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Abstract

Primal-dual hybrid gradient (PDHG) is a first-order method for saddle-point problems and
convex programming introduced by Chambolle and Pock. Recently, Applegate et al. analyzed
the behavior of PDHG when applied to an infeasible or unbounded instance of linear program-
ming, and in particular, showed that PDHG is able to diagnose these conditions. Their analysis
hinges on the notion of the infimal displacement vector in the closure of the range of the dis-
placement mapping of the splitting operator that encodes the PDHG algorithm. In this paper,
we develop a novel formula for this range using monotone operator theory. The analysis is then
specialized to conic programming and further to quadratic programming (QP) and second-order
cone programming (SOCP). A consequence of our analysis is that PDHG is able to diagnose in-
feasible or unbounded instances of QP and of the ellipsoid-separation problem, a subclass of
SOCP.

2010 Mathematics Subject Classification: 49M27, 65K05, 65K10, 90C25; Secondary 47H14, 49M29,
49N15.

Keywords: Chambolle–Pock algorithm, convex optimization problem, inconsistent constrained op-
timization, primal-dual hybrid gradient method, projection operator, proximal mapping, second-
order cone programming, quadratic programming.

1 Introduction

“First-order” methods for convex programming use matrix-vector multiplication as their principal
operation. For huge-scale convex programming problems, first-order methods appear to be the
only tractable approach. In a recent survey, Lu [21] found that, among first-order methods, primal-
dual hybrid gradient (PDHG) appears to be the best in practice for linear programming (LP). PDHG
was introduced by Chambolle and Pock [18]. It has been shown by O’Connor and Vandenberghe
[24] that PDHG may be regarded as a particular form of the Douglas-Rachford iteration. In the
following, we assume that

X and Y are real Hilbert spaces (1)
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with corresponding inner products ⟨·, ·⟩X (respectively ⟨·, ·⟩Y) and induced norms ∥·∥X (respectively
∥·∥Y)1. We also assume that

f : X → ]−∞,+∞] , g : Y → ]−∞,+∞] , (2)

are convex lower semicontinuous and proper, and that

A : X → Y is linear and continuous. (3)

PDHG is an algorithm for general saddle-point problems of the form

inf
x∈X

sup
y∈Y

f (x)− g∗(y) + ⟨y,Ax⟩. (4)

Here, g∗ denotes the Fenchel–Legendre conjugate of g. It should be noted that (4) is equivalent to
infx∈X f (x) + g(Ax) since the inner sup of (4) is exactly the formula for conjugation of g∗. We
return to this point in Section 3.1. Recall the proximal mapping of f at x ∈ X is defined by

Prox f (x) = argminz∈X

{
f (z) +

1
2
∥z − x∥2

}
,

and that the operator form for the proximal mapping is

Prox f ≡ (Id+∂ f )−1. (5)

Let (x0,y0) ∈ X×Y. The PDHG iteration updates (x0,y0) as follows (∀k ∈N):

xk+1 := Proxσ f (xk − σA∗yk), (6a)

yk+1 := Proxτg∗ (yk + τA(2xk+1 − xk)) . (6b)

Here, σ, τ > 0 are step-size parameters that must be chosen correctly—refer to Lemma 3.2. Thus,
the main work on each iteration consists of multiplication by A and A∗ and two prox operations.

Observe that (6) can be written as (xk+1,yk+1) := T(xk,yk) where:

T(x,y) =
(

Proxσ f (x− σA∗y)
Proxτg∗

(
y + τA(2 Proxσ f (x− σA∗y)− x)

) ) . (7)

Let (x∗,y∗) ∈ X × Y. Then, assuming a constraint qualification, (x∗,y∗) ∈ Fix T :={
(x,y) ∈ X×Y

∣∣ (x,y) = T(x,y)
}

or equivalently (Id−T)(x∗,y∗) = 0, if and only if (x∗,y∗)
is a solution to (4) (see, e.g., Proposition 3.1 below). On the other hand, if 0 /∈ ran (Id−T) then
∥(xk,yk)∥ → ∞ (see, e.g., [2, Corollary 2.2]). This motivates the exploration of the set ran (Id−T)
and the corresponding well-defined infimal displacement vector (see (47) below). In passing we point
out that the study of the range of the displacement mapping associated with splitting algorithms;
namely Douglas–Rachford and forward-backward algorithms, was a key ingredient in exploring
the static structure and the dynamic behaviour of these methods in the inconsistent case. In this
regard, we refer the reader to [10, 9, 11, 3, 20, 22, 23, 28].

In the case of PDHG, recently Applegate et al. [1] showed that in the case of inconsistent linear
programming (infeasible or unbounded), the infimal displacement vector characterizes the limiting
difference between successive PDHG iterates and also certifies the infeasibility or unboundedness.

Our main results can be summarized as follows:
1When it is clear from the context, we will drop the subscripts X and Y associated with the inner products and the

norms.
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(i) We provide a novel formula for ran (Id−T) in terms of the domains of the functions f , g, f ∗, g∗
and A (see Theorem 3.5 below). Along the way, we obtain a formula for the range of the sum
of a skew symmetric operator (of the form (9) below) and a maximally monotone operator
with a specific structure (see Theorem 2.3 below).

(ii) When specializing2 g = ιK, where K is a nonempty closed convex cone of Y, we obtain power-
ful properties for the infimal displacement vector in ran (Id−T) (see Proposition 4.2 below).

(iii) We present a comprehensive analysis of the behavior of PDHG when applied to QP. More
specifically, we prove that the infimal displacement vector v in ran (Id−T) provides certifi-
cates of inconsistency (see Theorem 5.7 below). In Theorem 5.10 below we prove that the
sequence ((xk,yk) + kv)k∈N converges as k→ ∞.

(iv) We analyze the ellipsoid separation problem, another instance of conic programming. For
this problem, we also derive a convergence result (see Theorem 6.17 below), and we establish
again that PDHG in the inconsistent case returns a certificate (see Theorem 6.19 below).

Organization. The rest of this paper is organized as follows. In Section 2 we present a formula
for the range of the sum of two maximally monotone operators that have particular structures. In
Section 3 we develop formulas for Id−T, the displacement operator of PDHG, and its range. In
Section 4 and the following sections, we consider the several specializations of PDHG to convex
optimization problems. Section 5 presents our analysis of ran (Id−T) and the infimal displacement
vector in the case of QP. Furthermore, when the problem is inconsistent, v is nonzero and certifies
inconsistency. We provide computational experiments that illustrate our conclusions. Another spe-
cial case of the general conic programming problem is presented in Section 6. An application of
this setting to the ellipsoid separation problem is detailed. We also prove that PDHG can diagnose
infeasible instances of the ellipsoid separation problem.

2 On the range of the sum of monotone operators

Let B : X ⇒ X. Recall that B is monotone if (∀(x,u) ∈ gr B) (∀(y,v) ∈ gr B) ⟨x− y,u− v⟩ ≥ 0
and B is maximally monotone if it is monotone and its graph does not admit any proper extension
(in terms of set inclusion). In this section, we derive a formula for the range of the sum of two
maximally monotone operators of the form (11) below. This will play a critical role in our analysis
later. In the following, we assume that

B1 : X ⇒ X and B2 : Y ⇒ Y are maximally monotone. (8)

For the remainder of the paper, we set

S :=
(

0 A∗
−A 0

)
. (9)

We now define the maximally monotone operator (see, e.g., [6, Proposition 20.23])

B : X×Y ⇒ X×Y : (x,y) 7→ B1x× B−1
2 y. (10)

2Let S ⊆ X. Here and elsewhere we use ιS to denote the indicator function of S defined as: ιS(x) = 0 if x ∈ S; and
ιS(x) = +∞ if x ∈ X ∖ S. It is well known that if S is closed, convex, and nonempty, then ιS is a proper l.s.c. convex
function.
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Observe that by, e.g., [16, Proposition 2.7(i)–(iii)] we have B is maximally monotone, S : X × Y →
X×Y is maximally monotone with S∗ = −S and

B + S is maximally monotone. (11)

Let C : X ⇒ X be monotone. Recall that C is 3∗ monotone if (∀(s, r) ∈ dom C× ran C)

inf
(u,v)∈gr C

⟨u− s,v − r⟩ > −∞. (12)

Fact 2.1. ∂ f is 3∗ monotone.

Proof. See, e.g., [6, Example 25.13]. ■

Lemma 2.2. Suppose that A ̸= 0. Then S is not 3∗ monotone.

Proof. Combine [6, Proposition 25.12] and [4, Example 4.5]. ■

The following result provides a formula for the closure of the range of B + S.

Theorem 2.3. Suppose that B1 and B2 are 3∗ monotone. Then

ran (B + S) = (ran B1 +A∗(ran B2))× (dom B2 −A(dom B1)). (13)

Proof. For simplicity, we set R := (ran B1 + A∗(ran B2)) × (dom B2 − A(dom B1)). Let (u,v) ∈
ran (B + S). Then (∃(x,y) ∈ dom B = dom B1 × dom B−1

2 = dom B1 × ran B2) such that (u,v) ∈
(B1x+A∗y)× (B−1

2 y −Ax) ⊆ (ran B1 +A∗(ran B2))× (dom B2 −A(dom B1)). This proves that

ran (B + S) ⊆ R and hence ran (B + S) ⊆ R. (14)

We now turn to the opposite inclusion. Let r ∈ R. Then there exists x ∈ ran B1, y ∈ dom B2, w ∈
ran B2 and z ∈ dom B1 such that r = (x+A∗w,y −Az). Recalling (11) and Minty’s theorem (see,
e.g., [6, Theorem 21.1]), we learn that (∀n ≥ 1) 1

n2 Id+B + S is surjective. Consequently, (∀n ≥ 1)
there exists xn ∈ dom B such that r ∈

( 1
n2 Id+B + S

)
(xn) =

1
n2xn + Bxn + Sxn. Equivalently,

the sequence
(
xn, r− 1

n2xn

)
n≥1

lies in gr(B + S). (15)

This in turn implies that

the sequence
(
r− 1

n2xn

)
n≥1

lies in ran (B + S). (16)

We will show that (xn/n)n≥1 is bounded. We set s = (z,w). We claim that there exists K ∈ R such
that

inf
(u,v)∈gr(B+S)

⟨u− s,v − r⟩ ≥ K. (17)

Indeed, let (u,v) ∈ gr(B + S). Then (∃(a,a∗) ∈ gr B1) (∃(b∗, b) ∈ gr B−1
2 ) such that

u = (a, b∗) and v = (a∗ +A∗b∗, b−Aa). Now,

⟨u− s,v − r⟩
= ⟨(a, b∗)− (z,w), (a∗ +A∗b∗, b−Aa)− (x+A∗w,y −Az)⟩ (18a)

4



= ⟨(a− z, b∗ −w), (a∗ +A∗b∗ − (x+A∗w), b−Aa− (y −Az)⟩ (18b)
= ⟨a− z,a∗ +A∗b∗ − (x+A∗w)⟩+ ⟨b∗ −w, b−Aa− (y −Az)⟩ (18c)
= ⟨a− z,a∗ − x⟩+ ⟨a− z,A∗(b∗ −w)⟩+ ⟨b∗ −w, b− y⟩ − ⟨b∗ −w,A(a− z)⟩ (18d)
= ⟨a− z,a∗ − x⟩+ ⟨b∗ −w, b− y⟩+ ⟨b∗ −w,A(a− z)⟩ − ⟨b∗ −w,A(a− z)⟩ (18e)
= ⟨a− z,a∗ − x⟩+ ⟨b∗ −w, b− y⟩ ≥ K, (18f)

for some K ∈ R. The inequality in (18f) follows from applying (12) with C replaced by B1 by noting
that (a,a∗) ∈ gr B1 and again applying (12) with X replaced by Y, and C replaced by B2 by noting
that (b, b∗) ∈ gr B2. This proves (17). Now (15) and (17) imply that (∀n ≥ 1)

∥xn∥2

n2 = 1
n2 (∥xn∥2 − ∥s∥2) + ∥s∥2

n2 (19a)

≤ 1
n2 (∥xn∥2 − ∥s∥2) + ∥s∥2 (19b)

= 1
n2 (2∥xn∥2 − (∥xn∥2 + ∥s∥2)) + ∥s∥2 (19c)

≤ 1
n2 (2∥xn∥2 − 2 ⟨s,xn⟩) + ∥s∥2 (19d)

= −2
〈
xn − s,− 1

n2xn
〉
+ ∥s∥2 (19e)

= −2
〈
xn − s, r− 1

n2xn − r
〉
+ ∥s∥2 (19f)

≤ −2K + ∥s∥2. (19g)

That is, (xn/n)n≥1 is bounded as claimed. Taking the limit in (16) as n → ∞ we learn that r ∈
ran (B + S) and hence R ⊆ ran (B + S). The proof is complete. ■

Remark 2.4. Suppose that B1 and B2 are 3∗ monotone. Then B is 3∗ monotone. Some comments are in order.

