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Abstract6

We study a class of bi-objective integer programs known as bi-objective knapsack problems (BOKPs).
Our research focuses on the development of innovative exact and approximate solution methods for
BOKPs by synergizing algorithmic concepts from two distinct domains: multi-objective integer pro-
gramming and (deep) reinforcement learning. While novel reinforcement learning techniques have
been applied successfully to single-objective integer programming in recent years, a corresponding
body of work is yet to be explored in the field of multi-objective integer programming. This study
is an effort to bridge this existing gap in the literature. Through a computational study, we demon-
strate that although it is feasible to develop exact reinforcement learning-based methods for solving
BOKPs, they come with significant computational costs. Consequently, we recommend an alterna-
tive research direction: approximating the entire nondominated frontier using deep reinforcement
learning-based methods. We introduce two such methods, which extend classical methods from
the multi-objective integer programming literature, and illustrate their ability to rapidly produce
high-quality approximations.
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1. Introduction9

Multi-objective optimization is an active area of research that primarily focuses on achieving a10

comprehensive understanding of the trade-offs between conflicting objective functions of an opti-11

mization problem. Its main aim is to identify Pareto-optimal solutions, which are solutions where it12

is impossible to improve one objective without adversely affecting at least one other objective. Over13

the past two decades, significant attention has been directed toward the development of numerous14

exact and heuristic solution methods designed to address a specific class of multi-objective optimiza-15

tion problems known as multi-objective integer linear programs [4, 5, 8, 9, 11, 14, 18, 20, 27, 28].16

In this class of optimization problems, all constraints and objective functions are linear, and all17

decision variables are constrained to integer values exclusively.18

The heightened interest in this area is, in part, a result of the substantial advancements in19

single-objective optimization solvers and the fact that a vast number of practical problems can20

be formulated as multi-objective integer programs. While substantial progress has been made21

in algorithmic advancements within multi-objective integer programming, there remain several22

underexplored research areas, primarily driven by the rapid evolution of machine learning. This23

trend is exemplified by the recent surge in efforts to apply machine learning techniques to enhance24



single-objective integer linear programming methods [3]. In contrast, such endeavors have been1

relatively limited in the field of multi-objective integer linear programming. This discrepancy is2

not surprising, considering that similar initiatives typically reach the multi-objective optimization3

domain with some delay due to its inherently greater complexity when compared to its single-4

objective optimization counterparts. In fact, even the existing, albeit limited, efforts have primarily5

been in the opposite direction, i.e., utilizing multi-objective optimization techniques to improve6

machine learning methods [1, 23].7

The gap becomes even more pronounced within a prominent machine learning paradigm known8

as (deep) Reinforcement Learning (RL), which naturally aligns with sequential single-objective9

decision-making problems involving uncertainty. Deep RL emerged approximately a decade ago,10

demonstrating its efficacy in conquering Atari games [15]. Several years after its emergence, re-11

searchers began to explore the prospect of employing RL to solve specific classes of single-objective12

integer programming problems without uncertainty. Such optimization problems need to be trans-13

formed into a sequential decision-making problem before being solved. One of the initial endeavors14

in this direction was undertaken by [16], who sought to solve vehicle routing problems. Since then,15

numerous studies have explored this research avenue [12, 21]. However, comparable endeavors in16

the domain of multi-objective integer programming have been scarce, and this study aims to bridge17

this gap.18

In the context of single-objective integer linear programming, the absence of uncertainty presents19

a considerable challenge when designing deep RL methods: Achieving superior performance com-20

pared to state-of-the-art ‘custom-built’ heuristics in this domain can be hard, i.e., evaluations21

typically involve comparisons with other RL-based methods or general-purpose solution methods.22

Consequently, existing studies have predominantly focused on evaluating the effectiveness of these23

methods in solving single-objective integer linear programming problems rather than their compet-24

itive edge [10, 13]. The hope is that as this research domain matures, deep RL methods can either25

stand on their own as competitive methods or contribute to the development of hybrid methods26

that exhibit competitiveness. A similar trajectory is anticipated in the domain of multi-objective27

integer linear programming.28

With this consideration, in this study, we investigate how fundamental ideas from both multi-29

objective optimization and reinforcement learning can be effectively combined to solve a specific30

class of multi-objective integer programs known as Bi-objective Knapsack Problems (BOKPs).31

Our aim is to present our proposed methods in a clear and understandable manner, making them32

accessible even to readers who may not be familiar with multi-objective integer programming and/or33

RL. This will also help readers envision potential directions for future research. To achieve this goal,34

we begin by demonstrating the development of an exact RL-based method by blending a customized35

adaptation of the ε-constraint method from multi-objective optimization with Q-learning from the36

RL field. Unfortunately, as we show through a small computational experiment, exact RL-based37

methods tend to be computationally slow and require individualized training for each problem38

instance. Nevertheless, this detailed presentation of the exact RL-based approach serves as a39

foundation for introducing the essential principles required for our proposed approximate RL-based40

techniques.41

Specifically, we introduce two approximate RL-based methods that enable the effective genera-42

tion of a single deep neural network for approximating nondominated frontiers instead of training43

many networks to produce points from different regions in the criterion space [25]. The first method44

is an extension of the proposed exact RL-based approach which combines a customized variation of45
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the ε-constraint method with the deep Q-learning. The second method combines deep Q-learning1

with the weighted sum method. A notable advantage of the proposed approximate RL-based2

methods is their ability to be trained for a class of instances without the need for instance-specific3

training. As mentioned earlier, it is not practical to benchmark RL-based methods against state-4

of-the-art solutions, as these methods are still in their early stages of development. However, we5

can illustrate their potential. To demonstrate this potential, we focus on a hard class of BOKPs,6

which are known to pose significant challenges for existing solution methods even when there is7

only a single objective [26, 22]. These hard BOKPs serve as an ideal testing ground for evaluating8

the effectiveness of our proposed approximate RL-based methods. In a computational analysis, we9

first demonstrate that our methods provide high-quality approximations for small-sized instances,10

where the exact nondominated frontier can be computed. For larger instances, we compare the11

performance of our methods against a state-of-the-art heuristic [30], and show that it can rapidly12

generate better approximations.13

The rest of this paper is organized as follows: In Section 2, we provide some preliminary14

concepts. Section 3 elaborates on the proposed exact RL-based method. Section 4 provides an15

in-depth explanation of the proposed approximate RL-based methods. Section 5 encompasses a16

computational study. Finally, in Section 6, we offer concluding remarks.17

2. Preliminaries18

A biobjective optimization problem can be stated as follows,19

max {z1(x), z2(x)}
s.t. x ∈ X

(1)20

where X represents the feasible set in the decision space, and zk(x) for each k = 1, 2 represents21

an objective function. We denote all the vectors using bold fonts in this study. The image Y of22

X under vector-valued function z = {z1, z2} represents the feasible set in the objective/criterion23

space, i.e., Y := z(X ) := {y ∈ R2 : y = z(x) for some x ∈ X}.24

Definition 1. A feasible solution x′ ∈ X is called efficient or Pareto optimal, if there is no other25

x ∈ X such that zk(x) ≥ zk(x
′) for k = 1, 2 and z(x) ̸= z(x′). If x′ is efficient, then z(x′) is26

called a nondominated point. The set of all efficient solutions x′ ∈ X is denoted by XE. The set27

of all nondominated points z(x′) ∈ X for some x′ ∈ XE is denoted by YN and referred to as the28

nondominated frontier.29

The focus of this study is on a class of bi-objective optimization problems known as Bi-Objective30

Knapsack Problem (BOKPs) where31

X := {x ∈ {0, 1}n :

n∑
i=1

wixi ≤W},32

and33

zk(x) :=

n∑
i=1

cki xi ∀k ∈ {1, 2}.34
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It is assumed that all coefficients/parameters are non-negative integers, i.e., w ∈ Zn
+, W ∈ Z+,1

and ck ∈ Zn
+ for each k = 1, 2. A desirable characteristic of any Binary Knapsack Optimization2

