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Abstract. We consider bilevel optimization problems in which the leader has
no or only partial knowledge about the objective function of the follower. The
studied setting is a sequential one in which the bilevel game is played repeatedly.
This allows the leader to learn the objective function of the follower over time.
We focus on two methods: a multiplicative weight update (MWU) method and
one based on the lower-level’s KKT conditions that are used in the fashion of
inverse optimization. The MWU method requires less assumptions but the
convergence guarantee is also only on the objective function values, whereas
the inverse KKT method requires stronger assumptions but actually allows to
learn the objective function itself. The applicability of the proposed methods is
shown using two case studies. First, we study a repeatedly played continuous
knapsack interdiction problem and, second, a sequential bilevel pricing game in
which the leader needs to learn the utility function of the follower.

1. Introduction

Bilevel optimization is a very active field of research and the interest of the
optimization and operations research community significantly increased over the last
years and decades. The reason is that these models allow to capture hierarchical
decision-making processes. However, bilevel optimization problems are very hard to
solve; see, e.g., Hansen et al. (1992) and Jeroslow (1985) for hardness results. For a
more general overview, we refer the interested reader to the books by Dempe (2002)
and Dempe et al. (2015) as well as to the recent survey by Kleinert et al. (2021).

Most of the research on bilevel optimization deals with the case that the leader,
who acts first in the given hierarchical setting, has complete knowledge about the
optimization problem of the follower. This means that she knows the objective
function and all the constraints of the follower. In such situations, research mainly
focuses on theoretical questions such as existence of solutions or optimality conditions
as well as on algorithms for solving these problems. However, in practice, the
follower’s optimization problem is often not (fully) known by the leader. In this
paper, we deal with such situations and develop methods that allow to learn the
objective function (values) of the follower. To this end, we consider sequential bilevel
problems, i.e., bilevel optimization problems that are “played” repeatedly. This
allows the leader to collect information about the replies of the follower for the
given decisions of the leader, which makes it possible to get some insights into the
decision criteria (i.e., the objective function) of the follower.

Our main contribution are two methods to learn the objective function (values)
of the follower. First, we consider a specialization of the multiplicative weight
update (MWU) method (Arora et al. 2012) to learn the objective function values of
the follower in a sequential bilevel setting. The method is mainly based on Bärmann
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et al. (2017) and Bärmann et al. (2018), where the MWU method is used to learn
the objective function values of single-level combinatorial optimization problems.
We extend their method to the bilevel case by allowing for a combination of known
and unknown objective function coefficients and by considering quadratic objective
functions, for which we prove asymptotic results that illustrate the convergence
properties of the method. Second, we embed the ideas of Keshavarz et al. (2011)
in the bilevel setting. In their paper, the authors study how to impute unknown
objective functions of convex and parametric optimization problems by means of
inverse optimization and the Karush–Kuhn–Tucker (KKT) conditions. This method,
called inverse KKT method in what follows, delivers stronger results compared to
the MWU method but also requires stronger assumptions. In a nutshell, the inverse
KKT method allows for computing a so-called consistent objective function of the
follower, which perfectly explains the already observed solutions of the follower in
terms of inverse optimization. We discuss the details later when we present the
methods. To show the applicability of our approaches, we study two different bilevel
problems—first, a repeatedly played continuous knapsack interdiction problem and,
second, a repeatedly played bilevel pricing game, in which the leader needs to learn
the utility function of the follower.

As the last reference already suggests, our approaches are strongly connected to
the field of inverse optimization, see, e.g., Ahuja and Orlin (2001) for a primer and
the references given in the literature overview in Bärmann et al. (2017) for further
reading. In addition, we refer to Iraj and Terekhov (2021) for a recent comparison
of inverse optimization and machine learning approaches to learn a convex objective
function of a single-level optimization problem. Moreover, our MWU approach
can be considered as an extension of the recent research on inverse optimization
through online learning as it is considered in Bärmann et al. (2018). In addition
to the MWU approach, other online learning frameworks, e.g., based on gradient
methods, are used in the literature to learn unknown convex objective functions or
constraints even with noisy data; see, e.g., Dong et al. (2018) and the references
therein. Moreover, we refer to Besbes et al. (2023) for a theoretical analysis of
offline (based on inverse optimization) and online learning methods with a focus
on minimizing the regret of single-level optimization problems with unknown costs.
Finally, let us also mention Tan et al. (2020), who use bilevel optimization to learn
linear programs from observed optimal decisions.

Moreover, the considered setup is related to the field of robust optimization and
bilevel optimization under uncertainty since the objective function of the follower is
not (fully) known to the leader and can thus be considered an uncertain parameter
of the overall model. For a general overview of the field of bilevel optimization
under uncertainty, we refer to the recent survey by Beck et al. (2023b) and for its
connection to robust optimization to Goerigk et al. (2023). This field is rather
young and not many papers actually consider the task of learning problem data of
the lower level. In particular, although there have been very many applications of
bilevel optimization problems for machine learning, see, e.g., Bennett et al. (2008)
or Table 1 in Khanduri et al. (2021), the other way around is still in its infancy. In
Molan and Schmidt (2023), the authors consider unknown lower-level problems and
propose a learning method based on neural networks for the best-reply function
of the follower, which is then introduced as a constraint in the problem of the
leader. A similar approach is followed by Vlah et al. (2022), where the authors
use convolutional neural networks for tackling bilevel bidding problems arising in
power markets. A very similar setting compared to ours is studied by Borrero et al.
(2022). However, the methods used and the results obtained are completely different;
see also Borrero et al. (2016, 2019) and Yang et al. (2021) for former papers that
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paved the way for the methods and results in Borrero et al. (2022). Let us also
mention Kwon and Park (2022), where the authors study single-level reformulations
of bilevel problems and where the leader’s decision is predicted with the help of
graph neural networks. Hence, they consider a kind of opposite situation in which
the uncertainty is in the upper- and not in the lower-level problem. In a very recent
paper, Li and Han (2023) consider a very related setup of a Stackelberg game in
which the follower’s objective function is unknown as well. Their approach is based
on gradient methods using inexact best responses of the follower for solving the
problem. Hence, the studied methods are very different from what we propose. A
similar setting is considered by Sessa et al. (2020), but the authors use kernel-based
approaches. Finally, similar questions have been studied in sequential games as well;
see, e.g., Clarke et al. (2023) and the references therein.