(i) Suppose that dom B = X×Y. This is equivalent to dom B1 = X and ran B2 = dom B−1
2 = Y. The

formula in (13) boils down to

ran (B + S) = (ran B1 + ranA∗)× (dom B2 − ranA) = ran B + ran S. (20)

The above formula is alternatively obtained using the celebrated Brezis–Haraux theorem, see, e.g., [6,
Theorem 25.24(ii)].

(ii) The assumption that dom B = X × Y is critical to prove that the formula in (13) reduces to the
formula in (20) as we illustrate in Example 2.5 below.

(iii) The assumption that both B1 and B2 are 3∗ monotone is critical to obtain the conclusion of Theorem 2.3
as we illustrate in Example 2.6 below.

Example 2.5. Suppose that X = Y = R, that A = − Id, that3 B1 = N[0,+∞[ and that B2 = N]−∞,0]. Then

ran (B + S) = ]−∞, 0]×R ⫋ R2 = ran B + ran S. (21)

Proof. Observe that B1 and B2 are subdifferential operators, hence 3∗ monotone by Fact 2.1. More-
over, B = NR2

+
and S =

(
0 −1
1 0

)
On the one hand, clearly ran B = R2

− and ran S = R2 hence
ran B + ran S = R2 = ran B + ran S. On the other hand, dom B1 = ran B2 = [0,+∞[ and
dom B2 = ran B1 = ]−∞, 0], and (13) yields ran (B + S) = ]−∞, 0] × R ⫋ R2 = ran B + ran S,
as claimed. ■

Example 2.6. Suppose that X = R, that Y = R2, that B1 ≡ 0, that B2 =
(

0 −1
1 0

)
, and thatA =

(
1
0

)
. Then

the following hold:

3Let C be a nonempty closed convex subset of X. Here and elsewhere we use NC to denote the normal cone operator
associated with C.
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(i) ran (B + S) = span {(0, 1, 0)T, (−1, 0, 1)T} ⫋ R3.
(ii) (ran B1 +A∗(ran B2))× (dom B2 −A(dom B1)) = R3.

(iii) ran (B + S) ⫋ (ran B1 +A∗(ran B2))× (dom B2 −A(dom B1)).

Proof. It follows from Lemma 2.2 that B2 is not 3∗ monotone. Moreover, it is easy to verify that
B−1

2 = −B2, that dom B1 = R, that ran B1 = {0}, and that dom B2 = ran B2 = R2. (i): We have

B =

0 0 0
0 0 1
0 −1 0

 and S =

 0 1 0
−1 0 0
0 0 0

 hence B + S =

 0 1 0
−1 0 1
0 −1 0

 . (22)

This proves (i). (ii): Indeed, we have ran B1 + A∗(ran B2) = {0} + A∗(R2) = R and dom B2 −
A(dom B1) = R2. (iii): Combine (i) and (ii). ■

3 The PDHG splitting operator, the range of its displacement map, and
the infimal displacement vector

In this section, we apply the theory from Section 2 to develop formulas Id−T, the displacement
operator of PDHG, and its range. These formulas appear in Theorem 3.5. Then in Section 3.3 we
define the infimal displacement vector, which lies in the closure of this range, and state and prove
some of its important properties. Let σ > 0 and let τ > 0. For the remainder of the paper, we set

M :=
( 1

σ IdX −A∗
−A 1

τ IdY

)
, (23)

and we set
F : X×Y → ]−∞,+∞] : (x,y) 7→ f (x) + g∗(y). (24)

Then (see, e.g., [6, Proposition 16.9])

∂F(x,y) = ∂ f (x)× ∂g∗(y). (25)

3.1 PDHG and Fenchel–Rockafellar duality

Consider the primal problem
minimize

x∈X
f (x) + g(Ax), (26)

which is equivalent to (4), and its Fenchel–Rockafellar dual

minimize
y∈Y

f ∗(−A∗y) + g∗(y). (27)

Under appropriate constraint qualifications (see, e.g., [12] and [13] or [16, Proposition 4.1(iii)])
(26) boils down to solving the primal inclusion:

find x ∈ X such that 0 ∈ ∂ f (x) +A∗∂g(Ax) (28)
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while (27) boils down to solving the dual inclusion:

find y ∈ Y such that (∃x ∈ X) −A∗y ∈ ∂ f (x) and y ∈ ∂g(Ax). (29)

Following [14] , we say that (x,y) ∈ X×Y is a primal-dual solution to both (28) and (29) if

−A∗y ∈ ∂ f (x) and y ∈ ∂g(Ax). (30)

One checks that the existence of a solution to (30) implies the existence of a solution to both (28) and
(29). Conversely, a solution to either (28) or (29) implies the existence of a solution to (30).

The following result is part of the literature. We include proof for the sake of completeness. Recall
that S was defined in (9), M in (23), and F in (24). Recall Prox f = (Id+∂ f )−1, and ∂ f ∗ = (∂ f )−1.

Proposition 3.1. Let (x,y) ∈ X×Y . We set(
x+

y+

)
=

(
Proxσ f (x− σA∗y)

Proxτg∗(y + τA(2x+ − x))

)
. (31)

Let (x,y) ∈ X×Y. We set T = (M + ∂F + S)−1M. Then the following hold.

(i) We have (
x+

y+

)
= T

(
x
y

)
. (32)

(ii) Recalling (30) we have (x,y) is a primal-dual solution of (28) if and only if (x,y) ∈ Fix T.

Proof. (i): Indeed,

(31)⇔ x+ = Proxσ f (x− σA∗y),
y+ = Proxτg∗(y + τA(2x+ − x)) (33a)

⇔ x− σA∗y ∈ x+ + σ∂ f (x+),

y + τA(2x+ − x) ∈ y+ + τ∂g∗(y+) (33b)

⇔ x− x+ ∈ σA∗y + σ∂ f (x+),

y − y+ ∈ −τA(2x+ − x) + τ∂g∗(y+) (33c)

⇔ 1
σ (x− x+) ∈ A∗y + ∂ f (x+),

1
τ (y − y+) ∈ −A(2x+ − x) + ∂g∗(y+) (33d)

⇔ 1
σ (x− x+)−A∗(y − y+) ∈ A∗y + ∂ f (x+)−A∗(y − y+),

1
τ (y − y+)−A(x− x+) ∈ −A(2x+ − x) + ∂g∗(y+)−A(x− x+) (33e)

⇔ 1
σ (x− x+)−A∗(y − y+) ∈ A∗y+ + ∂ f (x+),

1
τ (y − y+)−A(x− x+) ∈ ∂g∗(y+)−Ax+ (33f)

⇔
( 1

σ IdX −A∗
−A 1

τ IdY

)(
x− x+

y − y+

)
∈
(

∂ f (x+)
∂g∗(y+)

)
+

(
0 A∗
−A 0

)(
x+

y+

)
(33g)

⇔ M
(
x− x+

y − y+

)
∈
(

∂ f (x+)
∂g∗(y+)

)
+ S

(
x+

y+

)
(33h)

⇔ M
(
x
y

)
∈ M

(
x+

y+

)
+

(
∂ f (x+)
∂g∗(y+)

)
+ S

(
x+

y+

)
= (M + ∂F + S)

(
x+

y+

)
(33i)
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⇔
(
x+

y+

)
∈ (M + ∂F + S)−1M

(
x
y

)
(33j)

⇔
(
x+

y+

)
= (M + ∂F + S)−1M

(
x
y

)
. (33k)

Note that the last step (33k) follows because (33a) implies that, given (x,y), there is exactly one
solution z to the inclusion (z, M(x,y)) ∈ gr(M + ∂F + S). The proof of (i) is complete.

(ii): Indeed, (
x
y

)
= T

(
x
y

)
(34a)

⇔ x = Proxσ f (x− σA∗y) and y = Proxτg∗(y + τAx) (34b)

⇔ x− σA∗y ∈ x+ σ∂ f (x) and y + τAx ∈ y + τ∂g∗(y) (34c)
⇔ −σA∗y ∈ σ∂ f (x) and τAx ∈ τ∂g∗(y) (34d)
⇔ −A∗y ∈ ∂ f (x) and y ∈ ∂g(Ax) (34e)
⇔ (x,y) is a primal-dual solution of (28). (34f)

This completes the proof. ■

3.2 The range of Id−T

In this subsection we apply the results of Section 2 to obtain a formula for ran (Id−T), starting from
the formula for T given by Proposition 3.1(i). A key operator in our analysis is M−1(∂F + S). The
significance of this operator becomes apparent below in Theorem 3.5, and hence we set the stage
with some preliminary results about M and ∂F + S. We start by observing that (11) applied with B
replaced by ∂F implies that

∂F + S is maximally monotone on X×Y. (35)

For the remainder of the paper, we impose the assumption that σ, τ are chosen to satisfy

στ∥A∥2 < 1. (36)

The following lemma is straightforward to verify. We include the proof for the sake of completeness.

Lemma 3.2. M is self-adjoint. Moreover, we have:

(i) M and M−1 are strongly monotone4.
(ii) M and M−1 are surjective.

(iii) M and M−1 are injective.
(iv) M and M−1 are bijective.
(v) M and M−1 are maximally monotone.

Proof. (i): Indeed, let (u,v) ∈ X×Y. Then using Cauchy–Schwarz we have

⟨(u,v), M(u,v)⟩ =
〈
(u,v),

( 1
σu−A∗v,−Au+ 1

τv
)〉

(37a)

4Let B : X ⇒ X be monotone and let β > 0. Then B is β-strongly monotone if B− β Id is monotone.
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= 1
σ∥u∥2 + 1

τ∥v∥2 − 2 ⟨Au,v⟩ ≥ 1
σ∥u∥2 + 1

τ∥v∥2 − 2∥A∥∥u∥∥v∥ (37b)

= 1
σ∥u∥2 + 1

τ∥v∥2 − 2
(

4√στ
√
∥A∥√

σ
∥u∥

)(
4√στ
√
∥A∥√

τ
∥v∥

)
(37c)

≥ 1
σ∥u∥2 + 1

τ∥v∥2 −
√

στ∥A∥
σ ∥u∥2 −

√
στ∥A∥

τ ∥v∥2 (37d)

≥ min
{ 1

σ , 1
τ

}
(1−

√
στ∥A∥)∥(u,v)∥2. (37e)

That is, M is
(
min

{ 1
σ , 1

τ

}
(1−√στ∥A∥)

)
-strongly monotone. Consequently, M is 3∗ monotone

by, e.g., [6, Example 25.15(iv)]. Now combine this with [6, Proposition 25.16 and Example 22.7] to
learn that that M−1 is strongly monotone. (ii): Combine (i) and [6, Proposition 22.11(ii)]. (iii): This
is a direct consequence of (i). (iv): Combine (ii) and (iii). (v): Using (i) we have M and M−1 are
monotone. Now combine this with [6, Example 20.34]. ■

Recalling that M is positive definite, in the following we let Z be the Hilbert space obtained by
endowing X×Y with the inner product and induced norm

⟨·, ·⟩M : Z× Z → R : (u,v) 7→ ⟨u, Mv⟩ and ∥u∥M =
√
⟨u, Mu⟩ (38)

respectively.

Lemma 3.3. M−1(∂F + S) : Z ⇒ Z is maximally monotone.

Proof. Combine (35) with [6, Proposition 20.24] in view of Lemma 3.2(i). ■

Let D ⊆ X and let L : X → X be linear and continuous. It is easy to verify that

L(D) = L(D). (39)

The following result is of central importance in our work.