Problem (BOKP) lies in its finite nondominated frontier, leading to the availability of numerous3

algorithms for solving any BOKP. In the remaining of this section, we introduce two classical4

algorithms for solving BOKPs, which we later adapt to develop reinforcement learning-based al-5

gorithms aimed at solving BOKPs. The first approach is an exact method, while the second is an6

approximation method.7

A well-known classical exact method to generate the nondominated frontier of a BOKP is the8

augmented ε-constraint method [7, 17]. The algorithm solves the following scalarization problem,9

i.e., single-objective integer linear program, at each iteration,10

max
x∈X

λz1(x) + z2(x) =

n∑
i=1

(λc1i + c2i )xi

s.t.
n∑

i=1

c2ixi ≥ C∗
2 + ε,

(2)11

where C∗
2 represents a parameter that acts as a lower bound on the second objective function’s12

value, while ε takes on a sufficiently small value, and λ adopts a sufficiently large value. It is13

important to note that the value of C∗
2 undergoes changes after each iteration, whereas the other14

two parameters are fixed from the beginning. Specifically, considering our assumption that all15

parameters are integers, it is safe to assign ε = 1 and λ = 1 +
∑n

i=1 c
2
i . The latter choice implies16

that the second objective function should only be optimized if there is no further way to enhance17

the first objective function’s value, even by a single unit. Essentially, the primary objective of the18

method during each iteration is to optimize the first objective function.19

Algorithm 1: The augmented ε-constraint method

1 Inputs: An instance of BOKP
2 C∗

2 ← −1
3 YN ← ∅
4 SearchDone← False
5 while SearchDone is False do
6 x∗ ← Eps(C∗

2 )
7 if x∗=Null then
8 SearchDone← True

9 else
10 z∗ ← (

∑n
i=1 c

1
ix

∗
i ,
∑n

i=1 c
2
ix

∗
i )

11 Add z∗ to YN
12 C∗

2 ← z∗2

13 return YN

Algorithm 1 details the procedure of the augmented ε-constraint method. In this algorithm, we20

use the operation Eps(C∗
2 ) to show that Problem (2) is solved for a given C∗

2 . The output of the21

operation Eps(C∗
2 ) is an optimal solution x∗ for Problem (2) in each iteration. If Problem (2) is22

infeasible, the operation Eps(C∗
2 ) sets x∗ to null. Importantly, during any iteration, if x∗ ̸= null ,23

then x∗ is known to be an efficient solution. Thus, in such cases, z∗ := (
∑n

i=1 c
1
ix

∗
i ,
∑n

i=1 c
2
ix

∗
i ) is a24
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nondominated point, which is subsequently appended to the list of previously identified nondomi-1

nated points. Initially, C∗
2 can be set to −1 (or −∞). Following the discovery of a nondominated2

point z∗ within an iteration, the ensuing task involves locating the subsequent closest nondomi-3

nated point to it in the next iteration. This succeeding point’s second objective function value is4

strictly greater than z∗2 . Consequently, at the end of each iteration, C∗
2 can be updated to z∗2 . The5

algorithm terminates as soon as Eps(C∗
2 ) returns null, denoting the successful identification of all6

nondominated points.7

Algorithm 2: The weighted sum method

1 Inputs: An instance of BOKP

2 ŶN ← ∅
3 SearchDone← False
4 while SearchDone is False do
5 if there is no other value for θ that needs to be explored then
6 SearchDone← True

7 else
8 Choose a new value for θ
9 x∗ ← WSM(θ)

10 z∗ ← (
∑n

i=1 c
1
ix

∗
i ,
∑n

i=1 c
2
ix

∗
i )

11 Add z∗ to ŶN

12 return ŶN

The second classical method is known as the weighted sum method in the literature of multi-8

objective optimization. This method is known to be only an approximate method for non-convex9

bi-objective optimization problems such as BOKPs. Specifically, this method does not guarantee10

the generation of all nondominated points of BOKPs; instead, it produces a subset of nondominated11

points denoted by ŶN . The weighted sum method is outlined in Algorithm 2. At each iteration, it12

solves the following scalarization problem:13

max
x∈X

n∑
i=1

θc1ixi + (1− θ)c2ixi =
n∑

i=1

(θc1i + (1− θ)c2i )xi (3)14

where θ ∈ (0, 1). We utilize the operation WSM(θ) to show that Problem (3) is solved in Algo-15

rithm 2 for a given θ. It is worth mentioning that selecting the value of θ can be systematically16

accomplished, requiring only a finite number of choices [2, 19]. However, it is not trivial how such17

systematic schemes can be utilized in the context of RL. So, instead, we adopt a straightforward18

yet effective scheme in this study for developing RL-based solution methods, see Section 4.19

3. An Exact RL-based Method20

In this section, we propose an exact RL-based method for solving BOKPs. To achieve this, we21

combine and utilize ideas from two distinct fields: Q-learning from the RL literature and a modified22

version of the ε-constraint method from the multi-objective optimization literature that we call it23

pseudo augmented ε-constraint method. It is important to note that we deliberately abstain from24

employing the weighted sum method in this section. The rationale is that developing an exact25
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RL-based method by building upon an approximate technique such as the weighted sum method1

poses non-trivial challenges. Throughout this section, our proposed method is referred to as pseudo2

augmented ε-constraint Q-learning. The proposed method is specifically designed to “learn” to3

generate an optimal solution of the following problem,4

max
x∈X

λz1(x) + z2(x) =

n∑
i=1

(λc1i + c2i )xi

s.t.

n∑
i=1

c1ixi ≤ C∗
1 .

(4)5

for different values of C∗
1 where C∗

1 is a parameter that acts as an upper bound for the value of the6

first objective function. As an aside, in this study, we sometimes use the operation PseudoEps(C∗
1 )7

to show that Problem (4) is solved for a given C∗
1 . The learning process will be conducted using8

Q-learning, a method that is guaranteed to yield an optimal solution for Problem (4) with sufficient9

time allocation [29]. Therefore, instead of using standard exact optimization techniques to solve10

Problem (4), we choose to adopt a methodology centered on learning. It is important to highlight11

that Problem (4) stands apart from Problem (2), which constitutes the core of Algorithm 1. This12

distinction leads us to call it the pseudo ε-constraint optimization problem. The use of the term13

“pseudo” arises from the fact that its optimal solutions are not necessarily efficient (or Pareto op-14

timal) for a given C∗
1 value. Nonetheless, in accordance with Proposition (1), when considering the15

complete spectrum of C∗
1 values, the entire nondominated frontier can be derived (after eliminating16

dominated points).17

Proposition 1. For every efficient solution x′, there exists a corresponding C∗
1 ∈ Z such that x′

18

is an optimal solution for Problem (4).19

Proof. We prove by contradiction. Suppose that there exists an efficient solution x′ but it is not
an optimal solution for Problem (4) for any value of C∗

1 ∈ Z. We know that z1(x
′) ∈ Z because by

assumptions all parameters of any BOKP are integers. So, we can set C∗
1 = z1(x

′), and consider
any optimal solution of Problem (4), denoted by x∗. We also note that by construction, because
λ = 1 +

∑n
i=1 c

2
i , when solving Problem (4), z2(x) will be optimized only if there is no way to

improve the value of z1(x) further even by one unit. With this in mind, since C∗
1 is a bound on the

value of z1(x) in Problem (4), we know that z1(x
∗) ≤ C∗

1 . However, it is possible to achieve this
bound because x′ is a feasible solution with z1(x

′) = C∗
1 . So, we must have that z1(x

∗) = C∗
1 too,

i.e., z1(x
′) = z1(x

∗). Now, we know that x′ is not an optimal solution of Problem (4) for any C∗
1 .

So, we must have that

λz1(x
′) + z2(x

′) =
n∑

i=1

(λc1i + c2i )x
′
i <

n∑
i=1

(λc1i + c2i )x
∗
i = λz1(x

∗) + z2(x
∗).

Therefore, since z1(x
′) = z1(x

∗), we must have that z2(x
′) < z2(x

∗). So, x′ cannot be an efficient20

solution because it is dominated by x∗ which is a contradiction. □21

In summary, our proposed method systematically traverses the complete spectrum of C∗
1 values,22

utilizing Q-learning to generate optimal solutions. After generating optimal solutions for all C∗
123

values, inferior solutions are filtered out, leaving the entire nondominated frontier for reporting. It24
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is noteworthy that our decision to employ Problem (4) within our proposed technique stems from1

a key rationale. In the context of BOKPs, Problem (4) is always feasible. This is because it is2

always possible to create a feasible solution by setting all decision variables equal to zero. This3

intrinsic feasibility makes the development an RL approach for Problem (4) more convenient as4

such a method naturally focuses on maximizing total rewards rather than directly addressing issues5

related to infeasibility.6

3.1. A Markov Decision Process Formulation7

In order to develop an RL approach for learning to generate an optimal solution of Problem (4),
it is important to explain how Problem (4) can be formulated as a Markov Decision Process (MDP)
for any arbitrary value of C∗

1 . Note that since Problem (4) is deterministic, the MDP formulation
will also be deterministic. In other words, the proposed MDP is basically a dynamic program. Our
proposed MDP formulation follows an episodic structure, spanning n steps. During each time step
t, a decision is made regarding the value of the decision variable xt in Problem (4). Consequently,
only two potential actions are considered: setting xt to either zero or one. At each time step t, the
agent receives a reward denoted by R, contingent upon the action taken. Specifically, when the
action is xt = 0, the reward is R = 0, and when the action is xt = 1, the reward is R = λc1t + c2t .
During time step t, the state of the system is represented as S = (t,Wt, Ct), wherein Wt signifies
the remaining portion of W at time t, computed as Wt = W −

∑t−1
i=1 wixi. Similarly, Ct indicates

the remaining part of C∗
1 at time step t, calculated as Ct = C∗

1 −
∑t−1

i=1 c
1
ixi. Note that the collective

set of all states, denoted by S, can be defined as

S := {(t,W, C) ∈ Z× Z× Z : 1 ≤ t ≤ n and max(0,W −
t−1∑
i=1

wi) ≤ W ≤W and 0 ≤ C ≤
n∑

i=1

c1i }.

