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Abstract

In the context of optimization under uncertainty, we consider various combinations of distri-
bution estimation and resampling (bootstrap and bagging) for obtaining samples used to estimate
a confidence interval for an optimality gap. This paper makes three experimental contributions
to on-going research in data driven stochastic programming: a) most of the combinations of dis-
tribution estimation and resampling result in algorithms that have not been published before,
b) within the algorithms, we describe innovations that improve performance, and c) we provide
open-source software implementations of the algorithms. Among others, three important conclu-
sions can be drawn: using a smoothed point estimate for the optimality gap for the center of the
confidence interval is preferable to a purely empirical estimate, bagging generally performs better
than bootstrap, and smoothed bagging sometimes performs better than bagging based directly on
the data.

Keywords: Optimization under Uncertainty, smoothed bootstrap, bagging, stochastic program-
ming, optimality gap

When presented with an optimization problem under uncertainty, sampled data may inform the
inputs to a solution procedure. A solution obtained in this way is almost surely not the optimal solution
to the problem due to the inherent stochastics, so a confidence interval (CI) for the objective function
optimality gap should be computed. We consider various combinations of distribution estimation
and resampling (bootstrap and bagging) for obtaining samples used to estimate the optimality gap a
confidence interval for it.

Our paper concerns optimization for a population with unknown distribution F . We state the
problem in abstract form using

min
x
Eξ„Fhpx, ξq (1)

We will consider examples with explicit constraints, but for now we use notation where they are
implicit. The decision vector is x and the vector of uncertain data is ξ. Data known with certainty,
along with constraints, are captured in the specification of the function h. Our interest is when there is
a sample ZN “ tzi, i “ 1, . . . , Nu that can be used to estimate a confidence interval for the optimality

gap associated with a given px. The subscript i indicates the ith vector; we never reference vector
elements in this paper.

The optimality gap G
px for a decision px with respect to a distribution Q is defined as the deviation

of the object function value from the optimal:

G
pxpQq “ Eξ„Qhppx, ξq ´min

x
Eξ„Qhpx, ξq.

For ease of notation, when Q is the empirical distribution derived from some sample set SN “ tsiu
N
i“1,

we allow G
px to directly accept SN as input, so that

G
pxpSN q “

1

N

N
ÿ

i“1

hppx, siq ´min
x

1

N

N
ÿ

i“1

hpx, siq.
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We drop the subscript px when it does not cause confusion, and write the optimality gap function as
Gp¨q.

After describing algorithms, we report on simulation experiments to measure the effect of various
parameter settings and algorithm design decisions. The relative running times of the algorithms and
the quality of their estimates are considered. Out-of-sample tests for the quality of an estimated px is
fairly straightforward, however, evaluation of α-level confidence interval estimates of the optimality gap
is more complicated because their quality is a two-dimensional object. The dimensions are sometimes
called skill, which refers to the degree to which 1 ´ α of subsequently observed data is within the
interval, and sharpness, which refers to the size of the interval. The time required to compute the
estimates adds a third dimension.

This paper makes three contributions to on-going research in data driven stochastic programming:
a) most of the combinations of distribution estimation and resampling result in algorithms that have
not been published before, b) within the algorithms, we describe innovations that improve performance,
and c) we provide open-source software implementations of the algorithms. The end result is significant
improvement in the ability to use data to estimate a confidence interval around the objective function
value for a candidate solution to an optimization problem under uncertainty.

The paper proceeds as follows. The next section reviews relevant literature, followed by Section 2
that describes the main algorithms. Section 3 describes experiments and conclusions drawn from them.
The paper closes with conclusions and directions for future research.

1 Literature Review

Stochastic programming involves modeling optimization problems under uncertainty. There has been
a relatively rich literature on how to formulate and solve a stochastic program [King and Wallace,
2012, Birge and Louveaux, 2011, Ruszczyński and Shapiro, 2003, Prékopa, 2013]. The literature
mostly discusses the situation where some problem parameters are random variables that follow given
distributions, and many use sampling methods to computationally address the problems when it is
technically unsolvable. There has been a line of work that discusses uncertainty quantification for
stochastic programs when the parameter distributions are known. For example, Mak et al. [1999],
De Matos et al. [2017], Linderoth et al. [2006] constructed confidence interval of the optimality gap for
a given candidate solution; Higle and Sen [1991], Bayraksan and Morton [2011], Bayraksan and Pierre-
Louis [2012] developed sequential sampling methods that produces a series of candidate solutions and
estimated the corresponding solution quality. The discussion of asymptotic properties of the solutions
can be found in for example, Shapiro [1991, 2003], Eichhorn and Römisch [2007].

Bootstrap has been widely used for statistical inference ever since it was first proposed in Efron
[1981], see Efron [1982], Shao and Tu [2012], Davison and Hinkley [1997] for a comprehensive introduc-
tion. It can be used to construct confidence intervals when the underlying true distribution remains
unknown.

