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We consider linear combinatorial optimization problems under uncertain disruptions that increase the

cost coefficients of the objective function. A decision-maker, or planner, can invest resources to probe

the components (i.e., the coefficients) in order to learn their disruption status. In the proposed probing

optimization problem, the planner, knowing just the disruptions’ probabilities, selects which components to

probe subject to a probing budget in a first decision stage. Then, the uncertainty realizes and the planner

observes the disruption status of the probed components, after which the planner solves the combinatorial

problem in the second stage. In contrast to standard two-stage stochastic optimization, the planner does

not have access to the full uncertainty realization in the second stage. Consequently, the planner cannot

directly optimize the second stage objective function, which is given by the actual cost post-disruptions,

and the decisions have to be made based on an estimate of the cost. By assuming that the estimate is given

by the conditional expected cost given the information revealed by probing, we reformulate the probing

optimization problem as a bilevel problem with multiple followers and propose an exact algorithm based

on a value function reformulation and three heuristic algorithms. We derive theoretical results that bound

the value of information and the price of not having full information, and a bound on the required probing

budget that attains the same performance than full information. Our extensive computational experiments

suggest that probing a fraction of the components is sufficient to yield large improvements in the optimal

value, that our exact algorithm is competitive for small to medium scale instances, and that the proposed

heuristics find high-quality solutions in large-scale instances.

Key words : Optimization under uncertainty; Bilevel optimization; Value of information; Integer

programming

1. Introduction

We study a class of combinatorial optimization problems for which uncertain disruptions

(or failures) can affect the objective function coefficients. To describe our problem setting,

we first consider the following deterministic baseline combinatorial problem:

min
x

∑
i∈N

cixi (1a)
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s.t. x∈X ⊆ {0,1}N , (1b)

where N = {1, . . . ,N}, ci denotes the nominal cost corresponding to binary variable xi,

and X ≠ ∅ is the set of feasible solutions.

We consider the case in which uncertain disruptions (failures) affect the cost coefficients

component-wise, i.e., if a disruption impacts component i ∈ N , then its cost is increased

from ci to c′i, where c′i > ci. This is a common setting in the literature, for example in

shortest path problems, where an arc failure results in an increased travel time (cost), or

in a manufacturing setting, where a defective product results in additional cost due to

reprocessing. The decision-maker, or planner, knows that component i is disrupted with

probability pi, i∈N .

We consider the case in which the uncertainty about the disruptions can be mitigated by

investing resources into information collection before solving the combinatorial problem.

We refer to any such activity to gather additional information as probing. Probing a given

component confirms whether the component is disrupted. Our main focus is to measure

the value of information provided by probing.

In the first decision stage of our problem, the planner selects which components to probe

subject to a limited budget. Then the uncertainty is realized and the planner observes

whether the probed components are disrupted or not. In a second decision stage the planner

solves the combinatorial problem based on the partial information collected by the probes.

The objective of the planner is to decide which components to probe in order to minimize

the expected cost.

Having partial, rather than full information, implies that the optimization decisions in

the second stage have to be made by estimating any uncertainty that was not revealed

by probing, and, consequently, that the optimal decisions in the second stage might not

necessarily minimize the actual realization of the costs. Because the probing decisions

are made in order to minimize actual rather than estimated costs, such a discrepancy

implies that the probing problem has a two-stage bilevel structure. Specifically, the probing

problem can be framed as a two-stage stochastic program where the second-stage is a bilevel

optimization problem. Next, we present a formalization of the problem under consideration.



Lozano and Borrero: Combinatorial problems with disruptions and probing 3

1.1. Problem statement

Let the occurrence of disruptions be represented by a random vector J = (Ji : i ∈N ). We

assume that the random variables Ji are independent and Ji has a Bernoulli distribution

with parameter pi ≥ 0, i∈N . That is, Ji takes the value 1 if a disruption impacts component

i and takes the value 0, otherwise, and P [Ji = 1] = pi. We denote the realizations of J by

ξ ∈ {0,1}N .

For each component i ∈ N let zi be the first-stage binary decision variable that takes

the value 1 if the planner decides to probe component i and 0 otherwise. If zi = 1 and

component i is not disrupted (i.e., if ξi = 0), then the cost at i is given by ci. Else, if the

planner probes i ∈N and i is disrupted (i.e., ξi = 1), then the cost at i is given by c′i. On

the other hand, if the planner does not probe component i∈N , then we assume that the

planner estimates the cost of i to be ci(1− pi) + c′ipi. We define the estimated cost when

the planner selects a probing plan z, if scenario ξ happens, and if the solution plan x∈X

is executed, by

Ĉ(z, ξ, x) =
∑

i∈N : zi=1

[
ci(1− ξi)xi + c′iξixi

]
+

∑
i∈N : zi=0

[
ci(1− pi)xi + c′ipixi

]
=
∑
i∈N

[
ci
(
(1− ξi)zi +(1− pi)(1− zi)

)
xi + c′i

(
ξizi + pi(1− zi)

)
xi

]
. (2)

It can be shown that the estimate defined in (2) is precisely the conditional expected

value of the cost given that the planner selects x∈X and that Ji = ξi for all i with zi = 1,

see Appendix A.

After a solution plan x ∈ X is executed from the estimated cost, the planner observes

the actual cost C(ξ,x), corresponding to the realization of scenario ξ ∈Ξ, which is given by

C(ξ,x) =
∑
i∈N

[
ci(1− ξi)xi + c′iξixi

]
. (3)

Observe that the estimated cost function Ĉ(z, ξ, x) depends on vector ξ; however, it only

observes the ξi components for which zi = 1, i.e., the occurrence or absence of disruptions

for the components that are probed. On the other hand, the actual cost function C(ξ,x)

is independent of the probing plan because once the solution is executed, then the

disruptions occur (or not) according to the realized scenario.
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Let B, 0≤B ≤N , be the available budget for probing in the first stage. We formulate

the probing problem as a two-stage stochastic problem of the form

ΓB :=min
z

E[F(z, J)] (4a)

s.t.
∑
i∈N

zi ≤B (4b)

z ∈ {0,1}N , (4c)

where

E[F(z, J)] =
∑
ξ∈Ξ

πξF(z, ξ). (5)

In equation (5) πξ is the probability of scenario ξ, which can be computed from the dis-

ruption probabilities pi, i∈N , by

πξ =
∏

i∈N ,ξi=1

pi
∏

i∈N ,ξi=0

(1− pi) ξ ∈Ξ. (6)

For each scenario ξ ∈ Ξ, the function F(z, ξ) in (5) is the actual cost incurred by the

planner if the probing decisions are given by z and the realized scenario is ξ:

F(z, ξ) =min
x

{
C(ξ,x) : x∈ argmin

x′

{
Ĉ(z, ξ, x′) : x′ ∈X

}}
, (7)

where the outer “min” in (7) breaks ties in case that there are several plans x that minimize

the estimated cost Ĉ.

The first-stage problem decides the probing plan z with the objective of minimizing the

expected actual cost (4a), which is computed by solving the second-stage problem. In the

second stage (7), for a given probing plan z and a realization of the uncertainty, the planner

first selects a solution that minimizes the estimated cost and then computes the actual

cost after executing the selected solution. In contrast to standard two-stage stochastic

problems in which the second stage solves a single-level problem for each realization of the

uncertainty, our second stage problem is defined by “argmin” constraints resulting in a

bilevel structure.

Observe that Γ0 corresponds to the expected actual cost associated with a limited infor-

mation (LI) approach, in which the planner is not able to perform any probing. In contrast,

ΓN is the expected actual cost under a full information (FI) approach, in which the plan-

ner is able to completely remove the uncertainty from the problem. For any B we refer to
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Γ0 −ΓB as the value of information associated with having B probes whereas ΓB −ΓN is

referred as the price of not having full-information associated with having B probes. The

value of information measures the largest possible expected cost savings associated with

being able to probe B components. The price of not having full information measures the

largest possible expected cost incurred due to probing only B components.

1.2. Statement of Contribution

The main contributions of this work are as follows. We propose a special class of two-stage

stochastic programs for combinatorial problems under uncertainty that can quantify the

value of knowing with certainty whether disruptions impact a subset of the components of

the cost function. We reformulate the two-stage stochastic problem as a bilevel problem

with multiple followers and solve the problem using exact solution methods as well as

heuristic approaches.

We derive bounds on the value of information and the price of not having full information.

