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Abstract

We introduce a notion of self-concordant smoothing for minimizing the sum of two convex
functions, one of which is smooth and the other may be nonsmooth. The key highlight of our
approach is in a natural property of the resulting problem’s structure which provides us with a
variable-metric selection method and a step-length selection rule particularly suitable for proxi-
mal Newton-type algorithms. In addition, we efficiently handle specific structures promoted by the
nonsmooth function, such as ℓ1-regularization and group-lasso penalties. We prove the convergence
of two resulting algorithms: Prox-N-SCORE, a proximal Newton algorithm and Prox-GGN-SCORE,
a proximal generalized Gauss-Newton algorithm. The Prox-GGN-SCORE algorithm highlights an
important approximation procedure which helps to significantly reduce most of the computational
overhead associated with the inverse Hessian. This approximation is essentially useful for over-
parameterized machine learning models and in the mini-batch settings. Numerical examples on
both synthetic and real datasets demonstrate the efficiency of our approach and its superiority
over existing approaches. A Julia package implementing the proposed algorithms is available at
https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl.

1. Introduction

We consider the composite optimization problem

min
x∈Rn

L(x) := f(x) + g(x), (1)

where f is a smooth, convex loss function and g is a closed, proper, convex regularization function which
may be nonsmooth. A common smoothing framework for solving (1) involves replacing the nonsmooth
function g sequentially by its smooth approximation such that with an efficient algorithm for solving
the resulting smooth optimization problem, we may approach the solution of the original problem.
However, as noted in [1], the nonsmooth function g in (1) often plays a key role in describing some
desirable properties specific to the application in which it appears, such as sparsifying the solution
of the problem or enforcing some penalties or constraints on x, e.g., in sparse signal recovery and
image processing [2, 3], compressed sensing [4, 5], model predictive control of constrained dynamical
systems [6, 7, 8], neural network training [9], as well as various classification and regression problems
in machine learning. In order to retain such properties about the optimization vector x in these
applications, [1] proposes to keep a part of g unchanged and hence considers a partial smoothing
where g is only partially smoothed. The particular class of problems considered in [1] are those in
which the nonsmooth function g takes on the form g(x) = R(x) + Ω(x), and there, it is proposed
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to smooth a part of g, say, R, leaving the other part, say, Ω unchanged. Nevertheless, in many of
the applications where this class of problems appears, each of R and Ω is used to promote particular
structures in the solution estimates, and hence smoothing one of them potentially destroys the overall
desired structure. Prominent examples are found in lasso and multi-task regression problems with
structured sparsity-inducing penalties. More specifically, R(x) is the scaled ℓ1-norm penalty β∥x∥1
that encourages sparse estimates of x for β > 0, and Ω(x) additionally enforces a more specific
structure on these estimates, such as groups and fused structures.

One of the main motivations in [1] for the partial smoothing technique is the possibility to derive
“fast” proximal gradient methods [10, 11, 12, 13] for the resulting problem. While the fast proximal
methods prove to be more efficient than methods such as the subgradient and bundle-type methods,
they are first-order methods which often fall back to weak solution estimates and accuracies [14]. It
is evident, from their performance on unconstrained smooth optimization problems, that incorpo-
rating second-order information into a gradient scheme often yields superior performance and better
solution quality. A line of work (see, e.g., [15, 16, 17, 18, 19]) has made efforts to incorporate (approxi-
mate) second-order information into proximal gradient schemes to emulate the performance of relative
second-order methods for unconstrained smooth problems. The main drawback here is the computa-
tional overhead associated with second-order methods. This drawback is often largely mitigated by
choosing a special structure for the matrix of the second-order terms of f . To deal with globaliza-
tion issues, some of these approaches assume specific structures and regularity of the function f . For
example, the authors in [18] assume a self-concordant structure of f allowing for efficient step-size
and correction techniques for proximal Newton-type and proximal quasi-Newton algorithms. How-
ever, because f oftentimes define a loss or data-misfit in real-world applications, the self-concordant
assumption is not easy to check for many of these applications, and also restricts the applicability
of the approach. Our self-concordant smoothing framework in this work provides a remedy to this
limitation. We propose a new step-size selection technique that is suitable for Newton-type and quasi-
Newton-type methods. This also exploits a self-concordant structure albeit not imposed on any of
functions f and g that define the original problem.

In particular, we regularize1 problem (1) by a second smooth function gs and propose to keep all
parts of g unchanged, but instead solve the following problem:

min
x∈Rn

Ls(x) := f(x) + gs(x;µ) + g(x), (2)

where2 gs is a self-concordant, epi-smoothing function for g with µ > 0 (see Definition 3 below). By
way of construction, g and gs do not conflict and hence, a solution of (2) can be shown to solve (1).
We do not give a special attention to the particular structure induced by g in the development of
our technique. Yet in §4, we propose an approach to incorporate certain known structures into our
framework, thereby making it amenable to more general structured penalty functions. In particular, for
the lasso and multi-task regression problems with structured sparsity-inducing penalties, we highlight
the relation between Nesterov’s smoothing [11] for a class of structured problems and the smoothing
framework of this work, and then synthesize the so-called “prox-decomposition” property of g with
the smoothness property of gs for easily handling the structures promoted by g in the solution.

In the following, we highlight three points that are vital to the development of our algorithmic
framework in this paper:

1In this work, we use “regularization” and “smoothing” interchangeably but use “regularization” to emphasize explicit
addition of a smooth function (a smooth approximation of the nonsmooth part of the problem) to the smooth part of the
problem.

2We occasionally write gs(x) instead of gs(x;µ) to refer to the same function.
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1. The first is to notice that for many practical problems, specifically those arising from modern
machine learning systems, we often deal with overparameterized models (that is, in which number
of data points is much less than the size of the optimization vector x). In this case, the pure
proximal Newton method is not computationally ideal. This necessitates the use of generalized
Gauss-Newton (GGN) approximations which, by our stylized “augmentation” technique, can be
found to provide a practically efficient proximal algorithm for overparameterized models in which
f can be expressed as a finite sum.

2. Secondly, we observe that the infimal convolution smoothing technique that we will introduce to
construct gs reveals a structure that is characterized by the self-concordant regularization (SCORE)
framework of [20]. This provides a way to devise efficient adaptive step-size selection rule for
proximal Newton-type algorithms without imposing a self-concordant structure on the original
problem.

3. Lastly, via the notion of epi-smoothing functions established in [21] (a weaker notion than the
smoothable functions of [1]), we can guarantee certain convergence notions on the epigraph of g
allowing to combine the smooth regularization technique of this paper with the Moreau-infimal-
based (proximal) algorithms to handle the nonsmooth function g. As is customary, this assumes we
can find an efficient method to compute a closed-form solution to the minimization of the sum of
g and an auxiliary function ψα. However, unless the variable-metric associated with the proximal
Newton-type method has a specific structure that can be exploited for computational efficiency, the
scaled proximal operator can be very difficult to compute and potentially poses a serious numerical
issue. For this, the “simple” structure of the Hessian of gs naturally provides a good candidate for
the variable-metric, which allows for an efficient computation of the scaled proximal operator.

Burke and Hoheisel [21, 22] developed the notion of epi-smoothing for studying several epigraphi-
cal convergence (epi-convergence) properties for convex composite functions by combining the infimal
convolution smoothing framework due to Beck and Teboulle [1] with the idea of gradient consistency
due to Chen [23]. The key variational analysis tool used throughout their development is the coercivity
of the class of regularization kernels studied in [1]. In particular, they establish the close connection
between epi-convergence of the regularization functions and supercoercivity of the regularization ker-
nel. Then, based on the above observations, we synthesize this idea with the notion of self-concordant
regularization [20] to propose two proximal-type algorithms, viz., Prox-N-SCORE (Algorithm 1) and
Prox-GGN-SCORE (Algorithm 2), for convex composite minimization.

Paper organization. The rest of this paper is organized as follows: In §1.1, we present some no-
tations and background on convex analysis. In §2, we establish our self-concordant smoothing notion
with some properties and results. We describe our proximal Newton-type scheme in §3, and present
the Prox-N-SCORE and Prox-GGN-SCORE algorithms. In §4, we describe an approach for handling
specific structures promoted by the nonsmooth function g in problem (1), and propose a practical ex-
tension of the so-called prox-decomposition property of g for the self-concordant smoothing framework,
which has certain in-built smoothness properties. Convergence properties of the Prox-N-SCORE and
Prox-GGN-SCORE algorithms are studied in §5. In §6, we present some numerical simulation results for
our proposed framework with an accompanying Julia package3, and compare the results with other
state-of-the-art approaches. Finally, we give a concluding remark and discuss prospects for future
research in §7.

3https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl
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1.1. Notation and preliminaries

We denote by R̄ := R∪{−∞,+∞} the set of extended real numbers. The sets R+ := [0,+∞[ and P :=
R+\{0}, respectively, denote the set of nonnegative and positive real numbers. Let g : Rn → R ∪ {+∞}
be an extended real-valued function. The (effective) domain of g is given by dom g := {x ∈ Rn | g(x) <
+∞} and its epigraph (resp., strict epigraph) is given by epi g := {(x, γ) ∈ Rn × R | g(x) ≤ γ} (resp.,
epis g := {(x, γ) ∈ Rn × R | g(x) < γ}). Given γ ∈ P, the γ-sublevel set of g is Γγ(g) := {x ∈
Rn : g(x) ≤ γ}. The standard inner product between two vectors x, y ∈ Rn is denoted by ⟨·, ·⟩, that
is, ⟨x, y⟩ := x⊤y, where x⊤ is the transpose of x. The operation x⊙ y denotes the Hadamard product
between two vectors x, y ∈ Rn; we also denote by x2 the product x⊙ x.

For an n × n matrix H, we write H ≻ 0 (resp., H ⪰ 0) to say H is positive definite (resp.,
positive semidefinite). The sets Sn+ and Sn++, respectively, denote the set of n× n symmetric positive
semidefinite and symmetric positive definite matrices. The set

{
diag(v) | v ∈ Rn

}
, where diag : Rn →

Rn×n, defines the set of all diagonal matrices in Rn×n. Matrix Id denotes the d × d identity matrix.
We denote by card(G), the cardinality of a set G. For any two functions f and g, we define (f ◦
g)(·) := f(g(·)). We denote by Ck(Rn), the class of k-times continuously-differentiable functions on
Rn, k ≥ 0. If the p-th derivatives of a function f ∈ Ck(Rn) is Lf -Lipschitz continuous on Rn with

p ≤ k, Lf ≥ 0, we write f ∈ Ck,pLf
(Rn). The notation ∥·∥ stands for the standard Euclidean (or 2-)

norm ∥·∥2. We define the weighted norm induced by H ∈ Sn++ by ∥x∥H := ⟨Hx, x⟩
1
2 , for x ∈ Rn. The

associated dual norm is ∥x∥∗H :=
〈
H−1x, x

〉 1
2 . An Euclidean ball of radius r centered at x̄ is denoted

by Br(x̄) := {x ∈ Rn | ∥x− x̄∥ ≤ r}. Associated with a given H ∈ Sn++, the (Dikin) ellipsoid of
radius r centered at x̄ is defined by Er(x̄) := {x ∈ Rn | ∥x− x̄∥H ≤ r}. We define the spectral norm
∥A∥ ≡ ∥A∥2 of a matrix A ∈ Rm×n as the square root of the maximum eigenvalue of A⊤A, where A⊤

is the transpose of A.
A convex function g : Rn → R ∪ {+∞} is said to be proper if dom g ̸= ∅. The function g is said

to be lower semicontinuous (lsc) at y if g(y) ≤ lim inf
x→y

g(x); if it is lsc at every y ∈ dom g, then it is

said to be lsc on dom g. We denote by Γ0(D) the set of proper convex lsc functions from D ⊆ Rn to
R ∪ {+∞}. Given g ∈ C3(dom g), we respectively denote by g′(t), g′′(t) and g′′′(t) the first, second
and third derivatives of g, at t ∈ R, and by ∇x g(x), ∇2

x g(x), and ∇3
x g(x) the gradient, Hessian

and third-order derivative tensor of g, respectively, at x ∈ Rn; if the variables with respect to which
the derivatives are taken are clear from context, the subscripts are omitted. If ∇2 g(x) ∈ Sn++ for a

given x ∈ Rn, then the local norm ∥·∥x with respect to g at x is defined by ∥d∥x :=
〈
∇2 g(x)d, d

〉1/2
,

the weighted norm of d induced by ∇2 g(x). The associated dual norm is ∥v∥∗x :=
〈
∇2 g(x)−1v, v

〉1/2
,

for v ∈ Rn. The subdifferential ∂g : Rn → 2R
n
of a proper function g : Rn → R ∪ {+∞} is defined by

x 7→
{
u ∈ Rn | (∀y ∈ Rn) ⟨y − x, u⟩+ g(x) ≤ g(y)

}
, where 2R

n
denotes the set of all subsets of Rn.

