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In this paper, we study nonconvex optimization problems involving sum of linear times convex (SLC) functions

as well as conic constraints belonging to one of the five basic cones, that is, linear cone, second order cone,

power cone, exponential cone, and semidefinite cone. By using the Reformulation Perspectification Technique,

we can obtain a convex relaxation by forming the perspective of each convex function and linearizing all

product terms with newly introduced variables. To further tighten the approximation, we can pairwise

multiply the conic constraints. In this paper, we analyze all possibilities of multiplying conic constraints.

Especially the results for the cases in which a power cone or an exponential cone is involved are new. Moreover,

in case of an exponential cone we generate valid inequalities that can be used to further strengthen the

approximation and in case of a power cone we generate additional valid inequalities. Numerical experiments

on a quadratic optimization problem over exponential cone constraints and on a robust palatable diet problem

over power cone constraints, demonstrate that including additional inequalities generated from the proposed

pairwise multiplications improve the approximation. Moreover, when incorporated in branch and bound the

global optimal solution of the original nonconvex optimization problem can often be obtained faster than

BARON.

Key words : Reformulation-Linearization Technique, perspective function, conic optimization, nonconvex

optimization, conjugate function, branch and bound

1. Introduction

In this paper, we consider the following nonconvex optimization problem:

min
x

f00(x)+
∑
i∈I

(
bi0 −a⊤

i0x
)
fi0(x) (1a)

s.t. f0k(x)+
∑
i∈I

(
bik −a⊤

ikx
)
fik(x)≤ 0, k ∈K, (1b)

cj(x)≤ 0, j ∈J , (1c)
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where x,aik ∈Rnx , bik ∈R, for every i ∈ I0 = I ∪ {0}, k ∈K0 =K∪{0}, each function fik :Rnx →

(−∞,∞] is proper, closed, and convex, and each inequality cj(x)≤ 0 is representable in one or more

of the five basic cones, that is, linear cone, second-order cone, power cone, exponential cone, and

semi-definite cone. Observe that (1) is nonconvex, since it contains products of linear and convex

functions. A broad class of nonconvex problems can be written in the form of (1), such as concave

minimization problems, which often occur due to economies of scale, and problems with a Difference

of Convex (DC) objective and/or constraints, see (Bertsimas et al., 2023, Example 1).

Bertsimas et al. (2023) show how to obtain the following convex relaxation of problem (1), using

the Reformulation Perspectification Technique with Branch and Bound (RPT-BB):

min
x,U

f00(x)+
∑
i∈I

(
bi0 −a⊤

i0x
)
fi0

(
bi0x−Uai0

bi0 −a⊤
i0x

)
(2a)

s.t. f0k(x)+
∑
i∈I

(
bik −a⊤

ikx
)
fik

(
bikx−Uaik

bik −a⊤
ikx

)
≤ 0, k ∈K, (2b)

cj(x)≤ 0, j ∈J , (2c)

where xx⊤ is linearized by U . In order to obtain good bounds on U, we can generate additional

convex inequalities by pairwise multiplying the cone inequalities and subsequently convexifying the

resulting inequalities. We can further link U with x, via the following Linear Matrix Inequality

(LMI): (
U x
x⊤ 1

)
⪰ 0. (3)

Obtaining convexifiable constraints from pairwise multiplication of linear or quadratic inequalities

is well known in Reformulation Linearization Technique (RLT), introduced by Sherali and Adams

(1990). RLT consists of two steps, those are, a reformulation step and a linearization step. RLT

generates redundant nonconvex quadratic constraints from pairwise multiplication of the existing

linear inequalities in the reformulation step. In the linearization step, the nonconvex quadratic

components are linearized by substituting each distinct product of variables by a newly introduced

continuous variable. These additional generated constraints are not redundant anymore after

linearization and serve as bounds on the newly introduced variables.