The remainder of the paper is structured as follows. In Section 2, we formally
define sequential bilevel problems and introduce the necessary notation. Afterward,
in Section 3, we introduce and analyze the MWU method, whereas the inverse
KKT method is presented in Section 4. The case studies on continuous knapsack
interdiction and on bilevel pricing are discussed in Section 5 before we close the
paper in Section 6, where we summarize our findings and where we also sketch some
ideas for potential future research directions.

2. Problem Statement

We consider the hierarchical interaction between a leader and a follower modeled
by a bilevel problem of the general form

max
x,y

F (x, y)

s.t. G(x, y) ≤ 0,
y ∈ Ψ(x),

where Ψ(x) is the set of optimal solutions of the x-parameterized problem
max
y

f(x, y)

s.t. y ∈ Y (x).

The quadratic objective function f(x, y) := y>Qy + c>y of the follower is defined
by the matrix Q ∈ Rn×n and the vector c ∈ Rn and is assumed to be only partially
known to the leader. We denote by Uc ⊆ [n] := {1, . . . , n} and UQ ⊆ [n]2 := [n]× [n]
the index sets of the unknown entries in c and Q, respectively. As a consequence,
the leader needs to make a decision x while being unaware of the lower-level
objective function and needs to wait to observe the corresponding reaction y of
the follower. We assume that the corresponding bilevel game between the leader
and the follower is played repeatedly for T <∞ times, leading to a sequence of T
upper-level decisions xt and corresponding lower-level reactions yt, one for every
t ∈ [T ] := {1, . . . , T}.

While Q and c remain partially unknown to the leader, the follower has constant
access to them. Hence, in every round, the follower’s response yt is a solution of the
parametric lower-level problem

max
y

y>Qy + c>y (1a)

s.t. y ∈ Y (xt). (1b)

Under the assumption that the feasible set Y (xt) is known to the leader for all t, we
use the set of bilevel solutions (xt, yt), t ∈ [T ], and present two inverse optimization
methods to learn the objective function (value) of the follower.
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3. A Multiplicative Weight Update Method

We now present a method to learn optimal objective function values of the
follower based on the multiplicative weight update (MWU) algorithm (Arora et al.
2012). To this end, we consider quadratic lower-level objective functions (1a) that
are not or only partially known and we use past observations (xt, yt), t ∈ [T ], from
leader-follower interactions to iteratively update the leader’s guess of the unknown
follower’s objective function.

Our analysis follows the one applied by Bärmann et al. (2017) and Bärmann
et al. (2018), who use an MWU algorithm to learn objective values of single-level
problems with linear objective functions. We now extend this method (i) to quadratic
functions, (ii) to only partially instead of completely unknown objective functions,
as well as (iii) to the case in which we allow for negative coefficients. For doing so,
we need the following assumptions.

Assumption 1. It holds ∑
i∈Uc

|ci|+
∑

(i,j)∈UQ

|Qij | = 1.

This assumption is mild in the sense that it only excludes the zero objective
since all other quadratic objective functions can be re-scaled so that the unknown
coefficients satisfy the assumption.

Assumption 2. There exists a constant K ≥ 0 such that
max

y1,y2∈Y (x)

{
‖y1 − y2‖∞ ,

∥∥y1y
>
1 − y2y

>
2
∥∥

max

}
≤ K

holds for all upper-level feasible decisions x.

Note that Assumption 2 is equivalent to requiring that for each feasible upper-
level decision x, the feasible set Y (x) of the follower’s problem is bounded. We
finally assume that we can partition the coefficients of the objective function into
sets of negative and nonnegative coefficients.

Assumption 3. The index sets
N c := {i : ci < 0, i ∈ [n]} ,
Pc := {i : ci ≥ 0, i ∈ [n]}

and
NQ :=

{
(i, j) : Qij < 0, (i, j) ∈ [n]2

}
,

PQ :=
{

(i, j) : Qij ≥ 0, (i, j) ∈ [n]2
}

are known.

If the latter assumption is strong in practice depends on the specific problem
at hand and we will discuss it again when considering the specific case studies in
Section 5.

By adapting the MWU method, we now present an iterative method, see Algo-
rithm 1, that is capable of learning the objective function values of the follower’s
problem over time. We now explain the main steps of the method in detail. Note
that each iteration of the algorithm corresponds to one round in the sequential
bilevel setting.

In every iteration t ∈ [T ], the algorithm first updates the coefficients ct and Qt for
the unknown objective coefficients while the known objective ones remain the same;
see Line 4–6. Afterward, the follower’s problem is solved using these computed
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Algorithm 1 A Multiplicative Weight Update Method
Input: Observations (xt, yt) for all t ∈ [T ], index sets Uc,UQ, known coefficients

ci, i ∈ [n] \ Uc, and Qij , (i, j) ∈ [n]2 \UQ, as well as index sets Pc, N c, PQ, NQ

Output: A sequence of objectives (c̄1, Q̄1), . . . , (c̄T , Q̄T )
1: Set η ←

√
ln(|Uc|+ |UQ|)/T and t← 1.

2: Set wtci
← 1 for all i ∈ Uc and set wtQij

← 1 for all (i, j) ∈ UQ.
3: while t ≤ T do
4: Set cti ← ci for i ∈ [n] \ Uc and Qtij ← Qij for (i, j) ∈ [n]2 \ UQ.
5: Set f ←

∑
i∈Uc |wtci

|+
∑

(i,j)∈UQ |wtQij
|.

6: Set cti ← wtci
/f for all i ∈ Uc and set Qtij ← wtQij

/f for all (i, j) ∈ UQ.
7: Compute ȳt by solving (P (xt, Qt, ct)).
8: Set d← max

{
maxi∈Uc {|ȳti − yti |} ,max(i,j)∈UQ

{∣∣ȳti ȳtj − ytiytj∣∣}}.
9: if d = 0 then

10: Set etci
← 0 for all i ∈ Uc and set etQij

← 0 for all (i, j) ∈ UQ.
11: else
12: Set etci

← (ȳti − yti)/d for all i ∈ Pc ∩ Uc and etci
← (yti − ȳti)/d for all

i ∈ N c ∩ Uc.
13: Set etQij

← (ȳiȳj−yiyj)/d for all (i, j) ∈ PQ∩UQ and etQij
← (yiyj−ȳiȳj)/d

for all (i, j) ∈ NQ ∩ UQ
14: end if
15: Set wt+1

ci
← wtci

(1− ηetci
) for all i ∈ Uc and set wt+1

Qij
← wtQij

(1− ηetQij
) for

all (i, j) ∈ UQ.
16: Set c̄ti ← −cti for all i ∈ Uc ∩N c and c̄ti ← cti for all i ∈ [n] \ (Uc ∩N c).