The function g is said to be subdifferentiable at x ∈ Rn if ∂g(x) ̸= ∅; the subgradients of g at x are
the members of ∂g(x).

We define set convergence in the sense of Painlevé-Kuratowski. Let N denote the set of natural
numbers. Let {Ck}k∈N be a sequence of subsets of Rn. The outer limit of {Ck}k∈N is the set

lim sup
k→∞

Ck :=

{
x | ∃N cofinal set of N, ∃xk ∈ Ck : {xk} −→

N
x,∀k ∈ N

}
,

and its inner limit is

lim inf
k→∞

Ck :=

{
x | ∃N cofinite set of N,∃xk ∈ Ck : {xk} −→

N
x,∀k ∈ N

}
.
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The limit C of {Ck}k∈N exists if its outer and inner limits coincide, and we write

C = lim
k→∞

Ck := lim sup
k→∞

Ck = lim inf
k→∞

Ck.

We say that a function g : Rn → R ∪ {+∞} is coercive if lim inf
∥x∥→∞

g(x) = +∞, and supercoercive

if lim inf
∥x∥→∞

g(x)
∥x∥ = +∞. The sequence {gk} of functions gk : Rn → R̄ is said to epi-converge to the

function g : Rn → R̄ if lim
k→∞

epi gk = epi g; it is said to continuously converge to g if for all x ∈ Rn and

{xk} → x, we have lim
k→∞

gk = g; and it converges pointwise to g if for all x ∈ Rn, lim
k→∞

gk(x) = g(x).

Epi-convergence, continuous convergence, and pointwise convergence of {gk} to g are respectively
denoted by e– lim gk = g (or gk e−→ g), c– lim gk = g (or gk c−→ g), and p– lim gk = g (or gk p−→

g).

The conjugate (or Fenchel conjugate, or Legendre transform, or Legendre-Fenchel transform)
g∗ : Rn → R ∪ {+∞} of a function g : Rn → R ∪ {+∞} is the mapping y 7→ sup

x∈Rn

{
⟨x, y⟩ − g(x)

}
, and

its biconjugate is g∗∗ = (g∗)∗.

2. Self-concordant regularization

Since the pioneering work of Nesterov and Nemirovskii [24] on interior-point methods, the notion of
self-concordant functions has helped to better understand the importance of exploiting the problem’s
structure to improve performance of optimization algorithms. This section introduces our notion of
self-concordant smoothing which provides us with structures to exploit in composite optimization
problems. We begin by presenting the definition of generalized self-concordant functions given in [25].

Definition 1 (Generalized self-concordant function on R). A univariate convex function g ∈ C3(dom g),
with dom g open, is said to be (Mg, ν)-generalized self-concordant, with Mg ∈ R+ and ν ∈ P, if∣∣g′′′(t)∣∣ ≤Mg g

′′(t)
ν
2 , ∀t ∈ R.

Definition 2 (Generalized self-concordant function on Rn of order ν). A convex function g ∈ C3(dom g),
with dom g open, is said to be (Mg, ν)-generalized self-concordant of order ν ∈ P, with Mg ∈ R+, if
∀x ∈ dom g ∣∣∣∣〈∇3 g(x)[v]u, u

〉∣∣∣∣ ≤Mg∥u∥2x∥v∥
ν−2
x ∥v∥3−ν , ∀u, v ∈ Rn,

where ∇3g(x)[v] := lim
t→0

{(
∇2g(x+ tv)−∇2g(v)

)
/t
}
.

Note that for an (Mg, ν)-generalized self-concordant function g defined on Rn, the univariate
function φ : R → R defined by φ(t) := g(x + tv) is (Mg, ν)-generalized self-concordant for every
x, v ∈ dom g and x + tv ∈ dom g. This provides an alternative definition for the generalized self-
concordant function on Rn.

A key observation from the above definition is the possibility to extend the theory beyond the case
ν = 3 and u = v originally presented in [24]. This observation, for instance, allowed the authors in [26]
to introduce a pseudo self-concordant framework, in which ν = 2, for the analysis of logistic regression.
In a recent development, the authors in [27] identified a new class of pseudo self-concordant functions

5



Self-concordant Smoothing for Large-Scale Convex Composite Optimization

and showed how these functions may be slightly modified to make them standard self-concordant (i.e.,
where Mg = 2, ν = 3, u = v), while preserving desirable structures. With such generalizations, and
stemming from the idea of Newton decrement in [24], new analytic step-size selection and correction
techniques for a number of proximal algorithms were developed in [18]. It is in the same spirit that we
propose new step-size selection techniques from the self-concordant smoothing framework developed
in this paper. We denote by FMg ,ν the class of (Mg, ν)-generalized self-concordant functions, with
generalized self-concordant parameters Mg ∈ R+ and ν ∈ P.

Definition 3 (Self-concordant smoothing function). We say that the parameterized function gs : Rn×
P → R is a self-concordant smoothing function for g ∈ Γ0(Rn) if the following two conditions are
satisfied:

SC.1 e– lim
µ↓0

gs(x;µ) = g(x).

SC.2 gs(x;µ) ∈ FMg ,ν .

By construction, the class of functions exhibiting the property in SC.1 inherits the gradient and/or
the Jacobian consistency properties introduced in [23] and [28], respectively. In [21, Lemma 3.4], the
authors show the following property for epi-convergent smoothing functions (that is, the ones for which
condition SC.1 holds):

lim sup
x→x̄
µ↓0

∇ gs(x;µ) = ∂g(x̄). (3)

The gradient consistency property holds upon taking the convex hull on both sides of (3) (see [23,
Equation 4]). However, since g ∈ Γ0(Rn), g is subdifferentially regular at any point x̄ ∈ dom g (see [29,
Definition 7.25 and Example 7.27]), and hence, the equivalence between (3) and gradient/Jacobian
consistency holds [21]. Clearly, the relation in (3) implies inclusion in both directions, and hence as
shown in [21], if an algorithm seeks sequences {xk} such that

lim sup
xk→x̄

∇ gs(xk;µ)→ 0,

one finds x̄ is a critical point of g in the sense of satisfying the necessary optimality conditions for
problem (2) (cf. (13)), provided that gs e−→ g.

We denote by SµMg ,ν
the set of self-concordant smoothing functions for a function g ∈ Γ0(Rn), that

is, SµMg ,ν
:=
{
gs : Rn × P→ R | gs e−→ g, gs ∈ FMg ,ν

}
.

2.1. Self-concordant regularization via infimal convolution

We next present some important elements of smoothing via infimal convolution which provides the
Moreau-Yosida regularization process as a special case in defining the (scaled) proximal operator.

Definition 4 (Infimal convolution). Let g and h be two functions from Rn to R∪{+∞}. The infimal
convolution (or “inf-convolution” or “inf-conv”)4 of g and h is the function g□h : Rn → R̄ defined by

(g□h)(x) = inf
w∈Rn

{
g(w) + h(x− w)

}
. (4)

4Also sometimes called “epigraphic sum” or “epi-sum”, as its operation yields the (strict) epigraphic sum epi f +epi g
[30, p. 93].
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The infimal convolution of g with h is said to be exact at x ∈ dom g if the infimum (4) is attained.
It is exact if it is exact at each x ∈ dom g, in which case we write g ⊡ h. Of utmost importance
about the inf-conv operation in this paper is its use in the approximation of a function g ∈ Γ0(Rn);
that is, the approximation of g by its infimal convolution with a member hµ(·) of a parameterized
family H := {hµ | µ ∈ P} of (regularization) kernels. In more formal terms, we recall the notion
of inf-conv regularization in Definition 5 below. For h ∈ Γ0(Rn) and µ ∈ P, we define the function
hµ : Rn → R ∪ {+∞} by the epi-multiplication operation5

hµ(·) := µh

(
·
µ

)
, µ ∈ P. (5)

Definition 5 (Inf-conv regularization). Let g be a function in Γ0(Rn). Define

H :=
{
(x,w) 7→ hµ(x− w) | x,w ∈ Rn, µ ∈ P

}
, (6)

a parameterized family of regularization kernels. The inf-conv regularization process of g with hµ ∈ H
is given by (g□hµ)(x), for any x ∈ Rn.

The operation of the inf-conv regularization generalizes the Moreau-Yosida regularization process
in which case, hµ(·) = ∥·∥2 /(2µ) or, with a scaled norm, hµ(·) = ∥·∥2Q /(2µ) for some Q ∈ Sn++. The
Moreau-Yosida regularization process provides the value function of the proximal operator associated
with a function g ∈ Γ0(Rn). This leads us to the definition of the scaled proximal operator.

Definition 6 (Scaled proximal operator). The scaled proximal operator of a function g ∈ Γ0(Rn),
written proxQαg(·), for α ∈ P and Q ∈ Sn++, is defined as the unique point in dom g that satisfies

(g□ψα)(x) = g(proxQαg(x)) + ψα(x− proxQαg(x)),

where ψα(·) :=∥·∥2Q /(2α). That is, proxQαg(x) := argmin
w∈Rn

{g(w) + ψα(x− w)}.

A key property of the scaled proximal operator is its nonexpansiveness; that is, the property that
(see, e.g., [31, 18]) ∥∥∥proxQαg(x)− proxQαg(y)

∥∥∥
y
≤∥x− y∥∗y , (7)

for all x, y ∈ Rn.
In the sequel, we assume that the regularization kernel function h is of the form

h(x) =
n∑

i=1

ϕ(xi), (8)

where ϕ is a univariate potential function. We note that, by convexity, g is lsc and hence g ∈ Γ0(Rn).
We are left with the question of what properties we need to hold for ϕ such that g□hµ produces gs
satisfying the self-concordant smoothing conditions SC.1 – SC.2. To this end, we impose the following
conditions on ϕ:

K.1 ϕ is supercoercive.

5It is easy to show that h∗
µ = µh∗.
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K.2 ϕ ∈ FMϕ,ν .

Many functions that appear in different settings naturally exhibit the structures in conditions K.1
– K.2. For example, the ones belonging to the class of Bregman/Legendre functions introduced by
Bauschke and Borwein [32] (see also [33] for a related characterization of the class of Bregman func-
tions). In the context of proximal gradient algorithms for solving (1), the recent paper by Bauschke
and Borwein [34] enlists these functions as satisfying the new descent lemma (a.k.a descent lemma
without Lipschitz gradient continuity) which the paper introduced. We summarize examples of these
regularization kernel functions on different domains in Table 1. We extract practical examples on R
for the smoothing of the 1-norm and the indicator functions below.

Remark 1. Suppose that domh is a nonempty bounded subset of Rn, for example, if ϕ ∈ Γ0(R),
then since we have that g ∈ Γ0(Rn) is bounded below as it possesses a continuous affine minorant
(in view of [35, Theorem 9.20]), the less restrictive condition that ϕ is coercive sufficiently replaces
the condition K.1. In other words, the key convergence notion presented below holds similarly for the
resulting function g□hµ in this case. Particularly, we get that g□hµ in this case is exact, finite-valued
and locally Lipschitz continuous (see, e.g., [22, Proposition 3.6]) making it fit into our algorithmic
framework. We keep the supercoercivity condition to emphasize other realizable properties of g□hµ
highlighted below. Our examples in Table 1 therefore include both coercive and supercoercive functions,
where in either case, we have ϕ ∈ FMϕ,ν .