Linearizing the product of linear constraints is further explored in Sherali and Tuncbilek (1992)

and Sherali and Tuncbilek (1995). Sturm and Zhang (2003) show how to multiply a linear inequality

with a conic quadratic inequality and reformulate the resulting constraint as a conic quadratic

inequality. Jiang and Li (2016) show how to obtain a conic quadratic inequality from pairwise

multiplication of two conic quadratic inequalities. Yang and Burer (2016) and Anstreicher (2017)

address the same multiplication by reformulating each conic quadratic inequality as an LMI and

subsequently pairwise multiply them to finally obtain one additional LMI using either the Hadamard
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product or Kronecker product respectively. We also refer to Jiang and Li (2020) for an overview of

RLT approximations for quadratic optimization problems.

Moreover, Bertsimas et al. (2023) show how to multiply a linear inequality with a general convex

inequality and how to convexify the resulting inequality. However, they mention that the pairwise

multiplication of two general convex inequalities does not necessarily yield a convexifiable inequality.

Anstreicher (2017) shows how to obtain a convexifiable constraint from pairwise multiplication of

two LMIs.

Note that the solution of Problem (2) provides a lower bound for Problem (1). Further, an upper

bound can be obtained from local optimization algorithms. RPT-BB leverages both mechanisms for

obtaining bounds in a systematic global optimization approach for solving nonconvex optimization

problems. During BB, the gap of the RPT approximation is closed by cutting the feasible region

through additionally generated hyperplanes.

In this paper, we analyze all
(
5
2

)
= 15 possibilities of pairwise multiplication of the five basic cone

inequalities and show how to convexify the resulting constraints. Especially the results for the cases

in which a power cone or an exponential cone is involved are new. Moreover, we report numerical

examples showing that the cone product reformulations introduced in this paper improve the RPT

approximation and as a result speed up the solution of the nonconvex optimization problem.

An example problem that arises often and can be written in problem format (1) is the following

problem:
min
x

x⊤A0x+ b⊤0 x+ c0

s.t. x⊤Aix+ b⊤i x+ ci ≤ 0, i∈ I,
cj(x)≤ 0, j ∈J ,

(4)

where each matrix Ai is not necessarily positive semi-definite for every i∈ I0. As is well known in

RLT, we can obtain the following convex relaxation of (4):

min
x,U

Tr(A0U)+ b⊤0 x+ c0

s.t. Tr(AiU)+ b⊤i x+ ci ≤ 0, i∈ I,
cj(x)≤ 0, j ∈J .

(5)

We can then reformulate the conic representable constraints cj(x)≤ 0 in conic form and pairwise

multiply them to obtain better bounds on U and thereby, obtain a tighter approximation.

Contributions. Our main contributions can be summarized as follows:

• In this paper, we show for all 15 possibilities of pairwise multiplications of the five basic cone

constraints how to convexify the resulting constraint. Especially the results for the cases in

which a power cone or an exponential cone is involved are new. In the case of a power cone

inequality we generate additional valid inequalities. Further, when multiplying a power cone

inequality with other cone inequalities, we show how to find the best reformulation out of the
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infinitely many possible ones, by using a robust optimization lens. Moreover, in the case of

an exponential cone inequality we generate additional cone inequalities, utilizing the Taylor

expansion of the exponential function to the first or second order, which we can then multiply

with other constraints to further enhance the approximation.

• We show that there are two ways to multiply a conically representable convex constraint and

a linear inequality that yield the same result. More precisely, we show that the additional

inequalities generated from the pairwise multiplication of a conically representable convex

constraint with a linear inequality lead to the same inequalities that one would obtain from

first reformulating the conically representable convex constraint into cone constraints and then

pairwise multiply them with the linear inequality.

• For constraints involving DC functions, that are conically representable, we derive additional

cone constraints obtained from first order conditions. We illustrate the derived constraints on

multiple small examples and also show that they improve the approximation of a nonconvex

optimization problem.

• We demonstrate the effectiveness of the proposed pairwise multiplications involving a power

cone and an exponential cone through numerical experiments on a nonconvex quadratic opti-

mization problem with exponential cone constraints as well as a robust palatable diet problem,

including power cone constraints. We demonstrate that the additional inequalities, which are

generated from pairwise multiplications of cone inequalities outlined in this paper, enhance

the approximation. Further, when incorporated in branch and bound, the computational time

to find the global optimal solution is reduced, while frequently outperforming BARON.