It is also important to consider that in certain states, taking action 1 might not be feasible. This8

restriction applies when either wt > Wt or c1t > Ct. Under these circumstances, at state S, only9

action 0 can be selected. Given this consideration, for every state S ∈ S, the Bellman optimality10

equation can be expressed as follows:11

v∗(S) =

{
v∗(S0) Taking action 1 at state S is infeasible.

max{R(S) + v∗(S1), v∗(S0)} Otherwise.
(5)12

In this context, v∗(S) represents the optimal return (or total rewards) when initiating from13

state S, and R(S) corresponds to the reward attained at state S upon selecting action 1. It is14

important to recognize that, by design, a maximum of two other states can be observed from state15

S: namely, S0 and S1. Here, S0 signifies the state observed following the choice of action 0 at state16

S, while S1 denotes the state observed after selecting action 1 at state S. In cases where S serves17

as the terminal state (i.e., t = n), no further states can be derived thereafter. In such instances, we18

simply establish v∗(S0) = v∗(S1) = 0 to denote the absence of new states following the terminal19

state S.20

3.2. Training: The Proposed RL-based Method21

Within the field of RL, several methodologies are available to solve the proposed MDP. A22

portion of these methods involves running a sufficient number of simulation episodes to learn how23

to solve an MDP formulation, i.e., solving its Bellman optimality equation. In this study, we adopt24
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a specific approach known in RL literature as Q-learning [29]. Therefore, it is crucial to clarify the1

fundamental concept behind Q-learning. In our proposed MDP formulation, an alternate method to2

express v∗(S0) and R(S)+ v∗(S1) is by employing the notation Q∗(S, 0) and Q∗(S, 1), respectively.3

In other words, we define4

Q∗(S, 0) = v∗(S0), (6)5

Q∗(S, 1) = R(S) + v∗(S1). (7)6

In simple terms, Q∗(S,A) represents the optimal return (or total rewards) that can be achieved7

when initiating from state S and taking action A ∈ {0, 1} in that state. Observe that one can use8

the provided Bellman optimality Equation (5) to replace v∗(S0) and v∗(S1) with their equivalent Q-9

functions in Equation (6)-(7). This replacement leads to the formulation of the Bellman optimality10

equations based on Q-functions, which can be expressed as follows:11

Q∗(S, 0) =

{
Q∗(S0, 0) Taking action 1 at state S0 is infeasible,

max{Q∗(S0, 1), Q∗(S0, 0)} Otherwise,
(8)12

Q∗(S, 1) =

{
R(S) +Q∗(S1, 0) Taking action 1 at state S1 is infeasible,

R(S) + max{Q∗(S1, 1), Q∗(S1, 0)} Otherwise.
(9)13

The underlying idea behind Q-learning is to learn the values of Q∗(S, 1) and Q∗(S, 0) for each14

state S ∈ S based on Equations (8)-(9) through running a series of simulation episodes. The15

learning process begins with arbitrary initializations of Q-values and progresses by refining them16

across simulation episodes until they converge. In this context, convergence refers to the point where17

the left-hand-side values in Equations (8)-(9) approach (ideally, become equal to) the corresponding18

right-hand-side values for each state S ∈ S. Once the Q-values are learned, determining an optimal19

solution for Problem (4) becomes straightforward. Specifically, when observing state S ∈ S, if20

Q∗(S, 1) ≥ Q∗(S, 0), then action 1 is optimal; otherwise, action 0 is the optimal choice. With21

this foundation established, we next introduce our proposed method, i.e., the pseudo augmented22

ε-constraint Q-learning, for solving any BOKP.23

Our proposed method is illustrated in Algorithm 3. For a given BOKP instance, our approach24

initiates by learning the optimal Q-values for the maximum value of C∗
1 , which corresponds to25 ∑n

i=1 c
1
i (Line 3). Once this is learned, the algorithm decreases the value of C∗

1 by 1 (as indicated26

in Line 21), and the process is repeated to learn optimal Q-values for the new C∗
1 value. The process27

will be repeated as long as the value of C∗
1 remains non-negative. To learn optimal Q-values for a28

specific C∗
1 value, the algorithm commences with initializing the Q-values (Line 2). We note that29

in terms of implementation, it is more efficient to conduct the initialization step on the fly, i.e.,30

we initialize a state if the state needs to be created. This strategy is employed because not all31

states within S may be feasible for a BOKP instance, hence there is no requirement to create all32

states upfront. We also note that, in theory, we can initialize the Q-values randomly, so in our33

implementation, we set them to random small values within the range [0.2, 0.3].34

To learn the optimal Q-values for a specific C∗
1 value, we run E number of episodes (Line 5).35

Note that E is a user-defined parameter, and it should be sufficiently large to ensure the convergence36

of the Q-values. Each episode encompasses exactly n time steps, mirroring the number of variables37

in the BOKP instance. At each time step t, the available actions narrow down to two choices:38
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assigning xt to zero or one. At the beginning of each episode (Line 6), the initial state is defined as1

(1,W, C), with W set to W and C to C∗
1 . During time step t, an action denoted by A is selected to2

represent the value of the decision variable xt. Naturally, if wt > W or c1t > C, action A must be3

set to zero. Otherwise, its value can be randomly determined using the current Q-values following4

the well-established epsilon-greedy strategy (Line 8). This strategy implies that with a probability5

of 1 − ϵ, the action with the highest Q-value is chosen, while with a probability of ϵ, a random6

action is selected. It is important to note that ϵ is a small positive value, distinct from the one7

introduced for the ε-constraint method in Section 2. In our implementation, we dynamically adjust8

the value of ϵ to strike a better balance between exploration and exploitation, where, specifically,9

we set ϵ = 1− 0.99e
episode−E

E .10

Algorithm 3: The pseudo augmented ε-constraint Q-learning

1 Inputs: An instance of BOKP, a step-size for learning denoted by α, and the number of episodes
denoted by E

2 Initialize Q∗(S,A) randomly for all S ∈ S and A ∈ {0, 1}
3 C∗

1 ←
∑n

i=1 c
1
i

4 while C∗
1 ≥ 0 do

5 foreach episode ∈ {1, . . . , E} do
6 W ←W and C ← C∗

1 and S ← (1,W, C)
7 foreach step t ∈ {1, . . . , n} do
8 Choose an action at state S and denote it by A. Specifically, if wt >W or c1t > C then

choose A = 0. Otherwise, use the epsilon-greedy approach
9 R← (λc1t + c2t )A where R is the reward observed

10 if t = n then
11 G← 0

12 Q∗(S,A)← Q∗(S,A) + α
[
(R+G)−Q∗(S,A)

]
13 else
14 W ←W − wtA and C ← C − c1tA and S′ ← (t+ 1,W, C)
15 if wt+1 >W or c1t+1 > C then
16 G← Q∗(S′, 0)

17 else
18 G← max

{
Q∗(S′, 0), Q∗(S′, 1)

}
19 Q∗(S,A)← Q∗(S,A) + α

[
(R+G)−Q∗(S,A)

]
20 S ← S′

21 C∗
1 ← C∗

1 − 1

It is evident that by selecting action A in state S, two outcomes follow: a reward (denoted by11

R) is obtained, and a new state (denoted by S′) is reached. The observed reward is a direct result12

of the contribution of the value of xt to the objective function of the scalarization Problem (4). In13

simple terms, R can be calculated as (λc1t + c2t )A, Line 9. It is important to note that the new14

state S′ can be observed only if t < n, meaning we are not yet at the terminal state. When t < n,15

the new state is straightforwardly represented as (t+1,W−wtA, C − c1tA), as indicated in Line 14.16

Subsequently, the Q-values are updated through an exponential moving average procedure (Lines17

12 and 19):18

NewEstimate = OldEstimate + α(Target−OldEstimate)19

9



where α ∈ [0, 1] is user-defined parameter representing the step-size for learning (default: α := ϵ).1

‘Target’ can be defined as R+G where R is the reward obtained after taking action A at state S,2

and G is an estimate of the maximum total rewards that can be achieved initiating from the new3

state, i.e., S′. We note that one can view the ‘OldEstimate’ as the estimation of the left-hand-side4

value and ‘Target’, i.e., R+G, as the estimation of the right-hand-side value in Equations (8)-(9).5