Examples. For some functions g and hµ, there exists a closed form solution to g□hµ. On the other
hand, if one gets that g□hµ = g ⊡ hµ ∈ Γ0(Rn), e.g., as a result of Proposition 2(i) below, then
knowing in this case that

g□hµ = (g∗ + h∗µ)
∗, (9)

we can efficiently estimate g□hµ using fast numerical schemes (see, e.g., [36]).

Infimal convolution of ∥·∥1 with hµ. Let g(x) = ∥x∥1. Below, we provide the infimal convolution
of the function g with hµ, where h is given by (8), for two of functions ϕ of practical interest given in
Table 1 such that SC.1 – SC.2 hold.

Example 1. Let p = 1 in ϕ(t) = 1
p

√
1 + p2|t|2 − 1, with domϕ = R. Then,

(g□hµ)(x) =
µ2 − µ

√
µ2 + x2 + x2√
µ2 + x2

.

Example 2. ϕ(t) = 1
2

[√
1 + 4t2 − 1 + log

(√
1+4t2−1
2t2

)]
, with domϕ = R:

(g□hµ)(x) =

√
µ2 + 4x2

2
− µ

2

1 + log(2)− log

(
2x−

√
µ2 + 4x2 + µ

x

)

− log

(
2x+

√
µ2 + 4x2 − µ
x

) .
8
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Fig. 1: Generalized self-concordant smoothing of g(x) := ∥x∥1 with hµ defined by (5) where h(x) =
∑
ϕ(xi);

ϕ(t) =

√
1 +|t|2 − 1 (left) and ϕ(t) = 1

2

[√
1 + 4t2 − 1 + log

(√
1+4t2−1
2t2

)]
(right). The smooth approximation

(g□hµ)(x) is shown for µ = 0.2, 0.5, 1.0.

Infimal convolution of δC(x) with hµ. In a third example, we consider g(x) = δC(x), where
C := {x ∈ Rn | l ≤ x ≤ u} and

δC(x) :=

{
0, if x ∈ C,
+∞, otherwise.

Example 3. Let ϕ(t) = exp(−t) with domϕ = R, and consider g(x) = δC(x). We have

(g□hµ)(x) = µ exp

(
l − x
µ

)
.

The next two results characterize the functions h and hµ defined by supercoercive and generalized
self-concordant kernel functions.

Lemma 1. Let ϕ ∈ Γ0(R) be a function from R to R∪{+∞}, and let the function h : Rn → R ∪ {+∞}
be defined by h(x) :=

∑n
i=1 λiϕi with ϕi := ϕ(xi), xi ∈ domϕ, λi > 0, i = 1, 2, . . . , n. Then the

following properties hold:

(i) h ∈ Γ0(Rn).

(ii) h is supercoercive if and only if ϕ is supercoercive on its domain.

(iii) If ϕ ∈ FMϕ,ν , where Mϕ ∈ R+ and ν ≥ 2, then h(x) is well-defined on domh = {domϕ}n, and
h(x) ∈ FMh,ν , with Mh := max{λ1−

ν
2

i Mϕ | 1 ≤ i ≤ n} ≥ 0.

Proof. (i) This statement is a direct consequence of [35, Corollary 9.4, Lemma 1.27 and Proposition
8.17].

(ii) Follows directly from the definition of supercoercivity.

9
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Table 1: Examples of regularization kernel functions for self-concordant smoothing, and their generalized self-
concordant parameters Mϕ and ν (see Definition 1).

ϕ(t) domϕ Mϕ ν Remark

−
√
1− t2 [−1,+1] 2.25 4 “Hellinger”

1
p

√
1 + p2|t|2 − 1, p ∈ P R 2 2.6 p = 1

7

22
√

t(1−t)
[0, 1] 2.02 4 “Arcsine probability density”

1
2

[√
1 + 4t2 − 1 + log

(√
1+4t2−1
2t2

)]
R 2

√
2 3 Ostrovskii & Bach [27]

1
2 t

2 R 0 3 “Energy”
1
p |t|

p
, p ∈ (1, 2) R+ 4 6 p = 1.5

log(1 + exp(t)) R 1 2 “Logistic”
exp(−t) R 1 2 “Exponential”
t log t− t [0,+∞] 1 4 “Boltzmann-Shannon”

t log t+ (1− t) log(1− t) [0, 1] 1 4 “Fermi-Dirac”
− 1

2 log t P 8 3 “Burg”{
1
2 (t

2 − 4t+ 3), if t ≤ 1

− log t, otherwise
R 4 3 De Pierro & Iusem [33]

(iii) h(·) ∈ FMh,ν with Mh := max{λ1−
ν
2

i Mϕ | 1 ≤ i ≤ n} ≥ 0 follows from [25, Proposition 1].

Proposition 1 (Self-concordance of hµ). Suppose the conditions of Lemma 1 hold such that the
function h : Rn → R ∪ {+∞} defined by (8) is (Mh, ν)-generalized self-concordant. Let A ∈ Rn×n be a
diagonal matrix defined by A := diag( 1µ) such that h(xµ) ≡ h(Ax) is an affine transformation of h(x).
Then the following properties hold:

(i) If ν ∈ (0, 3], then hµ ∈ FM,ν with M = n
3−ν
2 µ

ν
2
−2Mh.

(ii) If ν > 3, then hµ ∈ FM,ν with M = µ4−
3ν
2 Mh.

Proof. (i) We have ∥A∥ =
√
n
µ . By [25, Proposition 2(a)], h(xµ) ∈ FM,ν with M = ∥A∥3−ν Mh. In

view of Lemma 1(iii), the scaling h( ·
µ) 7→ µh( ·

µ) gives M 7→ µ1−
ν
2M . The result follows.

(ii) The value µ2 > 0 corresponds to the unique eigenvalues of A⊤A. By [25, Proposition 2(b)],
h(xµ) ∈ FM,ν with M = µ3−νMh. The result follows as in Item (i) above.

In addition to (3), the next result due to [22] concerns the epi-convergence of smoothing via infimal
convolution under the condition of supercoercive regularization kernels in Γ0(Rn).

Lemma 2. [22, Theorem 3.8] Let g, h ∈ Γ0(Rn) with h supercoercive and 0 ∈ domh. Let hµ be defined
as in (5). Then the following hold:

(i) e– lim
µ↓0

inf{g∗ + µh∗} ≥ g∗.

(ii) e– lim
µ↓0
{g∗ + µh∗} = g∗.

10



Self-concordant Smoothing for Large-Scale Convex Composite Optimization

(iii) e– lim
µ↓0
{g□hµ} = g.

(iv) If h(0) ≤ 0, we have p– lim
µ↓0
{g□hµ} = g.

The main argument for the notion of epi-convergence in optimization problems is that when work-
ing with functions that may take infinite values, it is necessary to extend traditional convergence
notions by applying the theory of set convergence to epigraphs in order to adequately capture local
properties of the function (through a resulting calculus of smoothing functions), which on the other
hand may be challenging due to the curse of differentiation associated with nonsmoothness. We refer
the interested reader to [29, Chapter 7] for further details on the notion of epi-convergence, and to
[37, 21, 22] for extended results on epi-convergent smoothing via infimal convolution.

The following result highlights key properties of the infimal convolution of g ∈ Γ0(Rn) with hµ
satisfying h ∈ FMh,ν .

Proposition 2. Let g, h ∈ Γ0(Rn). Suppose further that h is (Mh, ν)-generalized self-concordant and
supercoercive, and define gs := g□hµ for all µ > 0. Then the following hold:

(i) g□hµ = g ⊡ hµ ∈ Γ0(Rn).

(ii) gs ∈ SµMg ,ν
with

Mg =

{
n

3−ν
2 µ

ν
2
−2Mh, if ν ∈ (0, 3],

µ4−
3ν
2 Mh, if ν > 3.

(iii) gs is locally Lipschitz continuous.

Proof. First, as an immediate consequence of [35, Lemma 1.28, Lemma 1.27 and Proposition 8.17],
we have hµ ∈ Γ0(Rn).

(i) Follows immediately from [35, Proposition 12.14].

(ii) By Item (i), gs = g ⊡ hµ ∈ Γ0(Rn). As a consequence of [35, Proposition 12.14], we have

gs(x, µ) = min
w∈Rn

{
g(w) + hµ(x− w)

}
,

and gs e−→ g (by [29, Theorem 11.34]). In view of [29, Proposition 7.2], for x ∈ dom g and

wµ(x) ∈ argmin
w∈Rn

{
g(w) + hµ(x− w)

}
̸= ∅,

gs e−→ g implies that gs(x, µ)→ g(x) for at least one sequence wµ(x)→ x. Hence, we have

(g□hµ)(x) = g(wµ(x)) + hµ(x− wµ(x)).

And, given h ∈ FMh,ν , we have by Proposition 1 that hµ is (Mg, ν)-generalized self-concordant,
where Mg is defined by

Mg =

{
n

3−ν
2 µ

ν
2
−2Mh, if ν ∈ (0, 3],

µ4−
3ν
2 Mh, if ν > 3.

11



Self-concordant Smoothing for Large-Scale Convex Composite Optimization

Hence, hµ ∈ C3(dom g), and by [35, Proposition 18.7/Corollary 18.8], noting that higher-order
derivatives are defined inductively in this sense, we have∣∣∣∣〈∇3(g□hµ)(x)[v]u, u

〉∣∣∣∣ = ∣∣∣∣〈∇3 hµ(x− wµ(x))[v]u, u
〉∣∣∣∣ , ∀u, v ∈ dom g,

and similarly for the second-order derivatives. By definition, the univariate function

φ(t) := hµ(u1 + tv1), (10)

is (Mg, ν)-generalized self-concordant, for every u1, v1 ∈ dom g. That is, ∀t ∈ R,∣∣φ′′′(t)
∣∣ ≤Mg φ

′′(t)
ν
2 ,

which concludes the proof after setting u1 = x, v1 = w(xµ) and t = −µ in (10).

(iii) Following the arguments in Items (i) and (ii) above, wµ (and hence gs) is finite-valued (see also
[21, Lemma 4.2]). Then the Lipschitz continuity of gs near some x̄ ∈ dom g follows from the
convexity of gs (see [29, Example 9.14]; see also [22, Proposition 3.6]).

3. A proximal Newton-type scheme

Our notion of self-concordant smoothing developed in the previous section is motivated by algorithmic
purposes. Specifically, we are interested in practically efficient composite minimization algorithms that
utilize the idea of the Newton decrement framework but without imposing the self-concordant structure
on the problem’s objective functions. In this section, we present proximal Newton-type algorithms
that exploit the structure of self-concordant smoothing functions developed in § 2 for variable-metric
selection and the computation of their step-lengths.

For the optimization problem of concern, i.e., (2), we assume the following:

P.1 f is convex and f ∈ C2,2Lf
(Rn).

P.2 ρ0In ≤ ∇2 f(x∗) ≤ LIn, ρIn ≤ ∇2 gs(x
∗) ≤ L0In at a locally optimal solution x∗ of (2) with

L ≥ ρ0 > 0 and L0 ≥ ρ > 0.

P.3 g ∈ Γ0(Rn).

P.4 gs ∈ SµMg ,ν
.

In particular, we consider gs(x;µ) := g□hµ such that h is a suitable regularization kernel for self-
concordant smoothing of g in the sense of §2. Proximal Newton-type algorithms for solving (2) consist
in minimizing a sequence of upper approximation of L obtained by summing the nonsmooth part
g(xk) and a local quadratic model of the smooth part q(xk) := f(xk) + gs(xk) near xk. That is, for
x ∈ domL ≡ dom f ∩ dom g, we iteratively define

q̂k(x) := q(xk) +
〈
∇ q(xk), x− xk

〉
+

1

2
∥x− xk∥2Q , (11a)

m̂k(x) := q̂k(x) + g(x), (11b)

12
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where Q ∈ Sn++, and then solve the subproblem

δk = argmin
d∈Rn

m̂k(xk + d), (12)

for a proximal Newton-type search direction δk. With proximal Newton-type algorithms comprising
only their special cases, we proceed by recalling the class of cost approximation (CA) methods [38]
which helps us to propose a new method for selecting {xk} from the iterates {δk}. The necessary
optimality conditions for (2) are defined by

0 ∈ ∇ q(x∗) + ∂g(x∗), (13)

for x∗ ∈ domL. To find points x∗ satisfying (13), CA methods, as the name implies, iteratively
approximate ∇ q(xk) by a cost approximating mapping Φ: Rn → Rn, taking into account the fixed
approximation error term Φ(xk)−∇ q(xk). That is, a point d is sought satisfying

0 ∈ Φ(d) + ∂g(d) +∇ q(xk)− Φ(xk). (14)

Let Φ be the gradient mapping of a continuously differentiable convex function ψ : Rn → R. A CA
method iteratively solves the subproblem

min
d∈Rn

{
ψ(d) + q(xk) + g(d)− ψ(xk) +

〈
∇ q(xk)−∇ψ(xk), d− xk

〉}
. (15)

A step is then taken in the direction δk − xk, namely

xk+1 = xk + αk(δk − xk), (16)

where δk solves (15) and αk > 0 is a step-length typically computed via a line search such that an
appropriately selected merit function is sufficiently decreased along the direction δk − xk.