Notation. The calligraphic letters I, J , K, L and the corresponding capital Roman letters I, J ,

K, L are reserved for finite index sets and their respective cardinalities, i.e., I = {1, . . . , I} etc. The

subscript 0 for an index set indicates that the set additionally includes 0, i.e., I0 = {0, . . . , I} etc.

Let Rm×n denote the set of real m×n matrices, and Sn the set of real n×n symmetric matrices.

The domain of a function f :Rnν → [−∞,+∞] is defined as dom(f) = {ν ∈Rnν | f(ν)<+∞}. The
function f is proper if f(ν)>−∞ for all ν ∈Rnν and f(ν)<+∞ for at least one ν ∈Rnν , implying

that dom(f) ̸= ∅. In addition, f is closed if f is lower semicontinuous and either f(ν)>−∞ for

all ν ∈Rnν or f(ν) =−∞ for all ν ∈Rnν . The conjugate of a function f :Rnν → [−∞,+∞] is the

function f∗ :Rnν → [−∞,+∞] defined through f∗(w) = supν

{
ν⊤w− f(ν)

}
. The conjugate (f∗)∗ of

f∗ is called the biconjugate of f and is abbreviated as f∗∗. The perspective h :Rnν ×R+ → [−∞,+∞]

of a proper, closed and convex function f :Rnν → (−∞,+∞) is defined for all ν ∈Rnν and t∈R+

as h(ν, t) = tf(ν/t) if t > 0, and h(ν,0) = δ∗dom(f∗)(ν), where δ∗dom(f∗) denotes the recession function.

For ease of exposition, we use tf(ν/t) to denote the perspective function h(ν, t) for the rest of this

paper.
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2. Overview: five basic cone inequalities and their products

In this section, we give an overview of all 15 possibilities of pairwise multiplying the five basic cone

inequalities to obtain additional cone inequalities. The five basic cone inequalities are given by:

(L) Linear inequality:

b−a⊤x≥ 0,

where x∈Rnx .

(Q) Conic quadratic inequality:

b−a⊤x≥
∥∥Dx+p

∥∥,
where x∈Rnx .

(P) Power cone inequality:
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i , x1, · · · , xm ≥ 0,

where nx >m, α1, · · · , αm > 0 and
∑m

i=1αi = 1, or equivalently

((x1, . . . , xm), (xm+1, . . . , xnx))∈Pα
nx

=

x∈Rnx :
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i , x1, · · · , xm ≥ 0

 ,

where Pα
nx

denotes the power cone, with a= (α1, . . . , αm).

(E) Exponential cone inequality:

x1 ≥ x2 exp

(
x3

x2

)
, x2 ≥ 0,

or equivalently

(x1, x2, x3)∈Kexp =

{
(x1, x2, x3) : x1 ≥ x2 exp

(
x3

x2

)
, x2 ≥ 0

}
,

where Kexp denotes the exponential cone.

(S) Semidefinite cone inequality/LMI:

A(x)⪰ 0,

where A(x) =A0 +A1x1 + · · ·+Anxxnx .

The results of the 15 possibilities of pairwise multiplying the five basic cone inequalities to obtain

additional cone inequalities are summarized in Table 1.

In the remainder of this paper we focus on all cases involving a power cone inequality or an

exponential cone inequality. We refer to Appendix A for the other cases, that have already been

studied in the literature (i.e., cases 1, 2, 5, 6, 9, 12, and 15 in Table 1). We note that Case 9 is not

literally in the literature, however the steps followed are from Anstreicher (2017), thus we present

the case in Appendix A, although stating that it is derived in this paper in Table (1). Finally, we

note that cases 3(i), 4(i) and 14(i) are from the literature, however we do state them in the main

text since they are connected with other subcases.
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Case Cone-1 Cone-2 Cone-1 × Cone-2 Reference Discussed in Remarks