The first of these bounds does not depend on B whereas the second one does. These

results suggests that there are instances where the value of information is independent on

the number of probes, and that there are instances where optimally placed probes always

reveal at least some information about the remaining uncertainty. We also derive an upper

bound on the minimum value of B for which ΓB = ΓN , i.e., the minimum budget needed

to obtain the same objective value as under full information.

In addition, we conduct computational experiments on two problem settings: a project

selection problem, which is modelled as a knapsack problem, and a routing under uncer-

tainty problem, which is modelled as a shortest path problem. Our computational results

show that that:

1. Having full information often results in a considerable improvement to the optimal

value.

2. Probing a small subset of the components can yield large improvements to the optimal

value and in many cases get close to the value obtained under full information.

3. Our proposed upper bound on the value of B for which ΓB = ΓN , shows that often

probing roughly less than 40% of the components is enough to achieve the same perfor-

mance as having full information for the routing problem and probing less than 65% of

the components is to enough match the performance of full information for the project

selection problem.
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4. Our exact solution approach for the bilevel problem with multiple followers is able to

solve medium-sized problem instances for both problem settings, and the computational

effort is highly dependent on the number of scenarios.

5. Our proposed heuristics are able to consistently find high-quality solutions for large

problem instances for both problem settings considered and with up to 500 scenarios.

To the best of our knowledge, our bilevel formulation is the first one to provide optimal

probing plans (as opposed to approximation algorithms) for these type of information

discovery problems over independent uncertain events, as well as the first one to conduct

an extensive computational study regarding the value of information for the two problem

settings selected.

2. Literature review

Our work is related to previous work in probing problems, stochastic programming, and

bilevel optimization. Regarding using probing to reduce uncertainty, Gupta et al. (2016)

consider a probing setting with unlimited budget for combinatorial problems. In their

model, only ‘items’ probed in the first stage can be included in the objective function of

the second stage. The authors propose an approximation algorithm and focus on bounding

an ‘adaptivity gap’ between optimal online and offline policies. Similar models are studied

by Gupta and Nagarajan (2013) and Adamczyk et al. (2016), who also propose approxima-

tion algorithms. Guha and Munagala (2012), and particularly, Goel et al. (2010), consider

a probing setting that is closer to what we do in this paper. The main differences is that

their focus is on developing approximation algorithms. They show that for specific com-

binatorial problems there is a constant-factor approximation algorithm (based on solving

the ‘outlier problem’) for both the online and offline versions of the problem. We note,

however, that the complexity of the algorithm depends on the computational complexity of

the outlier problem. This complexity, in turn, is problem-dependent, thus constant-factor

approximations might not be available to all problems. More general probing problems

with a similar approach to Goel et al. (2010) have also been considered in the two-stage

stochastic programming literature. This problems are, as we do in this paper, formulated as

two-stage stochastic problems. Their focus, is however, on the statistical and mathematical

properties of the model, see Artstein and Wets (1993), Artstein (1994, 1999).

Our work can be considered to be related to stochastic optimization problems with

decision-dependent uncertainty (Jonsbr̊aten et al. 1998, Goel and Grossmann 2004,
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Hellemo et al. 2018), because by probing the planner updates the probability distribution

in the second stage. The main differences of these models with our work is that not all

uncertainty is revealed in the second stage and that the actual distribution used in the

first stage remains independent of the probing decisions. These properties imply that stan-

dard stochastic optimization problems with decision-dependent uncertainty do not require

a bilevel structure, as we do in this case.

The second stage problem problem in our setting is a bilevel programs with integer

requirements at both levels (Gümüş and Floudas 2005, DeNegre and Ralphs 2009, Lozano

and Smith 2017b, Fischetti et al. 2017, Tahernejad et al. 2020). This class of problems

is Σp
2-hard (Caprara et al. 2013) and are normally solved by branch-and-cut methods or

iterative decomposition algorithms (Kleinert et al. 2021). Standard bilevel problems with

integer requirements at both levels are typically deterministic and stochastic versions are

analogous to two-stage stochastic integer problems, see for example (Cormican et al. 1998,

Janjarassuk and Linderoth 2008, Beck et al. 2023). On the other hand, two-stage stochastic

problems where the second-stage problem is a bilevel integer program (similar to what

we consider in this paper), have been studied rather scarcely in the literature, see for

instance Alizadeh et al. (2013), Özaltın et al. (2018).

3. Exact solution approach

We first reformulate our problem as a bilevel problem with multiple followers and ana-

lyze two limiting cases. We then propose exact solution approaches to solve the proposed

reformulation.

3.1. A bilevel reformulation of Problem (4)

A standard approach to solve two-stage stochastic programs is to use a deterministic equiv-

alent monolithic formulation, in which the expectation is represented by a weighted sum

over all possible scenarios and copies of the second-stage variables are introduced for each

scenario. We generate such monolithic formulation for problem (4) as follows. For scenario

ξ ∈Ξ, let xξ ∈X be the solution plan under scenario ξ and let all solution plans be repre-

sented by xΞ =
{
xξ
}
ξ∈Ξ, that is, x

ξ is an optimal solution to the inner problem in (7). Then

ΓB =min
z,xΞ

∑
ξ∈Ξ

πξ
∑
i∈N

[
ci(1− ξi)x

ξ
i + c′iξix

ξ
i

]
(8a)

s.t.
∑
i∈N

zi ≤B (8b)
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xξ ∈ argmin
x

{∑
i∈N

[
ci
(
(1− ξi)zi +(1− pi)(1− zi)

)
xi

+ c′i
(
ξizi + pi(1− zi)

)
xi

]
: x∈X

}
∀ξ ∈Ξ (8c)

z ∈ {0,1}N . (8d)

Formulation (8) describes a bilevel problem with multiple followers (one per scenario)

under the so-called optimistic assumption (Dempe 2002), that is, it breaks possible ties in

the argmin by selecting the second-stage solutions that minimize the objective function

in (8a). The probing stage corresponds to the leader’s problem, while the original combi-

natorial problem corresponds to the follower’s problem. The objective is to minimize the

expected actual cost while ensuring that the second-stage solutions minimize the estimated

cost for each scenario.

We first analyze the two limiting cases of problem (8) that can be readily solved as

single-stage problems. For the first limiting case, suppose that there is no probing budget,

that is, B = 0, which implies that zi = 0 for all i ∈ N . In this case, the estimated cost

function Ĉ simplifies to

Ĉ(z, ξ, x) =
∑
i∈N

[
ci(1− pi)xi + c′ipixi

]
(9)

and evaluates to the same value under all scenarios for a given x-solution. As a result,

optimal decisions for all scenarios coincide and all constraints in (8c) can be replaced by

the single constraint

x∈ argmin
x′

{∑
i∈N

[
ci(1− pi)x

′
i + c′ipix

′
i

]
: x′ ∈X

}
. (10)

On the other hand, since we select a single solution x for all the scenarios, the objective

function of (8) simplifies to∑
ξ∈Ξ

πξ
∑
i∈N

[
ci(1− ξi)xi + c′iξixi

]
=
∑
i∈N

( ∑
ξ∈Ξ: ξi=0

cixi+
∑

ξ∈Ξ: ξi=1

c′ixi

)
(11a)

=
∑
i∈N

[
ci(1− pi)xi + c′ipixi

]
, (11b)

that is, the leader’s objective (8a) of minimizing the expected actual cost coincides with

the follower’s objective (10) of minimizing the estimated cost. As a result, if there is no

probing (B = 0), then the two-stage problem (8) simplifies to

Γ0 =min
{∑

i∈N

[
ci(1− pi)xi + c′ipixi

]
: x∈X

}
, (12)
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which is a single-stage combinatorial problem where an optimal solution is selected entirely

based on the estimated probabilities pi, i∈N . An alternative interpretation of (12) is that

in the absence of probing, both the actual cost and estimated cost functions simplify to a

naive expected cost function based on the probabilities pi.

For the second limiting case consider that all nodes can be probed, i.e., B =N . We have

that zi = 1 for all i∈N and the estimated cost becomes

Ĉ(z, ξ, x) =
∑
i∈N

[
ci(1− ξi)xi + c′iξxi

]
. (13)

In other words, the estimated cost for each scenario is equal to the actual cost since there

is full information and it is readily seen that problem (8) becomes the single-stage problem

ΓN =min
{∑

ξ∈Ξ

πξ
∑
i∈N

[
ci(1− ξi)x

ξ
i + c′iξx

ξ
i

]
: xξ ∈X ∀ξ ∈Ξ

}
. (14)

Moreover, as in (14) there are no coupling requirements between solutions xξ, we have that

ΓN =
∑
ξ∈Ξ

πξmin
{∑

i∈N

[
ci(1− ξi)x

ξ
i + c′iξx

ξ
i

]
: xξ ∈X

}
. (15)

As a result, ΓN can be computed by decomposing problem (14) and solving |Ξ| single-stage
combinatorial problems independently (and potentially in parallel).

