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Abstract

For more than a century, election officials across the United States have inspected voting
machines before elections using a procedure called Logic and Accuracy Testing (LAT). This
procedure consists of election officials casting a test deck of ballots into each voting machine
and confirming the machine produces the expected vote total for each candidate. We bring a sci-
entific perspective to LAT by introducing the first formal approach to designing test decks with
rigorous security guarantees. Specifically, our approach employs robust optimization to find test
decks that are guaranteed to detect any voting machine misconfiguration that would cause votes
to be swapped across candidates. Out of all the test decks with this security guarantee, our
robust optimization problem yields the test deck with the minimum number of ballots, thereby
minimizing implementation costs for election officials. To facilitate deployment at scale, we de-
velop a practically efficient exact algorithm for solving our robust optimization problems based
on the cutting plane method. In partnership with the Michigan Bureau of Elections, we retro-
spectively applied our approach to all 6928 ballot styles from Michigan’s November 2022 general
election; this retrospective study reveals that the test decks with rigorous security guarantees
obtained by our approach require, on average, only 1.2% more ballots than current practice. Our
approach has since been piloted in real-world elections by the Michigan Bureau of Elections as
a low-cost way to improve election security and increase public trust in democratic institutions.

First version: August 4, 2023. Revisions submitted on May 21, 2024 and September 3, 2024. Accepted for publication
on September 27, 2024.
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1 Introduction

Computerized voting machines are widely used to scan ballots and determine election outcomes
throughout the United States and around the world. Voting machines are used instead of hand
counting because voters are often invited to participate in a large number of contests in an election—
including political offices from the President to local school boards—which causes hand counting
to be impractically costly and time consuming. In this paper, we develop a low-cost approach to
reducing the security risks of voting machines and improving public trust in democratic institutions
by drawing on techniques from the field of robust optimization.

1.1 Background

For voting machines that scan ballots to count votes accurately, they must be configured with
correct mappings between the voting targets on the ballot—i.e., the boxes or ovals that voters
mark—and the candidates who should receive the votes. If a voting machine is configured with an
incorrect mapping, then the machine may count votes for the wrong candidates. As illustrated by
the following examples, voting machines misconfigurations can produce dramatically wrong vote
totals and damage public trust in elections:

• During the 2020 election, voting machines in Antrim County, Michigan were accidentally
misconfigured with mappings that caused votes for Republicans to be tallied for Democrats
and votes for Democrats to go uncounted [14]. The erroneous vote totals announced as a
result of this flaw received widespread media coverage [8, 1], and this incident served as the
basis for a draft executive order, later obtained by the Congressional committee investigating
the events of January 6, 2021, that would have directed the Secretary of Defense to seize
voting machines [27].

• Similar accidental misconfigurations affected announced election results in Pennsylvania [10]
and Georgia [12] in the past five years. Although the errors were quickly caught and cor-
rected, they similarly resulted in the initial publication of incorrect vote totals and generated
significant negative publicity for the affected jurisdictions. In a particularly recent example,
an accidental misconfiguration in Northampton County, Pennsylvania during their November
2023 election caused votes to be swapped across two judge contests, leading to voter confusion
and long lines on election day [25, 28].

• Misconfigurations could also be induced deliberately by adversaries with very little technical
expertise. Indeed, a group that contends the outcome of the 2020 presidential election was
fraudulent recently released a video that demonstrates exactly how one could strategically
induce these misconfigurations to manipulate future election outcomes [11]. Such deliberate
manipulations would allow an adversary to sow doubt in election systems, influence who wins
prominent political offices, and—in at least 24 states [22]—directly affect the passage of laws
on matters ranging from environmental policy to abortion rights.

Past work has sought to address the potential dangers of compromised voting machines through
post-election interventions such as risk-limiting audits and cryptographic systems that make an-
nounced results publicly verifiable [19, 6]. These post-election procedures are increasingly being
implemented in the United States and have received attention in popular media [23]. However, no
prior work has developed a procedure that is guaranteed to detect important classes of possible
attacks before an election takes place. Such a procedure could help safeguard election integrity and
public confidence by detecting attacks before they affect reported vote totals. Our paper develops a
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Figure 1: Visualization of Logic and Accuracy Testing (LAT). The procedure is conducted chronologically
from left to right on voting machines before each election. The modification to LAT proposed in this paper
is denoted by the white box with the text “Test deck is chosen as the solution to an optimization problem”.

rigorous and low-cost pre-election defense against misconfiguration-based cyberattacks by applying
robust optimization to a widely-used testing procedure called Logic and Accuracy Testing (LAT).

1.2 Logic and Accuracy Testing

For more than a century, election officials throughout the United States have used LAT to inspect
voting machines prior to elections. The idea behind LAT is simple: officials prepare a set of
ballots with known votes—dubbed a test deck—then cast the ballots through each voting machine
and confirm that the machine outputs the expected tallies for all candidates (see Figure 1). Any
discrepancy indicates a potential malfunction, which can be addressed before the machine is used
to count real votes. LAT was initially developed in the early 1900s to protect against breakdowns
of mechanical lever-based voting machines and is today required by law before each election in all
fifty states [15, 29].

Despite the widespread use of LAT, no prior work has used LAT for detecting attacks on mod-
ern computerized voting machines. In fact, LAT is not an obvious candidate for securing modern
elections; it cannot, for example, detect malicious alterations to a voting machine’s software that
cause the voting machine to operate fraudulently only after testing has concluded.1 Nonetheless,
LAT has a number of properties that make it potentially attractive for election security. First, the
legally mandated use of LAT across the United States means that repurposing this procedure as
a modern security tool would require little investment on already-overburdened election adminis-
trators. Second, the fact that LAT is performed prior to elections means that it is well-situated to
detect cyberattacks before they affect the public. Third, developing sophisticated cyberattacks that
cannot be detected by LAT requires technical capabilities that are out of reach for many would-be
adversaries. In particular, we show in this paper that LAT has the potential to be an effective
defense against less sophisticated (yet still practically significant) classes of attacks that are based
on deliberate misconfiguration of voting machines.

The set of misconfigurations which would be detected by LAT hinges on the design of the test
deck, i.e., the decision of which voting targets to fill out on each ballot. Until now, test decks

1Such manipulations are sometimes called “Volkswagen attacks”, in reference to the 2015 Volkswagen emissions scan-
dal wherein vehicle motors were programmed to reduce their emission levels only when the vehicles were undergoing
testing for compliance with environmental efficiency regulations [9].
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Figure 2: A test deck composed of six ballots for a simple election with two contests. The first contest is a
presidential contest with three candidates; the second contest is a senatorial contest with two candidates. In
each contest, a voter is allowed to vote for at most one candidate.

throughout the United States have been designed following simple heuristics that are based on
human intuition [29]. For example, Figure 2 shows an example of a test deck constructed by
a common heuristic that gives each candidate within each contest a different number of votes.
However, Figure 8 shows the output of voting machines using the test deck from Figure 2 under
three examples of misconfigured mappings between voting targets and candidates, including one
misconfiguration which this test deck would not detect. This demonstrates that this simple heuristic
is not guaranteed to secure the voting machine from misconfiguration attacks. If each candidate
on the ballot received a different number of votes, then all misconfigured mappings between voting
targets and candidates would be detected, but this strategy for designing test decks is not used in
practice because it requires impractically many ballots for real-world elections (see Appendix A).
The difficulty of marking and scanning test decks scales with the number of ballots included, so
short test decks are imperative for practical implementation.

1.3 Contributions

We bring a scientific perspective to LAT by introducing the first formal approach to designing test
decks for LAT with rigorous security guarantees. Specifically, our approach employs mathematical
optimization—rather than heuristics—to find test decks that are guaranteed to detect any mis-
configuration that swaps votes between candidates. Moreover, out of all the test decks that are
guaranteed to detect these swaps, our approach yields a test deck with the minimum number of
ballots, thereby minimizing implementation difficulties for election officials.

In greater detail, our approach to designing test decks consists of constructing and solving a
robust optimization problem [5, 7]. The input to the robust optimization problem is a “ballot style,”
which for our purposes means the set of contests that appear on a given ballot, the set of candidates
who are running in each of those contests, the maximum number of candidates that a voter is allowed
to select in each contest, and the correct mapping of voting targets to candidates.2 The output of

2Because the contests available on a ballot depend on granular political subdivisions like county, municipality, legisla-
tive district, and school district, there are often many thousands of ballot styles used across the different jurisdictions
of a state in any given election. Voting machines across the state are configured separately for each of the different
ballot styles, and a different test deck must be used to evaluate each such configuration.
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Figure 3: Each example shows a misconfiguration of the mapping between voting targets and candidates
(left), the misconfigured voting machine’s interpretation of the test deck from Figure 2 (center), and the vote
tally that is output by the misconfigured voting machine (right). The color red indicates the aspects of the
interpretation of the test deck and the machine output that are impacted by the misconfiguration of the voting
machine. Diagonal lines through a contest indicate that the filled-out ballot is interpreted as containing an
overvote in that contest, in which case the voting machine interprets the filled-out ballot as if no candidates
were selected in that contest. (a) The misconfiguration is detected because the output of the voting machine
includes incorrect vote totals for Washington, Jefferson, and Lincoln. (b) The misconfiguration is detected
because the output of the voting machine includes incorrect vote totals for Jefferson, Lincoln, and Clay. (c)
The misconfiguration is not detected because the output of the voting machine includes correct vote totals
for all candidates (see Figure 2).
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the robust optimization problem is the design of a minimum-length test deck that is guaranteed
to detect whether a voting machine has an incorrect bijective mapping from candidates to voting
targets for the ballot style in question. The robust optimization problem is stated formally in §3.3.

One of the key difficulties in solving our robust optimization problem lies in the large number
of incorrect bijective mappings from candidates to voting targets. In a ballot style with N can-
didates and voting targets, there are N ! − 1 possible ways that voting targets can be swapped,
one swap for each bijection over candidates less the single correct bijection. In United States
elections, the number of candidates across the contests of a ballot style is often greater than one
hundred. Consequently, formulating our robust optimization problem often requires more than
100! − 1 ≈ 10157 constraints, a number far greater than the estimated number of particles in the
observable universe [30]. An optimization problem that explicitly encodes all possible swaps thus
cannot be represented nor solved on any extant computer for many real-world elections. It is cur-
rently unknown whether the robust optimization problem is NP-hard, and it is unknown whether
there exists a mixed-integer linear programming reformulation of the robust optimization problem
of size that is polynomial in the number of candidates N .

We contend with the above computational challenge by developing an exact algorithm for the
robust optimization problem inspired by the cutting plane method (see §4.1). The cutting plane
method is a classical technique for solving optimization problems with many constraints by solving a
sequence of optimization problems with small numbers of constraints. In our setting, each iteration
of the cutting plane method solves a relaxation of the robust optimization problem that contains
a small subset of the N ! − 1 swaps. If the optimal test deck of the relaxed optimization problem
detects all of the N !− 1 swaps of the original problem, then the algorithm terminates. Otherwise,
the algorithm finds a swap that is undetected by the optimal test deck of the relaxed problem, adds
the undetected swap into the relaxed problem, and then solves the relaxed problem again. This
process repeats until a feasible solution for the original robust optimization problem is obtained.

To make the cutting plane method terminate in practical computation times in real-world elec-
tions, we make a number of novel algorithmic developments. First, we reformulate the relaxed
optimization problem as well as the problem of finding an undetected swap as mixed-integer lin-
ear optimization problems (see §4.2). These reformulations enable the cutting plane method to
be easily implemented using widely available open-source and commercial optimization software
such as Gurobi and Mosek. Second, we offer a variety of theoretically-justified improvements to
our mixed-integer linear optimization formulations (see §5) that aim to decrease the number of
iterations and decrease the per-iteration computation time of the cutting plane method. These im-
provements include dynamically identifying and removing unnecessary decision variables from the
mixed-integer linear optimization problems (§5.1), adding constraints that impose the structure of
optimal test decks into the mixed-integer linear optimization problems (§5.2 and §5.3), developing a
combinatorial framework for identifying which swap to add to the relaxed optimization problem in
each iteration (§5.4), and combining all contests that are not competitive (§5.5). In Appendix C, we
demonstrate via experiments on synthetic elections that each of our improvements yields significant
decreases in the computation time and number of iterations of the cutting plane method.

We conclude by showcasing the value of our robust optimization approach in application to real
world elections. In partnership with the Michigan Bureau of Elections, we applied our approach to
each of the state’s 6928 ballot styles from the November 2022 general election. Our results for this
election (see §6) reveal that our approach only required a 1.2% average increase in the number of
test ballots compared to current practice across the state’s 6928 ballot styles. Hence, our approach
can be deployed with minimal financial cost or operational overhead while providing significant
security benefits to election jurisdictions. Moreover, our cutting plane method for solving the
robust optimization problems enabled our approach to obtain optimal test decks for all 6928 ballot
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styles in less than seven hours. These findings demonstrate that our cutting plane method can find
optimal test decks for all of the ballot styles across a state in computation times that are practical
from the perspective of election officials. Our approach described in this paper has been piloted by
the Michigan Bureau of Elections in real-world elections during the summer of 2023, and we hope
that our approach will be adopted by more states and countries in upcoming elections as a low-cost
tool to improving the security and increasing public confidence in election outcomes.

An open source portion of the code from this paper is available at https://github.com/

ballotiq/deck-checker.

2 Vulnerabilities of Existing Heuristics for Designing Test Decks

Our proposed approach to designing test decks with rigorous security guarantees is presented in §3.
To motivate our approach, we begin in this section by describing three examples of misconfiguration
attacks against United States voting machines. We show in each of the three examples how the
attack could be strategically deployed by an adversary to undermine public trust or change the
outcome of an election. Finally, we show how the examples of attacks could evade detection by
LAT when test decks are designed by commonly used heuristics.

Swaps of Individual Candidates. Suppose that the goal of an adversary is to decrease the
number of votes received by a specific candidate in a high-stakes contest near the top of the ballot
(such as a presidential contest). In this case, an example of a misconfiguration that would be
appealing to the adversary is one that swaps the voting target of the specific candidate with the
target of a candidate from a contest that is lower on the ballot (such as the contest to elect a sani-
tation commissioner). Because fewer people vote in downballot contests [17], this misconfiguration
could result in the adversary’s disfavored presidential candidate receiving fewer votes than they
should. Moreover, if the test deck for LAT is designed using a common heuristic in which a single
ballot contains votes for the first candidate in each contest, two ballots contain votes for the second
candidate in each contest, and so on, then LAT would not detect any misconfiguration that swaps
the targets for two candidates at corresponding indices in their respective contests. An example of
a test deck constructed by this common heuristic is shown in Figure 2, and the misconfiguration
depicted in Figure 8c is an example of such a swap that goes undetected, since it swaps the second
candidate in the presidential contest with the second candidate in the senatorial contest.

Swaps of Entire Contests. In many states, elections put certain yes-or-no questions—commonly
called initiatives, proposals, or referendums—directly to voters. The effect of these contests range
from modifying a state’s constitution on matters such as abortion rights [26] and environmental
policy [4, 18] to recalling sitting politicians from their office [20]. If an adversary wished to swap
the outcome of two such contests, they could misconfigure the voting machine to swap the voting
targets for ‘yes’ and for ‘no’ between the two contests. Moreover, if LAT is conducted with a test
deck that includes the same number of votes for ‘yes’ and the same number of votes for ‘no’ in each
of the two contests—which is the case under every common heuristic for test deck preparation used
today [29]—then this misconfiguration would not be detected by LAT (see §5.3). This attack could
thus be used to ensure a favored proposal passes or a disfavored proposal fails, and would allow an
adversary to directly influence the laws or constitution of a jurisdiction.

Deliberately Flawed Test Decks. It is common for jurisdictions to contract outside vendors
to configure their voting machines as well as design the test decks used to conduct LAT. If this
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vendor is untrustworthy, they could misconfigure the machine according to their own preference,
then deliberately construct a test deck which would fail to detect the modification. Indeed, we show
in Appendix B that a vendor has significant freedom in the misconfiguration they choose, even when
the test deck they produce is constrained by some of the most stringent legal requirements in use
by states today.

In the following section, we introduce an approach to designing test decks that enables LAT to
become a rigorous pre-election defense against an important class of misconfiguration attacks. This
class includes, among many others, the three examples of attacks described above.

3 Robust Logic and Accuracy Testing

In this section, we introduce Robust Logic and Accuracy Testing (RLAT), an optimization-based
framework for designing test decks in LAT with rigorous security guarantees. This section has
the following organization. §3.1 develops the terminology and mathematical notation that will
be used throughout the paper. §3.2 presents a general formulation of RLAT and discusses its
value from the perspective of various stakeholders in United States elections. §3.3 uses the RLAT
framework to derive our robust optimization problem (RO-Σ) for finding a minimum-length test
deck that will detect whether a voting machine is misconfigured to swap votes between candidates.
§3.4 establishes the fundamental structural properties of test decks that are feasible for the robust
optimization problem (RO-Σ).

3.1 Preliminaries

A ballot style is composed of a set of contests C ≜ {1, . . . , C} and a set of candidates N ≜
{1, . . . , N}. For each contest c ∈ C, we let Nc ⊆ N denote the subset of candidates that appear in
contest c, and we let vc denote the maximum number of candidates in that contest that may be
legally selected by a voter. For example, for a contest that corresponds to the senatorial election,
the set Nc would contain the indices of the candidates that are running for Senator, and the equality
vc = 1 would denote that each voter is permitted to select at most one candidate in the contest.
In a contest for a local school board with five vacancies, we would alternatively have the equality
vc = 5. We assume that each candidate i ∈ N appears in exactly one contest. We say that a contest
c is noncompetitive if the maximum number of votes vc is equal to the number of candidates |Nc|
in the contest.3 In real-world elections such as those from Michigan (see Figure 3), the number of
contests in each ballot style typically satisfies 15 ≤ C ≤ 40, and the number of candidates in each
ballot style typically satisfies 60 ≤ N ≤ 120.

A ballot refers to a physical document that contains a box or oval beside each candidate, termed
targets, that are used by voters to record their choices. With a slight abuse of notation, we denote
the targets on a ballot by N ≜ {1, . . . , N}, where each target i ∈ N refers to the box or oval that
is beside candidate i ∈ N . A filled-out ballot is represented by a subset of targets β ⊆ N , with
the interpretation that the filled-out ballot satisfies i ∈ β if and only if the filled-out ballot selected
target i. It follows that the number of targets beside candidates in contest c ∈ C that are selected
by a filled-out ballot β ⊆ N is equal to |Nc ∩ β|. A deck refers to any finite-length sequence of
filled-out ballots (β1, . . . , βB).

3Noncompetitive contests often arise when an incumbent to some local office runs unopposed for re-election. This is
especially common in states which elect judges, since there is a strong normative prohibition against challenging a
sitting judge’s re-election bid [24].

8



Figure 4: Histogram of the total number of contests (orange) and total number of candidates (blue) that
appeared across the 6928 ballot styles in Michigan’s November 2022 general election.

When a voting machine operates correctly, the machine will receive a deck of filled-out ballots
as its input, and the machine will output the total number of targets that are selected for each
candidate in the filled-out ballots that do not have an overvote in that candidate’s contest. For any
input deck (β1, . . . , βB), we denote the output of a voting machine that operates correctly by the
vector-valued function

T ∗(β1, . . . , βB) ≡ (T ∗
1 (β1, . . . , βB), . . . , T

∗
N (β1, . . . , βB)),

with the output for each candidate i ∈ Nc in each contest c ∈ C defined as

T ∗
i (β1, . . . , βB) ≜

B∑
b=1

I {i ∈ βb and |Nc ∩ βb| ≤ vc} .

In the above definition, and throughout the rest of this paper, we let I {·} represent the indicator
function that is equal to one if · is true and is equal to zero if · is false. The inclusion i ∈ βb holds if
and only if filled-out ballot βb has selected the target that is beside candidate i, and the inequality
|Nc ∩ βb| ≤ vc holds if and only if filled-out ballot βb has selected at most vc of the targets that are
beside the candidates in contest c. In other words, the inequality |Nc ∩ βb| ≤ vc holds if and only if
filled-out ballot βb is interpreted by the voting machine that operates correctly as not containing an
overvote in contest c. For notational convenience, we denote the set of ballots that do not overvote
any contest by B ≜ {β ⊆ N : |Nc ∩ β| ≤ vc ∀c ∈ C} .

Remark 1. If the filled-out ballots in an input deck do not contain overvotes, then the output of
the voting machine that operates correctly will equal the number of filled-out ballots that select
the target associated with each candidate. In other words, if β1, . . . , βB ∈ B, then the equality
T ∗
i (β1, . . . , βB) = | {b ∈ {1, . . . , B} : i ∈ βb} | holds for each candidate i ∈ N .

To represent the output of a specific voting machine that may or may not be operating correctly,
we use the vector-valued function

T̂ (β1, . . . , βB) ≡ (T̂1(β1, . . . , βB), . . . , T̂N (β1, . . . , βB)).

9



This function represents the output of the voting machine for any input deck of filled-out bal-
lots (β1, . . . , βB). We say that the voting machine represented by the vector-valued function T̂ (·)
is not operating correctly if there exists a deck (β1, . . . , βB) and a candidate i ∈ N such that
T̂i(β1, . . . , βB) ̸= T ∗

i (β1, . . . , βB). If the voting machine is not operating correctly, and if the voting
machine is used to count votes in an actual election, then it could produce results inconsistent with
the actual ballots cast and change the outcome of the election.

