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Abstract

The convex-concave minimax problem, also known as the saddle-point prob-
lem, has been extensively studied from various aspects including the algorithm
design, convergence condition and complexity. In this paper, we propose a gener-
alized asymmetric forward-backward-adjoint algorithm (G-AFBA) to solve such
a problem by utilizing both the proximal techniques and the extrapolation of
primal-dual updates. Besides applying proximal primal-dual updates, G-AFBA
enjoys a more relaxed convergence condition, namely, more flexible and possi-
bly larger proximal stepsizes, which could result in significant improvements in
numerical performance. We study the global convergence of G-AFBA as well
as its sublinear convergence rate on both ergodic iterates and non-ergodic opti-
mality error. The linear convergence rate of G-AFBA is also established under
a calmness condition. By different ways of parameter and problem setting, we
show that G-AFBA has close relationships with several well-established or new
algorithms. We further propose an adaptive and a stochastic (inexact) versions
of G-AFBA. Our numerical experiments on solving the robust principal com-
ponent analysis problem and the 3D CT reconstruction problem indicate the
efficiency of both the deterministic and stochastic versions of G-AFBA.

Keywords: Saddle-point problem, asymmetric forward-backward-adjoint algorithm,
convergence and complexity, image processing
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1 Introduction

Consider the following generic convex-concave saddle-point problem

min
x∈X

max
y∈Y

L(x, y) := f(x) + ⟨Kx, y⟩ − g(y), (1.1)

where f : X → (−∞,∞] and g : Y → (−∞,∞] are proper lower semicontinuous con-
vex functions (not necessarily smooth), X and Y are finite-dimensional real Euclidean
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spaces, K : X → Y is a bounded linear operator. Let K⊤ denote the adjoint operator
(or matrix transpose) of K, f∗ and g∗ denote the Fenchel conjugate [38] of f and g,
respectively. Then, (1.1) amounts to the following primal and dual problems:

min
x∈X

f(x) + g∗(Kx) and min
y∈Y

f∗(−K⊤y) + g(y).

Due to these intrinsic relationships, the problem (1.1) covers a wide range of applica-
tions, including machine learning, signal and image processing, economics, statistics,
see e.g. [9, 12, 21, 24, 28, 40, 48, 51] and the references therein. Throughout this
paper, the solution set of (1.1) is assumed to be nonempty.

1.1 Notation

Let Rn be the set of n-dimensional Euclidean space equipped with an inner prod-
uct ⟨·, ·⟩ and Euclidean norm ∥ · ∥ =

√
⟨·, ·⟩. Let I be the identity matrix and

0 be the zero matrix/vector. Given a positive definite self-adjoint linear operator

or symmetric matrix H, we denote ∥x∥H =
√
⟨x,Hx⟩ =

√
x⊤Hx with the super-

script ⊤ representing transpose. Denote the Euclidean distance from x ∈ C to the
closed convex set C by dist(x, C) = miny∈C ∥x − y∥, and the G-weighted distance by
distG(x, C) = miny∈C ∥x − y∥G where G is a self-adjoint and positive definite linear
operator. The notation ρ(G) denotes the spectral radius of G, while λmin(G) and
λmax(G) denote the minimum and maximum eigenvalues of G, respectively.

1.2 Related work

Due to the separable structure of f and g in (1.1), many effective algorithms are
designed to treat them individually so as to make full use of the properties of each
component objective function. An earlier yet simpler approach for solving (1.1) is the
Arrow-Hurwicz method [1]:

(PDHG)

 xk+1 = argmin
x∈X

L(x, yk) + 1
2τ

∥∥x− xk
∥∥2,

yk+1 = argmax
y∈Y

L(xk+1, y)− 1
2σ

∥∥y − yk
∥∥2, (1.2)

where the positive parameters τ and σ are often regarded as the proximal primal
and dual stepsizes. This Arrow-Hurwicz method was also called a primal-dual hybrid
gradient method (PDHG) due to the earlier work [51], and it was described [50]
as a proximal version of the traditional augmented Lagrangian method (ALM) for
some canonical convex programming problems. O’Connor and Vandenberghe [36]
showed that PDHG can be viewed as a special case of the Douglas-Rachford splitting
algorithm [35] from the perspective of solving a monotone inclusion problem. Another
related well-known algorithm based on (1.2) is proposed by Chambolle-Pock [9] (see
e.g. [37]) by employing an extrapolation technique: xk+1 = argmin

x∈X
L(x, yk) + 1

2τ

∥∥x− xk
∥∥2,

yk+1 = argmax
y∈Y

L(xk+1 + α(xk+1 − xk), y)− 1
2σ

∥∥y − yk
∥∥2. (1.3)

Here, α ∈ [0, 1] is an extrapolation stepsize. Clearly, (1.3) reduces to (1.2) when α = 0.
It was shown in [9] that (1.3) is closely related to the existing extragradient method
[32] and a preconditioned version of the alternating direction method of multipliers
(ADMM) [18]. The connection between (1.3) and the forward-backward splitting
method [35] can be found in [42]. Although the scheme (1.3) applies a proximal
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technique, some counter-examples provided in [25] showed that when α = 0, i.e. the
PDHG method, it is not necessarily convergent. Moreover, the global convergence
of (1.3) with α ∈ (0, 1) remains still unknown1, although its global convergence with
α = 0 had been established [23] by assuming strong convexity on one of the objective
functions. So far, the widely used scheme of (1.3) is the case with α = 1:

(CP-PPA)

 xk+1 = argmin
x∈X

L(x, yk) + 1
2τ

∥∥x− xk
∥∥2,

yk+1 = argmax
y∈Y

L(2xk+1 − xk, y)− 1
2σ

∥∥y − yk
∥∥2, (1.4)

where the stepsize parameters τ and σ need to satisfy

1

τσ
> L with L = ρ(K⊤K) (1.5)

for ensuring global convergence of CP-PPA. Convergence of an adaptive version of
(1.4) was investigated by Goldstein et al. [20]. More recently, He et al. [24] extended
CP-PPA (1.4) to the following generalized version:

(GCP-PPA)


xk+1 = argmin

x∈X
L(x, yk) + 1

2τ

∥∥x− xk
∥∥2,

yk+1 = argmax
y∈Y

L(xk+1 + α(xk+1 − xk), y)− 1
2σ

∥∥y − yk
∥∥2,

yk+1 = yk+1 − (1− α)σK(xk+1 − xk),

(1.6)

where α ∈ [0, 1] is a parameter. GCP-PPA has global convergence when

1

τσ
> (1− α+ α2)L. (1.7)

Obviously, when α = 1 the above GCP-PPA reduces to CP-PPA, while for α ∈
[0, 1) an extrapolation step is used for the dual variable to ensure global convergence.
Moreover, the stepsize requirement (1.7) is more relaxed than the condition (1.5). For
example, when α = 0.5, (1.7) only requires 1

τσ > 0.75L. In addition, some stochastic
and accelerated first-order methods have been also proposed for solving (1.1) when its
objective function has certain structures or satisfies further smoothness conditions.
For a much incomplete reference list, please see e.g. [11, 12, 26, 28, 33, 44, 47, 52].

As a generalization of (1.3), the Condat-Vũ scheme proposed independently in
[14, 42] has attracted much attention in recent years and its convergence can be
proved by casting the scheme into a forward-backward splitting method. However,
the condition of involved parameters seems to be more restrictive than that of PDHG.
Another interesting and closely related method is the asymmetric forward-backward-
adjoint algorithm (AFBA) [33] for solving structured monotone inclusion problems,
which was also studied and extended to solve the saddle-point problem (1.1) [46]. An
inexact AFBA with absolute error criteria was further proposed in [30] to alleviate
both theoretical and numerical difficulties of solving subproblems exactly. But, to our
understanding, both the original AFBA and its inexact version have an even more
conservative stepsize rule than that of the Condat-Vũ scheme. For a comprehensive
survey on proximal splitting algorithms, we refer to [15] for more details.

1.3 The algorithm and contribution

Notice that the convergence condition of CP-PPA has been significantly improved by
He et al. [24] through performing an extrapolation step on the y-variable along the

1Recently, its weak convergence was established in [2] when α > 1/2 and τσL < 4/(1 + 2α).

3



iterative difference of the x-variable. That is, the correction step of y-iterates uses
the interactive information from x-iterates, which is different from the traditional way
of performing correction steps along its own iterates. A natural and yet interesting
question to investigate is whether the convergence condition (1.7) can be further
improved by applying extrapolation steps on both the primal and dual updates. By
this motivation, we propose the following generalized asymmetric forward-backward-
adjoint algorithm:

(G-AFBA)


xk+1 = argmin

x∈X
f(x) + 1

2τ

∥∥x− xk + τK⊤yk
∥∥2,

yk+1 = argmin
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK[xk+1 + α(xk+1 − xk)]
∥∥2,

xk+1 = xk+1 − (1− α)µτK⊤(yk+1 − yk),
yk+1 = yk+1 + (1− α)(1− µ)σK(xk+1 − xk),

(1.8)
where α, µ ∈ [0, 1], τ > 0 and σ > 0 are algorithm parameters. To ensure the global
convergence of G-AFBA, we require the primal-dual stepsize parameters (σ, τ) to
satisfy

1

τσ
>
α+ (1− µ+ µ2)(1− α)2 +

√
[α− (1− µ+ µ2)(1− α)2]2 + 4α(1− α)2

2
L.

(1.9)
We now have the following comments on G-AFBA:

(I) Flexibility of the algorithm. Table 1 shows that G-AFBA is quite gener-
al and includes many well-established algorithms we have previously discussed
as special cases. We refer to Sections 4-5 for more detailed discussions on the
connections between G-AFBA and other related methods including the appli-
cation of G-AFBA to multi-block convex programming, an adaptive version of
G-AFBA, and a tailored stochastic G-AFBA for solving structured saddle-point
problems from machine learning. The major difference between G-AFBA (1.8)
and other existing PDHG-type methods is the two crossing extrapolation steps
performed on the primal-dual variables, which can be also viewed as a correction
step from our later analysis in a prediction-correction framework (see (3.2)). In
fact, these two extrapolation steps can be also treated as backward and forward
steps on the primal-dual variables.

Cases Algorithms Region of (τ, σ)

α = 1
CP-PPA [9] &
Reduced ALM

(1.5)

(α, µ) = (0, 1)
Exact version of
Algorithm 2 [30]

(1.5)

α ∈ [0, 1], µ = 0 GCP-PPA [24] (1.7)
α, µ ∈ [0, 1] G-AFBA(ours) (1.9)

α = 0, µ ∈ [0, 1] G1-AFBA(ours) (4.4)

Table 1: Relationship between G-AFBA (1.8) and several methods.