So, we observe that G = 0 if t = n, i.e., we are at the terminal state (Line 11). Otherwise, G6

is equal to max
{
Q∗(S′, 0), Q∗(S′, 1)

}
, see Line 18. However, we know that taking action 1 is not7

feasible at the state S′ if wt+1 > W − wtA or c1t+1 > C − c1tA. So, in that case, G can be set to8

Q∗(S′, 0), see Line 16, instead of max
{
Q∗(S′, 0), Q∗(S′, 1)

}
. Finally, after updating the Q-values,9

the new state S can be set to S′ and the next time step can start, i.e., Line 20.10

3.3. Testing: Greedy Decoding11

Upon completing the learning process for a given BOKP instance, we can employ a greedy12

decoding approach to generate its entire nondominated frontier. To begin, an initially empty list13

of nondominated points, denoted by YN , is created. This list will ultimately encompass all non-14

dominated points upon the termination of the greedy decoding approach. To populate this list, we15

run 1+
∑n

i=1 c
1
i number of episodes to generate 1+

∑n
i=1 c

1
i number of solutions. Each episode can16

yield a potentially efficient (or Pareto-optimal) solution, which translates to a prospective nondom-17

inated point in the criterion space. To start episode e ∈ {0, . . . ,
∑n

i=1 c
1
i }, the initial state is set to18

S = (t,W, C), with t = 1, W = W , and C =
∑n

i=1 c
1
i − e. Each episode encompasses precisely n19

steps. During time step t ∈ {1, . . . , n}, the value of xt needs to be determined. If wt >W or c1t > C,20

then xt is set to 0. Otherwise, if Q∗(S, 1) > Q∗(S, 0), xt is set to 1; otherwise, it is set to 0. Subse-21

quently, the state is updated by setting its parameters to t+1,W−wtxt, and C−c1ixt, respectively.22

The next time step is then initiated. Once episode e ∈ {0, . . . ,
∑n

i=1 c
1
i } terminates, a potential23

efficient solution, denoted by x̃, is available. Consequently, its objective values,
(
z1(x̃), z2(x̃)

)
,24

must be computed. Given that
(
z1(x̃), z2(x̃)

)
might represent a nondominated point, it is added25

to YN if no existing point in YN dominates it. Moreover, when adding
(
z1(x̃), z2(x̃)

)
to YN , if any26

point in YN is dominated by
(
z1(x̃), z2(x̃)

)
, that dominated point should be removed from YN .27

3.4. Numerical Results28

In general, a main drawback of exact RL-based methods lies in their computational inefficiency.29

However, in the next section, we explain how this challenge can be effectively addressed. Meanwhile,30

for the purpose of illustrating the capability of the pseudo augmented ε-constraint Q-learning to31

derive the complete nondominated frontier of BOKPs, we perform a computational study involving32

40 small instances, where the size of the state space S remains manageable. The set of instances33

is divided into four classes based on their number of decision variables. Each class is labeled by34

Cn where n ∈ {5, 10, 15, 20} is the number of decision variables. To generate each instance, we35

randomly select c1i , c
2
i , and wi from the discrete uniform distribution in the interval [1, 20]. Also,36

set W = ⌊
∑n

i=1 wi

2 ⌋. Table 1 summarizes the performance of the proposed exact RL-based method.37

Specifically, the table provides details about the minimum, average, and maximum numbers of38

points along with their corresponding runtimes (in minutes) for each class of instances. These results39

illustrate that the proposed algorithm successfully generates the entire nondominated frontier for all40

instances. It is worth noting that in certain cases, a significant number of episodes were necessary41

for the convergence of theQ-values. The runtimes serve as an indicator of the episode count required42

for Q-value convergence. As expected, the runtime correlates directly with both the instance size43
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and the quantity of nondominated points. Notably, as instance size increases, the expansion of S1

has a direct impact on the runtime.2

Table 1: Performance of the proposed exact RL-based method

Class Info Min Average Max

C5
#Points 1 2 3

Runtime (minutes) 5 7 10

C10
#Points 1 4 7

Runtime (minutes) 36 72 125

C15
#Points 3 6 8

Runtime (minutes) 767 1,989 3,409

C20
#Points 3 9 14

Runtime (minutes) 6,543 14,485 22,400

4. Approximate Deep RL-based Methods3

The proposed exact RL-based method in Section 3 has two main drawbacks: (1) It requires4

individual training for each instance, and (2) it is computationally inefficient due to the so-called5

“curse of dimensionality”, where the number of states grows exponentially. As a result, it is not6

directly applicable to solving hard BOKP instances. To address these challenges, we propose two7

deep Q-learning-based techniques in this section. In both of these approaches, a deep learning8

model will be trained through reinforcement learning that its job is to estimate the optimal Q-9

values for various states across different instances. The main advantage of the proposed deep10

RL-based methods is that they do not focus on generating the optimal Q-values exactly rather11

they aim to visit a small fraction of states in order to train a deep learning model for predicting the12

optimal Q-values. Our first proposed approach is a customized version of the method proposed in13

Section 3. However, in the second method, we replace the pseudo augmented ε-constraint method14

with the weighted sum method. Building upon the empirical insights derived from our analysis of15

these two methodologies, as detailed in Section 5, we offer insights into prospective pathways for16

future research in the domain of RL-driven algorithmic advancements tailored for multi-objective17

optimization in Section 6.18

4.1. Data Normalization19

The normalization of data plays an important role in shaping the effectiveness of our proposed20

deep Q-learning-based methods. Following a series of trials and experiments, we advocate adopting21

a mechanism that numerically worked well during the course of our research. In this mechanism,22

each BOKP instance is assumed to be generated/sorted in such a way that w1

c11
≥ w2

c12
≥ · · · ≥ wn

c1n
.23

Note that in the literature of single-objective knapsack problem, the set of so-called utility-weight24

ratios, i.e., { c11
w1

, . . . , c1n
wn
}, denoted by ρ, plays an important role in developing different variations25

of the well-known Dantzig greedy algorithm [6]. Such greedy algorithms can find solutions that are26

theoretically guaranteed to be as good as 1
2 -approximation. So, we are basically trying to exploit27

this property in our proposed mechanism.28

Instances need to be normalized further once being transformed into their suitable scalariza-29

tion form. Our proposed Q-learning-based methods are designed to solve different scalarization30

11



problems. Specifically, one is designed to generate an optimal solution of the weighted sum prob-1

lem, i.e., (3), for any value of θ and the other is designed to generate an optimal solution of the2

pseudo augmented ε-constraint problem, i.e., (4), for any value of C∗
1 . Regardless of the specific3

scalarization problem at hand, it is crucial to normalize the corresponding parameters. For the nor-4

malization of objective function parameters, division by their maximum value suffices. Likewise,5

the normalization of each constraint involves dividing all constraint parameters by the maximum6

value found on the left-hand side of the constraint equation. For the remainder of this section, it7

is assumed that this normalization procedure has been executed.8

4.2. The Proposed Deep Learning Model9

Before providing the details of our proposed deep Q-learning-based methods, we first explain10

their underlying deep learning model and some details on its training process. The complexity of11

a deep learning model architecture depends on its specific applications. The architecture deemed12

appropriate for addressing BOKPs, following a sequence of trial and experimentation, is illustrated13

in Figure 1. In the proposed architecture, we pass the state features denoted by S through two14

hidden-layers of fully connected layers (i.e., Feed Forward) to generate the outputs. The outputs15

are basically the estimation of optimal Q-values for state S, i.e., Q∗(S, 0) and Q∗(S, 1). We also use16

ReLU activation function for the first hidden layer and the Leaky ReLU for the second hidden layer.17

We note that we are intentionally using the notation S rather than S because unlike Section 3, we are18

predicting the optimal Q-values through a deep learning model in this section. So, more features are19

needed to describe a state in order to ensure that the deep learning model can generate reasonable20

estimations for the optimal Q-values even for the states that it has not observed during the training21

process. Next, we explain how S is defined for each of our proposed deep Q-learning-based method.22
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Figure 1: The proposed architecture for the deep learning model

Note that by construction at time t, our proposed methods determine the value of xt. Keeping23

this in consideration, for the method tailored to solve the weighted sum scalarization problem, i.e.,24

(3), we define S in the following manner at time t:25

S = (n[t],W [t], ct, wt, ρ̄
[t], c̄[t], w̄[t])

where n[t] is the number of variables that their values have not yet been determined, W [t] is the
remaining knapsack budget, ct is the coefficient of xt in the objective function of the scalarization

12



problem under consideration (which is Problem (3) here), wt is the coefficient of xt in the knapsack
constraint. Finally, a notation with “bar” has a specific meaning in this study which is designed
to ensure that the cardinality of S is constant at all times. With this in mind, ρ[t], c[t], and w[t]

are the vectors of utility-weight ratios, the parameters of the objective function of the scalarization
problem under consideration, and the knapsack weights for the variables that their values have
not yet been determined at time t, respectively. Note that the cardinality of each of these vectors
depends on time t and that makes the cardinality of S non-constant. So, instead of using them
directly, we use their corresponding vectors of their percentile values. This implies that ρ̄[t] refers
to