Theorem 3.4. We have

ran (∂F + S) = (dom f ∗ +A∗(dom g∗))× (dom g−A(dom f )). (40)

Proof. Recall that by [6, Corollary 16.30] we have (∂ f ∗, ∂g∗) = ((∂ f )−1, (∂g)−1). Moreover, by e.g.,
[6, Corollary 16.39] we have

dom ∂ f = dom f . (41)

It follows from (39) applied with L replaced by A and D replaced by dom ∂ f and again by D re-
placed by dom f in view of (41) that A(dom ∂ f ) = A(dom ∂ f ) = A(dom f ) = A(dom f ). Simi-
larly, we conclude thatA∗(dom ∂g∗) = A∗(dom g∗). It therefore follows from Theorem 2.3, applied
with (B1, B2) replaced by (∂ f , ∂g), in view of Fact 2.1 that

ran (∂F + S) = (ran ∂ f +A∗(ran (∂g∗)−1))× (dom ∂g−A(dom ∂ f )) (42a)

= (dom ∂ f ∗ +A∗(dom ∂g∗))× (dom ∂g−A(dom ∂ f )) (42b)

= (dom ∂ f ∗ +A∗(dom ∂g∗))× (dom ∂g−A(dom ∂ f )) (42c)

= (dom f ∗ +A∗(dom g∗))× (dom g−A(dom f )) (42d)

= (dom f ∗ +A∗(dom g∗))× (dom g−A(dom f )). (42e)

The proof is complete. ■

We are now ready to prove the main result in this section.
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Theorem 3.5. Let T = (M+ ∂F + S)−1M, that is, the PDHG operator introduced in Proposition 3.1. Then
the following hold:

(i) T = (Id+M−1(∂F + S))−1.
(ii) T : Z → Z is firmly nonexpansive5.

(iii) Id−T = (Id+(∂F + S)−1M)−1.
(iv) ran (Id−T) = M−1(ran (∂F + S)).
(v) ran (Id−T) = M−1(ran (∂F + S)).

(vi) ran (Id−T) = M−1((dom f ∗ +A∗(dom g∗))× (dom g−A(dom f ))
)
.

Proof. (i): Indeed, we have T = (M + ∂F + S)−1M = (M−1(M + ∂F + S))−1 = (Id+M−1(∂F +
S))−1. (ii): Combine (i), Lemma 3.3, Lemma 3.2(i) and, e.g., [6, Proposition 23.10]. (iii): It follows
from [6, Proposition 23.34(iii)] in view of Lemma 3.2(i) that

Id−T = M−1(Id+M(∂F + S)−1)−1M = M−1(M−1 + (∂F + S)−1)−1 (43a)

= (Id+(∂F + S)−1M)−1. (43b)

(iv): Using (iii) we have

ran (Id−T) = ran (Id+(∂F + S)−1M)−1 = dom(Id+(∂F + S)−1M) (44a)

= dom((∂F + S)−1M) = ran ((∂F + S)−1M)−1 (44b)

= ran (M−1(∂F + S)) = M−1(ran (∂F + S)), (44c)

where in the last identity we used Lemma 3.2(iv). (v): It follows from (iv) that ran (Id−T) =

M−1(ran (∂F + S)) = M−1(ran (∂F + S)) = M−1(ran (∂F + S)). Here the second identity follows
from applying (39) with X replaced by X × Y, L replaced by M−1 and D replaced by ran (∂F + S),
while the third identity follows from Lemma 3.2(iv). (vi): Combine (v) and Theorem 3.4. ■

3.3 The infimal displacement vector associated with T

We point out that Theorem 3.5 is a powerful and instrumental tool in analyzing the behaviour of
PDHG in the inconsistent case in view Proposition 3.1(ii). Indeed, if (0,0) ̸∈ ran (Id−T) then T
does not have a fixed point. More concretely, in this section, we study the minimal norm element in
ran (Id−T). As we shall see below, this allows us to diagnose if the inconsistency comes from the
primal problem or from the dual problem or from both. In this section, we assume that

T : Z → Z is defined as in (32). (45)

Because T is firmly nonexpansive (see Theorem 3.5(ii)) we learn by, e.g., [6, Example 20.29] that

Id−T : Z → Z is maximally monotone. (46)

It, therefore, follows from (46) and, e.g., [6, Corollary 21.14] that ran (Id−T) is convex. Recalling
(38) we now define the infimal displacement vector v

v = argminw∈ran (Id−T)∥w∥M. (47)

The vector v has a beautiful interpretation. Indeed, in some sense, ∥v∥ can be viewed as a measure-
ment of how far our problem is from being consistent. We now have the following useful facts.

5Let T : X → X. Then T is firmly nonexpansive if (∀(x, y) ∈ X× X) ∥Tx− Ty∥2 + ∥(Id−T)x− (Id−T)y∥2 ≤ ∥x− y∥2.
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Fact 3.6. Suppose v ∈ ran (Id−T), equivalently; Fix(v + T) ̸= ∅. Let z0 ∈ X. (∀k ∈N) update via:

zk+1 = Tzk. (48)

Then (zk + kv)k∈N is Fejér monotone6 with respect to Fix(v + T), hence (zk + kv)k∈N is bounded.

Proof. See [9, Proposition 2.5]. ■

Fact 3.7. Suppose that z0 ∈ Fix(v + T). Then z0 −R+v ⊆ Fix(v + T).

Proof. See [9, Proposition 2.5(i)]. ■

Fact 3.8. Let z0 ∈ Z. Update via: zk+1 = Tzk. Then the following hold:

(i) (Pazy) zk
k → −v.

(ii) (Baillon–Bruck–Reich) zk − zk+1 → v.

Proof. (i): See [25]. (ii): See [2] or [17]. ■

Remark 3.9. Some comments are in order.

(i) Fact 3.8(i)&(ii) reveal that when v ̸= 0 PDHG is able to diagnose inconsistent problems. Further-
more, as we shall see in Theorem 5.7 and again in Theorem 6.19, v may also carry a certificate of
inconsistency.

(ii) On the other hand, if 0 ∈ ran (Id−T)∖ ran (Id−T) then Fact 3.8(i)&(ii) do not tell whether the
problem is inconsistent. Alternatively, one could use [2, Corollary 2.2] and monitor the sequence
(∥zk∥)k∈N.

(iii) In passing, we point out that in the applications we study in upcoming sections, we prove that v ∈
ran (Id−T). More precisely, in the QP case (see Section 5 below) we show that ran (Id−T) is closed
and the inclusion follows, while in the case of the ellipsoid separation problem in Section 6 below we
proved the inclusion directly.

We conclude this section with the following proposition, which further characterizes and estab-
lishes properties of v used later.

Proposition 3.10. Recalling (47), let w ∈ ran (Id−T). Then

w = v ⇔ (∀y ∈ ran (∂F + S)) ⟨w, Mw− y⟩ ≤ 0. (49)

In particular

(i) (∀r ∈ (dom f ∗ +A∗(dom g∗))) we have
〈
vR, 1

σvR −A∗vD − r
〉
≤ 0.

(ii) (∀d ∈ (dom g−A(dom f ))) we have
〈
vD, 1

τvD −AvR − d
〉
≤ 0.

Proof. Indeed, let y ∈ ran (∂F+ S). Recalling Theorem 3.5(v), it follows from the Projection Theorem
see, e.g., [6, Theorem 3.16], that

w = v ⇔
〈
w,w−M−1y

〉
M
≤ 0⇔

〈
w, Mw−MM−1y

〉
≤ 0⇔ ⟨w, Mw− y⟩ ≤ 0. (50)

6Let (xk)k∈N be a sequence in X and let C be a nonempty subset of X. Then (xk)k∈N is Fejér monotone with respect
to C if (∀c ∈ C)(∀k ∈N) ∥xk+1 − c∥ ≤ ∥xk − c∥.
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This verifies (49). Now, let r ∈ (dom f ∗ +A∗(dom g∗)) and let d ∈ (dom g−A(dom f )). Then
y := (r,d) ∈ ran (∂F + S) by Theorem 3.4. This and (49) imply that〈

vR, 1
σvR −A∗vD − r

〉
+
〈
vD, 1

τvD −AvR − d
〉
≤ 0. (51)

Finally, observe that (47) and Theorem 3.5(v) imply

Mv = ( 1
σvR −A∗vD, 1

τvD −AvR) ∈ ran (∂F + S). (52)

(i): Apply (51) with d replaced by 1
τvD − AvR in view of (52).(ii): Apply (51) with r replaced by

1
σvR −A∗vD in view of (52). ■

4 Specialization to conic problems

From now on we assume that

K is a closed convex cone in Y and b ∈ Y. (53)

Consider the problem
minimize

x∈X
f (x)

subject to Ax− b ∈ K.
(54)

Problem (54) can be recast as
minimize

x∈X
f (x) + ιK(Ax− b). (55)

We recover the PDHG framework by setting7

g = ιK(· − b), hence g∗ = ιK⊖(·) + ⟨b, ·⟩. (56)

It follows from [6, Example 23.4 and Proposition 23.17(ii)] that

Proxτg∗ = PK⊖(· − τb). (57)

By combining (31) and (57), the PDHG update to solve (55) is(
x+

y+

)
= T

(
x
y

)
:=
(

Proxσ f (x− σA∗y)
PK⊖(y + τA(2x+ − x)− τb)

)
. (58)

Remark 4.1. The following are special cases of (54).

(i) Let H : X → X be linear, monotone, and self-adjoint, i.e., H = H∗ and let c ∈ X. The quadratic
optimization problem

minimize
x∈X

1
2 ⟨x, Hx⟩+ ⟨c,x⟩

subject to Ax− b ∈ K,
(59)

is a special case of (55) by setting

f (x) = 1
2 ⟨x, Hx⟩+ ⟨c,x⟩ . (60)

7Let K ⊆ X. Here and elsewhere we use K⊖ to denote the polar cone of K defined by K⊖ :=
{
u ∈ X

∣∣ sup ⟨K,u⟩ ≤ 0
}

.
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It follows from [6, Example 24.2] that

Proxσ f = JσH(· − σc) where JσH := (Id+σH)−1. (61)

The above formula uses standard notation for the resolvent of an operator defined by JA :=
(Id+A)−1.
Let (x,y) ∈ X×Y. By combining (58) and (61), the PDHG update to solve (59) is(

x+

y+

)
= T

(
x
y

)
:=
(

JσH(x− σA∗y − σc)
PK⊖(y + τA(2x+ − x)− τb)

)
. (62)

We point out that PDHG for standard QP is recovered by taking X = Rn, Y = Rm and K = Rm
−.

This special case is the topic of Section 5.
(ii) Let C be a nonempty closed convex subset of X and let c ∈ X. The problem

minimize
x∈C

⟨c,x⟩
subject to Ax− b ∈ K

(63)

is a special case of (55) by setting
f (x) = ⟨c,x⟩+ ιC(x). (64)

It follows from [6, Example 24.2] that

Proxσ f = PC(· − σc). (65)

Let (x,y) ∈ X×Y. By combining (58) and (65), the PDHG update to solve (63) is(
x+

y+

)
= T

(
x
y

)
:=
(

PC(x− σA∗y − σc)
PK⊖(y + τA(2x+ − x)− τb)

)
. (66)

A further special case of (63) is obtained when C is a cone and K = {0}, yielding the problem commonly
known as standard conic primal form. We return to standard conic primal form in Section 6.

4.1 The infimal displacement vector in the conic case

In the remainder of this section, we develop additional properties of the infimal displacement vector
for (54).

Proposition 4.2. Let T be defined as in (58), let v be given by (47), and let

v =: (vR,vD). (67)

Then the following hold:

(i) −vD = PK⊖(−vD − τAvR).
(ii) −τAvR = PK(−vD − τAvR).

(iii) ⟨AvR,vD⟩ = 0.
(iv) ∥v∥2

M = ∥vR∥2/σ + ∥vD∥2/τ.
(v) K = {0} ⇒ AvR = 0, i.e., vR ∈ kerA.

Suppose further that f is defined as in (60). Then (58) reduces to (62) and we additionally have:

(vi) A∗vD + HvR = 0.
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(vii) ⟨vR, HvR⟩ = 0.
(viii) JσH(vR) = vR + σJσH(A∗vD).