Remark 2. Evaluating the merit function too many times can be practically intractable. One way
to (completely) mitigate this difficulty for large-scale problems is to incorporate “predetermined step-
lengths” [39] into the solution scheme of (15), so that we may update xk as xk+1 ≡ δk. However,
methods that use this approach do not, in general, yield monotonically decreasing sequence of objective
values, and convergence is instead characterized by a metric that measures the distance from iteration
points to the set of optimal solutions [39].

In view of Remark 2, we discuss next a new proximal Newton-type scheme that compromises
between minimizing the objective values and decreasing the distance from iteration points to the set
of optimal solutions as specified by a curvature-exploiting variable-metric.

3.1. Variable-metric and adaptive step-length selection

A very nice feature of the CA framework is that it can help, for instance, through the specific choice of
Φ, to efficiently utilize the original problem’s structure—a practice which is particularly useful when
solving medium- to large-scale problems. This feature fits directly into our self-concordant smoothing
framework. We notice that (15) gives (12) with the following choice of ψ:

ψ(·) = 1

2
∥·∥2Q , Q ∈ Sn++. (17)

13
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In this case, the optimality conditions and our assumptions give

(Q−∇ q)(xk) ∈ (Q+ ∂g)(d), (18)

which leads to

δk = proxQg (xk −Q−1∇ q(xk)). (19)

In the proximal Newton-type scheme, Q may be the Hessian of q(xk) or its approximation6. Although
a diagonal structure of Q is often desired due to its ease of implementation in the proximal frame-
work, we most likely throw away relevant curvature information by performing a diagonal or scalar
approximation of ∇2 q(xk), especially when q is not assumed to be separable. Our consideration in
this work entails the following characterization of the optimality conditions:

(Hk −∇ q)(xk) ∈ (Qk + ∂g)(d), (20)

where Hk may be the Hessian, ∇2 q(xk) ≡ Hf +Hg, of q or its approximation, where Hf ≡ ∇2 f(xk),
Hg ≡ ∇2 gs(xk;µ), and Qk ∈ Sn++. Specifically, we set Qk = Hg in (20) and propose the following step
update formula:

xk+1 = prox
Hg
αkg(xk − ᾱkH

−1
k ∇ q(xk)), (21)

where ᾱk ∈ P results from damping the Newton-type steps.

Algorithm 1 Prox-N-SCORE (A proximal Newton algorithm)

Require: x0 ∈ Rn, problem functions f , g, self-concordant smoothing function gs ∈ SµMg ,ν
, α ∈ (0, 1]

1: for k = 0, . . . do
2: gradk ← ∇ f(xk) +∇ gs(xk)
3: Hg ← ∇2 gs(xk); ηk ←

∥∥∇ gs(xk)∥∥∗Hg
▷ Note: Hg is diagonal

4: ᾱk = α
1+Mgηk

5: Hk ← ∇2 f(xk) +Hg; Solve for ∆k: Hk∆k = gradk
6: xk+1 ← prox

Hg
αg (xk − ᾱk∆k)

7: end for

The validity of this procedure in the present scheme may be seen in the interpretation of the
proximal operator proxg

(
x+
)
for some x+ ∈ dom g as compromising between minimizing the function

g and staying close to x+ (see [40, Chapter 1]). When scaled by, say, Hg, “closeness” is quantified
in terms of the metric induced by Hg, and we want the proximal steps to stay close (as much as
possible) to the Newton iterates relative to, say, ∥·∥Hg

. To see this, we note that in view of the fixed-

point characterization (15) via CA methods, we may interpret proximal Newton-type algorithms as a
fixation of the error term ∇ψ−∇ q at some point in dom q∩dom g. Let us fix some x̄ ∈ dom q∩dom g
and introduce the operator Ex̄ defined by

Ex̄(z) := ∇2 q(x̄)z − ᾱ∇ q(z), (22)

6If Q is the scaled identity matrix, then we have the proximal gradient method, if Q = ∇2 q, we have the proximal
Newton method, and if Q is a quasi-Newton-type, say BFGS, approximation of the Hessian, we have a proximal quasi-
Newton-type method.

14
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where 0 < ᾱ ≤ α ≤ 1. Set Q = Qk ∈ Sn++ arbitrary in (17). We aim to exploit the structure in gs
(and ∇2 gs), so we define an operator ξx̄(Qk, ·) to quantify the error between ∇2 gs and Qk as follows:

ξx̄(Qk, z) := (∇2 gs(x̄)−Qk)(z − xk). (23)

We provide a local characterization of the optimality conditions for (15) in terms of Ex̄ and ξx̄ in the
next result.

Proposition 3. Let the operators Ex̄ and ξx̄(Qk, ·) be defined by (22) and (23), respectively. Then
the optimality conditions for (15) with ψ(·) = 1

2∥·∥
2
Qk

are locally characterized in terms of Ex̄ and
ξx̄(Qk, ·) by

Ex̄(xk) + ξx̄(Qk, d) ∈ ∇2 gs(x̄)d+ α∂g(d). (24)

More precisely, (20) holds with Qk = ∇2 gs(x̄) whenever x̄ is the unique optimizer satisfying (24) at a
local solution d of (15).

Proof. As a result of (3), Lemma 2, and by [29, Theorem 13.2], there exists vg ∈ Rn, in the extended
sense of differentiability (see [29, Definition 13.1]), such that

lim sup
x→x̄
µ↓0

∇ gs(x) = ∂g(x̄) = {vg}, (25a)

∅ ≠ ∂g(d) ⊂ vg +∇2 gs(x̄)(d− x̄) + o(|d− x̄|)Er(x̄). (25b)

Let xk be in some neighbourhood of x̄ and let {xk} → x̄ be generated by an iterative process. By
assumption, the differentiable terms in (25b) are convex and the differential operators are monotone.
It then holds that

∂g(d) ⊂ vg +∇2 gs(x̄)(d− xk) + o(|d− x̄|)Er(x̄), (26)

for all xk in the neighbourhood of x̄. Since differentiability in the extended sense is necessary and
sufficient for differentiability in the classical sense (see [29, Definition 13.1 and Theorem 13.2]), it
holds for some µ ∈ P that vg ≡ ∇ gs(x̄) which is defined through:

∇ gs(d) = ∇ gs(x̄) +∇2 gs(x̄)(d− x̄) + o(|d− x̄|). (27)

Consequently, using (14) (with Φ = ∇ψ), and defining the Dikin ellipsoid Er(x̄) in terms of gs for r
small enough, we deduce from (26), (27) that Qk(xk − d) +∇2 gs(x̄)(xk − d)− ᾱ∇ q(xk) ∈ ᾱ∇ gs(x̄)
for 0 < ᾱ ≤ 1. We assert ∇2 f(x̄)(d− x̄) ∈ Er(x̄) at a local solution d of (15), and then deduce again
from (26), (27) that ᾱ∇ gs(x̄) +∇2 gs(x̄)(d− xk) +∇2 f(x̄)xk ∈ α∂g(d) holds for 0 < ᾱ ≤ α ≤ 1 near
x̄, whenever x̄ is the unique solution x∗ of (2). As a result, using q := f + gs, we get

(∇2 q(x̄)− ᾱ∇ q)xk −∇2 gs(x̄)xk ∈ Qk(d− xk) + α∂g(d). (28)

In terms of Ex̄ and ξx̄(Qk, ·), (28) may be written as (24), which exactly gives (20) with the choice
Qk = ∇2 gs(x̄).

As we shall see in the GGN approximation discussed below, we may exploit the properties of the
function gs in ensuring stability of the Newton-type steps via the notion of Newton decrement. In
essence, we consider damping the Newton-type steps such that

ᾱk =
αk

1 +Mgηk
, (29)
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where by P.4, Mg is a generalized self-concordant parameter for gs, and ηk :=
∥∥∇ gs(xk)∥∥∗xk

is the dual
norm associated with gs. Note that the above choice for ᾱk, in the context of minimizing generalized
self-concordant functions, assumes ν ≥ 2 (see e.g. [25, Equation 12]). Suppose for example αk = 1
is fixed and ν = 3, then (28) leads to the standard damped-step proximal Newton-type method
(cf. [18, 25]) in the framework of Newton decrement.

In view of (8), Hg has a desirable diagonal structure and hence can be cheaply updated from
iteration to iteration. This structure provides an efficient way to compute the scaled proximal operator
prox

Hg
g , for example via a special case of the proximal calculus derived in [41] (see §6 for two practical

examples). Overall, by exploiting the structure of the problem, precisely

(i) taking adaptive steps that properly capture the curvature of the objective functions, and

(ii) scaling the proximal operator of g by a variable-metricHg which has a simple, diagonal structure,

we can adapt to an affine-invariant structure due to the algorithm and ensure we remain close to the
Newton-type iterates towards convergence.

If we choose Hk ≡ ∇2 q(xk) in (21), we obtain a proximal Newton step (see Algorithm 1):

xk+1 = prox
Hg
αkg(xk − ᾱk∇2 q(xk)

−1∇ q(xk)). (30)

However, Hk may be any approximation of the Hessian of q at xk. In view of (24), this corresponds
to replacing the Hessian term ∇2 q(x̄) in (22) by the approximating matrix evaluated at x̄.

Algorithm 2 Prox-GGN-SCORE (A proximal generalized Gauss-Newton algorithm)

Require: x0 ∈ Rn, problem functions f , g, self-concordant smoothing function gs ∈ SµMg ,ν
, model

M, input-output pairs {ui, yi}mi=1 with yi ∈ Rny , α ∈ (0, 1]
1: for k = 0, . . . do
2: Hg ← ∇2 gs(xk); ηk ←

∥∥∇ gs(xk)∥∥∗Hg
▷ Note: Hg is diagonal

3: ᾱk ← α
1+Mgηk

4: if m+ ny ≤ n then
5: Compute δggnk via (35)
6: else
7: Compute δggnk via (34)
8: end if
9: xk+1 ← prox

Hg
αg (xk + ᾱkδ

ggn
k )

10: end for

3.2. A proximal generalized Gauss-Newton algorithm

In describing the proximal GGN algorithm, consider first the simple case g ≡ 0. Then (21) with
ᾱk = 1 gives exactly the pure Newton-type direction

δggnk = −H−1
k ∇ q(xk). (31)

Now suppose that the function f quantifies a data-misfit or loss between the outputs7 ŷi of a model
M(·;x) and the expected outputs yi, for i = 1, 2, . . . ,m, as in a typical machine learning problem,

7Note that for the sake of simplicity, we assume here yi ∈ R, but it is straightforward to extend the approach that
follows to cases where yi ∈ Rny , ny > 1.
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and that g ̸= 0. Precisely, let ŷi ≡M(ui;x), and suppose that f can be written as

f(x) =

m∑
i=1

ℓ(yi, ŷi), (32)

where ℓ : R × R → R is a loss function. Define an “augmented” Jacobian matrix Jk ∈ R(m+1)×n by
[20]

JT
k :=


ŷ′1(x

(1)) ŷ′2(x
(1)) · · · ŷ′m(x(1)) g(1)′(x(1))

ŷ′1(x
(2)) ŷ′2(x

(2)) · · · ŷ′m(x(2)) g(2)′(x(2))
...

...
...

...

ŷ′1(x
(n)) ŷ′2(x

(n)) · · · ŷ′m(x(n)) g(n)′(x(n))

 , (33)

where x(1), x(2), . . . , x(n) are components of xk, and g
(1), g(2), . . . , g(n) are the components of gs(xk;µ).

