1) corresponds to the first

stage cost and ft(x
t;

→
x t−1,

→
ξ

t
) each subsequent stage. Let us note that xt is the argument of ft

while
→
x t−1,

→
ξ

t
are parameters giving the solutions and realizations up to stage t.

Thus, we can express the multi-stage stochastic program as follows:

Z∗ = min
x,x̂

∑
ξ∈Ξ

πξ

[
f1(x

1(ξ)) +
T∑
t=2

ft

(
xt(ξ);

→
x t−1,

→
ξ

t
)]

(1a)

xt(ξ)− x̂t(D) = 0, t = 1, . . . , T − 1, D ∈ Gt, ξ ∈ D−1 (1b)

x(ξ) ∈ Xξ, ξ ∈ Ξ (1c)

with Xξ a set of constraint for each scenario ξ ∈ Ξ. The condition (1b) enforces the decision

variables non-anticipativity. Indeed, it forces xt to only consider the information available before

stage t (i.e. the scenarios that define the nodes D ∈ Gt). The condition (1c) summarizes all

other constraints.

1.3 The Progressive Hedging algorithm

The Progressive Hedging (PH) algorithm was proposed by Rockafellar and Wets [24] and has

been described in many places such as [19, 29]. It decomposes stochastic programs along sce-

narios in several sub-problems in order to solve them. PH is related to other decomposition

algorithms such as Alternating Direction Methods of Multipliers [3, 6]. Under the condition of

continuity of all decision variables, the algorithm possesses convergence properties. In the case
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of discrete decision variables, convergence and efficiency are issues, even if PH can still be used

as a heuristic.

For a multi-stage optimization problem such as (1), the Progressive Hedging algorithm can

be stated as described in Algorithm 1. The formulation given here is the same as the one

introduced in [19].

Algorithm 1 Progressive Hedging

1: Initialization: Let ν ← 0 and w(t,ν)(ξ) ← 0, ∀ξ ∈ Ξ, t = 1, . . . , T . Compute for each
ξ ∈ Ξ:

x(ν+1)(ξ) ∈ argminx f1(x
1) +

T∑
t=2

ft

(
xt;

→
x t−1(ξ),

→
ξ

t
)

2: Iteration Update: ν ← ν + 1
3: Aggregation: Compute for each t = 1, . . . , T − 1 and for each D ∈ Gt:

x̄(ν)(D)←
∑

ξ∈D−1

πξx
(t,ν)(ξ)/

∑
ξ∈D−1

πξ

4: Price Update: Compute for each t = 1, . . . , T − 1 and for each ξ ∈ Ξ

w(t,ν)(ξ)← w(t,ν−1)(ξ) + ρ
[
x(t,ν)(ξ)− x̄ν(Gt(ξ))

]
5: Decomposition: Compute for each ξ ∈ Ξ

x(ν+1)(ξ) ∈ argminx f1(x
1) +

∑T
t=2 ft

(
xt;

→
x t−1(ξ),

→
ξ

t
)

+
∑T−1

t=1

[
w(t,ν)(ξ)⊤xt + ρ

2∥x
t − x̄(ν)(Gt(ξ))∥2

]
6: Termination: If a criterion is met, Stop. Otherwise go to step 2.

The algorithm is initialized by solving all sub-problems, each corresponding to an individual

scenario problem. Then, each PH iteration starts with an aggregation. It involves computing the

primal values mean x̄ by projecting the solutions of the individual scenarios onto the subspace

of non-anticipative policies. From a certain point of view, this is an estimation of the optimal

vector system that satisfies the non-anticipativity requirement. The dual prices w(t,ν)(ξ) function

like lagrangian multipliers. They are updated using the previous projection, values of the non-

anticipative variables, and the quadratic penalty parameter, ρ. The algorithm then decomposes

according to each scenario, perturb each objective function with the dual prices obtained at the

previous step and a quadratic penalty term, and solve these individual sub-problem. Finally,

algorithm termination can be based on internal PH information such as a relative gap threshold

or a tolerance threshold on all non-anticipative constraints. For example, a convergence measure

commonly used in practical applications to determine termination is implemented as follows,

with ϵ > 0 a termination threshold:

g(ν) :=
∑

ξ∈ξ πξ

(∑T−1
t=1 |xt(ξ)− x̄(ν)(Gt(ξ))|

)
If g(ν) > ϵ, then go to step 2. Otherwise, terminate.