In the area of stochastic programming, an early work of Higle and Sen [1991] used bootstrap to
develop stopping rules for the Stochastic Decomposition algorithm, Eichhorn and Römisch [2007], Lam
and Qian [2018a] proposed the use of bootstrap and related resampling methods to derive confidence
intervals for the optimal function value. Anitescu and Petra [2011] discussed some of the theoretical
properties of bootstrap confidence interval for stochastic programming.

The classical bootstrap estimates a statistic of interest, say αpF q, by its empirical version αpFnq.
There is a literature that discusses the properties of smoothed bootstrap, where the discrete distribution
Fn is replaced with a smoothed distribution for estimation, see for example, Efron [1982], Silverman
and Young [1987], Hall et al. [1989], De Angelis and Young [1992] for theoretical discussions, and Li and
Wang [2008], Fuentes and Lillo-Bañuls [2015] for example applications. The application of smoothed
bootstrap in the area of optimization remains limited.

The bagging method, also known as the bootstrap aggregating method, was proposed in Breiman
[1996]. It was widely used in machine learning community to produce an accurate and robust prediction
by aggregating the predictions of multiple models, where each model uses bootstrap samples from the
original data set; see Bühlmann and Yu [2002] and the literature therein for theoretical analysis. Lee
and Cho [2001], Raviv and Intrator [1996] proposed smoothed bagging for classification and regression
problems, with added noise in the resampled data. More recently Lam and Qian [2018a] proposed use of
the bagging method to construct confidence interval for a candidate solution in stochastic programming,

2



and Chen and Woodruff [2023] developed a software package [boot-sp, 2023] that implemented the
bootstrap and the bagging method for the confidence intervals for stochastic programming. That
paper describes software that implements the methods described by Eichhorn and Römisch [2007] and
Lam and Qian [2018a]. This is in contrast to the present paper that proposes smoothed bootstrap and
bagging algorithms for confidence intervals on the optimality gap and provides empirical contributions.

Despite the lack of the application of smoothed bootstrap in the area of optimization, there are
some works on combining probability density estimation with stochastic optimization problems. For
example, Huh et al. [2011] used the KM estimator to construct an empirical cdf for censored data for
newsvendor problem to solve for the optimal; Parpas et al. [2015] used Markov chain Monte Carlo
methods with kernel density estimation algorithms to build a nonparametric importance sampling
distribution for recourse function.

2 Algorithms

Below we discuss the bootstrap and bagging procedures for estimating confidence intervals on optimal-
ity gaps for general stochastic programming problems, it is important to note that both procedures
allow for variations in how the center of the confidence interval is computed and the distribution em-
ployed for resampling the data. In cases where the empirical distribution is utilized for bootstrap and
bagging, we refer readers to our software boot-sp [Chen and Woodruff, 2023, boot-sp, 2023]. This
software provides comprehensive tools and methodologies for effectively implementing and leveraging
the benefits of these procedures.

2.1 Classical bootstrap for Stochastic Programming

For completeness we include Algorithm 1 that describes the procedure for finding an approximate
confidence interval by using the classical bootstrap procedure[Efron, 1981], where the CI is centered
at GpZN q, the gap associated with the set ZN , and the quantile of bootstrap sampled gaps is used to
derive the limits.

Algorithm 1: Classical Bootstrap

input : A sample ZN “ tziu
N
i“1, number of batches B, and a candidate solution px

Compute the optimality gap associated with the set ZN

G
pxpZN q “

1

N

N
ÿ

i“1

hppx, ziq ´min
x

1

N

N
ÿ

i“1

hpx, ziq

for bÐ 1 to B do

Resample from ZN to get the bootstrap set rZbN “ trz
b
1, . . . ,rz

b
Nu ;

Compute the associated gap

GprZbN q “
1

N

N
ÿ

i“1

hppx,rzbi q ´min
x

1

N

N
ÿ

i“1

hpx,rzbi q,

end

Compute the upper 1´ α-quantile %1´α and lower α-quantile %α for tGprZbN q ´ GpZN qu ;
Return rGpZN q ´ %1´α,GpZN q ´ %αs as the p1´ 2αq CI for the optimality gap GpF q;

Let ZN and ZN represent the random set and its realization, respectively. Each zi in ZN is a
realization from the distribution F . And let rZbN be the random set whose elements obey the empirical
distribution of the set ZN . The classical bootstrap method is based on the theoretical validation of
the asymptotic similarity (Shao and Tu [2012]) between the two distributions, GpZN q ´ GpF q and

GprZbN q ´ GpZN q, with the latter one conditioned on one realization of the random variable ZN , which
is the random sample ZN . Note that there are a few variations on the classical bootstrap method,
in that different metrics can be employed to derive the confidence interval from the resampled gaps
GprZbN q. For example, instead of using the quantiles of GprZbN q in one way or another, one can also use
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GprZbN q to fit a standard normal confidence interval. As in Efron [1981], one can compute the variance

of GprZbN q, denoted as s2, and return rGpZN q ´ z1´αs,GpZN q ` z1´αss as the CI, with z1´α being the
quantile for the standard Gaussian variable.

