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In this paper, we study nonconvex optimization problems involving sum of linear times convex (SLC) functions

as well as conic constraints belonging to one of the five basic cones, that is, linear cone, second order

cone, power cone, exponential cone, and semidefinite cone. By using the Reformulation Perspectification

Technique, we can obtain a convex relaxation by forming the perspective of each convex function and

linearizing all product terms with newly introduced variables. To further tighten the approximation, we can

pairwise multiply (parts of) the conic constraints. In this paper, we analyze all possibilities of multiplying

conic constraints. Particularly noteworthy are the novel results involving the power cone and exponential

cone. We delineate methods for deriving new, valid linear and second-order cone inequalities for pairwise

constraint multiplications involving the power cone and exponential cone, thereby enhancing the strength

of the approximation. Numerical experiments on a quadratic optimization problem over exponential cone

constraints and on a robust palatable diet problem over power cone constraints, demonstrate that including

additional inequalities generated from the proposed pairwise multiplications improves the approximation.

Moreover, when incorporated in a branch and bound procedure the global optimal solution of the original

nonconvex optimization problem can often be obtained faster than by BARON.

Key words : Reformulation-Linearization Technique, perspective function, conic optimization, nonconvex

optimization, conjugate function, branch and bound

1. Introduction

In this paper, we consider the following nonconvex optimization problem:

min
x

f00(x)+
∑
i∈I0

(
bi0 −a⊤

i0x
)
fi0(x) (1a)

s.t. f0k(x)+
∑
i∈Ik

(
bik −a⊤

ikx
)
fik(x)≤ 0, k ∈K, (1b)
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cj(x)≤ 0, j ∈J , (1c)

where x,aik ∈Rnx , bik ∈R, for every i∈ Ik
0 = Ik ∪{0}, k ∈K0 =K∪{0}, each function fik :Rnx →

(−∞,∞] is proper, closed, and convex, and each inequality cj(x)≤ 0 is representable in one or more

of the five basic cones, that is, linear cone, second-order cone, power cone, exponential cone, and

semi-definite cone. Observe that (1) is nonconvex, since it contains products of linear and convex

functions. A broad class of nonconvex problems can be written in the form of (1), such as concave

minimization problems, which often occur due to economies of scale, and problems with a Difference

of Convex (DC) objective and/or constraints, see (Bertsimas et al., 2023, Example 1).

Bertsimas et al. (2023) show how to obtain the following convex relaxation of problem (1), using

the Reformulation Perspectification Technique with Branch and Bound (RPT-BB):

min
x,U

f00(x)+
∑
i∈I0

(
bi0 −a⊤

i0x
)
fi0

(
bi0x−Uai0

bi0 −a⊤
i0x

)
(2a)

s.t. f0k(x)+
∑
i∈Ik

(
bik −a⊤

ikx
)
fik

(
bikx−Uaik

bik −a⊤
ikx

)
≤ 0, k ∈K, (2b)

cj(x)≤ 0, j ∈J , (2c)

where xx⊤ is linearized by U . In order to obtain bounds on U , we can generate additional convex

inequalities by pairwise multiplying (parts of) the cone inequalities and subsequently convexifying

the resulting inequalities. We can further link U with x, via the following Linear Matrix Inequality

(LMI): (
U x
x⊤ 1

)
⪰ 0. (3)

Obtaining convexifiable constraints from pairwise multiplication of linear or quadratic inequalities

is well known from the Reformulation Linearization Technique (RLT), introduced by Sherali and

Adams (1990). RLT consists of two steps, those are, a reformulation step and a linearization

step. RLT generates redundant nonconvex quadratic constraints from pairwise multiplication of

the existing linear inequalities in the reformulation step. In the linearization step, the nonconvex

quadratic components are linearized by substituting each distinct product of variables by a newly

introduced continuous variable. These additional generated constraints are not redundant anymore

after linearization and serve as bounds on the newly introduced variables.

Linearizing the product of linear constraints is further explored in Sherali and Tuncbilek (1992)

and Sherali and Tuncbilek (1995). Sturm and Zhang (2003) show how to multiply a linear inequality

with a conic quadratic inequality and reformulate the resulting constraint as a conic quadratic

inequality. Jiang and Li (2019) show how to obtain a conic quadratic inequality from pairwise

multiplication of two conic quadratic inequalities. Jiang and Li (2019) and Anstreicher (2017)



Author: Cone product reformulation for global optimization
3

address the same multiplication by reformulating each conic quadratic inequality as an LMI and

subsequently pairwise multiply them to finally obtain one additional LMI using either the Hadamard

product or Kronecker product respectively. We also refer to Jiang and Li (2020) for an overview of

RLT approximations for quadratic optimization problems.

Moreover, Bertsimas et al. (2023) show how to multiply a linear inequality with a general convex

inequality and how to convexify the resulting inequality. However, they mention that the pairwise

multiplication of two general convex inequalities does not necessarily yield a convexifiable inequality.

Anstreicher (2017) shows how to obtain a convexifiable constraint from pairwise multiplication of

two LMIs.

Note that the solution of Problem (2) provides a lower bound for Problem (1). Further, an upper

bound can be obtained from local optimization algorithms. RPT-BB leverages both mechanisms for

obtaining bounds in a systematic global optimization approach for solving nonconvex optimization

problems. During BB, the gap of the RPT approximation is closed by cutting the feasible region

through additionally generated hyperplanes.

In this paper, we analyze all 15 possibilities of pairwise multiplication of (parts of) the five basic

cone inequalities and demonstrate how to convexify the resulting constraints. Notably, the outcomes

involving a power cone or an exponential cone present new findings. Furthermore, we provide

numerical examples that validate the effectiveness of the newly proposed constraints derived from

the multiplication of the inequalities from two basic cone definitions. Finally, we report numerical

examples indicating that the cone product reformulations introduced in this manuscript not only

enhance the RPT approximation but also expedite the RPT-BB approach to solve the nonconvex

optimization problem to global optimality, surpassing the existing methods described by Bertsimas

et al. (2023).

Contributions. Our main contributions can be summarized as follows:

• In this paper, we show for all 15 possibilities of pairwise multiplications of the five basic cone

constraints how to convexify the resulting constraints. Especially the results for the cases in

which a power cone or an exponential cone is involved are new. In the case of a power cone

inequality we generate additional valid inequalities by linearizing the left-hand side (LHS)

of the power cone inequality, to further enhance the RPT approximation. Further, when

multiplying a power cone inequality with other cone inequalities, we show how to find the best

reformulation out of the infinitely many possible ones for a given (x,U), by using a robust

optimization lens leveraging the adversarial approach. Moreover, in the case of an exponential

cone inequality we generate additional linear and quadratic inequalities, utilizing the Taylor

expansion of the exponential function to the first or second order, which we can then multiply
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with other constraints to further enhance the approximation. Finally, we report numerical

examples indicating that the cone product reformulations introduced in this manuscript not

only enhance the RPT approximation but also expedite the RPT-BB approach to solve the

nonconvex optimization problem to global optimality, surpassing the existing methods described

by Bertsimas et al. (2023).

• We show that there are two ways to multiply a conically representable convex constraint and

a linear inequality that yield the same result. More precisely, we show that the additional

inequalities generated from the pairwise multiplication of a conically representable convex

constraint with a linear inequality lead to the same inequalities that one would obtain from

first reformulating the conically representable convex constraint into cone constraints and then

pairwise multiply them with the linear inequality.

• We demonstrate that each additional constraint derived from the pairwise multiplication of

parts of two basic cone inequalities considered in this paper is valuable. Specifically, for each con-

sidered multiplication, we identify an example showing that the resulting additional constraint

outperforms all other possible constraints derived from different pairwise multiplications.

• For constraints involving DC functions, that are conically representable, we derive additional

cone constraints obtained from first order conditions. We illustrate the derived constraints on

multiple small examples and also show that they improve the approximation of a nonconvex

optimization problem.

• We demonstrate the effectiveness of the proposed pairwise multiplications involving a power

cone and an exponential cone through numerical experiments on a nonconvex quadratic

optimization problem with exponential cone constraints as well as a robust palatable diet

problem, including power cone constraints. We demonstrate that the additional inequalities,

which are generated from pairwise multiplications of cone inequalities outlined in this paper,

enhance the approximation. Further, when incorporated in a branch and bound method,

the computational time to find the global optimal solution is reduced, while frequently

outperforming BARON.

Notation. The calligraphic letters I, J , K, L and the corresponding capital Roman letters I, J ,

K, L are reserved for finite index sets and their respective cardinalities, i.e., I = {1, . . . , I} etc. The

subscript 0 for an index set indicates that the set additionally includes 0, i.e., I0 = {0, . . . , I} etc.

Let Rm×n denote the set of real m×n matrices, and Sn the set of real n×n symmetric matrices.

The domain of a function f :Rnν → [−∞,+∞] is defined as dom(f) = {ν ∈Rnν | f(ν)<+∞}. The

function f is proper if f(ν)>−∞ for all ν ∈Rnν and f(ν)<+∞ for at least one ν ∈Rnν , implying

that dom(f) ̸= ∅. In addition, f is closed if f is lower semicontinuous and either f(ν)>−∞ for
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all ν ∈Rnν or f(ν) =−∞ for all ν ∈Rnν . The conjugate of a function f :Rnν → [−∞,+∞] is the

function f∗ :Rnν → [−∞,+∞] defined through f∗(w) = supν

{
ν⊤w− f(ν)

}
. The conjugate (f∗)∗ of

f∗ is called the biconjugate of f and is abbreviated as f∗∗. The perspective h :Rnν ×R+ → [−∞,+∞]

of a proper, closed and convex function f :Rnν → (−∞,+∞) is defined for all ν ∈Rnν and t∈R+

as h(ν, t) = tf(ν/t) if t > 0, and h(ν,0) = δ∗dom(f∗)(ν), where δ∗dom(f∗) denotes the recession function

(Rockafellar, 1970, p. 67 and Theorem 13.3). For ease of exposition, we use tf(ν/t) to denote the

perspective function h(ν, t) in the rest of this paper.

2. Overview: five basic cone inequalities and their products

In this section, we give an overview of all 15 possibilities of pairwise multiplying (parts of) the five

basic cone inequalities to obtain additional cone inequalities. The five basic cone inequalities are

given by:

(L) Linear inequality:

b−a⊤x≥ 0,

where x∈Rnx .

(Q) Conic quadratic inequality:

b−a⊤x≥
∥∥Dx+p

∥∥,
where x∈Rnx , D ∈RL×nx , p∈RL.

(P) Power cone inequality:
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i , x1, · · · , xm ≥ 0,

where nx >m, α1, · · · , αm > 0 and
∑m

i=1αi = 1, or equivalently

((x1, · · · , xm), (xm+1, · · · , xnx))∈Pα
nx

=

x∈Rnx :
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i , x1, · · · , xm ≥ 0

 ,

where Pα
nx

denotes the power cone, with α= (α1, · · · , αm).

(E) Exponential cone inequality:

x1 ≥ x2 exp

(
x3

x2

)
, x2 ≥ 0,

or equivalently

(x1, x2, x3)∈Kexp =

{
(x1, x2, x3) : x1 ≥ x2 exp

(
x3

x2

)
, x2 ≥ 0

}
,

where Kexp denotes the exponential cone.
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(S) Semidefinite cone inequality/LMI:

A(x)⪰ 0,

where A(x) =A0 +A1x1 + · · ·+Anxxnx and A,Ai ∈ Snx , i∈ {0,1, . . . , nx}.

The results of the 15 possibilities of pairwise multiplying (parts of) the five basic cone inequalities

to obtain additional cone inequalities are summarized in Table 1. In the remainder of this paper we

focus on all cases involving a power cone inequality or an exponential cone inequality. We refer to

Appendix A for the other cases, that have already been studied in the literature (i.e., Cases 1, 2, 5, 6,

9, 12, and 15 in Table 1). We note that Case 9 is not explicitly mentioned in the literature; however,

the steps followed are from Anstreicher (2017). Therefore, we present the case in Appendix A and

note in Table 1 that it is derived in this paper. Finally, we note that Cases 3(i), 4 and 14(i) are

from the literature; however, we do include them in the main text since they are connected with

other subcases involving a power cone inequality or an exponential cone inequality.

3. Product with a power cone inequality

In this section, we show how to obtain additional valid inequalities from a power cone inequality

as outlined in Section 2. Moreover, we examine all cases in which we multiply (parts of) one of

the five basic cone inequalities with the power cone inequality and show how to obtain the best

reformulation for the resulting constraint. We relegate the discussion on multiplying parts of the

power cone with parts of the exponential cone to Section 4.4.

3.1. Generating valid inequalities from a power cone inequality

We first show that we can generate valid power cone inequalities from one power cone inequality by

linearizing the product terms in the LHS of the power cone inequality. First, observe that in the

LHS of the power cone inequality we can decompose the powers of the different xi such that we get

powers of products of xi, xj and add a power of 1 to satisfy the power cone inequality. For example,

x0.4
1 x0.6

2 = x0.3
1 x0.1

1 x0.1
2 x0.5

2 = x0.3
1 u0.1

12 x
0.5
2 10.1. In the general form we obtain the following:

m∏
i=1

xαi
i ≥

√√√√m+1∑
i=1

x2
i ⇐⇒

m∏
i=1

xεi
i

m∏
i≤j

(xixj)
βij1δ ≥

√√√√ nx∑
i=m+1

x2
i , (4)

=⇒
m∏
i=1

xεi
i

m∏
i≤j

(uij)
βij1δ ≥

√√√√ nx∑
i=m+1

x2
i , (5)

⇐⇒ ((x1, · · · , xm, u11, · · · , umm,1), (xm+1, · · · , xnx))∈Pα′

n′
x
, (6)

where n′
x = nx +m(m+1)/2+1, α′ = (ε1, · · · , εm, β11, · · · , βmm, δ), and (ε,β, δ)∈ U , where

U =

{
(ε,β, δ)∈Rn′

x :
m∑
i=1

εi +
m∑
i≤j

βij + δ= 1, εi +βii +
m∑
j=1

βij = αi, ∀i, εi, βij, δ≥ 0, ∀i, j

}
.

(7)
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Case Cone-1 Cone-2 Cone-1 × Cone-2 Reference Discussed in Remarks

1 L L L Sherali and Adams (1990) Appendix A.1

2 L Q Q Sturm and Zhang (2003) Appendix A.2

3 L P (i) mL + P Bertsimas et al. (2023) Section 3.2
(ii) mL + P This paper Section 3.2 Best reformulation

4 L E L + E Bertsimas et al. (2023) Section 4.2 No decomposition

5 L S S Anstreicher (2017) Appendix A.3

6 Q Q (i) 3Q Jiang and Li (2019) Appendix A.4
(ii) S Anstreicher (2017) Appendix A.4 (i) and (ii) are at
(iii) S Jiang and Li (2019) Appendix A.4 least as good as (iii)

7 Q P (i) mQ + 2P This paper Section 3.3
(ii) mQ + 2P This paper Section 3.3 Best reformulation

8 Q E (i) 2Q + E This paper Section 4.3 No decomposition
(ii) 3Q + E This paper Section 4.3 x3 < 0
(iii) 5Q + E This paper Section 4.3 x3 ≥ 0

9 Q S S This paper Appendix A.5

10 P P (i) m1m2L + (m1 +m2 +1)P This paper Section 3.4
(ii) m1m2L + (m1 +m2 +1)P This paper Section 3.4 Best reformulation

11 P E (i) mL + 2P + mE This paper Section 4.4 No decomposition
(ii) mL + 3P + mE This paper Section 4.4 x3 < 0
(iii) mL + 5P + mE This paper Section 4.4 x3 ≥ 0

12 P S mS Anstreicher (2017) Appendix A.6

13 E E (i) L + 5E This paper Section 4.5 No decomposition
(ii) L + 7E This paper Section 4.5 x3, x6 < 0
(iii) L + Q + 9E This paper Section 4.5 x3, x6 ≥ 0
(iv) L + 8E This paper Section 4.5 sign(x3) ̸= sign(x6)

14 E S (i) 2S Anstreicher (2017) Section 4.6 No decomposition
(ii) 3S This paper Section 4.6 x3 < 0
(iii) 4S This paper Section 4.6 x3 ≥ 0

15 S S (i) S Jiang and Li (2019) Appendix A.7 (ii) is at least as good as
(ii) S Anstreicher (2017) Appendix A.7 (i) only if the two cones

are of the same size

Table 1 Results of multiplying (parts of) two cone inequalities as given in Section 2. Cone-1 × Cone-2 refers to

the total additional cone inequalities resulting from all possible multiplications of the inequalities in cone 1 with the

inequalities in cone 2.

Note that there are infinite ways to add such a constraint, since there are infinite possibilities to

choose ε, β and δ. One could consider (5) as a robust constraint, where (ε,β, δ) are the uncertain

parameters, and enforce that the constraint should hold for all (ε,β, δ) in U . Hence, the inequality

becomes
m∏
i=1

xεi
i

m∏
i≤j

(uij)
βij1δ ≥

√√√√m+1∑
i=1

x2
i , ∀(ε,β, δ)∈ U . (8)

We can address the robust constraint (8) in multiple ways. One approach is to compute the robust

counterpart, that is, reformulate the constraint in terms of (x,U) for the worst case values of (ϵ,β, δ)

in the uncertainty set U . Another approach is to compute the dual of the outer optimization problem

over (x,U), in which case the ”∀” quantifier in the primal becomes a ”∃” quantifier in the dual.