A key aspect of the algorithm is the joint use of the price vectors w and the proximal term

ρ

2
∥xt − x̄(ν)(Gt(ξ))∥2.

In the following section, we study the impact of the penalty parameter on the Progressive

Hedging algorithm progression.

2 Compute effective ρ values

2.1 Impact of ρ on PH convergence

The choice of the penalty parameter ρ value is commonly left to the user, and it is known that

its magnitude has a significant impact on the efficiency of the Progressive Hedging algorithm
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convergence. We introduce a general method to compute ρ values from the model parameters.

Early experiments using PH have led to two observations. Firstly, a good choice for the value

of the penalty parameter varies according to the model. For example, Mulvey and Vladimirou

(1991) [23] obtained satisfying results for ρ well below 1, and Løkketangen and Woodruff [22] for

ρ between 0.4 and 0.8, whereas Listes and Dekker (2005) [21] reported ρ choices ranging between

50 and 100. Secondly, PH convergence performance is substantially impacted by the choice of

the penalty parameter. Mulvey and Vladimirou [23] also report that they observe efficiency to

be sensitive to the choice of ρ.

More specifically, choosing different ρ values has an impact on both the dual weights and

the primal decision variables. Considering step 4 of the Progressive Hedging algorithm, we

observe that the difference between two consecutive values of the dual price w is exactly the

distance between the decision variable and its mean scaled by the penalty parameter. Hence,

the choice of ρ has a direct influence on the progression speed of w. Let us now consider the

decomposition step 5 of the algorithm. For a given scenario ξ ∈ Ξ, we minimize the objective

function perturbed by two terms,
∑T−1

t=1 w(t,ν)(ξ)⊤xt and
∑T−1

t=1
ρ
2∥x

t− x̄(ν)(Gt(ξ))∥2. These two
terms compete with each other during the minimization. In particular, if the first term seeks to

make decision variables tend towards a certain point, the second term will influence by bringing

x closer to x̄. This is particularly the case for large ρ values. Consequently, different choices of

penalty parameter values will also modify the progression of the decision variables. By selecting

a ρ value, we can now aim for two types of effect on convergence. On the one hand, if we wish to

obtain fast primal convergence, setting a large ρ value will increase the weight of the quadratic

term in the minimization and accelerate convergence by updating more aggressively x values.

On the other hand, if we aim to obtain a smooth and gradual evolution for the dual variables -

which can be the case when computing a lower bound for example - selecting a smaller ρ value

would be relevant.

2.2 Variable-dependent heuristics for selecting ρ

In order to tackle the issue of a general selection rule for the penalty parameter, Watson and

Woodruff (2011) [29] introduce a mathematically-based heuristic to compute ρ in proportion to

the unit-cost of the associated decision variable. More specifically, they indicate that an efficient

choice for ρ values is a variable-dependent ρ. They distinguish between three ways of selecting

a value for ρ. The first is the default: choose a single value for all variables. They refer to the

second as cost-proportional: it consists in choosing for ρ the value of the unit-cost multiplied by

a re-scale factor. Finally, they provide a formula, details of which are given below. The latter

aims to quickly reach good dual weights values. In particular, they want the magnitude of w to

reach this good value from below (in the absolute value sense), in order to minimize oscillations.

These oscillations can happen when w is updated in a too aggressive manner, and cause the

price vector to move past its optimal value. Especially in mixed-integer programs (MIPs), such

a convergence coming from both below and above will cause integer variables to change in a

certain direction and then reverse, creating oscillations. We retrace the main steps behind the

heuristic [29] here.

For a given scenario ξ ∈ Ξ, we consider a single decision variable xt(ξ) at stage t ∈ {1, . . . , T}
and node D = Gt(ξ), and cD the associated cost. After PH’s first iteration, we have an approx-

imation of the optimal value: x̄(0)(Gt(ξ)). Assume we know a value of ρ which will result in

wt(ξ) = cD, then the proximal term

ρ

2
∥xt − x̄(ν)(Gt(ξ))∥2

will force the solution to be x̄(0)(Gt(ξ)) in the subsequent PH iteration. Since the value of w is

updated by

w(t,ν)(ξ)← w(t,ν−1)(ξ) + ρ
[
x(t,ν)(ξ)− x̄ν(Gt(ξ))

]
,
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They deduce that the value of ρ for a given scenario resulting in w = c is

ρt(ξ) =
cD

|xt(ξ)− x̄(0)(Gt(ξ))|
. (2)

This formula highlights the proportionality in magnitude to the unit cost. Since we want w

to approach their ultimate value from below (in the absolute value sense), using a bound on the

denominator can sometimes be useful to get even smaller ρ values. We now describe the use of

this formula with a specific gradient-based cost.