Set Q̄tij ← −Qtij for all (i, j) ∈ UQ ∩NQ and
Q̄tij ← Qtij for all (i, j) ∈ [n]2 \ (UQ ∩NQ).

17: Set t← t+ 1.
18: end while
19: return (c̄1, Q̄1), . . . , (c̄T , Q̄T )

coefficients for the objective function, which leads to solving the problem

max
y∈Y (xt)

 ∑
(i,j)∈I1

Qtijyiyj −
∑

(i,j)∈I2

Qtijyiyj +
∑
i∈I3

ctiyi −
∑
i∈I4

ctiyi

 (P (xt, Qt, ct))

with
I1 := [n]2 \ (UQ ∩NQ), I2 := UQ ∩NQ, I3 := [n] \ (Uc ∩N c), I4 := Uc ∩N c.

Note that the update in Line 6 assigns every unknown coefficient cti, i ∈ Uc, and Qtij ,
(i, j) ∈ UQ, a positive value. Thus, we use the index sets N c and NQ to equivalently
re-introduce the missing negative signs into the objective function. Note that we
also re-introduce the negative signs of the objective coefficients for the output of
the algorithm in Line 16.

As a final step of each iteration, we compute weights that are then used to update
the guess of the unknown coefficients at the beginning of the next iteration. These
weights are based on the difference between the actual solution ȳt of P (xt, Qt, ct)
and the solution yt of the follower’s problem that can be observed by the leader over
time; see Lines 8–15. Thus, from a bilevel perspective, the update of the weights
exploits the difference between the solution that the leader obtains by guessing the
unknown objective function and the actually decision of the follower.

Rather than producing one objective function, the presented method yields a
sequence of quadratic objective functions parameterized by (c̄t, Q̄t), t ∈ [T ]. These
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learned objective functions satisfy the following guarantees for the objective function
values.

Theorem 1. Suppose that Assumptions 1–3 hold. Further, let T ≥ 4 ln(|Uc|+ |UQ|)
with |Uc|+ |UQ| > 1 be satisfied. Then, applying Algorithm 1 to Problem (1) leads to

0 ≤ 1
T

T∑
t=1

( ∑
i∈[n]

(c̄ti − ci)(ȳti − yti)

+
∑

(i,j)∈[n]2
(Q̄tij −Qij)(ȳti ȳtj − ytiytj)

)
≤ 2K

√
ln(|Uc|+ |UQ|)

T
.

(2)

Proof. In order to prove the theorem, we apply Corollary 2.2 from Arora et al.
(2012) to Algorithm 1. To this end, we have to show that all assumptions are
fulfilled. First, the errors computed in Lines 12 and 13 of the algorithm both satisfy
etci
, etQij

∈ [−1, 1] for all i ∈ Uc and (i, j) ∈ UQ for all t.
For t ∈ T , let cti, i ∈ [n], and Qti,j , (i, j) ∈ [n]2, be the coefficients computed in

Algorithm 1 before re-introducing the negative sign in Line 16. The corresponding
unknown coefficients are nonnegative and they sum up to one due to Lines 6
and 15. In these lines we see that the weights never get negative and that the used
coefficients are divided by the positive sum of their absolute values. Thus, our
computed coefficients cti, Qtij for i ∈ Uc, (i, j) ∈ UQ, and t ∈ [T ] can be interpreted
as a probability distribution.

Furthermore, due to Assumption 1, the sum of the absolute true but unknown
coefficients adds up to one. Nevertheless, the coefficients ci with i ∈ Uc∩N c and Qij
with (i, j) ∈ UQ ∩NQ are in fact negative. In order to be able to re-interpret the
probability distribution used in the Corollary 2.2 in Arora et al. (2012) as the
true unknown coefficients, we consider for now the absolute values |ci| for i ∈ Uc
and |Qij | for (i, j) ∈ UQ of the true coefficients.

We now apply Corollary 2.2 in Arora et al. (2012) to the nonnegative output
(ct, Qt), t ∈ [T ], of our algorithm to obtain that

T∑
t=1

∑
i∈Uc

ctie
t
ci

+
∑

(i,j)∈UQ

Qtije
t
Qij


≤

T∑
t=1

∑
i∈Uc

|ci|(etci
+ η|etci

|) +
∑

(i,j)∈UQ

|Qij |(etQij
+ η|etQij

|)

+ ln(|Uc|+ |UQ|)
η

holds for all η ∈ (0, 1/2]. Furthermore, |etci
| ≤ 1 holds for all i ∈ Uc and |etQij

| ≤ 1
holds for all (i, j) ∈ UQ. We divide the inequality above by T , use Assumption 1,
and obtain

1
T

T∑
t=1

∑
i∈Uc

ctie
t
ci

+
∑

(i,j)∈UQ

Qtije
t
Qij

− 1
T

T∑
t=1

∑
i∈Uc

|ci|etci
+

∑
(i,j)∈UQ

|Qij |etQij


≤ η + ln(|Uc|+ |UQ|)

ηT
.

The right-hand side expression η + ln(|Uc|+ |UQ|)/(ηT ) attains its minimum for

η =
√

ln(|Uc|+ |UQ|)
T

≤ 1/2,
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which holds due to the assumption T ≥ 4 ln(|Uc|+ |UQ|). Hence,

1
T

T∑
t=1

∑
i∈Uc

ctie
t
ci

+
∑

(i,j)∈UQ

Qtije
t
Qij

− 1
T

T∑
t=1

( ∑
i∈Uc

|ci|etci
+

∑
(i,j)∈UQ

|Qij |etQij

)

≤ 2
√

ln(|Uc|+ |UQ|)
T

holds. Using the definitions of etci
and etQij

(Lines 12 and 13 of Algorithm 1) and
additionally multiplying the previous inequality by the constantK, see Assumption 2,
leads to

1
T

T∑
t=1

( ∑
i∈Uc∩Pc

(cti − |ci|)(ȳti − yti) +
∑

i∈Uc∩N c

(cti − |ci|)(yti − ȳti)

+
∑

(i,j)∈UQ∩PQ

(Qtij − |Qij |)(ȳti ȳtj − ytiytj)

+
∑

(i,j)∈UQ∩NQ

(Qtij − |Qij |)(ytiytj − ȳti ȳtj)
)

≤ 2K
√

ln(|Uc|+ |UQ|)
T

.