1 L L L Sherali and Adams (1990) Appendix A.1

2 L Q Q Sturm and Zhang (2003) Appendix A.2

3 L P (i) mL + P Bertsimas et al. (2023) Section 3.2
(ii) mL + P This paper Section 3.2 Best reformulation

4 L E (i) L + E Bertsimas et al. (2023) Section 4.2 No decomposition
(ii) 2L + E This paper Section 4.2 x3 < 0
(iii) 2L + Q + E This paper Section 4.2 x3 ≥ 0

5 L S S Anstreicher (2017) Appendix A.3

6 Q Q (i) 3Q Jiang and Li (2016) Appendix A.4
(ii) S Yang and Burer (2016) Appendix A.4 (i) and (iii) are at
(iii) S Anstreicher (2017) Appendix A.4 least as good as (ii)

7 Q P (i) mQ + 2P This paper Section 3.3
(ii) mQ + 2P This paper Section 3.3 Best reformulation

8 Q E (i) 2Q + E This paper Section 4.3 No decomposition
(ii) 3Q + E This paper Section 4.3 x3 < 0
(iii) 6Q + E This paper Section 4.3 x3 ≥ 0

9 Q S S This paper Appendix A.5

10 P P (i) m1m2L + (m1 +m2 +1)P This paper Section 3.4
(ii) m1m2L + (m1 +m2 +1)P This paper Section 3.4 Best reformulation

11 P E (i) mL+ 2P + mE This paper Section 3.5 No decomposition
(ii) 2mL + 3P + mE This paper Section 3.5 x3 < 0
(iii) 2mL + mQ + 5P + mE This paper Section 3.4 x3 ≥ 0

12 P S mS Anstreicher (2017) Appendix A.6

13 E E (i) L + 5E This paper Section 4.4 No decomposition
(ii) 4L + 7E This paper Section 4.4 x3, x6 < 0
(iii) 4L + 9Q + 9E This paper Section 4.4 x3, x6 ≥ 0
(iv) 4L + 3Q + 8E This paper Section 4.4 sign(x3) ̸= sign(x6)

14 E S (i) 2S Anstreicher (2017) Section 4.5 No decomposition
(ii) 3S This paper Section 4.5 x3 < 0
(iii) 4S This paper Section 4.5 x3 ≥ 0

15 S S (i) S Yang and Burer (2016) Appendix A.7 (i) is at least as good as
(ii) S Anstreicher (2017) Appendix A.7 (ii) only if the two cones

are of the same size

Table 1 Results of multiplying two cone inequality as given in Section 2. L = Linear inequality, Q = Conic

quadratic inequality, P = Power cone inequality, E = Exponential cone inequality, S = Semidefinite cone inequality.

Cone-1 × Cone-2 refers to the total additional cone inequalities resulting from the multiplication of cone inequality 1

with cone inequality 2.

3. Product with a power cone inequality

In this section, we show how to obtain additional valid inequalities from a power cone inequality as

given in Section 2. Moreover, we consider all cases in which we multiply one of the five basic cone

inequalities with the power cone inequality and show how to obtain the best reformulation for the

resulting constraint.

3.1. Generating valid inequalities from a power cone inequality

We first show that we can generate valid power cone inequalities from one power cone inequality by

linearizing the product terms in the LHS of the power cone inequality. First, observe that in the

LHS of the power cone inequality we can decompose the powers of the different xi such that we get
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powers of products of xi, xj and add a power of 1 to satisfy the power cone inequality. For example,

x0.4
1 x0.6

2 = x0.3
1 x0.1

1 x0.1
2 x0.5

2 = x0.3
1 u0.1

12 x
0.5
2 10.1. In the general form we obtain the following:

m∏
i=1

xαi
i ≥

√√√√m+1∑
i=1

x2
i ⇐⇒

m∏
i=1

xεi
i

m∏
i≤j

(xixj)
βij1δ ≥

√√√√ nx∑
i=m+1

x2
i , (6)

=⇒
m∏
i=1

xεi
i

m∏
i≤j

(uij)
βij1δ ≥

√√√√ nx∑
i=m+1

x2
i , (7)