Proof. Let (x0,y0) ∈ X × Y and let ((xk,yk))k∈N be the sequence obtained via the update (∀k ∈N)
(xk+1,yk+1) = T(xk,yk). Applying Fact 3.8(i)&(ii) with z0 = (x0,y0) in view of Theorem 3.5(ii)
implies

xk − xk+1 → vR and yk − yk+1 → vD, (68)

and
xk
k → −vR and yk

k → −vD. (69)

(i): Because K⊖ is a cone we have PK⊖ is positively homogeneous by [19, Theorem 5.6(7)]. More-
over, PK⊖ is (firmly) nonexpansive by, e.g., [6, Proposition 4.16], hence continuous. It follows from
(58) applied with (x,y) replaced by (xk,yk) that

yk+1 = PK⊖(yk + τA(2xk+1 − xk)− τb). (70)

Dividing both sides of (70) by k + 1 and taking the limit as k→ ∞ in view of (68), (69) and (3) yield

−vD ← yk+1
k+1 = 1

k+1 PK⊖(yk + τA(2xk+1 − xk)− τb) (71a)

= 1
k+1 PK⊖

(
yk − yk+1 + yk+1 + τAxk+1 + τA(xk+1 − xk)− τb

)
(71b)

= PK⊖
(
yk−yk+1

k+1 + yk+1
k+1 + τAxk+1

k+1 + τA
(
xk−xk+1

k+1

)
− τ b

k+1

)
(71c)

→ PK⊖(−vD − τAvR). (71d)

This proves the claim. (ii): Indeed, using (i) and the Moreau decomposition, see, e.g., [6, Theo-
rem 6.30(i)] we have

PK(−vD − τAvR) = −vD − τAvR − PK⊖(−vD − τAvR) (72a)
= −vD − τAvR − (−vD) = −τAvR. (72b)

(iii): Combine (i), (ii) and, e.g., [6, Theorem 6.30(ii)]. (iv): Indeed, recalling (iii) we have

∥v∥2
M = ⟨v, Mv⟩ = ⟨(vR,vD), (vR/σ−A∗vD,vD/τ −AvR)⟩ (73a)
= ⟨vR,vR/σ−A∗vD⟩+ ⟨vD,vD/τ −AvR⟩ (73b)

= ∥vR∥2/σ− ⟨vR,A∗vD⟩+ ∥vD∥2/τ − ⟨vD,AvR⟩ (73c)

= ∥vR∥2/σ + ∥vD∥2/τ. (73d)

(v): This is a direct consequence of (ii). (vi): It follows from (62) applied with (x,y) replaced by
(xk,yk) that

xk − xk+1 − σA∗(yk − yk+1) = σA∗yk+1 + σHxk+1 + σc. (74)

Dividing the above equation by k + 1 and taking the limit as k → ∞ in view of (68), (69) and (3)
yield

0← 1
k+1 (xk − xk+1)− σA∗( 1

k+1 (yk − yk+1)) (75a)

= σA∗
(
yk+1
k+1

)
+ σH

(
xk+1
k+1

)
+ σ

(
c

k+1

)
→ −σA∗vD − σHvR. (75b)

(vii): It follows from (iii) and (vi) that 0 = ⟨vR,A∗vD + HvR⟩ = ⟨vR, HvR⟩ + ⟨vR,A∗vD⟩ =
⟨vR, HvR⟩ + ⟨AvR,vD⟩ = ⟨vR, HvR⟩. (viii): It follows from (vi) that (Id+σH)vR = vR − σA∗vD.
Hence, vR = JσH(vR − σA∗vD) = JσHvR − σJσH(A∗vD) as claimed. ■
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5 Application to QP

In this section we set
X = Rn, Y = Rm, K = Rm

−, (76)

and
T is defined as in (62). (77)

This means that (59) specializes to

minimize
x∈Rn

1
2 ⟨x, Hx⟩+ ⟨c,x⟩

subject to Ax ≤ b,
(78)

whose Lagrangian dual is well known to be

maximize
q∈Rn,y∈Rm

− 1
2 ⟨q, Hq⟩ − ⟨b,y⟩

subject to Hq = −(c+A∗y),
y ≥ 0.

(79)

In view of (61), PDHG for QP is efficient in practice only if a fast method is available to solve the
equations implicit in (62), e.g., if Id+σH has a sparse Cholesky factorization. Unlike, e.g., interior-
point methods, the coefficient matrix of the linear system to be solved does not vary with iteration
counter k.

5.1 PDHG for QP: Static properties

We start with the following key lemma.

Lemma 5.1. The following hold:

(i) ∂F + S is a polyhedral multifunction8.
(ii) ran (∂F + S) is a union of finitely many polyhedral9 sets.

(iii) ran (∂F + S) is closed and convex.
(iv) ran (∂F + S) = (ran H +A∗(Rm

+) + c)× (Rm
− + ranA+ b).

(v) ran (∂F + S) is polyhedral.
(vi) ran (Id−T) = M−1((ran H +A∗(Rm

+) + c)× (Rm
− + ranA+ b)).

(vii) ran (Id−T) is polyhedral. Hence, ran (Id−T) is convex and closed.

Proof. (i): It follows from [26, Example on page 207] that ∂F + S is a polyhedral multifunction. That
is gr(∂F + S) = P1 ∪ . . . ∪ Pl and (∀i ∈ {1, . . . , l}) Pi is polyhedral. (ii): Observe that ran (∂F + S)
is the canonical projection of gr(∂F + S) onto Rn × Rm. It follows from [27, Theorem 19.3] that
ran (∂F + S) is a finite union of polyhedral sets. (iii): The claim of closedness is a consequence
of (ii). The convexity of ran (∂F + S) follows from combining (35), [6, Corollary 21.14] and the
closedness of ran (∂F + S). (iv): It follows from (60) and (56) that dom f = Rn, dom f ∗ = ran H + c,
dom g = Rm

− + b and dom g∗ = Rm
+. Now combine this with Theorem 3.4 in view of (iii). (v):

8Following [26], we say that a (possibly) set-valued mapping A : X ⇒ X is a polyhedral multifunction if gr A is a
union of finitely many polyhedral subsets of X× X.

9Let C ⊆ X. We say that C is polyhedral if C is the intersection of finitely many halfspaces.
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Combine (iv) and [27, Theorem 19.3 and Corollary 19.3.2]. (vi): Combine Theorem 3.5(iv) and (iv).
(vii): It follows from (vi) and [27, Theorem 19.3], in view of (iv), that ran (Id−T) is polyhedral,
hence it is closed and convex. ■

Remark 5.2 (when K is a general polyhedral cone). One easily checks that the proof of Lemma 5.1
generalizes seamlessly if we replace Rm

− by a general polyhedral cone K. In this case we have ran (∂F + S) =
(ran H + A∗(K⊖) + c) × (K + ranA + b) and ran (Id−T) = M−1((ran H + A∗(K⊖) + c) × (K +
ranA+ b)).

Finally, we set

v = (vR,vD) = argminw∈ran (Id−T)∥w∥M ∈ ran (Id−T), (80)

where the inclusion follows from Lemma 5.1(vii).

Lemma 5.3. The following hold:

(i) −vD = PRm
+
(−vD − τAvR).

(ii) −τAvR = PRm
−(−vD − τAvR).

(iii) ⟨AvR,vD⟩ = 0.
(iv) A∗vD + HvR = 0.
(v) HvR = 0, i.e., vR ∈ ker H.

(vi) A∗vD = 0.
(vii) JσH(vR) = (Id+σH)−1(vR) = vR.

(viii) Let i ∈ {1, . . . , m}. If (AvR)i > 0 then (vD)i = 0.
(ix) Let i ∈ {1, . . . , m}. If (vD)i < 0 then (AvR)i = 0.

Proof. We apply Proposition 4.2 with (X, Y, K) replaced by (Rn, Rm, Rm
−). (i)–(iv): This follows from

Proposition 4.2(i)–(vi). (v): This follows from Proposition 4.2(vii) and the positive semidefiniteness
of H in view of (iv). (vi): Combine (iv) and (v). (vii): This is a direct consequence of Proposi-
tion 4.2(viii) and (vi). (viii)&(ix): Combine (i), (ii) and (iii). ■

We conclude this section with Example 5.5 below. We first prove the following auxiliary example.

Example 5.4. Suppose that m = 4, n = 2, c = (1,−2)T, b = (−2, 1, 0, 0)T and A =

(
−1 1
1 −1
−1 0
0 −1

)
. Let

u = −0.15 · (1, 1)T, let w = −0.15 · (1, 1, 0, 0)T, and we set σ = τ = 0.3. Let r ∈ AT(R4
+) + c and let

d ∈ R4
− + ranA+ b. Then the following hold:

(i) ⟨w,Au⟩ = 0.
(ii) ∥A∥ =

√
5. Hence, στ∥A∥2 = 0.45 < 1.

(iii) 1
σu ∈ AT(R4

+) + c.
(iv) 1

τw−Au ∈ R4
− + ranA+ b.

(v) 1
τw ∈ R4

− + ranA+ b.
(vi)

〈
u, 1

σu− r
〉
≤ 0.

(vii)
〈
w, 1

τw− d
〉
≤ 0.

(viii)
〈
w, 1

τw−Au− d
〉
≤ 0.

Proof. (i): This is clear. (ii): Indeed, a direct calculation yields that ATA =
( 3 −2
−2 3

)
. Hence

∥A∥2 = ∥ATA∥ = λmax(ATA) = 5. (iii): Indeed, let x = (1.5, 0, 0, 0)T ∈ R4
+ and ob-

serve that 1
σu = −0.5 · (1, 1)T = ATx + c ∈ AT(R4

+) + c. (iv): Indeed, let y = (−2.5,−1)T
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and let z = (0, 0,−2.65,−1.15)T ∈ R4
− and observe that 1

τw − Au = −(0.5, 0.5, 0.15, 0.15)T =

z +Ay + b ∈ R4
− + ranA+ b. (v): Indeed, let y = (−2.5,−1)T and let z = (0, 0,−2.5,−1)T ∈ R4

−
and observe that 1

τw = (−0.5,−0.5, 0, 0)T = z + Ay + b ∈ R4
− + ranA + b. (vi): Indeed, let

p = (α, β, γ, δ)T ∈ R4
+ be such that r = ATp+ c. Then r = (−α + β− γ + 1, α− β− δ− 2)T. Thus,〈

u, 1
σu− r

〉
= −0.15 ⟨(1, 1), (−0.5,−0.5)− (−α + β− γ + 1, α− β− δ− 2)⟩ (81a)
= −0.15(−0.5 + α− β + γ− 1− 0.5− α + β + δ + 2) (81b)
= −0.15(γ + δ) ≤ 0. (81c)

(vii): Indeed, let q = (α, β, γ, δ)T ∈ R4
− and let y = (ρ, η) ∈ R2 be such that d = q +Ay + b. Then

d = (α− ρ + η − 2, β + ρ− η + 1, γ− ρ, δ− η)T. Therefore,〈
w, 1

τw− d
〉

(82a)
= −0.15 ⟨(1, 1, 0, 0), (−0.5,−0.5, 0, 0)− (α− ρ + η − 2, β + ρ− η + 1, γ− ρ, δ− η)⟩ (82b)
= −0.15(−0.5− α + ρ− η + 2− 0.5− β− ρ + η − 1) = 0.15(α + β) ≤ 0. (82c)

(viii): Combine (vii) and (i). ■

Example 5.5. Recalling (78), let H be a 2× 2 matrix and let A, b, c be given as in Example 5.4. In view of
Example 5.4(ii), we set σ = τ = 0.3. Recalling (80), the following hold.

(i) Suppose that H = 0. Then vR = −0.15 · (1, 1)T and vD = −0.15 · (1, 1, 0, 0)T.
(ii) Suppose that H = Id. Then vR = (0, 0)T and vD = −0.15(1, 1, 0, 0)T.

Proof. We set u = −0.15 · (1, 1)T and set w = −0.15 · (1, 1, 0, 0)T. (i): Observe that ran H = {0},
hence Lemma 5.1(iv) yields ran (∂F + S) = (AT(R4

+) + c)× (R4
− + ranA+ b). On the one hand, it

follows from Example 5.4(iii)&(iv) and Lemma 5.1(iv) that M(u,w) = ( 1
σu, 1

τw−Au) ∈ ran (∂F +

S) = (AT(R4
+) + c)× (R4

− + ranA+ b). Equivalently, (u,w) ∈ M−1(ran (∂F + S)) = ran (Id−T)
by Lemma 5.1(vi). On the other hand, Example 5.4(vi)&(viii) implies that (∀(r,d) ∈ ran (∂F + S))
we have ⟨(u,w), M(u,w)− (r,d)⟩ ≤ 0. Altogether in view of (49) this yields (vR,vD) = (u,w).

(ii): Observe that ran H = R2, hence Lemma 5.1(iv) yields ran (∂F + S) = R2× (R4
−+ ranA+ b).

On the one hand, it follows from Example 5.4(iii)&(iv) and Lemma 5.1(iv) that M(0,w) = (0, 1
τw) ∈

ran (∂F + S) = R2× (R4
−+ ranA+ b). Equivalently, (0,w) ∈ M−1(ran (∂F + S)) = ran (Id−T) by

Lemma 5.1(vi). On the other hand, Example 5.4(vii) implies that (∀(r,d) ∈ ran (∂F + S)) we have
⟨(0,w), M(0,w)− (r,d)⟩ =

〈
w, 1

τw− d
〉
≤ 0. Altogether in view of (49) this yields (vR,vD) =

(0,w). ■

5.2 Detecting inconsistency of QP

We start with the following useful lemma.

Lemma 5.6. Let r ∈ ran H +A∗(Rm
+) + c and let d ∈ Rm

− + ranA+ b. Then the following hold:

(i)
〈
vR, 1

σvR − r
〉
≤ 0.