Percentile(ρ[t]),

where the function always returns a vector with 100 components. Component j ∈ {1, . . . , 100} is1

the j-th percentile among values in ρ[t]. Vectors c̄[t], and w̄[t] can be defined similarly, and each2

one has 100 components at any time too.3

The state S can be established in a similar manner for the method designed to solve the pseudo4

augmented ε-constraint scalarization problem, i.e., (4). However, it necessitates the inclusion of5

three additional components due to the presence of an extra constraint in problem (4). Therefore,6

at time t, S can be described as follows:7

S = (n[t],W [t], ct, wt, ρ̄
[t], c̄[t], w̄[t], C

∗[t]
1 , c1t , c̄

1,[t])

where C
∗[t]
1 is the remaining value from C∗

1 , c
1
t is the coefficient of xt in z1(x), and c1,[t] is the vector8

of parameters of z1(x) for the variables that their values have not yet been determined at time t.9

Note that c̄1,[t] is the vector of the percentile values of c1,[t]. It is also worth mentioning ct and c̄[t]10

are linked to the specific scalarization problem at hand. As a result, they differ from the definitions11

provided earlier for the state in the context of the weighted sum scalarization problem.12

To train our proposed deep learning model, we require a loss function. In this study, we employ13

the mean squared error as our selected loss function. As previously explained in Section 3.2,14

within the context of Q-learning, the Q-values are updated through an exponential moving average15

procedure:16

NewEstimate = OldEstimate + α(Target−OldEstimate).17

Observe that “Target - OldEstimate” can be viewed as the error. Thus, the Loss function in18

our study is defined as the mean squared of these errors. Specifically, for each observation, the19

error is computed as (R + G) − Q∗(S, A). Therefore, our objective is to minimize the mean of20

[(R + G) − Q∗(S, A)]2 across batches of observations generated during simulation episodes in our21

proposed methods.22

4.3. Training: The Proposed Deep RL-based Methods23

In this section, we provide a detailed description of our proposed Deep RL-based methods.24

We have named them “deep augmented pseudo ε-constraint Q-learning” and “deep weighted sum25

Q-learning”. While these methods share similarities during the training process, they diverge26

significantly during testing which we explain them in Section 4.4. The primary distinction between27

these methods in the training phase lies in a single key step, along with the way states are defined, as28

discussed earlier in Section 4.2. The proposed methods in training mode are outlined in Algorithm 4,29

which shares key steps with Algorithm 3. Specifically, the mechanism for computing G remains30
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Algorithm 4: The Proposed Deep Q-learning-based Methods

1 Inputs: A set of BOKP instances, and the number of episodes denoted by E
2 Make the size of all instances equal to n′ where n′ is the largest number of decision variables that

exist in the BOKP instances
3 For each BOKP, generate several random instances for its corresponding scalarization problem, i.e.,

either (3) or (4), by randomly selecting values for either C∗
1 or θ, and denote the index set of all

such instances by {1, . . . ,M}
4 Generate the DeepLearningModel and initialize its parameters randomly
5 Generate a copy of the DeepLearningModel and denote it by TargetModel

6 Generate an empty experience replay list and denote it by ReplayList

7 foreach episode ∈ {1, . . . , E} do
8 Partition the set {1, . . . ,M} into batches of fixed size, and denote the index set of batches by

{1, . . . , B}
9 foreach batch ∈ {1, . . . , B} do

10 Generate the initial state S of each instance in the batch
11 foreach step t ∈ {1, . . . , n′} do
12 Call DeepLearningModel(S) to estimate Q∗(S, 0) and Q∗(S, 1) for each instance in the

batch
13 Choose an action A (to determine the value xt) following the epsilon-greedy approach

for each instance in the batch
14 Take the selected action A and observe the reward R, and generate the new state S′ for

each instance in the batch
15 Record the experience observed, i.e., (S, A,Q∗(S, A), R, S′), in the ReplayList for each

instance of the batch
16 Take a random sample set with an arbitrary size from the ReplayList
17 Call TargetModel(S′) to estimate Q∗(S′, 0) and Q∗(S′, 1) for each experience in the

sample set
18 Compute G based on max{Q∗(S′, 0), Q∗(S′, 1)} and feasibility conditions for each

experience in the sample set

19 Compute the squared estimation error
[
(R+G)−Q∗(S, A)

]2
of each experience in the

sample set, and denote the mean of squared errors by the Loss
20 Apply the backpropagation to the DeepLearningModel based on the Loss
21 Apply one step of the stochastic gradient decent method to the DeepLearningModel
22 Set S← S′ for each instance in the batch
23 Once a while set TargetModel← DeepLearningModel

14



identical to the one presented in Algorithm 3. Therefore, we do not reiterate this mechanism in1

this section.2

Keeping this in view, our proposed methods take a set of BOKP instances and the number of3

training episodes, denoted by E, as inputs (Line 1). Subsequently, in Line 2, the methods make the4

size of all BOKP instances the same, i.e, they all will have n′ decision variables after transformation5

where n′ is the largest number of decision variables among all provided instances (default: n′ = 200).6

It is important to note that even if the initial BOKP instances possess different sizes, they can be7

transformed into BOKP instances with the fixed size. For instance, if we intend to convert a BOKP8

instance with 25 variables into an instance with 200 variables, we can achieve this by setting wj = 09

and assigning suitably large negative values to c1j and c2j for each j ∈ {26, . . . , 200}. This ensures10

that the RL agent receives a sufficiently large negative reward for setting the value of a decision11

variable to one if the variable does not exist. As explained in Section 4.1, we assume that the12

instances are already normalized in this section. Consequently, we adopt the default value of −213

as the “sufficiently large negative value”. This choice is substantiated by the fact that the largest14

objective coefficient of the scalarization problem under consideration, following normalization, is15

one, making −2 a significant negative reward.16

Next, in Line 3, the methods start to generate training instances (based on the provided BOKP17

instances) for their corresponding scalarization problem. This step constitutes the primary dis-18

tinction between the deep weighted sum Q-learning and the deep augmented pseudo ε-constraint19

Q-learning during the training process. This divergence arises because they are based on two dis-20

tinct scalarization problems. The former employs Problem (3), whereas the latter is grounded in21

Problem (4). Generating training instances can be achieved by generating diverse random values22

for either θ or C∗
1 for each BOKP instance. After generating all training instances, their index set23

can be denoted by {1, . . . ,M}, and they will be used for training a deep learning model. Therefore,24

in Line 4, the methods create a random deep learning model, denoted by DeepLearningModel,25

based on the proposed architecture outlined in Figure 1. The subsequent objective is to train this26

DeepLearningModel. However, in the field of deep Q-learning, the state-of-the-art approach in-27

volves introducing a delayed mechanism (see for example [15]) for updating the parameters of the28

deep learning model, particularly when estimating Targets (i.e., R+G). This mechanism enhances29

the smooth training and convergence of the deep learning model. With this in mind, the methods30

establish a copy of DeepLearningModel, denoted by TargetModel, in Line 5. TargetModel will be31

utilized for estimating Target values, and its parameters will undergo updates with delays in Line32

23 (default: every n′ training time steps).33

Subsequently, in Line 6, the methods create an empty list referred to as ReplayList, commonly34

known as the list of experience replay observations in the deep Q-learning literature [15]. This list35

possesses a substantial capacity (default: 1,000,000) and continuously maintains only the most36

recent observations when it is full. When it becomes necessary to update the DeepLearningModel,37

a random sample set of arbitrary size will be drawn from this list for both forward and backward38

propagations. With ReplayList in place, the main training loop starts at Line 7. Within each39

episode, the training instance set {1, . . . ,M} is partitioned into batches of fixed size (Line 8, default:40

50). For each batch, the training process is executed (Line 9). For every instance in the batch,41

the initial state is extracted and set to S (Line 10). Subsequently, the methods iterate through42

n′ training time steps, corresponding to the number of decision variables in each training instance43

(Line 11).44

At each training time step t ∈ {1, . . . , n′}, the methods call DeepLearningModel(S) to estimate45
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Q∗(S, 0) and Q∗(S, 1) for each instance in the batch (Line 12). Subsequently, the methods employ1

the epsilon-greedy approach to select an action A ∈ {0, 1} to determine the value of xt for each2

instance in the batch. Following the action selection, the methods take the chosen action A to3

observe a reward R and generate the next state S′ for each instance in the batch (Line 14). It is4

worth noting that the way we compute the reward in Algorithm 4 differs from Algorithm 3. This5

difference arises from the necessity of ensuring that the deep learning model learns that certain6

actions are infeasible. Additionally, it needs to learn that sometimes it is more advantageous to7

wait and not set the value of a decision variable to one, even when there are sufficient resources8

available. With this in mind, we define the reward obtainable at time t by taking action A at state9