3 Gradient-based method for selecting ρ values

3.1 First-order condition for selection ρ

First, we introduce a novel method to obtain price vector values using a first-order condition.

We then use this method to compute effective ρ values. We consider the multi-stage stochastic

program (1), and assume that the objective function f : Rn −→ R, with n the dimension of

the decision variables, takes on a very large value when its argument violates constraints. Thus,

we obtain an equivalent stochastic program and get rid of the formal constraints. We now focus

on the decomposition step 5 of the Progressive Hedging algorithm: for each scenario ξ ∈ Ξ,

we minimize a perturbed objective function. Ideally, we would aim to reach the optimal value

x∗ at the next iteration, i.e. obtain x∗ as argument of the minimum. In practice, however, we

can only approximate this optimum value, which we refer to as x̂. If we decide to ignore the

proximal term in the first instance, then we want the dual weights ŵ to satisfy the following

minimization for each ξ ∈ Ξ:

x̂(ξ) ∈ argminx f1(x
1) +

T∑
t=2

ft

(
xt;

→
x t−1(ξ),

→
ξ

t
)
+

T−1∑
t=1

ŵt(ξ)⊤xt

s.t.
∑

ξ∈D−1

πξŵ
t(ξ) = 0 for each t = 1, . . . , T − 1 and for each D ∈ Gt

The constraint on the dual prices vector reflects the orthogonality of w with the space of non-

anticipative variables. This is ensured by the way these prices are updated in the Progressive

Hedging algorithm (step 4). If we ignore this null expectation condition at first, and assume

that the objective function f is regular enough, a first order condition gives us, for each ξ ∈ Ξ:

∇f1(x̂1) +
T∑
t=2

∇ft
(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)
+

T−1∑
t=1

ŵt(ξ) = 0

Hence, we have a natural candidate for ŵ defined as follows:

ŵt(ξ) = −∇ft
(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)

for each ξ ∈ Ξ and t = 1, . . . , T − 1 (3)

We cannot directly use this formula since PH updates its own dual prices following step 4 of

the algorithm. However, according to the previous heuristic [29], we can choose a ρ such that

the next iteration of PH would result in dual prices values approximating the above expression

(3). Thus, using the Watson-Woodruff heuristic formula (2) with the cost (3), we obtain the

following expression:

ρt(ξ) =
cD

|xt(ξ)− x̄(0)(Gt(ξ))|
with cD = −∇ft

(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)

(4)

We want to make use of this formula in the Progressive Hedging algorithm in order to get better

and faster convergence. We can make a few practical observations. First, the most natural idea

is to use expression (4) at the end of the initialization step in order to get all ρ values. This

enables us to select effective ρ values when we don’t know what values would be effective for

a given model. We observe that we don’t know the sign of the gradient a priori. Therefore,
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using its absolute value for implementation guarantees non-negative ρ values. To compute the

gradient, we need to have a feasible solution x̂ where to compute the gradient. This solution can

be obtained using previous experiments or iteration 0. In the case of mixed-integer programs,

we use a continuous relaxation in order to compute the gradient. Such a relaxation will ignore

the integer constraints for the computation of the gradient and restore them after. It has been

implemented using relaxations provided in Pyomo [7].

Note that for linear programs where all non-anticipative variables are in the objective func-

tion, the use of the gradient method proposed here gives the same ρ values as the Watson and

Woodruff heuristic regardless of the hatx that is used.

3.2 Compute scenario-independent ρ values

Contrary to the Alternating Direction Method of Multipliers (ADMM) [6], the Progressive Hedg-

ing algorithm requires ρ to not depend on the scenarios. Therefore, we need to compute scenario-

independent ρ values, or choose one amongst the ones obtained via (4). In [29], Watson and

Woodruff face the same issue of scenario-dependence in ρ computation. They argue that, since

we want to approach the optimal value of w from below (in the absolute value sense), we can

use a bound on the denominator, and thus get rid of the dependence. They compute ρ values

using the expectation of the formula (2):

ρ =
cD

max
(
1,
∑

ξ∈Ξ πξ|xt,(0)(ξ)− x̄(0)|
)

In our case ((4)), the gradient-based cost depends on scenarios. Therefore, using a bound

on the denominator as above will not suffice to get rid of the dependence. We have several

possibilities: e.g. using the average, minimum, or maximum of ρ(ξ) ξ ∈ Ξ are natural options.