Then GGN approximation of the Newton direction (31) gives

δggnk = −(Hf +Hg)
−1∇ q ≈ −(J⊤

k VkJk +Hg)
−1J⊤

k uk, (34)

where Vk ≡ diag(vk), vk := [l′′ŷ1(y1, ŷ1;xk), . . . , l
′′
ŷm

(ym, ŷm;xk), 0]
⊤ ∈ R(m+1), and the vector uk :=

[l′ŷ1(y1, ŷ1;xk), . . . , l
′
ŷm

(ym, ŷm;xk), 1]
⊤ ∈ Rm+1 defines an augmented “residual” term. If m + 1 < n

(possibly m≪ n), that is, when the model is overparameterized, the following equivalent formulation
of (34) provides a convenient way to compute the GGN search direction [20]:

δggnk = −H−1
g J⊤

k (Im + VkJkH
−1
g J⊤

k )−1uk. (35)

Note that in case the function g (and hence gs) is scaled by some (nonnegative) constant, only the
identity matrix Im may be scaled accordingly. Following [20, Section 4], it suffices to assume stability
of the GGN iterates by ensuring the stability of Hg. This is achieved, for instance, through the
generalized self-concordant structure of gs.

Now if we choose Hk ≡ J⊤
k VkJk +Hg in the proximal Newton-type scheme of (21), we have the

proximal GGN update (see Algorithm 2):

xk+1 = prox
Hg
αkg(xk + ᾱkδ

ggn
k ), (36)

where δk is computed via (34), or by (35) in case m+ 1 is less than n, and ᾱk is as defined in (29).

4. Structured penalties

As we have noted, more general nonsmooth regularized problems impose certain structures on the
variables that must be handled explicitly by the algorithm. Such situations can be seen in some lasso
and multi-task regression problems in which problem (1) takes on the form

min
x∈Rn

f(x) +R(x) + Ω(Cx)︸ ︷︷ ︸
g(x)

, (37)

where, in addition to R(x), the function (cf. [42, 43])

Ω(Cx) := max
u∈Q
⟨u,Cx⟩, (38)
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characterizes a specific desired structure of the solution estimates and, for V a finite-dimensional vector
space such that C : Rn → V is a linear map, Q ⊆ V∗ is closed and convex, where V∗ is the dual space
to V.

For example, in the sparse group lasso problem [44, 45], Ω(Cx) = γ
∑

j∈G ωj

∥∥xj∥∥ induces group
level sparsity on the solution estimates andR(x) = β∥x∥1 promotes the overall sparsity of the solution,
so that the optimization problem is written as

min
x∈Rn

f(x) + β∥x∥1 + βG
∑
j∈G

ωj

∥∥xj∥∥ , (39)

where β ∈ P, βG ∈ P, G = {jk, . . . , jng} is the set of variables groups with ng = card(G), xj ∈ Rnj is
the subvector of x corresponding to variables in group j and ωj ∈ P is the group penalty parameter.
Another example is the graph-guided fused lasso for multi-task regression problems [46], where the
function Ω(Cx) = βG

∑
e=(r,s)∈E,r<s τ(ωrs)

∣∣xr − sign(ωrs)xs
∣∣ encourages a fusion effect over variables

xr and xs shared across tasks through a graph G ≡ (V,E) of relatedness, where V = {1, . . . , n}
denotes the set of nodes and E the edges; βG ∈ P, τ(ωrs) is a fusion penalty function, and ωrs ∈ R is
the weight of the edge e = (r, s) ∈ E. Here, with R(x) = β∥x∥1, β ∈ P, the optimization problem is
written as

min
x∈Rn

f(x) + β∥x∥1 + βG
∑

e=(r,s)∈E,r<s

τ(ωrs)
∣∣xr − sign(ωrs)xs

∣∣ . (40)

4.1. Structure reformulation for self-concordant smoothing

The key observation in problems of the form (37) is that the function Ω(Cx) belongs to the class of
nonsmooth convex functions that is well-structured for Nesterov’s smoothing [11] in which a smooth
approximation Ωs of Ω has the form8

Ωs(Cx;µ) = max
u∈Q

{
⟨u,Cx⟩ − µd(u)

}
, µ ∈ P, (41)

where d is a prox-function9 of the set Q. Note that Nesterov’s smoothing approach assumes the
knowledge of the exact structure of C. In the sequel, we shall write ΩC(x) ≡ Ω(Cx) or ΩC

s (x;µ) ≡
Ωs(Cx), with the superscript “C” to indicate the function is structure-aware via C.

Proposition 4. Let C : Rn → Rn be a linear map and let ω be a continuous convex function defined
on a closed and convex set Q ⊆ domω ⊆ Rn. Further, define

Ω̃(x) := max
u∈Q

{
⟨u,Cx⟩ − ω(u)

}
,

and let d := h∗, where h : Rn → R satisfies ∇2 h ∈ Sn++ and is of the form (8) with ϕ satisfying K.1 –
K.2 so that h ∈ FMh,ν with ν ∈ [3, 6) if n > 1 and with ν ∈ (0, 6) if n = 1. Then the function

Ωs(x;µ) = max
u∈Q

{
⟨u,Cx⟩ − ω(u)− µd(u)

}
, µ ∈ P, (42)

is a self-concordant smoothing function for Ω̃(x).
8The reader should not confuse the barrier smoothing technique of, say, [47, 48], with the self-concordant smoothing

framework of this paper. The self-concordant barrier smoothing techniques, just like Nesterov’s smoothing, realize
first-order and subgradient algorithms that solve problems of this exact form.

9A function d1 is called a prox-function of a closed and convex set Q1 if Q1 ⊆ dom d1, and d1 is continuous and
strongly convex on Q1 with convexity parameter ρ1 > 0.
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Proof. We follow the approach in [1, Section 4]. First note that we can write Ω̃(x) = Ω(Cx), where

Ω := (ω + δQ)
∗.

Now, let d̃ := d + δQ. In view of [25, Proposition 6], we have d, d̃ ∈ FMd,νd where Md = Mh and
νd = 6− ν. Next, define h̃ := (d̃)∗. We have

(Ω∗ + h̃∗µ)
∗(x) = (ω + δQ + µd̃)∗(x)

= max
u∈Q

{
⟨u, x⟩ − ω(u)− µd(u)

}
,

which is precisely (Ω̃□h∗µ)(x) according to [1, Theorem 4.1(a)] (cf. (9)). Now, since d := h∗ ∈ FMd,νd ,
the result follows from Proposition 1 and Proposition 2(ii).

Under the assumptions of Proposition 4, ΩC
s (x;µ) provides a self-concordant smooth approximation

of Ω(x) with V ≡ Rn. In this case, the prox-function d in (41) is given by h∗, the dual of h ∈ FMh,ν .

4.2. Prox-decomposition and smoothness properties

An important property of the function g = R + ΩC we want to infer here is its prox-decomposition
property [49] in which the (unscaled) proximal operator of g satisfies

proxg = proxΩC ◦ proxR . (43)

Under our assumptions on g and h, this property extends for the inf-conv regularization (and hence
the self-concordant smoothing framework)10. To see this, let z := (R□hµ)(x), and note the following
equivalent expression for the definition of inf-convolution (4):

z := (R□hµ)(x) = inf
(u,v)∈Rn×Rn

u+v=x

{
R(u) + hµ(v)

}
. (44)

The next result follows, highlighting what we propose as the inf-decomposition property.

Proposition 5. Let g ∈ Γ0(Rn) be given as the sum g(x) = R(x)+ΩC(x). Suppose that the function
h ∈ Γ0(Rn) is supercoercive. Then the regularization process gs := g□hµ, for all µ > 0, is given by the
composition

gs(x) = (ΩC□hµ) ◦ (R□hµ)(x). (45)

Proof. Recall z := (R□hµ)(x) and let V = Rn. We have

(ΩC□hµ) ◦ (R□hµ)(x) = inf
(u,v)∈Rn×Rn

u+v=z

{
ΩC(u) + hµ(v)

}
= inf

(u,v)∈Rn×Rn

2u+v=x

{
R(u) + ΩC(u) + hµ(v)

}
= ((R+ΩC)□hµ)(x) = (g□hµ)(x),

where the first equality directly uses the definition of inf-conv operation in (44) and the second equality
is inferred from the exactness of the inf-conv regularization process by Proposition 2(i).

10Additional assumptions may be required to hold in order to correctly define this property in our framework, e.g.,
nonoverlapping groups in case of the sparse group lasso problem, in which case, V is the space Rn.
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Given the smoothness properties of ΩC□hµ and R□hµ, we can apply the chain rule to obtain the
derivatives of their composition g□hµ. Precisely, [50, Lemma 2.1] provides sufficient conditions for
the validity of the derivatives obtained via the chain rule for composite functions, which are indeed
satisfied for g□hµ by our assumptions.

5. Convergence analysis

We analyze the convergence of Algorithms 1 and 2 under the smoothing framework of this paper.
In view of the numerical examples considered in §6, we restrict our analyses to the case 2 ≤ ν ≤ 3.
However, similar convergence properties are expected to hold for the general case ν > 0, as the key
bounds describing generalized self-concordant functions hold similarly for all of these cases (see, e.g.,
Section 2 and the concluding remark of [25]). We define the following metric term, taking the local
norm ∥·∥x with respect to gs:

dν(x, y) :=

{
Mg∥y − x∥ if ν = 2,(
ν
2 − 1

)
Mg∥y − x∥3−ν

2 ∥y − x∥ν−2
x if ν > 2.

(46)

We introduce the notations H∗
g ≡ ∇2 gs(x

∗), H∗
f ≡ ∇2 f(x∗) and H∗ ≡ ∇2 q(x∗). Recall also the

notations Hg ≡ ∇2 gs(xk), Hf ≡ ∇2 f(xk) and Hk ≡ ∇2 q(xk) at xk. Furthermore, we define the
following matrices associated with any given twice differentiable function f :

Σx,y
f :=

∫ 1

0

(
∇2 f(x+ τ(y − x))−∇2 f(x)

)
dτ, (47a)

Υx,y
f := ∇2 f(x)−1/2Σx,y

f ∇
2 f(x)−1/2. (47b)

We begin by stating some useful preliminary results. The following result provides bounds on the
function gs in (2).

Lemma 3. [25, Proposition 10] Suppose that P.3–P.4 hold. Then, given any x, y ∈ dom g, we have

ων(−dν(x, y))∥y − x∥2x ≤ gs(y)− gs(x)− ⟨∇ gs(x), y − x⟩ ≤ ων(dν(x, y))∥y − x∥2x, (48)

in which, if ν > 2, the right-hand side inequality holds if dν(x, y) < 1, and

ων(τ) :=



exp(τ)−τ−1
τ2

if ν = 2,
−τ−ln(1−τ)

τ2
if ν = 3,

(1−τ) ln(1−τ)+τ
τ2

if ν = 4,(
ν−2
4−ν

)
1
τ

[
ν−2

2(3−ν)τ

(
(1− τ)2(3−ν)

2−ν − 1
)
− 1

]
otherwise.

(49)

The next two lemmas are instrumental in our convergence analysis, and are immediate conse-
quences of the (local) Hessian regularity of the smooth functions f and gs in (2).

Lemma 4. [51, Lemma 1.2.4] For any given x, y ∈ dom f , we have∥∥∥∇ f(y)−∇ f(x)−∇2 f(x)(y − x)
∥∥∥ ≤ Lf

2
∥y − x∥2 , (50)∣∣∣∣f(y)− f(x)− ⟨∇ f(x), y − x⟩ − 1

2
⟨∇2 f(x)(y − x), y − x⟩

∣∣∣∣ ≤ Lf

6
∥y − x∥3 . (51)
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Lemma 5. [25, Lemma 2] For any given x, y ∈ dom g, Υx,y
gs satisfies

∥Υx,y
gs ∥ ≤ Rν(dν(x, y))dν(x, y),

where, for τ ∈ [0, 1), Rν(τ) is defined by

Rν(τ) :=


(
3
2 + τ

3

)
exp(τ) if ν = 2,

1−(1−τ)
4−ν
ν−2−

(
4−ν
ν−2

)
τ(1−τ)

4−ν
ν−2(

4−ν
ν−2

)
τ2(1−τ)

4−ν
ν−2

if ν ∈ (2, 3].
(52)

Global convergence. We prove a first global result for the proximal Newton-type scheme (21).
We show that the iterates of this scheme decrease the objective function values with the step-lengths
specified by (29) and αk ∈ (0, 1], and converge to an optimal solution of (1).