S as follows:10

R =


ct The proposed method chose A = 1 and taking action 1 at time t is feasible,

−β1|ct| The proposed method chose A = 1 but taking action 1 at time t is not feasible,

−β2ct The proposed method chose A = 0 and ct ≥ 0,

0 The proposed method chose A = 0 and ct < 0,

(10)

11

where β1 and β2 are user-defined non-negative penalty values (default β1 = β2 = 10).12

For each instance in the batch, (S, A,Q∗(S, A), R, S′) constitutes an experience observed at time13

step t. Specifically, it signifies that at time t, we initially occupied state S, proceeded to select action14

A, and estimated its corresponding optimal Q-value. We also received an immediate reward of R15

and ultimately transitioned to a new state S′. Consequently, the experience (S, A,Q(S, A), R, S′)16

is appended to the ReplayList in Line 15. Following this, a random sample set of arbitrary17

size (default: 50) is drawn from ReplayList in Line 16. This sample set serves as input for18

computing the loss function value used to train the DeepLearningModel. To calculate the loss19

function value, it is crucial to determine G for each experience within the sample set. Therefore, in20

Line 17, the methods call TargetModel(S′) to estimate Q∗(S′, 0) and Q∗(S′, 1) for each experience21

in the sample set. Subsequently, in Line 18, G is computed based on max{Q∗(S′, 0), Q∗(S′, 1)}22

and the feasibility conditions for each experience in the sample set, mirroring the process in Lines23

10-18 of Algorithm 3. Once G is computed, the loss function, which is the mean squared error24

denoted by Loss, is calculated. To achieve this, in Line 19, the methods compute the squared error25

estimation, i.e.,
[
(R + G) − Q∗(S, A)

]2
, for each experience in the sample set, and subsequently26

compute the average to obtain Loss. Afterwards, in Line 20, backpropagation is applied to the27

DeepLearningModel based on Loss, and in Line 21, one step of the gradient descent method is28

executed to update the parameters of the DeepLearningModel. Before starting another training29

step, the methods set S to S′ for each instance in the batch, as indicated in Line 22.30

4.4. Testing: Beam Search31

Once the training process is complete, the proposed methods can be used to generate an ap-32

proximate nondominated frontier of any BOKP. The deep weighted sum Q-learning and the deep33

augmented pseudo ε-constraint Q-learning employ distinct search mechanisms to approximate the34

entire nondominated frontier of a given BOKP. However, when aiming to approximate an optimal35

solution for their respective scalarization problems at a specific value of θ or C∗
1 , they share a com-36

mon procedure. In particular, both methods utilize a technique known as the beam search to solve37
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the scalarization problem. The beam search extends the concept of greedy search or decoding by1

maintaining a record of the best L ∈ Z+ candidates during the process of approximating an optimal2

solution for a scalarization problem. Here, L represents a user-defined parameter that determines3

the size or length of the beam search. Keeping this in mind, when solving a scalarization problem,4

the methods execute a single episode with n time steps.5

In the context of the greedy decoding approach, when we reach time step t ∈ {1, . . . , n}, we6

can extract the system’s state, denoted by S, and then employ the trained deep learning model to7

estimate both Q∗(S, 0) and Q∗(S, 1). By selecting A = argmax{Q∗(S, 0), Q∗(S, 1)} and identifying8

its feasibility (i.e., not violating the constraints of the scalarization problem under consideration),9

we can determine the value of xt at time t. In contrast, the beam search approach maintains a10

record of the best L partial solutions at each time step t. To decide which partial solutions should11

be maintained at any given time t, a utility function is required for evaluating the value of each12

partial solution. A natural choice for this utility function involves summing the rewards obtained13

so far by the known part of each partial solution and its corresponding Q-values (which estimate14

the maximum total future rewards). Consequently, partial solutions with higher utility values need15

to be maintained.16

Upon completing the beam search to solve a scalarization problem, we have (at most) L complete17

solutions in memory. It is evident that the solution with the best objective value for the scalarization18

problem under consideration can be viewed as an approximation of its optimal solution. However, it19

is important to note that since we have computed L complete solutions, we can also evaluate these20

solutions with respect to the original objective functions, namely, z1(x) and z2(x). These solutions21

might be nondominated in relation to each other. Consequently, we can maintain these solutions22

and utilize them to approximate the entire nondominated frontier. So, a desirable property of the23

beam search method is its ability to discover several (locally) Pareto-optimal solutions within the24

same neighborhood when solving a scalarization problem. This feature is particularly valuable in25

the context of deep weighted sum Q-learning. As mentioned in Section 2, the weighted-sum method26

theoretically falls short in generating the complete nondominated frontier for non-convex problems27

such as BOKPs. Specifically, it fails to find some points which are referred to as unsupported28

nondominated points in the literature of multi-objective optimization [7]. However, thanks to the29

beam search, it becomes possible to identify some of these unsupported nondominated points when30

solving a scalarization problem.31

With the beam search defined, we can now provide the specifics of the proposed methods in32

the testing mode. The details of the deep augmented pseudo ε-constraint Q-learning in the testing33

mode are shown in Algorithm 5. The method starts by accepting a BOKP instance and the beam34

search length, denoted by L, as inputs (Line 1). Subsequently, it creates an empty list, denoted by35

ỸN , to maintain the set of approximate nondominated points (Line 2). The method’s initial goal36

is to approximate the endpoints of the nondominated frontier. To estimate the first endpoint, it37

proceeds to solve PseudoEps(+∞) using the beam search (Line 3). The beam search generates a38

maximum of L solutions, which are then added to ỸN (Line 4). To determine the other endpoint,39

the method temporarily switches the objective functions of the BOKP by relabeling them in reverse40

order (Line 5). Following this relabeling, it uses the beam search again to solve PseudoEps(+∞),41

see Line 6. This process generates up to L solutions that are then added to ỸN (Line 7). After42

estimating the second endpoint of the nondominated frontier, the method restores the original43

labels of the objective functions of the BOKP (Line 8).44

It is worth noting that estimating both endpoints serves a crucial purpose in determining the45
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Algorithm 5: The Deep Augmented Pseudo ε-constraint Q-learning – Testing Mode

1 Inputs: A BOKP instance, and the beam search length denoted by L

2 Create an empty list denoted by ỸN to maintain the approximate nondominated points
3 Solve PseudoEps(+∞) using the beam search to compute at most L solutions

4 Add the solutions found to ỸN
5 Relabel the objective functions of the BOKP in reverse manner, i.e., use z1(x) for the second

objective function and z2(x) for the first objective function
6 Solve PseudoEps(+∞) using the beam search to compute at most L solutions

7 Add the solutions found to ỸN
8 Restore the original labels of the BOKP’s objective functions
9 C∗

1 ← +∞
10 SearchDone← False
11 while SearchDone is False do

12 UpperBound← the maximum value of z1(x) among all solutions in ỸN with z1(x) ≤ C∗
1

13 C∗
1 ← UpperBound− 1

14 LowerBound← the minimum value of z1(x) among all solutions in ỸN
15 if C∗

1 < LowerBound then
16 SearchDone← True

17 else
18 Solve PseudoEps(C∗

1 ) using the beam search to compute at most L solutions

19 Add all the solutions found in this iteration to ỸN

20 return Pareto(ỸN )

termination condition for the proposed method. This is because the endpoints of the nondominated1

frontier define the minimum and maximum values of z1(x) among all nondominated solutions.2

Consequently, we can constrain the values of C∗
1 within this minimum and maximum range. With3

this in mind, in Lines 9-11, we initialize C∗
1 to +∞ and initiate a search loop (Lines 10-11). In each4

iteration of the loop, the method aims to compute a new UpperBound for C∗
1 . This is achieved5

by searching through all solutions in ỸN with z1(x) ≤ C∗
1 and identifying the maximum value of6

z1(x) among those solutions (Line 12). After computing UpperBound, C∗
1 is updated in Line 13.7

Specifically, it is set to UpperBound− 1 in the hope of discovering solutions distinct from those8

already present in ỸN . Subsequently, the algorithm computes a LowerBound for C∗
1 . This is9

achieved by searching through all solutions in ỸN to identify the minimum value of z1(x) (Line 14).10

The search terminates when C∗
1 < LowerBound is met (Lines 15-16). If not, the beam search is11

utilized to solve PseudoEps(C∗
1 ) and the solutions found are added to ỸN (Lines 17-19). Finally, a12

filtering process is conducted over ỸN to keep and report only the solutions that are nondominated13

in relation to each other. This process is denoted by Pareto(ỸN ), see Line 20.14