(II) Larger stepsize parameters. Figure 1 visualizes the lower bound of 1
τσL in

(1.7) and (1.9) for ensuring global convergence, where Figure 1(a) is the same as
Figure 1(b) but at different azimuth and elevation angles. As shown in Figure
1, the lower bound 0.75 of 1

τσL with α = 0.5 in (1.7) can be further improved
by the lower bound given in (1.9). Hence, the current lower bound 0.75 on 1

τσL
for PDHG-type methods e.g. given in [24, 31, 34] is not tight, and possible
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Figure 1: Visualization on the lower bound of 1
τσL in (1.7) and (1.9).

larger stepsizes on σ and τ can be applied in G-AFBA without losing global
convergence. For example, by setting (α, µ) = (1/3, 1/2), the condition (1.9)

reduces to 1
τσ > 3+2

√
3

9 L ≈ 0.7182L. Moreover, note that when µ = 0, the
condition (1.9) will reduce to (1.7) exactly matching the convergence condition
of GCP-PPA.

(III) Global convergence and various convergence rates. Based on variational
reformulations for both the saddle-point problem (1.1) and the iterative se-
quence of G-AFBA (1.8), we establish the global convergence of G-AFBA, its
sublinear convergence rate in the sense of the primal-dual function value gap,
the sublinear convergence rate of the optimality gap and the optimality error
measured by the difference of two consecutive iterates. We also show the linear
convergence of G-AFBA under proper regulation (calmness) conditions. We fur-
ther propose an adaptive version of G-AFBA with similar convergence rate but
often enjoying significantly better practical performance. In addition, we give a
customized stochastic G-AFBA (SG-AFBA) for solving a structured (1.1) with
large sample sizes from machine learning. In fact, by considering the sample
size as one, SG-AFBA will reduce to an inexact deterministic G-AFBA which
allows to solve one proximal mapping subproblem to an adaptive accuracy (see
the discussion in Section 5). Our numerical experiments on solving two classes
of image processing problems indicate that by allowing flexible choices of step-
sizes σ and τ , G-AFBA and its variants can have better performance compared
with some well-established methods.

1.4 Organization of the paper

In Section 2, we prepare some preliminaries that are used to analyze the convergence
of G-AFBA. Section 3 is dedicated to analyzing the global convergence and sublin-
ear/linear convergence rate of G-AFBA based on a prediction-correction framework.
Section 4 shows the relationship of G-AFBA with some existing and new related
methods. Section 5 provides an adaptive G-AFBA (aG-AFBA) and a customized
stochastic G-AFBA (SG-AFBA). We finally present numerical comparisons of G-
AFBA, aG-AFBA and SG-AFBA with some other well-known methods in Section 6.

2 Preliminaries

In this section, we first provide a variational formulation for the saddle-point problem
(1.1). Then, we show some nice properties of certain block structured matrices which
will play key roles in the theoretical analysis of G-AFBA.
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2.1 Reformulation of the saddle-point

Let Ω := X × Y. We call a point (x∗, y∗) ∈ Ω the saddle-point of (1.1) if it satisfies

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀x ∈ X , y ∈ Y,

that is, {
f(x)− f(x∗) +

⟨
x− x∗,K⊤y∗

⟩
≥ 0, ∀x ∈ X ,

g(y)− g(y∗) +
⟨
y − y∗,−Kx∗

⟩
≥ 0, ∀y ∈ Y. (2.1)

These inequalities can be expressed as the following variational form

VI(θ,J ,Ω) : θ(u)− θ(u∗) +
⟨
u− u∗,J (u∗)

⟩
≥ 0, ∀u ∈ Ω, (2.2)

where

u =

(
x
y

)
, θ(u) = f(x) + g(y), J (u) =

(
K⊤y
−Kx

)
. (2.3)

Notice that the above operator J (u) satisfies⟨
u− v,J (u)− J (v)

⟩
≡ 0, ∀u, v ∈ Ω.

In the convex optimization, u∗ satisfies (2.2) if and only if u∗ is a primal-dual solution
of the problem (1.1). Because of the nonempty assumption on the solution set of
(1.1), the solution set of VI(θ,J ,Ω), denoted by Ω∗, is also nonempty and can be
characterized as (see [22])

Ω∗ =
∩
u∈Ω

{
u | θ(u)− θ(u) +

⟨
u− u,J (u)

⟩
≥ 0

}
. (2.4)

2.2 Some matrices and properties

In order to simplify and conveniently analyze the convergence of G-AFBA, we intro-
duce the following matrices

Q =

[
1
τ I −K⊤

−αK 1
σ I

]
, M =

[
I −(1− α)µτK⊤

(1− α)(1− µ)σK I

]
. (2.5)

Note that the matrix M is nonsingular for any µ ∈ [0, 1] and τ, σ > 0. With these
matrices, we define

H = QM−1 and G = Q⊤ +Q−M⊤HM. (2.6)

For the matrices H and G, the following properties hold.

Proposition 2.1 For any parameters (τ, σ) satisfying (1.9), the matrices H and G
defined in (2.6) are symmetric positive definite.

Proof. First, notice that

1
(τσ)2 +

[
(−1 + µ− µ2)(1− α)2 − α

]
L
τσ − (1− α)2(1− µ)µαL2 > 0

⇐⇒
[

1
τσ + (1− α)2(1− µ)µL

][
1
τσ − αL

]
> (1− α)2 L

τσ .

Hence, for all (τ, σ) satisfying (1.9), we have 1/(τσ) > αL, which implies Q defined
in (2.5) is nonsingular. Now, let us define D = Q⊤M . Then, D is nonsingular since
M is nonsingular. In addition, the H and G defined in (2.6) can be written as

H = QD−1Q⊤ and G = Q⊤ +Q−D. (2.7)
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By direct calculation, we can derive from (2.5) and (2.7) that

D =

[
1
τ I− α(1− α)(1− µ)σK⊤K −

[
α+ (1− α)µ

]
K⊤

−
[
α+ (1− α)µ

]
K 1

σ I+ (1− α)µτKK⊤

]
(2.8)

and

G =

[
1
τ I+ α(1− α)(1− µ)σK⊤K

[
(1− α)µ− 1

]
K⊤[

(1− α)µ− 1
]
K 1

σ I− (1− α)µτKK⊤

]
. (2.9)

Due to the symmetric property of D and the relationship H = QD−1Q⊤, we
also have H is symmetric. Hence, to show the positive definiteness of H, we only
need to show D is positive definite. Without loss of generality, suppose K is an
m×n(m ≤ n) dimensional operator matrix and let K = V ΣU⊤ be the singular value
decomposition of K, where both V ∈ Rm×m and U ∈ Rn×n are orthogonal matrices
and Σ = (Σm,0) is a diagonal matrix with Σm = diag(s1, s2, · · · , sm) ∈ Rm×m and
si ≥ 0(i = 1, 2, . . . ,m) being the singular values of K. Then, we have

K⊤K = U

[
Σ2

m 0
0 0

]
U⊤ and KK⊤ = V Σ2

mV
⊤.

Then, it follows from (2.8) that

D =

[
U 0
0 V

] 1
τ I− α(1− α)(1− µ)σΣ2

m 0 −
[
α+ (1− α)µ

]
Σm

0 1
τ I 0

−
[
α+ (1− α)µ

]
Σm 0 1

σ I+ (1− α)µτΣ2
m


︸ ︷︷ ︸

P

[
U 0
0 V

]⊤
.

By linear algebra calculations (e.g. see similar techniques in [43, Page 16]), we can
show that the matrix P is positive definite if and only if(1

τ
− α(1− α)(1− µ)σs2i

)( 1

σ
+ (1− α)µτs2i

)
−
[
α+ (1− α)µ

]2
s2i > 0

for all i = 1, . . . ,m, which is equivalent to

1

(τσ)2
+
[
(1− µ)µ(1− α)2 − α

] s2i
τσ

− (1− α)2(1− µ)µαs4i > 0

⇐⇒
[ 1

τσ
+ (1− α)2(1− µ)µs2i

][ 1

τσ
− αs2i

]
> 0. (2.10)

Since L = ρ(K⊤K) = ρ(KK⊤) = max
i∈{1,...,m}

s2i > 0, α, µ ∈ [0, 1] and σ, τ > 0, we have

from (2.10) that the matrix P is positive definite if 1/(τσ) > αL, which is ensured
by the previous condition (1.9). So, from the above analysis, we have H is positive
definite if (τ, σ) satisfies (1.9).

By the similar analysis and the representation of G in (2.9), we can show G is also
positive definite if the condition (1.9) holds. The proof is completed. �

3 Convergence analysis

In this section, we first analyze the global convergence of G-AFBA and its sublinear
convergence rate in the ergodic sense. We then study the sublinear convergence rate
of G-AFBA in terms of both the difference of two consecutive iterations and the first-
order optimality gap. We finally discuss the linear convergence of G-AFBA under a
certain calmness conditions.
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Now, observe that G-AFBA (1.8) can be equivalently written as the following
prediction-correction framework, where M is given by (2.5), uk and ũk are defined as

uk =

(
xk

yk

)
and ũk =

(
x̃k

ỹk

)
,

and the proximal operator of a function h with parameter τ > 0 is defined as

proxτh(y) := argmin
x∈X

{
h(x) +

1

2τ
∥x− y∥2

}
.

Algorithm 3.1: A prediction-correction reformulation of G-AFBA.

Prediction Step:

x̃k = proxτf
(
xk − τK⊤yk

)
; (3.1a)

ỹk = proxσg
(
yk + σK[x̃k + α(x̃k − xk)]

)
; (3.1b)

Correction Step:
uk+1 = uk −M(uk − ũk). (3.2)

3.1 Global convergence

The global convergence of G-AFBA will be analyzed based on the above prediction-
correction reformulation.

Lemma 3.1 Let {ũk = (x̃k; ỹk)} be the predictor sequence generated by (3.1a)-(3.1b)
and {uk+1 = (xk+1; yk+1)} be the corrector sequence generated by (3.2). Then, for
any u ∈ Ω, the following inequality

L(x, ỹk)− L(x̃k, y) ≥ (u− ũk)⊤Q(uk − ũk) (3.3)

holds2, where Q is given by (2.5).

Proof. We can derive from the first-order optimality condition of (3.1a) that

f(x)− f(x̃k) +
⟨
x− x̃k,K⊤yk +

1

τ
(x̃k − xk)

⟩
≥ 0, ∀x ∈ X .