In this case, the uncertain parameters become variables in the dual and their products with other

dual variables are linearized with new variables, see Bertsimas and den Hertog (2022). The third
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approach, which we follow in this paper, is the adversarial approach, see Bertsimas and den Hertog

(2022), which consists of the following steps: At each iteration, instead of considering semi-infinite

inequality (8), we only consider a finite subset of scenarios for (ε,β, δ)∈ U to determine an optimal

(x,U) (master problem). Then, we find the worst-case scenario for (ε,β, δ) by minimizing the LHS

of (8), with (x,U) fixed at the value determined in the master problem (sub problem). Utilizing

a log transformation, the sub problem to find the worst-case for (ε,β, δ) is the following linear

optimization problem:

min
ε,β,δ

{∑
i

εi logxi +
∑
i≤j

βij loguij (ε,β, δ)∈ U
}
. (9)

If (8) is satisfied for this worst-case scenario, the adversarial approach terminates and we have

found the optimal solution. Otherwise, this worst-case scenario is added to the finite subset of

scenarios and we repeat the previous steps for this new subset. We refer to Appendix B for the

pseudocode of the adversarial approach. We note that if the nominal feasible region over (x,U) is

bounded, then the adversarial approach converges Mutapcic and Boyd (2009). Observe that the

Lipschitz continuity assumption is satisfied since the logarithm function is Lipschitz continuous.

The effectiveness of the proposed valid inequalities for the power cone is demonstrated through the

following toy example.

Example 1. Consider the following toy example

min
x

x1x2 +x1 +x2

s.t. x
1/4
1 x

3/4
2 ≥ 1, (10)

x1, x2 ≥ 0.

By applying RLT we obtain the following relaxation

min
x

u12 +x1 +x2

s.t. x
1/4
1 x

3/4
2 ≥ 1, (11)

x1, x2, u11, u12, u22 ≥ 0.

The solution of (11) appears to be

x′ =

[
0.44
1.32

]
and U ′ =

[
u′
11 u′

12

u′
21 u′

22

]
=

[
0 0
0 0

]
,

with objective value 1.7548, which constitutes a lower bound on (10). The obtained x′ is a feasible

solution to (10), and its corresponding value is 2.3320, which constitutes an upper bound on the

optimal objective value of (10).
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Next, we solve subproblem (9) in which we substitute (x′,U ′). We obtain the solution (ε⊤,β⊤, δ) =

(0,0,0.125,0,0.375,0.5) with objective value 0.5. Since 0.5 > 0, we add the resulting additional

inequality to (11) and obtain the optimal solution

x′ =

[
0.44
1.32

]
and U ′ =

[
u′
11 u′

12

u′
21 u′

22

]
=

[
8.28 0
0 3.36

]
,

with objective value 1.7548. We again solve subproblem (9) in which we substitute (x′,U ′) and

obtain the solution (ε⊤,β⊤, δ) = (0,0.5,0,0.25,0,0.25) with objective value 0.25. Since 0.25> 0, we

again add the resulting additional inequality to (11) and obtain the optimal solution

x∗ =

[
0.26
1.57

]
and U ∗ =

[
u∗
11 u∗

12

u∗
21 u∗

22

]
=

[
11.16 0.40
0.40 4.39

]
,

with objective value 2.2341, which constitutes a tighter lower bound on (10). Solving (9) in which we

substitute (x∗,U ∗), we obtain an objective value of 0. Hence, the adversarial approach terminates.

The obtained x∗ is a feasible solution to (10), and its corresponding value is 2.2341, which constitutes

an upper bound on the optimal objective value of (10). Hence, x∗ is an optimal solution to (10).

□

3.2. Case 3 in Table 1: (L) × (P)

Consider one linear inequality and one power cone inequality

b1 −a⊤
1 x≥ 0 and


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

xi ≥ 0, i= 1, . . . ,m,

where
∑m

i=1αi = 1,α≥ 0.

Case 3(i) in Table 1. We multiply the linear inequality with the power cone inequality and obtain

1 additional power cone inequality:

(b1 −a⊤
1 x)

m∏
i=1

xαi
i ≥ (b1 −a⊤

1 x)

√√√√ nx∑
i=m+1

x2
i (12)

⇐⇒
m∏
i=1

(b1xi −a⊤
1 xxi)

αi ≥

√√√√ nx∑
i=m+1

(b1xi −a⊤
1 xxi)2

=⇒
m∏
i=1

(b1xi −a⊤
1 ui)

αi ≥

√√√√ nx∑
i=m+1

(b1xi −a⊤
1 ui)2 .

Moreover, we multiply the linear inequality with the nonnegativity constraints of the power cone

and obtain m additional linear inequalities, see Appendix A.1.
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We note that in the approach that we describe here, we do not follow the same treatment as in

Bertsimas et al. (2023), that is multiplying the argument of the convex function with the linear

inequality and dividing the argument of the convex function by the linear inequality, although we

obtain the same result. This follows from the homogeneity of the power cone. Namely, if x belongs

to the power cone, then (b1 −a⊤
1 x)x also belongs to the power cone.

Case 3(ii) in Table 1. Note that there are infinite possibilities for linearizing the LHS of (12).

More precisely, we can write the LHS of (12) as follows:

(b1 −a⊤
1 x)

m∏
i=1

xαi
i ≥ (b1 −a⊤

1 x)

√√√√ nx∑
i=m+1

x2
i

⇐⇒
(
(b1 −a⊤

1 x)
2
)η m∏

i≤j

(xixj)
βij

m∏
i=1

(
(b1 −a⊤

1 x)xi

)ϵi ≥
√√√√ nx∑

i=m+1

(b1xi −a⊤
1 xxi)2

=⇒
(
b21 − 2b1a

⊤
1 x+a⊤

1 Ua1

)η m∏
i≤j

(uij)
βij

m∏
i=1

(b1xi −a⊤
1 ui)

ϵi ≥

√√√√ nx∑
i=m+1

(b1xi −a⊤
1 ui)2 (13)

⇐⇒ ((b21 − 2b1a
⊤
1 x+a⊤

1 Ua1, u11, · · · , umm, b1x1 −a⊤
1 u1, · · · , b1xm −a⊤

1 um),

(b1xm+1 −a⊤
1 um+1, · · · , b1xnx −a⊤

1 unx)) ∈ Pα′

n′
x
,

where n′
x = (1+m(m+1)/2+nx), α

′ = (η,β11, · · · , βmm, ϵ1, . . . , ϵm),

η+
m∑
i≤j

βij +
m∑
i=1

ϵi = 1, βii +
m∑
j=1

βij + ϵi = αi, ∀i∈ [m], 2η+
m∑
i=1

γi = 1, (14)

and (η,β,ϵ)≥ 0. We can consider (13) as a robust constraint, where η,β and ϵ are the uncertain

parameters and use the adversarial approach in a similar way as described in Section 3.1 to find

the worst-case for (η,β,ϵ), for a given (x,U) and repeat iteratively.

3.3. Case 7 in Table 1: (Q) × (P)

Consider one conic quadratic inequality and one power cone inequality

b1 −a⊤
1 x≥

∥∥Dx+p
∥∥ and


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0,

where α≥ 0,
∑m

i=1αi = 1, and D ∈RL×nx , p∈RL.

Case 7(i) in Table 1. We multiply the LHSs and RHSs of the conic quadratic inequality and the

power cone inequality with each other and obtain 1 additional power cone inequality:

(b1 −a⊤
1 x)

m∏
i=1

xαi
i ≥

∥∥Dx+p
∥∥√√√√ nx∑

i=m+1

x2
i (15)
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⇐⇒
m∏
i=1

(b1xi −a⊤
1 xxi)

αi ≥
∥∥(Dx+p)x⊤

[m+1]

∥∥
F

=⇒
m∏
i=1

(b1xi −a⊤
1 ui)

αi ≥
∥∥DU[m+1] +px⊤

[m+1]

∥∥
F
,

where x[m+1] = (xm+1 · · · xnx) and U[m+1] = (um+1 · · · unx). Moreover, we multiply the conic

quadratic inequality with the nonnegativity constraints and obtain m additional conic quadratic

inequalities, see Appendix A.2. We further multiply the LHS of the conic quadratic inequality

with both sides of the power cone inequality and obtain 1 additional power cone inequality, see

Section 3.2.

Case 7(ii) in Table 1. Linearizing the LHS of (15), we obtain the LHS of (13). Hence we obtain

the following power cone inequality

((b1 −a⊤
1 x, b

2
1 − 2b1a

⊤
1 x+a⊤

1 Ua1, x1, · · · , xm, u11, · · · , umm, b1x1 −a⊤
1 u1, · · · , b1xm −a⊤

1 um),

(
(
DU[m+1] +px⊤

[m+1]

)
11
, · · · ,

(
U[m+1] +px⊤

[m+1]

)
L,nx−m−1

)) ∈ Pα′

n′
x
,

where n′
x = (2+2m+m(m+1)/2+L(nx−m−1) and α′ = (δ, η, ε1, · · · , εm, β11, · · · , βmm, γ1, · · · , γm).

We can view the above inequality as a robust constraint, where δ,ε,β,γ, and η are the uncertain

parameters and use the adversarial approach in a similar way as described in Section 3.1 to find

the worst-case values for (δ,ε,β,γ, η) for a given (x,U), and repeat iteratively.

3.4. Case 10 in Table 1: (P) × (P)

Consider two power cone inequalities
m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

xi ≥ 0, i= 1, . . . ,m1

and


m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
j=m2+1

x2
σ(j)

xσ(j) ≥ 0, j = 1, . . . ,m2,

where σ is an arbitrary permutation, nx >m1,m2, α1,α2 ≥ 0 and
∑m1

i=1α1i =
∑m2

j=1α2j = 1.

Case 10(i) in Table 1. We multiply the left-hand sides and right-hand sides of the two power

cone inequalities and obtain 1 additional power cone inequality:

m1∏
i=1

xα1i
i

m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
i=m1+1

x2
i

√√√√ nx∑
j=m2+1

x2
σ(j) ⇐⇒

m1∏
i=1

xα1i
i

m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
i=m1+1

x2
i

nx∑
j=m2+1

x2
σ(j) (16)

=⇒
m1∏
i=1

m2∏
j=1

u
θij
i,σ(j) ≥

√√√√ nx∑
i=m1+1

nx∑
j=m2+1

u2
i,σ(j), (17)
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where θ is such that

∑
j

θij = α1i,
∑
i

θij = α2j, θij ≥ 0, i∈ [m1], j ∈ [m2]. (18)

Moreover, we multiply the nonnegativity constraints of one power cone with the nonnegativity

constraints of the other power cone and obtain m1m2 additional linear inequalities, see Appendix

A.1. Finally, we multiply the nonnegativity constraints of each power cone with the power cone

inequality of the other power cone and obtain m1 +m2 additional power cone inequalities, see

Section 3.2.

Case 10(ii) in Table 1. Note that there are infinite number of possibilities for linearizing the

LHS of (16). More precisely, we can write (17) as follows:

m1∏
i=1

xα1i
i

m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
i=m1+1

x2
i

√√√√ nx∑
j=m2+1

x2
σ(j)

⇐⇒
m1∏
i=1

m1∏
j=i

(xixj)
θij

m2∏
i=1

m2∏
j=i

(xσ(i)xσ(j))
βij

m1∏
i=1

m2∏
j=1

(xixσ(j))
γij ≥

√√√√ nx∑
i=m1+1

x2
i

√√√√ nx∑
j=m2+1

x2
σ(j)

=⇒
m1∏
i=1

m1∏
j=i

u
θij
ij

m2∏
i=1

m2∏
j=i

u
βij
σ(i)σ(j)

m1∏
i=1

m2∏
j=1

u
γij
iσ(j) ≥

√√√√ nx∑
i=m1+1

nx∑
j=m2+1

u2
i,σ(j)

=⇒ ((u11, · · · , um1m1
, uσ(1),σ(1), · · · , uσ(m2),σ(m2), u1σ(1), · · · , um1,σ(m2)),

(um1+1σ(m2+1), · · · , unxσ(nx))) ∈ Pα′

n′
x
,

where n′
x = m1(m1 + 1)/2 + m2(m2 + 1)/2 + m1m2 + (nx − m1 − 1)(nx − m2 − 1) and α′ =

(θ11, · · · , θm1m1
, β11, · · · , βm2m2

, γ11, · · · , γm1m2
). We can view the above inequality as a robust con-

straint, where θ,β, and γ, are the uncertain parameters, which need to satisfy the following

constraints:

m1∑
i=1

m1∑
j=i

θij +

m2∑
i=1

m2∑
j=i

βij +

m1∑
i=1

m2∑
j=1

γij = 1,

m1∑
j=1

θij + θii +

m2∑
j=1

γij = α1i, i∈ [m1],

m2∑
i=1

βij +βjj +

m1∑
i=1

γij = α2j, j ∈ [m2],

θij, βij, γij ≥ 0, i∈ [m1], j ∈ [m2].

We can then use the adversarial approach in a similar way as described in Section 3.1 to find the

worst-case values for (θ,β,γ), for a given (x,U) and repeat iteratively.
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4. Product with an exponential cone inequality

In this section, we derive valid inequalities from an exponential cone inequality, by leveraging the

Taylor expansion of the exponential function, which we can then pairwise multiply with other

existing inequalities to tighten the approximation of Problem (1). Moreover, we consider all cases

in which we multiply (parts of) the inequalities belonging to one of the five basic cones with (parts

of) the inequalities belonging to the exponential cone as given in Section 2.

4.1. Generating valid inequalities from an exponential cone inequality

Sometimes, the pairwise multiplication of exponential cone inequalities may not lead to constraints

that involve products of the original variables, see Section 6.1, and hence do not tighten the

approximation. For this reason we derive valid inequalities from the exponential cone inequality that

we can use for pairwise multiplications. We further note that even if the pairwise multiplications

of the original constraints involving exponential cone inequalities yield good bounds on the new

variables, we can still improve them with the derived inequalities. Our main tool in deriving those

inequalities, is the Taylor expansion of the exponential function, that is

exp(t) =
∞∑
k=0

tk

k!
= 1+ t+

t2

2
+

t3

6
+ . . . . (19)

We can generate additional valid inequalities, depending on the sign of x3. When x3 < 0, there

exists a ξ ∈
[
x3
x2
,0
]
such that

exp

(
x3

x2

)
= 1+

x3

x2

+
ξ2

2
≥ 1+

x3

x2

.

Therefore, we have x2 exp
(

x3
x2

)
≥ x2 +x3 and we derive the valid linear inequality

x1 ≥ x2 +x3. (20)

When x3 ≥ 0, there exists a ξ ∈
[
0, x3

x2

]
such that

exp

(
x3

x2

)
= 1+

x3

x2

+
x2
3

2x2
2

+
ξ3

6
≥ 1+

x3

x2

+
x2
3

2x2
2

.

Therefore, we have x2 exp
(

x3
x2

)
≥ x2 +x3 +

x23
2x2

and we derive the following valid inequalities{
x1 ≥ x2 +x3 + y,∥∥(√2x3, x2 − y

)∥∥
2
≤ x2 + y.

(21)

We next show how we can obtain additional conic inequalities from pairwise multiplying the

exponential cone inequality with one of the five basic cone inequalities as given in Section 2. We

first provide a Lemma that will be useful in determining when some constraint multiplications are

redundant.
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Lemma 1. Consider the constraint f(x) ≤ 0, where the function f(x) is convex. Suppose that

f(x)≥ g(x),∀x∈X , where X denotes the feasible set. Then, multiplying a linear inequality with

g(x)≤ 0 and perspectifying the result, yields a convex constraint that is redundant to the inequality

that results from multiplying that linear inequality with f(x)≤ 0.

Proof. Let a− b⊤x≥ 0 denote the linear inequality. We obtain

(a− b⊤x)f(x)≤ 0 =⇒ (a− b⊤x)f

(
(a− b⊤x)x

a− b⊤x

)
≤ 0 =⇒ (a− b⊤x)f

(
ax−Ub

a− b⊤x

)
≤ 0.

Since f(x)≥ g(x), we obtain that

(a− b⊤x)g

(
ax−Ub

a− b⊤x

)
≤ (a− b⊤x)f

(
ax−Ub

a− b⊤x

)
≤ 0.

Therefore, it follows that the constraint (a− b⊤x)g
(

ax−Ub
a−b⊤x

)
≤ 0 is redundant to the constraint

(a− b⊤x)f
(

ax−Ub
a−b⊤x

)
≤ 0. □

4.2. Case 4 in Table 1: (L) × (E)

Consider one linear inequality and one exponential cone inequality

b1 −a⊤
1 x≥ 0 and

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0.

Bertsimas et al. (2023) show how to multiply a linear inequality with a convex inequality by

first reformulating the resulting inequality in its perspective form, and subsequently linearizing

all product terms. In the case of an exponential cone inequality this boils down to the following:

We multiply the linear inequality with both sides of the exponential cone inequality and obtain 1

additional exponential cone inequality:

(b1 −a⊤
1 x)x1 ≥ (b1 −a⊤

1 x)x2 exp

(
(b1 −a⊤

1 x)x3

(b1 −a⊤
1 x)x2

)
=⇒ b1x1 −a⊤

1 u1 ≥ (b1x2 −a⊤
1 u2) exp

(
b1x3 −a⊤

1 u3

b1x2 −a⊤
1 u2

)
. (22)

Here, the first inequality follows from multiplying both the nominator and denominator in the

exponential function by the left hand side (LHS) of the linear inequality, and the second inequality

follows from linearizing the product terms xx⊤ by the matrix U = [u1,u2,u3]. Observe that the

second inequality is jointly convex in x and U , since the right hand side (RHS) is the perspective

function of a convex function, which is convex, see Rockafellar (1970). Moreover, we multiply the

linear inequality with the nonnegativity constraint of the exponential cone and obtain 1 additional

linear inequality, see Appendix A.1.
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Observe that the multiplications from the additional cases that can be obtained from the

Taylor expansion are redundant. When x3 < 0, we can apply Lemma 1 for f(x) = x2 exp
(

x3
x2

)
and g(x) = x2 + x3. Further, when x3 ≥ 0, we can apply Lemma 1 for f(x) = x2 exp

(
x3
x2

)
and

g(x) = x2 +x3 +
x23
2x2

.