3.2 Formulation of RLAT

We now introduce the mathematical description of Robust Logic and Accuracy Testing (RLAT), an
optimization-based framework for designing test decks in LAT with rigorous security guarantees.
Specifically, given an uncertainty set U of possible ways that a voting machine might be operating
incorrectly, RLAT designs the test deck by solving the following optimization problem:

minimize
B∈N, β1,...,βB∈B

B

subject to T̂ (β1, . . . , βB) ̸= T ∗(β1, . . . , βB) ∀T̂ (·) ∈ U .
(RO)

The optimization problem (RO) yields a minimum-length test deck that is guaranteed to detect
whether a voting machine is operating incorrectly in any of the ways specified by the uncertainty set.

In greater detail, the decision variables of the optimization problem (RO) consist of the length
of the test deck, B ∈ N, as well as the test deck of filled-out ballots without any overvotes,
β1, . . . , βB ∈ B. The constraints of the optimization problem (RO) ensure that if the test deck is
cast into a voting machine, and if the voting machine is operating incorrectly in any of the ways
specified by the uncertainty set, then the output of the voting machine will be different from the
output of a voting machine that is operating correctly. In other words, if (B, β1, . . . , βB) is an
optimal solution for the optimization problem (RO), then we have a guarantee that the output of
a voting machine T̂ (β1, . . . , βB) will be different from the output of a voting machine that operates
correctly T ∗(β1, . . . , βB) whenever the voting machine T̂ (·) is operating incorrectly in any of the
ways specified by the uncertainty set U . We elaborate on the construction of the uncertainty set
in §3.3. The objective of the optimization problem (RO) is find a test deck that satisfies the
constraints that consists of the fewest number of ballots.

The optimization problem (RO) for designing test decks in LAT can be viewed as attractive
from the perspective of the relevant stakeholders including election administrators, policy makers,
voters, and the computer security community. We elaborate below on the attractiveness and the
design of the optimization problem (RO) through the perspectives of these various stakeholders:

Election Administrators. The administration of U.S. elections is a complicated endeavor, con-
ducted in parallel by thousands of local officials across the country. Across so diverse and decentral-
ized a system, even marginal increases to the difficulty or complexity of election procedures carry a
very high administrative cost. This cautions against testing procedures that are substantially more
difficult or resource intensive than those already in use.

From an implementation standpoint, RLAT aims to minimize the burden the solution confers
to election administrators. By finding a test deck that minimizes the number of ballots, the op-
timization problem (RO) yields a suitable test deck that minimizes the time it takes to fill out
and insert the decks into a machine. Moreover, a computer algorithm for solving the optimization
problem (RO) can be integrated seamlessly at many stages, like in the vendor provided Election
Management System (EMS) or by third-party ballot-printing companies that are often contracted
to prepare test decks under current practice. This means we can implement RLAT through the
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operational processes that election administrators already have in place, with minimal change to
the official’s direct experience. Finally, using a computer algorithm can relieve election workers
from the arduous task of manually designing test decks.

Policy Makers and Voters. RLAT is attractive for policy makers and voters because it enables
LAT to provide strong and interpretable guarantees regarding the security of an election and
the legitimacy of its outcome. Indeed, the optimization problem (RO) provides policy makers
with the flexibility to specify the uncertainty set of possible ways that a voting machine may
operate incorrectly. Policy makers can make this decision based on their evaluation of the cost-
security trade-offs for their own state or jurisdiction, and based on factors like the known traits
of the voting machines that are used in their elections (see Remark 2 in §3.3). The optimization
problem (RO) can also easily integrate minimum legal requirements on test decks that are specified
by policy makers, as we elaborate in Appendix D. Moreover, given a defined uncertainty set U
and a test deck (β1, . . . , βB), any voter can verify that the test deck satisfies the constraints of the
optimization problem (RO). This can enhance voter confidence that testing is being conducted
fairly, and provides concrete and voter-verifiable assurances that the outcome of the election has
not been accidentally or maliciously altered in ways similar to those from the examples given in §2.

Computer Security Community. In the election security community, and in the computer
security community more broadly, risk is defined and minimized by considering a hypothetical ad-
versary. This adversary aims to interfere with a system, and is constrained by a threat model which
specifies the scope of their capabilities. This allows for the development of security interventions
which have a definite effect with respect to certain assumptions about the options available to an
adversary. The optimization problem (RO) thus works constructively with the computer security
mindset. Indeed, the uncertainty set U is in essence a formalization of the threat model—it de-
scribes the potential modifications to the machine, which the adversary is able to choose between.
By changing the uncertainty set, this formulation can flexibly substitute threat models as needed.

3.3 RLAT with the Swap Uncertainty Set

The key to achieving strong and interpretable security guarantees through RLAT is selecting an
appropriate uncertainty set U in the optimization problem (RO). If the uncertainty set accounts for
only a small number of possible misconfigurations or errors, then the security guarantees afforded
by RLAT will be limited. On the other hand, if the uncertainty set is overly expansive, then (RO)
might yield a test deck comprised of an impractically large number of ballots. Naturally, the task
of choosing an uncertainty set that strikes an appropriate balance between the expressiveness and
conservatism is a central challenge when constructing robust optimization problems such as (RO).

We focus throughout this paper on solving the optimization problem (RO) with a specific
construction of the uncertainty set that we henceforth refer to as the swap uncertainty set. The swap
uncertainty set consists of all of the voting machines that have an incorrect bijective mapping from
candidates to voting targets. Hence, the optimization problem (RO) with the swap uncertainty set
will yield the shortest test deck that is guaranteed to detect whether a voting machine is swapping
votes across candidates. The optimization problem (RO) with the swap uncertainty set is stated
formally at the end of the present §3.3 as the optimization problem (RO-Σ).

The swap uncertainty set is attractive from a security standpoint because it encompasses a
general class of misconfigurations that would be difficult to detect for a well-implemented voting
machine. The premise of the swap uncertainty set when scanning hand-marked ballots is that a
voting machine is configured with a (x, y) coordinate for each candidate, which specifies the location
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of that candidate’s voting target on the physical ballot. A well-implemented voting machine’s
software should perform two basic sanity checks of this configuration. First, the voting machine
should not allow any candidate to be associated with multiple targets. Second, the voting machine
should not allow different candidates’ targets to overlap. This ensures a bijective mapping between
candidates and targets. The premise of the swap uncertainty set when scanning ballots produced
with a ballot-marking device (BMD) is that the BMD and optical scanner may be configured with
inconsistent data representations of the candidates [12], such that votes encoded by the BMD as
corresponding to one candidate may be read by the scanner as corresponding to another. Well-
implemented software should enforce that each candidate has precisely one data representation,
so this mismatch must also be a bijection. The swap uncertainty set is thus a natural choice for
the RLAT problem under either of these models, since it describes each possible mapping from
candidates to targets.

The formal definition of the swap uncertainty set requires the following additional notation.
Let Σ denote the set of all non-identity bijections of the form σ : N → N , where we say that the
function σ(·) is a non-identity bijection if and only if the function satisfies the following two criteria:

1. For every target j ∈ N , there exists one candidate i ∈ N that satisfies σ(i) = j.

2. There exists i ∈ N that satisfies σ(i) ̸= i.

Each non-identity bijection can be understood as an incorrect mapping from candidates to tar-
gets.4 The output of a voting machine whose mapping from candidates to targets is the bijection
σ : N → N is given for each candidate i ∈ Nc in each contest c ∈ C by

T σ
i (β1, . . . , βB) ≜

B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc} .

To make sense of the above definition, we remark that the inclusion σ(i) ∈ βb holds if and only
if the b-th filled-out ballot in the test deck is interpreted by a voting machine with mapping σ to
contain a vote for candidate i. Similarly, we observe that the inequality |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc
holds if and only if the b-th filled-out ballot in the test deck is interpreted by a voting machine with
mapping σ as containing votes for at most vc candidates in contest c.

In view of the above notation, we define the swap uncertainty set as the set of the voting
machines that correspond to each of the non-identity bijections:

U ≜ {T σ(·) ≡ (T σ
1 (·), . . . , T σ

N (·)) : σ ∈ Σ} .

Hence, we conclude that a test deck comprised of filled-out ballots β1, . . . , βB ∈ B will satisfy the
constraints of the optimization problem (RO) with the swap uncertainty set if and only if the test
deck is guaranteed to detect whether a voting machine has been misconfigured to swap votes across
candidates.

Equipped with the swap uncertainty set, we are ready to formally state the key optimization
problem of this paper, that is, the optimization problem of finding a minimum-length test deck that
is guaranteed to detect whether a voting machine has been misconfigured to swap votes across can-
didates. This optimization problem (RO) with the swap uncertainty set is stated below as (RO-Σ):

minimize
B∈N, β1,...,βB∈B

B

subject to T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB) ∀σ ∈ Σ.
(RO-Σ)

4We note that the voting machine that operates correctly can be represented by the identity function ∗ : N → N ,
defined as the function that satisfies the equality ∗(i) = i for all i ∈ N .
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Having established that the test decks obtained by (RO-Σ) offer attractive and rigorous secu-
rity guarantees, we show in the rest of this paper that (RO-Σ) leads to test decks that can be
practically deployed in real world elections. In §4 and §5, we develop an exact algorithm for solving
the optimization problem (RO-Σ). In §6, we show that our exact algorithm scales to Michigan’s
November 2022 elections and that the test decks obtained by (RO-Σ) in those elections are not
much longer than the test decks produced according to the heuristics Michigan currently uses.
Hence, RLAT with the swap uncertainty set strikes a balance between producing test decks that
account for a large number of possible voting machine misconfigurations and producing test decks
with a practically small number of ballots.

Remark 2. Although this paper focuses on solving (RO-Σ), we note that RLAT offers election
officials the flexibility to use uncertainty sets that include a more expansive or narrow model of the
ways in which a voting machine could be wrong. For instance, in states that currently use weaker
heuristics than Michigan’s to prepare their test decks, election officials may be accustomed to using
very short test decks and thus might balk at the lengths of test decks produced by (RO-Σ). To
accommodate election officials in such states, one can solve (RO) with an uncertainty set that is
a subset of the swap uncertainty set to obtain shorter test decks with weaker, albeit still rigorous
defined, security guarantees (e.g. by opting to ignore the possibility of swaps between candidates in
noncompetitive contests). Conversely, the swap uncertainty set can be made more expansive (e.g.
by considering cases where the mapping of targets to candidates need not be bijective for voting
machines whose software implementation allows the same target to be associated with multiple
candidates, or vice versa). That being said, we emphasize that the algorithms presented in this
paper are designed for solving (RO-Σ), i.e., the specific case of (RO) in which the uncertainty set
is the swap uncertainty set.

3.4 Discussion

We conclude §3 by characterizing the key structural properties of test decks that satisfy the con-
straints of the optimization problem (RO-Σ). Specifically, the main contribution of §3.4 is a techni-
cal result, denoted below by Theorem 1, that characterizes the situations in which the output of a
voting machine that operates correctly will be different from the output of a voting machine whose
mapping from candidates to targets is a non-identity bijection. The characterization established by
the following theorem will be used extensively for designing algorithms in the rest of the sections.

Theorem 1. Let β1, . . . , βB ∈ B and σ ∈ Σ. Then T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB) if and only if
at least one of the following two conditions hold:

• There exists a candidate i ∈ N that satisfies

|{b ∈ {1, . . . , B} : i ∈ βb}| ≠ |{b ∈ {1, . . . , B} : σ(i) ∈ βb}|.

• There exist a contest c ∈ C and a filled-out ballot βb for some b ∈ {1, . . . , B} that satisfy

|{σ(j) ∈ βb : j ∈ Nc}| > vc.

The proof of this theorem and all other technical proofs in this paper can be found in Appendix F.
In words, the above theorem establishes that the output of a voting machine that operates

correctly will not equal the output of a voting machine whose mapping from candidates to targets is
a non-identity bijection σ ∈ Σ if and only if the test deck comprised of filled-out ballots β1, . . . , βB ∈
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B satisfies at least one of two conditions. The first condition is that there exists a candidate i ∈ N
such that the number of filled-out ballots that selected target i, |{b ∈ {1, . . . , B} : i ∈ βb}|, is
different from the number of filled-out ballots that selected target σ(i), |{b ∈ {1, . . . , B} : σ(i) ∈
βb}|. The second condition is that there exists a contest c ∈ C in one of the ballots b ∈ {1, . . . , B}
that is interpreted as overvoted by the voting machine whose mapping from candidates to targets
is σ. As an immediate corollary of Theorem 1, we obtain the following characterization of the test
decks that are feasible for the optimization problem (RO-Σ).

Corollary 1. A tuple (B, β1, . . . , βB) is feasible for the optimization problem (RO-Σ) if and only
if B ∈ N, β1, . . . , βB ∈ B, and for every σ ∈ Σ, at least one of the following two conditions hold:

• There exists a candidate i ∈ N that satisfies

|{b ∈ {1, . . . , B} : i ∈ βb}| ≠ |{b ∈ {1, . . . , B} : σ(i) ∈ βb}|.

• There exist a contest c ∈ C and a filled-out ballot βb for some b ∈ {1, . . . , B} that satisfy

|{σ(j) ∈ βb : j ∈ Nc}| > vc.

Corollary 1 implies that the optimization problem (RO-Σ) always has a feasible solution. Specif-
ically, it follows from Corollary 1 that any test deck that gives a distinct total number of votes to
each of the candidates across all of the contests is a feasible solution for the optimization prob-
lem (RO-Σ) (a formal proof of this can be found in the proof of Proposition 4 from Appendix A).
We note that while the Corollary 1 implies that a feasible solution for optimization problem (RO-Σ)
can be obtained by simply giving every candidate across every contest a distinct number of votes,
we show in Appendix A using real-world data that heuristics based on assigning a distinct number
of votes to each candidate will result in test decks that contain too many ballots to be imple-
mentable in practice. Thus motivated, we proceed in §4 to develop an exact algorithm which solves
the optimization problem (RO-Σ) in order to find test decks that are feasible solutions for (RO-Σ)
with the fewest possible number of ballots.

4 Exact Algorithm

In this section, we present our exact algorithm for solving the optimization problem (RO-Σ).

4.1 Overview of Exact Algorithm

To begin our discussion of our exact algorithm, we recall from §1.1 that one of the key challenges
in solving the optimization problem (RO-Σ) is that the problem contains an enormous number of
constraints. Indeed, we observe that the number of constraints in the optimization problem (RO-Σ)
is driven by the cardinality of the set of non-identity bijections Σ, and it follows readily from §3.3
that the number of non-identity bijections satisfies |Σ| = N !−1 for a ballot style with N candidates.
Because the number of candidates in real-world ballot styles often satisfiesN ≥ 100, an optimization
problem that explicitly encodes all possible non-identity bijections thus cannot be represented nor
solved on any extant computer for many real-world elections. It is currently unknown whether
(RO-Σ) is NP-hard, and it is unknown whether there exists a mixed-integer linear programming
reformulation of (RO-Σ) of size that is polynomial in the number of candidates N .

To contend with the computational challenge of solving the optimization problem (RO-Σ), we
draw inspiration from an algorithmic strategy known as the cutting plane method [16, 13]. The
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Figure 5: Visualization of our exact algorithm from §4.1 for solving the optimization problem (RO-Σ).

goal of the cutting plane method is to circumvent the need to solve an optimization problem with
a large number of constraints by solving a sequence of optimization problems with small numbers
of constraints. The application of the cutting plane method to the optimization problem (RO-Σ)
takes the form of an iterative algorithm that is described below and visualized in Figure 4.

In each iteration of our algorithm, we start with a subset of non-identity bijections Σ̂ ⊆ Σ, and
we solve the following variant of the optimization problem (RO-Σ):

minimize
B∈N, β1,...,βB∈B

B

subject to T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB) ∀σ ∈ Σ̂.
(RO-Σ̂)

To make sense of the optimization problem (RO-Σ̂), let us reflect on the relationship between
(RO-Σ̂) and (RO-Σ). We observe that the optimization problem (RO-Σ̂) is nearly identical to the
optimization problem (RO-Σ), with the only difference being that the former only has a constraint
for each σ ∈ Σ̂ instead of a constraint for each σ ∈ Σ. The optimization problem (RO-Σ̂) can thus be
viewed as a relaxation of the optimization problem (RO-Σ), in the sense that the optimal objective
value of the optimization problem (RO-Σ̂) is less than or equal to the optimal objective value of
the optimization problem (RO-Σ̂), but an optimal solution for the optimization problem (RO-Σ̂)
might not be a feasible solution for the optimization problem (RO-Σ). The potential attractiveness
of the optimization problem (RO-Σ̂) can be attributed to practical tractability: if the cardinality
of Σ̂ is significantly less than the cardinality of Σ, then it will be possible to solve the optimization
problem (RO-Σ̂) much faster by a computer compared to the optimization problem (RO-Σ).

After computing an optimal solution for the optimization problem (RO-Σ̂), the next step of the
current iteration of our algorithm is determining whether the optimal solution for the optimization
problem (RO-Σ̂) is a feasible solution for the optimization problem (RO-Σ). This step is performed
by solving the optimization problem

minimize
σ∈Σ

0

subject to T σ(β1, . . . , βB) = T ∗(β1, . . . , βB),
(CUT)

where (B, β1, . . . , βB) denotes the optimal solution of the optimization problem (RO-Σ̂). The
optimization problem (CUT) has two possible outputs. First, if the optimization problem (CUT)
outputs an optimal solution σ ∈ Σ, then we conclude that (B, β1, . . . , βB) is not a feasible solution
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of the optimization problem (RO-Σ), since the constraint T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB) in the
optimization problem (RO-Σ) is violated by the test deck (β1, . . . , βB). Second, if the optimization
problem (CUT) does not have any optimal solution, then we conclude that (B, β1, . . . , βB) is a
feasible solution for the optimization problem (RO-Σ).

The final step of each iteration of the algorithm depends on the output of the optimization
problem (CUT). If that optimization problem does not have a feasible solution, then we observe
that (B, β1, . . . , βB) must be a feasible solution for the optimization problem (RO-Σ). Moreover,
since (B, β1, . . . , βB) was an optimal solution for the optimization problem (RO-Σ̂), and since the
optimization problem (RO-Σ̂) is a relaxation of the optimization problem (RO-Σ), it must be the
case that (B, β1, . . . , βB) is also an optimal solution for the optimization problem (RO-Σ). Hence, if
the optimization problem (CUT) does not have a feasible solution, then we have found an optimal
solution to the optimization problem (RO-Σ), and the algorithm terminates. Otherwise, if the
optimization problem (CUT) outputs σ ∈ Σ, then we conclude the current iteration by updating
Σ̂← Σ̂ ∪ {σ} and starting a new iteration of the algorithm.

It follows from straightforward arguments that the algorithm described above will terminate at
an optimal solution for the optimization problem (RO-Σ) after finitely many iterations, regardless
of the choice of the subset Σ̂ ⊆ Σ in the first iteration. Indeed, the finite convergence of the
algorithm follows from the fact that Σ is a finite set and from the fact that the optimization
problem (CUT) will never output a non-identity bijection σ ∈ Σ that is an element of Σ̂ when the
test deck (β1, . . . , βB) satisfies the constraints of the optimization problem (RO-Σ̂). Therefore, the
number of iterations of the algorithm is always upper bounded by |Σ| = N !− 1. In our numerical
experiments throughout this paper, we initialize Σ̂ in the first iteration to be the empty set.

In order for the algorithm described above to be practically efficient in real-world elections,
three important properties must hold. First, it must be possible to quickly solve the optimization
problem (RO-Σ̂) when |Σ̂| ≪ |Σ|. Second, the algorithm must terminate after a relatively small
number of iterations, as this property is essential for ensuring that the cardinality of Σ̂ remains much
smaller than the cardinality of Σ. Third, it must be possible to have a fast implementation of the
optimization problem (CUT) for finding a constraint that is violated by the test deck obtained by
solving the optimization problem (RO-Σ̂). In the subsequent §4.2 and §5, we show that these three
important properties for obtaining a practically efficient algorithm can be achieved simultaneously.

4.2 Mixed-Integer Reformulations

In each iteration of the cutting plane method from §4.1, we are tasked with solving the optimization
problems (RO-Σ̂) and (CUT). Here, we show that optimal solutions for these two optimization
problems can be obtained by solving mixed-integer linear optimization problems. In doing so, this
subsection enables the cutting plane method from §4.1 to be easily implementable using widely avail-
able open-source and commercial optimization software such as Gurobi and Mosek. Improvements
to the mixed-integer linear optimization reformulations from the present subsection are proposed
and analyzed in the subsequent §5.

4.2.1 Mixed-Integer Reformulation of (RO-Σ̂)

At a high level, our procedure for solving the optimization problem (RO-Σ̂) consists of the following
steps. First, we fix B to be an integer that is less than or equal to the optimal objective value of
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the optimization problem (RO-Σ̂). We then solve the following optimization problem:

minimize
β1,...,βB∈B

0

subject to T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB) ∀σ ∈ Σ̂.
(RO-Σ̂-B)

If the optimization problem (RO-Σ̂-B) does not have any feasible solutions, then we observe that B
must be strictly less than the optimal objective value of the optimization problem (RO-Σ̂). In that
case, we update B ← B + 1 and re-solve the optimization problem (RO-Σ̂-B) with the new value
for the parameter B. We repeat this loop until the optimization problem (RO-Σ̂-B) is feasible, at
which point (RO-Σ̂-B) will yield an optimal solution for the optimization problem (RO-Σ̂).