Choosing one or the other will have a different effect on both the primal and the dual behaviors,

as it will impact directly the magnitude of dual prices. A natural idea is to weight each of the

rhos by the probability of the corresponding scenario. It gives us the following expression:

ρ =
∑
ξ∈Ξ

πξρ(ξ)

However, if the objective is to obtain a fast primal convergence, it can be relevant to choose ρ =

min {ρ(ξ) : ρ(ξ) > 0 , ξ ∈ Ξ}. It will result in a more aggressive update of the decision variables

values. Conversely, if the purpose is to obtain better w convergence, taking the minimum in

order to select smaller ρ values would be more appropriate. In the latter situation, note that

the smallest ρ value can be zero. In that case, to avoid some of the decision variables remaining

at the same point, it can be appropriate to choose the minimum of non-zero values.

3.3 Implementation of gradient-based ρ computation

In order to compute the gradient of a given objective function, we use PyNumero, which aims

to reduce the time required to develop nonlinear optimization algorithms while maximizing

computational performance. It is a Python framework having both the efficiency of libraries like

SciPy [17] and AMPL https://www.ampl.com/ [13], and modeling capabilities of the algebraic

modeling language Pyomo [7]. PyNumero is open source and can be found at https://github.

com/Pyomo/pyomo/tree/main/pyomo/contrib/pynumero, and numerical experiments using it

at [25].

In this work, we will only use PyNumero to compute the gradient of objective functions. To

do so, we have to build a PyomoNLP instance which is able to use Pynumero interfaces to ASL

(AMPL Solver Library [13]) in order to compute gradients. If the model is a mixed-integer

program, PyNumero will not be able to compute gradients. In that case, we apply a Pyomo model

transformation that relaxes integrality restrictions for the purpose of computing the gradients.

The computational cost of the ρ computation comes mainly from the fact that it is necessary to
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loop over all the scenarios to compute the gradient, and then loop over all the variable values

to compute the denominator.

4 Iterative method for selecting ρ

4.1 Computing an iteration-dependent ρ values

In [29], Watson and Woodruff state that using an iterative ρ may be more appropriate. Crainic

et al. [11] make the same observation and suggests a method for updating the penalty parameter

at each iteration. They propose multiplying it by a factor α > 1 which leads to a progressive

increase in ρ magnitude at each iteration. More specifically, as the algorithm progresses towards

convergence, x is getting closer to x̄ which slows down the update of the dual prices at step

4, and consequently convergence. Increasing ρ therefore counteracts this slowdown effect by

enlarging the step size of dual weights. We introduce a novel method for computing iterative ρ

values, based on the current non-anticipative variable values. We denote by ν ≥ 1 the current

PH iteration and by ξ ∈ Ξ a given scenario. We consider the following minimization, which

takes place at step 5, which we re-write here:

min
x

f1(x
1) +

T∑
t=2

ft

(
xt;

→
x t−1(ξ),

→
ξ

t
)
+

T−1∑
t=1

[
w(t,ν)(ξ)⊤xt +

ρ

2
∥xt − x̄(ν)(Gt(ξ))∥2

]
As in section 3, we want an approximation x̂ of the optimal solution of the stochastic program

(1) to be the argument of the minimum for the above minimization. With similar smoothness

assumptions, using a first-order condition gives us:

∇f1(x̂1) +
T∑
t=2

∇ft
(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)
+

T−1∑
t=1

[
wt(ξ) + ρ(x̂t − ¯̂x(ν)(Gt(ξ)))

]
= 0 (5)

If we consider a scenario-dependent and variable-dependent penalty parameter, we obtain a

natural candidate for selecting ρ:

ρ(ν)(ξ) =
cD − w(t,ν)

x(t,ν)(ξ)− x̄(ν)(Gt(ξ))
with cD = −∇ft

(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)

(6)

This expression of ρ depends on both the current value of the decision variable x and of the dual

weight w. During the run of the algorithm, x(t,ν)(ξ) gets closer to x̄(ν)(Gt(ξ)) for each ξ ∈ Ξ and

t = 1, . . . , T − 1. It induces a decrease in the magnitude of the denominator, and therefore an

increase in the penalty parameter ρ. Thus, it corresponds to the evolution we wished to achieve

to enable faster primal-dual convergence.