Rearranging the above inequality to obtain

f(x)− f(x̃k) +
⟨
x− x̃k,K⊤ỹk

⟩
≥

⟨
x− x̃k,

1

τ
(xk − x̃k)−K⊤(yk − ỹk)

⟩
(3.4)

for any x ∈ X . Similarly, we have from (3.1b) that

g(y)− g(ỹk) +
⟨
y − ỹk,−K[x̃k + α(x̃k − xk)] +

1

σ
(ỹk − yk)

⟩
≥ 0, ∀y ∈ Y,

which can be equivalently rewritten as

g(y)− g(ỹk) +
⟨
y − ỹk,−Kx̃k

⟩
≥

⟨
y − ỹk,−αK(xk − x̃k) +

1

σ
(yk − ỹk)

⟩
(3.5)

for any y ∈ Y. Combining (3.4) and (3.5) completes the proof of (3.3). �
The following lemma shows that the sequence {∥u∗ − uk∥H} is strictly decreasing

under the weighted norm ∥u∥H =
√
u⊤Hu.

2Note that (3.3) is equivalent to θ(u)− θ(ũk) +
⟨
u− ũk,J (ũk)

⟩
≥ (u− ũk)⊤Q(uk − ũk).
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Lemma 3.2 Under the condition (1.9), the sequences {ũk} and {uk+1} generated by
G-AFBA satisfy

L(x, ỹk)− L(x̃k, y) ≥ 1

2

(∥∥u− uk+1
∥∥2
H
−
∥∥u− uk

∥∥2
H

)
+

1

2

∥∥uk − ũk
∥∥2
G

(3.6)

for any u ∈ Ω, where H and G are defined in (2.6). Moreover, we have∥∥u∗ − uk
∥∥2
H

≥
∥∥u∗ − uk+1

∥∥2
H
+
∥∥uk − ũk

∥∥2
G
, ∀u∗ ∈ Ω∗. (3.7)

Proof. According to (3.2) and the definition of H in (2.6), we have

(u− ũk)⊤Q(uk − ũk) = (u− ũk)⊤H(uk − uk+1). (3.8)

Then, applying the identity

(a− b)⊤H(c− d) =
1

2

{
∥a− d∥2H − ∥a− c∥2H

}
+

1

2

{
∥c− b∥2H − ∥d− b∥2H

}
with a = u, b = ũk, c = uk and d = uk+1 to the right-hand side of (3.8) gives

(u− ũk)⊤H(uk − uk+1)− 1
2

{∥∥u− uk+1
∥∥2
H
−

∥∥u− uk
∥∥2
H

}
= 1

2

{∥∥uk − ũk
∥∥2
H
−

∥∥uk+1 − ũk
∥∥2
H

}
= 1

2

{∥∥uk − ũk
∥∥2
H
−

∥∥uk+1 − uk + (uk − ũk)
∥∥2
H

}
(3.2)
= 1

2

{∥∥uk − ũk
∥∥2
H
−
∥∥(uk − ũk)−M(uk − ũk)

∥∥2
H

}
= 1

2

{
(uk − ũk)⊤(Q⊤ +Q−M⊤HM)(uk − ũk)

}
(2.6)
= 1

2

∥∥uk − ũk
∥∥2
G
,

(3.9)

where the fourth equality exploits the relation Q = HM and its symmetric property.
Then, substituting (3.8) and (3.9) into (3.3) confirms the assertion (3.6).

Set u = u∗ in (3.6) and use (2.1) with (x, y) = (x̃k, ỹk) to obtain∥∥u∗ − uk
∥∥2
H
−

∥∥u∗ − uk+1
∥∥2
H
−
∥∥uk − ũk

∥∥2
G
≥ 2

[
L(x̃k, y∗)− L(x∗, ỹk)

]
≥ 0.

Then, (3.7) follows directly. The proof is complete. �
In what follows, based on Lemma 3.2, we are ready to prove the global convergence

of G-AFBA.

Theorem 3.1 Under the condition (1.9), the sequence {uk+1} generated by G-AFBA
converges to the solution point of (1.1).

Proof. First, it follows from (3.7) in Lemma 3.2 and the positive definiteness of G
and H that the sequence {uk} is bounded and

lim
k→∞

∥∥uk − ũk
∥∥ = 0. (3.10)

As a result, the sequence {ũk} is also bounded and has at least one limit point u∞.
Let {ũkj} be a subsequence converging to u∞. Then, it follows from (3.3) that

θ(u)− θ(ũkj ) +
⟨
u− ũkj ,J (ũkj )

⟩
≥ (u− ũkj )⊤Q(ukj − ũkj ), ∀u ∈ Ω,

which, together with (3.10), the lower semicontinuity of θ(u) and the continuity of
J (u), implies

θ(u)− θ(u∞) +
⟨
u− u∞,J (u∞)

⟩
≥ 0, ∀u ∈ Ω.

That is to say, u∞ is a solution point of (2.2) and hence is a solution point of (1.1).
Now, by (3.10) and limj→∞ ukj = u∞, the sequence {ukj} also converges to u∞.

For any k ≥ kj , we can deduce from (3.7) that
∥∥u∞ − ukj

∥∥
H

≥
∥∥u∞ − uk

∥∥
H
. So, the

whole sequence {uk} converges to u∞. The proof is complete. �
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3.2 Sublinear rate of convergence

In this section, we analyze the worst-case O(1/T ) convergence rate of G-AFBA in the
ergodic sense in terms of the optimality error measured by both the difference of two
consecutive iterates and the first-order optimality gap, respectively, where T denotes
the iteration number. First, it is obvious that (2.1) can be also expressed as

L(x, y∗)− L(x∗, y) ≥ 0, ∀(x, y) ∈ Ω.

Hence, by (2.4), u = (x; y) is often called an ϵ-approximate solution point of VI(θ,J ,Ω)
(2.2) with the accuracy ϵ > 0 if it satisfies

L(x, y)− L(x, y) ≤ ϵ, ∀u ∈ Bu = {u ∈ Ω | ∥u− u∥ ≤ 1}.

In the following, we will demonstrate that, after T iterations, G-AFBA is able to find
a point u such that

sup
u∈Bu

{
L(x, y)− L(x, y)

}
≤ O(1/T ). (3.11)

Theorem 3.2 Let {ũk} be the predictor sequence generated by (3.1a)-(3.1b) and {uk}
be the corrector sequence generated by (3.2). For any integers T > 0 and κ ≥ 0, let

xT =
1

T

T+κ∑
k=κ

x̃k and yT =
1

T

T+κ∑
k=κ

ỹk. (3.12)

Then, under the condition (1.9) we have

L(xT , y)− L(x, yT ) ≤
1

2(T + 1)

∥∥u− uκ
∥∥2
H
, ∀u ∈ Ω, (3.13)

where H is defined in (2.6).

Proof. The inequality (3.6) together with the positive definiteness of G implies

L(x̃k, y)− L(x, ỹk) ≤ 1

2

{∥∥u− uk
∥∥2
H
−
∥∥u− uk+1

∥∥2
H

}
(3.14)

for any u ∈ Ω. Sum the last inequality over k = κ, κ+ 1, · · · , T + κ to obtain

T+κ∑
k=κ

[
L(x̃k, y)− L(x, ỹk)

]
≤ 1

2

∥∥u− uκ
∥∥2
H
,

which, by the convexity of f, g, the definitions of xT and yT in (3.12), gives

(T + 1)
[
L(xT , y)− L(x, yT )

]
≤ 1

2

∥∥u− uκ
∥∥2
H
.

Hence, (3.13) holds. The proof is complete. �
Theorem 3.2 implies that under a more flexible condition (1.9), we have (3.11)

holds, i.e., the primal-dual function value gap converges to zero with the worst-case
O(1/T ) ergodic rate. A similar result to (3.13) in the sense of expectation can be
found in [4]. We next show that {∥uk −uk+1∥2H}, which also measures the optimality
error, monotonically goes to zero with the worst-case O(1/T ) convergence rate. The
following lemma confirms that the sequence {∥uk−uk+1∥2H} decreases monotonically.

Lemma 3.3 Under the condition (1.9), the sequence {uk} generated by (3.2) satisfies∥∥uk − uk+1
∥∥2
H

≥
∥∥uk+1 − uk+2

∥∥2
H
. (3.15)

10



Proof. It follows from (3.3) with u = ũk+1 that

L(x̃k+1, ỹk)− L(x̃k, ỹk+1) ≥ (ũk+1 − ũk)⊤Q(uk − ũk). (3.16)

Similarly, (3.3) holds at the (k + 1)-th iteration, that is,

L(x, ỹk+1)− L(x̃k+1, y) ≥ (u− ũk+1)⊤Q(uk+1 − ũk+1), ∀u ∈ Ω,

which, by setting u = ũk, results in

L(x̃k, ỹk+1)− L(x̃k+1, ỹk) ≥ (ũk − ũk+1)⊤Q(uk+1 − ũk+1). (3.17)

Combining (3.16) and (3.17), we have

(ũk − ũk+1)⊤Q
{
(uk − ũk)− (uk+1 − ũk+1)

}
≥ 0. (3.18)

Then, adding the equality{
(uk − ũk)− (uk+1 − ũk+1)

}⊤
Q
{
(uk − ũk)− (uk+1 − ũk+1)

}
=
1

2

∥∥uk − ũk − (uk+1 − ũk+1)
∥∥2
(Q⊤+Q)

(3.19)

to both sides of (3.18) leads to

1
2

∥∥uk − ũk − (uk+1 − ũk+1)
∥∥2
(Q⊤+Q)

≤ (uk − uk+1)⊤Q
{
(uk − ũk)− (uk+1 − ũk+1)

}
(3.2)
= (uk − ũk)⊤M⊤Q

{
(uk − ũk)− (uk+1 − ũk+1)

}
(2.5)
= (uk − ũk)⊤M⊤HM

{
(uk − ũk)− (uk+1 − ũk+1)

}
.