2.2 Smoothed Point Estimator

In the classical bootstrap method, the confidence interval is constructed around the point estimator,
GpZN q, of the optimality gap under the set ZN . This is based on the idea that as if one does not have
access to the entire population F , and instead all that is available is a sample ZN , then the natural
choice for an estimation of GpF q is the optimality gap associated with ZN .

However for many important applications, using only the optimality gap associated with the empir-
ical distribution of ZN might not be enough, especially when the sample size is small. In this case, one
may seek to use density estimation or probability distribution fitting tools to get a better estimation
of the optimality gap. Kernel density estimation and epi-spline fitting Royset and Wets [2015] are two
of the possible tools. The idea of using a smoothed estimator is also proposed in Huh et al. [2011],
Parpas et al. [2015] in a different setting.

We describe a general procedure to find a point estimator, sG, for GpF q in Algorithm 2. Instead of
GpZN q, one may use sG from Algorithm 2 as the point estimator for the optimality gap. For the form
of fitted distribution, we assume that when given enough data points, the fitted distribution should be
able to recover the true distribution.

Algorithm 2: Distribution-based Point Estimator

input : A sample ZN , replication R, sample size nc, form of distribution qF .
Fit a distribution function qFN using the set ZN ;
for bÐ 1 to R do

Sample from the distribution qFN to get nc samples trzb1, . . . ,rz
b
nc
u;

Compute Gj “
1
nc

řnc

i“1 hppx,rz
b
i q ´minx

1
nc

řnc

i“1 hpx,rz
b
i q,

end

Return sG “ 1
j

řR
j“1Gj as a point estimator for the optimality gap GpF q ;

The above algorithm to some extent provides a unified framework for estimating the optimality
gap for stochastic programming problems. We highlight two special cases that link Algorithm 2 back
to the point estimators that have been used in the literature.

• Classical Bootstrap: If we do not incorporate smoothness into our form of distribution, but
instead use the empirical distribution of ZN as the fitted distribution, which assigns an atom
of probability with mass 1{N to each observation zi, then sampling from the distribution qFN is
equivalent to resampling from the data set ZN . In this case, with one replication R “ 1 and
nc “ N as the sample size, Algorithm 2 returns GpZN q as the point estimator, which is the center
of the confidence interval in the classical basic bootstrap.

• Classical Bagging: If we use the empirical distribution of ZN as qFN , but run multiple replications
(R ą 1) with possibly smaller resample size nc, then the returned sG is a bagging estimator of
the optimality gap. The bagging estimator is used as the center of the confidence interval in
Lam and Qian [2018a,b], where they construct a confidence interval around the optimality gap
in stochastic programming via bagging.

In the following sections we discuss the situations where we use a smooth function as the fitted
distribution function qFN , and how the existing methods can be adapted to construct a confidence
interval around the smoothed point estimator for the optimality gap.

2.3 Smoothed Bootstrap

Instead of directly computing a point estimator GpZN q using the dataset ZN as in classical bootstrap,
an alternative approach is to employ a smoothed density estimate, such as kernel density estimation, as
depicted in Algorithm 2. This algorithm fits a smoothed distribution qFN based on ZN . Subsequently,
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a large batch of samples is drawn from qFN to obtain an estimation. In this case, the estimated center
sG serves as a reliable approximation for Gp qFN q, which, in turn, provides an estimation for GpF q.

Now of course the next question becomes how to construct a confidence interval around sG. The
most obvious way would be to directly apply the classical Algorithm 1 . That is, we use sG in place of
GpZN q in Algorithm 1, and the corresponding return should be a CI for the optimality gap GpF q.

However, if we use a smoothed function for fitting the distribution function qFN , then it is natural
to introduce some smoothness to the bootstrap procedure as well, as in the practice of the standard
smoothed bootstrap. That is, instead of resampling from the empirical distribution of ZN in Al-
gorithm 1, we instead resample from qFN , a smoothed version of the empirical c.d.f., for bootstrap
samples. We use the same smoothed distribution qFN for finding the center and for estimating the
confidence interval.

We describe in Algorithm 3 the procedure to find a CI for the optimality gap in conjunction with
the smoothed point estimator returned by Algorithm 2. We use standard normal confidence interval
in our algorithm and estimate the width of the confidence interval by estimating the variance of the
limit distribution, but the percentile bootstrap interval or the bias-corrected and accelerated bootstrap
interval (Diciccio and Romano [1988]) could also be used here.

Algorithm 3: Smoothed Bootstrap

input : A sample ZN , number of batches B, form of distribution qF , and a candidate solution
px

Fit a smoothed distribution function qFN using the set ZN ;

Run Algorithm 2 with the same qFN , R “ 1 and a sufficiently large resample size nc to find the
point estimator sG.

for bÐ 1 to B do

Sample from distribution qFN to get a new set rZbN “ trz
b
1, . . . ,rz

b
Nu ;

Compute GprZbN q “ 1
N

řN
i“1 hppx,rz

b
i q ´minx

1
N

řN
i“1 hpx,rz

b
i q,

end

Compute the sample variance s2 for GprZbN q ;

Return r sG´ z1´αs, sG` z1´αss as the CI.