(3)

In our method, the known entries in c and Q remain unchanged from iteration to
iteration. Thus, we can include them in the left-hand side of Expression (3) leading
to

1
T

T∑
t=1

( ∑
i∈Pc

(|cti| − |ci|)(ȳti − yti) +
∑
i∈N c

(|cti| − |ci|)(yti − ȳti)

+
∑

(i,j)∈PQ

(|Qtij | − |Qij |)(ȳti ȳtj − ytiytj) +
∑

(i,j)∈NQ

(|Qtij | − |Qij |)(ytiytj − ȳti ȳtj)
)
,

which is equal to

1
T

T∑
t=1

( ∑
i∈Uc∩Pc

(cti − |ci|)(ȳti − yti) +
∑

i∈Uc∩N c

(cti − |ci|)(yti − ȳti) (4a)

+
∑

i∈Pc∩([n]\Uc)

(ci − ci)(ȳti − yti) +
∑

i∈N c∩([n]\Uc)

(|ci| − |ci|)(yti − ȳti) (4b)

+
∑

(i,j)∈UQ∩PQ

(Qtij − |Qij |)(ȳti ȳtj − ytiytj) (4c)

+
∑

(i,j)∈UQ∩NQ

(Qtij − |Qij |)(ytiytj − ȳti ȳtj) (4d)

+
∑

(i,j)∈PQ∩([n]2\UQ)

(Qij −Qij)(ȳti ȳtj − ytiytj) (4e)

+
∑

(i,j)∈NQ∩([n]2\UQ)

(|Qij | − |Qij |)(ytiytj − ȳti ȳtj)
)
, (4f)

since the newly added terms in Lines (4b), (4e), and (4f) equal zero. In addition, the
nonnegativity of each term follows from the optimality of ȳt w.r.t. c̄t, Q̄t, respectively
of yt w.r.t. c,Q. Using the variable mapping of Line 16, we obtain the desired
result. �

From the latter theorem, we immediately obtain the following corollary.
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Corollary 1. Under the requirements of Theorem 1, the inequalities

0 ≤ 1
T

T∑
t=1

( ∑
i∈[n]

c̄ti(ȳti − yti) +
∑

(i,j)∈[n]2
Q̄tij(ȳti ȳtj − ytiytj)

)
≤ 2K

√
ln(|Uc|+ |UQ|)

T

and

0 ≤ 1
T

T∑
t=1

( ∑
i∈[n]

ci(yti − ȳti) +
∑

(i,j)∈[n]2
Qij(ytiytj − ȳti ȳtj)

)
≤ 2K

√
ln(|Uc|+ |UQ|)

T
.

hold.

We now discuss the shown guarantees in more detail for the considered sequential
bilevel setting. The theorem implies that both the objective value error in terms of
the actual objective coefficients as well as the error in terms of the guessed objective
coefficients is getting small for large observations T . This means that if the leader
uses the guess (c̄t, Q̄t), on average and for T large enough, to predict a follower’s
solution ȳt, then the latter is nearly optimal w.r.t. the follower’s problem under
complete information. Finally, although we do not have a convergence theory for the
coefficients, we will later show in our numerical results that they very well match
the true coefficients in practice.

4. An Inverse KKT Method

In this section, we focus on learning the objective function of the follower’s
problem instead of the corresponding objective value as in the previous section.
Since learning the objective function itself is even more demanding than learning
the objective function value, we have to impose stronger assumptions compared to
the presented MWU approach. Thus, in addition to Assumption 3, we assume that
the follower’s objective function is concave-quadratic and that the x-parameterized
feasible set is polyhedral, i.e., the lower-level problem is given by

max
y

y>Qy + c>y s.t. A(x)y ≥ b(x) (5)

with b(x) ∈ Rm and A(x) ∈ Rm×n both depending on the leader’s decision x.
Further, Q ∈ Rn×n is symmetric and negative semidefinite. Moreover, let (xt, yt),
t ∈ [T ], be pairs of observations consisting of leader decisions xt and optimal follower
replies yt.

We now learn a consistent objective function of the follower’s problem by adapting
an approach for convex single-level problems by Keshavarz et al. (2011) to the
considered sequential bilevel setting. As in Keshavarz et al. (2011), we say that an
objective function is consistent if for a given xt, the corresponding yt is optimal for
Problem (5) for all t ∈ [T ].

In the following, we describe the approach in detail. Since the feasible set of
the follower’s problem (5) is polyhedral and due to the concavity of the objective
function, the Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient
without any further constraint qualifications. For fixed xt and yt, these KKT
conditions are given by

A(xt)yt − b(xt) ≥ 0, (6a)
2Qyt + c+A(xt)>λt = 0, (6b)

(λt)>(A(xt)yt − b(xt)) = 0, (6c)
λt ≥ 0. (6d)

If yt ∈ Rn is optimal for Problem (5) given a leader’s decision xt, there exists
Lagrange multipliers λt ∈ Rm such that the KKT conditions (6) are satisfied.
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In line with Keshavarz et al. (2011), we define a solution yt ∈ Rn as approximately
optimal for Problem (5) for given xt, if (6) is satisfied approximately, i.e., for yt
there exists λt such that the residuals

rtineq :=
[
(A(xt)yt − b(xt))

]−
, (7a)

rtstat(λ) := 2Qyt + c+A(xt)>λt, (7b)
rtcomp(λ) := (λt)>(A(xt)yt − b(xt)), (7c)

rtpos(λ) :=
[
(λt)

]−
. (7d)

are close to zero. Here, the operator [α]− := max{0,−α} in (7a) and (7d) is to be
understood component-wise.

We now minimize these residuals subject to additional constraints to compute a
consistent objective function. Since for each observation (xt, yt), the decisions yt are
optimal for the given xt, the inequality A(xt)yt ≥ b(xt) is satisfied. Consequently,
rtineq = 0 holds for all t ∈ [T ] and we do not have to explicitly minimize this residual
in the following. Moreover, the nonnegativity of the Lagrange multipliers can be
easily ensured by respective bound constraints, which is why rtpos(λ) = 0 can be
always be achieved by feasibility. Further, we can exploit a priori known information
about the objective function by imposing additional constraints. The problem to
compute a consistent objective function then reads

min
Q,c,λ

∑
t∈[T ]

‖rtstat‖22 +
∑
t∈[T ]

‖rtcomp‖22 (8a)

s.t. λt ≥ 0, t ∈ [T ], (8b)