Using this relationship, the identity ∥a∥2H − ∥b∥2H = 2a⊤H(a − b) − ∥a − b∥2H with
a =M(uk − ũk) and b =M(uk+1 − ũk+1) and uk − uk+1 =M(uk − ũk), we have∥∥uk − uk+1

∥∥2
H
−
∥∥uk+1 − uk+2

∥∥2
H

=
∥∥M(uk − ũk)

∥∥2
H
−

∥∥M(uk+1 − ũk+1)
∥∥2
H

= 2(uk − ũk)⊤M⊤HM
{
(uk − ũk)− (uk+1 − ũk+1)

}
−
∥∥M{(uk − ũk)− (uk+1 − ũk+1)}

∥∥2
H

≥
∥∥uk − ũk − (uk+1 − ũk+1)

∥∥2
(Q⊤+Q)

−
∥∥M{(uk − ũk)− (uk+1 − ũk+1)}

∥∥2
H

(2.6)
=

∥∥uk − ũk − (uk+1 − ũk+1)
∥∥2
G
≥ 0,

where the last inequality follows from the positive definiteness of G. We complete the
proof. �

Theorem 3.3 Suppose the condition (1.9) holds. Then, for any integers T > 0 and
κ ≥ 0, there exists a constant c0 > 0 such that the sequence {uk+1} generated by
G-AFBA satisfies∥∥uT+κ − uT+κ+1

∥∥2
H

≤ 1

(T + 1)c0

∥∥uκ − u∗
∥∥2
H
, ∀u∗ ∈ Ω∗. (3.20)

Proof. First, by the positive definiteness of G and M⊤HM , there exists a constant
c0 such that G− c0M

⊤HM is positive definite. Hence, we have∥∥uk − ũk
∥∥2
G
≥ c0

∥∥M(uk − ũk)
∥∥2
H

= c0
∥∥uk − uk+1

∥∥2
H
.
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Then, it follows from inequality (3.7) that∥∥uk+1 − u∗
∥∥2
H

≤
∥∥uk − u∗

∥∥2
H
− c0

∥∥uk − uk+1
∥∥2
H
, ∀u∗ ∈ Ω∗. (3.21)

Summing (3.21) over k = κ, κ + 1, · · · , T + κ, it follows from the monotonicity of
{∥uk − uk+1∥2H} given in (3.15) that

∥∥uκ − u∗
∥∥2
H

≥
T+κ∑
k=κ

c0
∥∥uk − uk+1

∥∥2
H

≥ (1 + T )c0
∥∥uT+κ − uT+κ+1

∥∥2
H

for any u∗ ∈ Ω∗, which leads to (3.20) immediately. �
For any given ϵ > 0, Theorem 3.3 shows that the proposed G-AFBA (1.8) needs

at most [c/ϵ] iterations to ensure ∥uk − uk+1∥2H ≤ ϵ, where c = inf
u∗∈Ω∗

∥u0 − u∗∥2H/c0.

Recall that uk+1 is a solution point of VI(θ,J ,Ω) if and only if ∥uk − uk+1∥ = 0.
Hence, Theorem 3.3 indicates that ∥uk − uk+1∥H , which can be used as a measure of
optimality error, converges to zero sublinearly. Moreover, let dk := (dkx, d

k
y), where

dkx =
1

τ
(xk − x̃k)−KT(yk − ỹk) and dky =

1

σ
(yk − ỹk)− αK(xk − x̃k).

Since the optimality conditions in (3.4) and (3.5) are equivalent to{
f(x)− f(x̃k) +

⟨
x− x̃k,K⊤ỹk − dkx

⟩
≥ 0, ∀x ∈ X ,

g(y)− g(ỹk) +
⟨
y − ỹk,−Kx̃k − dky

⟩
≥ 0, ∀y ∈ Y,

we have from finite-dimensional Euclidean spaces of X and Y that

dkx −KTỹk ∈ ∂f(x̃k) and dky +Kx̃k ∈ ∂g(ỹk).

Hence, ∥dk∥ also measures the first-order optimality error. Notice that dk = Q(uk −
ũk) = H(uk − uk+1). So,

∥dk∥ = ∥H(uk − uk+1)∥ ≤
√
λmax(H)∥uk − uk+1∥H ,

which, by Theorem 3.3, implies ∥dk∥ also goes to zero in a sublinear rate.

3.3 Linear rate of convergence

For any u = (x; y) ∈ Ω, we define the KKT mapping as

R(u) :=

(
x− proxf

(
x−K⊤y

)
y − proxg(y +Kx)

)
(3.22)

which is Lipschitz continuous on Ω because the proximal operator of a proper convex
function is Lipschitz continuous with unit Lipschitz constant. Furthermore, given any
u ∈ Ω, we have u ∈ Ω∗ if and only if R(u) = 0. Hence, Ω∗ = {u ∈ Ω | R(u) = 0}.

In this subsection, under a calmness condition (see (3.23)), we establish the Q-
linear convergence of {distH(uk,Ω∗)} to zero, where distH(uk,Ω∗) = minu∈Ω∗ ∥u −
uk∥H , and the R-linear convergence of {uk} to a u∞ ∈ Ω∗. Similar conditions had
been used for the linear convergence of ADMM and the inexact primal-dual algorithm,
cf. [3, 29] to list a few.

Theorem 3.4 Let {ũk} be the predictor sequence generated by (3.1a)-(3.1b) and {uk}
be the corrector sequence generated by (3.2). Suppose the condition (1.9) holds. Then,
we have the following properties:

12



(i) There exists a saddle-point u∞ = (x∞; y∞) ∈ Ω∗ such that

lim
k→∞

ũk = lim
k→∞

uk+1 = u∞.

(ii) If R−1 is calm at the origin for u∞ with modulus θ > 0, that is,

dist(u,Ω∗) ≤ θ∥R(u)∥, ∀u ∈
{
u ∈ Ω

∣∣∥u− u∞∥ ≤ r
}
, (3.23)

for some r > 0, then there exist a ξ ∈ (0, 1) such that

distH(uk+1,Ω∗) ≤ ξdistH(uk,Ω∗) (3.24)

for all k ≥ 0. Moreover, the sequence {∥uk−u∞∥} converges to zero R-linearly.

Proof. First, property (i) directly follows from Theorem 3.1. So, there exists an
integer k > 0 such that

∥uk − u∞∥ ≤ r, ∀k ≥ k. (3.25)

From the optimality conditions of (3.1a)-(3.1b), we can derive x̃k = proxf

[
x̃k −

(
1
τ

(
x̃k − xk

)
+K⊤yk

)]
,

ỹk = proxg

[
ỹk −

(
1
σ (ỹ

k − yk)−K(x̃k + α(x̃k − xk))
)]
.

(3.26)

Combine (3.26) and the definition of R(·) in (3.22) to obtain

∥R(ũk)∥2 =
∥∥x̃k − proxf (x̃

k −K⊤ỹk)
∥∥2 + ∥∥ỹk − proxg(ỹ

k +Kx̃k)
∥∥2

≤
∥∥− 1

τ (x̃
k − xk) +K⊤(ỹk − yk)

∥∥2 + ∥∥αK(x̃k − xk)− 1
σ (ỹ

k − yk)
∥∥2

≤ 2
(
α2L+ 1

τ2

)
∥xk − x̃k∥2 + 2

(
L+ 1

σ2

)
∥yk − ỹk∥2

≤ κ1∥uk − ũk∥2,

where first inequality uses the non-expansive property of proxf (·) and proxg(·), and

κ1 = 2max

{
α2L+

1

τ2
, L+

1

σ2

}
. (3.27)

So, it follows from the last inequality and (3.23) that for all k ≥ k,

dist(ũk,Ω∗) ≤ θ
√
κ1∥uk − ũk∥. (3.28)

Then, by triangle inequality and (3.28), for all k ≥ k, we have

1√
λmax(H)

distH(uk,Ω∗) ≤ dist(uk,Ω∗) ≤ dist(ũk,Ω∗) + ∥uk − ũk∥

≤ (1 + θ
√
κ1)∥uk − ũk∥ ≤ 1 + θ

√
κ1√

λmin(G)
∥uk − ũk∥G. (3.29)

Since (3.7) holds for any u∗ ∈ Ω∗, for all k ≥ 0 we have

dist2H(uk+1,Ω∗) ≤ dist2H(uk,Ω∗)− ∥uk − ũk∥2G, (3.30)

which together with (3.29) gives

distH(uk+1,Ω∗) ≤

√
1− 1

(1 + θ
√
κ1)

2

λmin(G)

λmax(H)
distH(uk,Ω∗) (3.31)
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for all k ≥ k. Finally, (3.30) and (3.31) implies there exists a ξ ∈ (0, 1) such that
(3.24) holds, that is, the sequence {distH(uk,Ω∗)} converges to zero Q-linearly.

Now, let dk = uk+1 − uk. We have from (3.30) and triangle inequality that∥∥dk∥∥
H

=
∥∥uk+1 − uk

∥∥
H

≤ distH(uk,Ω∗) + distH((uk+1,Ω∗)

≤ 2distH(uk,Ω∗)
(3.24)

≤ 2ξkdistH(u0,Ω∗).

Hence, we have from u∞ = uk +
∑∞

j=k d
j that∥∥uk − u∞

∥∥
H

≤
∑∞

j=k

∥∥dj∥∥
H

≤ 2distH(u0,Ω∗)
∑∞

j=k ξ
j

= 2distH(u0,Ω∗)ξk
∑∞

j=0 ξ
j = ξk

(
2distH(u0,Ω∗) 1

1−ξ

)
,

which implies the sequence {∥uk − u∞} converges to zero R-linearly. �
Theorem 3.4 shows linear convergence of G-AFBA under the calmness condition.

In practice, it is not easy to check whether the calmness condition (3.23) holds or
not. However, when the mapping R defined by (3.22) is piecewise polyhedral, or
equivalently, R−1 is piecewise polyhedral, we know (e.g. see [39]) there exist two
constants β, η > 0 such that

dist(u,Ω∗) ≤ β∥R(u)∥, ∀u ∈
{
u ∈ Ω

∣∣∥R(u)∥ ≤ η
}
. (3.32)

When R(u) > η, for all ∥u− u∞∥ ≤ r with some r > 0, we have

dist(u,Ω∗) ≤ ∥u− u∞∥ ≤ r <
r

η
∥R(u)∥. (3.33)

So, given any r > 0, we have from (3.32) and (3.33) that the calmness condition (3.23)
holds with θ = max{β, r/η}. Moreover, by Theorem 3.1, there exists a r > 0 such that
∥uk−u∞∥ ≤ r for all k ≥ 0. Hence, when the mapping R defined by (3.22) is piecewise
polyhedral, for {uk} generated by G-AFBA, we have dist(uk,Ω∗) ≤ θ∥R(uk)∥ for some
θ > 0. Furthermore, by Theorem 3.4, we have {distH(uk,Ω∗)} converges to zero Q-
linearly and {∥uk − u∞} converges to zero R-linearly. Here, we want to mention that
linear convergence had been also discussed when assuming certain strongly convexity
on the objective function (see e.g. [10, 11]).