Let us define the following mapping:

Gαkg(xk) :=
1

ᾱk
Hk

(
xk − prox

Hg
αkg(xk − ᾱkH

−1
k ∇ q(xk))

)
. (53)

Clearly, (21) is equivalent to

xk+1 = xk − ᾱkH
−1
k Gαkg(xk) . (54)

Using (20) with Qk = Hg and the definition of the (scaled) proximal operator, Gαkg(xk) satisfies

Gαkg(xk) ∈ ∇ q(xk) + ∂g(xk − ᾱkH
−1
k Gαkg(xk)). (55)

Moreover, Gαkg(x̄) = 0 if and only if x̄ solves problem (2).

Theorem 1. Suppose that P.1, P.3 and P.4 hold for (2). Let {xk} be the sequence generated by
scheme (21) for problem (2) and satisfying ων(dν(xk+1, xk)) ≤ 0.5, where ων and dν are respectively
defined by (49) and (46). Define ϵĝs(y) := (Lf/6)∥y − xk∥3, and let ᾱk be specified by (29) with
αk ∈ (0, 1]. Then {xk} satisfies

L(xk+1) ≤ L(xk)− ϵĝs(xk+1). (56)

Proof. Letting y = xk − ᾱkH
−1
k Gαkg(xk) and x = xk in Lemma 4, where Gαkg is defined by (53), we

have

f(xk+1) ≤ f(xk)− ᾱk(H
−1
k ∇ f(xk))

⊤Gαkg(xk)+
ᾱ2
k

2

∥∥∥H−1
k Gαkg(xk)

∥∥∥2
Hf

+
ᾱ3
kLf

6

∥∥∥H−1
k Gαkg(xk)

∥∥∥3 . (57)

Using L(xk+1) := f(xk+1) + g(xk+1) and (57), we get

L(xk+1) ≤ f(xk)− ᾱk(H
−1
k ∇ f(xk))

⊤Gαkg(xk)+
ᾱ2
k

2

∥∥∥H−1
k Gαkg(xk)

∥∥∥2
Hf

+
ᾱ3
kLf

6

∥∥∥H−1
k Gαkg(xk)

∥∥∥3 + g(xk − ᾱkH
−1
k Gαkg(xk))

21



Self-concordant Smoothing for Large-Scale Convex Composite Optimization

Lemma 4
≤ f(z)− ⟨∇ f(xk), z − xk⟩ −

1

2
∥z − xk∥2Hf

+
Lf

6
∥z − xk∥3

− ᾱk(H
−1
k ∇ f(xk))

⊤Gαkg(xk)+
ᾱ2
k

2

∥∥∥H−1
k Gαkg(xk)

∥∥∥2
Hf

+
ᾱ3
kLf

6

∥∥∥H−1
k Gαkg(xk)

∥∥∥3 + g(xk − ᾱkH
−1
k Gαkg(xk)). (58)

In the above, we used the lower bound in Lemma 4 on f(z). By the convexity of g, we have g(z) −
g(xxk+1

) ≥ v⊤(z − xk+1) for all v ∈ ∂g(xk+1). Now since from (55), we have Gαkg(xk)−∇ q(xk) ∈
∂g(xk − ᾱkH

−1
k Gαkg(xk)), and noting that ∇ q −∇ f = ∇ gs, (58) gives

L(xk+1) ≤ f(z) + g(z)− ⟨∇ f(xk), z − xk⟩ −
1

2
∥z − xk∥2Hf

+
Lf

6
∥z − xk∥3

− ᾱk(H
−1
k ∇ f(xk))

⊤Gαkg(xk)+
ᾱ2
k

2

∥∥∥H−1
k Gαkg(xk)

∥∥∥2
Hf

+
ᾱ3
kLf

6

∥∥∥H−1
k Gαkg(xk)

∥∥∥3
− (Gαkg(xk)−∇ q(xk))

⊤(z − xk + ᾱkH
−1
k Gαkg(xk))

≤ L(z)− ⟨∇ f(xk), z − xk⟩ −
1

2
∥z − xk∥2Hf

− ᾱk(H
−1
k ∇ f(xk))

⊤Gαkg(xk)

+
ᾱ2
k

2

∥∥∥H−1
k Gαkg(xk)

∥∥∥2
Hf

+
Lf

6
∥z − xk∥3 +

ᾱ3
kLf

6

∥∥∥H−1
k Gαkg(xk)

∥∥∥3
−Gαkg(xk)

⊤(z − xk)−
ᾱ2
k

2
⟨H−1

k Gαkg(xk), Gαkg(xk)⟩

− ∇ q(xk)⊤(z − xk + ᾱkH
−1
k Gαkg(xk))

= L(z) +Gαkg(xk)
⊤(xk − z) +

ᾱ2
k

2
⟨H−1

k (HfH
−1
k − In)Gαkg(xk), Gαkg(xk)⟩

+∇ gs(xk)⊤(z − xk) + ᾱk(H
−1
k ∇ gs(xk))

⊤Gαkg(xk)−
1

2
∥z − xk∥2Hf

+
Lf

6
∥z − xk∥3 +

ᾱ3
kLf

6

∥∥∥H−1
k Gαkg(xk)

∥∥∥3 , (59)

where the second inequality results from the fact that ⟨H−1
k Gαkg(xk), Gαkg(xk)⟩ ≥ 0 and ᾱk ≥ ᾱ2

k for
0 < ᾱk ≤ 1. Now set z = xk in (59) and use the following relations from (54):

ᾱkH
−1
k Gαkg(xk) = xk − xk+1, Gαkg(xk) =

1

ᾱk
Hk(xk − xk+1).

We get

L(xk+1) ≤ L(xk) +
ᾱ2
k

2
⟨H−1

k (HfH
−1
k − In)Gαkg(xk), Gαkg(xk)⟩

+ ᾱk(H
−1
k ∇ gs(xk))

⊤Gαkg(xk)+
ᾱ3
kLf

6

∥∥∥H−1
k Gαkg(xk)

∥∥∥3
= L(xk)−

[
⟨∇ gs(xk), xk+1 − xk⟩+

1

2
⟨Hg(xk+1 − xk), xk+1 − xk⟩

+
Lf

6
∥xk+1 − xk∥3

]
. (60)
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Now, let us define the following cubic-regularized upper quadratic model of gs near xk (cf. [52]):

ĝs(y) := gs(xk) + ⟨∇ gs(xk), y − xk⟩+
1

2
⟨Hg(y − xk), y − xk⟩+

Lf

6
∥y − xk∥3 ,

for y ∈ Rn and Lf given by P.1. Then, using Lemma 3 with x = xk, we have

gs(y)− ĝs(y) ≤ ων(dν(y, xk))∥y − xk∥2x −
1

2
⟨Hg(y − xk), y − xk⟩ −

Lf

6
∥y − xk∥3 . (61)

Next, using (61) with y = xk+1, (60) gives

L(xk+1) ≤ L(xk) + gs(xk+1)− ĝs(xk+1)

≤ L(xk) +
(
ων(dν(xk+1, xk))−

1

2

)
∥xk+1 − xk∥2x −

Lf

6
∥xk+1 − xk∥3 ,

which proves the result.

Corollary 1. Let {xk} ⊂ Rn in Theorem 1. Then every limit point x̄ of {xk} at which (20) holds
with Qk = Hg is a stationary point of the objective function L in problem (1).

Proof. We infer existence of the limit point x̄ from discussions in the proof of Proposition 2. As a result
of Theorem 1, {xk} necessarily converges to an optimal solution x∗ satisfying (20) with Qk = Hg. The
result follows from the gradient consistency property specified by (3) and our characterization of the
optimality conditions in (20) (cf. [53, Section 3] and [21, Section 5]).

How to choose αk. In previous results, we did not specify a particular way to choose αk. Our
algorithms converge for any value of αk ∈ (0, 1]. Compared to the step-length selection rule proposed
in [25], for instance, our approach and analysis do not directly rely on the actual value of ν in the
choice of both ᾱk and αk. Indeed, in the context of minimizing a function gs ∈ FMg ,ν , an optimal
choice for ᾱk, in view of [25], corresponds to setting

αk =


ln(1+dk)(1+Mηk)

dk
if ν = 2,

2(1+Mgηk)
2+Mgηk

if ν = 3,

where dk := Mg∥∇2H−1
g ∇ gs(xk)∥ and in each case, it can be shown that ᾱk ∈ (0, 1). However,

choosing αk this way does not guarantee certain theoretical bounds in the context of the framework
studied in this work, especially for ν = 2. We therefore propose to leave αk as a hyperparameter that
must satisfy 0 < αk ≡ α ≤ 1. This however gives us the freedom to exploit specific properties about
the function f , when they are known to hold. One of such properties is the global Lipschitz continuity
of ∇ f , where supposing the Lipschitz constant L is known, one may set

αk = min{1/L, 1}.

Local convergence. We next discuss the local convergence properties of Algorithms 1 and 2. In our
discussion, we take the local norm ∥·∥x (and its dual) with respect to gs, and the standard Euclidean
norm ∥·∥ with respect to the (local) Euclidean ball Br0(·) ⊂ Er(·).
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Theorem 2. Suppose that P.1–P.4 hold, and let x∗ be an optimal solution of (2). Let {xk} be the
sequence of iterates generated by Algorithm 1 and define λk := 1 +Mgων(−dν(x∗, xk))∥xk − x∗∥xk

,
where ων is defined by (49). Then starting from a point x0 ∈ Er(x∗), if dν(x∗, xk) < 1 with dν defined
by (46), the sequence {xk} converges to x∗ according to∥∥xk+1 − x∗

∥∥
x∗ ≤ ϑk

∥∥xk − x∗∥∥+Rk

∥∥xk − x∗∥∥x∗ +
Lf

2
√
ρ

∥∥xk − x∗∥∥2 , (62)

where ϑk := (L+L0)(λk−αk)/(λk
√
ρ), αk ∈ (0, 1], Rk := Rν(dν(x

∗, xk))dν(x
∗, xk) with Rν defined by

(52).

Proof. The iterative process of Algorithm 1 is given by

xk+1 = prox
Hg
αkg(xk − ᾱk∇2 q(xk)

−1∇ q(xk)).

In terms of Ex̄ and ξx̄(Qk, ·) with Qk ≡ Hg, and using the definition of q, we have∥∥xk+1 − x∗
∥∥
x∗ =

∥∥∥proxH∗
g

αkg(Ex∗(xk) + ξx∗(Qk, xk+1))− prox
H∗

g
αkg(Ex∗(x∗))

∥∥∥
x∗

(7)

≤
∥∥Ex∗(xk)− Ex∗(x∗) + ξx∗(Qk, xk+1)

∥∥∗
x∗

=
∥∥H∗xk − ᾱk∇ q(xk)−H∗x∗ + ᾱkq(x

∗)
∥∥∗
x∗

=
∥∥∇ q(x∗)−∇ q(xk) + (1− ᾱk)(∇ q(xk)−∇ q(x∗)) +H∗(xk − x∗)

∥∥∗
x∗

≤
∥∥∇ q(xk)−∇ q(x∗)−H∗(xk − x∗)

∥∥∗
x∗ + (1− ᾱk)

∥∥∇ q(xk)−∇ q(x∗)∥∥∗x∗

≤
∥∥∥∇ f(xk)−∇ f(x∗)−H∗

f (xk − x∗)
∥∥∥∗
x∗

+
∥∥∥∇ gs(xk)−∇ gs(x∗)−H∗

g (xk − x∗)
∥∥∥∗
x∗

+ (1− ᾱk)
(∥∥∇ f(xk)−∇ f(x∗)∥∥∗x∗ +

∥∥∇ gs(xk)−∇ gs(x∗)∥∥∗x∗

)
. (63)

To estimate ∥∇ f(xk)−∇ f(x∗)−H∗
f (xk−x∗)∥∗x∗ , we note that for v ∈ Rn, ∥v∥∗x∗ ≡ ∥H

∗− 1
2

g v∥ since we
take the dual norm with respect to gs. Now, using P.2, we get that the matrix H∗

g is positive definite
and

∥H∗− 1
2

g ∥ ≤ 1
√
ρ
. (64)

Consequently, we have∥∥∥∇ f(xk)−∇ f(x∗)−H∗
f (xk − x∗)

∥∥∥∗
x∗

=

∥∥∥∥H∗− 1
2

g

(
∇ f(xk)−∇ f(x∗)−H∗

f (xk − x∗)
)∥∥∥∥

≤ ∥H∗− 1
2

g ∥
∥∥∥∇ f(xk)−∇ f(x∗)−H∗

f (xk − x∗)
∥∥∥

Lemma 4
≤

Lf∥xk − x∗∥2

2
√
ρ

.