Algorithm 3 is a small generalization of the classical smoothed bootstrap method, in that we allow
different options for the point estimator that serves as the center of the confidence interval. When
sG equals GpZN q, i.e. when the empirical distribution is used in Algorithm 2 for providing a point
estimator, Algorithm 3 is identical to the classical smoothed bootstrap [Efron, 1982].

Since sG can essentially be regarded as a smoothed version of GpZN q, the same theory that is
used to support the classical smoothed bootstrap method can be used here to justify the asymptotic
consistency of the output of Algorithm 1. That is, conditioned on ZN “ ZN , let rZbN be the random

set whose elements obey distribution qFN , the distribution of GprZbN q ´ sG is asymptotically similar to

the distribution of sG´ GpF q(De Angelis and Young [1992]). Notice that sG depends on qFN and hence
in turn is correlated to ZN .

2.4 Smoothed Bagging

The bagging method for estimating the confidence interval for the optimality gap was proposed by Lam
and Qian [2018a] and is implemented in our software tool boot-sp [2023]. Compared with bootstrap
method, the bagging method is known to reduce the variance in general applications. The center of
the bagging confidence interval is constructed alongside the bagging procedure. For completeness we
include the original, non-smoothed algorithm as Algorithm 4.

The first few steps of the bagging algorithms conforms with Algorithm 2 for finding the center of
the confidence interval as outlined in Section 2.2. The rest steps aims to construct an empirical version
of the infinitesimal jackknife estimator of the variance, which in turn guides the construction of the
confidence interval.

Following the same argument as in the smoothed bootstrap, one may wish to introduce some
smoothness into the bagging estimator, especially when the sample size is small. So instead of resam-
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Algorithm 4: Bagging-based sampling

input : A sample ZN , number of bags B, bag sample size k, significance level α, and a
candidate solution x̂

for bÐ 1 to B do

Resample from ZN to get a bagging set of size k, rZbN “ trz
b
1, . . . ,rz

b
ku ;

Compute GprZbN q “ 1
k

řk
i“1 hppx,rz

b
i q ´minx

1
k

řk
i“1 hpx,rz

b
i q, ,

end

Compute the mean of GprZbN q as the center of the confidence interval, so

G “
1

B

B
ÿ

b“1

GprZbN q

Compute the error term

σ̃2 “

#

řn
i“1 xcov

2
i if with replacement

n2

pn´kq2

řn
i“1 xcov

2
i if without replacement

,

where

xcovi “
1

B

B
ÿ

b“1

pN b
i ´ k{nqpGgapprZbN q ´Gq,

and N b
i “ number of times the ith element of ZN appears in rZbN ;

Return rG´ z1´α{2σ̃, G` z1´α{2σ̃s as the p1´ αq CI for the optimality gap GpF q, with z1´α{2
being the p1´ α{2q quantile for a standard normal variable;

pling from the set ZN to get the bagging sets, we resample from a fitted distribution qFN to get the
samples and compute the gaps, and take the average of the gaps to be our point estimator.

As the infinitesimal jackknife estimator of the variance for the bagging estimator in Algorithm 4
does not directly apply for a smoothed bagging estimator, we seek an alternative approach to estimate
the variance using the results from Mentch and Hooker [2016]. In particular, consider Gk as a kernel
function Gkpz1, . . . , zkq that returns the optimality gap associated with scenarios tz1, . . . , zku, with

Gkpz1, . . . , zkq “
1

k

k
ÿ

i“1

hpx̂, ziq ´min
x

1

k

k
ÿ

i“1

hpx, ziq

and let
ςc,k “ var pErGkpz1, . . . , zkq|z1 “ z1, . . . , zc “ zcsq ,

which is actually the covariance between two instances of the function h with c shared arguments.
By [Mentch and Hooker, 2016, Theorem 1], the variance of the bagging estimator can be estimated

with

σ2 “
1

B

ˆ

k2B

n
ς1,k ` ςk,k

˙

,

with B being the number of bagging sets used to construct the point estimator.
The two variances ς1,k and ςk,k can be estimated using similar Monte Carlo methods as depicted in

[Mentch and Hooker, 2016, Section 3]. To estimate ς1,k, we start by randomly select one scenario rzp1q

and fixing z1 “ rzp1q, then choose BMC bagging sets trZb
1

Nu
BMC

b1“1 , each of size k and contains the fixed
seed scenario rzp1q. Because each bagging set corresponds to an associated optimality gap, the average
of the BMC gaps serves as a Monte Carlo approximation to the mean

ErGkpz1, . . . , zkq|z1 “ rzp1qs « sGp1q
def
“

1

BMC

BMC
ÿ

b1“1

GkprZb
1

N q.