We now show that the formula obtained in (6) is consistent with the heuristic proposed by

Watson and Woodruff [29]. As explained in section 2.1, the proximal term and the term in w

compete in the minimization at step 5. The heuristic introduced by Watson and Woodruff [29]

neglects the proximal term. If we do so in the first-order condition (5), we obtain

ŵt(ξ) = −∇ft
(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)

which corresponds to the expression of ρ obtained at iteration 0 of PH as detailed in formula

(4). Now, if we decide to neglect the w-term instead, the first-order condition gives us:

∇f1(x̂1) +
T∑
t=2

∇ft
(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)
+

T−1∑
t=1

ρ(x̂t − ¯̂x(ν)(Gt(ξ))) = 0

It results in the following selection of ρ:

ρ(ν)(ξ) =
cD

x(t,ν)(ξ)− x̄(ν)(Gt(ξ))
with cD = −∇ft

(
x̂t;

→
x̂ t−1(ξ),

→
ξ

t
)
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It also corresponds exactly to the formula obtained in (4). Thus, neglecting the proximal term

or the w-term in the expression of the penalty parameter (6) gives us the same results as those

obtained using Watson and Woodruff’s heuristic [29].

With regard to computation efficiency, we observe that for variables that appear in a linear

objective, the gradient does not depend on x̂ (or the PH iteration): we just need to compute

it once at the end of the algorithm initialization. In addition, the values of the variables w(t,ν),

and x(t,ν)(ξ) and x̄(ν)(Gt(ξ)), needed to compute the denominator, have already been calculated

and are in cached memory at the time of the new setting of ρ. The main computational cost

comes from the fact that, since ρ is variable-dependent, we have to loop over all variables to set

new ρ values.

Implementing this adaptive ρ setting makes it highly sensitive to primal convergence. In

particular, the decision variables can get close to their mean rapidly, before the convergence

slows down. In that case, the difference x(t,ν)(ξ)− x̄(ν)(Gt(ξ)) will reach a very small norm very

quickly, which cause ρ to get disproportionately big very quickly. Such an increase in ρ values

is ineffective, and leads to the blocking of primal and dual convergences. To tackle this issue,

we define criteria in order to decide when to update ρ.

4.2 Primal-based update criterion

To tackle the issue of when to update ρ values, we leverage measures of convergence, which

aim to compute a convergence metric from scenario primal and dual values. These measures

are implemented in PySP [30] and mpi-sppy [19]. A first approach is to consider the primal

convergence evolution. If the latter is still decreasing significantly, then the current ρ values is

efficient enough and we can let it go on. If the primal convergence metric stagnates, it can be

due to two different phenomena. The first option is that the decision variables have converged.

In this case updating ρ will not have an impact since the difference x(t,ν)(ξ)− x̄ν(Gt(ξ)) will not
vary much. The second option is that the Progressive Hedging algorithm is still making progress

but slowly because ρ is too small. In this case, we update ρ following the formula (4), which

will bring it back to scale. To this end, we introduce a seminorm on the problem variables.

Definition 4.1. For a given iteration ν and a scenario ξ ∈ Ξ, let y(ν)(ξ) be a variable vector.

We define the norm N of y at iteration ν as:

N(y(ν)) :=

∑
ξ∈ξ

πξ

(
T−1∑
t=1

|y(t,ν)(ξ)|2
)1/2

This seminorm allows us to define a convergence metric for primal decision variables:

N

(
x(ν) − x̄(ν)

x̄(ν)

)
=

∑
ξ∈ξ

πξ

T−1∑
t=1

∣∣∣∣∣x(t,ν)(ξ)− x̄(ν)(Gt(ξ))
x̄(ν)(Gt(ξ))

∣∣∣∣∣
2
1/2

The latter is a measure commonly used, for example, to decide on the Progressive Hedging

algorithm termination [5, 29]. It corresponds to a re-scaled norm of the primal residuals

x(t,ν)(ξ) − x̄(ν)(Gt(ξ)). Primal and dual residuals are detailed in [6] and used for the Progres-

sive Hedging algorithm in [5]. Dividing by x̄ aims to re-scale the resulting norm. The decision

variables values are dependent on the model, and, thus, have significantly different values in

different numerical experiments. This criterion takes a threshold δ > 0 and ν ≥ 1 the current