Remark 3. We use the above procedure to solve the optimization problem (RO-Σ̂) because the
number of decision variables in the optimization problem (RO-Σ̂) depends on the integer B, where
the integer B is itself a decision variable in the optimization problem (RO-Σ̂). In contrast, the
number of decision variables in the optimization problem (RO-Σ̂-B) is known because the integer
B is fixed externally. Because the number of decision variables is known a priori, the optimization
problem (RO-Σ̂-B) can be reformulated as a mixed-integer linear optimization problem.

Remark 4. The above procedure requires B to be initialized to an integer that is less than or equal
to the optimal objective value of the optimization problem (RO-Σ̂). In our implementation of the
procedure, we initialize the integer to B ← 1 in the first iteration of the cutting plane method. In
all subsequent iterations of the cutting plane method, we initialize B to the optimal objective value
of the optimization problem (RO-Σ̂) from the previous iteration of the cutting plane method.5

In the remainder of §4.2.1, we show that the optimization problem (RO-Σ̂-B) can be reformu-
lated as a mixed-integer linear optimization problem. Indeed, let B ≜ {1, . . . , B} and B0 ≜ {0}∪B.
With this notation, we first observe that the optimization problem (RO-Σ̂-B) can be rewritten
equivalently as the following intermediary optimization problem:

minimize
β∈{0,1}B×N

0 (1a)

subject to
∑
i∈Nc

βb,i ≤ vc ∀b ∈ B, c ∈ C (1b)

T σ({i : β1,i = 1}, . . . , {i : βB,i = 1})

̸= T ∗({i : β1,i = 1}, . . . , {i : βB,i = 1}) ∀σ ∈ Σ̂. (–)

The optimization problem (1) can be interpreted as follows. Each binary decision variable βb,i ∈
{0, 1} is equal to one if and only if target i is selected in the b-th filled-out ballot in the test deck.
Hence, each vector βb ≡ (βb,1, . . . , βb,N ) ∈ {0, 1}N serves as a binary encoding of the targets that
are selected in the b-th filled-out ballot. Constraint (1b) ensures that each filled-out ballot in the
test deck is feasible, that is, there does not exist a filled-out ballot that contains more votes for
candidates in a contest than are allowed. Constraint (–) says that the output of a voting machine

5We recall that Σ̂ in the current iteration of the cutting plane method is a superset of Σ̂ from the previous iteration of
the cutting plane method. As a result, the constraints of the optimization problem (RO-Σ̂) in the current iteration

of the cutting plane method is always a strict superset of the constraints of the optimization problem (RO-Σ̂) in the
previous iteration of the cutting plane method. This implies that the optimal objective value of the optimization
problem (RO-Σ̂) from the previous iteration of the cutting plane method is always less than or equal to the optimal

objective value of the optimization problem (RO-Σ̂) in the current iteration of the cutting plane method.
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whose mapping from candidates to targets is σ ∈ Σ̂ must be different from the output of a correctly
operating voting machine when using the test deck ({i : β1,i = 1}, . . . , {i : βB,i = 1}).

We observe from inspection that the above optimization problem (1) consists exclusively of
binary decision variables. Moreover, the objective function (1a) and the constraints (1b) are linear
functions of the decision variables. Therefore, the final step in our reformulation of the opti-
mization problem (RO-Σ̂-B) as a mixed-integer linear optimization problem is to reformulate the
constraint (–). This can be done through the introduction of new decision variables γ, y, and p,
resulting in the following mixed-integer linear optimization problem:

minimize
β∈{0,1}B×N

γ∈{0,1}N×B0 , y∈RN×N
≥0

pσ∈{0,1}B×C∀σ∈Σ̂

(1a)

subject to (1b)∑
g∈B0

γi,g = 1 ∀i ∈ N (1c)

∑
b∈B

βb,i =
∑
g∈B0

gγi,g ∀i ∈ N (1d)

yi,j ≥ −1 + γi,g + γj,g ∀i, j ∈ N , g ∈ B0 (1e)

pσb,c ≥ 1− 1

vc + 1

∑
i∈Nc

βb,σ(i) ∀σ ∈ Σ̂, b ∈ B, c ∈ C (1f)

∑
i∈N

(
1− yi,σ(i)

)
+
∑
b∈B

∑
c∈C

(
1− pσb,c

)
≥ 1 ∀σ ∈ Σ̂. (1g)

The decision variables of the above optimization problem can be interpreted as follows.
First, we observe that constraints (1c) and (1d) together enforce that each decision variable

γi,g ∈ {0, 1} will be equal to one if and only if candidate i appears in exactly g ballots.
Second, constraint (1e) requires that yi,j must be greater than or equal to one if candidates i and

j receive the same number of votes across B, and may be as low as zero if they receive a different
number of votes. Similarly, constraint (1f) requires that pσb,c must be equal to one if contest c re-
ceieves vc or fewer votes on ballot b under swap σ, and may be zero if the contest is instead overvoted.

Finally, constraint (1g) ensures that a feasible solution for the optimization problem (1) exists
if and only if at least one yi,σ(i) or pσb,c is zero for each σ ∈ Σ̂. In other words, the problem has a

feasible solution if and only if, for each swap in Σ̂, there exists at least one candidate that is mapped
to a target with a different number of votes or there exists at least one ballot that is unexpectedly
interpreted as containing an overvote. This ensures that any feasible solution to this optimization
problem corresponds to a deck of ballots which will detect every swap in our subset.

In summary, we have shown in the present §4.2.1 that the optimization problem (RO-Σ̂) can
be solved by a procedure that consists of fixing the integer B to a lower bound on the optimal
objective value of the optimization problem (RO-Σ̂) and then incrementing B until the optimization
problem (RO-Σ̂-B) has a feasible solution. Moreover, for each fixed choice of the integer B, we
showed that the optimization problem (RO-Σ̂-B) can be reformulated as the mixed-integer linear
optimization problem (1). Thus, we have shown that an optimal solution for the optimization
problem (RO-Σ̂) can be obtained by a procedure that consists of solving one or more mixed-integer
linear optimization problems.
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4.2.2 Mixed-Integer Reformulation of (CUT)

We conclude §4.2 by reformulating the optimization problem (CUT) as a mixed-integer linear
optimization problem.6 Given any test deck (β1, . . . , βB), our mixed-integer linear optimization
reformulation of the optimization problem (CUT) is the following:

minimize
x∈{0,1}N×N

0

subject to
∑
j∈N

xi,j = 1 ∀i ∈ N (2a)

∑
i∈N

xi,j = 1 ∀j ∈ N (2b)∑
i∈N

xi,i ≤ |N | − 2 (2c)∑
i∈Nc

∑
j∈βb

xi,j ≤ vc ∀b ∈ B, c ∈ C (2d)

xi,j = 0 ∀i, j ∈ N : |{b ∈ B : i ∈ βb}| ≠ |{b ∈ B : j ∈ βb}| . (2e)

The constraints (2a)-(2c) enforce that the decision variables x ∈ {0, 1}N×N are a binary encoding of
a non-identity bijection σ ∈ Σ. Indeed, constraints (2a) and (2b) ensure that each feasible solution
of (2) can be transformed into a bijection σ : N → N using the rule that σ(i) = j if and only if
xi,j = 1 for each i, j ∈ N . Constraint (2c) enforces that there exists i ∈ N that satisfies σ(i) ̸= i.

The last two constraints (2d) and (2e) enforce that the non-identity bijection σ ∈ Σ correspond-
ing to the decision variables x ∈ {0, 1}N×N satisfies the equality T σ(β1, . . . , βB) = T ∗(β1, . . . , βB).
To see why this is the case, we first observe that constraint (2d) enforces that the inequality
|{σ(j) ∈ βb : j ∈ Nc}| ≤ vc holds for all contests c ∈ C and b ∈ B. Moreover, constraint (2e) en-
forces that the equality |{b ∈ {1, . . . , B} : i ∈ βb}| = |{b ∈ {1, . . . , B} : σ(i) ∈ βb}| holds for all
candidates i ∈ N . Therefore, it follows from Theorem 1 in §3.4 that constraints (2d) and (2e)
are satisfied if and only if the non-identity bijection σ ∈ Σ corresponding to the decision variables
x ∈ {0, 1}N×N satisfies the equality T σ(β1, . . . , βB) = T ∗(β1, . . . , βB).

5 Improvements to Exact Algorithm

In this section, we present five improvements to the mixed-integer linear optimization reformulations
from §4.2 that significantly increase the practical efficiency of the cutting plane method from §4.1.
Our five improvements to the mixed-integer linear optimization reformulations are presented and
analyzed in the subsequent §5.1-§5.5. In Appendix C, we demonstrate via numerical experiments on
synthetic elections that each of the five improvements from this section, when applied in isolation,
generates between a 20x to 3000x speedup to the cutting plane method.

5.1 Improvement 1: Reducing Number of Decision Variables and Constraints

As our first step in increasing the practical efficiency of the cutting plane method from §4.1, we show
that a number of the decision variables and constraints in the mixed-integer linear optimization
problem (1) from §4.2.1 can be removed without any loss of generality. By removing these unnec-
essary decision variables and constraints from the mixed-integer linear optimization problem (1),

6More precisely, our reformulation (2) of the optimization problem (CUT) is a binary linear optimization problem.
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we demonstrate through numerical experiments in Appendix C that the computation time of each
iteration of the cutting plane method can be significantly decreased.

To motivate our subsequent developments in §5.1, we begin by analyzing the size of the mixed-
integer linear optimization problem (1). Indeed, we observe that the number of binary decision
variables, the number of continuous decision variables, and the number of constraints in the mixed-
integer linear optimization problem (1) are as follows:

# binary decision variables = (|B| × |N |)︸ ︷︷ ︸
β

+(|B0| × |N |)︸ ︷︷ ︸
γ

+
(
|B| × |C| × |Σ̂|

)
︸ ︷︷ ︸

p

=BN + (B + 1)N +BC|Σ̂|

=O
(
BN +BC|Σ̂|

)
;

# continuous decision variables = |N | × |N |︸ ︷︷ ︸
y

= N2;

# constraints = (|B| × |C|)︸ ︷︷ ︸
(1b)

+ |N |︸︷︷︸
(1c)

+ |N |︸︷︷︸
(1d)

+(|N | × |N | × |B0|)︸ ︷︷ ︸
(1e)

+
(
|B| × |C| ×

∣∣∣Σ̂∣∣∣)︸ ︷︷ ︸
(1f)

+ |Σ̂|︸︷︷︸
(1g)

=BC + 2N +N2(B + 1) +BC|Σ̂|+ |Σ̂|

=O
(
BN2 +BC|Σ̂|

)
.

In real-world elections such as those from Michigan, the number of contests typically satisfies
15 ≤ C ≤ 40 (see Figure 3 in §3.1), the number of candidates typically satisfies 60 ≤ N ≤ 120
(see Figure 3 in §3.1), the number of ballots in an optimal test deck for (RO-Σ) typically satisfies
20 ≤ B ≤ 50 (see Figure 6a in §6.1), and the number of iterations of our cutting plane method
typically satisfies 50 ≤ |Σ̂| ≤ 300 (see Figure 7b in §6.2). Combining the equations derived above
with the real-world data observed from Michigan, we conclude that the size of the mixed-integer
linear optimization problem (1) is driven primarily by the binary decision variables p, the continuous
decision variables y, and the constraints (1e) and (1f).

In view of the above motivation, we first show that a number of the binary decision variables
pσb,c ∈ {0, 1} and constraints (1f) can be removed from the mixed-integer linear optimization prob-
lem (1) without loss of generality. Indeed, we recall from the discussion in §4.2.1 that there always
exists an optimal solution of the mixed-integer linear optimization problem (1) in which each binary
decision variable pσb,c satisfies the equality pσb,c = 0 if and only if contest c in ballot b is interpreted
as containing an overvote by the voting machine whose mapping is σ. To decrease the number of
these binary decision variables, we utilize the following intermediary result:

Lemma 1. Let σ ∈ Σ̂ and c ∈ C. If the inequality
∑

c′∈C min {|{σ(i) ∈ Nc′ : i ∈ Nc}| , vc′} ≤ vc
holds, then every feasible solution of the mixed-integer linear optimization problem (1) satisfies the
equality pσb,c = 1 for all b ∈ B.

To make sense of the above lemma, we remark that
∑

c′∈C min {|{σ(i) ∈ Nc′ : i ∈ Nc}| , vc′} is equal
to the maximum number of votes that may be mapped to contest c under mapping σ for any
filled-out ballot in B. If this summation is less than or equal to vc, then contest c will never be
overvoted by a filled-out ballot from B under mapping σ.

In view of Lemma 1, we now demonstrate that a subset of the binary decision variables of
the form pσb,c and a subset of the constraints (1f) can be removed from the mixed-integer linear
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optimization problem (1) without loss of generality. Indeed, for each non-identity bijection σ ∈ Σ̂,
let the subset of contests that have the possibility of being overvoted under a voting machine with
mapping σ be denoted by

Ĉσ ≜

{
c ∈ C :

∑
c′∈C

min {|{σ(i) ∈ Nc′ : i ∈ Nc}| , vc′} ≥ vc + 1

}
.

We observe that the subset of contests Ĉσ for each σ ∈ Σ̂ can be efficiently precomputed.7 Using
these subsets of contests, it follows immediately from Lemma 1 that constraints (1f) and (1g) can
without loss of generality be replaced by the following constraints:

pσb,c ≥ 1− 1

vc + 1

∑
i∈Nc

βb,σ(i) ∀σ ∈ Σ̂, b ∈ B, c ∈ Ĉσ (3a)

∑
i∈N

(
1− yi,σ(i)

)
+
∑
b∈B

∑
c∈Ĉσ

(
1− pσb,c

)
≥ 1 ∀σ ∈ Σ̂. (3b)

In particular, we observe that the binary decision variable pσb,c ∈ {0, 1} for each σ ∈ Σ̂, b ∈ B, and
c ∈ C that satisfies c /∈ Ĉσ no longer appears in the mixed-integer linear optimization problem (1)
and can thus be eliminated.

Next, we show that a number of the continuous decision variables yi,j and constraints (1e) can be
removed from the mixed-integer linear optimization problem (1) without loss of generality. Indeed,
we recall from the discussion in §4.2.1 that each decision variable yi,j ∈ R≥0 will at optimality be
equal to zero only if candidates i, j ∈ N do not appear in the same number of ballots. Moreover,
we observe that variable yi,j is only referenced in the constraint (1g) by the terms yi,σ(i) for each

i ∈ N and σ ∈ Σ̂. Therefore, we observe that the decision variable yi,j only needs to be defined for
the pairs of candidates (i, j) in the set

P(Σ̂) ≜
{
(i, j) ∈ N 2 : i ̸= j and there exists σ ∈ Σ̂ that satisfies σ(i) = j

}
,

and we can replace the constraint (1e) with

yi,j ≥ −1 + γi,g + γj,g ∀(i, j) ∈ P(Σ̂), g ∈ B0. (3c)

We conclude that the mixed-integer linear optimization problem (1) can be reduced to an
optimization problem with the following number of binary decision variables, number of continuous

7By precomputed, we mean that the set Ĉσ can be computed independent of B and only needs to be computed
once per σ. Hence, it suffices to compute Ĉσ when σ is first added by the cutting plane method into the set Σ̂.
Moreover, the set Ĉσ can be computed in O(C2 +N) time by the following straightforward algorithm: (1) initialize
an C×C-dimension array of all zeros; (2) for each i ∈ N , increment the value in the array at position (c, c′) if i ∈ Nc

and σ(i) ∈ Nc′ ; (3) for each c ∈ C, calculate the quantity
∑

c′∈C min {|{σ(i) ∈ Nc′ : i ∈ Nc}| , vc′} by summing the
minimum of the value of the array at position (c, c′) and vc′ over all c′ ∈ C.
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decision variables, and number of constraints:

# binary decision variables = (|B| × |N |)︸ ︷︷ ︸
β

+(|B0| × |N |)︸ ︷︷ ︸
γ

+

|B| ×∑
σ∈Σ̂

∣∣∣Ĉσ∣∣∣


︸ ︷︷ ︸
p

=BN + (B + 1)N +B
∑
σ∈Σ̂

∣∣∣Ĉσ∣∣∣
=O

BN +B
∑
σ∈Σ̂

∣∣∣Ĉσ∣∣∣
 ;

# continuous decision variables = |P(Σ̂)|︸ ︷︷ ︸
y

;

# constraints = (|B| × |C|)︸ ︷︷ ︸
(1b)

+ |N |︸︷︷︸
(1c)

+ |N |︸︷︷︸
(1d)

+

|B| ×∑
σ∈Σ̂

∣∣∣Ĉσ∣∣∣


︸ ︷︷ ︸
(3a)

+ |Σ̂|︸︷︷︸
(3b)

+
(
|P(Σ̂)| × |B0|

)
︸ ︷︷ ︸

(3c)

=BN +BC + 2N +B
∑
σ∈Σ̂

∣∣∣Ĉσ∣∣∣+ |Σ̂|+ |P(Σ̂)|(B + 1)

=O

B|P(Σ̂)|+B
∑
σ∈Σ̂

∣∣∣Ĉσ∣∣∣
 .

As we show in Appendix C, the above reductions in the number of decision variables and con-
straints lead to a significant decrease in the computation time for solving the mixed-integer linear
optimization problem (1) in each iteration of the cutting plane method.

5.2 Improvement 2: Distinct Votes for Candidates in the Same Contest

As our second step in increasing the practical efficiency of the cutting plane method, we add a set of
extra constraints into the mixed-integer linear optimization problem (1). These extra constraints
force the mixed-integer linear optimization problem (1) to output a test deck that proactively
satisfies many of the constraints σ ∈ Σ from the optimization problem (RO-Σ) that were not
explicitly included in subset Σ̂. As we demonstrate through numerical experiments in Appendix C,
the addition of this set of extra constraints leads to a significant decrease in the number of iterations
of the cutting plane method without any meaningful increase in the computation time for solving
the mixed-integer linear optimization problem (1) in each iteration.

The motivation for the set of extra constraints is given by the following Lemma 2 and Proposi-
tion 1. In Lemma 2, we establish a structural property that is satisfied by every test deck that sat-
isfies the constraints of the optimization problem (RO-Σ). Specifically, the following lemma shows
that a test deck satisfies the constraints of the optimization problem (RO-Σ) only if all of the can-
didates that appear in the same contest receive a different number of votes, where we say that two
candidates i, j ∈ N appear in the same contest if there exists a contest c ∈ C that satisfies i, j ∈ Nc.
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Lemma 2. If (B, β1, . . . , βB) is a feasible solution for the optimization problem (RO-Σ), then
|{b ∈ {1, . . . , B} : i ∈ βb}| ≠ |{b ∈ {1, . . . , B} : j ∈ βb}| for all candidates i < j that appear in the
same contest.

Equipped with the above intermediary lemma, we show in the following Proposition 1 that there al-
ways exists an optimal solution for the optimization problem (RO-Σ) in which all of the candidates
that appear in the same contest have a strictly increasing number of votes.

Proposition 1. There exists an optimal solution for the optimization problem (RO-Σ) that satisfies
|{b ∈ {1, . . . , B} : i ∈ βb}| < |{b ∈ {1, . . . , B} : j ∈ βb}| for all candidates i < j that appear in the
same contest.

Hence, the above proposition implies that we can, without loss of generality, restrict the solution
spaces of the optimization problems (RO-Σ) and (RO-Σ̂) by adding extra constraints which enforce
that |{b ∈ {1, . . . , B} : i ∈ βb}| < |{b ∈ {1, . . . , B} : j ∈ βb}| for all candidates i < j that appear in
the same contest.

Motivated by the structure of optimal solutions for the optimization problem (RO-Σ) that is
established by Proposition 1, we now describe the set of extra constraints that we add into the
mixed-integer linear optimization problem (1). The purpose of this set of extra constraints is to
ensure that every feasible solution (β, γ, y, p) of the mixed-integer linear optimization problem (1)
satisfies the inequality

|{b ∈ {1, . . . , B} : βb,i = 1}| < |{b ∈ {1, . . . , B} : βb,j = 1}|

for all candidates i < j that appear in the same contest. We accomplish this by adding the following
set of extra constraints (4) into the mixed-integer linear optimization problem (1). In the following
extra constraints, we use the shorthand notation N k

c to denote the candidate with the kth smallest
index among all candidates in the cth contest (with the indexing of candidates that appear in the
same contest starting at index 1).∑

b∈B

(
βb,N k+1

c
− βb,N k

c

)
≥ 1 ∀c ∈ C and k ∈ {1, . . . , |Nc| − 1}. (4)

Indeed, we observe that the set of extra constraints (4) ensure that the number of votes for each
candidate i is strictly less than the number of votes for candidate j > i whenever candidates i and
j appear in the same contest.

5.3 Improvement 3: Distinct Votes for Candidates in Similar Contests

As our third step in increasing the practical efficiency of the cutting plane method, we add a
second set of extra constraints into the mixed-integer linear optimization problem (1). Similarly as
§5.2, the set of extra constraints from the present §5.3 force the mixed-integer linear optimization
problem (1) to output a test deck that proactively satisfies many of the constraints σ ∈ Σ from the
optimization problem (RO-Σ) that were not explicitly included in subset Σ̂. As we demonstrate
through numerical experiments in Appendix C, the addition of this second set of extra constraints
leads to a significant decrease in the number of iterations of the cutting plane method without
any meaningful increase in the computation time for solving the mixed-integer linear optimization
problem (1) in each iteration.