To estimate ∥∇ gs(xk) − ∇ gs(x∗) − H∗
g (xk − x∗)∥∗x∗ , we can apply Lemma 5 as in the proof of [25,

Theorem 5], and get∥∥∥∇ gs(xk)−∇ gs(x∗)−H∗
g (xk − x∗)

∥∥∥∗
x∗
≤ Rν(dν(x

∗, xk))dν(x
∗, xk)

∥∥xk − x∗∥∥x∗ .
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Following [25, p. 195], we can derive the following inequality in a neighbourhood of the sublevel set
of Ls in (2) using Lemma 3 and the convexity of gs:

∥∇ gs(xk)∥∗xk
≥ ων(−dν(x∗, xk))∥xk − x∗∥xk

. (65)

In this regard, (29) gives

1− ᾱk ≤
λk − αk

λk
. (66)

Next, by P.2, we deduce ∥∥∇ gs(xk)−∇ gs(x∗)∥∥ ≤ L0

∥∥xk − x∗∥∥ ,
and ∥∥∇ f(xk)−∇ f(x∗)∥∥ ≤ L∥∥xk − x∗∥∥ .
Then, using (64), we get

∥∥∇ gs(xk)−∇ gs(x∗)∥∥∗x∗ =

∥∥∥∥H∗− 1
2

g

(
∇ gs(xk)−∇ gs(x∗)

)∥∥∥∥
≤ L0√

ρ

∥∥xk − x∗∥∥ .
Similarly, ∥∥∇ f(xk)−∇ f(x∗)∥∥∗x∗ ≤

L
√
ρ

∥∥xk − x∗∥∥ .
Finally, putting the above estimates into (63), we obtain (62).

To prove the local convergence of Algorithm 2, we need an additional assumption about the
behaviour of the Jacobian matrix Jk near x∗. As before, Jk denotes the Jacobian matrix evaluated at
xk; likewise, Vk and uk. At x

∗, we respectively write J∗, V ∗ and u∗. We assume the following:

G.1 ∥Jkv∥ ≥ β1∥v∥, β1 > 0, for all xk near x∗, and for any v ∈ Rn.

For f defined by (32), condition G.1 implies that the singular values of Jk are uniformly bounded
away from zero, at least locally. Let the unaugmented version of the residual vector uk be denoted ũk
at xk, that is,

ũk := [l′ŷ1(y1, ŷ1;xk), . . . , l
′
ŷm(ym, ŷm;xk)]

⊤ ∈ Rm.

Define the following matrix:

W T
k :=


ŷ′′1(x

(1)) ŷ′′2(x
(1)) · · · ŷ′′m(x(1))

ŷ′′1(x
(2)) ŷ′′2(x

(2)) · · · ŷ′′m(x(2))
...

...
...

ŷ′′1(x
(n)) ŷ′′2(x

(n)) · · · ŷ′′m(x(n))

 ∈ Rn×m. (67)
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We note that the “full” Hessian matrix Hk can be expressed as

Hk ≡ J⊤
k VkJk + (1⊗ (W⊤

k ũk))
⊤ +Hg, (68)

where 1 ∈ Rn×1 is the n × 1 matrix of ones and ⊗ denotes the outer product. By P.1, P.2 and the
Lipschitz continuity of gs around x∗ in Proposition 2(iii), we have: for r small enough, there exists a
constant β2 > 0 such that∥ũk∥ ≤ β2 near x∗. Furthermore by our assumptions (see, e.g., [54, Theorem
10.1]), we deduce that there exists β3 > 0 such that ∥Wk∥ ≤ β3 near x∗.

The next result about the local convergence of Algorithm 2 follows. Note that for Algorithm 2,
we consider the case where f in problem (2) may, in general, be expressed in the form (32).

Theorem 3. Suppose that P.1–P.4 hold, and let x∗ be an optimal solution of (2) where f is defined by
(32). Additionally, let G.1 hold for the Jacobian matrix Jk defined by (33). Let {xk} be the sequence
of iterates generated by Algorithm 2, and define λk := 1 +Mgων(−dν(x∗, xk))∥xk − x∗∥xk

, where ων

is defined by (49). Then starting from a point x0 ∈ Er(x∗), if dν(x∗, xk) < 1 with dν defined by (46),
the sequence {xk} converges to x∗ according to∥∥xk+1 − x∗

∥∥
x∗ ≤ ϑk

∥∥xk − x∗∥∥+Rk

∥∥xk − x∗∥∥x∗ +
Lf

2
√
ρ

∥∥xk − x∗∥∥2 , (69)

where Rk is as defined in Theorem 2, ϑk := (λk(L + L0)(λk − αk) + β̃)/
√
ρ, αk ∈ (0, 1], and β̃ :=

β2β3 > 0.

Proof. Let Ĥk := J⊤
k VkJk +Hg, and consider the iterative process of Algorithm 2 given by

xk+1 = prox
Hg
αkg(xk − ᾱkĤ

−1
k J⊤

k uk).

We first note that J⊤
k uk is a compact way of writing ∇ f(xk) +∇ gs(xk) =: ∇ q(xk), where f is given

by (32). Following the proof of Theorem 2, we have∥∥xk+1 − x∗
∥∥
x∗ =

∥∥∥proxH∗
g

αkg(Ex∗(xk) + ξx∗(Qk, xk+1))− prox
H∗

g
αkg(Ex∗(x∗))

∥∥∥
x∗

≤
∥∥∥∇ q(xk)−∇ q(x∗)− Ĥ∗

k(xk − x∗)
∥∥∥∗
x∗

+ (1− ᾱk)
∥∥∇ q(xk)−∇ q(x∗)∥∥∗x∗ . (70)

Let W ∗ and ũ∗ respectively denote expressions for Wk and ũ evaluated at x∗. Substituting (68) into
(70) and using (64) in the estimate∥∥∥(1⊗ (W ∗⊤ ũk))

⊤(xk − x∗)
∥∥∥∗
x∗
≤
∥∥∥∥H∗− 1

2
g (1⊗ (W ∗⊤ ũ∗))⊤

∥∥∥∥∥∥xk − x∗∥∥ ,
where Wk is defined by (67), we get∥∥xk+1 − x∗

∥∥
x∗ ≤

∥∥∇ q(xk)−∇ q(x∗)−H∗(xk − x∗)
∥∥∗
x∗ +

∥∥∥(1⊗ (W ∗⊤ ũ∗))⊤(xk − x∗)
∥∥∥∗
x∗

+ (1− ᾱk)
∥∥∇ q(xk)−∇ q(x∗)∥∥∗x∗

≤
∥∥∥∇ f(xk)−∇ f(x∗)−H∗

f (xk − x∗)
∥∥∥∗
x∗

+
∥∥∥∇ gs(xk)−∇ gs(x∗)−H∗

g (xk − x∗)
∥∥∥∗
x∗

+ (1− ᾱk)
(∥∥∇ f(xk)−∇ f(x∗)∥∥∗x∗ +

∥∥∇ gs(xk)−∇ gs(x∗)∥∥∗x∗

)
+
β̃∥xk − x∗∥√

ρ
, (71)

where β̃ = β2β3. Now, using the estimates derived in the proof of Theorem 2 in (71) above, we obtain
(69).
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6. Numerical experiments

In this section, we validate the efficiency of the technique introduced in this paper in numerical
examples using both synthetic and real datasets from the LIBSVM repository [55]. The approach
and algorithms proposed in this paper are implemented in the Julia programming language and are
available online as an open-source package11. We test the performance of Algorithms 1 and 2 for
various fixed values of αk ≡ α ∈ (0, 1] (see Fig. 2). Clearly, convergence is fastest with αk = 1, so we
fix this value for the two algorithms in the remainder of our experiments. We compare our technique
with other algorithms, namely PANOC [8], ZeroFPR [56], OWL-QN [57], proximal gradient [58], and fast
proximal gradient [13] algorithms12. In the sparse group lasso experiments, we compare our approach
with the proximal gradient, block coordinate descent (BCD)13 algorithm, and the semismooth Newton
augmented Lagrangian (SSNAL) method [60] which was extended14 in [61] to solve sparse group lasso
problems. BCD is known to be an efficient algorithm for general regularized problems [62], and is used
as a standard approach for the sparse group lasso problem [63, 44, 45]. Since the problems considered

in our experiments use the ℓ1 and ℓ2 regularizers, we use ϕ(t) = 1
p

√
1 + p2|t|2 − 1 from Example 1,

with p = 1 and derive gs in problem (2) accordingly (see also Fig. 1). This provides a good (smooth)
approximation for the 1- and 2-norms with an appropriate value of µ. Its gradient and Hessian are
respectively

∇ gs(x) = x/
√
µ2 + x2, ∇2 gs(x) = diag

(
µ2/(µ2 + x2)

3
2

)
.

For a diagonal matrix Hg ∈ Rn×n, the scaled proximal operator for the 1- and 2-norms are obtained

using the proximal calculus derived in [41]. Let the vector d̂ ∈ Rn contain the diagonal entries of Hg,
and let β ∈ P:

(i) prox
Hg

β∥x∥1 = sign(x) ·max{|x| − βd̂, 0}, and

(ii) prox
Hg

β∥x∥ = x ·max{1− βd̂/∥x∥, 0}.

All experiments are performed on a laptop with dual (2.30GHz + 2.30GHz) Intel Core i7-11800 H
CPU and 32GB RAM.

6.1. Sparse logistic regression

We consider the problem of finding a sparse solution x to the following logistic regression problem

min
x∈Rn

L(x) :=
m∑
i=1

log
(
1 + exp(−yi⟨ai, x⟩)

)
︸ ︷︷ ︸

=:f(x)

+β∥x∥1, (72)

11https://github.com/adeyemiadeoye/SelfConcordantSmoothOptimization.jl
12We use the open-source package ProximalAlgorithms.jl for the PANOC, ZeroFPR, and fast proximal gradi-

ent algorithms, while we use our own implementation of the OWL-QN (modification of https://gist.github.com/

yegortk/ce18975200e7dffd1759125972cd54f4) and proximal gradient methods which can also be found in our package
SelfConcordantSmoothOptimization.jl.

13We use the BCD method of [59] which is efficiently implemented with a gap safe screening rule. The open-source
implementation can be found in https://github.com/EugeneNdiaye/Gap_Safe_Rules.

14We use the freely available implementation provided by the authors in https://github.com/YangjingZhang/

SparseGroupLasso.
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where, in view of (1), g(x) := β∥x∥1, β ∈ P, and ai ∈ Rn, yi ∈ {−1, 1} form the data. We perform
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Fig. 2: Behaviour of Prox-N-SCORE and Prox-GGN-SCORE for different fixed values of αk in problem (72).

experiments on both randomly generated data and real datasets summarized in Table 2. For the
synthetic data, we set β = 0.2, while for the real datasets, we set β = 1. We fix µ = 1 in both
Algorithms 1 and 2, and set αk = 1/L for the proximal gradient algorithm, where L is estimated as
L = λmax(A

⊤A), the columns of A ∈ Rn×m are the vectors ai and λmax denotes the largest eigenvalue.
For the sake of fairness, we provide this value of L to each of PANOC, ZeroFPR, and fast proximal
gradient algorithms for computing their step-lengths in our comparison. The results are shown in
Fig. 2, Fig. 3 and Fig. 4. In Fig. 3, we observe that Prox-GGN-SCORE reduces most of computational
burden of the Newton-type method when m + ny < n and makes the method competitive with the
first-order methods considered. However, as shown in both Fig. 2 and Fig. 3, Prox-GGN-SCORE is no
longer preferred when n < m+ny and, by our experiments, the algorithm can run into computational
issues when n≪ m. In this case (particularly for all of the real datasets that we use in this example),
Prox-N-SCORE would be preferred and, as shown in the performance profile of Fig. 4, outperforms
other tested algorithms in most cases, especially with α = 1.
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Fig. 3: Comparison of Prox-N-SCORE and Prox-GGN-SCORE with PANOC, ZeroFPR, OWL-QN, proximal gradient,
and fast proximal gradient algorithms for problem (72). Besides the default termination criterion used in

the ProximalAlgorithms.jl package, we set all the algorithms to terminate when ∥xk−xk−1∥
max{∥xk−1∥,1} < 10−10.