4.3. Case 8 in Table 1: (Q) × (E)

Consider one conic quadratic inequality and one exponential cone inequality

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ and

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0.

Case 8(i) in Table 1. We multiply the conic quadratic inequality with the nonnegativity constraint

and the LHS of the exponential cone inequality and obtain 2 additional conic quadratic inequalities,

see Appendix A.2. Moreover, we multiply the LHS of the conic quadratic inequality with the

exponential cone inequality and obtain 1 additional exponential cone inequality, see Section 4.2.

Case 8(ii) in Table 1. When x3 < 0, in addition to the inequalities in Case 8(i), we multiply

linear inequality (20) with the conic quadratic inequality and obtain 1 additional conic quadratic

inequality, see Appendix A.2.

Case 8(iii) in Table 1. When x3 ≥ 0, in addition to the inequalities in Case 8(i), we multiply the

linear inequality in (21) with the conic quadratic inequality and obtain 1 additional conic quadratic

inequality, see Appendix A.2. Moreover, we multiply the conic quadratic inequality in (21) with the

initial conic quadratic inequality and obtain 2 additional conic quadratic inequalities, see Case 6(i)

in Appendix A.4. Note that the multiplication of the RHS of the original conic quadratic inequality

with the derived conic quadratic inequality is redundant by Lemma 1.

4.4. Case 11 in Table 1: (P) × (E)

Consider one power cone inequality and one exponential cone inequality
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

and

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0,

where α≥ 0 and
∑m

i=1αi = 1.

Case 11(i) in Table 1. We multiply the nonnegativity constraints of the power cone with the

nonnegativity constraint of the exponential cone and obtain m additional linear inequalities, see

Appendix A.1. Moreover, we multiply the nonnegativity constraints of the power cone with the
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exponential cone inequality and obtain m additional exponential cone inequalities, see Case 4 in

Section 4.2. Finally, we multiply the nonnegativity constraint of the exponential cone as well as

the LHS of the exponential cone inequality with the power cone inequality and obtain 2 additional

power cone inequalities, see Section 3.2. Hence we obtain the following set of additional inequalities:



m∏
i=1

(x1xi)
αi ≥

√√√√ nx∑
i=m+1

(x1xi)2

m∏
i=1

(x2xi)
αi ≥

√√√√ nx∑
i=m+1

(x2xi)2

x1x1 ≥ x2x1 exp

(
x3x1

x2x1

)
...

x1xm ≥ x2xm exp

(
x3xm

x2xm

)
=⇒



m∏
i=1

uαi
1i ≥

√√√√ nx∑
i=m+1

u2
1i

m∏
i=1

uαi
2i ≥

√√√√ nx∑
i=m+1

u2
2i

x1, · · · , xm ≥ 0

u11 ≥ u21 exp

(
u31

u21

)
...

u1m ≥ u2m exp

(
u3m

u2m

)
u21, · · · , u2m ≥ 0.

Case 11(ii) in Table 1. When x3 < 0 (and hence is not part of the power cone), in addition

to the inequalities in Case 11(i), we multiply the linear inequality (20) obtained from the Taylor

expansion with the power cone and obtain 1 additional power cone inequality, see Section 3.2. Note

that the multiplications of the derived linear inequality with the nonnegativities of the power cone

are redundant by Lemma 1.

Case 11(iii) in Table 1. When x3 ≥ 0, we multiply the linear inequality and the quadratic

inequality in (21), obtained from the Taylor expansion, with the power cone and obtain 3 additional

power cone inequalities, see Sections 3.2 and 3.3, in addition to the inequalities in Case 11(i). Note

that the multiplications of the derived linear inequality and the RHS of the derived conic quadratic

inequality with the nonnegativity constraints of the power cone are redundant by Lemma 1.

Remark 1. Observe that also here, we can use the adversarial approach in a similar way as

described in Section 3.1 to find the best power cone reformulation for a given (x,U).

4.5. Case 13 in Table 1: (E) × (E)

Consider two exponential cone inequalitiesx1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

and

x4 ≥ x5 exp

(
x6

x5

)
x5 ≥ 0.



Author: Cone product reformulation for global optimization
17

Case 13(i) in Table 1. We multiply the LHSs and RHSs of the exponential cone inequalities and

obtain 1 additional exponential cone inequality:

x1x4 ≥ x2x5 exp (x3x5/x2x5 +x6x2/x2x5) =⇒ u14 ≥ u25 exp ((u35 +u26)/u25).

Moreover, we multiply the nonnegativity constraints of the exponential cones with each other and

obtain 1 additional linear inequality, see Appendix A.1, we multiply the nonnegativity constraints of

each exponential cone with the exponential cone inequality of the other cone and obtain 2 additional

exponential cone inequalities and finally we multiply the LHS of each exponential cone inequality

with both sides of the other exponential cone inequality and obtain 2 additional exponential cone

inequalities, see Section 4.2.

Case 13(ii) in Table 1. When x3 < 0 and x6 < 0, for each exponential cone we obtain an additional

linear inequality from (19). For each exponential cone we multiply the derived linear inequality from

(19) with the exponential cone inequality from the other cone and obtain 2 additional exponential

cone inequalities, in addition to the inequalities in Case 13(i). Note that the multiplication of

the two linear inequalities with each other and with the nonnegativity constraints of the other

exponential cone are redundant by Lemma 1.

Case 13(iii) in Table 1. When x3 ≥ 0 and x6 ≥ 0, for each exponential cone, we obtain one

additional linear and conic quadratic inequality from (19). We multiply each of those linear

inequalities and the conic quadratic inequalities with the exponential cone inequalities belonging to

the other exponential cone and obtain 4 additional exponential cone inequalities, see Section 4.2.

We also multiply the conic quadratic inequalities with each other and obtain 1 additional conic

quadratic inequality, see Appendix A.4. We note that the remaining constraint multiplications are

redundant by Lemma 1.

Case 13(iv) in Table 1. When x3 < 0 and x6 ≥ 0, we obtain the linear inequalities x1 ≥ x2+x3 and

x4 ≥ x5 +x6 + ȳ, and the quadratic inequality x2 + y≥
∥∥√2x3, x2 − y

∥∥ from the Taylor expansion

of the exponential inequality. We multiply each of those linear inequalities with the exponential

inequality belonging to the other exponential cone and obtain 2 additional exponential cone

inequalities. Moreover, we multiply the LHS of the quadratic inequality with the exponential

inequality belonging to the other exponential cone and obtain one more additional exponential cone

inequality. Note that the remaining constraint multiplications are redundant by Lemma 1. Moreover,

notice that we obtain the same number of additional constraints in case x3 ≥ 0 and x6 < 0.
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4.6. Case 14 in Table 1: (E) × (S)

Consider one exponential cone inequality and one LMIx1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

and A(x)⪰ 0.

Case 14(i) in Table 1. We multiply the nonnegativity constraint and the LHS of the exponential

cone inequality with the LMI and obtain 2 additional LMIs:{
x1A(x)⪰ 0
x2A(x)⪰ 0

=⇒
{
A(u1)⪰ 0
A(u2)⪰ 0.

Note that the pairwise multiplication of a linear inequality with an LMI is already studied in

Anstreicher (2017).

Case 14(ii) in Table 1. When x3 < 0, in addition to the inequalities in Case 14(i), we multiply

the linear inequality (20) with the LMI and obtain 1 additional LMI.

Case 14(iii) in Table 1. When x3 ≥ 0, we multiply the inequalities in (21) with the LMI and

obtain 2 additional LMIs, see Appendix A.3 and Appendix A.5.

Remark 2. Note that for each case, we have only detailed how to pairwise multiply two generic

inequalities from any of the five basic cones. However, one can also multiply each inequality by

itself to derive additional inequalities. We refer to Appendix C for an overview of the number

of additional inequalities one would obtain when applying full RPT, i.e., considering all possible

constraint multiplications, including multiplications of the cone inequalities with themselves.

Remark 3. All considered additional constraint multiplications in this paper are valuable in the

sense that for each case we have found an example demonstrating the dominance of the considered

constraint over all other possible additional constraint multiplications. We refer to Section 5.2 for

an overview of these dominance results.

5. Justification and enhancements

In this section, we investigate additional constraint multiplications and describe several ways to

improve the approximation of nonconvex Problem (1). First, we have a result on the best order

of the multiplication of a linear inequality with a conically representable constraint. Further, we

identify the best linearization for quadratic inequalities and finally, for DC problems, we derive

additional conic constraints, by leveraging first order conditions.
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5.1. Justification for first reformulating into conic constraints

It might be the case that one of the constraints is not in conic form, but since it is conically

representable, we can reformulate it such that it satisfies problem format (1). The question that

then arises is which of the following options is better:

• Option 1: Multiply all linear constraints directly with this convex constraint that is not

reformulated in conic form, following the methodology from Bertsimas et al. (2023).

• Option 2: Reformulate the conically representable constraints in conic form and then multiply

this constraint with all linear constraints.

We will prove that both options lead to the same approximation. We use the definition of a conically

representable constraint from Serrano (2015), that is, a constraint f(x)≤ 0, where f :Rn →R, is

conically representable if its feasible set can be written as

{x | f(x)≤ 0}= {x | ∃u∈Rm, S(x,u) = 0, T (x,u)∈K} , (23)

where S :Rn ×Rm →Rk1 and T :Rn ×Rm →Rk2 are affine mappings and K is a cone. We have the

following result.

Lemma 2. Suppose the convex constraint f(x) ≤ 0 is conically representable, and suppose we

multiply this constraint with a linear constraint b− a⊤x ≥ 0. Then, the additional inequalities

generated from the pairwise multiplication of the linear inequality with the convex constraint are

equivalent for Options 1 and 2.

Proof. Let S,T be the affine mappings that define the conic representation of the feasible set

{x | f(x)≤ 0} and let K be the corresponding cone. Let us denote the linear function b−a⊤x by

ℓ(x) and denote the linear function that results after linearizing xℓ(x) by ℓ̃(x,U), where U =xx⊤,

and ℓ̃i(x,U) = bxi − a⊤Ui. Then after RPT we obtain the constraint

ℓ(x)f

(
ℓ̃(x,U)

ℓ(x)

)
≤ 0. (24)

On the other hand, we can first derive the affine mappings S and T that define the conic represen-

tation of the feasible set of the original constraint, and then multiply it by ℓ(x), and apply RPT.

Then we obtain the set{
(x,U)

∣∣∣∣∣ ∃u∈Rm, S

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
= 0, T

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
∈K

}
. (25)

Moreover we find{
(x,U)

∣∣∣∣∣ ℓ(x)f

(
ℓ̃(x,U)

ℓ(x)

)
≤ 0

}
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=

{
(x,U)

∣∣∣∣∣ ∃u∈Rm, S

(
ℓ̃(x,U)

ℓ(x)
,u

)
= 0, T

(
ℓ̃(x,U)

ℓ(x)
,u

)
∈K

}

=

{
(x,U)

∣∣∣∣∣ ∃u∈Rm, S

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
= 0, T

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
∈K

}
,

which concludes the proof. Observe that if ℓ(x) = 0, then Bertsimas et al. (2023, Lemma 1) show

that all constraints resulting from multiplying this equality constraint with any convex constraint

are redundant to the constraints resulting from multiplying this equality constraint with the existing

variables. □

5.2. Dominance results of the constraint multiplications considered in this paper

In this section, we demonstrate that each additional constraint derived from the pairwise mul-

tiplication of parts of two basic cone inequalities, as considered in this paper, is valuable (see

Table 2). Specifically, for each multiplication analyzed, we provide an example demonstrating that

the resulting additional constraint outperforms all other potential constraints derived from different

pairwise multiplications. For further details on these examples, please refer to Appendix F.

Case Cone-1 Cone-2 Constraints 1 Constraints 2 Example Equation

3(i) b1 −a⊤
1 x≥ 0


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

b1 −a⊤
1 x≥ 0


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

6 (51c), (51d)

3(ii) b1 −a⊤
1 x≥ 0


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

Best reformulation 1

4 b1 −a⊤
1 x≥ 0

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

b1 −a⊤
1 x≥ 0

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

7 (53f)

7(i) b2 −a⊤
2 x≥

∥∥Dx+p
∥∥


m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

xi ≥ 0, i= 1, . . . ,m1

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ m1∏

i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i 8 (55i)

b2 −a⊤
2 x≥ 0

m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i 9 (57i)

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ xi ≥ 0, i= 1, . . . ,m 10 (59d)
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Case Cone-1 Cone-2 Constraints 1 Constraints 2 Example Equation

7(ii) b2 −a⊤
2 x≥

∥∥Dx+p
∥∥


m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

xi ≥ 0, i= 1, . . . ,m1

Best reformulation 1

8(i) b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ x2 ≥ 0 11 (61h)

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ x1 ≥ 0 12 (63h)

b2 −a⊤
2 x≥ 0 x1 ≥ x2 exp

(
x3

x2

)
13 (65g)

8(ii) b2 −a⊤
2 x≥

∥∥Dx+p
∥∥


x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0
x1 ≥ x2 +x3

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ x1 ≥ x2 +x3 14 (67i)

8(iii) b2 −a⊤
2 x≥

∥∥Dx+p
∥∥


x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0
x1 ≥ x2 +x3 + y∥∥(√2x3, x2 − y)

∥∥
2
≤ x2 + y

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ {

x1 ≥ x2 +x3 + y∥∥(√2x3, x2 − y)
∥∥
2
≤ x2 + y

13 (65k)-(65n)

10(i)


m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

xi ≥ 0, i= 1, . . . ,m1


m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
j=m2+1

x2
σ(j)

xσ(j) ≥ 0, j = 1, . . . ,m2,

m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
j=m2+1

x2
σ(j) 15 (69g)

xi ≥ 0, i= 1, . . . ,m1


m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
j=m2+1

x2
σ(j)

xσ(j) ≥ 0, j = 1, . . . ,m2,

16 / 17 (71e), (71f) / (73c), (73d)


m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

xi ≥ 0, i= 1, . . . ,m1

xσ(j) ≥ 0, j = 1, . . . ,m2 16 / 17 (71e), (71f) / (73c), (73d)

10(ii)


m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

xi ≥ 0, i= 1, . . . ,m1


m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
j=m2+1

x2
σ(j)

xσ(j) ≥ 0, j = 1, . . . ,m2,

Best reformulation 1

11(i)


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

x1, · · · , xm ≥ 0

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

16 (71j)

m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i x2 ≥ 0 18 (75j), (75k)

m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i x1 ≥ 0 16 (71k)

11(ii)


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0


x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0
x1 ≥ x2 +x3

m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i x1 ≥ x2 +x3 19 (77l)

x1, · · · , xm ≥ 0 x1 ≥ x2 +x3 Lemma 1 n/a

11(iii)


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0


x1 ≥ x2 exp

(
x3
x2

)
x2 ≥ 0
x1 ≥ x2 +x3 + y∥∥(√2x3, x2 − y)

∥∥
2
≤ x2 + y

m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

{
x1 ≥ x2 +x3 + y∥∥(√2x3, x2 − y)

∥∥
2
≤ x2 + y

17 (73l)-(73n)

x1, · · · , xm ≥ 0

{
x1 ≥ x2 +x3 + y∥∥(√2x3, x2 − y)

∥∥
2
≤ x2 + y

Lemma 1 n/a
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Case Cone-1 Cone-2 Constraints 1 Constraints 2 Example Equation

13(i)

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

x4 ≥ x5 exp

(
x6

x5

)
x5 ≥ 0

x1 ≥ x2 exp

(
x3

x2

)
x4 ≥ x5 exp

(
x6

x5

)
18 (75h)

x1 ≥ x2 exp

(
x3

x2

)
x4 ≥ 0 20 (79f) - (79i)

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

x5 ≥ 0 21 (81e), (81f)

x1 ≥ 0 x4 ≥ x5 exp

(
x6

x5

)
20 (79f) - (79i)

x2 ≥ 0

x4 ≥ x5 exp

(
x6

x5

)
x5 ≥ 0

21 (81e), (81f)

13(ii)


x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0
x1 ≥ x2 +x3


x4 ≥ x5 exp

(
x6

x5

)
x5 ≥ 0
x4 ≥ x5 +x6

x1 ≥ x2 +x3

x4 ≥ x5 exp

(
x6

x5

)
x5 ≥ 0

22 -

x1 ≥ x2 +x3 x4 ≥ x5 +x6 Lemma 1 n/ax1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0

x4 ≥ x5 +x6 22 -

13(iii)


x1 ≥ x2 exp

(
x3
x2

)
x2 ≥ 0
x1 ≥ x2 +x3 + y1∥∥(√2x3, x2 − y1)

∥∥
2
≤ x2 + y1


x4 ≥ x5 exp

(
x6
x5

)
x5 ≥ 0
x4 ≥ x5 +x6 + y2∥∥(√2x6, x5 − y2)

∥∥
2
≤ x5 + y2

{
x1 ≥ x2 +x3 + y1∥∥(√2x3, x2 − y1)

∥∥
2
≤ x2 + y1

x4 ≥ x5 exp
(

x6
x5

)
23 (84j), (84k)

{
x1 ≥ x2 +x3 + y1∥∥(√2x3, x2 − y1)

∥∥
2
≤ x2 + y1

x5 ≥ 0 Lemma 1 n/a

{
x1 ≥ x2 +x3 + y1∥∥(√2x3, x2 − y1)

∥∥
2
≤ x2 + y1

{
x4 ≥ x5 +x6 + y2∥∥(√2x6, x5 − y2)

∥∥
2
≤ x5 + y2

Lemma 1 n/a

x1 ≥ x2 exp
(

x3
x2

) {
x4 ≥ x5 +x6 + y2∥∥(√2x6, x5 − y2)

∥∥
2
≤ x5 + y2

23 (84j), (84k)

x2 ≥ 0

{
x4 ≥ x5 +x6 + y2∥∥(√2x6, x5 − y2)

∥∥
2
≤ x5 + y2

Lemma 1 n/a

13(iv)


x1 ≥ x2 exp

(
x3
x2

)
x2 ≥ 0
x1 ≥ x2 +x3


x4 ≥ x5 exp

(
x6
x5

)
x5 ≥ 0
x4 ≥ x5 +x6 + y∥∥(√2x6, x5 − y)

∥∥
2
≤ x5 + y

x1 ≥ x2 +x3

x4 ≥ x5 exp

(
x6

x5

)
x5 ≥ 0

22 -

x1 ≥ x2 +x3

{
x4 ≥ x5 +x6 + y∥∥(√2x6, x5 − y)

∥∥
2
≤ x5 + y

Lemma 1 n/a

x1 ≥ x2 exp
(

x3
x2

) {
x4 ≥ x5 +x6 + y∥∥(√2x6, x5 − y)

∥∥
2
≤ x5 + y

23 (84j), (84k)

x2 ≥ 0

{
x4 ≥ x5 +x6 + y∥∥(√2x6, x5 − y)

∥∥
2
≤ x5 + y

Lemma 1 n/a

Table 2 Dominance results of each additional inequality resulting from multiplying two cone inequalities as given

in Section 2.