Qij = Q̂ij , (i, j) ∈ [n]2 \ UQ, (8c)
Qij ≥ 0, (i, j) ∈ UQ ∩ PQ, (8d)
Qij ≤ 0, (i, j) ∈ UQ ∩NQ, (8e)
ci = ĉi, i ∈ [n] \ Uc, (8f)
ci ≥ 0, i ∈ Uc ∩ Pc, (8g)
ci ≤ 0, i ∈ Uc ∩N c, (8h)
Q � 0. (8i)

Problem (8) minimizes the sum of the squared residuals rtstat and rtcomp. The
residual rtstat is linear in Qij , (i, j) ∈ [n]2, and in ci, i ∈ [n], and rtcomp is linear in
the variables λti, i ∈ [m], t ∈ [T ]. Hence, the objective function is a convex-quadratic
function. Constraints (8b) ensure that the Lagrange multipliers are nonnegative.
By Constraints (8c)–(8h), we incorporate the a priori given knowledge about the
objective coefficients. In doing so, we fix the known objective coefficients, which
we denote by Q̂ij , (i, j) ∈ [n]2 \ UQ, and ĉi, i ∈ [n] \ Uc. In addition, we impose
the a priori known sign of the unknown coefficients. Finally, by the semidefinite-
programming constraint (8i), we ensure that the computed objective function is
negative semidefinite as the original objective function of the follower’s problem (5).
Overall, Problem (8) is a semidefinite problem.

Furthermore, the complementarity condition (6c) allows us to further tighten the
feasible set of Problem (8). As discussed, the primal constraint A(xt)yt ≥ b(xt) is
satisfied for all samples (xt, yt), t ∈ [T ], and the value of the slack of this constraint
is known a priori. Using this knowledge we define the index sets of active and
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inactive constraints
It0 :=

{
` ∈ [m] : (A(xt)yt − b(xt))` = 0

}
,

It+ :=
{
` ∈ [m] : (A(xt)yt − b(xt))` > 0

}
.

Thus, λt` = 0 holds for all ` ∈ It+ and λt` ≥ 0 holds for all ` ∈ It0 and all t ∈ [T ].
Introducing these equalities and inequalities as constraints, we obtain rtcomp = 0 for
all t ∈ [T ]. Consequently, we can equivalently reformulate Problem (8) as

min
Q,c,λ

∑
t∈[T ]

‖rtstat‖22 (9a)

s.t. λt` = 0, ` ∈ It+, t ∈ [T ], (9b)
λt` ≥ 0, ` ∈ It0, t ∈ [T ], (9c)
(8c)–(8i). (9d)

Remark 2. For the special case that the matrix Q of the follower’s problem (5) is
a diagonal matrix, we can replace the semidefinite-programming constraint (8i) by
the linear constraints Qii ≤ 0 for i ∈ [n]. These constraints together with setting
the non-diagonal entries of Q to 0 ensures that the computed objective function is
concave.

We finally discuss the presented approach in the light of the considered sequential
bilevel setting. The inverse KKT method enables the leader to compute a consistent
objective function for the unknown objective of the follower’s problem. More
precisely, after every round t ∈ T , the leader can apply the inverse KKT method to
the previously observed optimal decisions {y1, . . . , yt} of the follower to obtain a
consistent objective function. This computed function perfectly explains the observed
optimal decisions of the follower from a perspective of inverse optimization. However,
consistent objective functions are generally not unique and, thus, the presented
inverse KKT approach does not allow for conclusions about the corresponding
optimal objective value. In addition, the derivation of the inverse KKT method does
not provide any guarantees regarding the error w.r.t. the “true” objective function
of the follower. Thus, from a bilevel perspective, it is of special interest how a
consistent objective function, computed in round t of the sequential bilevel game,
performs in practice if it is used by the leader instead of the unknown objective
function of the follower in the following round t+1, which we analyze in the following
case studies.

5. Case Studies

In this section, we apply the presented learning methods to two different applica-
tions, in which the follower’s quadratic objective function is only partially known to
the leader. In Section 5.1, we consider a continuous knapsack interdiction problem.
In general, the class of interdiction problems is of special interest in the context
of learning the objective function (values) of the follower since usually the leader,
often referred to as attacker or defender, does not know the exact objective function
of the adversarial player. Further, due to the entirely opposing objectives of the
players in interdiction problems, the follower has no reason to share any information
about his objective function. In addition, we consider bilevel pricing problems, in
which the leader’s and follower’s objective function do not coincide; see Section 5.2.

Both methods, the MWU and inverse KKT approach, are implemented
in Python 3.9.7 and the corresponding optimization problems are solved with
Gurobi 9.5.1. All computations have been executed on a Intel© CoreTMi7-10510U
CPU with 8 cores of 1.8GHz each and 32GB RAM.
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5.1. Continuous Knapsack Interdiction Problems. We start by demonstrating
the performance of the presented learning methods using the example of the contin-
uous knapsack interdiction instance BKIP_100_1, which has 100 items and which
has been considered before in Beck et al. (2023a). For the origin of this instance,
we refer to Caprara et al. (2016) and Martello et al. (1999). We focus here on an
exemplary instance to show the behavior of the learning methods in detail, while an
extensive numerical study ranging over many different instances is out of scope of
this work. In doing so, we adapt this instance by relaxing the integrality constraints
and considering a quadratic objective function. This leads to a continuous knapsack
interdiction problem of the form

min
x∈[0,1]n

y>Qy + c>y (10a)

s.t. v>x ≤ B, (10b)
y ∈ arg max

ȳ∈[0,1]n

{
ȳ>Qȳ + c>ȳ : w>ȳ ≤ C, ȳi ≤ 1− xi, i ∈ [n]

}
, (10c)

where v, w ∈ Rn are the vectors of leader’s and follower’s weights, respectively, and
B,C ∈ R are the leader’s and the follower’s budget. Furthermore, the lower-level
objective function is concave-quadratic with c ∈ Rn and a negative-definite diagonal
matrix

Q := Diag(α1, . . . , αn) ∈ Rn×n, αi < 0, i ∈ [n].
For this application, our task is to learn all diagonal entries of Q and all entries of c,
i.e., 2n coefficients in total. For an algorithmic study of the linear version of this
problem we refer to Carvalho et al. (2018).

We note that in the considered application all variables are bounded. Conse-
quently, Assumption 2 is satisfied. Moreover, the follower’s objective is a quadratic
utility function, in which the quadratic term ȳ>Qȳ may, e.g., represent saturation
effects. Consequently, it is rather natural that the entries of c ∈ Rn are positive and
that the entries of Q are negative, which makes Assumption 3 straightforward to
satisfy.