To describe our second set of extra constraints, we require some additional terminology. We
begin with the following Definition 1, which provides a way of referring to contests that are similar
to one another.
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Definition 1 (Equivalence of contests). We say that two contests c, c′ ∈ C are equivalent, denoted
by c ≡ c′, if and only if they satisfy |Nc| = |Nc′ | and vc = vc′ .

In other words, we say that two contests are equivalent if and only if the contests have the same
number of candidates and the same maximum number of votes. Next, recall from §5.2 that N k

c

refers to the candidate with the kth smallest index among all candidates in contest c. Equipped
with this notation, the second additional terminology, which is denoted below by Definition 2,
provides a way to compare the votes received by candidates in two equivalent contests.

Definition 2 (Lexicographic ordering of contests). We say that two contests c, c′ ∈ C are lexico-
graphically ordered with respect to a test deck β1, . . . , βB ∈ B, denoted by c ≺β1···βB

c′, if and only
if c ≡ c′ and there exists k ∈ {1, . . . , |Nc|} that satisfies∣∣∣{b ∈ {1, . . . , B} : N |Nc|

c ∈ βb

}∣∣∣ = ∣∣∣{b ∈ {1, . . . , B} : N |Nc|
c′ ∈ βb

}∣∣∣
...∣∣∣{b ∈ {1, . . . , B} : N k+1

c ∈ βb

}∣∣∣ = ∣∣∣{b ∈ {1, . . . , B} : N k+1
c′ ∈ βb

}∣∣∣∣∣∣{b ∈ {1, . . . , B} : N k
c ∈ βb

}∣∣∣ < ∣∣∣{b ∈ {1, . . . , B} : N k
c′ ∈ βb

}∣∣∣ .
In other words, we say that two contests are lexicographically ordered with respect to a test deck
if and only if the contests are equivalent and the number of votes received by candidates in the
first contest is lexicographically less than the number of votes received by candidates in the second
contest, beginning with the highest-indexed candidates in the contests.

In view of the additional terminology given by Definitions 1 and 2, we now describe the second
set of extra constraints that we add into the mixed-integer linear optimization problem (1). The
motivation for this second set of extra constraints is given by the following Lemma 3 and Propo-
sition 2. In Lemma 3, we establish a structural property that is satisfied by every test deck that
satisfies the constraints of the optimization problem (RO-Σ). Specifically, the following lemma
shows that a test deck satisfies the constraints of the optimization problem (RO-Σ) only if all
equivalent contests are lexicographically distinct.

Lemma 3. If (B, β1, . . . , βB) is a feasible solution for the optimization problem (RO-Σ), then
c ≺β1···βB

c′ or c′ ≺β1···βB
c for all contests c < c′ that satisfy c ≡ c′.

Equipped with the above intermediary lemma, we show in the following Proposition 2 that there
always exists an optimal solution for the optimization problem (RO-Σ) in which all of the equivalent
contests are lexicographically ordered according to the indices of the contests.

Proposition 2. There exists an optimal solution for the optimization problem (RO-Σ) that satisfies
c ≺β1···βB

c′ for all contests c < c′ that satisfy c ≡ c′.

Hence, the above proposition implies that we can, without loss of generality, restrict the solution
spaces of the optimization problems (RO-Σ) and (RO-Σ̂) by adding extra constraints which enforce
that c ≺β1···βB

c′ for all contests c < c′ that satisfy c ≡ c′.
Motivated by the structure of optimal solutions for the optimization problem (RO-Σ) that is

established by Proposition 2, we now describe the second set of extra constraints that we add
into the mixed-integer linear optimization problem (1). The purpose of this second set of extra
constraints is to ensure that any feasible solution (β, γ, y, p) of the mixed-integer linear optimization
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problem (1) satisfies the property that for each pair of candidates c < c′ that satisfy c ≡ c′, there
exists a k ∈ {1, . . . , |Nc|} that satisfies∣∣∣{b ∈ {1, . . . , B} : β

b,N |Nc|
c

= 1
}∣∣∣ = ∣∣∣∣{b ∈ {1, . . . , B} : βb,N |Nc|

c′
= 1

}∣∣∣∣
...∣∣∣{b ∈ {1, . . . , B} : βb,N k+1

c
= 1
}∣∣∣ = ∣∣∣{b ∈ {1, . . . , B} : βb,N k+1

c′
= 1
}∣∣∣∣∣∣{b ∈ {1, . . . , B} : βb,N k

c
= 1
}∣∣∣ < ∣∣∣{b ∈ {1, . . . , B} : βb,N k

c′
= 1
}∣∣∣ .

We accomplish this by adding the following set of extra constraints (5a)-(5c) into the mixed-integer
linear optimization problem (1). In the following extra constraints, we use the shorthand notation
I to denote to the set of sequential equivalent contests,

I ≜

{
(c, c′) ∈ C × C :

c < c′, c ≡ c′, and there does not exist a

contest c̄ ∈
{
c+ 1, . . . , c′ − 1

}
that satisfies c ≡ c̄

}
,

and we use extra binary decision variables λk
c,c′ ∈ {0, 1} which are added to the mixed-integer linear

optimization problem (1) for each (c, c′) ∈ I and k ∈ {1, . . . , |Nc|}.

λ
|Nc|
c,c′ ≤

∑
b∈B

β
b,N |Nc|

c′
−
∑
b∈B

β
b,N |Nc|

c
∀(c, c′) ∈ I (5a)

λk
c,c′ ≤ Bλk+1

c,c′ +
∑
b∈B

βb,N k
c′
−
∑
b∈B

βb,N k
c

∀(c, c′) ∈ I, k ∈ {1, . . . , |Nc| − 1} (5b)

λ1
c,c′ = 1 ∀(c, c′) ∈ I. (5c)

Indeed, constraints (5a) and (5b) ensure for each (c, c′) ∈ I that the equality λk
c,c′ = 1 can be

satisfied if and only if there exists k′ ∈ {k, . . . , |Nc|} that satisfies the equality
∑

b∈B βb,N k′′
c

=∑
b∈B β

b,N k′′
c′

for all k′′ ∈ {k′ + 1, . . . , |Nc|} as well as satisfies the strict inequality
∑

b∈B βb,N k′
c

<∑
b∈B β

b,N k′
c′
. Hence, constraint (5c) ensures that there exists k′ ∈ {1, . . . , |Nc|} that satisfies the

equality
∑

b∈B βb,N k′′
c

=
∑

b∈B β
b,N k′′

c′
for all k′′ ∈ {k′ + 1, . . . , |Nc|} as well as satisfies the strict

inequality
∑

b∈B βb,N k′
c

<
∑

b∈B β
b,N k′

c′
.

5.4 Improvement 4: Heuristic for Finding Good Cuts

As our fourth step in increasing the practical efficiency of the cutting plane method, we propose
a modification to the objective function of the mixed-integer linear optimization problem (2) from
§4.2.2. The purpose of this modification is to guide the mixed-integer optimization problem (2)
to choosing non-identity bijections in each iteration that eliminate large numbers of feasible test
decks from the mixed-integer linear optimization problem (1). We demonstrate through numerical
experiments in Appendix C that the proposed modification to the objective function of the mixed-
integer linear optimization problem (2) can significantly decrease the number of iterations of the
cutting plane method.

To motivate our subsequent developments in §5.4, we begin by presenting a framework for
analyzing the quality of the non-identity bijections σ ∈ Σ that are added to the set Σ̂ at the end
of each iteration of the cutting plane method. Indeed, we recall that the practical efficiency of
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the cutting plane method from §4.1 depends on the number of iterations until an optimal test
deck for the optimization problem (RO-Σ) is obtained. The number of iterations of the cutting
plane method, in turn, depends on whether the optimization problem (CUT) in each iteration of
the cutting plane method yields a non-identity bijection σ ∈ Σ that eliminates a large number of
feasible test decks from the optimization problem (RO-Σ̂). Letting F (Σ̂) denote the set of test
decks that are feasible for the optimization problem (RO-Σ̂), we will henceforth say (informally)
that the optimization problem (CUT) yields a high-quality non-identity bijection σ ∈ Σ if the set
of feasible test decks in the next iteration F (Σ̂ ∪ {σ}) is much smaller than the set of feasible test
decks in the current iteration F (Σ̂).

A priori, it might appear difficult to determine whether a non-identity bijection σ ∈ Σ will
eliminate a large number of feasible test decks from the optimization problem (RO-Σ̂). Nonetheless,
we demonstrate below that high-quality non-identity bijections σ ∈ Σ always have a structural
property that we refer to as minimal. To define this structural property, consider any given non-
identity bijection σ ∈ Σ, and let G σ ≡ (V σ,E σ) denote the undirected graph that is generated by
that non-identity bijection. The set of vertices of this undirected graph is defined as the subset of
contests that include a candidate that is swapped by the non-identity bijection σ,

V σ ≜ {c ∈ C : there exists i ∈ Nc that satisfies σ(i) ̸= i} ,

and the set of edges of this undirected graph is defined as the pairs of contests containing candidates
that are swapped by the non-identity bijection σ,

E σ ≜

{
(c, c′) ∈ C × C :

there exist i ∈ Nc and i′ ∈ Nc′ that satisfy the

equality σ(i) = i′ or satisfy the equality σ(i′) = i

}
.

We recall from graph theory that the vertices of an undirected graph can always be partitioned
into a unique collection of connected components, and we henceforth let Kσ denote the number
of connected components and let K σ

1 , . . . ,K σ
Kσ ⊆ V σ denote the connected components of the

undirected graph G σ ≡ (V σ,E σ).8 Equipped with this terminology, we are ready to define the
structural property of non-identity bijections that will form the basis of our subsequent discussions:

Definition 3 (Minimal). We say that a non-identity bijection σ ∈ Σ is minimal if and only if the
number of connected components of G σ ≡ (V σ,E σ) satisfies Kσ = 1.

Figure 5 provides an illustration of Definition 3 by showing an example of a non-identity bijection
that is not minimal. Specifically, Figure 5a presents a non-identity bijection σ in a ballot style with
five contests. Figure 5b shows the undirected graph G σ ≡ (V σ,E σ) corresponding to the non-
identity bijection σ. The undirected graph in Figure 5b has two connected components, which
implies that the non-identity bijection from Figure 5a is not minimal.

Our main result of §5.4, which is presented below as Theorem 2, establishes the significance
of non-identity bijections that are minimal. In particular, the following theorem shows that there
always exists a feasible solution for the optimization problem (CUT) that is minimal. More impor-
tantly, the following Theorem 2 shows that minimal non-identity bijections are always preferred
to non-minimal non-identity bijections from the perspective of eliminating the greatest number of
feasible test decks from the optimization problem (RO-Σ̂).

8It is a straightforward exercise to show that K σ
1 , . . . ,K σ

Kσ ⊆ V σ are the connected components of the undirected
graph G σ ≡ (V σ, E σ) if and only if (1) K σ

1 , . . . ,K σ
Kσ are disjoint, (2) the union of K σ

1 , . . . ,K σ
Kσ is equal to V σ,

and (3) (c, c′) ∈ E σ implies that there exists k ∈ {1, . . . , |Kσ|} that satisfies c, c′ ∈ K σ
k .
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(a) (b)

Figure 6: Example of a non-identity bijection that is not minimal in a ballot style with five contests.

Theorem 2. Let σ ∈ Σ denote a feasible solution for the optimization problem (CUT). For each
k ∈ {1, . . . ,Kσ}, let σk : N → N be defined for each c ∈ C and i ∈ Nc by

σk(i) ≜

{
σ(i), if c ∈ K σ

k ,

i, if c /∈ K σ
k .

Then σ1, . . . , σKσ are feasible solutions for the optimization problem (CUT) and

Kσ⋃
k=1

F
(
Σ̂ ∪ {σk}

)
= F

(
Σ̂ ∪ {σ}

)
. (6)

To appreciate the significance of Theorem 2, let us make several observations. First, we observe
that each non-identity bijection σk ∈ Σ can be interpreted as a restriction of the non-identity
bijection σ ∈ Σ that only affects the candidates from contests in the connected component K σ

k .
Therefore, it follows that the number of connected components in the undirected graph G σk ≡
(V σk ,E σk) corresponding to σk is equal to one, which implies that each of the non-identity bijections
σ1, . . . , σKσ ∈ Σ is minimal. Second, we observe from line (6) that the inclusion F (Σ̂ ∪ {σk}) ⊆
F (Σ̂ ∪ {σ}) holds for each of the connected components k ∈ {1, . . . ,Kσ}. Hence, Theorem 2
implies that each of the non-identity bijections σ1, . . . , σKσ is preferred to σ from the perspective
of eliminating feasible test decks from the optimization problem (RO-Σ̂).

Thus motivated, we now turn to the algorithmic question of how to find a minimal non-identity
bijection that is feasible for the optimization problem (CUT). In the following Theorem 3, we show
that such a minimal non-identity bijection can be found though making a simple modification to
the objective function of the mixed-integer linear optimization problem (2).

Theorem 3. Consider the following mixed-integer linear optimization problem:

minimize
x∈{0,1}N×N

∑
i,j∈N :i ̸=j

xi,j

subject to (2a), (2b), (2c), (2d), (2e).

(7)

Let x ∈ {0, 1}N×N be an optimal solution of the mixed-integer linear optimization problem (7),
and let σ : N → N be the function that satisfies the equality σ(i) = j if and only if xi,j = 1
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for all i, j ∈ N . Then σ is a minimal non-identity bijection that is feasible for the optimization
problem (CUT).

We observe that the mixed-integer linear optimization problems (2) and (7) have the same decision
variables and constraints. Hence, Theorem 3 shows that obtaining a minimal non-identity bijection
that is feasible for the optimization problem (CUT) can be achieved by simply modifying the
objective function of the mixed-integer linear optimization problem (2).

5.5 Improvement 5: Combining Noncompetitive Contests

As our fifth step in increasing the practical efficiency of the cutting plane method, we show that
noncompetitive contests can be combined into one without loss of generality. By combining these
contests, we demonstrate through numerical experiments in Appendix C that the number of itera-
tions of the cutting plane method can be significantly decreased.

We begin by introducing the terminology and notation that will be used throughout §5.5.
Indeed, let the original ballot style be denoted by the tuple (N , C, {Nc}c∈C , {vc}c∈C). For the original
ballot style, we recall from §3.1 that a contest c ∈ C is noncompetitive if and only if the number
of candidates in the contest |Nc| is equal to the maximum number of votes vc. We represent the
ballot style in which all of the noncompetitive contests from the original ballot style are combined
into a single contest by the tuple (N , C̃, {Ñc}c∈C̃ , {ṽc}c∈C̃), where

C̃ ≜ {0} ∪ {c ∈ C : |Nc| > vc} ;

Ñc ≜

Nc, if c ̸= 0,⋃
c′∈C:|Nc′ |=vc′

Nc′ , if c = 0;

ṽc ≜


vc, if c ̸= 0,∣∣∣∣∣ ⋃
c′∈C:|Nc′ |=vc′

Nc′

∣∣∣∣∣ , if c = 0.

We observe in the new ballot style that contest 0 denotes the contest that is constructed by combin-
ing all of the noncompetitive contests from the original ballot style. Finally, for each non-identity
bijection σ ∈ Σ, let the output of a voting machine in the new ballot style whose mapping from
candidates to targets is the bijection σ be given for each candidate i ∈ Ñc in each contest c ∈ C̃ by

T̃ σ
i (β1, . . . , βB) ≜

B∑
b=1

I
{
σ(i) ∈ βb and

∣∣∣{σ(j) ∈ βb : j ∈ Ñc

}∣∣∣ ≤ ṽc

}
.

Equipped with the above notation, we now present the main result of §5.5. This main result,
presented below as Proposition 3, establishes that the set of optimal solutions for the optimization
problem (RO-Σ) for any given original ballot style will not change if all of the noncompetitive
contests in the original ballot style are combined into a single contest.

Proposition 3. Consider any original ballot style (N , C, {Nc}c∈C , {vc}c∈C), and let the ballot style
in which all of the noncompetitive contests from the original ballot style are combined into a single
contest be denoted by (N , C̃, {Ñc}c∈C̃ , {ṽc}c∈C̃). Then the following equality holds for all B ∈ N,
β1, . . . , βB ⊆ N , σ ∈ Σ ∪ {∗}, and i ∈ N :

T σ
i (β1, . . . , βB) = T̃ σ

i (β1, . . . , βB).
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We conclude §5.5 by discussing why combining the noncompetitive contests into a single con-
test can decrease the number of iterations of the cutting plane method. In essence, the value of
combining the noncompetitive contests stems from the second improvement to the cutting plane
method that is proposed in §5.2. Indeed, we recall from §5.2 that our second improvement to the
cutting plane method consisted of adding the following set of extra constraints into the optimization
problem (RO-Σ̂):

|{b ∈ {1, . . . , B} : i ∈ βb}| < |{b ∈ {1, . . . , B} : j ∈ βb}| ∀c ∈ C, i, j ∈ Nc : i < j. (8)

The constraints (8) ensure that the optimization problem (RO-Σ̂) in each iteration of the cutting
plane method outputs a test deck in which candidates in the same contest receive a strictly increas-
ing number of votes. In view of our recollection of the second improvement from §5.2, we conclude
the present §5.5 with an example which shows that combining the noncompetitive contests into a
single contest can decrease the number of iterations of the cutting plane method.

Example 1. Consider an original ballot style consisting of two contests, where the first contest is
defined by the equalities N1 = {1} and v1 = 1, and the second contest is defined by the equalities
N2 = {2, 3} and v2 = 2. We observe that each of the two contests is a noncompetitive contest.

We first analyze the number of iterations of the cutting plane method in the case where the
noncompetitive contests are combined into a single contest. Indeed, if the noncompetitive contests
are combined into a single contest, then we observe that the new ballot style (N , C̃, {Ñc}c∈C̃ , {ṽc}c∈C̃)
consists of a single contest, C̃ = {0}, wherein the candidates in that contest are given by Ñ0 =
{1, 2, 3} and the maximum number of votes in that contest is given by ṽ0 = 3. In the first iteration
of the cutting plane method, we start with Σ̂ = ∅, in which the optimization problem (RO-Σ̂) with
the constraints (8) can be written as

minimize
B∈N, β1,...,βB∈B

B

subject to T ∗
1 (β1, . . . , βB) < T ∗

2 (β1, . . . , βB) < T ∗
3 (β1, . . . , βB).

(9)

We observe from inspection that the optimization problem (9) has two optimal solutions, which
are stated as follows:

(B1, β1
1 , β

1
2) = (2, {2, 3}, {3}),

(B2, β2
1 , β

2
2) = (2, {3}, {2, 3}).

In particular, we observe that both of those optimal solutions are feasible solutions of the optimiza-
tion problem (RO-Σ). Hence, if the noncompetitive contests are combined into a single contest, then
we observe for this example that the cutting plane method will terminate after a single iteration.

We conclude Example 1 by showing that the number of iterations of the cutting plane method
will always be strictly greater than one if the noncompetitive contests are not combined into a
single contest. Indeed, suppose that we apply the cutting plane method to the original ballot style
(N , C, {Nc}c∈C , {vc}c∈C). In the first iteration of the cutting plane method, we start with Σ̂ = ∅,
in which the optimization problem (RO-Σ̂) with the constraints (8) can be written as

minimize
B∈N, β1,...,βB∈B

B

subject to T ∗
2 (β1, . . . , βB) < T ∗

3 (β1, . . . , βB).
(10)
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We observe from inspection that the optimization problem (10) has two optimal solutions, which
are stated as follows:

(B1, β1
1) = (1, {3}),

(B2, β2
1) = (1, {1, 3}).

However, neither of those optimal solutions are feasible solutions for the optimization problem (RO-Σ).9

Hence, if the noncompetitive contests are not combined into a single contest, then we observe for
this example that the cutting plane method will always require at least two iterations.

6 Numerical Experiments in Real-World Election

In partnership with the Michigan Bureau of Elections, we applied our approach to each of the state’s
6928 ballot styles from the November 2022 general election. Through conversations with state
leadership, local election officials, and vendors, we found that the ease of deploying our approach
depended on two main factors: the length of the test decks with rigorous security guarantees
obtained by solving our optimization problem (RO-Σ), and the computation time required by our
algorithm to find optimal test decks for all 6928 ballot styles. We report below on the performance
of our approach with respect to those two factors.

6.1 Length of Optimal Test Decks

The length of test decks is a crucial factor in conducting LAT in real-world elections. Long decks
pose challenges, both in terms of cost and difficulty for election officials. Consequently, the prac-
ticality of our approach to achieving rigorous security guarantees in LAT depends on whether the
test decks obtained by solving the optimization problem (RO-Σ) are significantly longer than the
heuristic-based test decks that would otherwise be used.

To evaluate the practicality of our approach in application to Michigan’s November 2022 general
election, we performed the following steps. First, we calculated the lengths of optimal test decks
for each of the 6928 ballot styles by solving the optimization problem (RO-Σ) once per ballot style.
To comply with minimum requirements and guidance in the state of Michigan, the following rules
were added as constraints into the optimization problem (RO-Σ) (see Appendix D):

• “A different number of valid votes shall be assigned to each candidate for an office, and for
and against each question” [21, MCL 168.798(1)].

• “None of the candidates, write-in positions, or proposals shall have an accumulated vote total
of zero” [21, R168.773 - Rule 3(10)(a)].