Prox-GGN-SCORE reduces most of the computational burden of Prox-N-SCORE if m + ny < n (or m ≪ n).
However, Prox-N-SCORE solves the problem faster, and is more stable, if n < m+ ny (or n≪ m).

6.2. Sparse group lasso

In this example, we consider the sparse group lasso problem:

min
x∈Rn

L(x) := 1

2
∥Ax− y∥2︸ ︷︷ ︸

=:f(x)

+β∥x∥1 + βG
∑
j∈G

ωj

∥∥xj∥∥︸ ︷︷ ︸
=:g(x)

, (73)

as described in §4. We use the common example used in the literature [64, 65], which is based on
the model y = Ax∗ + 0.01ϵ ∈ Rm×1, ϵ ∼ N (0, 1). The entries of the data matrix A ∈ Rm×n are
drawn from the normal distribution with pairwise correlation corr(Ai, Aj) = 0.5|i−j|, ∀(i, j) ∈ [n]2.
We generate datasets for different values of m and n with n satisfying (n mod ng) = 0. In this
problem, we want to further highlight the faster computational time achieved by the approximation
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Fig. 4: Performance profile (CPU time) for the sparse logistic regression problem (72) using the LIBSVM
datasets summarized in Table 2. Here, τ denotes the performance ratio (CPU times in seconds) averaged
over 20 independent runs with different random initializations, and ρ(τ) is the corresponding frequency. Each

algorithm is stopped when ∥xk−xk−1∥
max{∥xk−1∥,1} < 10−6 or when the default tolerance is reached.

Table 2: Summary of the real datasets used for sparse logistic regression.

Data m n Density

mushrooms 8124 112 0.19

phishing 11055 68 0.44

w1a 2477 300 0.04

w2a 3470 300 0.04

w3a 4912 300 0.04

w4a 7366 300 0.04

w5a 9888 300 0.04

w8a 49749 300 0.04

a1a 1605 123 0.11

a2a 2265 123 0.11

a3a 3185 123 0.11

a4a 4781 123 0.11

a5a 6414 123 0.11

in Prox-GGN-SCORE, so we consider only overparameterized models (i.e., with m + ny ≤ n). In this
problem, the matrix C in the reformulation (37) is a diagonal matrix with row indices given by all
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Table 3: Performance of Prox-GGN-SCORE (alg.A), SSNAL (alg.B), Prox-Grad (alg.C) and BCD (alg.D) on the
sparse group lasso problem (73) for different values of m and n. nnz stands for the number of nonzero entries
of x∗ and of the solutions found by the algorithms. MSE stands for the mean squared error between the true
solution x∗ and the estimated solutions.

(m,n;nnz)
nnz Iteration Time [s] MSE

alg.A alg.B alg.C alg.D alg.A alg.B alg.C alg.D alg.A alg.B alg.C alg.D alg.A alg.B alg.C alg.D

(500, 2000; 19) 19 198 19 19 161 62 5904 9690 2.81 4.65 13.39 3.55 2.9305E-09 5.3188E-08 2.5189E-07 8.0350E-06

(500, 4000; 36) 36 39 36 36 253 140 10991 16790 8.44 39.51 51.91 11.60 1.4291E-08 4.3952E-08 1.1653E-06 1.7127E-05

(500, 5000; 45) 45 45 45 45 530 111 13919 20830 16.60 35.57 90.05 18.53 2.6339E-07 6.0898E-08 2.0121E-06 2.1641E-05

(1000, 5000; 45) 45 82 45 45 112 35 3051 9100 8.71 15.73 11.57 22.14 2.4667E-07 1.9757E-06 2.1747E-06 5.0779E-06

(1000, 7000; 65) 65 65 65 65 185 82 7012 20870 30.26 148.07 42.45 70.08 4.5689E-07 2.2847E-08 4.0172E-06 1.8038E-05

(1000, 10000; 94) 93 94 94 94 497 102 9879 29330 53.26 252.05 90.25 126.17 3.8421E-06 2.8441E-08 3.6320E-06 3.5855E-05

(1000, 12000; 112) 112 113 113 164 663 68 21178 59360 166.15 194.40 221.26 373.50 1.5750E-05 4.6965E-08 7.3285E-06 5.9521E-05

*Iteration = Number of “outer” iterations for SSNAL (alg.B).

pairs (i, j) ∈ {(i, j)|i ∈ j, i ∈ {1, . . . , ng}}, and column indices given by k ∈ {1, . . . , ng}. That is,

C(i,j),k =

{
βGωj if i = k,

0 otherwise.

We construct x∗ in a similar way as [66]: We fix ng = 100 and break n randomly into groups of
equal sizes with 0.1 percent of the groups selected to be active. The entries of the subvectors in the
nonactive groups are set to zero, while for the active groups, ⌈ n

ng
⌉ × 0.1 of the subvector entries are

drawn randomly and set to sign(ξ)×U where ξ and U are uniformly distributed in [0.5, 10] and [−1, 1],
respectively; the remaining entries are set to zero. For the sake of fair comparison, each data and the
associated initial vector x0 are generated in Julia, and exported for the BCD implementation in Python
and also for the SSNAL implementation in MATLAB.

For Prox-GGN-SCORE, Prox-Grad and BCD, we set β = τ1γ∥AT y∥∞, βG = (10− τ1)γ∥AT y∥∞ with
τ1 = 0.9 and γ ∈ {10−7, 10−8}. SSNAL can be made to return a solution estimate that has number of
nonzero entries close to that of the true solution with a carefully tuned β and simply setting βG = β
(cf., [61, Table 1]). However, by our numerical experience, SSNAL is very sensitive to the choice of β
and βG if the goal is to have a reasonable convergence to the true solution with the correct within-
group sparsity in the solution estimate. Besides, different values of β and βG are suitable for different
problem sizes with SSNAL. After a careful tuning, and with the aim of reporting a fair comparison,
we set β = τ1γ∥AT y∥∞ and βG = ∥AT y∥∞ with γ = 10−5 and τ1 ∈ {4, 5, 10, 12} for SSNAL. For each
group j, the parameter ωj is set to the standard value

√
nj [44, 45], where nj = card(j). For fairness,

the estimate αk = 1/L with L = λmax(A
⊤A) is used in the proximal gradient and SSNAL algorithms.

The smoothing parameter µ is set to 1.2 for the problem with m = 500, n = 2000, 2.0 for the
problem with m = 1000, n = 12000, and to 1.6 for the remaining problems. In principle, µ is a
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Fig. 5: Mean squared error (MSE) between the estimates xk and the true coefficient x∗ for Prox-GGN-SCORE,
SSNAL, Prox-Grad and BCD on the sparse group lasso problem (73). The algorithms terminate after successfully

solving the problem for a given tolerance or when ∥xk−xk−1∥
max{∥xk−1∥,1} < εtol with εtol ∈ {10−6, 10−9}.

hyperparameter that has to be chosen to scale with the size of the optimization vector x. Any µ > 0
is suitable, but larger values of n may require to set µ ≥ 1. This is intuitive in the sense that a rather
small µ when n is large results into a “weak” smoothing, and in the algorithmic scope, we only require
that g and gs do not conflict, which holds by construction for any µ > 0.

In the experiments, we stop Prox-GGN-SCORE, SSNAL and proximal gradient algorithms when
∥xk−xk−1∥

max{∥xk−1∥,1} < εtol with εtol ∈ {10−6, 10−9}. The BCD algorithm is stopped when the default tolerance

is reached. The simulation results are shown in Table 3 and Figure 5. As shown, Prox-GGN-SCORE
solves the problem faster than SSNAL, Prox-Grad and BCD algorithms in most cases with the correct
number of nonzero entries in its solution estimates. In the problems considered, Prox-GGN-SCORE
benefits a lot from overparameterization which would have potentially posed a serious computational
issue for a typical second-order method. This makes the algorithm very competitive with first-order
methods and other Newton-type methods in large-scale problems.
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6.3. Sparse deconvolution

In this example, we consider the problem of estimating the unknown sparse input x to a linear system,
given a noisy output signal and the system response. That is,

min
x∈Rn

L(x) := 1

2
∥Ax− y∥2︸ ︷︷ ︸

=:f(x)

+β∥x∥p, (74)

where A ∈ Rn×n and y ∈ Rn×1 are given data about the system which we randomly generate according
to [67, Example F]. We solve with both ℓ1 (p = 1) and ℓ2 (p = 2) regularizers, and set β = 10−3. We
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Fig. 6: Sparse deconvolution via ℓ1-regularized least squares (74) using Prox-N-SCORE, Prox-GGN-SCORE, PANOC,
ZeroFPR, proximal gradient, and fast proximal gradient algorithms with n = 1024. Each algorithm is stopped

when ∥xk−xk−1∥
max{∥xk−1∥,1} < 10−6 or when the default tolerance is reached.

set µ = 5×10−2 in the smooth approximation gs of g. We estimate L = λmax(A
⊤A) and set αk = 1/L

in the proximal gradient algorithm. Again, for fairness, we provide this value of L to each of PANOC,
ZeroFPR, and fast proximal gradient procedures in our comparison. The results of the simulations
are displayed in Fig. 6 and Fig. 7. While Prox-GGN-SCORE and Prox-N-SCORE sometimes have more
running time in this problem, they provide better solution quality with smaller reconstruction error
than the other tested algorithms, which is often more important for signal reconstruction problems.

7. Conclusions

Generalized self-concordant optimization provides very useful tools for implementing and analyzing
Newton-type methods for unconstrained problems. This helps to reconcile the geometric proper-
ties of Newton-type methods with their implementations, while providing convergence guarantees.
In the presence of constraints or nonsmooth terms in the objective functions, it becomes natural
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Fig. 7: Sparse deconvolution via ℓ2-regularized least squares (74) using Prox-N-SCORE, Prox-GGN-SCORE, PANOC,
ZeroFPR, proximal gradient, and fast proximal gradient algorithms with n = 1024. Each algorithm is stopped

when ∥xk−xk−1∥
max{∥xk−1∥,1} < 10−6 or when the default tolerance is reached.

to extend these methods via proximal schemes. However, when the (generalized) self-concordant
property is uncheckable for the objective functions, these methods are no longer applicable and the
convergence guarantees becomes difficult to prove. In addition to other related computational issues,
this paper addresses this with a self-concordant smoothing notion which combines and synthesizes
different regularization/smoothing phenomena, namely: inf-conv regularization, self-concordant regu-
larization (SCORE), and Moreau-Yosida regularization. This approach, leading to two algorithms in
this paper (Prox-N-SCORE and Prox-GGN-SCORE), is able to utilize certain properties of generalized
self-concordant functions in the selection of adaptive step-lengths and a simple variable-metric in the
proximal Newton-type scheme. We prove global and local convergence guarantees for our approach.
As demonstrated in numerical simulations, in most cases, our approach compares favourably against
other state-of-the-art first- and second-order approaches from the literature.

In future research, it would be interesting to analyze our framework in the nonconvex setting. In
particular, we believe that our notion of self-concordant smoothing could lead to interesting research
directions in applications such as deep neural network training, in which our stylized approximation
technique in Prox-GGN-SCORE would become very instrumental in scaling our method with respect to
the problem size. Another possible future consideration is the handling of more general structured
penalties with our approach, allowing to relax some of the conditions in §4.
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