PH iteration as inputs and returns a Boolean indicating if ρ needs to be updated or not. We

can implement the criterion as follows:

This criterion is seeking to improve the primals convergence metric at each iteration. Indeed,

when the latter stagnates, it will update ρ, and the new value will be a larger one which should

make the decision variables move towards the optimal value. From a computational point of

view, the main cost comes from accessing all variables values, which is done by looping over

both scenarios and variables.
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Rho update: primal criterion

1: Compute

cprimal(ν) = |N
(
x(ν) − x̄(ν)

x̄(ν)

)
−N

(
x(ν−1) − x̄(ν−1)

x̄(ν−1)

)
|

2: If cprimal(ν) ≤ δ, Then update ρ following (6). Otherwise, pass.

4.3 Dual-based update criterion

Iteratively setting the penalty parameter also aims at better dual convergence. The heuristic

introduced by Watson and Woodruff [29] sets ρ based on what we would like the dual prices to be

at the next iteration. Therefore, it is natural to examine the question of updating ρ from a dual

perspective. An iteration-dependent choice of the penalty parameter aims for better convergence

of dual variables, i.e. more efficient but gradual and without oscillations. More specifically, if w

is still significantly moving, then, according to step 4, we can consider the product

ρ
[
x(t,ν)(ξ)− x̄ν(Gt(ξ))

]
to be large enough. This will eventually lead to an update in the decision variables values which

will get closer to the optimal value. Now, if w values are not changing significantly, it means

that the above product has become too small. This may be due to two phenomena. First, this

happens if the magnitude of ρ is too small compared to the difference between decision variables

and their average. In this case, it makes particular sense to update the value of ρ using formula

(4): this will give it a significant value in relation to the difference x(t,ν)(ξ)− x̄ν(Gt(ξ)). Second,
this happens if the decision variables are converged, or very close, to the optimal solution. In

this case, since the dual prices are not moving either, it means we have reached a primal-dual

convergence point. In particular, updating ρ values here would not have any impact since neither

the difference between x and x̄ nor the value of w would evolve significantly. Therefore, we reuse

the norm introduced in definition 4.1 to quantify the difference in w values between the current

and the last PH iteration.

Rho update: dual criterion

1: Compute

cdual(ν) = N

(
w(ν) − w(ν−1)

w(ν)

)
2: If cdual(ν) ≤ δ, Then update ρ following (6). Otherwise, pass.

Dividing by the dual prices current values in the computation of cdual(ν) aims to re-scale

the resulting norm. The dual prices values are highly dependent on the model, and, thus, have

significantly different values in different numerical experiments. We remark that the difference

w(ν)−w(ν−1) is equal to ρ
[
x(t,ν)(ξ)− x̄ν(Gt(ξ))

]
(step 4). As a result, even though this criterion

looks more closely at the evolution of dual weights, it doesn’t provide any new information

compared with the primal-based criterion.

4.4 Primal-dual update criterion

In [6], the authors detail a penalty parameter update scheme for the Alternating Direction

Method of Multipliers. Different strategies for this scheme can be found in [15, 28]. This scheme

relies on the idea that primal and dual progress should be balance. More specifically, it examines

the primal and dual residuals (see [6] for ADMM, [5, 18] for PH), and increases ρ if the dual

progression is faster than the primal progression and decreases ρ conversely. As explained in

[18], a similar update scheme can be applied to the Progressive Hedging algorithm since it is a

variant of ADMM and some similar issues arise.

Definition 4.2. Let ν ≥ 1 be the current PH iteration. We define the primal residuals vector

r(t,ν) and dual residuals vector s(t,ν) as:

r(t,ν) = x(t,ν)(ξ)− x̄(ν)(Gt(ξ)), s(t,ν) = −ρ
[
x̄(ν)(Gt(ξ))− x̄(ν−1)(Gt(ξ))

]
9



These residuals converge to 0 as the algorithm converges [6]. The update scheme for the

penalty parameter in ADMM [6, 15, 18] is the following:

ρ(ν+1) =


ρ(ν) · τincr if N(r(ν)) > µN(s(ν))

ρ(ν) · 1
τdecr

if N(s(ν)) > µN(r(ν))

ρ(ν) otherwise,

(7)

The constants τincr > 1, τincr > 1 and µ > 1 are parameters of the scheme. As [6] points out, the

scheme (7) suggests that large values of ρ yield a large penalty on primal feasibility violations,

and hence tend to reduce the primal residual. Conversely, small values of ρ tend to reduce the

dual residual. We propose to combine this scheme and the gradient-based method of selecting

ρ (6) to obtain a new update criterion. As in [29], we want the magnitude of w to reach a good

value from below (in the absolute value sense). Therefore, we want the penalty parameter values

not to grow too quickly during the Progressive Hedging algorithm convergence and too large

relative to the model. It implies that we want to update the penalty parameter to bigger values

only if dual residuals become excessively small compared to primal residuals.