4 Connections between (1.8) and other related meth-
ods

In this section, we discuss in a bit more detail on the connections between G-AFBA
(1.8) and some existing and new related algorithms.

• Case 1 (CP-PPA in [9] and a reduced ALM). When α = 1, G-AFBA
(1.8) will reduce to xk+1 = argmin

x∈X
f(x) + 1

2τ

∥∥x− xk + τK⊤yk
∥∥2,

yk+1 = argmin
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK(2x̃k − xk)
∥∥2,

which is CP-PPA proposed in [9]. When α = 1 and g = 0, the problem (1.1) is
equivalent to

min f(x) s.t. Kx = 0, x ∈ X , (4.1)
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and G-AFBA (1.8) recovers a ALM-type method{
xk+1 = argmin

x∈X
f(x) + 1

2τ

∥∥x− xk + τK⊤λk
∥∥2,

λk+1 = λk + σK(2xk+1 − xk).

Note that two different parameters τ and σ are exploited here, which is different
from the standard augmented Lagrangian method for solving (4.1).

• Case 2 (Exact version of [30, Algorithm 2]). When (α, µ) = (0, 1), G-
AFBA reduces to

xk+1 = argmin
x∈X

f(x) + 1
2τ

∥∥x− xk + τK⊤yk
∥∥2,

yk+1 = argmin
y∈Y

g(y) + 1
2σ

∥∥y − yk − σKxk+1
∥∥2,

xk+1 = xk+1 − τK⊤(yk+1 − yk),

(4.2)

which is the exact version of [30, Algorithm 2] by setting the iterative relative
error to zero. For this case, the condition (1.9) reduces to 1/(στ) > L, which
matches the condition given in [30].

• Case 3 (A subclass of G-AFBA). By setting α = 0, G-AFBA reduces to

(G1-AFBA)


xk+1 = argmin

x∈X
f(x) + 1

2τ

∥∥x− xk + τK⊤yk
∥∥2,

yk+1 = argmin
y∈Y

g(y) + 1
2σ

∥∥y − yk − σKxk+1
∥∥2,

xk+1 = xk+1 − µτK⊤(yk+1 − yk),
yk+1 = yk+1 + (1− µ)σK(xk+1 − xk).

(4.3)

One may consider (4.3) as an extension of (4.2), since (4.3) applies an additional
extrapolation step on the y-iterate, while the xk+1-iterate in (4.3) can be written
as

xk+1 = xk+1 − τK⊤(yk+1 − yk) + (1− µ)τK⊤(yk+1 − yk).

Interestingly, with α = 0, the condition (1.9) for convergence reduces to

1

τσ
> (1− µ+ µ2)L. (4.4)

Clearly, (1 − µ + µ2) ≤ 1 for any µ ∈ [0, 1] and when µ = 0.5, it becomes
1
τσ > 0.75L. The condition (4.4) seems similar to the condition (1.7) for ensuring
convergence of GCP-PPA [24]. However, we can see from (4.3) that G1-AFBA
is completely a different method from GCP-PPA (1.6).

• Case 4 (GCP-PPA [24]). When µ = 0, G-AFBA reduces to
xk+1 = argmin

x∈X
f(x) + 1

2τ

∥∥x− xk + τK⊤yk
∥∥2,

yk+1 = argmin
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK[xk+1 + α(xk+1 − xk)]
∥∥2,

yk+1 = yk+1 + (1− α)σK(xk+1 − xk),

(4.5)

which is the method (1.6) proposed in [24]. As mentioned in the introduction, in
this case the condition (1.9) will reduce to (1.7), which is exactly the condition
derived in [24] for the convergence of GCP-PPA. Moreover, as pointed in [24],
GCP-PPA is equivalent to CP-PPA for solving the the convex programming
min{f(x) | Kx = b, x ∈ X}.
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• Case 5 (G-AFBA for multi-block problem). Consider the following saddle-
point problem with multi-block structure:

min
x∈Rn

max
λ∈Rm

L(x, λ) :=
q∑

i=1

fi(xi) + ⟨Kx, λ⟩ − ⟨b, λ⟩, (4.6)

where each fi, i = 1, . . . , q, is a proper lower semicontinuous convex function,
x = (x1, · · · , xq)⊤ with xi ∈ Rni , K = (A1, · · · , Aq) is given with Ai ∈ Rm×ni

and n =
∑q

i=1 ni. Clearly, the problem (4.6) is a special case of (1.1) and is
the dual problem of the following multi-block separable convex optimization
problem

min

{
q∑

i=1

fi(xi)
∣∣∣ q∑

i=1

Aixi = b, xi ∈ Rni

}
. (4.7)

Applying G-AFBA (1.8) to (4.6) results in the following operator splitting
method:

xk+1
i = arg min

xi∈Rni
fi(xi) +

1
2τ

∥∥xi − xki + τAi
⊤λk

∥∥2, i = 1, · · · , q,

λ
k+1

= λk + σ
q∑

i=1

Ai

[
xk+1
i + α(xk+1

i − xki )
]
− b,

xk+1
i = xk+1

i − (1− α)µ τAi
⊤(λ

k+1 − λk), i = 1, · · · , q,

λk+1 = λ
k+1

+ (1− α)(1− µ) σ
q∑

i=1

Ai(x
k+1
i − xki ).

(4.8)

Note that the above scheme (4.8) updates the primal variable xi in parallel and is
different from the proximal ADMM proposed [16] for solving (4.7). However, by
our previous analysis, the scheme (4.8) will enjoy all the convergent properties
we discussed before.

5 More extensions

In this section, we would give an adaptive and a stochastic versions of G-AFBA, and
we briefly discuss their convergence properties.

5.1 Extension to an adaptive G-AFBA

Our adaptive G-AFBA (see Algorithm 5.1) as well as its convergence theory are
motivated from an adaptive PDHG (a-PDHG) developed in [20]. In fact, a-PDHG
can be considered as a special case of aG-AFBA, which is almost identical to G-AFBA
except using adaptive stepsizes (τk, σk). In particular, in Algorithm 5.1, the stepsizes
(τk, σk) are adjusted according to the ratio between the PrimalError(k) (error related
to x-variable at the k-th iteration) and DualError(k) (error related to y-variable at
the k-th iteration), which can be defined/chosen by the user in various ways such
that problem (1.1) is solved as long as max{PrimalError(k),DualError(k)} = 0. The
goal is to adaptively adjust the stepsizes (τk, σk) so that both the primal error and
the dual error can be reduced in a balanced way. Hence, the overall acceleration of
Algorithm 5.1 can be achieved. Moreover, it is not difficult to show (one may see [20]
for details) the stepsizes (τk, σk) in Algorithm 5.1 satisfy the following conditions:

(A1) Both {τk} and {σk} are positive, bounded, and the product τkσk = τ0σ0 := Cτσ

satisfying (1.9);
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(A2) The sequence {ϕk} is summable, where ϕk = max
{

τk−τk+1

τk
, σk−σk+1

σk
, 0
}
.

Algorithm 5.1: An adaptive G-AFBA (aG-AFBA).

Initialization: Choose (x0, y0) ∈ X ×Y and (τ0, σ0) satisfying (1.9), set α, µ ∈ [0, 1],
θ0 = η = 0.95 and γ1 > 1 > γ2 > 0, given ϵ > 0.

for k = 0, 1, · · ·
1. x̃k = argmin

x∈X
f(x) + 1

2τk

∥∥x− xk + τkK
⊤yk

∥∥2;
2. ỹk = argmin

y∈Y
g(y) + 1

2σk

∥∥y − yk − σkK[x̃k + α(x̃k − xk)]
∥∥2;

3. xk+1 = x̃k − (1− α)µτkK
⊤(ỹk − yk);

4. yk+1 = ỹk + (1− α)(1− µ)σkK(x̃k − xk);
5. if DualError(k) > γ1 PrimalError(k), then
6. τk+1 = τk(1− θk), σk+1 = σk/(1− θk), θk+1 = θkη;
7. else if DualError(k) < γ2 PrimalError(k), then
8. τk+1 = τk/(1− θk), σk+1 = σk(1− θk), θk+1 = θkη;
9. end if
10. if max {DualError,PrimalError} ≤ ϵ, break;
end for
Return (xk+1, yk+1).

To analyze global convergence of aG-AFBA, analogous to the previous analysis in
Section 3, let us define the following matrices:

Qk =

[ 1
τk
I −KT

−αK 1
σk

I

]
, Mk =

[
I −(1− α)µτkK

T

(1− α)(1− µ)σkK I

]
,

Hk = QkM
−1
k =

[
Tk −(1− µ+ αµ)KT

−(1− µ+ αµ)K Σk

] [
C−1

x 0
0 C−1

y

]
,

where

Tk =
1

τk

(
I+ (1− α)(1− µ)CτσK

TK
)
, Σk =

1

σk

(
I− (1− α)αµCτσKK

T
)
,

and

Cx = I+ (1− α)2(1− µ)µCτσK
TK, Cy = I+ (1− α)2(1− µ)µCτσKK

T.

In addition, we define

Pk =

[
Tk 0
0 Σk

] [
C−1

x 0
0 C−1

y

]
=

[
TkC−1

x 0
0 ΣkC

−1
y

]
.

BothCx andCy are symmetric positive definite, so does their inverse. By Proposition
2.1, Hk is symmetric and positive definite. Hence, we have TkC−1

x and ΣkC
−1
y are

symmetric and positive definite, and (KTC−1
y )T = KC−1

x .

Based on the above preparations, we next show that the sequence {uk − u∗} is
upper bounded, which is essential for deriving the convergence rate of aG-AFBA.

Lemma 5.1 Suppose the parameters τk and σk in aG-AFBA satisfy the assumptions
(A1)-(A2). Then, we have

∥uk − u∗∥2Pk
≤ cu (5.1)

for some upper bound cu > 0.
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Proof. Since τkσk = Cτσ satisfies (1.9), by Proposition 2.1, Hk is positive definite. In
addition, there exists an ϵ ∈ (0, 1) independent of k such that (τ̃k, σ̃k) still satisfies
(1.9), where τ̃k = τk/(1− ϵ) and σ̃k = σk/(1− ϵ). Hence, similar to Proposition 2.1,
Hk − ϵPk is still positive definite for all k ≥ 0. Since Hk is positive definite, for any
u ∈ X × Y we have

uTHku ≥ 0 ⇐⇒ uTPku ≥ 2(1− µ+ αµ)yTKC−1
x x.