⇐⇒ ((x1, . . . , xm, u11, . . . , umm,1), (xm+1, . . . , xnx))∈Pα
′

n
′
x
, (8)

where n
′
x = nx +m(m+1)/2+1, α

′
= (ε1, . . . , εm, β11, . . . , βmm, δ), and

(ε,β, δ)∈ U =

{
m∑
i=1

εi +
m∑
i≤j

βij + δ= 1, εi +
m∑

j : i≤j

βij = αi, ∀i, εi, βij, δ≥ 0, ∀i, j

}
. (9)

Note that there are infinite ways to add such a constraint, since there are infinite possibilities to

choose ε, β and δ. One could consider (7) as a robust constraint, where (ε,β, δ) are the uncertain

parameters, and enforce that the constraint should hold for all (ε,β, δ) in U . Hence, the inequality

becomes
m∏
i=1

xεi
i

m∏
i≤j

(uij)
βij1δ ≥

√√√√m+1∑
i=1

x2
i , ∀(ε,β, δ)∈ U . (10)

We can deal with the robust constraint (10), using the adversarial approach, see Bertsimas and

den Hertog (2022), where at each iteration inequality (10) is added for a finite subset of scenarios

(master-problem), and then one has to find the worst-case value for (ε,β, δ) by minimizing the LHS

of (10) (sub-problem). Utilizing a log transformation, the sub-problem to find the worst-case for

(ε,β, δ) is the following linear optimization problem:

min
ε,β,δ

{∑
i

εi logxi +
∑
i≤j

βij loguij (ε,β, δ)∈ U
}
. (11)

We refer to Appendix B for the pseudocode of the adversarial approach. Finally, note that the

adversarial approach converges, since the assumptions given in Mutapcic and Boyd (2009) are

satisfied.

Example 1. Consider the following toyexample

min
x

x1x2 +x1 +x2

s.t. x
1/4
1 x

3/4
2 ≥ 1, (12)

x1, x2 ≥ 0.
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By applying RLT we obtain the following relaxation

min
x

u12 +x1 +x2

s.t. x
1/4
1 x

3/4
2 ≥ 1, (13)

x1, x2, u11, u12, u12, u22 ≥ 0.

The solution of (13) appears to be

x′ =

[
0.44
1.32

]
and U ′ =

[
u′
11 u′

12

u′
21 u′

22

]
=

[
0 0
0 0

]
,

with objective value 1.7548, which constitutes a lower bound on (12). The obtained x′ is a feasible

solution to (12), and its corresponding value is 2.3320, which constitutes an upper bound on the

optimal objective value of (12). We generate the additional valid power cone inequality

xε1
2 xε2

2 uβ11
11 uβ12

12 uβ22
22 1δ ≥ 1, ∀(ε,β, δ)∈ U ,

where U is defined by (9) and apply the adversarial approach. We add the following constraints to

(13)

x
1/4
1 u

3/8
22 13/8 ≥ 1,

x
3/4
2 u

1/8
11 11/8 ≥ 1,

x
2/4
2 β

1/4
12 11/4 ≥ 1,

and obtain the optimal solution

x∗ =

[
0.26
1.57

]
and U ∗ =

[
u∗
11 u∗

12

u∗
21 u∗

22

]
=

[
5.87 0.40
0.40 12.19

]
,

with objective value 2.3320, which constitutes a tighter lower bound on (12). The obtained x∗ is

again a feasible solution to (12), and its corresponding value is 2.3320. Hence x∗ is an optimal

solution to (12). □

3.2. Case 3 in Table 1: (L) × (P)

Consider one linear inequality and one power cone inequality

b1 −a⊤
1 x≥ 0 and


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

xi ≥ 0, i= 1, . . . ,m,

where
∑m

i=1αi = 1,α≥ 0.
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Case 3(i) in Table 1. We multiply the linear inequality with the power cone inequality and obtain

1 additional power cone inequality:

(b1 −a⊤
1 x)

m∏
i=1

xαi
i ≥ (b1 −a⊤

1 x)

√√√√ nx∑
i=m+1

x2
i (14)

⇐⇒
m∏
i=1

(b1xi −a⊤
1 xxi)

αi ≥

√√√√ nx∑
i=m+1

(b1xi −a⊤
1 xxi)2

=⇒
m∏
i=1

(b1xi −a⊤
1 ui)

αi ≥

√√√√ nx∑
i=m+1

(b1xi −a⊤
1 ui)2 .