5.3. The best linearization for the quadratic case

In this section we describe that as for power cone inequalities, also for quadratic inequalities there

are multiple choices for linearization. We first give an example that shows that different choices

may lead to different solutions.
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Example 2. Consider the following toy example

max
x

x2
1 +x2

s.t. x2
1 +x2

2 ≤ 1, (26)

x1, x2 ≥ 0.

The optimal solution of this problem is ( 1
2

√
3, 1

2
) and the optimal value is 5

4
. By applying RLT we

obtain the following relaxation

max
x

u11 +x2

s.t. x2
1 +x2

2 ≤ 1, (27)

u11 +u22 ≤ 1,

x1, x2, u11, u22 ≥ 0.

The solution of (27) appears to be u11 = x2 = 1, u22 = x1 = 0, with optimal value 2. This solution is

suboptimal for the original Problem (26). However, if we add the inequality that occurs when we

partially linearize, i.e., the inequality u11 +x2
2 ≤ 1, then we do obtain the optimal solution of (26).

It can easily be verified that if we add the LMI (3) to (27), then we also get the optimal solution to

(26). □

The question hence arises whether we should linearize all quadratic terms, or only a part of

these terms, such that the remaining part is convex. The following lemma shows that linearizing all

quadratic terms in combination with adding the LMI (3) yields the tightest approximation. Hence,

when LMI (3) is included, then the full linearization always yields the best approximation.

Lemma 3. Consider the quadratic inequality

x⊤Ax+ b⊤x+ c≤ 0,

where A is not necessarily positive semidefinite. Then the linearization that gives the tightest

approximation of the above quadratic inequality is obtained by linearizing all quadratic terms if LMI

(3) is included in the constraints.

Proof. We search for the best value of a semidefinite matrix B such that linearizing x⊤(A−B)x

and keeping x⊤Bx yields the tightest approximation. In other words we consider the following

inequality

max
B⪰0

{
x⊤Bx+Tr((A−B)U)+ b⊤x+ c

}
≤ 0,
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which is equivalent to

max
B⪰0

{
Tr
(
B(xx⊤ −U)

)}
+Tr(AU)+ b⊤x+ c≤ 0.

Taking the dual of the maximization problem we obtain that this is equivalent to

Tr (AU)+ b⊤x+ c≤ 0,

(
U x
x⊤ 1

)
⪰ 0,

where the LMI is the same as (3). Therefore, the LMI can be interpreted (from its dual) as obtaining

the best B, and we do not need to add different LMIs. □

5.4. First-order conditions for DC problems

Derivation. In this section, we consider the following DC constraint

c0(x)− c1(x)≤ 0,

where c0, c1 :Rnx → (−∞,+∞] are proper, closed, and convex functions. Rockafellar (1970) shows

that, using the biconjugate reformulation, the above inequality can be equivalently written as

c0(x)− sup
y∈dom(c∗1)

{x⊤y− c∗1(y)} ≤ 0 ⇐⇒ c0(x)+ inf
y∈dom(c∗1)

{−x⊤y+ c∗1(y)} ≤ 0

⇐⇒

{
c0(x)−x⊤y+ c∗1(y)≤ 0,

y ∈ dom(c∗1),

as long as the infimum is attained, see also (Bertsimas et al., 2023, Example 1). Note that the

obtained problem in this case is in the format of Problem (1). Now suppose c1(x) is differentiable,

then we have

y=∇xc1(x). (28)

We can leverage this extra equation to get a better approximation, as illustrated in the following

examples.

Examples.

Example 3. Suppose c1(x) =− log(x). Then (28) becomes y=−1/x, or xy=−1. We introduce

the variable v to linearize the product xy and obtain the equality v=−1. □

Example 4. Suppose c1(x) = x log(x). Then (28) becomes y= 1+ log(x). Hence, we can add the

following convex inequalities to Problem (1): y≤ 1+ log(x), v≥ x+x log(x), where v= xy. □
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Example 5. Suppose c1(x) = log
(∑

j exp(xj)
)
. Then (28) becomes

yi =
exp(xi)∑
j exp(xj)

⇐⇒ log(yi)+log

(∑
j

exp(xj)

)
= xi ⇐⇒ yi log(yi)+yi log

(∑
j

exp(xj)

)
= xiyi.

We linearize yixj with vij and obtain the following convex inequality

yi log(yi)+ yi log

(∑
j

exp

(
vij
yi

))
≤ vii, ∀i (29)

which we can include in Problem (1). Note that yi log
(∑

j exp
(

vij
yi

))
is a perspective function of

the convex function log
(∑

j exp(vij)
)
. □

Showing the benefit in a nonconvex optimization problem. We consider the following

problem:

max
x

log

(
nx∑
i=1

exp(xi)

)
(30a)

s.t. x1 exp(xi)≤ ρ, i∈ {1, . . . , nx}, (30b)

x1 ≥ 0. (30c)

Using the biconjugate of the convex objective, we obtain the following equivalent problem:

max
x,y

x⊤y+

nx∑
i=1

wi (31a)

s.t. x1 exp(xi)≤ ρ, i∈ {1, . . . , nx}, (31b)

yi exp

(
wi

yi

)
≤ 1, i∈ {1, . . . , nx}, (31c)

nx∑
i=1

yi = 1, (31d)

x1,y≥ 0. (31e)

We can consider the valid inequalities (29) derived from the first order conditions, see Example 5.

We next compare the obtained upper bounds for Problem (31), when we use the decomposition

of the exponential cone as well as the first order conditions. The results are illustrated in Table 3.

In all instances we fix ρ= 1. We refer to Appendix D.1 for the formulations of the three different

approximations. From Table 3 we observe that when we include the inequalities obtained from

the decomposition of the exponential cone, the upper bound improves. We further notice a more

significant improvement in the upper bound when including the inequalities obtained from the first

order conditions.
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nx w/o dec-foc w dec w/o foc w/o dec w foc w dec-foc
10 243,922 196,411 29,335 20,314
20 435,374 429,614 26,559 10,820
30 452,940 243,679 28,396 9,909
40 542,497 487,828 20,532 11,032
50 317,332 255,552 30,662 15,259

Table 3 Comparison of the obtained upper bounds for Problem (31), including the LMI, with and without the

decomposition of the exponential cone (dec) and the first order conditions (foc). nx is the dimension of x.

6. Numerical experiments

In this section, we demonstrate empirically the benefit of the cone product reformulations introduced

in this paper. More precisely, we consider a quadratic optimization problem over exponential cone

constraints, demonstrating the value of the proposed methodology for the exponential cone as well

as a robust palatable diet problem showing the benefit of the proposed methodology for the power

cone.

All numerical experiments are performed on an Intel i9 2.3GHz CPU core with 16 GB RAM. All

computations for RPT-BB and SCIP are conducted with MOSEK version 9.2.45 (MOSEK ApS,

2020), Gurobi version 9.0.2 (Gurobi Optimization, 2019), and implemented using Julia 1.5.3 and

the Julia package JuMP.jl version 0.21.6, and all computations for BARON are conducted with

BARON version 20.10.16 (Sahinidis, 1996) implemented using the Python package pyomo version

6.4.1.

6.1. Quadratic optimization with exponential cone constraints

In this section we consider the following problem

min
x

x⊤A0x+ b⊤0 x+ c0 (32a)

s.t. log

(
nx∑
i=1

exp(−xi)

)
≤ α, (32b)

nx∑
i=1

exp(xi)≤ β. (32c)

Using the conic representation of constraints (32b), (32c), Problem (32) is equivalent to the following

problem:

min
x

x⊤A0x+ b⊤0 x+ c0 (33a)

s.t.

nx∑
i=1

zi ≤ 1, (33b)

exp(−xi −α)≤ zi, i∈ {1, . . . , nx}, (33c)
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nx∑
i=1

ti ≤ β, (33d)

exp(xi)≤ ti, i∈ {1, . . . , nx}. (33e)

Using the decomposition of the exponential cone as explained in Section 4.1, we generate the

following additional valid linear inequalities from (33c) and (33e)

zi ≥−xi −α+1, ti ≥ xi +1, i∈ {1, . . . , nx},

respectively. We note that without the decomposition of the exponential cone, the relaxation

obtained from multiplying constraints and linearizing products with new variables is unbounded,

since xx⊤ does not appear in the constraints. However, we can link them by considering the

decomposition of the exponential cone and as a result obtain tighter bounds. In Table 4 we solve

Problem (33) to optimality using RPT-BB, with and without LMI (3), on six instances which

reflect the average of 10 randomly generated instances. We also compare the results with BARON.

The formulation after multiplying all constraints and the data generation for each instance are

summarized in Appendix D.2 and Appendix E respectively. The maximum time limit is equal to

3600 seconds, hence if the computation time equals 3600∗, the optimum cannot be found within

3600 seconds and all approaches return the best value they can obtain within 3600 seconds. A ”-”

indicates that no solution was found after one hour.

Instance nx w/o LMI w LMI BARON
Opt Time(s) Hyp Opt Time(s) Hyp Opt Time(s)

1 5 -102 0.1 0 -102 0.1 0 -102 1
2 10 -175.8 0.1 0 -175.8 0.1 0 -175.8 0.5
3 10 -1885.4 0.2 0 -1885.4 0.7 0 -1885.4 220.2
4 20 -8172.8 4.4 1 -8172.8 25.1 1 -8172.8 3600∗

5 50 -37306.6 101.4 3.2 -37306.6 2100.2 3.1 -37306.6 3600∗

6 100 -326577.3 75.4 1 - 3600∗ 0 -326577.3 3600∗

Table 4 Optimal value (Opt) and computation time (Time) comparisons for Problem (33). Hyp represents the

total number of hyperplanes generated during branch and nx represents the problem dimension.

From Table 4, we observe that for all instances we were able to solve the problem to optimality

with branch and bound in less computational time than BARON, when decomposing the exponential

cone. Moreover, we observe that in instances 4, 5, and 6 corresponding to 20, 50, and 100 variables

respectively, when using the proposed valid inequalities the problem could be solved to optimality

in seconds, while BARON located the global optimal solution but could not prove optimality within

one hour. Finally, we note that in instance 6 which involves 100 variables, the problem could not be

solved at the root node after one hour when including the LMI.
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6.2. Robust palatable diet problem

In this section, we consider the palatable diet problem where there is uncertainty in the coefficients

of one nutrient. The palatable diet problem is an important part of the World Food Programme’s

(WFP) food supply chain. The problem is to maximize palatability, while satisfying diet requirements.

The main variables are the ration variables rk, i.e. the amount of ingredient k in the ration.

Further, the palatability is defined as a function ĥ(r), which we assume is quadratic, that is

ĥ(r) = r⊤Ar+b⊤r+d. Utilizing the dataset from Maragno et al. (2023), consisting of observations

(ri, ĥ(ri)), we find the values of A,b and d that fit them best by regression. Moreover, we include

diet constraints, ensuring that the total nutritional value of a certain nutrient l is not below the

required nutritional value ηl for that nutrient, that is
∑

k∈K βklrk ≥ ηl. Finally, we also have a budget

constraint, that is
∑

k∈K ckrk ≤W . The problem formulation is as follows:

max
r

r⊤Ar+ b⊤r+ d (34a)

s.t.
∑
k∈K

ckrk ≤W, (34b)∑
k∈K

βklrk ≥ ηl l ∈L, (34c)

r≥ 0. (34d)

It is often the case that the nutrient coefficients are uncertain. Assuming uncertainty in the

coefficients of nutrient m, we obtain the following robust constraint:

(βm +z)⊤r≥ ηm, ∀z ∈ U ,

where U = {z : ∥z∥p ≤ ρ}, for p≥ 1. In this case, the robust counterpart is as follows (Bertsimas

and den Hertog (2022))

β⊤
mr− ρ∥r∥q ≥ ηm,

where 1/p+1/q= 1. The constraint can be written as ∥r∥q ≤ 1
ρ
(β⊤

mr− ηm) and, by using auxiliary

variables t, can be reformulated as the following set of linear and power cone inequalities:
∑
k

tk =
1

ρ
(β⊤

mr− ηm),

t
1/q
k ( 1

ρ
(β⊤

mr− ηm))
1−1/q ≥ |rk|, k ∈K.

Hence, the final problem formulation is as follows:

max
r,t

r⊤Ar+ b⊤r+ d (35a)

s.t.
∑
k∈K

ckrk ≤W, (35b)
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k

βklrk ≥ ηl, l ∈L\ {m}, (35c)

∑
k

tk =
1

ρ
(β⊤

mr− ηm), (35d)

t
1/q
k (

1

ρ
(β⊤

mr− ηm))
1−1/q ≥ |rk|, k ∈K, (35e)

r≥ 0. (35f)

We compare the optimal value and computational time for RPT-BB applied to Problem (35) with

and without the multiplication of power cone inequalities with each other, while including LMI (3).

We also compare the results with the results obtained by BARON. The results for ThiamineB1 and

NicacinB3 as the robust nutrients, are illustrated in Table 5. The nutrient coefficients βkl are from

Peters et al. (2022) and the costs ck are from de Moor et al. (2024). The problem formulation after

multiplying all constraints is provided in Appendix D.3. We set the maximum time limit equal to

3600 seconds, hence if the computation time equals 3600∗, the optimum cannot be found within

3600 seconds and all approaches return the best value they can obtain within 3600 seconds. We fix

p= 3, ρ= 0.1, W = 5.

Rob Nutr w/o additions w additions BARON
Opt Time(s) Hyp Opt Time(s) Hyp Opt Time(s)

ThiamineB1 269.1 111.2 9 269.1 16 0 269.1 1.9
NicacinB3 213 44.5 4 213 39.6 1 212.2 3600∗

Table 5 Optimal value (Opt) and computation time in seconds (Time) comparisons for Problem (35) with and

without the proposed additions. Hyp represents the total number of hyperplanes generated during branch and bound.

From Table 5 we observe that for ThiamineB1 as the robust nutrient, all methods find the

global optimal solution, with BARON achieving the best computational time. We also notice that

including the multiplication of power cone inequalities improves the approximation and as a result

the computational time decreases from 111.20 to 16.01 seconds. In case the robust nutrient is

NicacinB3, we observe that adding the power cone multiplications improves the computational time,

while also finding the global optimal solution. In this case BARON could not solve the problem

within one hour and returned a solution with slightly smaller objective value.

7. Discussion and conclusion

In this paper, we studied in detail the pairwise multiplications of cone inequalities. In particular,

we showed how we can pairwise multiply one of the five basic cone constraints with exponential

and power cone inequalities and obtain additional convex constraints. Moreover, we derived

valid inequalities from exponential and power cone inequalities, which can further strengthen the
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approximation. Further, we provided examples showing that each of the obtained inequalities can

tighten the approximation. In addition, for DC problems we derived valid inequalities from first

order conditions. In the numerical experiments, we provided empirical evidence, suggesting that

the cone product reformulations introduced in this paper improve the approximation, while often

leading to smaller computational times than BARON. In future work, it would be interesting to

investigate adaptations of the proposed methodology, including partial constraint multiplications as

well as partial generation of product variables.
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Appendix

A. Multiplication of cone inequalities from the literature

In this appendix, we provide all multiplications of cone inequalities from Table 1 that are from the

literature.

A.1. Case 1 in Table 1: (L) × (L)

Consider two linear inequalities

b1 −a⊤
1 x≥ 0 and b2 −a⊤

2 x≥ 0.

http://docs.mosek.com/9.2/toolbox.pdf
http://docs.mosek.com/9.2/toolbox.pdf
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Multiplying the two linear inequalities yields 1 additional linear inequality (Sherali and Alameddine,

1992):

(b1 −a⊤
1 x)(b2 −a⊤

2 x)≥ 0 ⇐⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 xx
⊤a2 ≥ 0

=⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 Ua2 ≥ 0.