3.2. Value function approach

One of the major challenges in solving discrete bilevel problems is the construction of valid

relaxations. A common relaxation from the bilevel literature is known as the High-point

relaxation, which is obtained by dropping the requirement of optimality in the lower-level

problem enforced by constraints (8c). After removing these constraints in problem (8), the

probing variables become irrelevant because they do not appear in the objective function,

and the high-point relaxation reduces to

ΓH =
∑
ξ∈Ξ

πξmin
{∑

i∈N

[
ci(1− ξi)x

ξ
i + c′iξx

ξ
i

]
: xξ ∈X

}
=ΓN , (16)

i.e., the high-point relaxation is precisely the full information problem ΓN (see Equa-

tion (15)), which generally yields weak lower bounds on the optimal value.

Value function approaches have been successfully used in the literature for bilevel prob-

lems with one follower (Mitsos 2010, Lozano and Smith 2017b). For our multi-follower

problem observe that formulation (8) can be equivalently posed as

ΓB =min
∑
ξ∈Ξ

πξ
∑
i∈N

[
ci(1− ξi)x

ξ
i + c′iξx

ξ
i

]
(17a)
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s.t.
∑
i∈N

zi ≤B (17b)∑
i∈N

[
ci
(
(1− ξi)zi +(1− pi)(1− zi)

)
xξ
i + c′i

(
ξizi+ pi(1− zi)

)
xξ
i

]
≤∑

i∈N

[
ci
(
(1− ξi)zi +(1− pi)(1− zi)

)
xi + c′i

(
ξizi + pi(1− zi)

)
xi

]
∀x∈X ,∀ξ ∈Ξ (17c)

z ∈ {0,1}N ; xξ ∈X ∀ξ ∈Ξ, (17d)

which is a single-level non-linear binary optimization problem with potentially exponen-

tially many constraints. Observe that the nonlinearities are products between binary vari-

ables (zix
ξ
i ) and thus readily linearized.

We define a relaxed value function problem (RVF) by considering a subset of second-

stage solutions X̂ ⊆ X . Formally, RFV(X̂ ) is defined as (17), except that X is replaced by

X̂ in (17c). Let ΓB(X̂ ) be the optimal objective function value of RFV(X̂ ) and note that

for any X̂ ⊆ X , it holds that ΓB(X̂ )≤ ΓB.

We propose a cutting-plane algorithm that iteratively explores second-stage solutions

and adds them to X̂ . Solving RFV(X̂ ) for each X̂ provides a sequence of non-decreasing

lower bounds on ΓB. Upper bounds are obtained by solving the lower-level problem for fixed

probing plans stemming from the relaxed problems. Algorithm 1 formalizes our proposed

cutting-plane approach. Line 1 initializes the lower and upper bounds, sets X̂ = ∅, and

creates a trivial probing plan z̄ = 0. Line 2 computes a lower bound by solving RVF for the

solutions obtained thus far in set X̂ . Line 3 solves the combinatorial problem to minimize

the estimated cost for the probing plan ẑ found in Line 2. Line 4 computes the expected

actual cost and updates the upper bound if necessary. Line 5 stops the execution of the

algorithm if the lower bound is equal to the upper bound. Otherwise, it updates the set

of second-stage solutions by adding all the solutions discovered in Line 3 and goes back to

Line 2 to continue with the cut-generation algorithm.

Algorithm 1 terminates finitely with an optimal solution because the set of all possible

second-stage solutions X is finite. Note that all the problems solved are feasible (setting

all the variables to zero gives a trivial feasible solution) and bounded (all the variables

are binary) and as a result there is no need to check for unboundedness or feasibility. On

the other hand, because of the optimistic assumption that the follower breaks ties among

alternative optimal solutions by selecting the one that minimizes the leader’s objective,
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Algorithm 1: Cutting-plane Algorithm

1: Set LB=−∞, UB=∞, X̂ = ∅, and incumbent solution z̄ = 0.

2: Solve RFV(X̂ ). Set LB=ΓB(X̂ ) and record the optimal probing plan found ẑ.

3: For each scenario ξ ∈Ξ, solve lower-level problem min
{
Ĉ(ẑ, ξ, x) : x∈X

}
and record

the optimal solutions found x̂ξ.

4: If
∑

ξ∈Ξ π
ξC(ξ, x̂ξ)<UB, then update UB=

∑
ξ∈Ξ π

ξC(ξ, x̂ξ) and z̄ = ẑ.

5: If LB=UB, terminate with an optimal solution given by z̄. Otherwise, update

X̂ := X̂ ∪
{⋃

ξ∈Ξ x̂
ξ
}

and return to Line 2.

we need to be careful when recording an optimal solution x̂ξ at Line 3 to account for the

case in which there exist alternative optimal x-solutions (see Appendix B).

The major computational challenge for Algorithm 1 is solving RFV(X̂ ), because enforc-

ing xξ ∈ X requires making copies of all the constraints needed to describe X for each

scenario. As the number of scenarios grows, RFV(X̂ ) becomes prohibitively large and con-

siderably challenging to solve.

4. Theoretical bounds on the performance of probing

In this section we derive theoretical bounds on the difference of objective value that can

be attained with more probing resources (Section 4.1). We also provide an scheme to find

an upper-bound on the budget B∗ that is required to attain the same performance as

full information, i.e., to attain that ΓB∗ = ΓN (Section 4.2). The quality of some of these

bounds are evaluated empirically in Section 6.3.

4.1. Bounds on the value of information and on the price of not having full
information

We derive bounds on the value of information Γ0−ΓB and on the price of not having full

information ΓB − ΓN . We first provide results for the effect of additional probing on the

optimal estimated cost for a given scenario and then construct bounds for the value of

probing in terms of the expected actual cost.

For any given subset of components P ⊆N and any scenario ξ ∈Ξ, let ϕξ
P be the optimal

estimated cost for scenario ξ when the components in P are probed. That is,

ϕξ
P =min

{∑
i∈P

[
ci(1− ξi)+ c′iξi

]
xi +

∑
i∈N\P

[
ci(1− pi)+ c′ipi

]
xi : x∈X

}
. (18)
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Let xξ,P be an optimal solution associated with ϕξ
P . Lemma 1 presents upper and lower

bounds on the difference in optimal estimated cost for two nested probing plans, that is,

two plans such that one probes a subset of the components probed by the other plan.

Lemma 1. Let ξ ∈Ξ and Q⊆P ⊆N be given. Then∑
i∈P\Q

(c′i − ci)(pi − ξi)x
ξ,Q
i ≤ ϕξ

Q −ϕξ
P ≤

∑
i∈P\Q

(c′i− ci)(pi − ξi)x
ξ,P
i . (19)

Proof. For convenience, let us denote

Cξ
i = ci(1− ξi)+ c′iξi i∈N , ξ ∈Ξ and Ĉi = ci(1− pi)+ c′ipi i∈N ,

then ϕξ
Q =

∑
i∈QCξ

i x
ξ,Q
i +

∑
i∈N\Q Ĉix

ξ,Q
i . We have that

ϕξ
Q =

∑
i∈Q

Cξ
i x

ξ,Q
i +

∑
i∈N\Q

Ĉix
ξ,Q
i (20a)

≤
∑
i∈Q

Cξ
i x

ξ,P
i +

∑
i∈N\Q

Ĉix
ξ,P
i (20b)

≤
∑
i∈P

Cξ
i x

ξ,P
i +

∑
i∈N\Q

Ĉix
ξ,P
i −

∑
i∈P\Q

Cξ
i x

ξ,P
i (20c)

≤
∑
i∈P

Cξ
i x

ξ,P
i +

∑
i∈N\P

Ĉix
ξ,P
i +

∑
i∈P\Q

Ĉix
ξ,P
i −

∑
i∈P\Q

Cξ
i x

ξ,P
i (20d)

≤ ϕξ
P +

∑
i∈P\Q

(c′i− ci)(pi− ξi)x
ξ,P
i , (20e)

where the second line follows from the optimality of xξ,Q, the third by rearranging the

terms, and the last one from the definition of ϕξ
P . By doing similar steps, starting from ϕξ

P

rather than ϕξ
Q it can be shown that ϕξ

P ≤ ϕξ
Q+

∑
i∈P\Q(c

′
i−ci)(ξi−pi)x

ξ,Q
i . The combination

of both inequalities gives the result.