5.1.1. Sampling. For our numerical experiments, we need a data set of past in-
teractions (xt, yt) between the leader and the follower, where yt is an optimal
response of the follower to the leader’s decision xt. The follower computes yt as
a solution to Problem (10c) for all t ∈ [T ], since unlike the leader, he has access
to the problem data. For our study, we generate such a data set (xt, yt), t ∈ [T ],
by first sampling T = 1000 upper level decisions xt on the hyperplane v>x = B,
i.e., we assume that the leader always uses her entire budget. We do so by using
the pool search functionality of Gurobi. Second, for every sampled point xt, we
solve the xt-parameterized lower-level problem to obtain yt. Due to the fact that
the follower’s problem is feasible for all sampled xt, we obtain a data set of 1000
pairs (xt, yt), t ∈ [T ]. The originally given instance BKIP_100_1 is linear and we use
the given coefficient vector c. Based on this vector, we randomly sample diagonal
entries for Q between the minimum and maximum entry of c. We then switch the
sign of these samples and re-scale c and Q to satisfy the required assumptions. We
finally note that the leader usually can directly obtain (xt, yt), t ∈ [T ], over time
since the leader knows her own decision xt and can observe the follower’s decision yt.

5.1.2. Learning with the Inverse KKT Method. The feasible set of the lower-level
Problem (10c) is polyhedral and the objective function to be maximized is concave.
Furthermore, for every sample (xt, yt), t ∈ [T ], yt is optimal w.r.t. the correspond-
ing xt. Thus, we can apply the inverse KKT method to compute the data c and Q
that minimize the violation of the stationarity condition as discussed in Section 4.
Using the generated samples, we build and solve Problem (9) for the lower level. To
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Figure 1. Relative consistency measure (11) for the solution of
the inverse KKT method when applied to the continuous knapsack
interdiction instance BKIP_100_1.

this end, we make use of Remark 2. After solving Model (9), we check whether the
objective function determined by the obtained solution c∗, Q∗ is consistent with the
observed data. To do so, we compute the relative consistency measure∣∣∣∣∣

(
(yt)>Q∗yt + (c∗)>yt

)
−
(
(ȳt)>Q∗ȳt + (c∗)>ȳt

)
(ȳt)>Q∗ȳt + (c∗)>ȳt

∣∣∣∣∣ , (11)

where yt is the observation, and ȳt is an optimum computed using the solution c∗, Q∗,
for the corresponding xt. For a consistent objective function, the relative consistency
measure is zero for all t ∈ [T ]. Figure 1 shows that the computed objective
function (c∗, Q∗) is able to identify every observation yt, t ∈ [T ], as a lower-level
optimum, i.e., the computed objective function is consistent as the corresponding
theoretical results guarantee.

The inverse KKT approach is designed to provide a consistent explanation for
the follower’s objective function w.r.t. already observed and known solutions of the
follower. However, in the considered sequential bilevel game, the leader is interested
in anticipating the future follower’s objective values and solutions to improve her
own decisions. Consequently, the out-of-sample performance of the inverse KKT
method is of special interest. To this end, we apply the inverse KKT approach
to the first 100 observations (xt, yt), t ∈ [100], to compute a consistent objective
function regarding these observed solutions of the follower. Afterward, we use this
objective function to predict the follower’s objective values and solutions for the
remaining 900 leader’s decisions xt. The difference between the objective values
and solutions using the imputed objective function and the true objective values
and solutions of the follower’s problems are illustrated in Figure 2. For doing so, we
measure the error regarding the objective values in terms of the MWU error (2).
Note that we do not take into account any result within the first 100 iterations
since in the inverse KKT approach we have to first observe these data and do not
dynamically update the objective coefficients from iteration to iteration as in the
MWU approach.

Although we have no theoretical guarantees for the out-of-sample performance,
we empirically observe that both the relative errors regarding the follower’s objective
values, i.e., the MWU error, and the error regarding the solutions of the follower
are small; see Figure 2. However, we also observe some clustered occurrences of
outliers w.r.t. the objective value and solution error, e.g., around time period 300.
This indicates that the training data, i.e., the first 100 observations, do not contain
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Figure 2. Results for the inverse KKT approach imputing the
objective function w.r.t. the first 100 data points and then continue
with these learned coefficients for the remaining time periods. Left:
MWU error (2). Right: Relative error w.r.t. the follower’s solu-
tion ‖ȳt − yt‖2/‖yt‖2, t ∈ [T ].

Figure 3. MWU error (2), average and per round, for every MWU
iteration when applied to the continuous knapsack interdiction in-
stance BKIP_100_1.

all information necessary to perfectly learn the true objective function. To address
this in practice, the leader can detect such a situation and re-compute the imputed
objective function at a certain point in time when she observes that the predicted
and observed solutions differ in too many cases.

5.1.3. Learning with the MWU Method. We now apply the MWU method to the
generated data set and iteratively update the unknown coefficients ci, i ∈ Uc = [n]
and Qii, (i, i) ∈ UQ = {(i, i) : i ∈ [n]}. The method outputs a sequence of objective
functions (ct, Qt), t ∈ [T ].

Figure 3 shows the MWU error (2) made in every iteration of the MWU method
when applied to Model (10) for the instance BKIP_100_1. In line with the theoretical
result, the figure illustrates that this error (in average) is decreasing for an increasing
number of samples. Consequently, also the error bounds of Corollary 1 converge to
zero.

In theory, these results do not extend to the solutions ȳt and the observations yt,
t ∈ [T ]. However, as illustrated in Figure 4 (left), the computed solutions match the
observations well over time. In addition, Figure 5 shows a similar development for
the computed coefficients ct, Qt. Comparing Figure 4 (left) and Figure 5 reveals
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Figure 4. Left: Relative error w.r.t. the follower’s solution ‖ȳt −
yt‖2/‖yt‖2, t ∈ [T ]. Right: Relative consistency measure (11).
Both per MWU iteration applied to the continuous bilevel knapsack
instance BKIP_100_1.

Figure 5. Left: ‖ct − c‖2/‖c‖2, t ∈ [T ]. Right: ‖Qt −Q‖F /‖Q‖F ,
t ∈ [T ]. Both per MWU iteration when applied to the continuous
knapsack interdiction instance BKIP_100_1.

that, in practice, we can learn the actual solutions better than the “true” objective
coefficients. A possible reason for this might be objective coefficients that belong to
items that are rarely used in optimal solutions and, thus, there is little information
to precisely learn these coefficients. Further, we empirically check if the computed
objective coefficients are consistent w.r.t. observations of the previous rounds in
Figure 4 (right). Although it is not theoretically guaranteed, the consistency measure
is quite small, but larger than in the inverse KKT approach; see Figure 1.