Rho update: primal-dual criterion

1: Compute

cprimal-dual(ν) =
N(s(ν))

N(r(ν))

2: If cprimal-dual(ν) ≤ δ, Then update ρ following (6). Otherwise, pass.

This update criterion aims to keep a certain balance between primal progression and dual

progression during PH convergence. The positive parameter δ is intended to be small, and would

correspond to 1
µ in the scheme (7). Setting δ to a very small positive value will promote gradual

convergence of dual weights and significantly reduce dual residuals before updating ρ. This

results in less frequent updates and slower primal convergence. Conversely, a relatively large δ

value will tend to favor primal convergence at the expense of dual residuals.

5 Numerical experiments

5.1 Stochastic unit commitment

For our experiments we consider the stochastic unit commitment example. Unit commitment

(UC) is a widely-studied optimization problem in planning and power system operations. The

unit commitment problem consists of finding an allocation plan for a set of operating power

generators to satisfy the demand for electricity while minimizing the final production cost.

This operating schedule has to meet both operational and physical constraints. For example,

thermal units cannot rapidly change their power output, and large units cannot be turned

on and off too frequently. Unit commitment is solved on a daily basis, and determines the

future day’s operational timeline for all power units, given the predicted next-day demand.

There exist several formulations for the UC problem. This work uses the unit commitment

formulation implemented in mpi-sppy and described in [8, 26]. We leverage PH to exploit the

decomposition of uncertainty over a number of scenarios, using the parallel computing features

provided by mpi-sppy. The unit commitment model in mpi-sppy relies on the egret (Electrical

Grid Research and Engineering Tools) package, which can be fount at https://github.com/

grid-parity-exchange/Egret. The egret package is based on the mixed-integer programming

formulations detailed in [20].

We conduct experiments on this unit commitment problem to study the convergence of the

Progressive Hedging algorithm 1 with varying ρ settings. To this end, we use the solver CPLEX

[10] to solve a 5-scenario stochastic version of unit commitment. These experiments use the

mpi-sppy architecture [19] for parallelizing the resolution of stochastic programs. Regarding

the parallel setup in mpi-sppy, our experiments use a PH hub limited to 20 iterations with to

additional spoke. The first one, lagrangian, computes a lower bound based on a Lagrangian
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relaxation of the problem. Details about its convergence can be found in [14]. The second one,

xhatshuffle, computes upper bounds by shuffling the scenarios and looping over them to try

a x̂ until the hub provides new variable values.

For our experiments, we define several strategies for selecting ρ values.

• Cost-based rho: reference strategy. It corresponds to the current cost proportional ρ setter

used by default for UC in mpi-sppy.

• Gradient-based rho: gradient-based ρ values as described in section 3. The penalty pa-

rameter is computed once in the beginning and then kept constant.

• Adaptive gradient rho: gradient-based ρ values as described in section 4. The penalty

parameter is computed at each PH iteration.

When computing adaptive gradient-based ρ values following (6), the denominator might be zero

(or near-zero) for mixed-integer programs. This is the case in particular for unit commitment in

which there are many binary variables. If the denominator corresponding to a decision variable

is 0 we assign it the value of the maximum of the denominators of the other variables based

on heuristic reasoning that if the variable becomes ”un-converged” it will need some ρ until the

next update.

cost-based ρ gradient-based adaptive gradient

wall clock time (s.) 843.54 893.42 1055.79

PH LB 62613.0172 62628.3674 62627.1023

PH UB 62628.7844 62629.3967 62629.3967

EF 62628.395 62628.395 62628.395

Abs. Gap 15.7672 1.0292 2.2944

Rel. Gap 0.025% 0.002% 0.004%

Table 1: Experiments with cost-based ρ selection and gradient-based methods

We report the results of our first experiment in table 1. For comparison purposes, we also

report the solution for the extensive form solved by CPLEX without decomposition. First,

we observe that run-times of the default ρ selection and gradient-based selection are almost the

same, whereas the adaptive gradient takes more time. This is due to the fact that it re-computes

the penalty parameter values at each iteration which requires to loop over every scenario and

variable. Moreover, for a fixed number of iterations we reach, we reach significantly smaller gaps

using gradient methods: more than 12 times smaller with a gradient-based choice of ρ and 6

times smaller with an adaptive ρ.