Now we turn our attention to the effects of probing on the expected actual cost. For

a given P ⊂N , let γ(P) be the expected actual cost corresponding to nodes in P being

probed, i.e., γ(P) is the objective function in (8) for the probing plan zi = 1 for any i∈P
and zi = 0 i ̸∈ P. From the definition of xξ,P and constraint (8c) it follows that,

γ(P) =
∑
ξ∈Ξ

πξ
∑
i∈N

[
ci(1− ξi)+ c′iξi

]
xξ,P
i . (21)

Note that the relationship between γ(P) and ΓB is given by

ΓB =min{γ(P) : |P|=B,P ⊆N}. (22)
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Theorem 1 presents upper and lower bounds for the change in optimal expected actual

cost corresponding to two nested probing plans.

Theorem 1. Let Q⊆P ⊆N be given. Then,

∑
ξ∈Ξ

πξ
[ ∑
i∈N\P

(c′i − ci)(pi − ξi)(x
ξ,P
i −xξ,Q

i )
]
≤ γ(Q)− γ(P)≤

∑
ξ∈Ξ

πξ
[ ∑
i∈N\Q

(c′i − ci)(pi − ξi)(x
ξ,P
i −xξ,Q

i )
]
. (23)

Proof. Note that

∑
i∈N

Cξ
i x

ξ,P
i =

∑
i∈P

Cξ
i x

ξ,P
i +

∑
i∈N\P

Ĉix
ξ,P
i +

∑
i∈N\P

(Cξ
i − Ĉi)x

ξ,P
i (24a)

= ϕξ
P +

∑
i∈N\P

(c′i − ci)(ξi − pi)x
ξ,P
i . (24b)

and therefore

γ(P) =
∑
ξ∈Ξ

πξ
(
ϕξ
P +

∑
i∈N\P

(c′i − ci)(ξi − pi)x
ξ,P
i

)
. (25)

Because an analogous result holds for Q, we conclude that

γ(Q)− γ(P) =
∑
ξ∈Ξ

πξ
(
ϕξ
Q −ϕξ

P +
∑

i∈N\Q

(c′i − ci)(ξi − pi)x
ξ,Q
i −

∑
i∈N\P

(c′i − ci)(ξi − pi)x
ξ,P
i

)
(26a)

≤
∑
ξ∈Ξ

πξ
( ∑
i∈P\Q

(c′i − ci)(pi − ξi)x
ξ,P
i +

∑
i∈N\Q

(c′i − ci)(ξi − pi)x
ξ,Q
i −

∑
i∈N\P

(c′i− ci)(ξi − pi)x
ξ,P
i

)
(26b)

≤
∑
ξ∈Ξ

πξ
( ∑
i∈N\Q

(c′i− ci)(ξi − pi)x
ξ,Q
i −

∑
i∈N\Q

(c′i − ci)(ξi − pi)x
ξ,P
i

)
, (26c)

where (26b) follows from the upper-bound in Lemma 1, and thus the upper-bound in (23)

follows. The lower-bound in (23) follow from a similar procedure, using the lower-bound

in Lemma 1.

Theorem 1 can be used to provide non-trivial bounds on ΓB −ΓB′ for any B′ >B ≥ 0.

These bounds, however, require to know in advance optimal solutions to the second-stage

problem. Corollary 1, shown next, removes some of these limitation and provides upper-

bounds that only depend on the cost coefficients and the ‘inner-most’ optimal plan.
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Corollary 1. Let Q⊆P ⊆N be given. Then,

− 2
∑

i∈N\P

(c′i − ci)pi(1− pi)≤ γ(Q)− γ(P)≤ 2
∑

i∈N\Q

(c′i − ci)pi(1− pi). (27)

Moreover,

−
∑

i∈N\P

(c′i − ci)pi(1− pi)≤ γ(∅)− γ(P)≤
∑
i∈N

(c′i − ci)pi(1− pi). (28)

In particular

− 1

2

∑
i∈N\P

(c′i − ci)≤ γ(Q)− γ(P)≤ 1

2

∑
i∈N\Q

(c′i − ci), (29)

and

− 1

4

∑
i∈N\P

(c′i− ci)≤ γ(∅)− γ(P)≤ 1

4

∑
i∈N

(c′i− ci). (30)

Proof. By Theorem (1) we have that,

γ(Q)− γ(P)≤
∑
ξ∈Ξ

πξ
[ ∑
i∈N\Q

(c′i − ci)(pi − ξi)(x
ξ,P
i −xξ,Q

i )
]

(31a)

=
∑

i∈N\Q

(c′i − ci)
∑
ξ∈Ξ

πξ(pi − ξi)(x
ξ,P
i −xξ,Q

i ) (31b)

=
∑

i∈N\Q

(c′i − ci)
[ ∑
ξ∈Ξ,ξi=0

πξ(pi − ξi)(x
ξ,P
i −xξ,Q

i )+
∑

ξ∈Ξ,ξi=1

πξ(ξi − pi)(x
ξ,Q
i −xξ,P

i )
]
.

(31c)

Fix i∈N and note that∑
ξ∈Ξ,ξi=0

πξ(pi− ξi)(x
ξ,P
i −xξ,Q

i ) =
∑

ξ∈Ξ,ξi=0

πξpi(x
ξ,P
i −xξ,Q

i ) (32)

≤
∑

ξ∈Ξ,ξi=0

πξpi (33)

≤ pi(1− pi), (34)

where the first inequality follows because πξpi ≥ 0 and xξ,P
i −xξ,Q

i ≤ 1 and the final inequal-

ity because
∑

ξ∈Ξ,ξi=0 π
ξ = 1− pi. Analogously,∑

ξ∈Ξ,ξi=1

πξ(ξi − pi)(x
ξ,Q
i −xξ,P

i ) =
∑

ξ∈Ξ,ξi=1

πξ(1− pi)(x
ξ,Q
i −xξ,P

i ) (35)

≤
∑

ξ∈Ξ,ξi=1

πξ(1− pi) (36)
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≤ (1− pi)pi. (37)

Thus, it can be concluded that

γ(Q)− γ(P)≤
∑

i∈N\Q

2(c′i − ci)pi(1− pi).

The final inequality follows since pi(1− pi)≤ 1/4 as pi ∈ [0,1] for all i∈N .

Now, suppose Q= ∅. In this case, optimal solution xξ,∅ do not depend on ξ, and therefore

xξ,∅ = x0 for all ξ ∈Ξ. In this case, Equation (31c) becomes

γ(∅)− γ(P)≤
∑
i∈N

(c′i − ci)
[ ∑
ξ∈Ξ,ξi=0

πξpi(x
ξ,P
i −x0

i )+
∑

ξ∈Ξ,ξi=1

πξ(1− pi)(x
0
i −xξ,P

i )
]

(38)

≤
∑
i∈N

(c′i − ci)
[ ∑
ξ∈Ξ,ξi=0

πξpix
ξ,P
i −

∑
ξ∈Ξ,ξi=1

πξ(1− pi)x
ξ,P
i − pi(1− pi)x

0
i + pi(1− pi)x

0
i

]
(39)

≤
∑
i∈N

(c′i − ci)
[ ∑
ξ∈Ξ,ξi=0

πξpix
ξ,P
i −

∑
ξ∈Ξ,ξi=1

πξ(1− pi)x
ξ,P
i

]
(40)

≤
∑
i∈N

(c′i − ci)pi(1− pi), (41)

where the last inequality follows as 0≤ xξ,P
i ≤ 1 for all ξ ∈Ξ.

Let B ⊆N denote the components probed in an optimal probing plan associated with

ΓB. Corollary 1 implies that the value of information, Γ0−ΓB, is upper-bounded by

Γ0−ΓB ≤
∑
i∈N

(c′i − ci)pi(1− pi)≤
1

4

∑
i∈N

(c′i − ci), (42)

for any 1 ≤ B ≤ N . Similarly, for the price of not having full information, ΓB − ΓN , we

have

ΓB −ΓN ≤ 2
∑

i∈N\B

(c′i − ci)pi(1− pi)≤
1

2

∑
i∈N\B

(c′i − ci). (43)

Observe that there is a remarkable asymmetry in these bounds. On the one hand, the

bound on the value of information does not depend on the number of components that are

probed, whereas the bound on the price of not having full information does. The bound

on the value of information might be explained from the observation that, in general,

one might gather all the relevant uncertain information of the system by just probing

one component (see for example, Remark 1). The bound for the price of not having full
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information might be interpreted as implying that there exist instances where optimally

placed probes always reveal at least some information about the remaining uncertainty.