Finally, we exemplarily analyze the out-of-sample performance of the MWU
approach. To this end, we apply the MWU approach to the first 100 observa-
tions (xt, yt), t ∈ [100], and then proceed without any further updates of the
objective coefficients for the remaining iterations. As illustrated in Figure 6 (left),
the leader is able to learn a well-fitting objective function of the follower’s problem in
terms of the objective function values within the first 100 iterations. More precisely,
if the leader chooses the 100th update (c100, Q100) of the MWU method as objective
function for the remaining 900 iterations, then this leads to very small values of the
MWU error. To a certain extent, this also carries over to learning the follower’s
solution as we can see in Figure 6 (right). We further compare the out-of-sample
performance of the MWU approach with its original version, in which we update
the objective coefficients in each round. Note that even in the first 100 iterations,
the computed objective coefficients and follower’s solutions do not have to be the
same in both methods since the corresponding learning rates η differ. In terms
of the follower’s objective function values, i.e., the MWU error, the performance
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Figure 6. Results for the MWU algorithm with the adaption
that we stop updating the unknown objective coefficients after
iteration t = 100 and continue with these learned coefficients, i.e.,
(c100, Q100) for the remaining iterations. Left: MWU error (2).
Right: Relative error w.r.t. the follower’s solution ‖ȳt− yt‖2/‖yt‖2,
t ∈ [T ]. Both per MWU iteration when applied to the in-
stance BKIP_100_1.

of both variants of the MWU method are comparable, see Figure 3 and Figure 6
(left). In terms of learning the follower’s solution, we obtain more accurate results
when the follower’s objective function is continuously updated over the complete
time horizon, which follows from comparing Figure 4 (left) and Figure 6 (right).
Concluding, the results regarding the out-of-sample performance indicate that in the
considered sequential bilevel setting, the leader does not have to continuously update
the learned objective coefficients in each time period in practice. Instead, it suffices
to learn the objective coefficients within a specific number of time periods, which
in practice can come along with additional costs, e.g., for observing the follower’s
decision. After this learning period, the leader then can continue with the learned
follower’s objective function without any further updates if her main interest is on
the objective function values. If, however, highly accurate y-estimates are required,
further updating of the coefficients may be worth the additional effort.

5.2. Bilevel Pricing Problems. As a second application, we consider a bilevel
pricing model of the form

max
x,y

x>y

s.t. x ∈ [x−, x+],
y ∈ arg max

ȳ

{
u(ȳ)− x>ȳ : Aȳ ≥ b, 0 ≤ ȳ ≤ y+} , (12)

where x ∈ Rn is the vector of prices (the upper-level decisions) and y ∈ Rn are the
purchase decisions of the follower. Moreover, A ∈ Rm×n and b ∈ Rm describe the
polyhedral feasible set of the follower for which we additionally assume that the
bounds on the purchase decisions are given explicitly. Further, u(y) := y>Qy + c>y
is a concave-quadratic utility function with c ∈ Rn and

Q := Diag(α1, . . . , αn) ∈ Rn×n, αi < 0, i ∈ [n],
is a diagonal matrix with negative diagonal entries. Thus, while the leader maximizes
her revenue by setting prices x, the follower makes a purchase decision y to maximize
his utility (in which we subtract, as usual, costs). Consequently, as in the previous
application, Assumptions 1–3 are rather mild and straightforward to satisfy. For
more information on bilevel pricing models we refer to Bialas and Karwan (1984),
Labbé et al. (1998), and Labbé and Violin (2013).
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For our computations, we randomly sample the entries in the vector c between 0
and 1 and the entries on the main diagonal of Q between −1 and 0. Furthermore,
we use the data from the popular Stigler diet problem (Stigler 1945). To be
more precise, the vector b represents the minimum recommended amounts of daily
nutrients (e.g., protein, calcium, etc.), and the matrix A consists of the amount
of nutrients contained in each of the n food items considered. Thus, the leader
sets n = 78 prices (xi) for the 78 items that the follower can purchase (yi). In
addition, we use the lower and upper bounds x−i = 0 and x+

i = 1 for all i ∈ [n]. The
upper bound on y is given by y+

i := max{bj/Aji : j ∈ [m] with Aji 6= 0} for i ∈ [n].
We now equivalently reformulate the follower’s problem in (12) such that the

objective function is independent from products of upper- and lower-level variables,
i.e., x>ȳ. The latter is necessary since, from a leader’s perspective, x are no objective
coefficients that are to be learned. Consequently, we move these products to the
feasible set by an epigraph reformulation and consider the objective coefficient of
the corresponding new variable as known to the leader. More precisely, we introduce
a new variable µ and we obtain the model

max
y,µ

y>Qyt + c>y − µ s.t. (y, µ) ∈ Y (x),

where the x-parameterized feasible set Y (x) is given by

Y (x) :=

(y, µ) ∈ Rn × R : Ay ≥ b, µ ≥
∑
i∈[n]

xiyi, 0 ≤ y ≤ y+

 .

Concerning the variable µ,
µ =

∑
i∈[n]

xiyi

holds in an optimum. Hence, we also have

µ− :=
∑
i∈[n]

x−i y
−
i ≤ µ ≤

∑
i∈[n]

x+
i y

+
i =: µ+.

Using these lower and upper bounds on µ, we can compute a constant
K ≥ max

(y1,µ1),(y2,µ2)∈Y (x)

{
‖y1 − y2‖∞ ,

∥∥y1y
>
1 − y2y

>
2
∥∥

max , |µ1 − µ2|
}
,

which fulfills Assumption 2. Further, let

z :=
(
y
µ

)
∈ Rn+1, c̃ :=

(
c
−1

)
∈ Rn+1, b̃ :=

(
b
0

)
∈ Rm+1,

Q̃ :=
[
Q 0
0 0

]
∈ R(n+1)×(n+1), Ã :=

[
A 0
−x> 1

]
∈ R(m+1)×(n+1).

Then, the lower level can be written as
max
z

z>Q̃z + c̃>z

s.t. Ã(x)z ≥ b̃,
z+
i ≥ zi ≥ z

−
i , i ∈ [n+ 1],

with z+ := (y+, µ+) and z− := (y−, µ−).

5.2.1. Sampling. As in the previous section, we need the data (xt, zt) corresponding
to the interactions between the leader and follower, i.e., zt is an optimal response of
the follower, knowing the true objective function, to the leader’s decision xt.