Figure 1: Comparison between convergences for cost-based ρ (left) and gradient-based ρ (right)

We report in figure 1 PH convergence for two selections of ρ values: cost-based and gradient-

based. We observe two substantially different behaviors for the primal-dual convergence when

using the cost-based ρ or the gradient-based ρ setting. Firstly, in the case of cost-based ρ,

the lower bound does not improve at all over the 20 iterations of the algorithm, remaining the
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trivial bound calculated at iteration 0. The upper bound decreases slightly. For gradient-based

ρ, however, the lower bound improves significantly, while the upper bound remains unchanged.

As the lower bound is calculated by the Lagrangian relaxation in the lagrangian spoke, these

observations are consistent with the previous theoretical discussion. More precisely, the primary

objective of the cost-based ρ setting is the convergence of decision variables. It results in a more

aggressive approach to primal convergence, to the detriment of dual convergence. Conversely, the

gradient-based method aims to achieve a good behavior of dual price vectors: this is illustrated

by an efficient computation of the lower bound, which is much improved compared to the cost-

based setting.

The iterative method for computing gradient-based ρ values can be implemented with dif-

ferent update criteria as described section 4.

• No criterion: the penalty parameter is updated at each PH iteration following (6).

• Primal criterion: the penalty parameter is updated based on a scaled primal norm.

• Dual criterion: the penalty parameter is updated based on a scaled dual norm.

• Primal-dual criterion: the penalty parameter is updated based on primal and dual residuals

norms.

no crit primal crit dual crit primal-dual crit

wall clock time (s.) 1055.79 886.73 905.76 903.51

PH LB 62627.10 62628.31 62628.36 62628.29

PH UB 62629.40 62629.40 62629.40 62629.40

EF 62628.40 62628.40 62628.40 62628.40

Abs. Gap 2.29 1.09 1.03 1.11

Rel. Gap 0.004% 0.002% 0.002% 0.002%

Table 2: Experiments with different update criteria for an adaptive selection of ρ

We report the results of our second experiment in table 2. First, we observe that the run-time

of the ρ adaptive selection without update criteria is longer than that of the other selections. As

in the previous case, this is due to the fact that we update ρ at each iteration of PH, whereas we

only do so for certain iterations in the other cases. Regarding the relative gaps we obtain, there

is a small variability but no major difference. We observe that with these gradient methods, we

obtain an efficient lower bound very close to the optimal value for extensive form.

6 Conclusions

We have introduced new methods for selecting the quadratic penalty parameter ρ in the Pro-

gressive Hedging algorithm in order improving several aspects of convergence. More specifically,

we combine the heuristic proposed by Watson and Woodruff [29] with the computation of the

gradient of the objective function to obtain a new variable-dependent formulation of the penalty

parameter ρ, which results in more efficient convergence. This extends the Watson and Woodruff

hueristic to situations where some or all non-anticipative variables do not appear in the objec-

tive function. By continuously relaxing the variables, we also enable this method to be used for

mixed-integer programs.

We then propose an iterative way of calculating this parameter based on a first-order con-

dition. This adaptive selection takes place at each step of the algorithm and take into account

the current values of non-anticipative variables. It enables ρ values to increase as the algorithm

progresses, preventing convergence from stagnating and enhancing performance. To improve

the updating of the penalty parameter during PH progression, we introduce criteria based on

the behavior of the primal and dual variables. We also combine a adaptive ρ update scheme

introduced for ADMM [6] with the gradient-based method of selecting ρ. These criteria allow

us to retain the value of ρ if it is still relevant to the convergence of the algorithm towards the

optimal solution.

We report the results of experiments carried out using our methods to compute and updateρ,

applied to the unit commitment problem. The results suggest that the methods can be effective.
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A number of issues remain for further research, such as study of discontinuities in the objective

function. Another topic of interest is mixed integer problems with weak relaxations.
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