Next, we provide an example that show that where some of these bounds are tight.

Remark 1. Consider the shortest path problem in Figure 1 with source node 1 and sink

node 3 with ϵ > 0 arbitrary. On each arc there is a failure with probability 1/2. If there is no

probing resources available, i.e., if B = 0, then the estimate for both paths is the same (both

are estimated to be 1) and both have the same actual expected cost of 1, therefore Γ0 = 1.

Now consider B = 1 and that arc (1,3) is probed. Then, in all scenarios ξ with ξ(1,3) = 0

the optimal path is 1-3, with a cost 1− ϵ. By contrast, in all scenarios ξ with ξ(1,3) = 1,

the optimal path is 1-2-3, with a cost of 1. The actual expected cost in this case would be

1/2× (1− ϵ) + 1/2× (1) = 1− ϵ/2. Moreover, it can be verified that if B = 1 then probing

(1,3) is optimal, therefore, Γ1 = 1− ϵ/2 and Γ0 − Γ1 = ϵ/2. Evaluating the upper-bound

proposed we get that
∑

i∈N (c′i− ci)/4 = ϵ/2, which is exactly the same as Γ0−Γ1, and thus

the upper bound in Corollary 1, particularly Equation (42), is tight.

1

2

3
1 − 𝜖𝜖, 1 + ϵ

1
2

,
1
2

Figure 1 Over each arc we denote the costs by ci, c
′
i.

4.2. Upper-bound on probing budget

Next, we derive a bound on the amount of budget needed to achieve the same objective

value as when solving the problem under perfect information. Formally, we are interested

in finding the minimum budget value B∗ such that ΓB∗ =ΓN . The problem of finding B∗ is

at least as challenging as solving the original problem since for any candidate budget value

B′ we must solve the original problem to optimality in order to obtain ΓB′. As a result, we

propose a simpler approach to obtain an upper bound on B∗ described in Algorithm 2.

Line 1 starts the procedure by solving the problem under perfect information and record-

ing the optimal solutions found for each scenario denoted by x̂ξ. The intuition behind our
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proposed approach is that a probing plan the probes all the components i∈N for which at

least one solution x̂ξ
i = 1 is likely to achieve an objective value close to ΓN . For this reason,

Line 1 defines set Q to contain all the components described above. Line 2 sets a probing

plan ẑ to probe all the components included in set Q and solves the follower problems of

minimizing the estimated cost for each scenario. Line 3 checks if, for each scenario, the

optimal estimated cost obtained is equal to the estimated cost function evaluated at x̂ξ. If

this is the case, then probing plan ẑ achieves an objective function equal to ΓN since each

x̂ξ is an alternative optimal solution to the follower problem of minimizing the estimated

cost and B̂ = |Q| establishes an upper bound on B∗. Otherwise, there must exist at least

one scenario ξ ∈Ξ and one component j ∈N \Q for which the solution that minimizes the

estimated cost function does not match x̂ξ
j . Line 4 identifies this component, adds it to set

Q, and returns to Line 2 to update the probing plan and continue executing the algorithm.

Algorithm 2: Budget Upper Bound Algorithm

1: Solve the limiting case in which B =N and record the optimal solutions found for

each scenario x̂ξ. Define set Q= {i∈N : ∃ξ such that x̂ξ
i = 1}.

2: Set probing plan ẑi = 1 for all i∈Q and ẑi = 0 otherwise. For each scenario ξ ∈Ξ,

solve lower-level problem min
{
Ĉ(ẑ, ξ, x) : x∈X

}
and record the optimal solutions

found x̃ξ.

3: If Ĉ(ẑ, ξ, x̃ξ) = Ĉ(ẑ, ξ, x̂ξ) for all ξ ∈Ξ, then go to Line 5. Otherwise, go to Line 4.

4: Identify a component j ∈N \Q for which x̃ξ
j ̸= x̂ξ

j for some ξ ∈Ξ. Update set

Q :=Q∪{j} and return to Line 2.

5: Terminate with an upper bound on B∗ given by B̂ = |Q|.

The algorithm terminates in a finite number of steps because in the worst case it obtains

Q=N and returns the trivial bound B̂ =N .

5. Heuristic approaches

We propose three heuristic solution approaches for the problem. Our first heuristic is a

simple randomized greedy constructive approach that prioritizes probing components with

low cost coefficients. Algorithm 3 describes our proposed heuristic approach.
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Algorithm 3: Randomized Greedy Heuristic

1: Sort the components i∈N according to their cost coefficients. Let π be the ordering

of the components, where πk denotes the index for the kth component in ordering π.

2: For k= 1, . . . ,N set probing plan ẑπk
= 1 with probability λ. Stop once B components

have been selected or when k=N .

3: For each scenario ξ ∈Ξ, solve lower-level problem min
{
Ĉ(ẑ, ξ, x) : x∈X

}
and record

the optimal solutions found x̂ξ. Store the objective value given by
∑

ξ∈Ξ π
ξC(ξ, x̂ξ).

4: Repeat lines 2 and 3 for a given number of iterations. Return the best solution found.

Line 2 introduces randomization, depending on the parameter λ∈ [0,1], in order to add

diversity to the pool of solutions explored. We consider this first approach as the most

naive way in which a practitioner could quickly obtain probing plans for their problem.

Thus, we use this heuristic as a baseline to measure the performance of our more advanced

heuristic approaches described below.

Our second heuristic approach follows the same intuition as our procedure to find an

upper bound on B∗. That is, the components for which x-solutions to the perfect informa-

tion setting are equal to 1 could be good candidates to be probed. Algorithm 4 describes

our second heuristic approach.

Algorithm 4: Heuristic Based on Perfect Information

1: Solve the limiting case in which B =N and record the optimal solutions found for

each scenario xξ,N . For each i∈N record the number of scenarios in which xξ,N
i = 1.

Denote this number by si.

2: Sort the components i∈N in non-increasing order according to si. Let π be the

ordering of the components, where πk denotes the index for the kth component in

ordering π.

3: For k= 1, . . . ,N set probing plan ẑπk
= 1 with probability λ. Stop once B components

have been selected or when k=N .

4: For each scenario ξ ∈Ξ, solve lower-level problem min
{
Ĉ(ẑ, ξ, x) : x∈X

}
and record

the optimal solutions found x̂ξ. Store the objective value given by
∑

ξ∈Ξ π
ξC(ξ, x̂ξ).

5: Repeat lines 2 to 4 for a given number of iterations. Return the best solution found.

In this case the ordering prioritizes components for which xξ,N
i = 1 across multiple sce-

narios. As with the first heuristic, line 3 introduces randomization in order to add diversity

to the pool of solutions explored.
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Our third heuristic approach defines probing plans according to the estimated cost func-

tion. We consider the problem of minimizing the expected estimated cost:

min
z,xΞ

∑
i∈N

[
ci
(
(1− ξi)zi +(1− pi)(1− zi)

)
xi+ c′i

(
ξizi + pi(1− zi)

)
xi

]
(44a)

s.t.
∑
i∈N

zi ≤B (44b)

xξ ∈X ∀ξ ∈Ξ (44c)

z ∈ {0,1}N , (44d)

which is a single-level problem that can be readily solved with an off-the-shelf optimization

solver. The intuition behind our third heuristic approach is that (near) optimal solutions to

(44) have a high chance of performing well in the original problem. Algorithm 5 describes

our third heuristic approach.

Algorithm 5: Heuristic Based on Minimizing the Estimated Cost Function

1: Solve problem (44) and record the optimal probing plan ẑ and the optimal solutions

found for each scenario x̂ξ.

2: For each scenario ξ ∈Ξ, compute the expected actual cost given by
∑

ξ∈Ξ π
ξC(ξ, x̂ξ).

3: Add a no-good cut
∑

i∈N :ẑi=1 zi ≤
∑

i∈N ẑi− 1 to formulation (44). Repeat lines 1 and

2 for a given number of iterations. Return the best solution found.

6. Computational results

We conduct a computational study to compare the performance of the proposed algorithms.

We measure the value of information and the price of not having full information over a

set of instances from the literature for a shortest path problem, and over a set of synthetic

instances for a project selection problem. We code our algorithms in Java using Eclipse

SDK version 4.7.1 and all optimization problems are solved using CPLEX 20.1 with a time

limit of one hour (3600s). All experiments are conducted on an Intel(R) Xeon(R) CPU

E5-1650 v4 at 3.60GHz with 32GB of memory. The source code and problem instances

will be publicly available at GitHub.