Second, we calculated the lengths of heuristic-based test decks for each of the 6928 ballot styles. Our
implemented heuristic involves selecting a test deck with the minimum possible length that fulfills
[21, MCL 168.798(1)] and [21, R168.773 - Rule 3(10)(a)] for each specific ballot style.10 In compar-
ison to the optimal test decks that were obtained by solving the optimization problem (RO-Σ), the
heuristic-based test decks are not feasible solutions for (RO-Σ) and do not offer rigorous security

9The fact that neither (B1, β1
1) = (1, {3}) nor (B2, β2

1) = (1, {1, 3}) is a feasible solution of the optimization prob-
lem (RO-Σ) follows immediately from the fact that the optimal objective value of the optimization problem (RO-Σ)
is equal to two.

10We compute the minimal possible length of a legally-compliant test deck for each ballot style as the maximum of
|Nc| and ⌈|Nc|(|Nc|+ 1)/2vc⌉ over all contests c in the ballot style, where |Nc| is the number of candidates in the
contest and vc is the maximum number of candidates that can be selected in the contest per ballot.
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(a)

(b)

Figure 7: (a) Distributions of lengths of heuristic-based test decks (orange) and optimal test decks (blue)
across the 6928 ballot styles. Top of figure shows the changes in number of ballot styles (blue minus orange).
The similarity of the two distributions indicates that our approach requires only minor increases in test deck
length, and only for those test decks which were the shortest to begin with. (b) Length of the optimal test deck
(blue) and the number of candidates in noncompetitive contests (orange) for each of the 6928 ballot styles
used in Michgian’s 2022 general election. The ballot styles are split across subgraphs according to the number
of ballots in the heuristic-based test deck, where the top graph shows the ballot styles where the heuristic-based
test decks satisfy Hk = 21, and bottom four graphs show the ballot styles where the heuristic-based test decks
satisfy Hk ∈ {23, 28, 31, 43}. Results show that Ok = max{Hk, NCk} for all ballot styles in this election.
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guarantees for any practically important class of cyberattacks. We note that the lengths of these
heuristic-based test decks serve as lower bounds on the lengths of test decks that could be obtained
by any heuristic that complies with [21, MCL 168.798(1)] and [21, R168.773 - Rule 3(10)(a)].

Figure 6a compares the distributions of the lengths of optimal test decks and the lengths of
heuristic-based test decks across the 6928 ballot styles from Michigan’s November 2022 general elec-
tion. A priori, one might have anticipated that test decks that provide rigorous security guarantees
would contain significantly more ballots than the shortest test decks that satisfy a state’s minimum
legal requirements. However, the numerical results of our experiments in Figure 6a show this is not
the case. The results from Figure 6a for Michigan’s November 2022 general election show that the
optimal test decks obtained by solving the optimization problem (RO-Σ) require only 1.2% more
ballots on average than the heuristic-based test decks across the 6928 ballot styles. Moreover, the
optimal test decks require the same number of ballots as the heuristic-based test decks for all but
493 of the 6928 ballot styles. These results suggest that the rigorous security guarantees of our
robust optimization approach to designing test decks can be enjoyed with essentially no additional
cost or difficulty to election officials for performing LAT.

Furthermore, we find that the increases in test deck lengths in 493 of the 6928 ballot styles can
be explained by a simple mathematical formula. To present this formula, let H1, . . . ,H6928 ≥ 0
denote the lengths of the heuristic-based test decks and O1, . . . , O6928 ≥ 0 denote the lengths of the
optimal test decks. Let a noncompetitive contest refer to any contest c in a ballot style in which
the maximum number of candidates that a voter is allowed to select, denoted by vc, is equal to
the number of candidates in the contest, denoted by |Nc|. In order for a test deck to satisfy the
minimum legal requirement [21, MCL 168.798(1)], we observe the test deck must assign a different
number of votes to each candidate within each noncompetitive contest. Moreover, we prove in §5.5
that any feasible solution of the optimization problem (RO-Σ) must assign a different number of
votes to each candidate across all noncompetitive contests. Letting NC1, . . . , NC6928 denote the
number of candidates in noncompetitive contests, where NCk =

∑
c:|Nc|=vc

|Nc| for each ballot style

k, we show in Figure 6b that the formula Ok = max
{
Hk, NCk

}
is satisfied for all ballot styles

k = 1, . . . , 6928. In other words, Figure 6b shows that the optimization problem (RO-Σ) yielded
test decks of an equal length to current practice for every ballot style, except for the 493 ballot
styles which require longer test decks to distinguish candidates in noncompetitive contests.

Remark 5. When imposing [21, MCL 168.798(1)] and [21, R168.773 - Rule 3(10)(a)], we note
that it is possible to construct ballot styles for which the formula O = max{H,NC} does not
hold. For example, consider a ballot style comprised of two contests, each with two candidates
and a maximum vote of one (|N1| = |N2| = 2 and v1 = v2 = 1). For this ballot style, there
are NC = 0 candidates in noncompetitive contests, and we observe that the heuristic-based test
deck requires H = 3 ballots. However, it follows from §5.3 that the optimal test deck for this
ballot style will require at least O ≥ 4 ballots. This example demonstrates that while the formula
Ok = max

{
Hk, NCk

}
explains the lengths of optimal test decks in all 6928 ballot styles from

Michigan’s November 2022 general election, the formula is not guaranteed to hold in general.

6.2 Practical Computational Time

Due to a strict schedule for finalizing ballot styles and conducting LAT, we have found that our
approach must find optimal test decks for an entire state within 24-48 hours.

To apply our approach at scale, we developed strategies for reusing optimal solutions across
instances of the optimization problem (RO-Σ) that corresponded to similar ballot styles, which
allowed us to decrease the number of invocations of our exact algorithm from 6928 to 376 (see
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(a)

(b)

Figure 8: (a) Computation times for the 376 invocations of our algorithm that were run to compute optimal
test decks for all 6928 ballot styles. Red indicates that 50% of the invocations required less than 37 seconds.
Blue indicates that 90% of the invocations required less than 141 seconds. Total computation time was 6 hours
and 42 minutes. (b) Scatterplot of the number of iterations and total computation time of our algorithm for
each of the 376 invocations. Diagonal line shows the function Time = exp(−6.255 + 2.202 log(Iterations))
with coefficient of determination R2 = 0.9426.
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Appendix E). Applying those strategies, our exact algorithm from §4 computed optimal test decks
for all 6928 ballot styles in less than seven hours on a home computer. Figure 7a illustrates the
distribution of computation times across the 376 invocations of our algorithm, showing that 90% of
the invocations required less than 2.5 minutes. These findings demonstrate that our exact algorithm
from §4 can find optimal test decks for all of the ballot styles across a state in practical computation
times. Figure 7b displays the number of iterations and the total computation time required for each
of the 376 invocations of our algorithm. The results of Figure 7b show that the computation time
of the algorithm is driven by the number of iterations of our cutting plane method, demonstrating
the value of the algorithmic developments in §5 which decrease the number of iterations of the
cutting plane method.

7 Conclusion

This paper describes the first formal procedure for detecting cyberattacks in computerized voting
machines prior to their use in elections. We achieve this by applying rigorous scientific reasoning to
a widely used pre-election procedure, Logic and Accuracy Testing, which for more than a century
has been performed using human intuition and simple heuristics. Unlike the longstanding practice
of LAT, our approach provides a guarantee that LAT will detect any misconfiguration that swaps
voting targets between candidates, whether those misconfigurations were induced deliberately or
by human error. Such misconfigurations have occurred accidentally in recent elections in Michigan,
Pennsylvania, and Georgia. Although these errors were later caught and corrected, they generated
negative publicity, hurt public confidence, and served as the basis for a draft executive order which
would have instructed the military to seize voting machines nationwide. We showed in §2 that
similar misconfigurations could be strategically induced by technically unsophisticated adversaries
to undermine public trust or change the outcome of an election. By applying tools from robust
optimization to LAT, this paper offers a practical and scientifically rigorous way to defend against
the aforementioned risks in future elections, and demonstrates that advanced computational tools
can be used to realize novel benefits to public institutions.

Through our partnership with the Michigan Bureau of Elections, we found that our approach
offered valuable security guarantees with only a 1.2% average increase in the number of test ballots
compared to existing testing procedure in the state’s November 2022 general election. Coupled
with the practical computation time of our algorithm, we conclude that our approach to obtaining
rigorous security guarantees with LAT is well suited to deployment throughout the United States.
We hope that other states and countries will adopt our approach as a low-cost tool to improving
the security and increasing public confidence in election outcomes.

There are many interesting directions for future work.

• First, we foresee ways that randomization can be used to generate short test decks with prob-
abilistic security guarantees. We provide evidence in §6 that for states with legal requirements
like Michigan’s, the benefit of using randomization to design short test decks would be mi-
nuscule. This is because the test decks produced by our deterministic approach in Michigan’s
November 2022 election were only 1.2% longer on average than the shortest test decks that
satisfy Michigan’s minimal legal requirements. However, randomization may be useful for
designing short test decks when considering more expansive classes of uncertainty sets (i.e.,
uncertainty sets that go beyond incorrect bijection mappings). Randomization could also
help facilitate adoption of the robust optimization approach in states that currently have
weak legal requirements that must be satisfied by test decks (e.g., states that do not require
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every candidate within a contest to have a distinct number of votes), as election officials in
such states would be accustomed to shorter test decks.

• It is straightforward to see that the length of test decks could theoretically decrease if an
election official could output the vote totals after each ballot is fed into the voting machine.
However, it takes significant time for the voting machine to print the poll tape (i.e., the
grocery store-like receipt that the machine prints out to show the vote totals) and significant
time for the election official to then reset the machine after it prints a poll tape in order
for the machine to scan more ballots. From conversations with election officials, we learned
that a test deck that requires more than a few poll tapes to be printed is viewed by election
officials as too time consuming to perform, too different from the current practice of logic
and accuracy testing, and would thus be unlikely to be followed by election officials. In view
of these practical considerations, an interesting future direction would be to characterize the
savings that could be obtained in test deck length if election officials were required to print
the poll tape a small (but greater than one) number of times during testing.

• On the theoretical side, many open questions remain about the computational complexity
of the robust optimization problem, whether it would be possible to design approximation
algorithms, and if special cases of the robust optimization problem can be solved in polynomial
time.
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Appendices
The appendices have the following organization:

• Appendix A proposes two simple heuristics for obtaining feasible solutions for the optimization
problem (RO-Σ). Using real-world data, we show that these simple heuristics will result in
test decks that contain too many ballots to be used in practice.

• Appendix B describes the capabilities of an adversary who chooses both the voting machine’s
configuration and the test deck used in LAT.

• Appendix C contains additional numerical experiments that showcase the value of the five
improvements from §5 on the practical efficiency of the cutting plane method from §4.

• Appendix D shows that various state-level legal requirements on the design of test decks
can be enforced either by adding constraints into the optimization problem (RO-Σ) or by
augmenting the output of the optimization problem (RO-Σ).

• Appendix E identifies circumstances in which an optimal test deck for the optimization prob-
lem (RO-Σ) for one ballot style can be efficiently translated into an optimal test deck for
another similar ballot style.

• Appendix F contains the proofs of the paper’s technical results.
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A Upper Bounds

Our exact algorithm for solving the optimization problem (RO-Σ) is found in §4. In this appendix,
we motivate the exact algorithm by presenting and analyzing two simple heuristics for the opti-
mization problem (RO-Σ). These two heuristics, which can be found below in Propositions 4 and
5, obtain a feasible solution for the optimization problem (RO-Σ) by constructing a test deck that
contains a distinct positive number of votes for each candidate. Our purpose for presenting these
heuristics is (a) to show that the optimization problem (RO-Σ) always has a feasible solution and (b)
to show using real-world data that heuristics based on assigning a distinct number of votes for each
candidate will result in test decks that contain too many ballots to be implementable in practice.

Our first simple heuristic for the optimization problem (RO-Σ) is stated formally in the proof of
the following Proposition 4. The heuristic consists of constructing a test deck in which each filled-
out ballot in the test deck contains a vote for exactly one candidate (i.e., |β1| = · · · = |βB| = 1)
and in which each candidate i ∈ N is selected in exactly i of the filled-out ballots. The fact that
this heuristic yields a test deck that is feasible for the optimization problem (RO-Σ) is shown in
the proof of Proposition 4 to follow from Corollary 1 coupled with the fact that the heuristic gives
a distinct total number of votes to each of the candidates. More generally, this heuristic is useful
because it yields a simple, closed-form upper bound on the length of optimal test decks for the
optimization problem (RO-Σ).

Proposition 4. There exists a feasible solution for the optimization problem (RO-Σ) that satisfies
B ≤ N(N + 1)/2.

Our second heuristic for the optimization problem (RO-Σ) can be viewed as a refinement of the
first heuristic from Proposition 4. Like the first heuristic, our second heuristic yields a test deck
that is feasible for the optimization problem (RO-Σ) by giving a distinct positive number of votes
to each candidate. However, our second heuristic assigns a different positive number of votes to
each candidate in such a way that allows the votes to be packed into the fewest number of ballots.
More specifically, our second heuristic consists of solving the following optimization problem (11)
to find a minimum-length test deck that assigns a distinct positive number of votes to each of the
candidates across each of the contests:

minimize
B∈N, β1,...,βB∈B

B (11a)

subject to |{b ∈ {1, . . . , B} : i ∈ βb}| ≠ |{b ∈ {1, . . . , B} : j ∈ βb}| ∀i, j ∈ N : i ̸= j (11b)

|{b ∈ {1, . . . , B} : i ∈ βb}| ≥ 1 ∀i ∈ N . (11c)

Indeed, constraint (11b) ensures that the test deck gives a distinct number of votes to each can-
didate, and constraint (11c) ensures that each candidate receives at least one vote. It follows
immediately from Corollary 1 that any test deck that is feasible for the optimization problem (11)
is feasible for the optimization problem (RO-Σ). Hence, the optimization problem (11) provides the
tightest upper bound on the optimal objective value of the optimization problem (RO-Σ) that can
be obtained by a test deck that assigns a distinct positive number of votes to each of the candidates
across all of the contests.

In the following Proposition 5, we show that the optimization problem (11) can be reformulated
as a mixed-integer linear optimization problem. In contrast to the optimization problem (11), the
mixed-integer linear optimization problem (12) from the following Proposition 5 can be easily
implemented and solved using widely available open-source and commercial optimization software
such as Gurobi and Mosek.
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Proposition 5. The optimal objective value of the optimization problem (11) is equal to the optimal
objective value of the following mixed-integer linear optimization problem (12), and every optimal
solution for (12) can be transformed into an optimal solution for (11).

minimize
B∈N,γ∈{0,1}C×N

B (12a)

subject to
∑
g∈N

γc,g = |Nc| ∀c ∈ C (12b)

∑
c∈C

γc,g = 1 ∀g ∈ N (12c)

B ≥ 1

vc

∑
g∈N

gγc,g ∀c ∈ C (12d)

B ≥ N. (12e)

Let us provide an interpretation of the decision variables and constraints of the mixed-integer linear
optimization problem (12). Each binary decision variable γc,g will be equal to one if and only if
there exists a candidate i ∈ Nc in contest c that satisfies the equality |{b ∈ {1, . . . , B} : i ∈ βb}| =
g. Constraints (12b) and (12c) ensure that a distinct number of votes are given to each of the
candidates across each of the contests. Constraint (12d) enforces, for each contest c ∈ C, the fact
that a test deck β1, . . . , βB ∈ B needs to be comprised of at least B ≥ ⌈ 1

vc

∑
g∈N gγc,g⌉ ballots in

order for it to be possible for the test deck to give
∑

g∈N gγc,g votes to the candidates in contest c
without causing an overvote for that contest in any of the ballots. Constraint (12e) enforces that
we include at least the N ballots which are necessary for the candidate who receives N votes.

We conclude Appendix A by showing using real-world data that any heuristic that assigns a
distinct positive number of votes to each candidate across all of the contests will result in test
decks that contain too many ballots to be useful in practice. Specifically, we applied our second
heuristic to the 6928 ballot styles that appeared in the state of Michigan in the November 2022
general election. In Figure 9, we compare the number of ballots for test decks that are optimal for
the optimization problem (RO-Σ) and the number of ballots for test decks that are optimal for the
optimization problem (12). The results of Figure 9 thus demonstrate that test decks that assign
distinct positive numbers of votes for candidates across contests can require significantly (2.46x to
6.38x) more ballots than the test decks obtained by solving the optimization problem (RO-Σ).

B Deliberately Flawed Test Decks

In §2, we discussed a category of threats (dubbed ‘Deliberately Flawed Test Decks’) in which an
adversary may have the opportunity to both configure the voting machine as well as design the test
deck used in LAT. If this is the case, then the adversary could choose a mapping σ ∈ Σ to use on
the machine, then choose a test deck (β1, . . . , βB) that satisfies T σ(β1, . . . , βB) = T ∗(β1, . . . , βB),
thereby causing their misconfiguration to go undetected by LAT.

Such an adversary has significant freedom with respect to the σ ∈ Σ they choose if the test
deck (β1, . . . , βB) is not well constrained by the state’s minimum legal requirements. For example,
if the only minimum legal requirement on the test deck is that each candidate receives at least
one vote—as is the case in a number of states [29]—the adversary can find a suitable deck for any
mapping σ ∈ Σ. We formalize this observation through the following Proposition 6.

Proposition 6. For every σ ∈ Σ, there exists a test deck β1, . . . , βB ∈ B that satisfies

T ∗
i (β1, . . . , βB) ≥ 1 ∀i ∈ N and T σ(β1, . . . , βB) = T ∗(β1, . . . , βB).
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Figure 9: Distributions of lengths of test decks obtained by solving the optimization problem (RO-Σ) (blue)
and test decks obtained by solving the optimization problem (12) (orange) across the 6928 ballot styles.
The large gap between the two distributions indicates that test decks that are optimal for the optimization
problem (RO-Σ) require significantly fewer ballots than test decks that give a distinct positive number of votes
to each candidate across all contests.

Seventeen states also require that each candidate receives at least one vote and that no two can-
didates in the same contest receive the same number of votes [29]. This minimum legal requirement
rules out all σ ∈ Σ that have a cycle of swaps that includes two candidates from the same contest.
For any other σ ∈ Σ, however, a suitable test deck can be generated by the adversary to hide their
chosen non-identity bijection, as shown by the following Theorem 4. In the following Theorem 4
and throughout the paper, we use the notation σn(·) to denote the n-fold composition of σ(·).11

Theorem 4. Consider any σ ∈ Σ that satisfies the following property for all contests c ∈ C,
candidates i ∈ Nc, and integers n ∈ N:

σn(i) ∈ Nc ⇐⇒ σn(i) = i.

Then there exists a test deck β1, . . . , βB ∈ B that satisfies

T ∗
i (β1, . . . , βB) ≥ 1 ∀i ∈ N

T ∗
i (β1, . . . , βB) ̸= T ∗

j (β1, . . . , βB) ∀c ∈ C, i, j ∈ Nc : i ̸= j

T σ(β1, . . . , βB) = T ∗(β1, . . . , βB).

C Additional Numerical Experiments

In this appendix, we present additional numerical experiments to explore and showcase the value
of the proposed improvements from §5 on the practical efficiency of the cutting plane method from
§4.
11For example, σ1(·) ≜ σ(·) and σ2(·) ≜ σ(σ(·)).
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C.1 Experiment Setup

We investigate the value of the five improvements from §5 using three classes of numerical experi-
ments. The three classes of numerical experiments are described as follows.

• Experiment 1 : In this experiment, we generate ballot styles with varying numbers of candi-
dates per contest. Specifically, for each C ∈ {2, . . . , 12}, we generate a ballot style with C
contests where the contests are comprised as

|N1| = 1, |N2| = 2, · · · |NC−1| = C − 1, |NC | = C,

v1 = 1, v2 = 1, · · · vC−1 = 1, vC = 1.

• Experiment 2 : In this experiment, we generate ballot styles with contests that have the same
numbers of candidates. Specifically, for each C ∈ {2, . . . , 12}, we generate a ballot style with
C contests where the contests are comprised as

|N1| = 2, |N2| = 2, · · · |NC−1| = 2, |NC | = 2,

v1 = 1, v2 = 1, · · · vC−1 = 1, vC = 1.

• Experiment 3 : In this experiment, we generate ballot styles with noncompetitive contests.
Specifically, for each C ∈ {2, . . . , 12}, we generate a ballot style with C contests where the
contests are comprised as

|N1| = 1, |N2| = 2, · · · |NC−1| = C − 1, |NC | = C,

v1 = 1, v2 = 2, · · · vC−1 = C − 1, vC = C.

Our goal in each experiment is to examine the individual impact of each of the proposed improve-
ments from §5 on the practical efficiency of the cutting plane method. To this end, we report on
the performance of the following solution methods:

• All Improvements: In this solution method, we find an optimal solution for the optimization
problem (RO-Σ) by using the cutting plane method from §4.1. In each iteration of the cutting
plane method, we solve the optimization problems (RO-Σ̂) and (CUT) using the mixed-integer
linear optimization reformulations (1) and (2) from §4.2. Moreover, we use each of the five
improvements from §5.

• No Improvement 1 : Same solution method as All Improvements, but we do not use Improve-
ment 1 from §5.1.

• No Improvement 2 : Same solution method as All Improvements, but we do not use Improve-
ment 2 from §5.2.

• No Improvement 3 : Same solution method as All Improvements, but we do not use Improve-
ment 3 from §5.3.