(ii)
〈
vD, 1

τvD − d
〉
≤ 0.

In particular, we have
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(iii)
〈
vR, 1

σvR − c
〉
≤ 0.

(iv)
〈
vD, 1

τvD − b
〉
≤ 0.

Proof. (i): Combine Proposition 3.10(i), Lemma 5.1(iv) and Lemma 5.3(iii) to learn that
0 ≥

〈
vR, 1

σvR −A∗vD − r
〉

=
〈
vR, 1

σvR − r
〉
− ⟨vR,A∗vD⟩ =

〈
vR, 1

σvR − r
〉
− ⟨AvR,vD⟩ =〈

vR, 1
σvR − r

〉
. (ii): Proceed similarly to (i) but use Proposition 3.10(ii) instead of Proposition 3.10(i).

(iii): Apply (i) with r replaced by c. (iv): Apply (ii) with d replaced by b. ■

Theorem 5.7. The following hold:

(i) If vR ̸= 0, then the dual (79) is infeasible, and vR is an infeasibility certificate.
(ii) If vD ̸= 0, then the primal (78) is infeasible, and vD is an infeasibility certificate.

Proof. (i): Indeed, on the one hand it follows from Lemma 5.6(iii) that ⟨c,vR⟩ ≥ 1
σ∥vR∥2 > 0. On

the other hand Lemma 5.3(ii) implies that AvR ≥ 0. In addition, HvR = 0. Thus, taking the inner
product of the dual constraint Hq = −(c + A∗y) with vR yields 0 = ⟨c,vR⟩ + ⟨AvR,y⟩, which
contradicts the other constraint y ≥ 0. Altogether, vR is an infeasibility certificate for the dual
(79). (ii): Indeed, on the one hand it follows from Lemma 5.6(iv) that ⟨b,vD⟩ ≥ 1

τ∥vD∥2 > 0. On
the other hand Lemma 5.3(vi) implies that A∗vD = 0. Finally, vD ≤ 0 by Lemma 5.3(i). Taking
the inner product of vD with both sides of the constraint Ax ≤ b yields ⟨vD,Ax⟩ ≥ ⟨vD, b⟩, i.e.,
0 ≥ ⟨vD, b⟩, a contradiction. Altogether, vD is an infeasibility certificate for (78). ■

5.3 PDHG for QP: Dynamic behaviour

In this section, we show that in the case of QP, ((xk,yk) + kv)k∈N converges as k → ∞. Our result
extends the analogous result for LP due to Applegate et al. Our proof technique is somewhat dif-
ferent from that of [1] in that it builds on our previous characterization of ran (Id−T). This result
strengthens both parts of Fact 3.8 for the special case of PDHG applied to QP.

We start with the following useful lemma.

Lemma 5.8. Let C be a nonempty closed convex cone of X such that int C ̸= ∅. Let w ∈ int C and let
M > 0. Then there exists α ≥ 0 such that (∀α ≥ α) ball(0; M) + αw ⊆ int C.

Proof. Indeed, observe that int C is a nonempty convex cone of X. If ball(0; M) ⊆ int C then α = 0
and the conclusion follows. Otherwise, by assumption (∃ϵ > 0) such that w + ball(0; ϵ) ⊆ int C.
Let α ≥ M

ϵ + 1 and observe that (∀α ≥ α) w + ball(0; ϵ − M
α ) ⊆ int C. Now, ball(0; M) + αw ⊆

ball(0; M) + αw + ball(0; αϵ−M) = αw + ball(0; αϵ) = α(w + ball(0; ϵ)) ⊆ α(int C) = int C. The
proof is complete. ■

Corollary 5.9. Let C be a nonempty closed convex cone of X such that int C ̸= ∅. Let w ∈ int C and
suppose that (xk)k∈N is a bounded sequence in X. Then there exists α ≥ 0 such that (∀α ≥ α) the following
hold:

(i) (xk + αw)k∈N lies in int C.
(ii) PC(xk + αw) = xk + αw.

(iii) PC⊖(xk + αw) = 0.

Proof. (i): Because (xk)k∈N is bounded there exists M > 0 such that (xk)k∈N lies in ball(0; M). Now
combine this with Lemma 5.8. (ii)&(iii): This is a direct consequence of (i). ■
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Because v ∈ ran (Id−T) (see (80)) we learn that

Fix(v + T) ̸= ∅, (83)

where (∀z ∈ Rn ×Rm) (v + T)(z) = v + Tz.

We are now ready for the main result in this section. We point out that Theorem 5.10 below
generalizes [1, Theorem 5] to quadratic programming.

Theorem 5.10. Let z0 = (x0,y0) ∈ Rn ×Rm. Update via (∀k ∈N)

zk+1 = Tzk. (84)

Then (∃α ≥ 0) such that the sequence (zk + kv)k∈N converges to a point in αv + Fix(v + T).

Proof. Observe that the sequence

(zk + kv)k∈N =

(
(xk + kvR)k∈N

(yk + kvD)k∈N

)
is bounded (85)

by Fact 3.6. Furthermore, the sequence

(zk − zk+1)k∈N =

(
(xk − xk+1)k∈N

(yk − yk+1)k∈N

)
is convergent, hence bounded (86)

by Fact 3.8(ii).

We set I =
{
{i ∈ 1, . . . , m}

∣∣ (AvR)i > 0 or (vD)i < 0
}

. We proceed by verifying the following
claims.

CLAIM 1: There exists K ≥ 0 such that (∀k ≥ K) (∀i ∈ I)

((yk + τA(2xk+1 − xk)− τb)i)+ =

{
0, (AvR)i > 0;
(yk + τA(2xk+1 − xk)− τb)i, (vD)i < 0,

(87)

and (∀k ∈N) (∀i ∈ I)

((yk + kvD + τA(2xk+1 − xk + (k + 2)vR)− τb− KAvR − KvD)i)+

=

{
0, (AvR)i > 0;
(yk + kvD + τA(2xk+1 − xk)− τb− KvD)i, (vD)i < 0.

(88)

We proceed by verifying the following two sub-claims.

CLAIM 1-A: There exists K1 ≥ 0 such that (∀k ≥ K1) (∀i ∈ I) (87) holds.

Indeed, let i ∈ I. First, suppose that (AvR)i > 0. In this case, Lemma 5.3(viii) implies that
(vD)i = 0. Therefore

(yk + τA(2xk+1 − xk)− τb)i

= (yk + τA(xk+1 − xk + (xk+1 + (k + 1)vR))− τb− τ(k + 1)AvR)i. (89)

It follows from (85), the continuity of A, (86) and (85) again that the sequences ((yk)i)k∈N =
((yk + kvD)i)k∈N and ((τA(xk+1 − xk + (xk+1 + (k + 1)vR))− τb)i)k∈N are bounded. Hence, their

19



sum is bounded. Applying Corollary 5.9(iii) with C replaced by ]−∞, 0], (xk)k∈N replaced by ((yk +
kvD + τA(xk+1 − xk + (xk+1 + (k + 1)vR))− τb)i)k∈N and w replaced by (−τAvR)i < 0 we learn
that there exists Ki such that

(∀k ≥ Ki) ((yk + kvD + τA(2xk+1 − xk)− τb)i)+ = ((yk + τA(2xk+1 − xk)− τb)i)+ = 0. (90)

Now, suppose that (vD)i < 0. In this case, Lemma 5.3(ix) implies that (AvR)i = 0. Therefore,

(yk + τA(2xk+1 − xk)− τb)i = (yk + kvD + τA(2xk+1 − xk)− τb− kvD)i. (91)

It follows from (85), the continuity of A, (86) and (85) again that the sequences ((yk + kvD)i)k∈N

and ((τA(xk+1 − xk + xk+1) − τb)i)k∈N = ((τA(xk+1 − xk + (xk+1 + (k + 1)vR)) − τb)i)k∈N are
bounded. Hence, their sum is bounded. Applying Corollary 5.9(ii) with C replaced by [0,+∞[,
(xk)k∈N replaced by ((yk + kvD + τA(xk+1−xk +xk+1)− τb)i)k∈N and w replaced by (−vD)i > 0
we learn that there exists Ki such that

(∀k ≥ Ki) ((yk + τA(2xk+1 − xk)− τb)i)+ = (yk + τA(2xk+1 − xk)− τb)i. (92)

We set
K1 = max

i∈I
{Ki}. (93)

Then K1 satisfies (87) in view of (90) and (92).

CLAIM 1-B: There exists K2 ≥ 0 such that (∀K ≥ K2) (∀k ∈N) (∀i ∈ I) (88) holds.

Indeed, observe that (∀k ∈N)

yk + kvD + τA(2xk+1 − xk + (k + 2)vR)− τb

= yk + kvD + τA(2(xk+1 + (k + 1)vR)− (xk + kvR))− τb.
(94)

Hence, (∀i ∈ I) (yk + kvD + τA(2xk+1 − xk + (k + 2)vR)− τb)i is bounded by (85). As before, if
(AvR)i > 0 then Lemma 5.3(viii) implies that (vD)i = 0. Applying Corollary 5.9(ii)&(iii) with C
replaced by ]−∞, 0], (xk)k∈N replaced by ((yk + kvD + τA(2xk+1−xk + (k + 2)vR)− τb)i)k∈N and
w replaced by (−AvR)i < 0 implies that there exists K̂i ≥ 0 such that (∀K̂ ≥ K̂i) such that (∀k ∈N)

((yk + kvD + τA(2xk+1 − xk + (k + 2)vR)− τb− KAvR − KvD)i)+

= ((yk + kvD + τA(2xk+1 − xk + (k + 2)vR)− τb− KAvR)i)+ = 0. (95)

If (vD)i < 0 then Lemma 5.3(viii) implies that (AvR)i = 0. Applying Corollary 5.9(ii)&(iii) with
C replaced by ]−∞, 0], (xk)k∈N replaced by ((yk + kvD + τA(2xk+1 − xk + (k + 2)vR)− τb)i)k∈N

and w replaced by (−vD)i > 0 implies that there exists K̂i ≥ 0 such that (∀k ∈N) (∀K ≥ K̂i ≥ 0)

((yk + kvD + τA(2xk+1 − xk + (k + 2)vR)− τb− KAvR − KvD)i)+

= (yk + kvD + τA(2xk+1 − xk)− τb− KvD)i. (96)

We set
K2 = max

i∈I
{K̂i}. (97)

Then K2 satisfies (87) in view of (90) and (92).

Finally, we set K = max{K1, K2}. This verifies CLAIM 1.
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CLAIM 2: We have (∀k ∈N)
zk+K + kv = (v + T)k(zK). (98)

To simplify the notation, we set (∀k ∈N)

wk := (v + T)k(zK) :=
(
pk
qk

)
. (99)

Therefore, (98) reduces to proving(
(pk)k∈N

(qk)k∈N

)
=

(
(xk+K + kvR)k∈N

(yk+K + kvD)k∈N

)
. (100)

We use induction on k. The base case at k = 0 is clear. Now suppose that for some k ≥ 0 (98) holds.
We first verify that

(pk)k∈N = (xk+K + kvR)k∈N = (xk+K + (k + K)vR − KvR)k∈N. (101)

Indeed, the inductive hypothesis, the linearity of JH = (Id+H)−1, and Lemma 5.3(vi)&(vii) yield

pk+1 = vR + JσH(pk − σA∗qk − σc) (102a)
= vR + JσH(xk+K + kvR − σA∗(yk+K + kvD)− σc) (102b)
= vR + JσH(xk+K − σA∗yk+K + σkA∗vD − σc) + kJσH(vR) (102c)
= vR + JσH(xk+K − σA∗yk+K − σc) + kvR (102d)
= JσH(xk+K − σA∗yk+K − σc) + (k + 1)vR (102e)
= xk+K+1 + (k + 1)vR. (102f)

We now verify that

(qk)k∈N = (yk+K + kvD)k∈N = (yk+K + (k + K)vD − KvD)k∈N. (103)

It follows from the the inductive hypothesis, (88) and (101) that

qk+1 = vD + (qk + τA(2pk+1 − pk)− τb)+ (104a)
= vD + (yk+K + (k + K)vD + τA(2(xk+K+1 + (k + K + 1)vR)

− (xk+K + (k + K)vR))− τb− τKAvR − KvD)+. (104b)

Let i ∈ {1, . . . , m}. We examine the following cases.