We use sample average approximation (SAA) to estimate the second-stage expected value

since |Ξ| grows exponentially as N increases. We note that SAA is a common approach

to estimate expectations in two-stage settings. SAA has an exponentially fast convergence

rate in terms of the number of scenarios used (Kleywegt et al. 2002) and has been shown

to be highly accurate in routing problems (Verweij et al. 2003).
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6.1. Results for a shortest path problem with disruptions and probing

We first study a shortest path problem in which arcs are susceptible to uncertain dis-

ruptions that increase their cost and the decision maker is able to probe a limited set

of arcs, revealing if a disruption impacts (or not) each arc probed, before planning their

route/path.

We consider a graph G = (V,A), where V is the set of nodes and A⊆V ×V is the set of

arcs. The nominal cost for arc a∈A is denoted by ca and when a disruption impacts arc a

there is a cost increase of da units. Let x be a vector of variables corresponding to the flow

on arcs in A, let s be the source node, t be the destination node, and let γ+(u)/γ−(u) be

the arcs directed out of/into node u, respectively. The set X of feasible solutions for this

problem is given by:∑
a∈γ+(s)

xa =
∑

a∈γ−(t)

xa = 1 (45a)

∑
a∈γ+(u)

xa =
∑

a∈γ−(u)

xa ∀u∈ V \ {s, t} (45b)

x∈ {0,1}|A|. (45c)

We use a subset of problem instances from Lozano and Smith (2017a), which are in

turn based on a grid network structure commonly used in the literature (Israeli and Wood

2002, Cappanera and Scaparra 2011). These networks have nodes arranged in a grid of

m rows and n columns. We consider networks of sizes 5× 5 (27 nodes and 86 arcs) and

10× 10 (102 nodes and 416 arcs) to test the exact value function approach and networks

of size 20× 20 (402 nodes and 1826 arcs) and 30× 30 (902 nodes and 4236 arcs) to test

the heuristic approaches. For each network size there are 10 different problem instances for

which the values of ca and da are randomly generated between [1,100] and for the probing

budget we consider values of B to be roughly in {0.05|A|,0.1|A|,0.2|A|}.

We denote by Ξ̂ ⊆ {0,1}|A|, the set of scenarios of the SAA, and consider problem

configurations with |Ξ̂| ∈ {10,30,50} to test the exact approach and |Ξ̂| ∈ {100,500} to

test the heuristics. To generate the scenarios in Ξ̂, we set the probability of disruptions

pa = 0.5 for every arc. As a result, for each scenario ξ ∈ Ξ̂ and each arc a∈A, we randomly

set ξa = 1 with 50% chance or ξa = 0 with 50% chance. Since we are using SAA, we set

πξ =
1

|Ξ̂| for all ξ ∈ Ξ̂.
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Table 1 shows the result of our experiments for the exact approach. The first column

presents the grid size. The second and third columns show the number of nodes and arcs in

the network. The fourth column shows the number of scenarios. The fifth column presents

the average optimal expected actual cost with no probing (Γ0) and the sixth column shows

the average optimal expected actual cost with full information (ΓN), where N = |A| for

this problem. Columns seven and eight show the average bound on the minimum budget

needed to obtain an optimal value equal to ΓN (denoted by B̂) and the value of the budget

constraint (denoted by B). Columns nine and ten show the average and maximum full

information gap (FIG) computed as

FIG=
Γ0−ΓN

Γ0

. (46)

Columns 11 to 15 present for the value function approach the average CPU time, the

average lower and upper bounds obtained within the time limit, the average optimality

gap, and the number of instances solved to optimality.

We are also interested in measuring the value of information and the price of not having

full information. The last two columns of 1 present two such measures. The first one is a

standardized measure of the value of information and is computed as

Probing Value =
Γ0−ΓB

Γ0

. (47)

The second measure standardizes the price of not having full information and is given by

Price Gap=
ΓB −ΓN

ΓB

. (48)

For instances not solved to optimality, we use the best solution available as a proxy for ΓB

in the calculation of the performance measures, which means that the computations of our

performance measures are approximate: the probing values we obtain are a lower bound

on the true value whereas the price gap values we obtain provide an upper bound for the

true value. Each row in Table 1 summarizes the results for 10 different problem instances.

The full information gap is on average 23%, with values as high as 34%, which indicates

that there are considerable potential improvement to be achieved by probing. Moreover,

the bound on the minimum budget needed to obtain an optimal value equal to ΓN is consis-

tently less than 50% of the total number of arcs, with values ranging between roughly 16%

to 49% depending on the number of scenarios, which shows that for this dataset probing
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a relatively small fraction of the total arcs is often sufficient to match the performance of

perfect information. This result is also supported by the price gap measure, which shows

that for most instances probing only 20% of the arcs yields objective values within 3% of

ΓN and in some cases produces solutions with objective equal to ΓN . Regarding the value

of information, probing leads to an 18% average improvement to the objective value with

respect to Γ0, depending on the available budget. We remark that probing only 5% of the

arcs achieves improvements of up to 23% in some instances, and the only case in which the

probing value is low (1%) corresponds to a set of instances that are not solved to optimality

by the exact algorithm, and for which the average optimality gap is 24%, suggesting that

for these instances our method fails to obtain high-quality probing plans. Our main take

away from the probing value measure is that probing a relatively small fraction of arcs

often results in considerable improvements to the objective value.
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Regarding the computational performance of our exact algorithm, Table 1 shows that we

solve 119 out of the 180 instances in this dataset to optimality within the time limit. The

solution time is highly dependent on the number of scenarios and the budget. Instances with

higher budgets seem to be solved faster than instances with tight budgets and the solution

times increase considerably for instances with more scenarios. The average optimality gap

is 4% with values ranging from 1% to 24%, where the worst optimality gaps correspond to

instances with tight budget, reinforcing the idea that instances with low budgets tend to

be harder to solve.

We now turn our attention to the heuristic approaches. We refer to the randomized

greedy heuristic as H1, to the heuristic based on a perfect information solution as H2, and

to the heuristic based on minimizing the estimated cost function as H3.

We first use the lower bounds obtained with the value function approach for the 5× 5

and 10× 10 instances to assess the performance of the heuristics in terms of optimality

gap. We find that for these problem instances H1 finds solutions within 13% of the lower

bound on average, H2 finds solutions within 6% of the lower bound, and H3 is the best

performer on average finding solutions within 4% of the lower bound. The detailed results

of this experiment are reported in Table 7 in Appendix C.

We also compare the performance of the heuristic approaches over the larger problem

instances 20×20 and 30×30. Table 2 reports the results of this experiment. Column “Obj”

shows the average objective function value for the best solution found be each heuristic. The

remaining columns present the same information as before, where each row summarizes the

results for 10 different problem instances. Bold numbers in the objective column indicate

the best performing heuristic for each row and are used to compute the average probing

value and price gap. In this experiment we used a small subset of the scenarios in Ξ̂ when

minimizing the estimated cost function for H3 since solving the resulting discrete quadratic

problem becomes too computationally taxing for large values of |Ξ̂|.
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The full information gap for these larger problem instances is on average 31%, with values

as high as 36%, which is larger than for the smaller networks. The bound for the amount

of budged needed to achieve ΓN ranges from roughly 21% to 33% of the total number of

arcs, which again shows that for this problem probing a relatively small fraction of the

arcs often guarantees the same performance as having full information. This idea is again

reinforced by the price gap, which is on average 10%, indicating that we are able to find

solutions with objective value within 10% of ΓN on average with the proposed heuristics.

We remark that optimal probing plans would probably yield even lower values for the

price gap. Regarding the value of information, the probing value measure is consistently

above 20% even for small budgets of roughly 5% of the total number of arcs. This again

shows that probing a small fraction of arcs can lead to considerable improvements to the

objective value even when using our proposed heuristics that do not guarantee an optimal

probing plan.

In terms of the computational performance, H1 is the fastest with an average CPU time

of 252 seconds, followed by H3 with 356 seconds, and by H2 with 464 seconds. Regarding

solution quality, H2 is clearly the best performer finding the best solutions in 10 out of 12

instance configurations, outperforming H1 on average by 11% and H3 by 3%.

6.2. Results for a project selection problem with disruptions and probing

We also study a project selection problem in which projects are susceptible to uncertain

failures that reduce their profitability. Before deciding their selection, the decision maker

is able to probe a limited set of projects, revealing if a failure impacts (or not) each project

probed with the objective of maximizing the expected actual profit.

We consider a set of projects N = {1, . . . ,N}, each project i ∈ N has a nominal profit

denoted by ci and an investment cost denoted by wi. When a project fails, its profit is

reduced to 0 and the decision maker has a total fund of W to invest among the projects.