A.2. Case 2 in Table 1: (L) × (Q)

Consider one linear inequality and one conic quadratic inequality

b1 −a⊤
1 x≥ 0 and b2 −a⊤

2 x≥
∥∥Dx+d

∥∥.
Multiplying the linear inequality with both sides of the conic quadratic inequality yields 1 additional

conic quadratic inequality (Sturm and Zhang (2003)) :

(b1 −a⊤
1 x)

∥∥Dx+d
∥∥≤ (b1 −a⊤

1 x)(b2 −a⊤
2 x)

⇐⇒
∥∥(b1 −a⊤

1 x)(Dx+d)
∥∥≤ (b1 −a⊤

1 x)(b2 −a⊤
2 x)

=⇒
∥∥b1Dx+ b1d−DUa1 −a⊤

1 xd
∥∥≤ b1b2 − b1a

⊤
2 x− b2a

⊤
1 x+a⊤

1 Ua2.

A.3. Case 5 in Table 1: (L) × (S)

Consider one linear inequality and one LMI respectively

b1 −a⊤
1 x≥ 0 and A(x)⪰ 0.

We apply RPT to the multiplication of these inequalities, and obtain one additional LMI:

(b1 −a⊤
1 x)A(x)⪰ 0

⇐⇒ (b1 −a⊤
1 x)A0 +(b1 −a⊤

1 x)A1x1 + · · ·+(b1 −a⊤
1 x)Anxxnx ⪰ 0

=⇒ (b1 −a⊤
1 x)A0 +(b1x1 −a⊤

1 u1)A1 + · · ·+(b1xnx −a⊤
1 unx)Anx ⪰ 0.

A.4. Case 6 in Table 1 (Q) × (Q)

Consider two conic quadratic inequalities

b1 −a⊤
1 x≥

∥∥D1x+p1

∥∥ and b2 −a⊤
2 x≥

∥∥D2x+p2

∥∥. (36)

We multiply the left-hand side of the first conic quadratic inequality with both sides of the second

conic quadratic inequality and the left-hand side of the second conic quadratic inequality with both

sides of the first conic quadratic inequality to obtain 2 additional conic quadratic inequalities, see
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Appendix A.2. Moreover, we multiply the left-hand sides and right-hand sides of the conic quadratic

inequalities with each other and obtain 1 additional conic quadratic inequality:

(b1 −a⊤
1 x)(b2 −a⊤

2 x)≥
∥∥D1x+p1

∥∥∥∥D2x+p2

∥∥ (37)

⇐⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 xx
⊤a2 ≥

∥∥(D1x+p1)(D2x+p2)
⊤
∥∥
F

(38)

=⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 Ua2 ≥
∥∥D1UD⊤

2 +p1x
⊤D⊤ +Dxp⊤

2 +p1p
⊤
2

∥∥
F
. (39)

This is Case 6(i) in Table 1.

In the literature also two LMIs are proposed. First observe that the two conic quadratic inequalities

(36) can be written as

b1 −a⊤
1 x≥

∥∥D1x+p1

∥∥ ⇐⇒
[
b1 −a⊤

1 x (D1x+p1)
⊤

D1x+p1 (b1 −a⊤
1 x)I

]
⪰ 0

and

b2 −a⊤
2 x≥

∥∥D2x+p2

∥∥ ⇐⇒
[
b2 −a⊤

2 x (D2x+p2)
⊤

D2x+p2 (b2 −a⊤
2 x)I

]
⪰ 0.

We now assume that, without loss of generality, the matrices D1 and D2 are of the same size.

Indeed, suppose that D1 has less rows than D2, then we can extend matrix D1 by zero rows or by

copying scaled versions of some of the original rows. Using the fact that the Kronecker product of

two positive semidefinite matrices is also positive semidefinite (Horn and Johnson, 1991, Theorem

4.2.12) and linearizing each element of the product, we obtain[
b1 −a⊤

1 x (D1x+p1)
⊤

D1x+p1 (b1 −a⊤
1 x)I

]
⊗
[
b2 −a⊤

2 x (D2x+p2)
⊤

D2x+p2 (b2 −a⊤
2 x)I

]
⪰ 0

=⇒



α γ⊤

γ αI
δ1 η⊤

1

η1 δ1I
· · · δr η⊤

r

ηr δrI
δ1 η⊤

1

η1 δ1I
α γ⊤

γ αI
...

. . .

δr η⊤
r

ηr δrI
α γ⊤

γ αI


⪰ 0,

where

α= b1b2 − b2a
⊤
1 x− b1a

⊤
2 x+ a⊤

1 Ua2

γ = b1(D2x+p2)− (a⊤
1 x)p2 −D2Ua1

δi = b2(d
⊤
1ix)+ p1i(b2 −a⊤

2 x)−d⊤
1iUa1, i= 1, . . . , r

ηi = (d⊤
1ix+ p1i)p2 + p1iD2x+D2Ud1i, i= 1, . . . , r,



Author: Cone product reformulation for global optimization
34

and d1i and d2i denote the i-th row of D1 and D2, respectively. This is Case 6(ii) in Table 1.

Another LMI is proposed by Jiang and Li (2019), using the Hadamard product instead of the

Kronecker product. It follows for the Hadamard product that[
b1 −a⊤

1 x (D1x+p1)
⊤

D1x+p1 (b1 −a⊤
1 x)I

]
◦
[
b2 −a⊤

2 x (D2x+p2)
⊤

D2x+p2 (b2 −a⊤
2 x)I

]
⪰ 0,

which implies [
α β⊤

β αI

]
⪰ 0, (40)

where

α= b1b2 − b2a
⊤
1 x− b1a

⊤
2 x+ a⊤

1 Ua2 (41)

βi = d1iUd1i + p1ip2i + p2id1ix+ p1id2ix, i= 1, . . . , r, (42)

and d1i and d2i is the i-th row of D1 and D2, respectively. Notice that the matrix in the left-hand

side of (40) has an arrow structure, and hence LMI (40) is equivalent with the following conic

quadratic inequality:

∥β∥2 ≤ α. (43)

It can easily be verified that (43) is a weaker inequality than (39). This is Case 6(iii) in Table 1.

A.5. Case 9 in Table 1: (Q) × (S)

Consider one conic quadratic inequality and one LMI

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ and A(x)⪰ 0. (44)

First observe that the conic quadratic inequality can be formulated as an LMI (Anstreicher, 2017):

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ ⇐⇒

[
b2 −a⊤

2 x (Dx+p)⊤

Dx+p (b2 −a⊤
2 x)I

]
⪰ 0.

We now multiply these inequalities. Using the fact that the Kronecker product of two positive

semidefinite matrices is also positive semidefinite (Horn and Johnson, 1991, Theorem 4.2.12), we

obtain 1 additional LMI:(
b2 −a⊤

2 x−
∥∥Dx+p

∥∥)A(x)⪰ 0 =⇒
[
b2 −a⊤

2 x (Dx+p)⊤

Dx+p (b2 −a⊤
2 x)I

]
⊗A(x)⪰ 0

⇐⇒


(b2 −a⊤

2 x)A(x) (d⊤
1 x+p1)A(x) · · · (d⊤

r x+pr)A(x)
(d⊤1 x+p1)A(x) (b2 −a⊤

2 x)A(x)
...

. . .
(d⊤r x+pr)A(x) (b2 −a⊤

2 x)A(x)

⪰ 0

=⇒


A(b2x−Ua2) A(p1x+Ud1) · · · A(prx+Udr)
A(p1x+Ud1) A(b2x−Ua2)

...
. . .

A(prx+Udr) A(b2x−Ua2)

⪰ 0, (45)
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where di is the i-th row of D. We could also directly multiply the left-hand side of the conic

quadratic inequality with the LMI and obtain 1 additional LMI:

A(b2x−Ua2)⪰ 0,

which is also implied by (45).

A.6. Case 12 in Table 1: (P) × (S)

Consider one power cone inequality and one LMI
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

and A(x)⪰ 0.

We multiply the nonnegativity constraints of the power cone with the LMI and obtain m additional

LMIs:

xiA(x)⪰ 0 =⇒ A(ui)⪰ 0, i= 1, · · · ,m.

A.7. Case 15 in Table 1: (S) × (S)

Consider two LMIs {
A(x)⪰ 0
B(x)⪰ 0.

If A(x) and B(x) are of different sizes, it follows from (Horn and Johnson, 1991, Theorem 4.2.12)

that the Kronecker product of A(x) and B(x) is positive semidefinite, that is A(x)⊗B(x)⪰ 0.

Notice that each element in the Kronecker product is the multiplication of two affine functions of x.

After linearizing the quadratic terms in A(x)⊗B(x) with the matrix C(x,U), which is linear in

both x and U , we obtain Case 15(i) of Table 1. If A(x) and B(x) are of the same size, it follows

from the Schur Product Theorem (Schur, 1911; Horn and Johnson, 1991, Theorem 5.2.1) that the

Hadamard product of A(x) and B(x) is positive semidefinite, that is A(x) ◦B(x)⪰ 0. Notice that

each element in the Hadamard product is the multiplication of two affine functions of x. After

linearizing the quadratic terms in A(x) ◦B(x) with the matrix D(x,U), which is linear in both x

and U , we obtain Case 15(ii) of Table 1.

B. Adversarial approach for best power cone reformulation

In Algorithm 1 we include generic pseudocode for the adversarial approach, utilized for finding the

best reformulation when multiplying a cone inequality with the power cone. The function g(x,U)

refers to the right-hand side of the constraint obtained after the multiplication of a cone inequality

with a power cone inequality.
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Algorithm 1 Adversarial approach for best reformulation

Input: θ0: Initial guess for the uncertain parameters.

Output: (x∗,U ∗): Optimal solutions of the best reformulated problem.

1: Initialize V = {θ0}.

2: Solve the master problem with input V and obtain optimal solutions (x∗,U ∗).

3: Solve the sub-problem with input (x∗,U ∗) and obtain optimal solution θ∗ with cost c∗.

4: if c∗ < log(g(x∗,U ∗)) then

5: V = V ∪{θ∗}.

6: Go to Step 2.

7: else

8: Return the optimal solutions (x∗,U ∗).

9: end if

C. Full RPT

In this appendix, we describe the number of additional inequalities one would obtain when applying

full RPT, i.e., the total additional conic inequalities resulting from the multiplication of all pairwise

multiplications of the constraints in the two cones, including multiplications of all inequalities in

the same cone.

Case 1 in Table 6. Multiplying each linear inequality with itself yields 2 additional linear

inequalities. Hence, with full RPT we would obtain in total 3 additional linear inequalities.

Case 2 in Table 6. Multiplying the linear inequality with itself yields 1 additional linear inequality,

see Case 1 in Appendix A.1. Multiplying the conic quadratic inequality with itself yields 2 additional

conic quadratic inequalities, see Case 6 in Appendix A.4. Hence, with full RPT we would obtain 1

additional linear inequality and 3 additional conic quadratic inequalities.

Case 3(i) and 3(ii) in Table 6. Multiplying the linear inequality with itself and the nonnegativity

constraints of the power cone with themselves yields 1+m(m+1)/2 additional linear inequalities, see

Case 1 in Appendix A.1. Multiplying the power cone inequality with the nonnegativity constraints

yields m additional power cone inequalities, see Case 3 in Section 3.2. Multiplying the power cone

inequality with itself yields 1 additional power cone inequality, see Case 10 in Section 3.4. Hence,

with full RPT we would obtain in total m+1+m(m+1)/2 additional linear inequalities and m+2

additional power cone inequalities.

Case 4 in Table 6. Multiplying the linear inequality with itself and the nonnegativity constraint

of the exponential cone with itself yields 2 additional linear inequalities, see Case 1 in Appendix A.1.
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Multiplying the nonnegativity constraint of the exponential cone with the exponential cone inequality

and the exponential cone inequality with itself yields 3 additional exponential cone inequalities, see

Case 13 in Section 4.5. Hence, with full RPT we would obtain in total 3 additional linear inequalities

and 4 additional exponential cone inequalities.

Case 5 in Table 6. Multiplying the linear inequality with itself yields 1 additional linear inequality,

see Case 1 in Appendix A.1. Multiplying the LMI with itself yields 1 additional LMI, see Case

15 in Appendix A.7. Hence, with full RPT we would obtain 1 additional linear inequality and 2

additional LMIs.

Case 6(i) in Table 6. We can further multiply both quadratic inequalities with themselves to

obtain 4 additional quadratic inequalities, see Case 6(i) in Appendix A.4. Hence, with full RPT we

would obtain in total 7 additional quadratic inequalities.

Case 6(ii) and 6(iii) in Table 6. We can multiply both quadratic inequalities with themselves

as explained in Appendix A.4 for Case 6(ii) and 6(iii) to obtain 2 additional LMIs. Hence, with full

RPT we would obtain in total 3 additional LMIs.

Case 7(i) and 7(ii) in Table 6. Multiplying the conic quadratic inequality with itself yields

2 additional conic quadratic inequalities, see Case 6 in Appendix A.4. Multiplying the nonnega-

tivity constraints with each other yields m(m+1)/2 additional linear inequalities, see Case 1 in

Appendix A.1. Further, multiplying the nonnegativity constraints with the power cone inequality

yields m additional power cone inequalities, see Case 3 in Section 3.2. Multiplying the power cone

inequality with itself yields 1 additional power cone inequality, see Case 10 in Section 3.4. Hence,

with full RPT, we would obtain m(m+1)/2 additional linear inequalities, m+2 additional conic

quadratic inequalities, and m+3 additional power cone inequalities.

Case 8(i) in Table 6. Multiplying the conic quadratic inequality with itself yields 2 additional

conic quadratic inequalities, see Case 6 in Appendix A.4. Multiplying the nonnegativity constraint

with itself and the exponential cone inequality yields 1 additional linear inequality, see Case 1 in

Appendix 4.2, and 1 additional exponential cone inequality, see Case 4 in Section 4.2. Multiplying

the exponential cone inequality with itself yields 2 additional exponential cone inequalities, see Case

13 in Section 4.5. Hence, with full RPT we would obtain 1 additional linear inequality, 4 additional

conic quadratic inequalities, and 4 additional exponential cone inequalities.

Case 8(ii) in Table 6. We obtain 1 additional conic quadratic inequality and 1 additional

exponential cone inequality from the multiplication of the derived linear inequality with the conic

quadratic inequality and the exponential cone inequality, respectively. The remaining possible
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constraint multiplications are redundant from Lemma 1. Hence, together with the inequalities in

8(i) in Table 6, with full RPT we obtain in total 1 additional linear inequality, 5 additional conic

quadratic inequalities and 5 additional exponential cone inequalities.

Case 8(iii) in Table 6. In addition to the inequalities from Case 8(ii), we also obtain 2 additional

conic quadratic inequalities and 1 additional exponential cone inequality from the multiplication

of the derived conic quadratic inequality with the conic quadartic inequality and the exponential

cone inequality, respectively. The remaining possible constraint multiplications are redundant from

Lemma 1. Hence, in this case, with full RPT we would obtain in total 1 additional linear inequality,

7 additional conic quadratic inequalities, and 6 additional exponential cone inequalities.

Case 9 in Table 6. Multiplying the conic quadratic inequality with itself yields 2 additional conic

quadratic inequalities, see Case 6 in Appendix A.4. Further, multiplying the LMI with itself yields

1 additional LMI, see Case 15 in Appendix A.7. Hence, with full RPT we would obtain in total 2

additional conic quadratic inequalities and 2 additional LMIs.

Case 10(i) and 10(ii) in Table 6. Multiplying the nonnegativity constraints of each cone with

themselves and the power cone inequality of the same cone, results in m1(m1+1)/2+m2(m2+1)/2

additional linear inequalities, see Case 1 in Appendix A.1, and m1 +m2 additional power cone

inequalities, see Case 3 in Section 3.2. Moreover, multiplying each power cone inequality with

itself yields 2 additional power cone inequalities, see Case 10 in Section 3.4. Hence, with full RPT

we would obtain in total m1(m1 +1)/2+m2(m2 +1)/2+m1m2 additional linear inequalities and

2m1 +2m2 +3 additional power cone inequalities.

Case 11(i) in Table 6. Multiplying the nonnegativity constraints of the power cone with themselves

and the power cone inequality yields m(m+1)/2 additional linear inequalities and m additional

power cone inequalities, see Case 1 in Appendix A.1 and Case 3 in Section 3.2 respectively.

Multiplying the power cone inequality with itself yields one additional power cone inequality, see

Case 10 in Section 3.4. Also, multiplying the nonnegativity constraint of the exponential cone with

itself and the exponential cone inequality and multiplying the exponential cone inequality with

itself yields 1 linear and 3 additional new exponential cone inequalities, see Case 13 in Section 4.5.

Hence, with full RPT we would obtain in total (m+ 1)(m+ 2)/2 additional linear inequalities,

m+3 additional exponential cone inequalities and m+3 additional power cone inequalities.

Case 11(ii) in Table 6. We obtain 1 additional exponential cone inequality and 1 additional power

cone inequality from the multiplication of the derived linear inequality with the exponential cone

inequality and power cone inequality, respectively. The remaining possible constraint multiplications
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are redundant from Lemma 1. Hence, together with the inequalities in 11(i) in Table 6, with full

RPT we obtain in total (m+1)(m+2)/2 additional linear inequalities, m+4 additional exponential

cone inequalities and m+4 additional power cone inequalities.