Then, we have from Hk − ϵPk being positive definite that

cH∥u∥2Hk
≥ 2(1− µ+ αµ)yTKC−1

x x, (5.2)

for any k ≥ 0 and any u ∈ X×Y, where cH = 1/ϵ. By taking u = (xk+1−x∗, yk+1−y∗)
and Hk+1 in the above inequality, we have

2(1− µ+ αµ)(yk+1 − y∗)TKC−1
x (xk+1 − x∗) ≤ cH∥uk+1 − u∗∥2Hk+1

.

So, from the above inequality, (KTC−1
y )T = KC−1

x , (3.7) and (5.2), we have

∥uk − u∗∥2Hk
≥ ∥uk+1 − u∗∥2Hk

=∥uk+1 − u∗∥2Pk
− 2(1− µ+ αµ)(yk+1 − y∗)TKC−1

x (xk+1 − x∗)

≥δk∥uk+1 − u∗∥2Pk+1
− 2(1− µ+ αµ)(yk+1 − y∗)TKC−1

x (xk+1 − x∗)

=δk∥uk+1 − u∗∥2Hk+1
− 2(1− δk)(1− µ+ αµ)(yk+1 − y∗)TKC−1

x (xk+1 − x∗)

≥δk∥uk+1 − u∗∥2Hk+1
− cH(1− δk)∥uk+1 − u∗∥2Hk+1

=
{
1− ϕk

[
1 + cH

]}
∥uk+1 − u∗∥2Hk+1

,

where the second inequality uses

Tk =
τk+1

τk
Tk+1, Σk =

σk+1

σk
Σk+1, δk := 1− ϕk = min

{
τk+1

τk
,
σk+1

σk
, 1

}
,

and the second equality uses the relationship between Hk and Pk.
Since the sequence {ϕk} is summable, we have ϕk(1 + cH) ∈ (0, 1) for all k suffi-

ciently large. Hence, we assume, without loss of generality, that ϕk(1 + cH) ∈ (0, 1)
for all k. Then, it follows that

∥u0 − u∗∥2H0
≥

k−1∏
j=0

{
1− ϕj(1 + cH)

}
∥uk − u∗∥2Hk

. (5.3)

Since
∑∞

j=0 ϕj < ∞, we have
∏∞

j=0

{
1− ϕj(1 + c2)

}
≥ 1/c1 for some c1 > 0. So, we

have from (5.3) that
∥un − u∗∥2Hn

≤ c1∥u0 − u∗∥2H0
,

which together with Hn − ϵPn being positive definite gives (5.1). �

Lemma 5.2 Let cu > 0 be given by Lemma 5.1 and cϕ =
∑∞

k=0 ϕk. Then, under the
assumptions (A1) and (A2), we have

n∑
k=1

(
∥uk − u∥2Hk

− ∥uk − u∥2Hk−1

)
≤ 2cϕ

(
cu + cp∥u− u∗∥2

)
,

where cp is a constant such that ∥u− u∗∥2Pk
≤ cp∥u− u∗∥2.
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Proof. Since TkC−1
x and ΣkC

−1
y are positive definite, it follows from the definition of

ϕk that 
TkC−1

x − Tk−1C
−1
x =

τk−1 − τk
τk−1

TkC−1
x ≼ ϕk−1TkC−1

x ,

ΣkC
−1
y − Σk−1C

−1
y =

σk−1 − σk
σk−1

ΣkC
−1
y ≼ ϕk−1ΣkC

−1
y .

Then, by the definitions of Hk and Pk and (5.1), we have

n∑
k=1

(
∥uk − u∥2Hk

− ∥uk − u∥2Hk−1

)
=

n∑
k=1

(
∥xk − x∥2

(Tk−Tk−1)C
−1
x

+ ∥yk − y∥2
(Σk−Σk−1)C

−1
y

)
≤

n∑
k=1

ϕk−1∥uk − u∥2Pk
≤ 2

n∑
k=1

ϕk−1

(
∥uk − u∗∥2Pk

+ ∥u− u∗∥2Pk

)
≤2cϕ

(
cu + cp∥u− u∗∥2

)
<∞,

where the last inequality follows from the definition of cp such that ∥u − u∗∥2Pk
≤

cp∥u− u∗∥2 for all k. Note that such cp exists by Assumption (A1). �

Theorem 5.1 Let xNt = 1
t

∑t−1
k=0 x̃

k, yNt = 1
t

∑t−1
k=0 ỹ

k. Then, under the conditions
given in Lemma 5.2, for any u ∈ X × Y we have

L(xNt , y)− L(x, yNt ) ≤
∥u− u0∥2H0

+ 2cϕcu + cϕcp∥u− u∗∥2

2t
, (5.4)

where cϕ, cu and cp are the same constants given in Lemma 5.2.

Proof. Summing (3.14) over k = 0, 1, · · · , t− 1 together with Lemma 5.2, we obtain

2
t−1∑
k=0

[
L(x̃k, y)− L(x, ỹk)

]
≤∥u− u0∥2H0

− ∥u− ut∥2Ht
+

t∑
k=1

(
∥u− uk∥2Hk

− ∥u− uk∥2Hk−1

)
≤∥u− u0∥2H0

− ∥u− ut∥2Ht
+ 2cϕcu + 2cϕcp∥u− u∗∥2,

which, by the convexity of f, g, the definitions of xNt and yNt , yields

L(xNt , y)− L(x, yNt ) ≤
∥u− u0∥2H0

− ∥u− ut∥2Ht
+ 2cϕcu + 2cϕcp∥u− u∗∥2

2t

and immediately gives (5.4). �

5.2 Extension to a stochastic G-AFBA

Now, let us consider the following case of special structured (1.1):

min
x∈X

max
y∈Y

f(x) + ⟨Kx, y⟩ − g(y), where f(x) =
1

N

N∑
j=1

fj(x) (5.5)

19



is an average of N Lipschitz continuously differentiable real-valued convex functions
fj , j = 1, . . . , N , i.e., there exists a ν > 0 such that

∥∇fj(x1)−∇fj(x2)∥ ≤ ν∥x1 − x2∥, ∀x1, x2 ∈ X .

Problem (5.5) often arises from machine learning applications, e.g. [4, 6], where N
denotes the sample size and fj(x) corresponds to the empirical loss on the j-th sample
data. A major difficulty for solving (5.5) in machine learning applications is that the
sample size N can be huge so that it is computationally prohibitive to evaluate either
the function value f or its gradient at each iteration. Hence, in this subsection,
by extending the previous analysis of deterministic G-AFBA, we aim to develop a
stochastic version of G-AFBA, see Algorithm 5.2, for solving the structured problem
(5.5). In the following, we briefly discuss the convergence properties of SG-AFBA
following a similar approach proposed in [4].

Algorithm 5.2: A stochastic G-AFBA (SG-AFBA).

Initialization: choose (τ, σ) satisfying (1.9), α, µ ∈ [0, 1] and
initialize (x0, y0) ∈ X × Y, x̆0 = x0.

for k = 0, 1, · · ·
1. Choose mk > 0, ϑk > 0, and compute hk = xk − τK⊤yk;
2. (x̃k, x̆k+1) = xsub(xk, x̆k, ϑk,mk, h

k);

3. ỹk = argmin
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK[x̃k + α(x̃k − xk)]
∥∥2;

4. xk+1 = x̃k − (1− α)µ τK⊤(ỹk − yk);
5. yk+1 = ỹk + (1− α)(1− µ) σK(x̃k − xk);
end for
Return (xk+1, yk+1).

(x+, x̆+) = xsub(x1, x̆1, ϑk,mk, h
k)

for t = 1, 2, . . . ,mk

1. Randomly select ξt ∈ {1, 2, . . . , N} with uniform probability;
2. βt = 2/(t+ 1), γt = 2/(tϑk), x̂t = βtx̆t + (1− βt)xt;
3. dt = ĝt + et, where ĝt = ∇fξt(x̂t) and et is a random vector

satisfying E
[
et
]
= 0;

4. x̆t+1 = argmin
x∈X

⟨
dt, x

⟩
+ γt

2

∥∥x− x̆t
∥∥2 + 1

2τ

∥∥x− hk
∥∥2;

5. xt+1 = βtx̆t+1 + (1− βt)xt;
end for
Return (x+, x̆+) = (xmk+1, x̆mk+1).

We first need to obtain a variational inequality analogous to (3.3) for establishing
the convergence of SG-AFBA. Note that the x̆t+1-subproblem in step 4 of subroutine
xsub amounts to

x̆t+1 = argmin
x∈X

⟨
dt +K⊤yk, x

⟩
+
γt
2

∥∥x− x̆t
∥∥2 + 1

2τ

∥∥x− xk
∥∥2.

Hence, almost same to the proof of [4, Lemma 3.1], we have the following lemma.

Lemma 5.3 Let us define Γt = 2/(t(t+ 1)) and

ϕk(x) = f(x) + ψk(x), where ψk(x) =
1

2τ

∥∥x− xk
∥∥2 + ⟨K⊤yk, x⟩. (5.6)
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Then, for any x ∈ X and k with ϑk ∈ (0, 1/ν), we have

1

Γt
[ϕk(xt+1)− ϕk(x)] ≤

{
θ1, t = 1,

1
Γt−1

[
ϕk(xt)− ϕk(x)

]
+ θt, t ≥ 2,

(5.7)

where for all t ≥ 1,

θt =
1

ϑk

[
∥x− x̆t∥2 − ∥x− x̆t+1∥2

]
− t

2τ
∥x− x̆t+1∥2 + t⟨δt, x̆t −x⟩+ ϑkt

2

4

∥δt∥2

(1− ϑkν)
,

(5.8)
and δt = ∇f(x̂t)− dt.

Based on Lemma 5.3, we further establish the following result.