CASE 1: (AvR)i > 0. In this case (vD)i = 0. On the one hand, (87) implies that

(yk+K+1 + (k + 1)vD)i = 0 + 0 = 0. (105)

On the other hand, in view of (88) and (104b) we have

(qk+1)i = (vD)i + ((qk + τA(2pk+1 − pk)− τb)i)+ = 0 + 0 = 0 = (yk+K+1 + (k + 1)vD)i. (106)

CASE 2: (vD)i < 0. In this case (AvR)i = 0. On the one hand, (87) implies that

(yk+K+1)i = (yk+K + τA(2xk+K+1 − xk+K)− τb)i. (107)
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On the other hand, in view of (88) and (104b) we have

(qk+1)i = (vD)i + ((qk + τA(2pk+1 − pk)− τb)i)+ (108a)
= (vD)i + (yk+K + (k + K)vD + τA(2xk+K+1 − xk+K)− τb− KvD)i (108b)
= (yk+K + (k + 1)vD + τA(2xk+K+1 − xk+K)− τb)i (108c)
= (yk+K+1)i + (k + 1)(vD)i. (108d)

CASE 3: (AvR)i = (vD)i = 0. In this case, it is straightforward to verify the inductive step and
the conclusion is obvious.

CLAIM 3: There exists α ≥ 0 such that the sequence (zk + kv)k∈N converges to a z ∈ αv+ Fix(v+
T). Indeed, (99) means that wk can be obtained by iterating (v + T) on w0 ≡ zK. Since T is firmly
nonexpansive (Theorem 3.5(ii)), so is v+ T. By Example 5.18 of [6], in view of (83), we learn that the
sequence (wk)k∈N converges to a point in Fix(v + T). Now combine with (98) to learn that zk + kv
converges to a point in Kv + Fix(v+ T) = Kv+ Fix(v+ T), and the conclusion follows by recalling
that Fix(v + T) = R− · v + Fix(v + T) by Fact 3.7. ■

5.4 A numerical example

Consider the linear program (LP) (respectively the quadratic program (QP))

minimize x1 − 2x2

subject to −x1 + x2 ≤ −2
x1 − x2 ≤ 1
−x1 ≤ 0
−x2 ≤ 0

(LP)

minimize 0.5x2
1 + 0.5x2

2 + x1 − 2x2

subject to −x1 + x2 ≤ −2
x1 − x2 ≤ 1
−x1 ≤ 0
−x2 ≤ 0

(QP)

which was given in Example 5.5(i) (respectively Example 5.5(ii)). In this section, we provide nu-
merical illustrations of Theorem 5.10 when applied to (LP) and (QP). Additionally, we numerically
verify the conclusion of Example 5.5. For both (LP) and (QP) we set σ = τ = 0.3, x0 = (0, 0), y0 =
(0, 0,−1,−1), and z0 = (x0,y0)T. Finally, following the notation of Theorem 5.10 we set (∀k ∈N)
zk = Tkz0. Let k ∈N. We denote the component of (zk + kv − (v + T)(zk + kv)) corresponding to
xk (respectively yk) by (zk + kv − (v + T)(zk + kv))x (respectively (zk + kv − (v + T)(zk + kv))y).

Remark 5.11. Some comments are in order.

(i) Let w0 ∈ Z and let Q : Z → Z be an affine firmly nonexpansive operator. We set (wk)k∈N =
(Qkw0)k∈N and we let vQ be the minimal norm vector in ran (Id−Q). The authors in [9, Theo-
rem 3.2] proved that wk + kvQ converges to a point in Fix(vQ + Q).

(ii) In view of (i) one wonders if the limit of (zk + kv) lies Fix(v+ T). Our numerical experiments provide
a negative answer to this question, which proves the tightness of the conclusion of Theorem 5.10.
Indeed, as the plots in Figure 1 and Figure 2 below show, the sequence zk + kv− (v+ T)(zk + kv)→
u∗ ̸= 0. Recalling Theorem 5.10, this in turn implies that zk + kv → z∗ ̸∈ Fix(v + T).

5.5 Computing the infimal displacement vector

In this section, we derive a characterization of ran (Id−T) for (59) as the solution to a system of
convex constraints in the case that K is polyhedral. A special case is K = Rm

−, i.e., QP (78). This
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Figure 1: Python plots to illustrate the iterative behavior of PDHG when applied to solve (LP). Left:
The first 50 terms of the sequences (∥xk − xk+1∥)k∈N (the blue dotted curve) and (∥yk − yk+1∥)k∈N

(the orange dash-dotted curve) are depicted. Also, the first 50 terms of both components of the
sequence (∥zk + kv− (v+ T)(zk + kv)∥)k∈N are depicted (the solid green curve and the dashed red
curve). Right: The first 50 terms of the sequences (∥xk − xk+1 − vR∥)k∈N (the orange dotted curve)
and (∥yk − yk+1 − vD∥)k∈N (the blue dotted curve) are depicted.
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Figure 2: Python plots to illustrate the iterative behavior of PDHG when applied to solve (QP). Left:
The first 150 terms of the sequences (∥xk−xk+1∥)k∈N (the blue dotted curve) and (∥yk−yk+1∥)k∈N

(the orange dash-dotted curve) are depicted. Also, the first 150 terms of both components of the
sequence (∥zk + kv− (v+ T)(zk + kv)∥)k∈N are depicted (the solid green curve and the dashed red
curve). Right: The first 150 terms of the sequences (∥xk−xk+1− vR∥)k∈N (the orange dotted curve)
and (∥yk − yk+1 − vD∥)k∈N (the blue dotted curve) are depicted.

formula is useful in case one wants to compute with ran (Id−T), e.g., the determination of the
infimal displacement vector via an interior-point method.

We note that Lemma 5.1(vi) already yields such a characterization. However, a naive translation
of (vi) to a system of constraints introduces four auxiliary vectors. The following result shows that
two auxiliary vectors (denoted w and y below) suffice.

Lemma 5.12. In the setting of Problem (59), suppose that K is a polyhedral cone. Define

V :=

(r,d)∈ X×Y

∣∣∣∣∣ ∃(w,y) ∈ X×Y such that

1
τd− (Aw+ b) ∈ K,
y − d ∈ K⊖,
1
σr− Hr = −Hw+A∗y + c

 . (109)
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Then
V = M−1(ran (∂F + S)) = ran (Id−T). (110)

Proof. In view of Remark 5.2, it is sufficient to verify the first identity in (110). Let (r,d) ∈ V. Then
there exists (w,y) ∈ X×Y such that

1
σr−A∗d = Hr− Hw+A∗y + c−A∗d ∈ ran H +A∗(K⊖) + c,
1
τd−Ar = 1

τd− (Aw+ b) + (Aw+ b)−Ar ∈ K + ranA+ b.
(111)

Recalling Remark 5.2, for simplicity we set R := ran (∂F + S) = (ran H + A∗(K⊖) + c) × (K +
ranA+ b). The inclusion V ⊆ M−1R follows from the definition of M given in (23) and the nonsin-
gularity of M due to the choices of τ, σ. We now show that M−1R ⊆ V. Indeed let z := (z1, z2) ∈ R.
Then there exist x ∈ X, s ∈ K⊖, t ∈ K,u ∈ X such that

z = (z1, z2) = (Hx+A∗s+ c, t−Au+ b). (112)

We claim that there exist x∗ ∈ X, s∗ ∈ K⊖, t∗ ∈ K,u∗ ∈ X such that

z = (Hx∗ +A∗s∗ + c, t∗ −Au∗ + b) and Hx∗ = Hu∗. (113)

To this end consider the problem:

minimize
u∈X

1
2 ⟨u, Hu⟩ − ⟨z1 − c,u⟩

subject to Au− b+ z2 ∈ K.
(114)

Standard techniques yield that the Lagrangian dual of (114) is

maximize
s̄∈Y,x̄∈X

− 1
2 ⟨x, Hx⟩ − ⟨b− z2, s⟩

subject to −A∗s+ z1 − c = Hx
s ∈ K⊖.

(115)

It follows from (112) that u satisfies the primal constraint and the pair (x, s) satisfies the dual con-
straints. Therefore, because K is a polyhedral cone, strong duality holds for the primal-dual problem
(114)–(115) (see, e.g., [15, Comment on Page 227]). Let (u∗, (x∗, s∗)) denote its primal–dual optimal
solution. Then there exists (t∗, s∗) ∈ K× K⊖ such that

z1 = Hx∗ +A∗s∗ + c (dual feasibility) and z2 = t∗ −Au∗ + b (primal feasibility). (116)

Moreover, strong duality and KKT conditions imply that 0 = Hu∗− (z1− c)+A∗s∗ = Hu∗−Hx∗.
This proves (113). Now define (r,d) := M−1z, i.e., (z1, z2) = M(r,d) =

( 1
σr−A∗d, 1

τd−Ar
)
.

This and (116) implies( 1
σr, 1

τd
)
= (Hx∗ +A∗s∗ + c+A∗d, t∗ −Au∗ + b+Ar). (117)

Define w := r− u∗ and y := d+ s∗. In view of (113), (117) and (116) we have

1
τd− (Aw+ b) = Ar+ t∗ −Au∗ + b− (Aw+ b) = t∗ ∈ K
y − d = s∗ ∈ K⊖
1
σr− Hr = A∗d+ Hx∗ +A∗s∗ + c− Hr = −Hw+A∗y + c,

which implies that (r,d) ∈ V. The inclusion M−1R ⊆ V follows from the construction (r,d) =
M−1z. ■
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6 Application to standard conic primal form

In this section, we consider problems of the form (63) under the assumptions

C is a nonempty closed convex cone of X, c ∈ X, and K = {0}. (118)

In other words, the problem under consideration is:

minimize
x∈C

⟨c,x⟩
subject to Ax− b = 0.

(119)

Problem (119) is commonly known as standard conic primal form since it generalizes linear pro-
gramming in standard equality form, which takes C = Rn

+. However, the results in this section
extend beyond LP since polyhedrality is not assumed. Specializing (66), the PDHG update to solve
(119) is (

x+

y+

)
= T

(
x
y

)
:=
(

PC(x− σA∗y − c)
y + τA(2x+ − x)− τb

)
. (120)

Lemma 6.1. For (120) we have

ran (Id−T) = M−1
(
(C⊖ + ranA∗ + c)× (b−A(C))

)
. (121)

Proof. Recalling (56) and (64), on the one hand we have

dom f = C, dom g = {b} and dom g∗ = X. (122)

On the other hand, it follows from [6, Corollary 16.39 and Corollary 16.30], [31, Theorem 3.1] and
[6, Corollary 6.50] that

dom f ∗ = dom (⟨c,x⟩+ ιC)
∗ = dom ∂(⟨c,x⟩+ ιC)

∗ (123a)
= ran ∂(⟨c,x⟩+ ιC) = ran (c+ NC) (123b)

= c+ ran NC = c+ C⊖. (123c)

Now combine (122), (123) and Theorem 3.5(vi). ■

The following lemma, analogous to Lemma 5.12, presents a parsimonious description of
ran (Id−T) via constraints in the context of the standard conic primal form.

Lemma 6.2. In the setting of Problem (120), define R := ((C⊖ + ranA∗ + c)× (b−A(C)), and

V :=

(r,d)∈ X×Y

∣∣∣∣∣ ∃(w,y) ∈ X×Y such that

1
τd = Aw+ b,
r−w ∈ C,
1
σr− (A∗y + c) ∈ C⊖

 . (124)

Then
V = M−1R. (125)

Proof. Let (r,d) ∈ V. Then there exists w,y such that

1
σr−A∗d = 1

σr− (A∗y + c) + (A∗y + c)−A∗d ∈ C⊖ + ranA∗ + c,
1
τd−Ar = A(w− r) + b ∈ b−A(C).
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The inclusion V ⊆ M−1R follows from the definition of M (see (23)). We now show that M−1R ⊆ V.
To this end let z ∈ R and define (r,d) := M−1z. Then there exist s ∈ C⊖, t ∈ Y,u ∈ C such that

z = (s+A∗t+ c, b−Au) =
( 1

σr−A∗d, 1
τd−Ar

)
= M(r,d). (126)

Define w := r− u and y := d+ t. Combining this with (126) yields

1
τd = Ar+ b−Au = Aw+ b
r−w = u ∈ C
1
σr− (A∗y + c) = A∗d+ s+A∗t+ c− (A∗y + c) = s+A∗y + c− (A∗y + c) ∈ C⊖,

which implies that M−1z = (r,d) ∈ V. This completes the proof. ■

Remark 6.3. Let R and V be defined as in Lemma 6.2. In view of (121) it is clear that ran (Id−T) = V.

6.1 Special case: kerA∩ C = {0}

In this section, we establish that v ∈ ran (Id−T) for a subclass of (119). The general version of our
result is in Proposition 6.9, and then the general result is specialized to a particular problem class in
Section 6.2. We start with the following useful lemma.