For our study, we generate such a data set by first sampling T = 1000 upper level
decisions in [x−, x+] by using Latin hypercube sampling as implemented in SciPy.
Second, for every sampled xt, we solve the xt-parameterized lower-level problem to



LEARNING THE FOLLOWER’S OBJECTIVE IN SEQUENTIAL BILEVEL GAMES 17

Figure 7. Relative deviations between the computed objective
coefficients from the true but unknown ones. Left: |(c∗i − ci)/ci|,
i ∈ [n]. Right: |(Q∗ii −Qii)/Qii|, i ∈ [n].

obtain a solution zt. Due to the fact that the follower’s problem is feasible for all
sampled xt, we obtain a data set of 1000 pairs (xt, zt), t ∈ [T ].

5.2.2. Learning with the Inverse KKT Method. Analogously to the previous section,
we apply the inverse KKT approach to the bilevel pricing problem and obtain
consistent objective coefficients c∗ and Q∗. Again, the relative consistency mea-
sure (11) is small, i.e., no larger than 10−6. Although the theory only guarantees a
consistent objective function as output of the inverse KKT approach, this objective
function matches the “true” objective function of the follower’s problem quite well
with some exceptions, which we illustrate in Figure 7. The outliers in the relative
errors correspond to data points with little to no variation. To be more precise,
in the generated data set (xt, yt), t ∈ [1000], for the bilevel pricing problem, the
items yti linked to outliers are never or only very rarely bought by the follower. As a
consequence, the choice of the corresponding objective coefficients has only a minor
impact (if at all) on the computed and observed solutions.

We finally analyze the out-of-sample performance of the inverse KKT approach
for the pricing application. To this end, we impute an objective function based on
the first 100 observations (xt, yt), t ∈ [100]. Then, we use this objective function
for the remaining iterations. The corresponding errors w.r.t. the objective function
values, measured by the MWU error (2), and w.r.t. the solutions of the follower’s
problem are illustrated in Figure 8. We observe that the out-of-sample performance
of the inverse KKT approach is very good, i.e., using only the first 100 observation
still allows the leader for learning an objective function that can be used to predict
future objective values and decisions of the follower.

5.2.3. Learning with the MWU Method. Let (ct, Qt), t ∈ [T ], be the output of the
MWU method applied to the considered bilevel pricing problem. We again illustrate
the MWU error (2) made in every iteration of the MWU method in Figure 9. The
general behavior is the same as in the previous section, i.e., as the theory guarantees,
the error is decreasing in average. However, we note that the overall error is larger
than in the bilevel pricing problem compared to the knapsack interdiction problem.

Analogously to the previous section, we illustrate the relative error of the follower’s
solution and the relative consistency measure in Figure 10. Both measures converges
to zero, but again slower than in the case of the knapsack interdiction problem. In
addition, we compare the learned objective coefficients with the “true” coefficients
in Figure 11, which shows that we do not perfectly learn the coefficients, but the fit
is better compared to the knapsack interdiction case.
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Figure 8. Results for the inverse KKT approach imputing the
objective function w.r.t. the first 100 data points and then continue
with these learned coefficients for the remaining iterations of the
pricing instance. Left: MWU error (2). Right: Relative error w.r.t.
the follower’s solution ‖ȳt − yt‖2/‖yt‖2, t ∈ [T ].

Figure 9. MWU error (2), average and per round, per MWU
iteration when applied to the bilevel pricing instance.

Figure 10. Left: Relative error w.r.t. the follower’s solution ‖ȳt−
yt‖2/‖yt‖2, t ∈ [T ]. Right: Relative consistency measure (11).
Both per MWU iteration applied to the considered bilevel pricing
instance.
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Figure 11. Left: ‖ct−c‖2/‖c‖2, t ∈ [T ]. Right: ‖Qt−Q‖F /‖Q‖F ,
t ∈ [T ]. Both per MWU iteration when applied to the considered
bilevel pricing instance.

Figure 12. Results for the MWU algorithm with the adaption
that we stop updating the unknown objective coefficients after
iteration t = 100 and continue with these learned coefficients, i.e.,
c100 and Q100 for the remaining iterations. Left: MWU error (2).
Right: Relative error w.r.t. the follower’s solution ‖ȳt− yt‖2/‖yt‖2,
t ∈ [T ]. Both per MWU iteration when applied to the considered
bilevel pricing instance.

Finally, we analyze the out-of-sample performance of the MWU approach and
its original version, i.e., we only update the learned objective coefficients in the
first 100 iterations and then proceed without any further update of these coefficients.
In contrast to the bilevel knapsack interdiction problem, we observe in the bilevel
pricing problem that using less observations to learn the objective function values
of the follower’s problem leads to smaller MWU errors and smaller errors w.r.t.
the follower’s solution at the beginning of the learning process; see Figures 9, 10,
and 12. One explanation for this behavior can be that the larger learning rate η in
the MWU approach considering only the first 100 iterations leads to less outliers at
the beginning of the learning phase. Consequently, the results indicate that for the
considered pricing application, the leader can reduce the learning of the objective
coefficients to a limited number of time periods without having disadvantages in
terms of learning the objective function values and solutions of the follower’s problem
in the remaining time periods.

Summarizing, we can conclude that both approaches perform well applied to the
considered applications. Especially, the good out-of-sample performance of both
approaches demonstrates the value of these methods for the leader to learn the
objective function (values) and solutions of the follower’s problem over time in the
considered sequential bilevel games.
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6. Conclusion

In many practical applications of bilevel optimization it is not the case that the
leader actually has full knowledge about the optimization problem of the follower.
However, most of the literature makes this strong assumption. In this paper, we
propose two approaches with which the leader can gather important information
about the objective function of the follower if the bilevel game is played repeatedly.
We discuss the theoretical properties of the two methods and also show, using the
example of two distinct case studies, that both methods work well in practice.

Several directions for potential future research are possible. First, it would be
interesting to see how these approaches work in real-world applications. Second,
the generalization to more complicated classes of lower-level objective functions is
important and would be required for many real-world problems. Third, one could
think about a leader that acts strategically in the sense that she might put more
emphasis on better learning rates in early stages of the sequential game by making
suboptimal decisions that reveal more information about the objective function of
the follower. Fourth, a hybrid approach based on the MWU and the inverse KKT
approach is possible and might lead to better results compared to both approaches
used standalone. Fifth and finally, we focused entirely on learning objective functions
in this paper while assuming that the follower’s feasible set is known. A natural
next step would thus be to also learn the follower’s constraints.
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