Case 11(iii) in Table 6. In addition to the inequalities from Case 11(ii), we obtain 1 additional

exponential cone inequality and 2 additional power cone inequalities from the multiplication of

the derived conic quadratic inequality with the exponential cone inequality and the power cone

inequality, respectively. The remaining possible constraint multiplications are redundant from

Lemma 1. Hence, together with the inequalities in 11(ii) in Table 6, with full RPT we obtain in

total (m+1)(m+2)/2 additional linear inequalities, m+5 additional exponential cone inequalities,

and m+6 additional power cone inequalities.

Case 12 in Table 6. Multiplying the nonnegativity constraints with themselves and the power

cone inequality yields m(m+1)/2 additional linear inequalities, see Case 1 in Appendix A.1 and m

additional power cone inequalities, see Case 3 in Section 3.2 Multiplying the power cone inequality

with itself yields 1 additional power cone inequality, see Case 10 in Section 3.4. Moreover, multiplying

the LMI with itself yields 1 additional LMI, see Case 15 in Appendix A.7. Hence, with full RPT we

obtain in total m(m+1)/2 additional linear inequalities, m+1 additional power cone inequalities,

and m+1 additional LMIs.

Case 13(i) in Table 6. Multiplying the nonnegativity constraint of each exponential cone with

itself and the exponential cone inequality of the same exponential cone yields 2 additional linear

inequalities, see Case 1 in Appendix A.1, and 2 additional exponential cone inequalities, see Case 4

in Section 4.2. Multiplying the left-hand side of each exponential cone inequality with both sides of

the same exponential cone inequality yields 2 additional exponential cone inequalities, see Case 4

in Section 4.2. Moreover, multiplying the left-hand sides and right-hand sides of both inequalities

yields 2 additional exponential cone inequalities:{
x2
1 ≥ x2

2 exp (2x3x2/x
2
2)

x2
4 ≥ x2

5 exp (2x6x5/x
2
5)

=⇒
{
u11 ≥ u22 exp (2u23/u22)
u44 ≥ u55 exp (2u56/u55).

Hence, with full RPT we would obtain in total 3 additional linear inequalities and 11 additional

exponential cone inequalities.

Case 13(ii) in Table 6. We multiply each of the derived linear inequalities x1 ≥ x2 + x3 and

x4 ≥ x5 + x6 with the exponential cone inequalities and obtain 4 additional exponential cone

inequalities. The remaining possible constraint multiplications are redundant by Lemma 1. Hence,

with full RPT we would obtain in total 3 additional linear inequalities and 15 additional exponential

cone inequalities.
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Case 13(iii) in Table 6. We multiply each of the derived linear and conic quadratic inequalities

with the exponential cone inequalities and obtain 8 additional exponential cone inequalities. The

remaining possible constraint multiplications are redundant by Lemma 1. Hence, with full RPT we

would obtain in total 3 additional linear inequalities and 19 additional exponential cone inequalities.

Case 13(iv) in Table 6. We multiply the derived linear and conic quadratic inequalities with the

exponential cone inequalities and obtain 6 additional exponential cone inequalities. The remaining

possible constraint multiplications are redundant by Lemma 1. Hence, with full RPT we would

obtain in total 3 additional linear inequalities and 17 additional exponential cone inequalities.

Case 14(i) in Table 6. Multiplying the exponential cone with itself, yields 1 additional linear

inequality and 3 additional exponential cone inequalities. Moreover, multiplying the LMI with itself

yields 1 additional LMI. Hence, with full RPT we would obtain 1 additional linear inequality, 3

additional exponential cone inequalities, and 3 additional LMIs.

Case 14(ii) in Table 6. Multiplying the linear inequality resulting from the decomposition of

the exponential cone with itself, the nonnegativity constraint of the exponential cone, and the

exponential cone inequality gives 2 additional linear inequalities and 1 additional exponential cone

inequality. Hence, together with the inequalities in 14(i) in Table 6 and the inequalities resulting

from multiplying this linear inequality with the LMI as explained in Section A.3, with full RPT

we obtain in total 3 additional linear inequalities, 4 additional exponential cone inequalities, and 4

additional LMIs.

Case 14(iii) in Table 6. Multiplying the quadratic inequality resulting from the decomposition of

the exponential cone with itself, the nonnegativity constraint of the exponential cone, the linear

inequality resulting from the decomposition of the exponential cone, and the exponential cone

inequality gives 5 additional quadratic inequalities and one additional exponential cone inequality.

Hence, together with the inequalities in 14(ii) in Table 6 and the inequalities resulting from

multiplying this quadratic inequality with the LMI as explained in Section A.5, with full RPT

we obtain in total 3 additional linear inequalities, 5 additional quadratic inequalities, 5 additional

exponential cone inequalities and 5 LMIs

Case 15(i) and 15(ii) in Table 6. Multiplying the LMIs with itself, yields 2 additional LMIs,

hence with full RPT we would obtain in total 3 additional LMIs.

D. RPT formulations of numerical experiments

In this section, we include the formulations obtained when multiplying all constraints in the problems

encountered in the numerical experiments.
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Case Cone-1 Cone-2 Full RPT

1 L L 3L

2 L Q L + 3Q

3 L P (i) (m+1+m(m+1)/2)L + (m+2)P
(ii) (m+1+m(m+1)/2)L + (m+2)P

4 L E 3L + 4E

5 L S L + 2S

6 Q Q (i) 7Q
(ii) 3S
(iii) 3S

7 Q P (i) m(m+1)/2L + (m+2)Q + (m+3)P
(ii) m(m+1)/2L + (m+2)Q + (m+3)P

8 Q E (i) L + 4Q + 4E
(ii) L + 5Q + 5E
(iii) L + 7Q + 6E

9 Q S 2Q + 2S

10 P P (i) (m1(m1 +1)/2+m2(m2 +1)/2+m1m2)L + (2m1 +2m2 +3)P
(ii) (m1(m1 +1)/2+m2(m2 +1)/2+m1m2)L + (2m1 +2m2 +3)P

11 P E (i) ((m+1)(m+2)/2)L + (m+3)P + (m+3)E
(ii) ((m+1)(m+2)/2+1)L + (m+4)P + (m+4)E
(iii) ((m+1)(m+2)/2+2)L + 2Q + (m+6)P + (m+5)E

12 P S (m(m+1)/2)L + (m+1)P + (m+1)S

13 E E (i) 3L + 11E
(ii) 3L + 15E
(iii) 3L + 19E
(iv) 3L + 17E

14 E S (i) L + 3E + 3S
(ii) 3L + 4E + 4S
(iii) 3L + 5Q + 5E + 5S

15 S S (i) 3S
(ii) 3S

Table 6 Results of multiplying the inequalities in two of the five basic cones as given in Section 2 when applying

full RPT.

D.1. RPT formulation of Section 5.3

We linearize xx⊤ with X, yy⊤ with Y , xy⊤ with U , xw⊤ with Q, yw⊤ with P , and ww⊤ with

W . After pairwise multiplying all constraints, we obtain the following problem:

max
x,y,X,
Y ,U ,Q
P ,W

Tr(U)+
n∑

i=1

wi (46a)
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s.t. x1 exp

(
X1i

x1

)
≤ ρ, i∈ {1, . . . , n}, (46b)

yi exp

(
wi

yi

)
≤ 1, i∈ {1, . . . , n}, (46c)

U1i exp

(
Q1i

U1i

)
≤ x1, i∈ {1, . . . , n}, (46d)

Yij exp

(
Pji

Yij

)
≤ yj, i, j ∈ {1, . . . , n}, (46e)

Yij exp

(
Pij +Pji

Yij

)
≤ 1, i≤ j ∈ {1, . . . , n}, (46f)

n∑
i=1

yi = 1, (46g)

n∑
i=1

Ui =x, (46h)

n∑
i=1

Yi = y, (46i)

n∑
i=1

P⊤
i =w, (46j)

x1,U1,Y ,y≥ 0, (46k)X U Q x
U⊤ Y P y
Q⊤ P⊤ W w
x⊤ y⊤ w⊤ 1

⪰ 0. (46l)

Observe that as (31b) is nonconvex, we do not include this constraint in (46), but we include the

convexified constraint (46b). We can further decompose the exponential cone inequalities for y and

multiply them with x1,y and each other to obtain the following additional inequalities

1≥ yi +wi, i∈ {1, . . . , n},

x1 ≥U1i +Q1i, i∈ {1, . . . , n},

y≥Yi +Pi, i∈ {1, . . . , n},

Yij +Wij +Pij +Pji − yi − yj −wi −wj +1≥ 0, i, j ∈ {1, . . . , n}.

We can reformulate the first order conditions into cone inequalities and then multiply them with

the rest to obtain more cone inequalities. More precisely, from Example 5, we have the convex

inequality

yi log(yi)+ yi log

(∑
j

exp

(
Uji

yi

))
≤Uii.
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Using epigraphical variables ti for the terms yi log(yi) as well as epigraphical variables ri for the

terms yi log
(∑

j exp
(

Uji

yi

))
we can reformulate it as conic constraints. We linearize xt⊤, yt⊤, wt⊤

with H,G and R, respectively, and qijyi with Vij. We have the following:

ti + ri ≤Uii, i∈ {1, . . . , n},

yi exp

(
−ti
yi

)
≤ 1, i∈ {1, . . . , n},∑

j

qij ≤ 1, i∈ {1, . . . , n},

yi exp

(
Uji − ri

yi

)
≤ Vij, i, j ∈ {1, . . . , n},∑

j

Vij ≤ yi, i∈ {1, . . . , n},

U1i exp

(
−H1i

U1i

)
≤ 1, i∈ {1, . . . , n},

Yij exp

(
−Gji

Yij

)
≤ 1, i, j ∈ {1, . . . , n},

Yij exp

(
Pji −Gij

Yij

)
≤ 1, i, j ∈ {1, . . . , n},

Yij exp

(
−Gji −Gij

Yij

)
≤ 1, i, j ∈ {1, . . . , n},∑

i

G⊤
i = t,

X U Q H x
U⊤ Y P G y
Q⊤ P⊤ W R w
H⊤ G⊤ R⊤ T t
x⊤ y⊤ w⊤ t⊤ 1

⪰ 0.

We can further decompose the exponential cone inequalities obtained from first order conditions

and obtain the following:

1≥ yi − ti, i∈ {1, . . . , n},

x1 ≥U1i −H1i, i∈ {1, . . . , n},

y≥Yi −Gi, i∈ {1, . . . , n},

(yi −Yij +Gij) exp

(
wi −Pji +Rij

yi −Yij +Gij

)
≤ 1− yj + tj, i, j ∈ {1, . . . , n},

Yij +Pji −Gij −Rij − yi − yj −wi + tj +1≥ 0, i, j ∈ {1, . . . , n},

Yij +Tij −Gij −Gji − yi − yj + ti + tj +1≥ 0, i, j ∈ {1, . . . , n}.

D.2. RPT formulation of Section 6.1

We linearize xx⊤ with X, zz⊤ with Z, xz⊤ with V , xt⊤ with W and zt⊤ with Q. When

multiplying the constraints in Problem (33), without any additions, we obtain the following problem:
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min
x,z,X,
V ,Z

Tr(A0X)+ b⊤0 x+ c0 (47a)

s.t.

nx∑
i=1

zi ≤ 1, (47b)

exp(−xi − a)≤ zi, i∈ {1, . . . , nx}, (47c)
nx∑
i=1

ti ≤ β, (47d)

exp(xi)≤ ti, i∈ {1, . . . , nx}, (47e)(
1−

nx∑
j=1

zj

)
exp

(
−xi −α+

∑nx
j=1 Vij +α

∑nx
j=1 zj

1−
∑nx

j=1 zj

)
≤ zi −

nx∑
j=1

Zij i∈ {1, . . . , nx}, (47f)

β−
nx∑
j=1

tj −β

nx∑
j=1

zj +

nx∑
i,j=1

Qij ≥ 0, (47g)(
1−

nx∑
j=1

zj

)
exp

(
xi −

∑nx
j=1 Vij

1−
∑nx

j=1 zj

)
≤ ti −

nx∑
j=1

Qji, i∈ {1, . . . , nx}, (47h)

nx∑
i,j=1

Zij − 2

nx∑
i=1

zi +1≥ 0, (47i)(
β−

nx∑
j=1

tj

)
exp

(
−βxi −αβ+

∑nx
j=1Wij +α

∑nx
j=1 tj

β−
∑nx

j=1 tj

)
≤ ziβ−

nx∑
j=1

Qij , i∈ {1, . . . , nx}, (47j)(
β−

nx∑
j=1

tj

)
exp

(
βxi −

∑nx
j=1Wij

β−
∑nx

j=1 tj

)
≤ βti −

nx∑
j=1

Tij , i∈ {1, . . . , nx}, (47k)

nx∑
i,j=1

Tij − 2

nx∑
j=1

tj +β2 ≥ 0, (47l)

zj exp

(
Vij

zj

)
≤Qji, i, j ∈ {1, . . . , nx}, (47m)

exp(−xi −xj − 2α)≤Zij , i≤ j ∈ {1, . . . , nx}, (47n)

exp (−xi − a+xj)≤Qij , i, j ∈ {1, . . . , nx}, (47o)

zj exp

(
−Vij − azj

zj

)
≤Zij , i, j ∈ {1, . . . , nx}, (47p)

tj exp

(
−Wij − atj

tj

)
≤Qij , i, j ∈ {1, . . . , nx}, (47q)

tj exp

(
Wij

tj

)
≤ Tij , i, j ∈ {1, . . . , nx}, (47r)

exp (xi +xj)≤ Tij , i≤ j ∈ {1, . . . , nx}. (47s)

Further, from the decomposition of the exponential cone we obtain the following additional

constraints:

−xi −α+1≤ zi, i∈ {1, . . . , nx},

(48a)

xi +1≤ ti, i∈ {1, . . . , nx},
(48b)

zi −
nx∑
j=1

Zij +xi +α− 1−
nx∑
j=1

Vij −α

nx∑
j=1

zj +

nx∑
j=1

zj ≥ 0, i∈ {1, . . . , nx},

(48c)
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(zj +xj +α− 1) exp

(
−Vij −Xij −αxi +xi −α(zj +xj +α− 1)

zj +xj +α− 1

)
≤Zij +Vji +αzi − zi, i, j ∈ {1, . . . , nx},

(48d)

(zj +xj +α− 1) exp

(
Vij +Xij +αxi −xi

zj +xj +α− 1

)
≤Qji +Wji +αti − ti, i, j ∈ {1, . . . , nx},

(48e)

(α− 1)(zj +xj +α− 1)+Zij +Vji +(α− 1)zi +Vij +Xij +(α− 1)xi ≥ 0, i, j ∈ {1, . . . , nx},
(48f)

ti −
nx∑
j=1

Qji −xi +

nx∑
j=1

Vij − 1+

nx∑
j=1

zj ≥ 0, i∈ {1, . . . , nx},

(48g)

(tj −xj − 1) exp

(
−Wij −αtj +Xij +α(xj +1)+xi

tj −xj − 1

)
≤Qij −Vji − zi, i, j ∈ {1, . . . , nx},

(48h)

(tj −xj − 1) exp

(
Wij −Xij −xi

tj −xj − 1

)
≤ Tij −Qji − ti, i, j ∈ {1, . . . , nx},

(48i)

Tij −Wij − tj −Wji +Xij +xj − ti +xi +1≥ 0, i, j ∈ {1, . . . , nx},
(48j)

Qji +Wji +αti − ti −Vij −Xij −αxi +xi − zj −xj −α+1≥ 0, i, j ∈ {1, . . . , nx},
(48k)

βzj −
∑
i

Qji +βxj −
∑
i

Wji −α
∑
i

ti +αβ−β+
∑
i

ti ≥ 0, j ∈ {1, . . . , nx},

(48l)

βtj −
∑
i

Tij −βxj +
∑
i

Wji −β+
∑
i

ti ≥ 0, j ∈ {1, . . . , nx}.

(48m)

D.3. RPT formulation of Section 6.2

We linearize rr⊤, tt⊤, rt⊤ with R,T and V respectively. We multiply all constraints in problem

(35) to obtain the following problem:

max
r,t,R,
T ,V

r⊤Ar+ b⊤r+ d (49a)

s.t. c⊤r≤W, (49b)

β⊤
l r≥ ηl, l ∈L\ {m}, (49c)∑
k

tk =
1

ρ
(β⊤

mr− ηm), (49d)

t
1/q
k (

1

ρ
(β⊤

mr− ηm))
1−1/q ≥ rk, k ∈K, (49e)

β⊤
l Rk ≥ ηlrk, l ∈L\ {m}, k ∈K, (49f)(
β⊤

l Vk − ηltk
) 1

q

(
1

ρ

(
β⊤

1 Rβl − ηlβ
⊤
1 r− η1β

⊤
l r+ η1ηl

))1−1/q

≥β⊤
l Rk − ηlrk, l ∈L\ {m}, k ∈K, (49g)

c⊤Rk ≤Wrk, k ∈K, (49h)

W 2 − 2Wc⊤r+ c⊤Rc≥ 0, (49i)
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Wβ⊤
l r+ ηlc

⊤r− c⊤Rβl −Wηl ≥ 0, l ∈L\ {m}, (49j)(
Wtk − c⊤Vk

) 1
q

(
1

ρ

(
Wβ⊤

mr−Wηm + ηmc
⊤r− c⊤Rβm

))1−1/q

≥Wrk − c⊤Rk k ∈K, (49k)∑
k

Vk =
1

ρ
(Rβm − ηmr), (49l)

∑
k

Tk =
1

ρ
(V ⊤βm − ηmt), (49m)

V
1/q

k
′
k
(
1

ρ
(β⊤

mRk
′ − ηmrk′ ))

1−1/q ≥Rkk
′ , k, k

′
∈K, (49n)

T θ11

kk
′

(
1

ρ

(
β⊤

mVk − ηmtk
))θ12 (1

ρ

(
β⊤

mVk
′ − ηmtk′

))θ21

·(
1

ρ2
(
β⊤

mRβm − 2ηmβ
⊤
mr+ η2

m

))θ22

≥Rkk
′ , k, k

′
∈K, (49o)

r,R≥ 0, (49p) R V r
V ⊤ T t
r⊤ t⊤ 1

⪰ 0. (49q)

For the multiplication of the power cone constraints we generate a feasible θ that satisfies the

following:

θ11 + θ21 = 1/q, θ12 + θ22 = 1− 1/q,

θ11 + θ12 = 1/q, θ21 + θ22 = 1− 1/q.