Lemma 6.4. Suppose X finite-dimensional and that C1 and C2 are nearly convex10 subsets of X such that
C1 = C2. Then the following hold.

(i) ri C1 = ri C2.
(ii) Suppose that (∃i ∈ {1, 2}) Ci = X. Then C1 = C2 = X.

Proof. (i): This is [8, Proposition 2.12]. (ii): Indeed, without loss of generality suppose that C1 = X.
Observe that (i) implies X = ri X = ri C1 = ri C2 ⊆ C2 ⊆ X. Hence, C2 = X as claimed. ■

We now have the following corollary which will be used in the sequel.

Corollary 6.5. Suppose that X is finite-dimensional and that K1 and K2 are closed convex cones of X such
that K1 ∩ K2 = {0}. Then K⊖1 + K⊖2 = X.

Proof. Indeed, it follows from [27, Corollary 16.4.2.] that K⊖1 + K⊖2 = (K1 ∩ K2)⊖ = {0}⊖ = X. Now
combine this with Lemma 6.4(ii) applied with C1 = K⊖1 + K⊖2 and C2 = X. ■

Lemma 6.6. Recalling (120), for Problem (119), the following hold:

(i) vR ∈ −C.
(ii) σA∗vD = PC⊖(−vR + σA∗vD) ∈ C⊖.

(iii) −vR = PC(−vR + σA∗vD) ∈ C.
(iv) vD ∈ (A(C))⊖.
(v) Suppose that kerA∩ C = {0}. Then

(a) vR = 0.
(b) C⊖ + ranA∗ = X.

10Suppose that X is finite-dimensional. A subset E of X is nearly convex if there exists a convex set C ⊆ X such that
C ⊆ E ⊆ C.
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Proof. Let z0 = (x0,y0) ∈ X×Y. Update via zk+1 = Tzk, where T is defined as in (120). Then

the sequence (xk)k∈N lies in C. (127)

(i): Because C is a cone, (127) implies that (xk/k)k≥1 lies in C. It follows from Fact 3.8(i) that

xk/k→ −vR ∈ C, (128)

where the inclusion follows from the closedness of C. (ii): It follows from (120) applied with x
replaced by xk and the Moreau decomposition, see, e.g., [6, Theorem 6.30], that

xk − xk+1 − σA∗yk − c = xk − PC(xk − σA∗yk − c)− σA∗yk − c = PC⊖(xk − σA∗yk − c). (129)

Dividing the above equation by k ≥ 1, using the positive homogeneity of PC⊖ (see [19, Theo-
rem 5.6(7)]) and taking the limit as k → ∞ in view of Fact 3.8(i)&(ii) and the continuity of PC⊖

we learn that

σA∗vD ← xk−xk+1
k + σA∗

(
−yk

k

)
−
(
c
k

)
= PC⊖

(
xk
k + σA∗

(−yk
k

)
− c

k

)
→ PC⊖(−vR + σA∗vD). (130)

That is, σA∗vD = PC⊖(−vR + σA∗vD) ∈ C⊖. (iii): It follows from Proposition 4.2(iii) that
⟨vR,A∗vD⟩ = ⟨AvR,vD⟩ = 0. Now combine this with (i) and (ii) in view of, e.g., [6, Proposi-
tion 6.28]. (iv): It follows from (ii) and [6, Proposition 6.37(ii)] that vD ∈ (A∗)−1C⊖ = (A(C))⊖.
(v)(a): Indeed, (i) and Proposition 4.2(v) yield vR ∈ (−C) ∩ kerA = −(C ∩ kerA) = {0}.
Hence, vR = 0 as claimed. (v)(b): It follows from [6, Fact 2.25(iv) and Proposition 6.35] that
C⊖ + ranA∗ = C⊖ + ranA∗ = C⊖ + (kerA)⊥ = C⊖ + (kerA)⊖ = (C ∩ kerA)⊖ = {0}⊖ = X.
The proof is complete. ■

Before we proceed we recall the following useful fact.

Fact 6.7. Suppose that X is finite-dimensional and that kerA∩ C = {0}. Then A(C) is closed.

Proof. See [27, Theorem 9.1]. ■

Lemma 6.8. Suppose that X and Y are finite-dimensional and that kerA ∩ C = {0}. Then for Prob-
lem (119) we have:

(i) A(C) is a nonempty closed convex cone.
(ii) C⊖ + ranA∗ = X.

(iii) ran (Id−T) = M−1
(
(X× (b−A(C))

)
.

(iv) Let z ∈ A(C). Then
〈
vD, 1

τvD − (b− z)
〉
≤ 0.

(v)
〈
vD, 1

τvD − b
〉
≤ 0.

(vi) 1
τvD = Pb−A(C)(0) = P(AC)⊖(b).

Let u ∈ C be such that 1
τvD = b−Au. Then we have

(vii) ⟨Au,vD⟩ = ⟨u,A∗vD⟩ = 0.
(viii) 1

τ∥vD∥2 = ⟨b,vD⟩.
(ix) u = PC(u+A∗vD) and A∗vD = PC⊖(u+A∗vD).

Proof. (i): Use Fact 6.7 to learn that A(C) is closed. The convexity is clear because A is linear and
C is convex. The conclusion A(C) is a cone is straightforward. (ii): Combine Lemma 6.6(v)(b)
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and Lemma 6.4(ii) applied with with C1 = X and C2 = C⊖ + ranA∗. (iii): Combine Lemma 6.1,
(ii) and (i). (iv): Combine (122) and Proposition 3.10(ii) in view of Lemma 6.6(v)(b). (v): This
is a direct consequence of (iv) by setting z = 0. (vi): It follows from (iii) in view of (80) that
(−A∗vD, 1

τvD) = Mv ∈ X × (b−A(C)). That is, 1
τvD ∈ b−A(C). Now combine this with

(iv) and (i) in view of [6, Theorem 3.16] to learn that 1
τvD = Pb−A(C)(0). Finally, using, e.g., [6,

Proposition 3.19] we have

1
τvD = Pb−A(C)(0) = b+ P−A(C)(−b) = b− PA(C)(b) (131a)

= (Id−PA(C))(b) = P(A(C))⊖(b). (131b)

(vii)&(viii): Indeed, it follows from (v) and Lemma 6.6(ii) that

0 ≤
〈
b− 1

τvD,vD
〉
= ⟨Au,vD⟩ = ⟨u,A∗vD⟩ ≤ 0, (132)

hence
〈
b− 1

τvD,vD
〉
= ⟨Au,vD⟩ = ⟨u,A∗vD⟩ = 0 and the conclusion follows. (ix): Combine (vii)

and Lemma 6.6(ii) in view of, e.g., [6, Proposition 6.28]. ■

We now show a sufficient condition to have v ∈ ran (Id−T).

Proposition 6.9. Suppose that X and Y are finite-dimensional, that kerA∩C = {0} and that c = 0. Then
v ∈ ran (Id−T).

Proof. In view of Theorem 3.5(iv) and Lemma 6.6(v)(b) we have

v ∈ ran (Id−T)⇔ Mv =

(−A∗vD
1
τvD

)
∈ ran (∂F + S), (133)

where ∂F = NC × {b}. It follows from Lemma 6.8(vi) that (∃u ∈ C) such that 1
τvD = b−Au. Now

consider the point
(

u
−vD

)
∈ C×Y = dom ∂F = dom(∂F + S). We have

(∂F + S)
(

u
−vD

)
=

(
NC(u)−A∗vD

b−Au
)
∋
(
0−A∗vD
b−Au

)
=

(−A∗vD
1
τvD

)
= Mv. (134)

This completes the proof in view of (133). ■

Proposition 6.10. Suppose that X and Y are finite-dimensional, that kerA∩C = {0} and that c = 0. Let
(x0,y0) ∈ X×Y. Update via (∀k ∈N)

(xk+1,yk+1) = T(xk,yk). (135)

Then the following hold.

(i) The sequence (xk,yk + kvD)k∈N is bounded.

Let x be a cluster point of (xk)k∈N. Then we have

(ii) x ∈ C.
(iii) τAx = τb− vD.
(iv) (x,0) ∈ Fix(v + T).
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Proof. (i): Combine Theorem 3.5(ii), and Fact 3.6 in view of Lemma 6.6(v)(a) . (ii): This follows from
the fact that (xk)k∈N lies in C and C is closed. (iii): Suppose that xnk → x. It follows from Fact 3.8(i)
in view of Theorem 3.5(ii) that xnk − xnk+1 → 0, hence xnk+1 → x. Therefore, using this and (120)
applied with c = 0 we have vD ← ynk − ynk+1 = τb− τA(2xnk+1−xnk) = τb− τAx. (iv): Indeed,
using (ii) and (iii) we have

v + T(x,0) = (0,vD) + (PC(x− σA∗0),0+ τA(2PC(x− σA∗0)− x)− τb) (136a)
= (x,vD + τAx− τb) = (x,0), (136b)

and the conclusion follows. ■

We recall the following fact.

Fact 6.11. Let (zk)k∈N be Fejér monotone with respect to a nonempty closed convex subset D of X. Let w1
and w2 be two cluster points of (zk)k∈N. Then w1 −w2 ∈ (D− D)⊥.

Proof. See, e.g., [7, Lemma 2.2] or [5, Theorem 6.2.2(ii)]. ■

In the special case considered in this section, namely kerA ∩ C = {0}, c = 0, for which we
already know vR = 0 by Lemma 6.6(v)(a), we can show that the first component of the sequence
(xk,yk)k∈N converges, and furthermore, we can partly characterize the limit point as follows.

Theorem 6.12. Suppose that X and Y are finite-dimensional, that kerA ∩ C = {0} and that c = 0. Let
(x0,y0) ∈ X×Y. Update via (∀k ∈N)

(xk+1,yk+1) = T(xk,yk). (137)

Then there exists x ∈ C such that the following hold.

(i) The sequence (xk)k∈N converges to x.
(ii) x ∈ C ∩ L, where L =

{
x ∈ X

∣∣ Ax = b− 1
τvD

}
.

Proof. (i): In view of Proposition 6.10(i) it suffices to show that (xk)k∈N has at most one cluster point.
To this end suppose that x and x̂ are two cluster points of (xk)k∈N, say xnk → x and xlk → x̂. After
dropping to a subsubsequence and relabelling if needed we can and do assume that znk + nkv →
(x,y) and zlk + lkv → (x̂, ŷ). On the one hand, it follows from Proposition 6.10(iv) that (x,0) and
(x̂,0) lie in Fix(v + T). On the other hand, applying Fact 6.11 with D replaced by Fix(v + T), w1
replaced by (x,y), and w2 replaced by (x̂, ŷ) in view of Proposition 6.10(iii) applied to x and x̂
yields

0 = ⟨(x,y)− (x̂, ŷ), (x,0)− (x̂,0)⟩M (138a)
= ⟨(x− x̂,y − ŷ), (x− x̂,0)⟩M (138b)

=
〈
(x− x̂,y − ŷ), ( 1

σ (x− x̂)−A∗(0),0− (Ax−Ax̂))
〉

(138c)

= 1
σ ⟨(x− x̂,y − ŷ), (x− x̂,0)⟩ = 1

σ∥x− x̂∥2. (138d)

That is x = x̂ and the conclusion follows. (ii): Combine (i) and Proposition 6.10(ii)&(iii). ■

6.2 Application to the ellipsoid separation problem

An example of Problem (119) in which c = 0 and kerA∩ C = {0} is the ellipsoid separation prob-
lem, which we describe in this section. This problem asks: given two collections of finitely many

29



ellipsoids, say E1, . . . , Ek and E′1, . . . , E′l all lying in Rd, is there a hyperplane that strictly separates
E1, . . . , Ek from E′1, . . . , E′l? This problem is a robust extension of the classic binary classification
problem. “Robust” in this context means that the locations of the data points are known only up to
an ellipsoid, and that the separating hyperplane should be correct for all possible actual locations
of the points. See, e.g., Shivaswamy et al. [29]. We start with a characterization of separators whose
proof (omitted) follows directly from the standard hyperplane separation theorem.

Fact 6.13. Suppose that X is finite-dimensional. Let E1, . . . , Ek and E′1, . . . , E′l be k + l nonempty convex
compact bodies lying in X. Then there exists a ∈ X∖ {0}, b ∈ R such that ⟨a,x⟩ < b for all x ∈ E1∪ · · · ∪
Ek and ⟨a,x⟩ > b for all x ∈ E′1 ∪ · · · ∪ E′k if and only if conv (E1 ∪ · · · ∪ Ek)∩ conv (E′1 ∪ · · · ∪ E′l) = ∅.