Let xi be a binary variable that takes the value of 1 if project i is selected and a value of

0, otherwise. The set X of feasible solutions for this problem is given by a single knapsack

constraint: ∑
i∈N

wixi ≤W (49a)

x∈ {0,1}N . (49b)
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We generate a set of synthetic instances as follows. We consider a number of projects

N ∈ {20,30,40} to test the exact approach and N ∈ {100,200} to test the heuristics. For

each project we draw coefficients wi independently at random from a discrete uniform

distribution U(1,50) and coefficients ci from a discrete uniform distribution U(50,100). We

then set the available funds W = 0.1
∑

i∈N wi. We generate 10 different problem instances

for each value of N considered.

Similar to our first problem, we consider scenario configurations with |Ξ̂| ∈ {10,30,50}

to test the exact approach and |Ξ̂| ∈ {100,500} to test the heuristics. To generate the

scenarios in Ξ̂, we set the probability of failure pi = 0.5 for every project and randomly set

ξi = 1 with 50% chance or ξi = 0 with 50% chance.

Table 3 shows the results of our experiments for the exact approach. The first column

shows the number of projects and the remaining columns display the same metrics as

Table 1 adjusted to reflect the fact that the project selection objective is to maximize the

expected profit (as opposed to minimize the cost). As before, each line summarizes the

results for 10 different problem instances.

The gap between ΓN and Γ0 is on average 36%, which shows that in this problem setting

there are also considerable potential improvements to be achieved by probing. The bounds

on the minimum budget needed to obtain an optimal value equal to ΓN are slightly larger

than for the shortest path problem, with values ranging from roughly 50% to 65% of the

total number of projects. We believe that this is due to the lack of structure connecting

the different projects, opposed to the shortest path setting in which arcs interdependent

because of the underlying network structure. However, it is still holds for these problem

instances that the performance of perfect information can often be achieved without having

to probe every single project (but about 60% of the projects). The price gap shows that

probing a small fraction of the projects yields on average objective values within 15% of ΓN

and in some cases produces solutions with objective within less than 5% of ΓN . Regarding

the value of information, probing leads to a 15% average improvement to the objective

value with respect to Γ0, depending on the available budget, with values reaching as high

as 32%. We conclude that for this project selection problem it is also true that probing

a relatively small fraction of the projects can lead to considerable improvements to the

objective value.
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Table 3 Assessing the performance of the value function approach on knapsack problems

N |Ξ̂| B̂ B Γ0 ΓN Value Function
Time (s) LB UB Gap # Sol Probing Value Price Gap

1 226.9 297.1 2 250.2 250.2 0% 10 10% 16%
10 11.1 3 226.9 297.1 7 274.2 274.2 0% 10 21% 8%

6 226.9 297.1 5 292.9 292.9 0% 10 29% 1%
1 220.7 300.1 15 243.9 243.9 0% 10 10% 19%

20 30 12.2 3 220.7 300.1 46 270.2 270.2 0% 10 22% 10%
6 220.7 300.1 123 290.4 290.4 0% 10 32% 3%
1 219.0 299.2 34 240.5 240.5 0% 10 10% 20%

50 13 3 219.0 299.2 128 266.7 266.7 0% 10 22% 11%
6 219.0 299.2 345 287.6 287.6 0% 10 31% 4%

1 361.6 484.6 7 387.2 387.2 0% 10 7% 20%
10 16.4 3 361.6 484.6 90 423.1 423.1 0% 10 17% 13%

6 361.6 484.6 1598 453.0 454.3 0% 8 25% 7%
1 353.5 485.2 72 377.7 377.7 0% 10 7% 22%

30 30 18.4 3 353.5 485.2 2271 409.3 409.3 0% 10 16% 16%
6 353.5 485.2 3600 437.5 451.7 3% 2 24% 10%
1 349.3 482.5 592 369.1 369.1 0% 10 6% 24%

50 19.2 3 349.3 482.5 3579 398.4 414.7 4% 2 14% 17%
6 349.3 482.5 3600 424.5 463.5 8% 0 22% 12%

1 480.6 643.3 39 506.8 506.8 0% 10 5% 21%
10 21.7 3 480.6 643.3 1871 543.8 544.3 0% 10 13% 15%

6 480.6 643.3 3601 568.4 605.8 6% 0 18% 12%
1 469.0 648.1 1665 493.0 493.0 0% 10 5% 24%

40 30 24 3 469.0 648.1 3600 521.9 567.9 8% 0 11% 19%
6 469.0 648.1 3600 548.4 628.3 13% 0 17% 15%
1 465.6 646.5 3549 486.2 507.4 4% 5 4% 25%

50 24.8 3 465.6 646.5 3600 493.1 591.7 17% 0 6% 24%
6 465.6 646.5 3600 503.7 636.0 21% 0 8% 22%

Total 1527 398.6 416.6 3% 187 15% 15%

In terms of the computational performance, our proposed exact algorithm solves 187 out

of the 270 instances in this dataset to optimality within the time limit. The solution time

is again highly dependent on the number of scenarios and the budget. Contrary to the

shortest path problem, instances with higher budgets seem to be more challenging than

instances with tight budgets (see for example instances with N = 30 and 10 scenarios).

As before, solution times increase considerably for instances with more scenarios. The

average optimality gap is 3% with values as high as 21%, where the worst optimality gaps

correspond to instances with larger budget values.

We run two sets of experiments with the heuristic approaches. The first one compares the

best solutions obtained by the heuristics against the upper bound from the value function

approach. For this problem class, H1 finds solutions within 7% of the upper bound on

average, H2 finds solutions within 5% of the bound, and H3 is the best performer on average

finding solutions within 3% of the upper bound. The detailed results of this experiment

are reported in Table 8 in Appendix C.
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Our second experiment compares the performance of the heuristics over the larger prob-

lem instances. Table 4 reports the results of this experiment. As before, where each row

summarizes the results for 10 different problem instances.

The full information gap for these larger problem instances is on average 29%, with

values as high as 32%. The bound for the amount of budged needed to achieve ΓN is

consistently under 60% of the total number of projects. The price gap is on average 18%

and for many instances we are able to find solutions with objective value within 11% of

ΓN with the proposed heuristics. The probing value measure is on average 17% and even

for small budgets of roughly 5% of the total number of projects, the heuristics are able to

find solutions that are almost 10% better than Γ0.

In terms of the computational performance, H1 is again the fastest with an average

CPU time of 301 seconds, followed by H2 with 200 seconds, and by H3 with 419 seconds.

Regarding solution quality, this time H3 is clearly the best performer finding the best

solutions for all instance configurations and outperforming H1 on average by 6% and H2

by 5%.
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6.3. Additional experiments

We consider smaller instances of the project selection problem with N = 10 projects in

order to solve them with all possible scenarios rather than using SAA. The objective of

this experiment is to check if using all scenarios, instead of using SAA, leads to similar con-

clusions. In this case, |Ξ|= 1024 scenarios and we solve 40 instances with different probing

budgets. The results are in Table 6. For these experiments, the average and maximum FIG

(independently of the budget) are 36% and 51%, respectively. Also, the upper bound B̂ is

5.2 and all 40 instances are solved to optimality.

Table 5 Solving small knapsack problems with all the scenarios

B Γ0 ΓN Value Function
Time (s) ΓB Probing Value Price Gap

1 90.1 120.6 615 106.2 18% 12%
2 90.1 120.6 1038 114.3 27% 5%
3 90.1 120.6 334 118.0 31% 2%
4 90.1 120.6 192 119.9 33% 1%

The results show that similar conclusions are obtained when one uses all scenarios rather

than SAA. We got values for the FIG and B̂/N of around 30% and 50%, respectively, which

are comparable to the corresponding values in Tables 3 and 4. The average probing value

is 27%, which is larger than the values obtained in the previous experiments; however,

in this case B is proportionally larger than the other experiments (in Tables 3 and 4 the

largest budget represented at most 20% of the number of projects, whereas here the largest

budget represents 50% of the projects), which explains the increase. The average price gap

is 5%, which is smaller than in the previous experiments, which can again be explained

by the larger proportion of budget available in this experiment. In conclusion, the results

of this experiment give evidence to suggest that using all scenarios rather than SAA does

not result in a significant different performance.

Using the same small instances we next evaluate the tightness of the bounds given in

Section 4; specifically, that Γ0−ΓB ≤ (1/4)
∑

i∈N (c′i−ci) (referred to as Bound 1) and that

ΓB −ΓN ≤ (1/2)
∑

i∈N\B(c
′
i− ci) (referred as Bound 2), see Equations (42) and (43). These

values are shown in Table 6.