Lemma 5.4 Let δt be defined in Lemma 5.3, and suppose ϑk ∈ (0, 1/ν). Then the
iterates generated by SG-AFBA satisfy

f(x)− f(x̃k)+
⟨
x− x̃k,K⊤yk +

1

τ
(x̃k − xk)

⟩
≥ ζk, (5.9)

for all x ∈ X , where

ζk =
2

mk(mk + 1)

[
1

ϑk

(∥∥x− x̆k+1
∥∥2 − ∥∥x− x̆k

∥∥2)
−

mk∑
t=1

t⟨δt, x̆t − x⟩ − ϑk
4(1− ϑkν)

mk∑
t=1

t2 ∥δt∥2
]
. (5.10)

Proof. Let T = mk. Summing (5.7) over 1 ≤ t ≤ T and recalling that x̆k = x̆1,
x̃k = xT+1, and x̆

k+1 = x̆T+1, we obtain

1

ΓT

[
ϕk(x̃

k)− ϕk(x)
]
≤

T∑
t=1

θt =
1

ϑk

[∥∥x− x̆k
∥∥2 − ∥∥x− x̆k+1

∥∥2]
− 1

2τ

T∑
t=1

t ∥x− x̆t+1∥2 +
T∑

t=1

t⟨δt, x̆t − x⟩+ ϑk
4(1− ϑkν)

T∑
t=1

t2 ∥δt∥2 (5.11)

for any x ∈ X , where θt is defined in (5.8). Dividing xt+1 = βtx̆t+1 + (1 − βt)xt by
Γt and exploiting the identity βt/Γt = t yields (1/Γt)xt+1 = (1/Γt−1)xt+ tx̆t+1. Sum
this equality over 2 ≤ t ≤ T and recall Γ1 = β1 = 1 to obtain

x̃k = xT+1 = ΓT

{
1

Γ1
x2 +

T∑
t=2

tx̆t+1

}
= ΓT

{
x2 − x̆2 +

T∑
t=1

tx̆t+1

}

= ΓT

{[
β1x̆2 + (1− β1)x1

]
− x̆2 +

T∑
t=1

tx̆t+1

}
=

T∑
t=1

(tΓT )x̆t+1. (5.12)

Since ΓT

∑T
t=1 t = 1 and ∥z − x∥2 is convex in z, it follows from (5.12) that

∥∥x̃k − x
∥∥2 ≤

T∑
t=1

(tΓT ) ∥x̆t+1 − x∥2 , ∀x ∈ X .

Plug the last inequality into (5.11) to obtain

1
ΓT

[
ϕk(x̃

k)− ϕk(x) +
1
2τ

∥∥x̃k − x
∥∥2] ≤ 1

ϑk

[∥∥x− x̆k
∥∥2 − ∥∥x− x̆k+1

∥∥2]
+

T∑
t=1

t⟨δt, x̆t − x⟩+ ϑk

4(1−ϑkν)

T∑
t=1

t2 ∥δt∥2 . (5.13)
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Now, by the definitions of ϕk and ψk in (5.6), we have{
ϕk(x̃

k)− ϕk(x) = f(x̃k)− f(x) + ψk(x̃
k)− ψk(x),

ψk(x̃
k)− ψk(x) =

⟨
K⊤yk, x̃k − x

⟩
+ 1

2τ

[
∥x̃k − xk∥2 − ∥x− xk∥2

]
.

The identity (a − b)⊤(a − c) = 1
2

{
∥a− c∥2 − ∥c− b∥2 + ∥a− b∥2

}
with a = x̃k,

b = xk, and c = x implies that

1

2

[
∥x̃k − xk∥2 − ∥x− xk∥2 + ∥x̃k − x∥2

]
=

(
x̃k − xk

)⊤(x̃k − x
)
.

Insert all these relations in (5.13) and make the substitutions T = mk and ΓT =
2/(T (T + 1)) with simple transformation to obtain (5.9). �

Now, replacing the inequality (3.4) by (5.9), under the condition (1.9), we will
have from the same proofs of Lemmas 3.1-3.2 that

θ(u)−θ(ũk)+
⟨
u−ũk,J (u)

⟩
≥ 1

2

(∥∥u−uk+1
∥∥2
H
−
∥∥u−uk∥∥2

H

)
+
1

2

∥∥uk−ũk∥∥2
G
+ζk, (5.14)

where H and G are positive definite matrices defined in (2.6). With the help of (5.14),
we have the following theorem.

Theorem 5.2 Let uT = (xT , yT ) be defined in (3.12). If for some integers T > 0
and κ ≥ 0, the following conditions hold for all k ∈ [κ, κ+T ]: (I) ϑk ∈ (0, 1/(2ν)] and
the sequence {ϑkmk(mk + 1)} is nondecreasing; (II) E(∥δt∥2) ≤ ς2 for some ς > 0,
where δt is defined in Lemma 5.3. Then, under condition (1.9), for any u ∈ Ω, it has

E
[
θ(uT )− θ(u) +

⟨
uT − u,J (u)

⟩]
(5.15)

≤ 1

2(1 + T )

{
ς2

κ+T∑
k=κ

ϑkmk +
4

mκ(mκ + 1)ϑκ
∥x− x̆κ∥2 + ∥u− uκ∥2H

}
.

Proof. Summing the inequality (5.14) over k between κ and κ+T , using the convexity
of θ and the definition of uT , we can obtain

θ(uT )− θ(u) +
⟨
uT − u,J (u)

⟩
≤ 1

1 + T

{
1

2
∥u− uκ∥2H −

κ+T∑
k=κ

ζk

}
. (5.16)

By assumption (I), the sequence {ϑkmk(mk + 1)} is nondecreasing for k ∈ [κ, κ+ T ],
which implies

κ+T∑
k=κ

1

mk(mk + 1)ϑk

(
∥x− x̆k∥2 − ∥x− x̆k+1∥2

)
≤ ∥x− x̆κ∥2

mκ(mκ + 1)ϑκ
. (5.17)

The definition of δt in Lemma 5.3 gives

δt = ∇f(x̂t)− dt = ∇f(x̂t)−∇fξt(x̂t)− et.

Then, because the random variable ξt ∈ {1, 2, . . . , N} is chosen with uniform proba-
bility and E[et] = 0, it holds that E[δt] = 0. Thus, since δt only depends on the index
ξt while x̆t depends on ξt−1, ξt−2, . . ., we have E [⟨δt, x̆t − x⟩] = 0. Then, it follows
from E(∥δt∥2) ≤ ς2 from assumption (II) and mk ≥ 1 that

E

[
mk∑
t=1

t2∥δt∥2
]
≤ ς2mk(mk + 1)(2mk + 1)

6
≤ m2

k(mk + 1)

(
ς2

2

)
.
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So, by ζk defined in (5.10) and the condition ϑk ≤ 1/(2ν), we have

−E

[
κ+T∑
k=κ

ζk

]
≤ 2∥x− x̆κ∥2

mκ(mκ + 1)ϑκ
+
ς2

2

κ+T∑
k=κ

ϑkmk.

Applying the expectation operator to (5.16) together with this bound completes the
proof. �

Theorem 5.3 Suppose the conditions in Theorem 5.2 hold. Let

ϑk = min

{
c1

mk(mk + 1)
, c2

}
and mk = max {⌈c3kϱ⌉,m} ,

where c1, c2, c3 > 0, ϱ ≥ 1 are constants and m > 0 is a given integer. Then, for
every u∗ = (x∗, y∗) ∈ Ω∗ and uT = (xT , yT ) being defined in (3.12), we have∣∣E[L(xT , y∗)− L(x∗, yT )

]∣∣ = ∣∣E[θ(uT )− θ(u∗)
]∣∣ = Eϱ(T ), (5.18)

where Eϱ(T ) = O(1/T ) for ϱ > 1 and Eϱ(T ) = O(T−1 log T ) for ϱ = 1.

Proof. The proof is same as that of [4, Theorem 4.2] and thus is omitted here. �
Notice that, when considering the sample sizeN = 1 and setting et = 0, SG-AFBA

will reduce to a deterministic algorithm to solve (1.1), while applying the subroutine
xsub to solve the prediction step (3.1a) inexactly. This inexact G-AFBA will be
particularly useful when the function f is not simple so that it is expensive or there
is no closed-form solution for calculating the prediction step (3.1a) exactly.

6 Numerical experiments

6.1 Robust principal component analysis

The robust principal component analysis problem, which arises from video surveillance
and face recognition [5, 8, 31, 41, 49] etc., aims at recovering the low-rank and sparse
components of a given matrix. Such a problem is often modeled [13] as

min
X,Y ∈Rm×n

{
∥X∥∗ + λ∥Y ∥1 | X + Y = C

}
, (6.1)

where C is the given data, ∥ · ∥∗ and ∥ · ∥1 denote the nuclear norm (the sum of all
singular values) and the l1-norm (the sum of absolute values of all entries) of a matrix,
respectively, and λ > 0 is a weight parameter. Clearly, (6.1) can be reformulated as
the following saddle-point problem

min
X,Y ∈Rm×n

max
Z∈Rm×n

∥X∥∗ + λ∥Y ∥1 + ⟨X + Y,Z⟩ − ⟨C,Z⟩. (6.2)

We will test the proposed G-AFBA in (1.8), aG-AFBA in Algorithm 5.1 and
G1-AFBA (that is G-AFBA with α = 0 as shown in (4.3)) with other comparison
algorithms by solving (6.2) with λ = 1/

√
max(m,n) as suggested in [8] and four real

data sets: Hall airport video containing 300 144 × 176 frames, ShoppingMall video
containing 350 256 × 320 frames, Bootstrap video containing 200 120 × 160 frames,
and Lobby video containing 200 128 × 160 frames. We use (α, µ) = (1/3, 1/2) as
default values for G-AFBA, (γ1, γ2) = (1.5, 0.96) for aG-AFBA, (α, µ) = (0, 1/2) for
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G1-AFBA and we choose (τ, σ) = (c1/
√
ι, c2/

√
ι) to satisfy the condition (1.9), where

c1, c2 > 0 are some constants satisfying c1c2 < 1 and

ι =
α+ (1− µ+ µ2)(1− α)2 +

√
[α−(1− µ+ µ2)(1− α)2]2 + 4α(1− α)2

2
L

with L = 2. After tuning the parameters through the for loop (similar technique is
used in the comparative methods), we set c1 = 0.2 and c2 = 0.95/c1 for G-AFBA,
aG-AFBA and G1-AFBA, respectively, for this set of testing problems. The following
are several comparison algorithms where the parameters are also tuned and chosen
to obtain the best possible performance:

• Dual-Primal Balanced ALM (DP-BALM) with involved parameters (β1, β2, α, δ) =
(10, 10, 1, 10−3), which is suggested in [45, Section 5.2.2];

• Generalized PDHG (G-PDHG) with (τ, σ) = (c1/
√
0.75L, c2/

√
0.75L), where

parameters (c1, c2) use the same setting as our G-AFBA to satisfy the condition
1
τσ > 0.75L, which gives much better performance than the original setting given
in [31, Section 5.4];

• PDHG (1.2) with (τ, σ) = (c1/
√
L, c2/

√
L) and (c1, c2) = (7.0711, 0.1245);

• aPDHG with the tuned (γ1, γ2) = (8, 2) and the same (τ, σ) used in PDHG as
the initial values, since these values give better performance than the suggested
setting in [20];

• GCP-PPA (1.6) [24] with (α, µ) = (1/2, 0) and the same (c1, c2) as those for
G-AFBA, to satisfy the convergence condition (1.7).