The testing process for the deep weighted sumQ-learning is more straightforward and is outlined15

in Algorithm 6. The method starts by accepting a BOKP instance and the beam search length,16

denoted by L, as inputs (Line 1). It then creates an empty list, denoted by ỸN , to manage the17

set of approximate nondominated points (Line 2). Subsequently, the method initiates a loop that18

systematically increases the value of θ from 0 to 1 (Line 3). The increment size for θ is a user-19

defined parameter, which is set to 0.01 in this study. For each value of θ, the method calls the20

beam search to solve WSM(θ), and all the solutions found are added to ỸN (Lines 4-5). Finally, in21

18



Algorithm 6: The Deep Weighted Sum Q-learning – Testing Mode

1 Inputs: A BOKP instance, and the beam search length denoted by L

2 Create an empty list denoted by ỸN to maintain the approximate nondominated points
3 foreach θ ∈ {0, 0.01, 0.02, . . . , 1} do
4 Solve WSM(θ) using the beam search to compute at most L solutions

5 Add all the solutions found in this iteration to ỸN
6 return Pareto(ỸN )

Line 6, the method filters and reports the results using Pareto(ỸN ).1

5. Computational Study2

In this section, we conduct a computational study to show the efficacy of the proposed deep RL-3

based methods. All computational experiments are executed on a Dell PowerEdge R360 equipped4

with dual Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB of RAM, and the RedHat5

Enterprise Linux 7.0 operating system. We employ Python and the PyTorch package to implement6

all the proposed methods in this study. Our instances and Python source codes are accessible7

through GitHub (https://github.com/Multi-Objective-Optimization-Laboratory/DeepRL-BiobjectiveKP). For the8

training of each of our proposed methods, we employ approximately 10, 000, 000 training steps,9

i.e., E × B × n′ ≃ 10, 000, 000, as outlined in Algorithm 4. Attaining this can be accomplished10

through the assignment of E = 76 and M = 35, 200. It is important to note that in Algorithm 4,11

M corresponds to the count of scalarization training instances. Each instance encompasses 25 to12

200 variables in this study. To elaborate, 200 scalarization instances are generated for every value13

of n within the range {25, 26, . . . , 200}. As a result, the total value of M can be calculated as14

176× 200 = 35, 200.15

As mentioned in the Introduction, this study centers on hard instances of BOKPs. This choice16

is rooted in the potential for these complex cases to illuminate the advantages of utilizing deep RL-17

based methods for solving deterministic combinatorial optimization problems compared to existing18

highly effective exact and heuristic techniques. To address this, we adopt a technique proposed by19

Pisinger [22] to create a specific category of challenging BOKP instances referred to as “inverse20

strongly correlated instances”. To elaborate, we randomly generate vectors c1 and c2 from a discrete21

uniform distribution within the range [1, R], where R = 100 in this study. The coefficients for the22

knapsack constraint are determined as wi = c1i +
R
10 for each i = 1, . . . , n. Finally, the value W23

is drawn from a discrete uniform distribution within the interval [0.25
∑p

i=1wi, 0.5
∑p

i=1wi]. We24

generate two sets of testing instances, each containing 6 classes. In each class, there are 10 instances25

of the same size, labeled as Cn, where n represents the number of decision variables. For the first26

set, we consider values of n from the set {25, 30, 35, 40, 45, 50}; for the second set, we use values of27

n from {75, 100, 125, 150, 175, 200}.28

The rationale behind having two sets of testing instances stems from the division of our com-29

putational analysis into two distinct sections. The initial segment revolves around the utilization30

of the first set of instances. Its primary focus lies in demonstrating the efficacy of the proposed31

methods using instances where computing the exact nondominated frontier can be achieved within32

a 24-hour time limit. For generating the exact nondominated frontier of each instance, Algorithm 133

is employed in conjunction with Gurobi 10.0.1 to solve the corresponding single-objective opti-34
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mization problems. The subsequent section pertains to the utilization of the second, larger set1

of instances. Its objective is to assess the effectiveness of our proposed methods in contrast to a2

state-of-the-art heuristic approach known as the Multi-Directional Local Search (MDLS) [30].3

In light of the above, for a given instance, the true nondominated frontier YN may be either4

known or unknown. In the latter scenario, we combine the points generated by our proposed5

methods and MDLS to create what we term the “best-known approximate nondominated frontier”,6

which we treat as the true YN . To assess the efficacy of any approximation method (e.g., our7

proposed deep RL-based approaches or MDLS), the evaluation revolves around their respective8

reported approximate nondominated frontiers, denoted by ỸN , using various metrics. Given that9

there is not a singular measure to accomplish this task, the common practice is to employ multiple10

metrics [24]. In the following sections, we explore several metrics adopted in this study. Interested11

readers may refer to [4, 20] for further details.12

To introduce the metrics, we require some new notation. The Euclidean distance between two13

points y and y′ is represented as d(y,y′). Let k(y) denote the nearest point in the approximate14

frontier to a true nondominated point y ∈ YN . Lastly, for each y ∈ ỸN , n(y) is defined as the15

count of true nondominated points y′ ∈ YN \ ỸN where k(y′) = y.16

• Hypervolume gap. An established measure for evaluating and comparing approximate
nondominated frontiers is the hypervolume indicator (or S-metric), which assesses the volume
of the dominated region within the criterion space relative to a reference point [31]. In
this study, to ensure non-negativity of the hypervolume, the reference point, denoted by
yR := (yR1 , y

R
2 ), is determined by setting yRi to the minimum value of zi(x) among all solutions

reported by different methods (used in this study) for each i ∈ {1, 2}. With this consideration,
we define the hypervolume gap as follows:

100× ( Hypervolume of YN − Hypervolume of ỸN )

Hypervolume of YN
.

As a result, an approximate nondominated frontier with a smaller hypervolume gap is deemed17

more favorable.18

• Cardinality. We define the caridnality of an approximate nondominated frontier straightfor-19

wardly as the proportion of true nondominated points it encompasses, expressed as 100×|ỸN∩YN |
|YN | .20

Accordingly, an approximate nondominated frontier with a larger caridnality is considered21

better.22

• Coverage. A straightforward coverage metric, which gauges the average distance between23

true nondominated points not included in the approximate frontier and their nearest coun-24

terparts within the approximate frontier, can be described as follows:25

fa :=

∑
y∈YN\ỸN

d
(
k(y),y

)
|YN\ỸN |

,26

Note that fa can be interpreted as a gauge of how dispersed the points are within the approx-27

imate nondominated frontier. Smaller values of fa imply that the nondominated points in the28

approximate frontier are spread across different areas of the criterion space. Consequently,29

an approximate nondominated frontier with a lower fa is more preferable.30
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• Uniformity. An indicator of uniformity should reflect how effectively the points within1

an approximate frontier are distributed. Points clustered closely together do not contribute2

positively to the quality of an approximate frontier. Thus, we formulate the uniformity3

indicator as follows:4

µ :=

∑
y∈ỸN

n(y)

|ỸN |
.5

Therefore, an approximate nondominated frontier with a lower value of µ is considered more6

favorable.7

It is worth mentioning that while the training phase of the proposed deep RL-based methods8

demands a considerable amount of time, their efficiency during the testing phase is noteworthy.9

To be specific, it takes less than 2 seconds for them to solve a BOKP instance with n = 2510

variables when the beam search size is set to one, i.e., L = 1. It is important to recognize that11

deep RL methods are inherently suited for parallelization, which can substantially enhance their12

speed during testing. Nevertheless, assuming a lack of parallelization, the runtime of the proposed13

deep RL-based methods demonstrate an almost linear correlation with the values of L and n. For14

instance, if we consider a BOKP instance with n = 200 and L = 20, the projected runtime can be15

approximated as 320 seconds using the formula 2× n
25 ×L. Given these considerations, we abstain16

from providing specific solution times for the proposed methods within this study.17

5.1. Comparisons with an Exact Method18

The goal of this section is to assess the potential effectiveness of the proposed deep RL-based19

methods in solving BOKPs. To achieve this goal, we evaluate the performance of the proposed20

methods using the first testing set. This set consists of instances where the true nondominated21

points are already identified. We conduct these evaluations under four different beam search sizes,22

i.e., L, selected from the set {5, 10, 15, 20}. It is important to note, as explained in Section 4.4, that23

the size of the beam search significantly influences the generation of nondominated points, including24

unsupported ones. Thus, a larger value of L is anticipated to yield a better approximation.25

We employ the labels W5, W10, W15, and W20 to represent the deep weighted sum Q-learning26

method under varying beam search sizes. Similarly, the labels E5, E10, E15, and E20 denote the27

deep augmented pseudo ε-constraint Q-learning approach across different beam search sizes. The28

performance of the proposed methods across diverse metrics is depicted in Figure 2. It is evident29

that the performance of both methods exhibits enhancement across all metrics as the beam search30

size increases. Nevertheless, the deep weighted sum Q-learning method consistently outperforms31

the deep augmented pseudo ε-constraint Q-learning method, regardless of the specific beam search32

size employed.33

Table 2 better highlights the superior effectiveness of the proposed deep weighted sum Q-34

learning method (for L = 20). The values presented in this table are averages computed over 1035

instances. Notably, the deep weighted sum Q-learning has identified approximately 3.61 times more36

approximate nondominated points (ỸN ) on average. This method has successfully generated around37

50.5% of the true nondominated points (YN ) on average, which is about 10 times better than the38

alternate method, i.e., the deep augmented pseudo ε-constraint Q-learning. As a consequence, the39

average hypervolume gap of the deep weighted sum Q-learning method is about 2.9%, providing a40

much more accurate approximation. In contrast, the alternate method has an average hypervolume41

gap of 62.7%, indicating a significantly poorer performance. When considering metrics such as42
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Figure 2: Performance comparisons between the proposed methods for different beam search sizes

Table 2: Performance comparisons between the proposed methods for L = 20

Class YN
Deep Weighted Sum Q-Learning Deep ε-Constraint Q-Learning

ỸN Car. Cov. Uni. Hyp. ỸN Car. Cov. Uni. Hyp.