• No Improvement 4 : Same solution method as All Improvements, but we do not use Improve-
ment 4 from §5.4.

• No Improvement 5 : Same solution method as All Improvements, but we do not use Improve-
ment 5 from §5.5.
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For each C ∈ {2, . . . , 12} in each of the Experiments 1, 2, and 3, we used each of the solution
methods to compute an optimal test deck. We recorded the total computation time and number of
iterations of the cutting plane method for each solution method. If a solution method on a ballot
style required a computation time that exceeded one hour (3600 seconds), then we terminated
the solution method early without finding an optimal solution. All numerical experiments were
conducted using the Gurobi optimization solver on a laptop with a 2.6 GHz 6-Core Intel Core i7
processor and 16 GB of RAM. In all experiments, we also impose a constraint in the optimization
problem (RO-Σ) that each candidate must receive at least one vote (see Appendix D.1).

C.2 Results

The results of our numerical experiments from Appendix C.1 are presented in Figure 10. For visual
clarity, we do not display the numerical results for No Improvement 3 in Experiments 1 and 312 and
do not display the numerical results for No Improvement 5 in Experiments 1 and 2.13 We reflect
below on the key numerical findings from Figure 10:

• No Improvement 1 : Experiments 1 and 3 show that the improvement from §5.1 significantly
increases the practical efficiency of the cutting plane method by decreasing the per-iteration
computation cost. This is seen most clearly in Experiment 3 in the ballot style with C = 12
contests, where the computation time of No Improvement 1 is approximately 25x greater than
the computation time of All Improvements, despite both solution methods requiring only a
single iteration.

• No Improvement 2 : Experiments 1, 2, and 3 show that the improvement from §5.2 sig-
nificantly increases the practical efficiency of the cutting plane method by decreasing the
number of iterations. For example, in Experiment 1 in the ballot style with C = 12 contests,
the number of iterations of No Improvement 2 is approximately 21x greater than the number
of iterations of All Improvements, leading to a computation time of No Improvement 2 that
is approximately 45x greater than the computation time of All Improvements. Moreover, we
observe that No Improvement 2 did not terminate in less than one hour in Experiment 2 with
C ≥ 9 contests and in Experiment 3 with C ≥ 11 contests.

• No Improvement 3 : Experiment 2 shows that the improvement from §5.3 significantly in-
creases the practical efficiency of the cutting plane method by decreasing the number of
iterations. Indeed, in Experiment 2 in the ballot style with C = 8 contests, the number of
iterations of No Improvement 3 is approximately 16x greater than the number of iterations of
All Improvements, leading to a computation time of No Improvement 3 that is approximately
1106x greater than the computation time of All Improvements. Moreover, we observe that No
Improvement 3 did not terminate in less than one hour in Experiment 2 with C ≥ 9 contests.

• No Improvement 4 : Experiment 2 shows that the improvement from §5.4 significantly in-
creases the practical efficiency of the cutting plane method by decreasing the number of
iterations. This is seen most clearly in Experiment 2 in the ballot style with C = 12 contests,
where the number of iterations of No Improvement 4 is approximately 6x greater than the
number of iterations of All Improvement, leading to a computation time of No Improvement

12Experiments 1 and 3 do not include ballot styles in which there are contests that are equivalent (see Definition 1
in §5.3), and so No Improvement 3 is identical to All Improvements in the context of Experiments 1 and 3.

13Experiments 1 and 2 do not include multiple noncompetitive contests (see §5.5), and so No Improvement 5 is
identical to All Improvements in the context of Experiments 1 and 2.
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Figure 10: Numerical results for Appendix C.2.

4 that is approximately 59x greater than the computation time of All Improvements. Experi-
ments 1 and 3, in contrast, did do show any meaningful advantages or disadvantages of using
the improvement from §5.4.

• No Improvement 5 : Experiment 3 shows that the improvement from §5.5 significantly in-
creases the practical efficiency of the cutting plane method by decreasing the number of
iterations. This is seen most clearly in Experiment 3 in the ballot style with C = 7 contests,
where the number of iterations of No Improvement 5 is 323x greater than the number of
iterations of All Improvement, leading to a computation time of No Improvement 5 that is
approximately 3129x greater than the computation time of All Improvements. Moreover, we
observe that No Improvement 5 did not terminate in less than one hour in Experiment 3 with
C ≥ 11 contests.

D State-Level Requirements

Each of the fifty states has minimal requirements on the design of test decks that can be legally
used in LAT. For example, at least forty states have a minimum requirement that test decks must
include at least one vote for each candidate on the ballot [29]. In this appendix, we demonstrate
how various state-level requirements can be enforced in the optimization problem (RO-Σ).
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D.1 At Least One Vote Per Candidate

At least forty states recommend that none of the candidates, write-in positions, or proposals shall
have an accumulated vote total of zero [29]. To add this recommendation as a constraint into the
optimization problem (RO-Σ), we add it as a constraint into the optimization problem (RO-Σ̂) in
each iteration of the cutting plane method that is described in §4.1. In particular, we recall from
§4.2.1 that the optimization problem (RO-Σ̂) is equivalent to the mixed-integer linear optimiza-
tion problem (1), where the mixed-integer linear optimization problem (1) includes the following
constraints: ∑

g∈B0

γi,g = 1 ∀i ∈ N (1c)

∑
b∈B

βb,i =
∑
g∈B0

gγi,g ∀i ∈ N . (1d)

We recall from the discussion in §4.2.1 that the above constraints (1c) and (1d) enforce for each can-
didate i ∈ N that the binary decision variable γi,g ∈ {0, 1} in the mixed-integer linear optimization
problem (1) will be equal to one if and only if that candidate receives exactly g ∈ B0 ≡ {0, . . . , B}
votes in the test deck. Therefore, to enforce that each candidate receives at least one vote in the
test deck, we can add the following constraint to the mixed-integer linear optimization problem (1):

γi,0 = 0 ∀i ∈ N . (13)

D.2 Distinct Votes for Candidates in the Same Contest

At least seventeen states (including Michigan, see [21, MCL 168.798(1)]) have a requirement that
test decks must assign a distinct number of votes to candidates in the same contest [29]. Following
identical reasoning as in Appendix D.1, we observe that enforcing this requirement on test decks
can be accomplished by adding constraints into the mixed-integer linear optimization problem (1)
from §4.2.1. However, we recall that §5.2 offers an improvement to the cutting plane method that
consists of adding the extra constraints (4) to the mixed-integer linear optimization problem (1).
Because those extra constraints enforce that candidates within the same contest receive different
numbers of votes, we conclude that the state requirement is accomplished by using the improvement
from §5.2.

D.3 Overvoted Ballots

Several states (including Michigan, see [21, MCL 168.776 Rule 6(4)(f)]) require that the test deck
include at least one ballot that contains an overvote in one or more contests [29]. As we show in
the following Proposition 7, this requirement can be satisfied by solving the optimization prob-
lem (RO-Σ) to obtain a test deck, and then appending that test deck with an additional filled-out
ballot that includes a vote for every candidate in every contest.

Proposition 7. Let β̄ ≜ N denote the filled-out ballot that includes a vote for every candidate in
every contest. If (B, β1, . . . , βB) is a feasible solution for the optimization problem (RO-Σ), then
the following holds:

T σ(β1, . . . , βB, β̄) ̸= T ∗(β1, . . . , βB, β̄) ∀σ ∈ Σ.

In particular, the above proposition shows that if we solve the optimization problem (RO-Σ), and
we then augment the optimal test deck by adding a filled-out ballot that votes for every candidate
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in every contest, then the augmented test deck will retain the desired security guarantee that the
output T σ(β1, . . . , βB, β̄) of a voting machine with any mapping σ ∈ Σ will be different from the
output T ∗(β1, . . . , βB, β̄) of the voting machine that operates correctly.

While the above strategy can be used in many states including Michigan, certain states impose
an additional requirement that the overvoted ballot in the test deck must cast precisely vc+1 votes
in each contest c ∈ C that satisfies vc > |Nc| [29]. In those states, the strategy from Proposition 7
cannot be applied when there exist contests that satisfy the inequality vc > |Nc| + 1, as the
strategy from Proposition 7 would require the overvoted ballot to vote for strictly greater than
vc + 1 candidates in some contests.14

To develop test decks for states with the aforementioned additional requirement on the overvoted
ballot, we consider the following assumption on their voting machines.

Assumption 1. When a voting machine interprets a ballot as containing an overvote in at least
one contest, it will produce an “overvote alert” notification. This alert will not specify which
contest(s) are interpreted as containing an overvote, but will allow for a determination of which
ballots contain some overvoted contest.

Most modern voting machines are designed to satisfy this assumption. Indeed, in many juris-
dictions, the purpose of including overvoted ballots in the test deck is precisely to evaluate whether
this functionality works as expected (see, e.g., [2, p.91] or [3, p.62]). If this assumption is believed
to hold, then we show in the following Proposition 8 that we can satisfy the aforementioned stricter
requirement by solving the optimization problem (RO-Σ) to obtain a test deck, and then appending
that test deck with an additional filled-out ballot that casts precisely vc + 1 votes for each contest
c ∈ C that satisfies vc > |Nc|.

Proposition 8. Let β̃ ⊆ N denote a filled-out ballot that satisfies the following equality for each
contest c ∈ C:

|β̃ ∩Nc| =

{
vc + 1, if |Nc| > vc,

0, otherwise.

If (B, β1, . . . , βB) is a feasible solution for the optimization problem (RO-Σ), then for all σ ∈ Σ, at
least one of the following two conditions hold:

• There exists a contest in at least one of the filled-out ballots β1, . . . , βB ∈ B that is interpreted
by a voting machine with mapping σ as containing an overvote; that is, there exist b ∈ B and
c ∈ C that satisfy |{σ(j) ∈ βb : j ∈ Nc}| > vc.

• T σ(β1, . . . , βB, β̃) ̸= T ∗(β1, . . . , βB, β̃).

Proposition 8 tells us that each incorrect mapping σ ∈ Σ will be detected by the modified deck
(β1, . . . , βB, β̃) if Assumption 1 holds. This is because either the output of the voting machine will
differ from what is expected (i.e., T σ(β1, . . . , βB, β̃) ̸= T ∗(β1, . . . , βB, β̃)) or because some feasible
ballot will produce an alert indicating that it has been overvoted (i.e., there will exist some b ∈ B
and c ∈ C which satisfy

∑
i∈Nc

βb,σ(i) ≥ vc + 1). In either event, the behavior of the machine
under mapping σ ∈ Σ will be distinguishable from the behavior of a machine which is operating
correctly. This allows us to satisfy the aforementioned state requirement by including ballot β̃ while
maintaining the desired security guarantees.

14An example of a contest that typically satisfies vc > |Nc| + 1 is the Presidential contest; even though voters may
select up to one candidate in the presidential contest, voters will typically be allowed to select from candidates from
four or more political parties.
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D.4 Party-Line Option

Several states including Michigan (see [21, p.18]) provide an option to voters in certain ballot styles
to choose a so-called “party-line option”. A party-line option is a special target on a ballot that, if
marked, defaults the ballot to selecting a specific party’s candidates (e.g., Republican candidates,
Democrat candidates) in each of the contests. The voting machine functionality related to the
processing of party-line voting is complex due to the fact that voters can select a party-line vote
but also can, if desired, override the default party selection in one or more contests. Because of this
complexity, states such as Michigan provide a separate set of test deck requirements for evaluating
the functionality of party-line options. Because the requirements of evaluating the party-line option
are distinct from the requirements of test decks, a separate test deck than that obtained from solving
the optimization problem (RO-Σ) can be constructed for testing party-option functionality.

E Solution Reuse and Translation

In §6, we discussed using our approach to generate test decks for Michigan’s November 2022 general
election. In this election, the state of Michigan used 6928 ballot styles. In principle, an optimal
test deck for each ballot style could be found by solving the optimization problem (RO-Σ) for the
specific ballot style. Solving the optimization problem (RO-Σ) once for each of the 6928 ballot
styles, however, would be computationally time consuming.

In this appendix, we describe two strategies (which we refer to as ‘solution reuse’ and ‘solution
translation’) that significantly reduced the computation time that was required for obtaining opti-
mal test decks for all 6928 ballot styles. The two strategies are based on showing that an optimal
solution to the optimization problem (RO-Σ) for one ballot style will, under certain conditions,
be a feasible (and sometimes optimal) solution for the optimization problem (RO-Σ) for another
similar ballot style. By using our two strategies to reuse and translate optimal solutions between
similar ballot styles, we were able to obtain optimal test decks for all 6928 ballot styles despite
solving the optimization problem (RO-Σ) to completion only 376 times.

E.1 Solution Reuse

Our first strategy consists of identifying conditions under which the optimal solution of the opti-
mization problem (RO-Σ) for one ballot style is guaranteed to be an optimal solution for another
similar ballot style. To apply this strategy, we first convert each ballot style into what we hence-
forth refer to as its normal form. Converting a ballot style into its normal form entails performing
the following two transformations:

1. Combine the ballot style’s noncompetitive contests into a single contest as described in §5.5.

2. Sort the indices of the contests such that c < c′ if [|Nc| > |Nc′ |] or [|Nc| = |Nc′ | and vc > vc′ ].

Any optimal solution to the optimization problem (RO-Σ) for the normalized version of a ballot
style can be efficiently transformed into an optimal solution for the original style, simply by reversing
the translation of candidate indicies on the output β variables and separating the combined contest
into its constituent components as previously described. This means we can eliminate repeated
normalized forms, reducing the number of styles from 6928 to 1812.
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E.2 Solution Translation

Our second strategy consists of identifying conditions under which an optimal solution for the
optimization problem (RO-Σ) for one ballot style is guaranteed to be a feasible (but possibly
suboptimal) solution to the optimization problem (RO-Σ) for another similar ballot style. Lemma 4
specifies the strategy in greater detail. To make the greatest use of Lemma 4, imagine that each
noncompetitive contest has been split so that each candidate has a contest of their own; we can do
this without loss of generality as a corollary of Proposition 3.

Lemma 4. Consider a ballot style parameterized by (N , C, {Nc}c∈C , {vc}c∈C), let C̄ ⊂ C denote
a subset of contests, and let N̄ ≜

⋃
c∈C̄ Nc denote the set of candidates in those contests. If

(B, β1, . . . , βB) is an optimal solution for the optimization problem (RO-Σ) for the ballot style pa-
rameterized by (N , C, {Nc}c∈C , {vc}c∈C), then (B, β1\N̄ , . . . , βB\N̄ ) is a feasible solution for the op-
timization problem (RO-Σ) for the ballot style parameterized by (N \N̄ , C\C̄, {Nc}c∈C\C̄ , {vc}c∈C\C̄).

In words, the above lemma shows that an optimal solution from a ‘complex’ ballot style is guaran-
teed to be a feasible solution for a ‘simple’ ballot style if (a) the competitive contests in the simpler
ballot style are a subset of those in the more complex ballot style and (b) there are at least as many
candidates in noncompetitive contests in the complex ballot style as in the simpler ballot style.

To understand the practical significance of Lemma 4, we recall that each iteration of the cutting
plane method from §4.1 involves solving the optimization problem (RO-Σ̂) to obtain a lower bound
on the optimal objective value of the optimization problem (RO-Σ). If this lower bound is ever
equal to the length of some feasible solution to (RO-Σ) derived for a more complicated style, we
can halt the cutting plane method early and translate a solution according to this lemma.

To utilize this second strategy in §6, we solved the optimization problem (RO-Σ) for ballot
styles in decreasing order by their number of competitive contests. When two ballot styles had the
same number of competitive contests, we solved the one with more candidates in noncompetitive
contests first. When using our cutting plane method for each ballot style, we first identified the
shortest feasible solution which is suitable for translation (if any such solution exists) from the
ballot styles that were solved previously. Finally, we halted the cutting plane method early if the
lower bound reached the length of that solution.

In practice, this second strategy allowed for early termination of the cutting plane method in
a majority of ballot styles. Of the 6928 ballot styles and 1812 distinct normalized forms, we were
able to terminate computation early in all but 376 cases. This yielded significant time savings; the
average time to generate a test deck for a ballot style which terminates early is on the order of
one-tenth of a second, while the average time to generate a test deck for the other 376 styles in on
the order of a minute.
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F Proofs

F.1 Proofs from §3.4

Proof of Theorem 1. Let B ∈ N, β1, . . . , βB ∈ B, and σ ∈ Σ.
To show the first direction of Theorem 1, suppose that the equality |{b ∈ {1, . . . , B} : i ∈

βb}| = |{b ∈ {1, . . . , B} : σ(i) ∈ βb}| holds for all candidates i ∈ N and that the inequality
|{σ(j) ∈ βb : j ∈ Nc}| ≤ vc holds for all contests c ∈ C and all ballots b ∈ {1, . . . , B}. In this case,
we observe for each contest c ∈ C and each candidate i ∈ Nc that

T σ
i (β1, . . . , βB) =

B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

=

B∑
b=1

I {σ(i) ∈ βb}

= |{b ∈ {1, . . . , B} : σ(i) ∈ βb}|
= |{b ∈ {1, . . . , B} : i ∈ βb}|
= T ∗

i (β1, . . . , βB).

The first equality is the definition of T σ
i (·) from §3.3. The second equality follows from the suppo-

sition that the inequality |{σ(j) ∈ βb : j ∈ Nc′}| ≤ vc′ holds for all contests c′ ∈ C and all ballots
b ∈ {1, . . . , B}. The third equality follows from algebra. The fourth equality follows from the sup-
position that the equality |{b ∈ {1, . . . , B} : i′ ∈ βb}| = |{b ∈ {1, . . . , B} : σ(i′) ∈ βb}| holds for all
candidates i′ ∈ N . The fifth equality follows from Remark 1 and from the fact that β1, . . . , βB ∈ B.
Because we have shown that the equality T σ

i (β1, . . . , βB) = T ∗
i (β1, . . . , βB) holds for all candidates

i ∈ N , our proof of the first direction of Theorem 1 is complete.
To show the other direction of Theorem 1, suppose that the equality T ∗(β1, . . . , βB) = T σ(β1, . . . , βB)

holds. In this case, we observe that

∑
i∈N

B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

=
∑
i∈N

T σ
i (β1, . . . , βB)

=
∑
i∈N

T ∗
i (β1, . . . , βB)

=
∑
i∈N

B∑
b=1

I {i ∈ βb and |Nc ∩ βb| ≤ vc}

=
∑
i∈N

B∑
b=1

I {i ∈ βb}

=
∑
i∈N

B∑
b=1

I {σ(i) ∈ βb} .

The first equality is the definition of T σ
i (·). The second equality follows from the supposition that

the equality T ∗(β1, . . . , βB) = T σ(β1, . . . , βB) holds. The third equality is the definition of T ∗
i (·).

The fourth equality follows from the fact that the ballots satisfy β1, . . . , βB ∈ B. The fifth equality
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follows from the fact that σ is a bijection. Combining the above equalities, we conclude that the
inequality |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc must hold for all contests c ∈ C and all ballots b ∈ {1, . . . , B}.

It remains for us to show that the equality |{b ∈ {1, . . . , B} : i ∈ βb}| = |{b ∈ {1, . . . , B} : σ(i) ∈
βb}| holds for all candidates i ∈ N . Indeed, we observe for each contest c ∈ C and each candidate
i ∈ Nc that

|{b ∈ {1, . . . , B} : σ(i) ∈ βb}| =
B∑
b=1

I {σ(i) ∈ βb}

=
B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

= T σ
i (β1, . . . , βB)

= T ∗
i (β1, . . . , βB)

= |{b ∈ {1, . . . , B} : i ∈ βb}|.

The first equality follows from algebra. The second equality follows from our prior conclusion that
the inequality |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc holds for all ballots b ∈ {1, . . . , B}. The third equality
is the definition of T σ

i (·). The fourth equality follows from the supposition that T σ(β1, . . . , βB) =
T ∗(β1, . . . , βB). The fifth equality follows from Remark 1 and from the fact that β1, . . . , βB ∈ B.
Because we have shown that the equality |{b ∈ {1, . . . , B} : i ∈ βb}| = |{b ∈ {1, . . . , B} : σ(i) ∈ βb}|
holds for all candidates i ∈ N , our proof of the other direction of Theorem 1 is complete.

F.2 Proofs from §5.1

Proof of Lemma 1. Our proof consists of proving the contrapositive of the desired result. Indeed,
consider any mapping σ ∈ Σ̂, contest c ∈ C, and ballot b ∈ B. Moreover, suppose that there exists
a feasible solution of the mixed-integer linear optimization problem (1) that satisfies the equality
pσb,c = 0. In this case, we observe that

vc + 1 ≤
∑
i∈Nc

βb,σ(i)

=
∑
c′∈C

 ∑
i∈Nc:σ(i)∈Nc′

βb,σ(i)


=
∑
c′∈C

min

 ∑
i∈Nc:σ(i)∈Nc′

βb,σ(i), vc′


≤
∑
c′∈C

min {|{i ∈ Nc : σ(i) ∈ Nc′}| , vc′} .

Indeed, the first inequality follows from the fact that pσb,c = 0 and constraint (1f). The first equality
follows from algebra. The second equality follows from constraint (1b), which implies for each
contest c′ ∈ C that

∑
i∈Nc:σ(i)∈Nc′

βb,σ(i) ≤
∑

i∈Nc′
βb,i ≤ vc′ . The second inequality follows from

algebra.