• Extended G-AFBA (eG-AFBA) [46] with parameters (c1, c2) = (0.9899, 0.2121)
to satisfy the involved condition 1

τσ > L/4.

All experiments are implemented in MATLAB R2018a and performed on a PC with
Windows 10 operating system, with an Intel i7-8700K CPU and 16GB RAM. All
algorithms start with initial iteration (X,Y, Z) = (0,0,0) and are terminated when
max{PrimalError(k),DualError(k)} < 10−4 is satisfied, where

PrimalError(k) :=

∥∥Xk+1 −Xk
∥∥
F
+
∥∥Y k+1 − Y k

∥∥
F

τk(
∥∥Xk

∥∥
F
+
∥∥Y k

∥∥
F
+ 1)

and

DualError(k) :=
∥Xk+1 + Y k+1 − C∥F

∥C∥F
.

Here, τk > 0 is the primal stepsize used at the k-th iteration by each comparison
method. Similar stopping criterions can be found in e.g. [31, 41, 49].

Table 2 reports the number of iterations (Iter), the computing time in seconds
(Time(s)), the PrimalError and DualError at the last iterate of the algorithms. Figure
2 also visualizes the background and foreground separations of the 10th frames of
Hall airport, the 259th frames of ShoppingMall, the 194th frames of Bootstrap, and
the 80th frames of Lobby, respectively. The results obtained by eG-AFBA, DP-
BALM and PDHG are not showed since they take significantly more iterations and
CPU time than others. The computing results of Table 2 demonstrate that aG-
AFBA performs the best among all the comparison algorithms in terms of CPU
time and the iteration number; G-AFBA is slightly better than its special case G1-
AFBA and usually better than other comparison algorithms. Although there are
more relaxed stepsize requirements of eG-AFBA for ensuring convergence, eG-AFBA
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Data Methods Iter Time(s) PrimalError DualError
G-AFBA 101 50.91 9.91e-5 5.69e-5
aG-AFBA 78 39.56 9.45e-5 6.93e-5
G1-AFBA 104 52.96 9.99e-5 5.50e-5
eG-AFBA 189 110.46 9.77e-5 9.94e-5

Hall airport GCP-PPA 120 55.84 9.82e-5 3.51e-5
DP-BALM 267 149.03 9.97e-5 7.13e-6
PDHG 170 99.67 9.98e-5 3.14e-6
a-PDHG 109 73.34 9.88e-5 7.85e-5
G-PDHG 121 58.70 9.95e-5 3.58e-5
G-AFBA 120 283.20 9.79e-5 9.70e-5
aG-AFBA 101 225.36 9.72e-5 9.80e-5
G1-AFBA 124 289.97 9.96e-5 9.35e-5
eG-AFBA 275 754.83 7.56e-5 9.92e-5

ShoppingMall GCP-PPA 131 298.28 9.76e-5 8.07e-5
DP-BALM 173 445.26 9.99e-5 1.34e-5
PDHG 146 322.40 9.78e-5 2.60e-5
a-PDHG 112 290.81 8.44e-5 9.98e-5
G-PDHG 133 304.64 9.76e-5 8.06e-5
G-AFBA 101 22.49 9.89e-5 2.87e-5
aG-AFBA 91 20.89 9.79e-5 9.59e-5
G1-AFBA 104 23.59 9.92e-5 2.76e-5
eG-AFBA 171 44.86 9.97e-5 9.27e-5

Bootstrap GCP-PPA 119 24.19 9.89e-5 1.67e-5
DP-BALM 296 68.03 9.97e-5 7.03e-6
PDHG 181 42.99 9.94e-5 2.41e-6
a-PDHG 166 35.62 9.94e-5 7.07e-5
G-PDHG 120 24.17 9.98e-5 1.68e-5
G-AFBA 103 26.61 9.90e-5 1.32e-5
aG-AFBA 91 23.64 6.89e-5 9.82e-5
G1-AFBA 107 27.47 9.97e-5 1.37e-5
eG-AFBA 188 55.02 9.35e-5 9.93e-5

Lobby GCP-PPA 129 29.74 9.83e-5 6.67e-6
DP-BALM 359 93.01 9.95e-5 7.96e-6
PDHG 213 47.76 9.99e-5 2.57e-6
a-PDHG 152 42.39 9.81e-5 3.17e-5
G-PDHG 130 30.12 9.87e-5 6.53e-6

Table 2: Numerical results of different algorithms for solving Problem (6.2).
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Figure 2: Background and foreground separations of the 10th frame(rows 1-3) of Hall
airport, the 259th frame(rows 4-6) of ShoppingMall, the 194th frame(rows 7-9) of
Bootstrap, and the 80th frame(rows 10-12) of Lobby. From left to right: G-AFBA,
G1-AFBA, GCP-PPA, G-PDHG, a-PDHG aG-AFBA, respectively.
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seems to take more iteration numbers and CPU time. We think this may be due to the
different strategies used by the correction step of eG-AFBA that requires inversion
of a matrix. Besides, the two adaptive methods (a-PDHG and aG-AFBA) clearly
improve the performance of its original version, which verifies the effectiveness of
adaptively adjusting the proximal stepsizes. Figure 3 depicts the convergence curves
of PrimalError(k) and ItError(k) := ∥uk − u∗∥/(∥u∗∥ + 1) obtained by G-AFBA on
the four data sets, where u∗ = (X∗, Y ∗, Z∗) is the approximate solution obtained by
running G-AFBA after 300 iterations, which demonstrates the convergence rates in
Theorem 3.3 and (3.24), respectively.
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Figure 3: Convergence curves of PrimalError(k) and ∥uk−u∗∥ obtained by G-AFBA.

6.2 3D CT reconstruction problem

The 3D CT reconstruction problem is a crucial problem in medical imaging and plays
a vital role in diagnosis, treatment planning, and research [7, 19]. The problem with
TV-L1 regularization is formulated as the following

min
x,y

1
N

∑N
j=1(Rjx− bj)

2 + λ∥y∥1
s.t. ∇x = y,

(6.3)

where λ > 0 is a weight parameter, R is the Radon transform generated by the cone
beam scanning geometry [19], b is the observed noisy input data, and ∇ is a discrete
gradient operator. The primal-dual formulation of (6.3), as a special case of (5.5),
can be written as

min
x,y

max
z

1

N

N∑
j=1

(Rjx− bj)
2 + λ∥y∥1 + ⟨∇x, z⟩ − ⟨y, z⟩. (6.4)

When N is sufficiently large, e.g. N = 131, 334, 144 in our numerical experiment,
the computation of the prediction step (3.1a) of applying G-AFBA to solve (6.4)
becomes prohibitively expensive. Hence, we would apply the stochastic gradient based
SG-AFBA, that is Algorithm 5.2, to solve (6.4) with λ = 0.1. We set (α, µ) = (1/2, 0),
(τ, σ) = (102, 10−7) and mk = 10 for SG-AFBA. Hence, in this case, SG-AFBA is
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in fact a stochastic version of GCP-PPA. The reconstructed image quality is usually
evaluated by the Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 log10

(
dx × dy × dz

MSE

)
with MSE = ∥x− x̃∥2,

where x and x̃ are the original and reconstructed 3D images, respectively. We also
denote the relative error by Res = ∥x− x̃∥/∥x∥.

For comparison purpose, we solve the reformulation problem (6.4) by the deter-
ministic Generalized ADMM (G-ADMM, [17]) and 5 stochastic gradient-based meth-
ods: stochastic ADMM (sto-ADMM, [27]), stochastic ADMM based on the popular
SARAH gradient estimator (called SARAH-ADMM, [7]) and the SAGA gradient es-
timator (called SAGA-ADMM, [7]), PDHG (1.2) and CP-PPA (1.4). All experiments
are run in MATLAB R2019a on a high-performance computational cluster with a
Tesla V100 GPU and 192GB memory. For each algorithm, we run 3 times to solve
(6.4) with a 2000-second time budget for each run.

Methods PSNR Res
sto-ADMM 24.8068 ± 0.0013 0.4099 ± 6.29e-05
G-ADMM 24.8493 ± 0.0059 0.4079 ± 2.79e-04

SARAH-ADMM 24.9106 ± 0.0041 0.4051 ± 1.93e-04
SAGA-ADMM 24.8810 ± 0.0017 0.4064 ± 7.72e-05

PDHG 25.0356 ± 0.0396 0.3993 ± 1.82e-03
CP-PPA 24.9976 ± 0.0719 0.4010 ± 3.32e-03
SG-AFBA 25.1245 ± 0.1256 0.3952 ± 5.74e-03

Table 3: The mean and standard deviation of PSNR and Res from solving (6.3).
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Figure 4: Comparison of different algorithms for solving (6.3).

Table 3 shows the mean and standard deviation of the final PSNR and Res ob-
tained by each algorithm over 3 independent runs. We can see from Table 3 that
SG-AFBA has overall better performance, achieving the highest PSNR and the low-
est relative error Res, although it has relatively larger standard deviation on the PSNR
value. In addition, both PDHG and CP-PPA perform better than other ADMM-type
methods from the final obtained PSNR. Figure 4 shows the average convergence curve
of PSNR of each algorithm within 2000 seconds. From Figure 4 we see that although
SARAH-ADMM converges faster than other algorithms at the beginning iterations
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(see the left-hand-side of Figure 4), SG-AFBA seems to generate the best final re-
sult. Figures 5 and 6 visualize the 7th and 58th slices of the reconstructed 3D CT
image, respectively. It shows that the images reconstructed by SG-AFBA are closer
to the ground truth compared to other algorithms. Taking the 7th slice of the recon-
structed 3D CT image as an example, many blurry circle contours can be observed
in the images reconstructed by comparative algorithms sto-ADMM, SAGA-ADMM,
SARAH-ADMM and G-ADMM. However, these circular contours are not clear in the
images reconstructed by our SG-AFBA. Similar observations can be also seen from
the 58th slice.

(a) Ground truth (b) SAGA-ADMM=31.32 (c) sto-ADMM=30.06 (d) G-ADMM=30.66

(e) SARAH-ADMM=31.95 (f) PDHG=31.96 (g) CP-PPA=31.74 (h) SG-AFBA=32.97

Figure 5: Final reconstruction images of different methods for the 7th slice.
(a) Ground truth (b) SAGA-ADMM=30.86 (c) sto-ADMM=29.58 (d) G-ADMM=30.31

(e) SARAH-ADMM=31.6 (f) PDHG=31.71 (g) CP-PPA=30.94 (h) SG-AFBA=33.27

Figure 6: Final reconstruction images of different methods for the 58th slice.
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