We then repeat the above steps for BI times, each time with a independently selected fixed, seed
scenario rzpiq. The sample variance among the BI averaged gaps sGpiq can then be used as the estimator
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for ς1,k,

ς1,k « varp sGp1q, . . . , sGpBIqq

The variance ςk,k can be estimated using similar approach, by independently sampling B bagging
sets, and computing the variance of the corresponding bagging gaps. But instead of computing the
point estimator G and the variances ς1,k and ςk,k in three separate runs, we can incorporate the three
procedures into one by utilizing the BI ˚BMC gaps (each fixed initial seed scenario yields BMC gaps,
and we have in total BI initial fixed seed scenarios) that are used to estimate ς1,k. That is, after
generating B “ BI ˚ BMC bagging sets and finding an estimate for the variance ς1,k, we take the
average of those B gaps

G “
1

BI ˚BMC

ÿ

GkprZbN q “
1

BI

BI
ÿ

b“1

sGpbq

to be our bagging estimator G, and use the sample variance of the B gaps as an estimation for ςk,k.
Algorithm 5 outlines the procedure for constructing a confidence interval around the smoothed bagging
estimator. The sample variance s1 is used to estimate ς1,k, and s2 is for ςk,k.

Algorithm 5: Smoothed Bagging with Variance estimation

input : A sample ZN , number of initial seed points BI , number of Monte Carlo simulations
for each initial points BMC ,subsample size k, significance level α, and a candidate
solution x̂

Fit a smoothed distribution function for qFN using the set ZN ;
for bÐ 1 to BI do

Select initial seed point rzpbq, by sampling from the fitted distribution;
for b1 Ð 1 to BMC do

Resample from qFN to get bagging set of size k, rZb,b
1

k “ trzb,b
1

1 , . . . ,rzb,b
1

k u, that includes
the initial seed point rzpbq;

Compute GprZb,b
1

k q “ 1
k

řk
i“1 hppx,rz

b,b1

i q ´minx
1
k

řk
i“1 hpx,rz

b,b1

i q;

end

Compute the average of the BMC gaps, denoted as sGpbq ;

end

Compute the mean of sGpbq as the center of the confidence interval, so

G “
1

BI

BI
ÿ

b“1

sGpbq “
1

BI ˚BMC

ÿ

GprZb,b
1

k q

Compute the variance s21 for the BI averages sGpbq ;

Compute the variance s22 for all GprZb,b
1

k q ;
Return rG´ z1´α{2s,G` z1´α{2ss as the p1´ αq CI for the optimality gap GpF q with

s2 “
1

BI ¨BMC

ˆ

k2 ¨BI ¨BMC

N
s21 ` s

2
2

˙

,

and z1´α{2 being the p1´ α{2q quantile for a standard normal variable;

3 Experimental Results

3.1 Problem Examples

We conducted experiments over three different example problems. For each of the problems, we report
on a series of experiments and compare the coverage rate, the width of the interval, and the com-
putational time to generate confidence interval. The algorithms discussed in this paper, along with
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the examples used in our experiments, are implemented in boot-sp [boot-sp, 2023]. Tables from ad-
ditional experiments can be found at https://github.com/boot-sp/boot-sp/doc/pdfs/smoothed_
bagging_tables.pdf.

3.1.1 CVaR

A one-stage CVaR problem as in Lam and Qian [2018a]:

min
x

"

x`
1

a
E rpξ ´ xq`s

*

where p¨q` is defined as max ¨, 0, a “ 0.1 and ξ is a drawn from a standard normal distribution.

3.1.2 Scalable Farmer

This example is derived from the well-established farmer example from Birge and Louveaux [2011]. It
has been adapted for stress-testing various pieces of software such as Knueven et al. [2020]. To enable
scalability, instance configuration parameters cropsmult and N are added. The original problem has
three crops and three base scenarios. By incorporating these parameters, the scalable instances are
created with cropsmult sets of the original crops. All scenarios are grouped in threes, with a uniformly
distributed pseudo-random number added to the yield values of the original three scenarios. These
retain the characteristics of the initial problem, while yields vary according to the specific scenario.

We further introduced a new feature, denoted as “yield-cv,” which represents the coefficient of
variation of the crop yields. This inclusion offers the flexibility to introduce variability in problem
settings, and is universally applicable to all crops. In cases where it is not explicitly specified, the
distribution of the farmer example adheres to the original model with uniform distributions.

3.1.3 Multi Knapsack

This problem is derived from the stochastic programming problem in Vaagen and Wallace [2008] (also
see [King and Wallace, 2012, Chapter 6] for discussion). The problem can be viewed as a multidimen-
sional newsvendor problem with substitution. The main source of uncertainty in this problem stems
from the unpredictable popularity and demand for fashion products, and a simple two-stage stochastic
program is formulated with the goal of maximizing profit. In the first stage, production decisions
are made, while in the second stage (after demand is observed), the program optimally allocates di-
rect and substitution sales. In our experiments, we consider the sale of six products with a universal
substitution rate at 0.1.