E. Data generation of Section 6.1

In problem instance 1 the objective is defined as f(x) =− 1
2

∑20

i=1(xi +5)2 and in problem instance

2 it is defined as f(x) =− 1
2

∑20

i=1(xi +7)2. In problem instances 3, 4, 5, and 6, the matrix A0 is

generated as L⊤L, where L∈Rn×n, with Lij ∼ [0,1], and further b0 = 0, c0 = 0. We summarize all

parameters describing each instance in Table 7.

Instance nx α β
1 5 2 20
2 5 2 20
3 10 2 3
4 20 3 4
5 50 3 4
6 100 13 20

Table 7 Problem (32) parameters for each instance. nx refers to the number of variables and α,β to the

constraint parameters.
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F. Dominance results of the constraint multiplications considered in this paper

In this appendix we show that all considered additional constraint multiplications in this paper are

valuable in the sense that for each case we have found an example demonstrating the dominance of

the considered constraint over all other possible additional constraint multiplications.

Remark 4. In all convex relaxations discussed in the examples in this appendix we consider the

additional inequalities uii ≥ 0, where uii linearizes the product term x2
i for i∈ {1, . . . , nx}.

Example 6. We consider the following toy example

min
x

x1x3 (50a)

s.t. x3 ≥ 5, (50b)

x0.5
1 x0.5

2 ≥ x1 +x2, (50c)

x1, x2 ≥ 0. (50d)

We obtain the following RPT relaxation

min
x,U

u13 (51a)

(50b)− (50d),

u33 − 10x3 +25≥ 0, (51b)

(u13 − 5x1)
0.5(u23 − 5x2)

0.5 ≥ u13 +u23 − 5x1 − 5x2, (51c)

ui3 − 5xi ≥ 0, i= 1,2, (51d)

u0.5
i1 u0.5

i2 ≥ ui1 +ui2, i= 1,2, (51e)

u0.5
11 u

0.5
22 ≥ u11 +2u12 +u22, (51f)

u11, u12, u22 ≥ 0. (51g)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 8. From Table 8 we observe that the most valuable constraint multiplications

Con w/o w
(51b) 0.00 0.00

(51c), (51d) −∞ 0.00
(51e), (51g) 0.00 0.00

(51f) 0.00 0.00

Table 8 Comparison of the optimal values for Problem (51), with and without each of the proposed

multiplications.

in this case are (51c), (51d), which result from the multiplication of the linear inequality (50b) with

the power cone inequalities (50c) and (50d). □
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Example 7. Consider the following toy example

min
x

x1x3 (52a)

s.t. x2 exp(x1)≤ 5, (52b)

x1 ≥ 4, (52c)

x2 ≥ exp(−x3). (52d)

We obtain the following RPT relaxation

min
x,U

u13 (53a)

s.t. x2 exp

(
u12

x2

)
≤ 5, (53b)

(52c)− (52d),

u11 − 8x1 +16≥ 0, (53c)

u22 ≥ exp (−2x3) , (53d)

u22 ≥ x2 exp

(
−u23

x2

)
, (53e)

u12 − 4x2 ≥ (x1 − 4) exp

(
−u13 +4x3

x1 − 4

)
. (53f)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 9. □

Con w/o w
(53c) 9.56 9.56
(53d) 9.56 9.56
(53e) 9.56 9.56
(53f) −∞ 9.56

Table 9 Comparison of the optimal values for Problem (53), with and without each of the proposed

multiplications.

Example 8. Consider the following toyexample

min
x

x3x4 (54a)

s.t. 3x1 ≥ ∥diag(a)x∥, (54b)

x0.5
1 x0.5

2 ≥ |x3|, (54c)

x1, x2 ≥ 0, (54d)

x1 exp(x1)≤ 5, (54e)

x1 exp(x2)≤ 5, (54f)
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where a= (1,0,0,1)⊤. We obtain the following RPT relaxation

min
x,U

u34 (55a)

s.t. (54b)− (54d),

x1 exp

(
u11

x1

)
≤ 5, (55b)

x1 exp

(
u12

x1

)
≤ 5, (55c)

9u11 ≥
∥∥diag(a)Udiag(a)⊤

∥∥
F
, (55d)

u0.5
11 u

0.5
12 ≥ |u13|, (55e)

u0.5
12 u

0.5
22 ≥ |u23|, (55f)

u0.5
11 u

0.5
22 ≥ |u33|, (55g)

3u1i ≥
∥∥diag(a)ui

∥∥, i= 1,2, (55h)

(3u11)
0.5(3u12)

0.5 ≥
∥∥diag(a)u3

∥∥, (55i)

u11, u12, u22 ≥ 0. (55j)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 10. □

Con w/o w
(55d) -5.52 -5.52

(55e), (55f), (55j) -5.52 -5.52
(55g) -5.52 -5.52
(55h) -5.52 -5.52
(55i) −∞ -5.52

Table 10 Comparison of the optimal values for Problem (55), with and without each of the proposed

multiplications.

Example 9. Consider the following toyexample

min
x

x3x4 (56a)

s.t. 3x3 ≥ ∥diag(a)x∥, (56b)

x0.5
1 x0.5

2 ≥ |x4|, (56c)

x1 exp(x3)≤ 5, (56d)

x2 exp(x3)≤ 5, (56e)

x1, x2 ≥ 0, (56f)
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where a= (1,1,0,0)⊤. We obtain the following RPT relaxation

min
x,U

u34 (57a)

s.t. (56b)− (56c),

x1 exp

(
u13

x1

)
≤ 5, (57b)

x2 exp

(
u23

x2

)
≤ 5, (57c)

3u33 ≥
∥∥diag(a)u3

∥∥, (57d)

9u33 ≥
∥∥diag(a)Udiag(a)⊤

∥∥
F
, (57e)

u0.5
1i u

0.5
2i ≥ |ui4|, i= 1,2, (57f)

u0.5
11 u

0.5
22 ≥ |u44|, (57g)∥∥diag(a)ui

∥∥≤ 3ui3, i= 1,2, (57h)

(3u13)
0.5(3u23)

0.5 ≥ |3u34|, (57i)

(3u13)
0.5(3u23)

0.5 ≥
∥∥diag(a)u4

∥∥, (57j)

x1, x2, u11, u12, u22 ≥ 0. (57k)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 11. From Table 11 we observe that the most valuable constraint multiplication in

Con w/o w
(57d) -1.84 -1.84
(57e) -1.84 -1.84

(57f), (57k) -1.84 -1.84
(57g) -1.84 -1.84
(57h) -1.84 -1.84
(57i) −∞ -1.84
(57j) -1.84 -1.84

Table 11 Comparison of the optimal values for Problem (57), with and without each of the proposed

multiplications.

this case is (57i), which results from the multiplication of the LHS of the conic quadratic inequality

(56b) with the power cone inequality (56c). □

Example 10. Consider the following toyexample

min
x

x1x3 (58a)

s.t. x1 exp(x1)≤ 5, (58b)
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x2 exp(x2)≤ 5, (58c)

3x2 ≥
∥∥diag(a)x∥∥, (58d)

x0.5
1 x0.5

2 ≥ 2x2, (58e)

x1, x2 ≥ 0, (58f)

where a= (0,1,1)⊤. We obtain the following RPT relaxation

min
x,U

u13 (59a)

s.t. (58d)− (58f),

x1 exp

(
u11

x1

)
≤ 5, (59b)

x2 exp

(
u22

x2

)
≤ 5, (59c)

3ui2 ≥
∥∥diag(a)ui

∥∥, i= 1,2, (59d)∥∥diag(a)Udiag(a)⊤
∥∥
F
≤ 9u22, (59e)

u0.5
i1 u0.5

i2 ≥ 2ui2, i= 1,2, (59f)

u11, u12, u22 ≥ 0, (59g)

u0.5
11 u

0.5
22 ≥ 4u22, (59h)

(3u12)
0.5(3u22)

0.5 ≥
∥∥2diag(a)u2

∥∥. (59i)

We list the values obtained when including/excluding each one of the individual constraints in

Table 12. From Table (12) we observe that the most valuable constraint multiplications in this case

Con w/o w
(59d) -∞ -1.30
(59e) -1.30 -1.30

(59f), (59g) -∞ -1.30
(59h) -1.30 -1.30
(59i) -1.30 -1.30

Table 12 Comparison of the optimal values for Problem (59), with and without each of the proposed

multiplications.

are (59d) and (59f), (59g). (59d) results from the multiplication of the conic quadratic inequality

(58d) with the nonnegativity constraints of the power cone (58f). (59f), (59g) result from the

multiplications of the nonnegativity constraints (58f) with the power cone inequalities (58d) and

(58f). □
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Example 11. Consider the following toy example

min
x

x1x3 (60a)

s.t. 3x2 ≥ ∥Diag(a)x∥ , (60b)

x3 exp

(
−x2

x3

)
≤ 5, (60c)

x3 ≥ 0, (60d)

x3 exp(x2)≤ 10, (60e)

where a= (1,1,0)⊤. We obtain the following RPT relaxation

min
x,U

u13 (61a)

s.t. (60b)− (60d), (61b)

x3 exp

(
u23

x3

)
≤ 10, (61c)

9u22 ≥ ∥3Diag(a)u2∥ , (61d)

9u22 ≥
∥∥Diag(a)UDiag(a)⊤

∥∥
F
, (61e)

u33 exp

(
−2u23

u33

)
≤ 25, (61f)

u33 exp

(
−u23

u33

)
≤ 5x3, (61g)

3u23 ≥ ∥Diag(a)u3∥ , (61h)

u23 exp

(
−u22

u23

)
≤ 5x2, (61i)

u33 ≥ 0. (61j)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 13. From Table (13) we observe that the most valuable constraint multiplication

Con w/o w
(61d) -10.41 -10.41
(61e) -10.41 -10.41

(61f), (61j) -10.41 -10.41
(61g) -10.41 -10.41
(61h) −∞ -10.41
(61i) -10.41 -10.41

Table 13 Comparison of the optimal values for Problem (61), with and without each of the proposed

multiplications.

in this case is (61h), which results from the multiplication of the LHS of the conic quadratic

inequality (60b) with the exponential cone inequality (60e). We observe that when constraint (61f)
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is not included, the problem is unbounded, whereas when it is included a lower bound of −14.72 is

obtained. □

Example 12. Consider the following toy example

min
x

x1x3 (62a)

s.t. 3x1 ≥ ∥Diag(a)x∥ , (62b)

x3 ≥ exp(x1), (62c)

x2x3 ≥ 3, (62d)

where a= (1,1,0)⊤. We obtain the following RPT relaxation

min
x,U

u13 (63a)

s.t. (62b)− (62c) (63b)

u23 ≥ 3, (63c)

9u11 ≥ ∥3Diag(a)u1∥ , (63d)

9u11 ≥
∥∥Diag(a)UDiag(a)⊤

∥∥
F
, (63e)

u33 ≥ exp(2x1), (63f)

u33 ≥ x3 exp

(
u13

x3

)
, (63g)

3u13 ≥ ∥Diag(a)u3∥ , (63h)

u13 ≥ x1 exp

(
u11

x1

)
. (63i)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 14. From Table 14 we observe that the most valuable constraint multiplication

Con w/o w
(63d) 1.06 1.06
(63e) 1.06 1.06
(63f) 1.06 1.06
(63g) 1.06 1.06
(63h) 0.00 1.06
(63i) 1.06 1.06

Table 14 Comparison of the optimal values for Problem (63a), with and without each of the proposed

multiplications.

in this case is (63h), which results from the multiplication of the conic quadratic inequality (62b)

with the LHS of the exponential cone inequality (62c). □
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Example 13. Consider the following toyexample

min
x

x3x4 (64a)

s.t. x1 +x2 ≥ ∥diag(a)x∥, (64b)

x2 +x3 ≥ exp(x1 +x2), (64c)

(x1 +x2) exp(xi)≤ 5, i∈ [4]. (64d)

where a= (0,1,0,1)⊤. We obtain the following RPT relaxation

min
x,U

u34 (65a)

s.t. (64b)− (64c),

(x1 +x2) exp

(
u1i +u2i

x1 +x2

)
≤ 5, i∈ [4], (65b)∥∥diag(a)(u1 +u2)

∥∥≤ u11 +2u12 +u22, (65c)∥∥diag(a)Udiag(a)⊤
∥∥
F
≤ u11 +2u12 +u22, (65d)∥∥diag(a)(u2 +u3)

∥∥≤ u12 +u22 +u13 +u23, (65e)

(x2 +x3) exp

(
u12 +u22 +u13 +u23

x2 +x3

)
≤ u22 +2u23 +u33, (65f)

exp(2x1 +2x2)≤ u22 +2u23 +u33, (65g)

(x1 +x2) exp

(
u11 +2u12 +u22

x1 +x2

)
≤ u12 +u22 +u13 +u23, (65h)

x3 ≥ x1 +1+ y, (65i)∥∥(√2(x1 +x2), 1− y
)∥∥≤ 1+ y, (65j)∥∥diag(a) (u3 −u1 −x−z)

∥∥≤ u13 +u23 −u11 −u12 −x1 −x2 − z1 − z2, (65k)∥∥(√2(u11 +2u12 +u22), x1 +x2 − z1 − z2

)∥∥≤ x1 +x2 + z1 + z2, (65l)∥∥diag(a) (x+z)
∥∥≤ x1 +x2 + z1 + z2, (65m)∥∥(√2(u12 +u22)
√
2(u14 +u24)

x2 − z2 x4 − z4

)∥∥≤ x1 +x2 + z1 + z2, (65n)

(x3 −x1 − 1− y) exp

(
u13 +u23 −u11 −u12 −x1 −x2 − z1 − z2

x3 −x1 − 1− y

)
≤ u23 +u33 −u12 −u13 −x2 −x3 − z2 − z3, (65o)

(1+ y) exp

(
x1 +x2 + z1 + z2

1+ y

)
≤ x2 +x3 + z2 + z3, (65p)∥∥(√2(u12 +u13 +u22 +u23), x2 +x3 − z2 − z3

)∥∥≤ x2 +x3 + z2 + z3, (65q)

u11 +u33 − 2u13 +2x1 − 2x3 +2z1 − 2z3 +2y+ q+1≥ 0, (65r)∥∥(√2(u13 +u23 −u11 −u12 −x1 −x2 − z1 − z2), x3 −x1 − 1− y− z3 + z1 + y+ q
)∥∥

≤ x3 −x1 − 1− y+ z3 − z1 − y− q, (65s)
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∥∥(√2(x1 +x2 + z1 + z2), 1+ q
)∥∥≤ 1+2y+ q, (65t)∥∥( 2(u11 +2u12 +u22)

√
2(x1 +x2 − z1 − z2)√

2(x1 +x2 − z1 − z2) 1− 2y+ q

)∥∥≤ 1+2y+ q. (65u)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 15. From Table 15 we observe that some of the most valuable constraint

Con w/o w
(65c) -2.88 -2.52
(65d) −∞ -2.52
(65e) -2.52 -2.52
(65f) -2.52 -2.52
(65g) -2.52 -2.52
(65h) -2.58 -2.52

(65k)-(65n) -2.90 -2.52
(65o)-(65p) -2.52 -2.52
(65q)-(65u) -2.52 -2.52

Table 15 Comparison of the optimal values for Problem (65), with and without each of the proposed

multiplications.

multiplications in this case are (65h) and (65k)-(65n). (65h) results from the multiplication of the

exponential cone inequality (64c) with the LHS of the quadratic inequality (64b). (65k)-(65n) result

from the multiplication of the inequalities (77i) and (77j) result from the multiplication of the

decomposition of the exponential cone with the conic quadratic inequality (64b). □

Example 14. Consider the following toy example

min
x

x1x3 (66a)

s.t. x2 exp(xi)≤ 5, i= 1,2,3, (66b)

2x2 ≥
∥∥diag(a)x∥∥, (66c)

x2 ≥ exp(−x3). (66d)

We obtain the following RPT relaxation

min
x,U

u13 (67a)

s.t. x2 exp

(
ui2

x2

)
≤ 5, i= 1,2,3, (67b)

(66c)− (66d),

2u22 ≥
∥∥diag(a)u2

∥∥, (67c)

4u22 ≥
∥∥diag(a)Udiag(a)⊤

∥∥
F
, (67d)
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x2 exp

(
−u23

x2

)
≤ u22, (67e)

exp(−2x3)≤ u22, (67f)

x2 ≥ 1−x3, (67g)

u22 +u33 +2u23 − 2x2 − 2x3 +1≥ 0, (67h)

2u22 − 2x2 +2u23 ≥
∥∥diag(a) (u2 −x+u3)

∥∥, (67i)

(x2 − 1+x3) exp

(
−u23 +x3 −u33

x2 − 1+x3

)
≤ u22 −x2 +u23. (67j)