C25 19.4 15.0 57.9% 3.9 0.6 3.9% 7.5 9.3% 8.3 2.7 43.1%

C30 24.4 19.1 54.8% 5.2 0.6 3.6% 7.3 6.7% 11.0 3.4 54.4%

C35 25.9 20.5 47.7% 6.3 0.7 3.4% 7.0 5.5% 11.7 3.6 63.8%

C40 30.8 24.7 51.7% 7.2 0.6 2.2% 7.4 6.6% 14.0 4.0 65.7%

C45 35.5 30.1 45.4% 9.6 0.7 2.2% 6.6 3.2% 16.7 5.5 71.6%

C50 35.5 31.8 45.7% 9.2 0.6 2.1% 4.7 1.5% 17.0 9.0 77.4%

Avg 28.6 23.5 50.5% 6.9 0.6 2.9% 6.8 5.5% 13.1 4.7 62.7%
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uniformity and coverage, the deep weighted sum Q-learning method surpasses the alternate method1

by approximately 2-fold and 8-fold, respectively.2

The poor performance of the proposed deep augmented pseudo ε-constraint Q-learning method3

can be attributed, in part, to the nature of its corresponding scalarization problem, expressed in4

Equation (4). This scalarization problem places a distinct emphasis on the first objective function,5

evident through the influence of the constant λ. This skewed focus prompts the deep learning6

model to exhibit a strong bias towards the first objective function. Consequently, the significance7

of the second objective value diminishes, rendering it akin to an approximation error. As a re-8

sult, the deep augmented pseudo ε-constraint Q-learning method has the potential to yield points9

with significantly inaccurate second objective values. Consequently, the generated approximate10

nondominated frontier through this approach tends to be of low quality.11

Naturally, one potential solution to address this issue is to train the model with a smaller12

value of λ. During the course of our research, we indeed explored this avenue and encountered13

two challenges. Firstly, determining an appropriate value for λ in such cases is nontrivial. More14

crucially, while the choice of smaller λ values leads the learning process to favor the second objective15

function, there is a risk of disregarding numerous nondominated points as this procedure is closely16

linked with determining the value of C∗
1 . Hence, the effectiveness of the deep weighted sum Q-17

learning stems from its ability to adapt to various weights instead of relying on a fixed weight.18

5.2. Comparisons with a Heuristic Method19

Given that the deep weighted sum Q-learning has proven effective among our proposed meth-20

ods, we employ it in this section. The goal of this section is to determine whether the proposed21

method, when L = 20, can compete with a state-of-the-art technique called MDLS [30] in solving22

challenging BOKPs. To accomplish this goal, we assess the performance of the proposed methods23

using the second testing set. This set comprises instances in which the true nondominated points24

are unknown. Notably, even finding a single nondominated point in this set can be exceedingly dif-25

ficult when employing an exact method such as Algorithm 1. As previously mentioned, to address26

this challenge, we combine the sets of points identified by both methods and consider the best ones27

as the true set of nondominated points, i.e., YN .28

Table 3: Performance comparisons with MDLS for L = 20

Class YN
Deep Weighted Sum Q-Learning MDLS

ỸN Car. Cov. Uni. Hyp. ỸN Car. Cov. Uni. Hyp.

C75 45.1 45.0 98.0% 0.1 0.0 0.5% 24.2 3.2% 21.4 1.8 26.9%

C100 55.1 53.7 97.3% 0.3 0.0 0.0% 28.7 3.4% 26.1 1.9 26.6%

C125 60.5 59.7 98.7% 0.1 0.0 0.0% 31.3 1.5% 29.3 1.9 27.1%

C150 71.2 70.4 98.8% 0.1 0.0 0.0% 33.7 1.4% 34.6 2.1 27.2%

C175 80.8 80.0 99.0% 0.2 0.0 0.0% 35.3 1.1% 39.5 2.3 26.9%

C200 57.9 44.7 75.1% 6.8 0.3 5.2% 38.2 25.7% 20.9 1.1 11.9%

Avg 61.8 58.9 94.5% 1.3 0.1 0.9% 31.9 6.1% 28.6 1.9 24.4%

Table 3 presents a comprehensive summary of the performance comparisons between the pro-29

posed method and MDLS, effectively showcasing the potential of the proposed approach. To im-30

prove the quality of solutions produced by MDLS, we adjusted certain parameters, such as the31

number of iterations and the quantity of initial locally nondominated points, to values larger than32
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their default settings. Consequently, MDLS takes approximately 800 seconds to solve each of these1

instances. The values provided in Table 3 are averages derived from 10 instances. Notably, the deep2

weighted sum Q-learning has identified approximately 1.9 times more approximate nondominated3

points, i.e., ỸN on average. This method has managed to generate approximately 94.5% of the4

“true” nondominated points, i.e., YN on average, marking a 3.3-fold improvement compared to5

MDLS. Consequently, the average hypervolume gap of the deep weighted sum Q-learning hovers6

around 0.9%, signifying a notably accurate approximation. In contrast, the alternate method ex-7

hibits an average hypervolume gap of 24.4%, illustrating a relatively lesser effectiveness. Regarding8

metrics such as uniformity and coverage, the deep weighted sum Q-learning method excels over the9

alternate method by approximately 22-fold and 19-fold, respectively.10

6. Final Remarks11

In this study, we introduced new exact and approximate solution methods for BOKPs by merg-12

ing concepts from the (deep) Q-learning in RL with two classical scalarization methods from multi-13

objective integer programming: the ε-constraint method and the weighted sum method. Our14

findings demonstrated that combining a scalarization method capable of generating the exact non-15

dominated frontier in multi-objective integer programming, e.g., the ε-constraint method, with an16

exact reinforcement learning method such as Q-learning allows us to construct an exact RL-based17

approach for BOKPs. However, it is essential to note that this exact method comes with compu-18

tational inefficiencies. On the other hand, we also explored the possibility of creating an efficient19

approximate RL-based approach for BOKPs by uniting scalarization methods with an approximate20

RL method, i.e., the deep Q-learning.21

Our numerical results brought to light three key observations: Firstly, to develop a high-quality22

approximate RL-based approach, it is preferable to choose a method from multi-objective optimiza-23

tion that dynamically adjusts the objective function weights during the search, such as the weighted24

sum method. Secondly, we found that the performance of our proposed methods experiences signif-25

icant enhancements when we employ beam search instead of greedy decoding. This strategic shift26

enables the identification of numerous (locally) nondominated points within the vicinity of certain27

points. Lastly, our research revealed that RL-based methods exhibit superior performance when28

dealing with hard instances of BOKPs.29

These insights have paved the way for several promising avenues for future research. One such30

direction involves extending the proposed deep weighted Q-learning approach to handle hard classes31

of bi-objective integer programs, particularly those where solving their single-objective optimiza-32

tions is computationally intensive, e.g., vehicle routing problem. Achieving this is anticipated to33

require more advanced deep learning models at the heart of our proposed method, including but34

not limited to pointer networks and transformer models. The primary contribution of this research35

direction lies in the development of a suitable deep learning model. Another intriguing research36

path involves extending our approach to scenarios with more than two objective functions and37

exploring various scalarization techniques from the literature, customizing them to accommodate38

dynamic weights for the objective functions. This expansion can possibly enable the development39

of more effective RL-based methods. Lastly, it is worth exploring alternative deep RL methods,40

such as deep REINFORCE or deep Actor-critic approaches, as potential substitutes for the deep41

Q-learning. This exploration can help amplify the capabilities of the deep RL-based methods when42

solving hard multi-objective integer programs.43
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