3.2 Experimental Results

To simplify and enhance the clarity of our experimental outcomes, we employ abbreviations for denoting
our suggested algorithms. Specifically, we use ”BT” instead of ”bootstrap algorithms,” and ”BG”
instead of ”bagging algorithms.” We utilize the prefix ”S” to signify the application of the smoothed
fitted distribution, while the suffix ”K/E” will indicate the choice between kernel density estimation
and epi-spline fitting. Furthermore, we append the suffix ”Q” to ”BT” when employing the quantile
method for creating bootstrap confidence intervals. Since there was no substantial difference in the
outcomes between bagging with replacement and bagging without replacement, the subsequent figures
and tables will exclusively display results obtained using bagging with replacement, which is indicated
by the method label ”BG”. Times are given in seconds.

Table 1 summarizes the distributions that are used in our algorithms and whether or not the point
estimators are obtained via aggregation in each method. The notation FN is used to represent the
empirical distribution derived from the sample, FN “ 1

N

ř

δzi , while qFN is employed to denote the
fitted smoothed distribution function, which can be obtained through methods such as kernel density
estimation or epi-spline fitting.
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Distribution Aggregated
method Algorithm Used Point Estimator
BT 1 FN No

S-BT 3 qFN No
BG 4 FN Yes

S-BG 5 qFN Yes

Table 1: Method summary

3.2.1 Summary of Point Estimator Comparisons

We present box plots that illustrate the differences among various point estimators employed to ap-
proximate the optimality gaps using Algorithm 2 and the true ground truth optimality gap.

While in the CVaR example in Figure 1, all of the tested point estimators exhibited a relatively
significant error when compared to the actual scale of the true optimality gap, in the farmer example
in Figure 2 and the multi-knapsack problem in Figure 3, the height of the box plots, which represents
the error in the point estimators, decreased as we introduce smoothness into the point estimator. This
reduction in variance suggests that these point estimators may be more effective in approximating the
optimality gap in these scenarios.

Figure 1: Results for CVaR problem based on 500 replications. The box-plot displays the distribution
of errors in the point estimators with respect to the actual optimality gap 0.36. The size of the set
ZN is fixed at N “ 40. The BT point estimator is derived by directly computing the gap associated
with the set ZN . The S-BT estimator is estimated by resampling nc “ 8N data points from the fitted
distribution. For BG and S-BG, we uses R “ 400 replications and the resample size is nc “ 30.

Figure 2: Results for farmer problem based on 500 replications. The box-plot displays the distribution
of errors in the point estimators with respect to the actual optimality gap 7648.32. The size of the set
ZN is fixed at N “ 40. The BT point estimator is derived by directly computing the gap associated
with the set ZN . The S-BT estimator is estimated by resampling nc “ 8N data points from the fitted
distribution. For BG and S-BG, we uses R “ 400 replications and the resample size is nc “ 30.
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Figure 3: Results for multi-knapsack problem based on 500 replications. The box-plot displays the
distribution of errors in the point estimators with respect to the actual optimality gap 2301.95. The
size of the set ZN is fixed at N “ 40. The BT point estimator is derived by directly computing the
gap associated with the set ZN . The S-BT estimator is estimated by resampling nc “ 8N data points
from the fitted distribution. For BG and S-BG, we uses R “ 400 replications and the resample size is
nc “ 30.

3.2.2 Summary of Method Comparisons

We provide plots that compares the coverage rates and the length of the generated confidence intervals
for different methods.

Based on our initial set of experiments, we have observed that, at least for the three examples we
have tested, the bagging methods has a higher coverage rate for the confidence intervals. Within the
distinct categories of bootstrap and bagging, we have noticed that when we introduce a ”smoothing”
effect by incorporating kernel density estimation instead of the empirical distribution for resampling,
the coverage rate increases, often without sacrificing the length of the confidence interval. See Figures
4, 5, 6.

Figure 4: Results for CVaR based on 500 replications. Two-sided CI reports the coverage rate for the
two-sided 90% interval, and One-sided CI reports the coverage rate for the one-sided 95% interval.
The center for the smoothed bootstrap method is estimated by resampling 8N data points from the
fitted distribution. The size of the set ZN is fixed at N “ 40 and the number of bootstrap replications
is fixed at B “ 400. The sub-sample size for the bagging and the smoothed bagging methods is k “ 30.
The smoothed bagging methods used BI “ 10 and BMC “ 40, so that the total number of batches
matches the one in the original bagging procedure.
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Figure 5: Results for farmer based on 500 replications. Two-sided CI reports the coverage rate for
the two-sided 90% interval, and One-sided CI reports the coverage rate for the one-sided 95% interval.
The center for the smoothed bootstrap method is estimated by resampling 8N data points from the
fitted distribution. The size of the set ZN is fixed at N “ 40 and the number of bootstrap replications
is fixed at B “ 400. The sub-sample size for the bagging and the smoothed bagging methods is k “ 30.
The smoothed bagging methods used BI “ 10 and BMC “ 40, so that the total number of batches
matches the one in the original bagging procedure.