F.3 Proofs from §5.2

Proof of Lemma 2. Consider any feasible solution of the optimization problem (RO-Σ), and let that
feasible solution be denoted by (B, β1, . . . , βB). Suppose for the sake of developing a contradiction
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that there exists a contest c ∈ C and a pair of candidates i, j ∈ Nc such that i ̸= j and |{b ∈
{1, . . . , B} : i ∈ βb}| = |{b ∈ {1, . . . , B} : j ∈ βb}|. In what follows, we will make use of a
non-identity bijection σ ∈ Σ constructed for each candidate i′ ∈ N as follows:

σ
(
i′
)
≜


i′, if i′ ∈ N \ {i, j},
j, if i′ = i,

i, if i′ = j.

(14)

The remainder of the proof of Lemma 2 consists of showing that the equality T σ(β1, . . . , βB) =
T ∗(β1, . . . , βB) is satisfied. Indeed, we observe for each candidate i′ ∈ N that

|{b ∈ {1, . . . , B} : σ(i′) ∈ βb}| =


|{b ∈ {1, . . . , B} : i′ ∈ βb}|, if i′ ∈ N \ {i, j},
|{b ∈ {1, . . . , B} : j ∈ βb}|, if i′ = i,

|{b ∈ {1, . . . , B} : i ∈ βb}|, if i′ = j

= |{b ∈ {1, . . . , B} : i′ ∈ βb}|,

where the first equality follows from our construction of σ ∈ Σ on line (14) and the second equality
follows from the supposition that |{b ∈ {1, . . . , B} : i ∈ βb}| = |{b ∈ {1, . . . , B} : j ∈ βb}|.
Moreover, we observe for each b ∈ {1, . . . , B} and each contest c′ ∈ C that∣∣{σ (i′) ∈ βb : i

′ ∈ Nc′
}∣∣

=


|{i′ ∈ βb : i

′ ∈ Nc \ {i, j}} ∪ {j}| , if c′ = c, i ∈ βb, and j /∈ βb,

|{i′ ∈ βb : i
′ ∈ Nc \ {i, j}} ∪ {i}| , if c′ = c, i /∈ βb, and j ∈ βb,

|{i′ ∈ βb : i
′ ∈ Nc′}| , otherwise

=


|{i′ ∈ βb : i

′ ∈ Nc \ {i, j}}|+ 1, if c′ = c, i ∈ βb, and j /∈ βb,

|{i′ ∈ βb : i
′ ∈ Nc \ {i, j}}|+ 1, if c′ = c, i /∈ βb, and j ∈ βb,

|{i′ ∈ βb : i
′ ∈ Nc′}| , otherwise

=
∣∣{i′ ∈ βb : i

′ ∈ Nc′
}∣∣

≤ vc′ ,

where the first equality follows from our construction of σ ∈ Σ on line (14), the second equality
follows from algebra, the third equality follows from the fact that i, j ∈ Nc, and the inequality
follows from the fact that β1, . . . , βB ∈ B. Combining the above analysis with Theorem 1 from
§3.4, we conclude that the equality T σ(β1, . . . , βB) = T ∗(β1, . . . , βB) is satisfied.

Because we have shown that there exists a non-identity bijection σ ∈ Σ that satisfies the
equality T σ(β1, . . . , βB) = T ∗(β1, . . . , βB), we have obtained a contradiction with the fact the that
(B, β1, . . . , βB) is a feasible solution of the optimization problem (RO-Σ). Our proof of Lemma 2
is thus complete.

Proof of Proposition 1. Consider any optimal solution of the optimization problem (RO-Σ), and let
that optimal solution be denoted by (β1, . . . , βB). We henceforth assume without loss of generality
that |{b ∈ {1, . . . , B} : i ∈ βb}| ≤ |{b ∈ {1, . . . , B} : j ∈ βb}| for all candidates i < j that appear in
the same contest. To see why this assumption is without loss of generality, suppose for the sake of
argument that this assumption was not true. In that case, for each contest c ∈ C, let πc : Nc → Nc

be a bijection that satisfies |{b ∈ {1, . . . , B} : πc(i) ∈ βb}| ≤ |{b ∈ {1, . . . , B} : πc(j) ∈ βb}| for each
pair of candidates i, j ∈ Nc that satisfies i < j. Hence, by replacing the index of each candidate
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i ∈ Nc with the index πc(i), we conclude that the assumption that T ∗
i (β1, . . . , βB) ≤ T ∗

j (β1, . . . , βB)
for all candidates i < j that appear in the same contest can be made without loss of generality.
Combining that assumption with Lemma 2, our proof of Proposition 1 is complete.

F.4 Proofs from §5.3

Proof of Lemma 3. Consider any feasible solution of the optimization problem (RO-Σ), and let that
feasible solution be denoted by (B, β1, . . . , βB). Suppose for the sake of developing a contradiction
that there exist two contests c < c′ that satisfy c ≡ c′ and satisfy∣∣∣{b ∈ {1, . . . , B} : N |Nc|

c ∈ βb

}∣∣∣ = ∣∣∣{b ∈ {1, . . . , B} : N |Nc|
c′ ∈ βb

}∣∣∣
...∣∣{b ∈ {1, . . . , B} : N 1

c ∈ βb
}∣∣ = ∣∣{b ∈ {1, . . . , B} : N 1

c′ ∈ βb
}∣∣ .

In what follows, we will make use of a non-identity bijection σ ∈ Σ that is defined for each candidate
i ∈ N as follows:

σ (i) ≜


N k

c , if there exists k ∈ {1, . . . , |Nc|} such that i = N k
c′ ,

N k
c′ , if there exists k ∈ {1, . . . , |Nc|} such that i = N k

c ,

i, otherwise.

(15)

We observe by construction that the bijection σ swaps the targets of candidates N k
c and N k

c′ for
each k ∈ {1, . . . , |Nc|}.

The remainder of the proof of Lemma 3 consists of showing that the equality T σ(β1, . . . , βB) =
T ∗(β1, . . . , βB) is satisfied. Indeed, we observe for each candidate i ∈ N that

|{b ∈ {1, . . . , B} : σ(i) ∈ βb}|

=


|{b ∈ {1, . . . , B} : σ(N k

c′) ∈ βb}|, if there exists k ∈ {1, . . . , |Nc|} such that i = N k
c′ ,

|{b ∈ {1, . . . , B} : σ(N k
c ) ∈ βb}|, if there exists k ∈ {1, . . . , |Nc|} such that i = N k

c ,

|{b ∈ {1, . . . , B} : σ(i) ∈ βb}|, otherwise

=


|{b ∈ {1, . . . , B} : N k

c ∈ βb}|, if there exists k ∈ {1, . . . , |Nc|} such that i = N k
c′ ,

|{b ∈ {1, . . . , B} : N k
c′ ∈ βb}|, if there exists k ∈ {1, . . . , |Nc|} such that i = N k

c ,

|{b ∈ {1, . . . , B} : i ∈ βb}|, otherwise

= |{b ∈ {1, . . . , B} : i ∈ βb}|,

where the first equality follows from algebra and from the fact that |Nc| = |Nc′ |, the second
equality follows from our construction of σ ∈ Σ on line (15), and the third equality follows from
the supposition that the equality |{b ∈ {1, . . . , B} : N k

c ∈ βb}| = |{b ∈ {1, . . . , B} : N k
c′ ∈ βb}| holds
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for all k ∈ {1, . . . , |Nc|}. Moreover, we observe for each b ∈ {1, . . . , B} and each contest c′′ ∈ C that

|{σ (i) ∈ βb : i ∈ Nc′′}|

=


∣∣{σ (N k

c′
)
: k ∈ {1, . . . , |Nc|} and N k

c′ ∈ βb
}∣∣ , if c′′ = c′,∣∣{σ (N k

c

)
: k ∈ {1, . . . , |Nc|} and N k

c ∈ βb
}∣∣ , if c′′ = c,

|{σ(i) ∈ βb : i ∈ Nc′′}| , otherwise

=


∣∣{N k

c : k ∈ {1, . . . , |Nc|} and N k
c′ ∈ βb

}∣∣ , if c′′ = c′,∣∣{N k
c′ : k ∈ {1, . . . , |Nc|} and N k

c ∈ βb
}∣∣ , if c′′ = c,

|{i ∈ βb : i ∈ Nc′′}| , otherwise

≤


vc, if c′′ = c′,

vc′ , if c′′ = c,

vc′′ , otherwise

= vc′′ ,

where the first equality follows from algebra and from the fact that |Nc| = |Nc′ |, the second equality
follows from our construction of σ ∈ Σ on line (15), the inequality follows from the fact that
β1, . . . , βB ∈ B, and the third equality follows from the fact that vc = vc′ . Combining the above
analysis with Theorem 1 from §3.4, we conclude that the equality T σ(β1, . . . , βB) = T ∗(β1, . . . , βB)
is satisfied.

Because we have shown that there exists a non-identity bijection σ ∈ Σ that satisfies the
equality T σ(β1, . . . , βB) = T ∗(β1, . . . , βB), we have obtained a contradiction with the fact that
(B, β1, . . . , βB) is a feasible solution of the optimization problem (RO-Σ). Our proof of Lemma 3
is thus complete.

Proof of Proposition 2. Consider any optimal solution of the optimization problem (RO-Σ), and
let that optimal solution be denoted by (B, β1, . . . , βB). We henceforth assume without loss of
generality that for all contests c < c′ that satisfy c ≡ c′, there exists k ∈ {1, . . . , |Nc|} that satisfies∣∣∣{b ∈ {1, . . . , B} : N |Nc|

c ∈ βb

}∣∣∣ = ∣∣∣{b ∈ {1, . . . , B} : N |Nc|
c′ ∈ βb

}∣∣∣
...∣∣∣{b ∈ {1, . . . , B} : N k+1

c ∈ βb

}∣∣∣ = ∣∣∣{b ∈ {1, . . . , B} : N k+1
c′ ∈ βb

}∣∣∣∣∣∣{b ∈ {1, . . . , B} : N k
c ∈ βb

}∣∣∣ ≤ ∣∣∣{b ∈ {1, . . . , B} : N k
c′ ∈ βb

}∣∣∣ .
This assumption is without loss of generality because the indices of contests that are equivalent can
always be permuted to ensure that the vectors (|{b ∈ {1, . . . , B} : N 1

c ∈ βb}|, . . . , |{b ∈ {1, . . . , B} :
N |Nc|

c ∈ βb}|) are lexicographically ordered. Combining that assumption with Lemma 3, our proof
of Proposition 2 is complete.

F.5 Proofs from §5.4

Proof of Theorem 2. Let σ ∈ Σ denote a feasible solution of the optimization problem (CUT). For
each k ∈ {1, . . . ,Kσ}, let σk : N → N be defined for each c ∈ C and i ∈ Nc by

σk(i) ≜

{
σ(i), if c ∈ K σ

k ,

i, if c /∈ K σ
k .
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We begin by showing that each of the functions σk : N → N is a non-identity bijection. Indeed,
we observe for each contest c /∈ K σ

k and each candidate i ∈ Nc that the equality σ−1
k (i) = i holds.

Moreover, for each contest c ∈ K σ
k and each candidate i ∈ Nc, it follows from our construction of

the undirected graph G σ ≡ (V σ,E σ), from the definition of a connected component, and from the
inclusion σ ∈ Σ that there exists a contest c′ ∈ K σ

k and a candidate i′ ∈ Nc′ that satisfies i′ ̸= i
and σ−1

k (i) = i′. Therefore, we have shown for all candidates i ∈ N that there exists i′ ∈ N that
satisfies the equality σ−1

k (i′) = i, which concludes our proof that σk is a bijection. Moreover, since
K σ

k is nonempty, we have argued that there must exist candidates i′ ̸= i that satisfy σ−1
k (i) = i′.

Therefore, we conclude that σk is a non-identity bijection.
We next show that each of the functions σk : N → N is a feasible solution of the optimization

problem (CUT). Indeed, we have already shown that σk is a non-identity bijection, which implies
that σk ∈ Σ. Moreover, for each contest c ∈ C and each candidate i ∈ Nc, we observe that

T σk
i (β1, . . . , βB)

=

B∑
b=1

I {σk(i) ∈ βb and |{σk(j) ∈ βb : j ∈ Nc}| ≤ vc}

=

{∑B
b=1 I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc} , if c ∈ K σ

k ,∑B
b=1 I {i ∈ βb and |{j ∈ βb : j ∈ Nc}| ≤ vc} , if c /∈ K σ

k

=

{
T σ
i (β1, . . . , βB) , if c ∈ K σ

k ,

T ∗
i (β1, . . . , βB) , if c /∈ K σ

k

= T ∗
i (β1, . . . , βB) .

Indeed, the first equality is the definition of T σk
i (β1, . . . , βB). The second equality follows from the

definition of σk. The third equality follows from the definitions of T σ
i (β1, . . . , βB) and T ∗

i (β1, . . . , βB).
The fourth equality follows from the fact that σ ∈ Σ is a feasible solution of the optimization
problem (CUT), which implies that the equality T σ

i (β1, . . . , βB) = T ∗
i (β1, . . . , βB) holds for all

candidates i ∈ N . Our proof that σk is a feasible solution of the optimization problem (CUT) is
thus complete.

As our final step, we show that line (6) holds. Indeed, we observe for each k ∈ {1, . . . ,Kσ},
B ∈ N, (β1, . . . , βB) ∈ BB, c ∈ C, and i ∈ Nc that

T σk
i (β1, . . . , βB)

=
B∑
b=1

I {σk(i) ∈ βb and |{σk(j) ∈ βb : j ∈ Nc}| ≤ vc}

=

{∑B
b=1 I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc} , if c ∈ K σ

k ,∑B
b=1 I {i ∈ βb and |{j ∈ βb : j ∈ Nc}| ≤ vc} , if c /∈ K σ

k

=

{
T σ
i (β1, . . . , βB) , if c ∈ K σ

k ,

T ∗
i (β1, . . . , βB) , if c /∈ K σ

k ,
(16)

where the first equality is the definition of T σk
i (β1, . . . , βB), the second equality follows from the defi-

nition of σk, and the third equality follows from the definitions of T σ
i (β1, . . . , βB) and T ∗

i (β1, . . . , βB).
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Therefore, we observe that

Kσ⋃
k=1

F
(
Σ̂ ∪ {σk}

)
=

Kσ⋃
k=1

(
F
(
Σ̂
)
∩
⋃
B∈N

{
(β1, . . . , βB) ∈ BB : T σk(β1, . . . , βB) ̸= T ∗(β1, . . . , βB)

})

= F
(
Σ̂
)
∩
⋃
B∈N

Kσ⋃
k=1

{
(β1, . . . , βB) ∈ BB : T σk(β1, . . . , βB) ̸= T ∗(β1, . . . , βB)

}
= F

(
Σ̂
)
∩
⋃
B∈N

Kσ⋃
k=1

⋃
c∈C

⋃
i∈Nc

{
(β1, . . . , βB) ∈ BB : T σk

i (β1, . . . , βB) ̸= T ∗
i (β1, . . . , βB)

}
= F

(
Σ̂
)
∩
⋃
B∈N

Kσ⋃
k=1

⋃
c∈K σ

k

⋃
i∈Nc

{
(β1, . . . , βB) ∈ BB : T σ

i (β1, . . . , βB) ̸= T ∗
i (β1, . . . , βB)

}
= F

(
Σ̂
)
∩
⋃
B∈N

⋃
c∈V σ

⋃
i∈Nc

{
(β1, . . . , βB) ∈ BB : T σ

i (β1, . . . , βB) ̸= T ∗
i (β1, . . . , βB)

}
= F

(
Σ̂
)
∩
⋃
B∈N

⋃
c∈C

⋃
i∈Nc

{
(β1, . . . , βB) ∈ BB : T σ

i (β1, . . . , βB) ̸= T ∗
i (β1, . . . , βB)

}
= F

(
Σ̂
)
∩
⋃
B∈N

{
(β1, . . . , βB) ∈ BB : T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB)

}
= F

(
Σ̂ ∪ {σ}

)
.

Indeed, the first equality follows from the definition of the optimization problem (RO-Σ̂). The
second and third equalities follow from algebra. The fourth equality follows from line (16). The fifth
equality follows from the fact that K σ

1 , . . . ,K σ
Kσ are the connected components of the undirected

graph G σ ≡ (V σ,E σ), which implies that K σ
1 ∪ · · · ∪ K σ

Kσ = V σ. The sixth equality follows
from the definition of V σ, which implies that the equality σ(i) = i is satisfied for all candidates
i ∈ ∪c∈C\V σNc. The seventh and eighth equalities follow from algebra. Our proof of Theorem 2 is
thus complete.

Proof of Theorem 3. Consider any optimal solution x ∈ {0, 1}N×N of the mixed-integer linear
optimization problem (7). Let σ : N → N be the function that satisfies the equality σ(i) = j if
and only if xi,j = 1 for all i, j ∈ N . In this case, it follows from the discussion in §4.2.2 that σ is a
non-identity bijection that is a feasible solution for the optimization problem (CUT).

Suppose for the sake of developing a contradiction that the number of connected components of
the undirected graph G σ ≡ (V σ,E σ) satisfies Kσ ≥ 2. For each k ∈ {1, . . . ,Kσ}, let σk : N → N
be defined for each c ∈ C and i ∈ Nc by

σk(i) ≜

{
σ(i), if c ∈ K σ

k ,

i, if c /∈ K σ
k ,

where K σ
1 , . . . ,K σ

Kσ ⊆ V σ denote the connected components of the undirected graph G σ ≡
(V σ,E σ) In this case, it follows from Theorem 2 that σ1, . . . , σKσ are feasible solutions of the opti-
mization problem (CUT). Because σ1 ∈ Σ is a feasible solution of the optimization problem (CUT),

55



we observe that a feasible solution for the mixed-integer linear optimization problem (7) is given
by x̄ ∈ {0, 1}N×N , which is defined by x̄i,j ≜ I {σ1(i) = j} for all i, j ∈ N . We observe that∑

i,j∈N :i ̸=j

x̄i,j = |{i ∈ N : σ1(i) ̸= i}|

=
∑

c∈K σ
1

|{i ∈ Nc : σ(i) ̸= i}|

<
∑
c∈C
|{i ∈ Nc : σ(i) ̸= i}|

=
∑

i,j∈N :i ̸=j

xi,j .

Indeed, the first equality follows from our construction of σ̄. The second equality follows from
the definition of σ1. The strict inequality follows from the fact that Kσ ≥ 2, which implies that
there exists a candidate i /∈ ∪c∈K σ

1
Nc that satisfies σ(i) ̸= i. The third equality follows from the

definition of σ.
In conclusion, we have shown that there exists a feasible solution x̄ ∈ {0, 1}N×N for the mixed-

integer linear optimization problem (7) with an objective value that is strictly better than the
objective value associated with x ∈ {0, 1}N×N . We thus have a contradiction with the supposition
that x is an optimal solution of the mixed-integer linear optimization problem (7), which concludes
our proof of Theorem 3.

F.6 Proofs from §5.5

Proof of Proposition 3. Consider any original ballot style (N , C, {Nc}c∈C , {vc}c∈C), and let the bal-
lot style in which all of the noncompetitive contests from the original ballot style are combined
into a single contest be denoted by (N , C̃, {Ñc}c∈C̃ , {ṽc}c∈C̃). Moreover, consider any B ∈ N,
β1, . . . , βB ⊆ N , σ ∈ Σ ∪ {∗}, and i ∈ N . Finally, let c ∈ C denote the contest from the original
ballot style that satisfies i ∈ Nc, and let c̃ ∈ C̃ denote the contest from the new ballot style that
satisfies i ∈ Ñc̃. We observe that

T̃ σ
i (β1, . . . , βB)

=
B∑
b=1

I
{
σ(i) ∈ βb and

∣∣∣{σ(j) ∈ βb : j ∈ Ñc̃

}∣∣∣ ≤ ṽc̃

}

=

{∑B
b=1 I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc} , if c̃ ̸= 0,∑B
b=1 I

{
σ(i) ∈ βb and

∣∣∣{σ(j) ∈ βb : j ∈ Ñ0

}∣∣∣ ≤ ṽ0

}
, if c̃ = 0

=

{∑B
b=1 I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc} , if c̃ ̸= 0,∑B
b=1 I {σ(i) ∈ βb} , if c̃ = 0

=

{∑B
b=1 I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc} , if c̃ ̸= 0,∑B
b=1 I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc} , if c̃ = 0

= T σ
i (β1, . . . , βB).

The first equality is the definition of T̃ σ
i (·). The second equality follows from the fact that if c̃ ̸= 0,

then it follows from the construction of the new ballot style that c = c̃, Ñc̃ = Nc, and ṽc̃ = vc.
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The third equality follows from the fact that ṽ0 = |Ñ0|. The fourth equality follows from the facts
that i ∈ Nc and vc = |Nc|. The fifth equality follows from the definition of T σ

i (·). Our proof of
Proposition 3 is thus complete.

F.7 Proofs from Appendix A

Proof of Proposition 4. Consider a test deck defined by the following equalities:

β1 = {1},
β2, β3 = {2},

β4, β5, β6 = {3},
...

βN(N−1)
2

+1
, . . . , βN(N+1)

2

= {N}.

We observe that the above test deck consists of B = N(N + 1)/2 filled-out ballots. Moreover, it
follows from the fact that vc ≥ 1 for all contests c ∈ C that the above filled-out ballots satisfy
β1, . . . , βB ∈ B.