The results in Table 6 show that the theoretical bounds, at least in these instances,

are fairly loose, being several times larger than the true value. This suggest that the

bounds, whereas tight in general (as shown by Remark 1), might be very loose depending
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Table 6 Evaluating the quality of the bounds on small knapsack problems with all the scenarios

B ΓB −Γ0 Bound 1 ΓN −ΓB Bound 2

1 16.1 189.3 14.4 337.7
2 24.2 189.3 6.3 299.0
3 27.9 189.3 2.6 257.1
4 29.8 189.3 0.7 221.7

Total 24.5 189.3 6.0 278.9

on the instance type and data. Consequently, tighter problem-dependent bounds might be

available. For instance, to derive tighter bounds in this class of problems, one might use

the fact that the variables in X are subject to a budget constraint.

7. Conclusions

We study a class of combinatorial problems subject to uncertain disruptions, in which the

decision maker has the ability to gather information (probing) to confirm the occurrence

or absence of disruptions before solving the combinatorial problem. The main focus of our

work is on measuring the value of the information provided by the probing stage.

We represent the problem as a bilevel problem with multiple followers and provide an

exact approach as well as three heuristic approaches. To the best of our knowledge, we

are the first ones to contribute exact approaches for this type of probing problems. We

complete our contributions with bounds on the value of information.

We conduct computational experiments on two problem classes for which the underlying

problems are a shortest path problem and a knapsack problem. Our computations suggest

that even small probing budgets could yield considerable improvements in solution quality

when compared to not doing any probing. This is true not only for the exact approach but

also for the heuristics, which are able to find considerably better solutions when probing

is allowed, compared to the baseline in which there is no probing.

Future research includes developing specialized exact algorithms and acceleration tech-

niques to tackle larger problem instances. Another research venue is applying our modeling

framework to problems stemming from domain areas such as defense, surveillance oper-

ations, or humanitarian logistics, in which uncertain disruptions are likely to occur and

probing could play a major role in improving solution quality.
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Gümüş ZH, Floudas CA (2005) Global optimization of mixed-integer bilevel programming problems. Com-

putational Management Science 2:181–212.



34 Lozano and Borrero: Combinatorial problems with disruptions and probing

Gupta A, Nagarajan V (2013) A stochastic probing problem with applications. Integer Programming and

Combinatorial Optimization: 16th International Conference, IPCO 2013, Valparáıso, Chile, March 18-
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Appendix A: The cost estimate is the conditional expected value

For any probing plan z define Jz = (Ji : zi = 1) and ξz = (ξi : zi = 1). We have that

E[C(J,x)|Jz = ξz] =E
[∑
i∈N

[
ci(1− Ji)xi + c′iJixi

]
|Jz = ξz

]
=
∑
i∈N

[
ci(1−E[Ji|Jz = ξz])xi + c′iE[Ji|Jz = ξz]xi

]
. (50)

Observe that if zi = 1 then E[Ji|Jz = ξz] = ξi whereas if zi = 0 then the independence of the Jis imply that

E[Ji|Jz = ξz] =E[Ji] = pi. Consequently,

E[C(J,x)|Jz = ξz] =
∑

i∈N ,zi=1

[
ci(1− ξi)xi + c′iξixi

]
+

∑
i∈N ,zi=0

[
ci(1− pi)xi + c′ipixi

]
,

which is precisely Equation (2).

Appendix B: Enforcing the optimistic assumption

To make sure that the optimistic assumption is satisfied we need to make a simple solution check in Line 3

of Algorithm 1.

Let x1 be the solution obtained from solving the RVF in Line 2 and let x2 be the solution obtained by

solving the lower-level problem in Line 3. For each scenario ξ ∈Ξ we check if Ĉ(ẑ, ξ, xξ,1) = Ĉ(ẑ, ξ, xξ,2), that

is, the solution obtained by solving RVF is an alternative optimal solution to the lower-level problem. If this

is the case, we record x̂ξ = xξ,1; otherwise, we record x̂ξ = xξ,2.

Doing this ensures that the optimistic assumption is satisfied by the optimal solution obtained at the

termination of the algorithm. To show this consider an optimal solution z̄ obtained via Algorithm 1, and

its corresponding second-stage solution x̄ and optimal objective value ΓB. Assume by contradiction that

the optimistic assumption is not satisfied, i.e., there exists an alternative solution x′ such that Ĉ(z̄, ξ, x̄ξ) =

Ĉ(z̄, ξ, x′ξ) for all scenarios, and C(ξ,x′ξ) < C(ξ, x̄ξ) for at least one scenario ξ ∈ Ξ. This contradicts that

ΓB is the optimal objective value, because solution x′ is a feasible solution to RVF that yields an upper

bound strictly lower than ΓB. In turn, following the update rule described above after solving the lower-level

problems for z̄ would yield an upper bound strictly lower than ΓB as well.

Appendix C: Additional tables

Tables 7 show the results of the experiments for the heuristic approaches over the small and medium-sized

networks for the shortest path problem. The column “gap” displays the optimality gap measured using the

lower bound obtained via the exact value function algorihtm. As before, each row summarizes the results for

10 different problem instances.

Table 8 show the results for the heuristic approaches over the small and medium-sized project selection

instances.
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Table 7 Assessing the performance of the heuristic approaches on shortest path problems

Grid |V| |A| |Ξ̂| B Heu1 Heu2 Heu3
Obj Gap Obj Gap Obj Gap

4 248.4 11% 235.2 6% 227.8 3%
10 8 240.1 11% 226.3 6% 220.4 3%

16 226.8 8% 217.9 4% 213.7 2%
4 252.5 9% 243.6 5% 234.0 2%

5x5 27 86 30 8 246.5 11% 230.6 5% 223.1 2%
16 235.2 10% 217.6 3% 215.2 2%
4 255.2 8% 246.9 5% 236.9 1%

50 8 250.0 11% 235.0 5% 226.3 2%
16 238.5 10% 221.3 3% 218.2 1%

20 373.0 18% 339.8 10% 325.9 6%
10 40 360.8 16% 324.1 7% 311.1 3%

80 334.4 9% 313.4 3% 311.1 3%
20 382.6 19% 351.2 12% 344.7 10%

10x10 102 416 30 40 366.2 16% 332.2 8% 331.0 7%
80 344.2 11% 319.9 5% 322.2 5%
20 385.2 20% 355.1 14% 346.0 11%

50 40 369.7 18% 333.8 9% 329.6 8%
80 347.5 13% 321.3 5% 321.7 6%

Total 303.2 13% 281.4 6% 275.5 4%

Table 8 Assessing the performance of the heuristic approaches on knapsack problems

n |Ξ̂| B H1 H2 H3

Obj Gap Obj Gap Obj Gap

1 248.5 1% 249.2 0.4% 248.5 1%
10 3 256.4 6% 265.0 3% 271.0 1%

6 269.3 8% 288.2 2% 291.8 0.4%
1 242.9 0% 243.5 0.2% 243.5 0.2%

20 30 3 252.3 7% 261.7 3% 268.4 1%
6 266.7 8% 286.8 1% 288.9 1%
1 240.5 0% 240.5 0% 240.5 0%

50 3 251.8 6% 259.8 3% 266.0 0%
6 265.1 8% 283.6 1% 287.0 0%

1 381.5 1% 385.0 1% 384.6 1%
10 3 395.2 7% 402.7 5% 418.4 1%

6 414.3 9% 434.4 4% 443.5 2%
1 375.1 1% 375.3 1% 375.2 1%

30 30 3 382.7 7% 393.3 4% 405.3 1%
6 404.5 10% 424.7 6% 438.1 3%
1 369.0 0% 367.9 0.3% 369.1 0%

50 3 381.4 8% 385.6 7% 398.6 4%
6 399.4 14% 421.3 9% 431.7 7%

1 503.1 1% 499.1 2% 505.4 0.3%
10 3 510.5 6% 516.7 5% 537.4 1%

6 530.7 12% 553.8 9% 574.9 5%
1 491.0 0% 490.4 1% 492.1 0.2%

40 30 3 503.5 11% 511.0 10% 525.1 8%
6 526.0 16% 540.5 14% 564.0 10%
1 485.4 4% 485.1 4% 486.0 4%

50 3 498.8 16% 502.4 15% 519.6 12%
6 519.2 18% 534.5 16% 558.2 12%

383.9 7% 392.7 5% 401.2 3%
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