Let us introduce further notation for the ellipsoids: say that

Ei := {x ∈ Rd : ∥A−1
i (x− ci)∥ ≤ 1}, i ∈ {1, . . . , k}, (139a)

E′i := {x ∈ Rd : ∥B−1
i (x− di)∥ ≤ 1}, i ∈ {1, . . . , l}. (139b)

Here, A1, . . . , Ak, B1, . . . , Bl are d × d invertible matrices and c1, . . . , ck,d1, . . . , dl are vectors (cen-
ters of the ellipsoids). The naive way of writing the problem “Is conv (E1 ∪ · · · ∪ Ek) ∩ conv (E′1 ∪
· · · ∪ E′l) nonempty?” would introduce variables v1, . . . ,vk,w1, . . . ,wl ∈ Rd constrained to lie in the
respective ellipsoids, and nonnegative multipliers λ1, . . . , λk, µ1, . . . , µl satisfying λ1 + · · · + λk =
µ1 + · · · + µl = 1 and λ1v1 + · · · + λkvk = µ1w1 + · · · + µlwl . However, this formulation is not
convex due to the products λivi, µiwi.

A standard rescaling trick (see., e.g., Boyd & Vandenberghe [15, Exercise 4.56] attributed to Par-
rilo) reformulates the problem of nonemptiness of the intersection of convex hulls as standard SOCP
with variables λ1, . . . , λk, µ1, . . . , µl ,p1, . . . ,pk, q1, . . . , ql :

minimize 0

subject to λ1 + · · ·+ λk = 1,
µ1 + · · ·+ µl = 1,
λ1c1 + A1p1 + · · ·+ λkck + Akpk − µ1d1 + B1q1 − · · · − µldl + Blql = 0,
∥pi∥ ≤ λi ∀i ∈ {1, . . . , k},
∥qi∥ ≤ µi ∀i ∈ {1, . . . , l}.

Note that the constraints λ ≥ 0 and µ ≥ 0 are redundant in this formulation and hence are dropped.
The objective “min 0” indicates that any feasible solution to the constraints yields a common point
in the convex hulls. Let X := Rd+1 × · · · ×Rd+1. We further rewrite this problem in the form:

Find x :=



λ1
p1
...

λk
pk
µ1
q1
...

µl
ql


∈ X subject to

Ax =

 1
1
0

 =: b,

x ∈ Cd+1
2 × · · · × Cd+1

2 =: C,

(140)
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where Cd+1
2 refers to the second-order cone in Rd+1, and where

A =

 1 0T · · · 1 0T 0 0T · · · 0 0T

0 0T · · · 0 0T 1 0T · · · 1 0T

c1 A1 · · · ck Ak −d1 B1 · · · −dl Bl

 . (141)

This is a convex feasibility problem which can be recast as:

min
x∈X

ιC(x) + ι{0}(Ax− b). (142)

By setting K = {0} and g = ιC in (54) and recalling (120) we learn that the PDHG update for the
problem becomes (

x+

y+

)
:= T

(
x
y

)
:=
(

PC(x− σA∗y)
y + τA(2x+ − x)− τb

)
. (143)

Thus, the main work for PDHG in this case is multiplication by A and A∗ and projection onto C.

Lemma 6.14. We have C ∩ kerA = (−C) ∩ kerA = {0}.

Proof. It suffices to show C ∩ kerA = {0}. Indeed, let z = (λ1,p1, . . . , λk,pk, µ1, q1, . . . , µl , ql) ∈
C ∩ kerA. On the one hand

z ∈ C⇒ (∀i ∈ {1, . . . , k}) λi ≥ ∥pi∥ ≥ 0 and (∀j ∈ {1, . . . , l}) µj ≥ ∥qj∥ ≥ 0. (144)

On the other hand

z ∈ kerA⇒
k

∑
i=1

λi =
l

∑
j=1

µj = 0. (145)

We learn from (144) and (145) that (∀i ∈ {1, . . . , k}) λi = 0 and (∀j ∈ {1, . . . , l}) µj = 0. This,
together with (144) yield that (∀i ∈ {1, . . . , k}) pi = 0 and (∀j ∈ {1, . . . , l}) qj = 0. That is z = 0 as
claimed. The proof is complete. ■

We have the following two results.

Theorem 6.15. For Problem (142) we have

(i) vR = 0.
(ii) v ∈ ran (Id−T).

Proof. (i): Combine Lemma 6.14 and Lemma 6.6(v)(a). (ii): Combine Lemma 6.14 and Proposi-
tion 6.9. ■

Lemma 6.16. Recalling Problem (142), let vD = (s, t,w) ∈ R × R × Rd and set A∗vD =
(λ1,p1, . . . , λk,pk, µ1, q1, . . . , µl , ql). Then the following hold:

(i) w = 0⇒ vD = 0.
(ii) vD ̸= 0⇒ s + t > 0.

(iii) vD = 0⇔ A∗vD = 0.
(iv) Suppose that 0 ∈ {λ1, . . . , λk, µ1, . . . , µl}. Then vD = 0.
(v) Suppose that 0 ∈ {p1, . . . ,pk, q1, . . . , ql}. Then vD = 0.
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Proof. It follows from Lemma 6.8(viii) that

s + t = 1
τ (s

2 + t2 + ∥w∥2) ≥ 0. (146)

(i): Indeed, Lemma 6.6(ii) implies that ∥p1∥ = ∥A∗1w∥ ≤ −λ1 = −s− ⟨c,w⟩ and similarly ∥B∗1w∥ ≤
−t + ⟨d,w⟩. Consequently, w = 0⇒ s ≤ 0 and t ≤ 0. In view of (146) we conclude that s + t = 0
and hence s2 + t2 = 0, equivalently, s = t = 0. That is vD = 0. (ii): Combine (i) and (146). (iii): “⇒”:
This is clear. “⇐”: Observe that, because A1 is invertible and A∗1w = 0 we must have w = 0. Now
combine this with (i). (iv): Without loss of generality, we may and do assume that λ1 = 0. Then
p1 = A∗1w = 0, hence w = 0. Now combine this with (i). (v): Without loss of generality, we may
and do assume that p1 = A∗1w = 0. Then w = 0 and the conclusion follows in view of (i). ■

Theorem 6.17. Recalling Problem (142), let T be defined as in (143). Let x0 ∈ Rd+1 × . . .×Rd+1 and let
y0 ∈ Rd+2. Update via (∀k ∈N)

(xk+1,yk+1) = T(xk,yk). (147)

Then there exists x ∈ C such that the following hold.

(i) The sequence (xk)k∈N converges to x.
(ii) x ∈ C ∩ L, where L =

{
x ∈ Rd+1 × . . . Rd+1

∣∣ Ax = b− vD
τ

}
.

Proof. (i)–(ii): Combine Lemma 6.14 and Theorem 6.12(i)&(ii). ■

As indicated by Fact 6.13, disjointness of the convex hulls, i.e., primal infeasibility of (140), is
certified by a separating hyperplane. Furthermore, we know from Theorem 6.15 that vD ̸= 0 in the
infeasible case. We now argue a nonzero vD encodes a separating hyperplane. We first characterize
such a hyperplane with the following lemma.

Lemma 6.18. Given invertible A ∈ Rn×n, c ∈ Rn, s ∈ R and w ∈ Rn ∖ {0}, consider the ellipsoid
E :=

{
x ∈ Rn

∣∣ ∥A−1(x− c)∥ ≤ 1
}

and the halfspace H :=
{
x ∈ Rn

∣∣ ⟨w,x⟩ ≤ s
}

. The following hold.

(i) E ⊆ H⇔ s ≥ ∥A∗w∥+ ⟨c,w⟩.
(ii) E ⊆ int H⇔ s > ∥A∗w∥+ ⟨c,w⟩.

Proof. Let x ∈ Rn. Then

⟨w,x⟩ = ⟨w,x− c⟩+ ⟨w, c⟩ = ⟨A∗w, A−1(x− c)⟩+ ⟨w, c⟩. (148)

(i): “⇐ ”: Let x ∈ E. Using (148) and Cauchy–Schwarz we have ⟨w,x⟩ ≤ ∥A∗w∥ · ∥A−1(x− c)∥+
⟨w, c⟩ ≤ ∥A∗w∥+ ⟨w, c⟩ ≤ s. “⇒ ”: Let x = A(A∗w/∥A∗w∥) + c. Then x ∈ E, hence x ∈ H and
(148) implies s ≥ ⟨w,x⟩ = ⟨A∗w, A−1(x− c)⟩+ ⟨w, c⟩ = ∥A∗w∥+ ⟨w, c⟩. (ii): The proof proceeds
similar to the proof of (i). ■

We now state and prove our main result for the ellipsoid separation problem, which states that,
because v ∈ ran (Id−T) (Theorem 6.15(ii)), a nonzero v indicates inconsistency, and furthermore, a
nonzero v encodes a strict separating hyperplane.

Theorem 6.19. Given k + l ellipsoids specified by (139), let vD =: (s, t,w) and recall (143). Then the
following are equivalent.

(i) conv (E1 ∪ · · · ∪ Ek) ∩ conv (E′1 ∪ · · · ∪ E′l) = ∅,
(ii) SOCP problem (140) is infeasible,

(iii) 0 /∈ ran (Id−T), where T is the PDHG operator given by (143),
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(iv) v ̸= 0,
(v) vD ̸= 0,

(vi) s > −t.

Any one of these statements implies:

(vii) The hyperplane
{
x
∣∣ ⟨w,x⟩ = s′

}
strictly separates E1, . . . , Ek from E′1, . . . , E′l , where s′ is chosen

arbitrarily in ]−t, s[.

Conversely, the existence of (w, s′) as in (vii) implies all of (i)–(vi).

Proof. (i)⇔ (ii): This was explained earlier in the formulation of (140). (ii)⇔(iii): We show the
contrapositives. If (140) has a solution say x∗, then (x∗,0) is a fixed point of T defined in (143).
Equivalently, 0 ∈ ran (Id−T). Conversely, suppose that (x,y) ∈ Fix T. Then x ∈ C and Ax = b,
i.e., x solves (140). (iii)⇔(iv): This follows from Theorem 6.15(ii). (iv)⇔(v): This follows from
Theorem 6.15(i). (v)⇔(vi): The forward direction is established by Lemma 6.16(ii), while the reverse
direction is trivial. (vi)⇒(vii): Recalling the form of A in (141), we have

A∗vD =



s + ⟨c1,w⟩
A∗1w

...
s + ⟨ck,w⟩

A∗kw
t− ⟨d1,w⟩

B∗1w
...

t− ⟨dl ,w⟩
B∗l w


.

By Lemma 6.6(ii), we know that A∗vD ∈ C⊖, in other words,

−s− ⟨ci,w⟩ ≥ ∥A∗i w∥, i ∈ {1, . . . , k},
−t + ⟨di,w⟩ ≥ ∥B∗i w∥, i ∈ {1, . . . , l}.

Since s > −t, select an arbitrary s′ satisfying s > −s′ > −t. Then we obtain the inequalities

s′ > ∥A∗i w∥+ ⟨ci,w⟩, i ∈ {1, . . . , k},
−s′ > ∥B∗i w∥+ ⟨di,−w⟩, i ∈ {1, . . . , l}.

In view of Lemma 6.18, these inequalities show that E1, . . . , Ek are strictly on one side of the hyper-
plane

{
x
∣∣ ⟨w,x⟩ = s′

}
while E′1, . . . , E′l are strictly on the other side, thus establishing (vii). Finally,

the converse statement at the end of the theorem follows from Fact 6.13. ■

7 Conclusion

We have developed a new formula for ran (Id−T) when T is the PDHG operator. We applied this
formula to quadratic programming and the ellipsoid separation problem to show that in both cases,
PDHG can diagnose inconsistency by checking the limiting value of zk − zk+1 as per Fact 3.8(ii).
Both results used the conclusion that v ∈ ran (Id−T), where v is the infimal displacement vector.
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We provided new results on the convergence of PDHG iterates for both problems. Many issues re-
main in understanding the landscape of PDHG for infeasible conic optimization problems. Lest the
reader suspect that Fact 3.8(ii) can always diagnose inconsistency, we point out that it is relatively
easy to construct small contrived inconsistent problems such that 0 ∈ ran (Id−T)∖ ran (Id−T),
meaning that the test based on Fact 3.8(ii) will fail to detect inconsistency. There are also realistic
examples when this occurs, for example, the unbounded case of the min-volume-ellipsoid problem
(see, e.g., formulation (12a) in [30]), which arises when the data points lie in a low-dimensional
affine space.
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