It remains for us to show that the test deck defined above satisfies the constraints of the
optimization problem (RO-Σ). Indeed, we observe that the test deck satisfies the equality |{b ∈
{1, . . . , B} : i ∈ βb}| = i for each candidate i ∈ N ≡ {1, . . . , N}. Furthermore, we recall for
each non-identity bijection σ ∈ Σ that there must exist a candidate i ∈ N that satisfies σ(i) ̸= i.
Therefore, we conclude for each non-identity bijection σ ∈ Σ that there exists a candidate i ∈ N
that satisfies |{b ∈ {1, . . . , B} : i ∈ βb}| ̸= |{b ∈ {1, . . . , B} : σ(i) ∈ βb}|, which together with
Corollary 1 implies that the test deck satisfies the constraints of the optimization problem (RO-Σ).
Our proof of Proposition 4 is thus complete.

Proof of Proposition 5. We begin by showing that the optimal objective value of the optimization
problem (11) is greater than or equal to the optimal objective value of the mixed-integer linear opti-
mization problem (12). Indeed, let (B, β1, . . . , βB) denote an optimal solution for the optimization
problem (11). This optimal solution assigns each candidate in N some distinct number of votes.
We assume without loss of generality that the solution assigns each candidate some distinct number
of votes between 1 and |N |; if this property does not hold for a given solution, one can simply omit
votes for the candidates receiving more than |N | votes to achieve this property without requiring
any additional ballots.

From this optimal test deck, we construct a binary vector γ ∈ {0, 1}C×N that is defined for each
c ∈ C and g ∈ N as

γc,g ≜ I {there exists i ∈ Nc such that |{b ∈ {1, . . . , B} : i ∈ βb}| = g} .

In the following bullet points, we show that the integer B ∈ N and the binary vector γ ∈ {0, 1}C×N

satisfy each of the constraints of the mixed-integer linear optimization problem (12):

• We first show that B, γ satisfies constraint (12b). Indeed, we observe for each contest c ∈ C
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that ∑
g∈N

γc,g =
∑
g∈N

I {there exists i ∈ Nc such that |{b ∈ {1, . . . , B} : i ∈ βb}| = g}

=
∑
i∈Nc

∑
g∈N

I {|{b ∈ {1, . . . , B} : i ∈ βb}| = g}

=
∑
i∈Nc

1

= |Nc|.

The first equality follows from the definition of γc,g. The second equality follows from the
fact that β1, . . . , βB satisfies constraint (11b). The third equality follows from the fact
that β1, . . . , βB satisfies constraint (11c) and from our earlier assumption that the inclusion
|{b ∈ {1, . . . , B} : i ∈ βb}| ∈ N holds for all candidates i ∈ N . The fourth equality follows
from algebra.

• We next show that B, γ satisfies constraint (12c). Indeed, we observe for each g ∈ N that∑
c∈C

γc,g =
∑
c∈C

I {there exists i ∈ Nc such that |{b ∈ {1, . . . , B} : i ∈ βb}| = g}

=
∑
c∈C

∑
i∈Nc

I {|{b ∈ {1, . . . , B} : i ∈ βb}| = g}

=
∑
i∈N

I {|{b ∈ {1, . . . , B} : i ∈ βb}| = g}

= 1.

The first equality follows from the definition of γc,g. The second equality follows from the
fact that β1, . . . , βB satisfies constraint (11b). The third equality follows from algebra.
The fourth equality follows from our earlier assumption that |{b ∈ {1, . . . , B} : i ∈ βb}| ∈
N for all candidates i ∈ N , which together with the fact that β1, . . . , βB satisfies con-
straint (11c) implies that there must exist exactly one candidate i ∈ N that satisfies the
equality |{b ∈ {1, . . . , B} : i ∈ βb}| = g.

• We next show that B, γ satisfies constraint (12d). Indeed, we observe for each contest c ∈ C
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that

1

vc

∑
g∈N

gγc,g

=
1

vc

∑
g∈N

gI {there exists i ∈ Nc such that |{b ∈ {1, . . . , B} : i ∈ βb}| = g}

=
1

vc

∑
i∈Nc

∑
g∈N

gI {|{b ∈ {1, . . . , B} : i ∈ βb}| = g}

=
1

vc

∑
i∈Nc

|{b ∈ {1, . . . , B} : i ∈ βb}|

=
1

vc

B∑
b=1

|Nc ∩ βb|

≤ 1

vc

B∑
b=1

vc

= B.

The first equality follows from the definition of γ. The second equality follows from the
fact that β1, . . . , βB satisfies constraint (11b). The third equality follows from the fact
that β1, . . . , βB satisfies constraint (11c) and from our earlier assumption that the inclusion
|{b ∈ {1, . . . , B} : i ∈ βb}| ∈ N holds for all candidates i ∈ N . The fourth equality follows
from algebra. The inequality follows from the fact that β1, . . . , βB ∈ B. The fifth equality
follows from algebra.

• Finally, we show that B, γ satisfies constraint (12e). Indeed, it follows from the fact that
β1, . . . , βB satisfies constraint (11c) and from our assumption that |{b ∈ {1, . . . , B} : i ∈ βb}| ∈
N for all candidates i ∈ N that there must exist a candidate i ∈ N that satisfies the equality
|{b ∈ {1, . . . , B} : i ∈ βb}| = N . Therefore, we conclude that the inequality B ≥ N must be
satisfied.

In summary, we have shown in the above bullet points that the integer B ∈ N and the binary
vector γ ∈ {0, 1}C×N is a feasible but possibly sub-optimal solution for the mixed-integer linear
optimization problem (12). Because (B, β1, . . . , βB) is an optimal solution for the optimization
problem (11), our proof that the optimal objective value of the optimization problem (11) is greater
than or equal to the optimal objective value of the mixed-integer linear optimization problem (12)
is thus complete.

It remains for us to show that the optimal objective value of the mixed-integer linear opti-
mization problem (12) is greater than or equal to the optimal objective value of the optimization
problem (11). To show this, let B ∈ N and γ ∈ {0, 1}C×N denote any optimal solution of the
mixed-integer linear optimization problem (12). Moreover, let π : N → N denote the function that
satisfies the equality π(i) =

∑
g∈N gγc,g for all contests c ∈ C and candidates i ∈ Nc. It follows

from the fact that B, γ is a feasible solution for the mixed-integer linear optimization problem (12)
that the function π is a bijection. Given the bijection π, we now construct a test deck (β1, . . . , βB)
using the following procedure:
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β1, . . . , βB ← ∅
for c ∈ C do

b← 1
for i ∈ Nc do

for ℓ ∈ {1, . . . , π(i)} do
βb ← βb ∪ {i}
b← (b mod B) + 1

end for
end for

end for

The procedure begins by initializing B blank ballots. Then, for each contest c ∈ C, the procedure
iterates through the ballots and adds the candidates to the ballots. It follows from the fact that
B ≥ N and from the fact that π(j) ∈ N for all candidates j ∈ N that each candidate i ∈ Nc will
be selected by this procedure by π(i) different ballots. Moreover, it follows from the fact that B ≥
1
vc

∑
i∈Nc

π(i) that the procedure will select no more than vc of the targets from Nc in any ballot.
Therefore, we conclude that the procedure will output a test deck that satisfies β1, . . . , βB ∈ B as
well as satisfies all of the constraints of the optimization problem (11). Because we have shown that
any optimal solution for the mixed-integer linear optimization problem (12) can be transformed into
a feasible solution for the optimization problem (11) with the same objective value, we conclude
that the optimal objective value of the mixed-integer linear optimization problem (12) must be
greater than or equal to the optimal objective value of the optimization problem (11). Our proof
of Proposition 5 is thus complete.

F.8 Proofs from Appendix B

Proof of Proposition 6. Construct a deck of ballots β1, . . . , βN such that for each i ∈ N , βi = {i}.
It holds that T ∗

i (β1, . . . , βN ) = 1 for each i ∈ N , since only ballot βi is interpreted as containing
a vote for candidate i. It also holds for any σ ∈ Σ and candidate i ∈ N that T σ

i (β1, . . . , βN ) = 1,
since only ballot βσ(i) is interpreted as containing a vote for candidate i. Thus, we conclude that
T σ(β1, . . . , βB) = T ∗(β1, . . . , βB) and T ∗

i (β1, . . . , βN ) = 1 ≥ 1 for all i ∈ N .

Proof of Theorem 4. Recall that each σ ∈ Σ can be interpreted as a permutation on N , which
implies that it can be decomposed into a number of cycles with disjoint sets of elements.15 Let
the set of elements in each of the K cycles be denoted O1, . . . ,OK . We now construct a test deck
β1, . . . , βB such that B ≜ K(K + 1)/2 and

β1 ≜ O1,

β2, β3 ≜ O2

β4, β5, β6 ≜ O3

...

βK(K−1)
2

+1
, . . . , βK(K+1)

2

≜ OK .

Because the bidirectional implication σn(i) ∈ Nc ⇐⇒ σn(i) = i holds for all contests c ∈ C,
candidates i ∈ Nc, and integers n ∈ N, we know that each set Ok includes at most one candidate

15We say that i, j ∈ N are in the same cycle if and only if there exists an integer k ∈ N that satisfies σk(i) = j.
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from each contest. This means at most one candidate from each contest is marked on each ballot,
thereby implying that β1, . . . , βB ∈ B. Moreover, for each candidate i ∈ Ok, we observe that

T ∗
i (β1, . . . , βB) =

B∑
b=1

I {i ∈ βb and |βb ∩Nc| ≤ vc}

=

B∑
b=1

I {i ∈ βb}

= k.

The first equality is the definition of T ∗
i (·). The second equality follows because β1, . . . , βB ∈ B.

The third equality follows from the fact that the test deck has been constructed to contain k ballots
that vote for the candidates in Ok.

We conclude by showing that the voting machine with mapping σ gives the correct output for
each candidate i ∈ Nc in each contest c ∈ C:

T σ
i (β1, . . . , βB) =

B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

=

B∑
b=1

I {i ∈ βb and |{j ∈ βb : j ∈ Nc}| ≤ vc}

=
B∑
b=1

I {i ∈ βb and |βb ∩Nc| ≤ vc}

= T ∗
i (β1, . . . , βB).

The first equality is the definition of T σ(·). The second equality holds because each ballot βb marks
every candidate that falls in the same cycle under σ, which implies that σ(j) ∈ βb ⇐⇒ j ∈ βb for
all j ∈ Nc. The third equality follows from algebra. The fourth equality is the definition of T ∗(·).
Our proof of Theorem 4 is thus complete.

F.9 Proofs from Appendix D

Proof of Proposition 7. Let β̄ ≜ N be the ballot that votes for every target, and let (B, β1, . . . , βB)
denote a feasible solution for the optimization problem (RO-Σ). For each candidate i ∈ N , we
know that the reported vote total under any incorrect mapping σ ∈ Σ is as follows, where c ∈ C is
the contest containing candidate i:

T σ
i (β1, . . . , βB, β̄) =

(
B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

)
+ I
{
σ(i) ∈ β̄ and

∣∣{σ(j) ∈ β̄ : j ∈ Nc

}∣∣ ≤ vc
}

= T σ
i (β1, . . . , βB) + I

{
σ(i) ∈ β̄ and

∣∣{σ(j) ∈ β̄ : j ∈ Nc

}∣∣ ≤ vc
}

= T σ
i (β1, . . . , βB) + I {|Nc| ≤ vc} .

The first two equalities follow from the definition of T σ
i (·), and the third equality follows from the

fact that β̄ = N . The reported vote total on a properly functioning voting machine, meanwhile, is
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given by the following:

T ∗
i (β1, . . . , βB, β̄) =

(
B∑
b=1

I {i ∈ βb and |βb ∩Nc| ≤ vc}

)
+ I
{
i ∈ β̄ and

∣∣β̄ ∩Nc

∣∣ ≤ vc
}

= T ∗
i (β1, . . . , βB) + I

{
i ∈ β̄ and

∣∣β̄ ∩Nc

∣∣ ≤ vc
}

= T ∗
i (β1, . . . , βB) + I {|Nc| ≤ vc} .

The first two equalities follow from the definition of T ∗
i (·), and the third equality again follows from

the fact that β̄ = N .
We observe that because (B, β1, . . . , βB) is a feasible solution for the optimization problem (RO-Σ),

it must be the case that T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB) for all σ ∈ Σ. This means that for each
such σ the resulting vectors must differ in at least one position; that is, there must exist some i ∈ N
such that T σ

i (β1, . . . , βB) ̸= T ∗
i (β1, . . . , βB). For this i, we can conclude the following:

T σ
i (β1, . . . , βB, β̄) = T σ

i (β1, . . . , βB) + I {|Nc| ≤ vc}
̸= T ∗

i (β1, . . . , βB) + I {|Nc| ≤ vc}
= T ∗

i (β1, . . . , βB, β̄).

The two equalities follow from the chain of equalities derived above, and the non-equality follows
from the fact that T σ

i (β1, . . . , βB) ̸= T ∗
i (β1, . . . , βB) for the given i ∈ N . We have therefore shown

that there exists some i ∈ N for each σ ∈ Σ such that T σ
i (β1, . . . , βB, β̄) ̸= T ∗

i (β1, . . . , βB, β̄).
This means the vectors T σ(β1, . . . , βB, β̄) and T ∗(β1, . . . , βB, β̄) differ in at least one position, so
Proposition 7 is proven.

Proof of Proposition 8. Let (B, β1, . . . , βB) denote a feasible solution to the optimization prob-
lem (RO-Σ), let σ ∈ Σ, and let β̃ ⊆ N denote any filled-out ballot that satisfies the following
equality for each contest c ∈ C:

|β̃ ∩Nc| =

{
vc + 1, if |Nc| > vc,

0, otherwise.

If there exists b ∈ B and c ∈ C such that |{σ(j) ∈ βb : j ∈ Nc}| > vc, then our proof is complete.
Therefore, we assume for the rest of the proof of Proposition 8 that the inequality |{σ(j) ∈ βb : j ∈
Nc}| ≤ vc holds for all b ∈ B and c ∈ C. This allows us to determine that the following holds:∑

c∈C

∑
i∈Nc

T ∗
i (β1, . . . , βB) =

∑
c∈C

∑
i∈Nc

B∑
b=1

I{i ∈ βb and |βb ∩Nc| ≤ vc}

=
∑
c∈C

∑
i∈Nc

B∑
b=1

I{i ∈ βb}

=
∑
c∈C

∑
i∈Nc

B∑
b=1

I{σ(i) ∈ βb}

=
∑
c∈C

∑
i∈Nc

B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

=
∑
c∈C

∑
i∈Nc

T σ
i (β1, . . . , βB). (17)
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The first equality is the definition of T ∗
i (·). The second equality holds because β1, . . . , βB ∈ B.

The third equality holds because σ is a bijection over N , so the transformation only permutes the
order in which terms are added to the sum. The fourth equality holds due to our assumption that
|{σ(j) ∈ βb : j ∈ Nc}| ≤ vc. The fifth equality is the definition of T σ

i (·).
It follows from the fact that (B, β1, . . . , βB) is a feasible solution to the optimization prob-

lem (RO-Σ) and from the fact that σ ∈ Σ that T ∗(β1, . . . , βB) ̸= T σ(β1, . . . , βB). It follows from
this fact and from the equality derived on line (17) that there must exist a candidate i ∈ Nc in
some contest c ∈ C that satisfies the strict inequality T ∗

i (β1, . . . , βB) < T σ
i (β1, . . . , βB). For this

candidate i, the following must hold:

T ∗
i (β1, . . . , βB, β̃) =

(
B∑
b=1

I {i ∈ βb and |βb ∩Nc| ≤ vc}

)
+ I
{
i ∈ β̃ and

∣∣∣β̃ ∩Nc

∣∣∣ ≤ vc

}
=

(
B∑
b=1

I {i ∈ βb and |βb ∩Nc| ≤ vc}

)
= T ∗

i (β1, . . . , βB)

< T σ
i (β1, . . . , βB)

=

(
B∑
b=1

I

{
σ(i) ∈ βb and

|{σ(j) ∈ βb : j ∈ Nc}| ≤ vc

})

≤

(
B∑
b=1

I

{
σ(i) ∈ βb and

|{σ(j) ∈ βb : j ∈ Nc}| ≤ vc

})

+ I

{
σ(i) ∈ βb and

|{σ(j) ∈ βb : j ∈ Nc}| ≤ vc

}
= T σ

i (β1, . . . , βB, β̃).

The first equality is the definition of T ∗
i (·). The second equality holds because the construction

of the filled-out ballot β̃ implies that either |β̃ ∩ Nc| = vc + 1 or i /∈ β̃. The third equality is the
definition of T ∗

i (·). The first inequality follows for candidate i by earlier reasoning. The fourth
equality is the definition of T σ

i (·). The second inequality holds because I{·} is non-negative. The
fifth equality is the definition of T σ

i (·).
In summary, we have shown that if the inequality |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc holds for all

b ∈ B and c ∈ C, then there must exist a candidate i ∈ N that satisfies T ∗
i (β1, . . . , βB, β̃) ̸=

T σ
i (β1, . . . , βB, β̃). Our proof of Proposition 8 is thus complete.

F.10 Proofs from Appendix E

Proof of Lemma 4. Let (B, β1, . . . , βB) be an optimal solution for the optimization problem (RO-Σ)
for a ballot style parameterized by the tuple (N , C, {Nc}c∈C , {vc}c∈C). Let C̄ ⊂ C be a subset of that
ballot style’s contests which we are removing from the ballot style, and let N̄ ≜

⋃
c∈C̄ Nc be the

candidates in those contests. Define C′ ≜ C \ C̄ and N ′ ≜ N \ N̄ as the contests and candidates left
over when the subsets C̄ and N̄ are removed. Consider the ballot style created when the candidates
N̄ and contests C̄ are removed, which is parameterized by the tuple (N ′, C′, {Nc}c∈C′ , {vc}c∈C′).
Define Σ′ as the set of non-identity bijections over N ′; that is, allow it to be the set of possible
mappings for this new ballot style.
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Consider some particular σ′ ∈ Σ′, and let the extension of this mapping to the domain N be
defined for each candidate i ∈ N as

σ(i) ≜

{
σ′(i), if i ∈ N ′,

i, if i ∈ N̄ .

We first observe for each candidate i ∈ N̄ that

T σ
i (β1, . . . , βB) =

B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

=

B∑
b=1

I {i ∈ βb and |{j ∈ βb : j ∈ Nc}| ≤ vc}

=
B∑
b=1

I {i ∈ βb and |βb ∩Nc| ≤ vc}

= T ∗
i (β1, . . . , βB).

The first equality holds by the definition of T σ
i (·). The second equality holds because σ(i) = i for

all i ∈ N̄ . The third equality follows from algebra. The fourth equality follows from the definition
of T σ

i (·).
It follows from the fact that (B, β1, . . . , βB) is a feasible solution for the optimization prob-

lem (RO-Σ) that that T σ(β1, . . . , βB) ̸= T ∗(β1, . . . , βB). With the equality derived above, this
means that there must exist a candidate i ∈ N ′ that satisfies T σ

i (β1, . . . , βB) ̸= T ∗
i (β1, . . . , βB).

Take that candidate i and let c ∈ C′ be the contest that satisfies i ∈ Nc. Then, it holds that

T ∗
i (β1 \ N̄ , . . . , βB \ N̄ ) =

B∑
b=1

I
{
i ∈ βb \ N̄ and

∣∣(βb \ N̄ ) ∩Nc

∣∣ ≤ vc
}

=
B∑
b=1

I
{
i ∈ βb and

∣∣(βb \ N̄ ) ∩Nc

∣∣ ≤ vc
}

=
B∑
b=1

I {i ∈ βb and |βb ∩Nc| ≤ vc}

= T ∗
i (β1, . . . , βB)

̸= T σ
i (β1, . . . , βB)

=

B∑
b=1

I {σ(i) ∈ βb and |{σ(j) ∈ βb : j ∈ Nc}| ≤ vc}

=
B∑
b=1

I
{
σ′(i) ∈ βb and

∣∣{σ′(j) ∈ βb : j ∈ Nc

}∣∣ ≤ vc
}

=

B∑
b=1

I
{
σ′(i) ∈ βb \ N̄ and

∣∣{σ′(j) ∈ βb \ N̄ : j ∈ Nc

}∣∣ ≤ vc
}

= T σ′
i (β1 \ N̄ , . . . , βB \ N̄ ).

The first equality holds by the definition of T ∗
i (·). The second equality holds because i /∈ N̄ . The

third equality holds because N̄ ∩Nc = ∅. The fourth equality holds by the definition of T ∗
i (·). The
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non-equality follows from our choice of i. The fifth equality holds by the definition of T σ
i (·). The

sixth equality holds because σ(i) = σ′(i) for all i ∈ N ′. The seventh equality holds because σ′ has
a range which excludes N̄ . The eighth equality is the definition of T σ′

i (·).
In summary, we have shown for each σ′ ∈ Σ′ that there exists a candidate i ∈ N ′ that satisfies

T ∗
i (β1 \ N̄ , . . . , βB \ N̄ ) ̸= T σ′

i (β1 \ N̄ , . . . , βB \ N̄ ). This fact, along with the observation that
β1 \ N̄ , . . . , βB \ N̄ ∈ B since β1, . . . , βB ∈ B, allows us to conclude that (B, β1 \ N̄ , . . . , βB \ N̄ )
is a feasible solution to the optimization problem (RO-Σ) for the ballot style parameterized by the
tuple (N ′, C′, {Nc}c∈C′ , {vc}c∈C′).
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