Figure 6: Results for multi-knapsack problem based on 500 replications. Two-sided CI reports the
coverage rate for the two-sided 90% interval, and One-sided CI reports the coverage rate for the one-
sided 95% interval. The center for the smoothed bootstrap method is estimated by resampling 8N
data points from the fitted distribution. The size of the set ZN is fixed at N “ 40 and the number
of bootstrap replications is fixed at B “ 400. The sub-sample size for the bagging and the smoothed
bagging methods is k “ 30. The smoothed bagging methods used BI “ 10 and BMC “ 40, so that the
total number of batches matches the one in the original bagging procedure.

3.2.3 Additional Experimental Results for Bootstrap

In our experiments concerning the parameters of Algorithm 3, we resample nc points from the fitted
smoothed distribution, and use the optimality gap associated with the nc points as our point estimator
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sG. It can be seen from Tables 2 and 3 that enhanced performance is achieved by resampling more
datapoints from the fitted distribution, as elevating the resample size nc for the center estimator
corresponds to an increase in the coverage rates of the two-sided confidence interval as well.

method nc coverage-2 coverage-1
S-BT-K 320 0.906 0.946
S-BT-K 200 0.880 0.958
S-BT-K 120 0.863 0.965

Table 2: Results for CVaR with α=0.05 based on 500 replications. The size of the set ZN is fixed atN “

40, and the number of batches for bootstrap replications is fixed at B “ 400. Center estimated using
varying nc data points. coverage-2 reports coverage rates for two-sided 90% confidence interval, and
coverage-1 reports coverage rates for one-sided 95% confidence interval. The length of the confidence
interval remains the same.

method nc coverage-2 coverage-1
S-BT-K 320 0.972 0.992
S-BT-K 200 0.958 0.988
S-BT-K 120 0.932 0.975

Table 3: Results for farmer with α=0.05 based on 500 replications. The size of the set ZN is fixed at
N “ 40, and the number of batches for bootstrap replications is fixed at B “ 400. Center estimated
using varying nc data points. coverage-2 reports coverage rates for two-sided 90% confidence inter-
val, and coverage-1 reports coverage rates for one-sided 95% confidence interval. The length of the
confidence interval remains the same.

For reference we included the results for the smoothed bootstrap algorithm as in Algorithm 3, but
use the empirical point estimator GpZN q as the point estimator in constructing the confidence interval.
As seen in Table 4, the confidence interval utilizing the empirical point estimator GpZN q as the center
yields sub-optimal coverage rates and should be avoided in practice.

problem method coverage-2 coverage-1
CVaR S-BT-K 0.703 0.713
farmer S-BT-K 0.523 0.738

Table 4: Results with α=0.05 based on 500 replications. The size of the set ZN is fixed at N “ 40,
and the number of batches for bootstrap replications is fixed at B “ 400.

Using the kernel density estimation works well for getting good results with the smoothed bootstrap
method, as shown in Table 5. It seems to be just as good as or even better than using epi-spline fitting.
We noticed that when we switch from epi-spline fitting to kernel density estimation, the coverage rate
increases with the same settings. By default, the bandwidth utilized in the kernel density estimation
within our code is determined by Scott’s Rule [Scott, 2015]. However, before finalizing the bandwidth
selection, we visually inspect the results of the kernel density estimation to ensure that the resulting
curve strikes a balance between smoothness and avoiding over smoothing. We defer the exploration of
the impacts of varying bandwidths to future research endeavors.

problem method len-avg coverage-2 coverage-1
CVaR S-BT-E 1.02 0.845 0.880
CVaR S-BT-K 1.23 0.906 0.946
farmer S-BT-E 3803.31 0.963 0.985
farmer S-BT-K 3978.63 0.972 0.992

Table 5: Results with α=0.05 based on 500 replications. The size of the set ZN is fixed at N “ 40,
and the number of batches for bootstrap replications is fixed at B “ 400. The center for the smoothed
bootstrap method is estimated by resampling 8N data points from the fitted distribution.
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3.2.4 Additional Experimental Results for Bagging

The bagging methods work well in constructing a confidence interval, even when we only have a really
small data set at hand. For example, in Table 6, with a sample size at N “ 20, one is still able to
apply the bagging methods to construct a confidence interval with high coverage rate. The introduced
smoothness introduces more randomness into the problem, with increase lengths for the confidence
intervals and increased coverage rates with small dataset, as can be seen from Table 6.

problem method B len-avg len-std coverage-2 coverage-1
CVaR BG 200 1.51 0.83 0.902 0.927
CVaR S-BG 10/40 1.86 1.08 0.860 0.973
CVaR S-BG 20/80 1.87 0.91 0.939 0.985
farmer BG 200 9564.85 1973.87 0.885 0.959
farmer S-BG 10/40 9907.56 1452.74 1.000 1.000
farmer S-BG 20/80 9826.73 897.56 1.000 1.000
knapsack BG 200 1920.37 616.58 0.743 0.998
knapsack S-BG 10/40 2366.64 697.35 0.887 0.995
knapsack S-BG 20/80 2451.05 495.75 0.950 0.998

Table 6: Results based on 800 replications. The size of the set ZN is fixed at N “ 20, and the
subsample size k “ N{2. Coverage-2 reports the coverage rate for the two-sided 90% interval, and
coverage-1 reports the coverage rate for the one-sided 95% interval. For the smoothed bagging method,
the first number in the B column represents BI , and the second one is BMC .