We list the values obtained when including/excluding each one of the individual constraints in

Table 16. From Table (16) we observe that the most valuable constraint multiplication in this

Con w/o w
(67c) -8.21 -8.21
(67d) -8.21 -8.21
(67e) -8.21 -8.21
(67f) -8.21 -8.21
(67h) -8.21 -8.21
(67i) −∞ -8.21
(67j) -8.21 -8.21

Table 16 Comparison of the optimal values for Problem (67), with and without each of the proposed

multiplications.

case is (67i), which results from the multiplication of the conic quadratic inequality (66c) with the

additional valid linear inequality (67g), resulting from the decomposition of (66d). We observe that

the multiplication of the linear with the exponential cone inequality is necessary in this case. □

Example 15. Consider the following toy example

min
x

x1 exp(x1) (68a)

s.t. x1x1 ≥ 10, (68b)

x2x2 ≥ 5, (68c)

x3x3 ≥ 10, (68d)

x2 exp(x1)≤ 25, (68e)

x0.5
1 x0.5

2 ≥ x3, (68f)

x1, x2 ≥ 0, (68g)

x3 ≥ 0. (68h)
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We obtain the following RPT relaxation

min
x,U

x1 exp

(
u11

x1

)
(69a)

s.t. u11 ≥ 10, (69b)

u22 ≥ 5, (69c)

u33 ≥ 10, (69d)

x2 exp

(
u22

x2

)
≤ 25, (69e)

(68f)− (68h)

u0.5
i1 u0.5

i2 ≥ ui3, i= 1,2, (69f)

u0.5
11 u

0.5
22 ≥ u33, (69g)

u0.5
13 u

0.5
23 ≥ u33, (69h)

u11, u12, u22 ≥ 0, (69i)

u13, u23 ≥ 0, (69j)

u33 ≥ 0. (69k)

We list the values obtained when including/excluding each one of the individual constraints in

Table 17. From Table 17 we observe that the most valuable constraint multiplication is (69g), which

Con w/o w
(69f), (69i) 29.56 29.56

(69g) 27.18 29.56
(69h), (69j) 29.56 29.56

(69k) 29.56 29.56

Table 17 Comparison of the optimal values for Problem (69a), with and without each of the proposed

multiplications.

results from the multiplication of the power cone inequality (68f) with itself. □

Example 16. Consider the following toy example

min
x

x1x3 (70a)

s.t. x1x2 ≥ 1, (70b)

x2x3 ≥ 1, (70c)

x3x3 ≥ 5, (70d)

x0.5
1 x0.5

2 ≥ x3, (70e)

x1, x2 ≥ 0, (70f)

x3 ≥ exp(x2). (70g)
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We obtain the following RPT relaxation

min
x,U

u13 (71a)

s.t. u12 ≥ 1, (71b)

u23 ≥ 1, (71c)

u33 ≥ 5, (71d)

(70e)− (70g),

u11, u22, u12 ≥ 0, (71e)

u0.5
i1 u0.5

i2 ≥ ui3, i= 1,2, (71f)

u0.5
11 u

0.5
22 ≥ u33, (71g)

u33 ≥ x3 exp

(
u23

x3

)
, (71h)

u33 ≥ exp(2x2), (71i)

xi exp

(
ui2

xi

)
≤ ui3, i= 1,2, (71j)

u0.5
13 u

0.5
23 ≥ u33. (71k)

We list the values obtained when including/excluding each one of the individual constraints in Table

18. From Table 18 we observe that the most valuable constraint multiplications in this case are (71e)

Con w/o w
(71e), (71f) 13.59 13.65

(71g) 13.65 13.65
(71h) 13.65 13.65
(71i) 13.65 13.65
(71j) 13.59 13.65
(71k) 9.07 13.65

Table 18 Comparison of the optimal values for Problem (71a), with and without each of the proposed

multiplications.

- (71f), (71j), and (71k). The first two inequalities result from the multiplication of the nonnegativity

constraints (70f) of the power cone with the power cone inequalities (70e) and (70f). The third

inequality results from the multiplication of the nonnegativity constraints (70f) of the power cone

with the exponential cone inequality (70g). The last inequality results from the multiplication of

the LHS of the exponential inequality (70g) with the power cone inequality (70e). □
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Example 17. Consider the following toyexample

min
x

x3x4 (72a)

s.t. x0.5
1 x0.5

2 ≥ ∥diag(a)x∥, (72b)

x1, x2 ≥ 0, (72c)

x2 +x3 ≥ exp(x1 +x2), (72d)

(x1 +x2) exp(xi)≤ 5, i∈ [4]. (72e)

where a= (0,1,0,1)⊤. We obtain the following RPT relaxation

min
x,U

u34 (73a)

s.t. (72b)− (72d),

(x1 +x2) exp

(
u1i +u2i

x1 +x2

)
≤ 5, i∈ [4], (73b)

u0.5
1i u

0.5
2i ≥

∥∥diag(a)ui

∥∥, i= 1,2 (73c)

u11, u12, u22 ≥ 0, (73d)

u0.5
11 u

0.5
22 ≥

∥∥diag(a)Udiag(a)⊤
∥∥
F
, (73e)

u22 +2u23 +u33 ≥ (x2 +x3) exp

(
u12 +u22 +u13 +u23

x2 +x3

)
, (73f)

u22 +2u23 +u33 ≥ exp(2x1 +2x2), (73g)

ui2 +ui3 ≥ xi exp

(
u1i +u2i

xi

)
, i= 1,2, (73h)

(u12 +u13)
0.5(u22 +u23)

0.5 ≥
∥∥diag(a)(u2 +u3)

∥∥, (73i)

x3 ≥ x1 +1+ y, (73j)

1+ y≥
∥∥(√2(x1 +x2), 1− y

)∥∥, (73k)

(u13 −u11 −x1 − z1)
0.5(u23 −u12 −x2 − z2)

0.5 ≥
∥∥diag(a)(u3 −u1 −x−z)

∥∥, (73l)

(x1 + z1)
0.5(x2 + z2)

0.5 ≥
∥∥diag(a) (x+z)

∥∥, (73m)

(x1 + z1)
0.5(x2 + z2)

0.5 ≥
∥∥(√2(u12 +u22)

√
2(u14 +u24)

x2 − z2 x4 − z4

)∥∥, (73n)

u23 +u33 −u12 −u13 −x2 −x3 − z2 − z3 ≥

(x3 −x1 − 1− y) exp

(
u13 +u23 −u11 −u12 −x1 −x2 − z1 − z2

x3 −x1 − 1− y

)
, (73o)

x2 +x3 + z2 + z3 ≥ (1+ y) exp

(
x1 +x2 + z1 + z2

1+ y

)
, (73p)

x2 +x3 + z2 + z3 ≥
∥∥(√2(u12 +u13 +u22 +u23), x2 +x3 − z2 − z3

)∥∥, (73q)

x3 −x1 − 1− y+ z3 − z1 − y− q≥∥∥(√2(u13 +u23 −u11 −u12 −x1 −x2 − z1 − z2), x3 −x1 − 1− y− z3 + z1 + y+ q
)∥∥,
(73r)
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1+2y+ q≥
∥∥(√2(x1 +x2 + z1 + z2), 1+ q

)∥∥, (73s)

1+2y+ q≥
∥∥( 2(u11 +2u12 +u22)

√
2(x1 +x2 − z1 − z2)√

2(x1 +x2 − z1 − z2) 1− 2y+ q

)∥∥
F
. (73t)

We list the values obtained when including/excluding each one of the additional individual valid

constraints in Table 19. From Table (19) we observe that the most valuable constraint multiplications

Con w/o w
(73c)-(73d) -0.79 -0.65

(73e) -0.65 -0.65
(73f) -0.65 -0.65
(73g) -0.65 -0.65
(73h) -0.65 -0.65
(73i) -0.65 -0.65

(73l)-(73n) -0.76 -0.65
(73o)-(73p) -0.65 -0.65
(73q)-(73t) -0.65 -0.65

Table 19 Comparison of the optimal values for Problem (73), with and without each of the proposed

multiplications.

in this case are (73c)-(73d) and (73l)-(73n). (73c)-(73d) result from the multiplication of the

nonnegativity constraints (72c) of the power cone with the power cone inequalities (72b) and (72c).

(73l)-(73n) result from the multiplication of the additional inequalities (73j) and (73k) with the

power cone inequality (72b). □

Example 18. Consider the following toy example

min
x

x1x3 (74a)

s.t. x1x2 ≥ 1, (74b)

x2x3 ≥ 1, (74c)

x0.5
1 x0.5

2 ≥ x3, (74d)

5≥ x3 exp

(
x2

x3

)
, (74e)

x1, x2 ≥ 0, (74f)

x3 ≥ 0. (74g)

We obtain the following RPT relaxation

min
x,U

u13 (75a)

s.t. u12 ≥ 1, (75b)



Author: Cone product reformulation for global optimization
61

u23 ≥ 1, (75c)

(74d)− (74g),

u0.5
i1 u0.5

i2 ≥ ui3, i= 1,2, (75d)

u11, u12, u22 ≥ 0, (75e)

u0.5
11 u

0.5
22 ≥ u33, (75f)

5x3 ≥ u33 exp

(
u23

u33

)
, (75g)

25≥ u33 exp

(
2u23

u33

)
, (75h)

5xi ≥ ui3 exp

(
ui2

ui3

)
, i= 1,2, (75i)

u13, u23 ≥ 0, (75j)

u0.5
13 u

0.5
23 ≥ u33, (75k)

u33 ≥ 0. (75l)

We list the values obtained when including/excluding each one of the individual constraints in

Table 20. From Table 20 we observe that the most valuable constraint multiplications in this case

Con w/o w
(75d), (75e) 0.27 0.27

(75f) 0.27 0.27
(75g) 0.27 0.27
(75h) 0.05 0.27

(75i), (75j) 0.27 0.27
(75j), (75k) 0.05 0.27

(75l) 0.27 0.27

Table 20 Comparison of the optimal values for Problem (75), with and without each of the proposed

multiplications.

are (75h) and (75j), (75j). The first inequality results from the multiplication of exponential cone

inequality (74e) with itself, while the last two inequalities result from the multiplication of the

nonnegativity constraint (74g) of the exponential cone inequality with the power cone inequalities

(74f) and (74d), respectively. □

Example 19. Consider the following toy example

min
x

x3x4 (76a)

s.t. x0.5
1 x0.5

2 ≥ |x3|, (76b)

x1, x2 ≥ 0. (76c)
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x2 ≥ exp(−x4), (76d)

x2 exp(x1)≤ 5, (76e)

x2 exp(x2)≤ 10, (76f)

x1 exp(x4)≤ 10, (76g)

x2 exp(x4)≤ 10, (76h)

We obtain the following RPT relaxation

min
x,U

u34 (77a)

s.t. (76b)− (76d)

x2 exp

(
u12

x2

)
≤ 5, (77b)

x2 exp

(
u22

x2

)
≤ 10, (77c)

x1 exp

(
u14

x1

)
≤ 10, (77d)

x2 exp

(
u24

x2

)
≤ 10, (77e)

u0.5
1i u

0.5
2i ≥ |ui3|, i= 1,2, (77f)

u11, u12, u12 ≥ 0, (77g)

u0.5
11 u

0.5
22 ≥ |u33|, (77h)

u22 ≥ exp(−2x4), (77i)

ui2 ≥ xi exp

(
−ui4

xi

)
, i= 1,2, (77j)

x2 ≥−x4 +1, (77k)

(u12 +u14 −x1)
0.5(u22 +u24 −x2)

0.5 ≥ |u23 +u34 −x3|, (77l)

u22 +u24 −x2 ≥ (x2 +x4 − 1) exp

(
−u24 −u44 +x4

x2 +x4 − 1

)
. (77m)

We list the values obtained when including/excluding each one of the additional constraints in Table

21. From Table 21 we observe that the most valuable constraint multiplications in this case are (77f)

- (77g), and (77l). (77f) - (77g) result from the multiplication of the nonnegativity constraints (76c)

with the power cone inequalities (76b) and (76c). (77l) results from the multiplication of inequality

(77k), resulting from the decomposition of the exponential cone, with the power cone inequality

(76b). □

Example 20. Consider the following toy example

min
x

x1x2 (78a)
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Con w/o w
(77f), (77g) -∞ -8.43

(77h) -8.43 -8.43
(77i) -8.43 -8.43
(77j) -8.43 -8.43
(77l) -∞ -8.43
(77m) -8.43 -8.43

Table 21 Comparison of the optimal values for Problem (77a), with and without each of the proposed

multiplications.

s.t. x1x3 ≥ 5, (78b)

x1 ≥ exp(x3), (78c)

x2 ≥ exp(x3). (78d)

We obtain the following RPT relaxation

min
x,U

u12 (79a)

s.t. u13 ≥ 5, (79b)

(78c)− (78d),

u11 ≥ x1 exp

(
u13

x1

)
, (79c)

u12 ≥ x2 exp

(
u23

x2

)
, (79d)

u12 ≥ x1 exp

(
u13

x1

)
, (79e)

u22 ≥ x2 exp

(
u23

x2

)
, (79f)

u11 ≥ exp (2x3) , (79g)

u22 ≥ exp (2x3) , (79h)

u12 ≥ exp (2x3) . (79i)

We list the values obtained when including/excluding each one of the individual constraints in Table

22. From Table 22, we observe that the most valuable constraint multiplications in this case are

Con w/o w
(79c) - (79f) 0.00 13.59
(79g) - (79i) 13.59 13.59

Table 22 Comparison of the optimal values for Problem (78), with and without each of the proposed

multiplications.

(79c) - (79f), which result from the multiplication of the LHS of the exponential cone inequalities

(78c) and (78d) with both sides of the exponential cone inequalities (78c) and (78d). □
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Example 21. Consider the following toy example

min
x

x1x3 (80a)

s.t. x1x2 ≥ 1, (80b)

x3 ≥ x1 exp

(
x2

x1

)
, (80c)

x1 ≥ 0. (80d)

We obtain the following RPT relaxation

min
x,U

u13 (81a)

s.t. u12 ≥ 1, (81b)

(80c)− (80d),

u33 ≥ u13 exp

(
u23

u13

)
, (81c)

u33 ≥ u11 exp

(
2u12

u11

)
, (81d)

u13 ≥ u11 exp

(
u12

u11

)
, (81e)

u11 ≥ 0. (81f)

We list the values obtained when including/excluding each one of the individual constraints in

Table 23. From Table 23, we observe that the most valuable constraint multiplications are in this

Con w/o w
(81c) 2.72 2.72
(81d) 2.72 2.72

(81e), (81f) 0.0 2.72

Table 23 Comparison of the optimal values for Problem (81), with and without each of the proposed

multiplications.

case (81e) and (81f), which result from the multiplication of the nonnegativity constraint (80d)

with the exponential cone inequalities (80c) and (80d). □

Example 22. We consider the group of constraints resulting from the following multiplications of

constraints from numerical experiment 6.1:
(zj +xj + a− 1) exp (−xi − a) ≤ zi (zj +xj + a− 1) ,
(zj +xj + a− 1) exp (xi) ≤ ti (zj +xj + a− 1) ,
(tj −xj − 1) exp (−xi − a) ≤ zi (tj −xj − 1) ,
(tj −xj − 1) exp (xi) ≤ ti (tj −xj − 1)

 , (82)
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Cons w/o w
Instance 1 -119.98 -102
Instance 2 -191.27 -175.82

Table 24 Comparison of the optimal values for Problem (33), with and without each of the proposed groups of

constraint multiplications, for Instance 1.

which consists of all multiplications of a linear inequality derived from the decomposition of one

of the exponential cones with all other other exponential cones. We list the values obtained when

including/excluding this group of constraints in Table 24 for Instances 1 and 2.

□

Example 23. Consider the following toy example

min
x

x1x3 (83a)

x1 ≥ x3, (83b)

x2 +x3 ≥ exp(x2), (83c)

x2 ≥ 0. (83d)

We obtain the following RPT relaxation

min
x,U

u13 (84a)

s.t. (83b)− (83d)

u12 ≥ u23, (84b)

u11 − 2u13 +u33 ≥ 0, (84c)

u22 +u23 ≥ x2 exp

(
u22

x2

)
, (84d)

u22 +2u23 +u33 ≥ exp(2x2), (84e)

u22 +2u23 +u33 ≥ (x2 +x3) exp

(
u22 +u23

x2 +x3

)
, (84f)

u12 −u23 +u13 −u33 ≥ (x1 −x3) exp

(
u12 −u23

x1 −x3

)
, (84g)

x3 ≥ 1+ y, (84h)∥∥(√2x2,1− y
)∥∥≤ 1+ y, (84i)

u23 +u33 −x2 −x3 − z2 − z3 ≥ (x3 − 1− y) exp

(
u23 −x2 − z2
x3 − 1− y

)
, (84j)

x2 +x3 + z2 + z3 ≥ (1+ y) exp

(
x2 + z2
1+ y

)
, (84k)

We list the values obtained when including/excluding each of the additional constraints in Table 25.

From Table 25 we observe that the most valuable constraint multiplications in this case are (84j)
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Con w/o w
(84b) 1.00 1.00
(84c) 1.00 1.00
(84d) 1.00 1.00
(84e) 1.00 1.00
(84f) 1.00 1.00
(84g) 1.00 1.00

(84j), (84k) 0.61 1.00

Table 25 Comparison of the optimal values for Problem (84), with and without each of the proposed

multiplications.

and (84k), which result from the multiplication of the inequalities (84h) and (84i) resulting from

the decomposition of the exponential cone with the exponential cone inequality (83c). □
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