Moreover, we multiply the linear inequality with the nonnegativity constraints of the power cone

and obtain m additional linear inequalities, see Appendix A.1.

We note that in the approach that we describe here, we do not follow the same treatment as in

Bertsimas et al. (2023), that is multiplying the numerator and denominator of the convex function

with the linear inequality, although we obtain the same result. This follows from the fact that the

power cone is a cone and therefore if x belongs to the power cone, then (b1 −a⊤
1 x)x also belongs

to the power cone.

Case 3(ii) in Table 1. Note that there are infinite possibilities for linearizing the LHS of (14).

More precisely, we can write the LHS of (14) as follows:

(b1 −a⊤
1 x)

m∏
i=1

xαi
i ≥ (b1 −a⊤

1 x)

√√√√ nx∑
i=m+1

x2
i

⇐⇒ (b1 −a⊤
1 x)

δ
(
(b1 −a⊤

1 x)
2
)η m∏

i=1

xεi
i

m∏
i≤j

(xixj)
βij

m∏
i=1

(
(b1 −a⊤

1 x)xi

)γi ≥
√√√√ nx∑

i=m+1

(b1xi −a⊤
1 xxi)2

=⇒ (b1 −a⊤
1 x)

δ
(
b21 − 2b1a

⊤
1 x+a1Ua1

)η m∏
i=1

xεi
i

m∏
i≤j

(uij)
βij

m∏
i=1

(b1xi −a⊤
1 ui)

γi ≥

√√√√ nx∑
i=m+1

(b1xi −a⊤
1 ui)2

(15)

=⇒ ((b1 −a⊤
1 x, b

2
1 − 2b1a

⊤
1 x+a1Ua1, x1, . . . , xm, u11, . . . , umm, b1x1 −a⊤

1 u1, . . . , bmxm −a⊤
mum),

(bm+1xm+1 −a⊤
m+1um+1, . . . , bnxxnx −a⊤

nx
unx)) ∈ Pα

′

n
′
x

where n
′
x = (2+m+m(m+1)/2+nx), α

′
= (δ, η, ε1, . . . , εm, β11, . . . , βmm, γ1, . . . , γm),

δ+ η+
m∑
i=1

ϵi +
m∑
i≤j

βij +
m∑
i=1

γi = 1, ϵi +
∑
j:i≤j

2βij + γi = αi, ∀i∈ [m], δ+2η+
m∑
i=1

γi = 1, (16)

and δ, η,ε,β,γ ≥ 0. We can consider (15) as a robust constraint, where δ,ε,β,γ, and η are the

uncertain parameters and use the adversarial approach in a similar way as described in Section 3.1

to find the worst-case for δ,ε,β,γ and η.
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3.3. Case 7 in Table 1: (Q) × (P)

Consider one conic quadratic inequality and one power cone inequality

b1 −a⊤
1 x≥

∥∥Dx+p
∥∥ and


m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0,

where α≥ 0 and
∑m

i=1αi = 1.

Case 7(i) in Table 1. We multiply the LHSs and RHSs of the conic quadratic inequality and the

power cone inequality with each other and obtain 1 additional power cone inequality:

(b1 −a⊤
1 x)

m∏
i=1

xαi
i ≥

∥∥Dx+p
∥∥√√√√ nx∑

i=m+1

x2
i (17)

⇐⇒
m∏
i=1

(b1xi −a⊤
1 xxi)

αi ≥
∥∥(Dx+p)x⊤

[m+1]

∥∥
F

=⇒
m∏
i=1

(b1xi −a⊤
1 ui)

αi ≥
∥∥DU[m+1] +px⊤

[m+1]

∥∥
F
,

where x[m+1] = [xm+1 · · · xnx ] and U[m+1] = [um+1 · · · unx ]. Moreover, we multiply the conic

quadratic inequality with the nonnegativity constraints and obtain m additional conic quadratic

inequalities, see Appendix A.2. We further multiply the LHS of the conic quadratic inequality with

both sides of the power cone inequality and obtain 1 additional power cone inequality, see Section

3.2.