Certainly, a larger dataset ZN results in an improved estimation of the confidence interval. In
Table 7, when we increase the sample size from N “ 20 to N “ 40, we observe reductions in both
the average length and the standard deviation of the interval without sacrificing the superior coverage
rate.

method N B len-avg len-std coverage-2 coverage-1
BG 20 200 1.51 0.83 0.902 0.927
S-BG 20 20/80 1.87 0.91 0.939 0.985
BG 40 200 1.10 0.47 0.900 0.926
S-BG 40 20/80 1.29 0.52 0.916 0.981

Table 7: Results for CVaR based on 800 replications. The subsample size k is fixed at k “ N{2
.Coverage-2 reports the coverage rate for the two-sided 90% interval, and coverage-1 reports the cov-
erage rate for the one-sided 95% interval.

For smoothed bagging algorithm, both a sufficiently large BI and a sufficiently large BMC is
required to obtain a good coverage without excessive long length in the confidence interval, but as
indicated in Mentch and Hooker [2016], it is more critical to use a large BMC to obtain an accurate
estimation for the variance, see Table 8.

method B-I B-MC len-avg len-std coverage-2 coverage-1
S-BG 10 20 1.69 0.75 0.968 0.994
S-BG 10 100 1.22 0.62 0.879 0.968
S-BG 20 20 1.77 0.67 0.981 0.995
S-BG 20 100 1.30 0.54 0.934 0.980
S-BG 30 20 1.78 0.63 0.983 0.995
S-BG 30 100 1.33 0.51 0.949 0.984

Table 8: Results for CVaR based on 800 replications. The size of the set ZN is fixed at N “ 40, and
the subsample size k “ N{2. Coverage-2 reports the coverage rate for the two-sided 90% interval,
and coverage-1 reports the coverage rate for the one-sided 95% interval. For the smoothed bagging
method, the first number in the B column represents BI , and the second one is BMC .
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4 Conclusion and Future Directions

In this paper, we introduced various combinations of distribution estimation and resampling techniques
for data-driven stochastic programming problems. Specifically, we adapted the smoothed bootstrap
method and developed the smoothed bagging method in the context of stochastic optimization. These
algorithms are designed for acquiring solutions and computing confidence intervals for the optimality
gap. Our experiments demonstrated their effectiveness constructing confidence intervals for small
datasets, albeit with a longer computational time compared with empirical bootstrap and bagging
algorithms.

Among others, three important conclusions stand out. First, using a smoothed point estimate for
the optimality gap at the center of the confidence interval is favored over relying on a purely empirical
estimate. The introduced smoothness tends to yield more consistent estimates. Second, our results
show that bagging methods often outperform bootstrap methods, providing better coverage rates and
tighter confidence intervals across various scenarios. This superior performance may be attributed
to bagging’s inherent ability to reduce variance and improve the stability of predictions. Third, the
smoothed bagging procedure proposed in this paper introduces an additional layer of smoothing to the
resampling process. It can, at times, improve results compared to bagging based directly on the data.
This approach effectively balances bias and variance, offering a compelling alternative for constructing
more robust and accurate confidence intervals.

Despite the promising results, there are several questions that remain for further investigation in
future research. One of the key questions is to understand the types of problems that benefit most
from the smoothness effect introduced by our proposed algorithms. As our methods offer a trade-off
between achieving a high coverage rate and reducing running time, it becomes interesting to explore
how many bootstrap samples are sufficient to produce accurate estimations. Additionally, there is
potential to investigate whether it is possible to construct more robust confidence intervals using a
limited number of bootstrap samples. One could also delve into alternative methods for computing
the variance of the estimates, potentially leading to a more efficient and accurate way for constructing
the confidence interval.

Also, in our experiments, we primarily used kernel density estimation with bandwidth determined
by the Scott’s Rule for non-parametric estimations. Subsequent research could be directed towards
deriving an optimal bandwidth tailored to specific problem domains. While our experiments revealed
that epi-spline fitting did not outperform kernel density estimation, further exploration is warranted.
This might include refining hyperparameter tuning, adding constraints to epi-spline fitting, and as-
sessing their influence on algorithm performance, particularly when guided by prior knowledge. In
other domains smoothed bootstrap has been proposed for dealing with time series data (e.g. Gregory
et al. [2018] for quantile regression). The use of smoothed bootstrap for such data in the context of
stochastic programming remains as a future research topic. A final area for future research is the use
of smoothed bootstrap and bagging for obtaining an incumbent solution, px.
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