Case 7(ii) in Table 1. Linearizing the LHS of (17), we obtain the LHS of (15). Hence we obtain

the following power cone inequality

((b1 −a⊤
1 x, b

2
1 − 2b1a

⊤
1 x+a1Ua1, x1, . . . , xm, u11, . . . , umm, b1x1 −a⊤

1 u1, . . . , bmxm −a⊤
mum),

(
(
DU[m+1] +px⊤

[m+1]

)
11
, . . . ,

(
U[m+1] +px⊤

[m+1]

)
L,nx−m−1

)) ∈ Pα
′

n
′
x
,

where n
′
x = (2+2m+m(m+1)/2+L(nx−m−1) and α

′
= (δ, η, ε1, . . . , εm, β11, . . . , βmm, γ1, . . . , γm).

We can view the above inequality as a robust constraint, where δ,ε,β,γ, and η are the uncertain

parameters and use the adversarial approach in a similar way as described in Section 3.1 to find

the worst-case for δ,ε,β,γ and η.

3.4. Case 10 in Table 1: (P) × (P)

Consider two power cone inequalities
m1∏
i=1

xα1i
i ≥

√√√√ nx∑
i=m1+1

x2
i

xi ≥ 0, i= 1, . . . ,m1

and


m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
j=m2+1

x2
σ(j)

xσ(j) ≥ 0, j = 1, . . . ,m2,
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where σ is an arbitrary permutation, nx >m1,m2, α1,α2 ≥ 0 and
∑m1

i=1α1i =
∑m2

j=1α2j = 1.

Case 10(i) in Table 1. We multiply the left-hand sides and right-hand sides of the two power

cone inequalities and obtain 1 additional power cone inequality:

m1∏
i=1

xα1i
i

m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
i=m1+1

x2
i

√√√√ nx∑
j=m2+1

x2
σ(j) ⇐⇒

m1∏
i=1

xα1i
i

m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
i=m1+1

x2
i

nx∑
j=m2+1

x2
σ(j) (18)

=⇒
m1∏
i=1

m2∏
j=1

u
θij
i,σ(j) ≥

√√√√ nx∑
i=m1+1

nx∑
j=m2+1

u2
i,σ(j), (19)

where θ is such that∑
j

θij = α1i,
∑
i

θij = α2j, θij ≥ 0, i∈ [m1], j ∈ [m2]. (20)

Moreover, we multiply the nonnegativity constraints of one power cone with the nonnegativity

constraints of the other power cone and obtain m1m2 additional linear inequalities, see Appendix

A.1. Finally, we multiply the nonnegativity constraints of each power cone with the power cone

inequality of the other power cone and obtain m1 +m2 additional power cone inequalities, see

Section 3.2.

Case 10(ii) in Table 1. Note that there are infinite possibilities for linearizing the LHS of (19).

More precisely, we can write the LHS of (19) as follows:

m1∏
i=1

xα1i
i

m2∏
j=1

x
α2j

σ(j) ≥

√√√√ nx∑
i=m1+1

x2
i

√√√√ nx∑
j=m2+1

x2
σ(j)

⇐⇒
m1∏
i=1

m1∏
j=i

(xixj)
αij

m2∏
i=1

m2∏
j=i

(xσ(i)xσ(j))
βij

m1∏
i=1

m2∏
j=1

(xixσ(j))
γij ≥

√√√√ nx∑
i=m1+1

x2
i

√√√√ nx∑
j=m2+1

x2
σ(j)

=⇒
m1∏
i=1

m1∏
j=i

u
αij

ij

m2∏
i=1

m2∏
j=i

u
βij
σ(i)σ(j)

m1∏
i=1

m2∏
j=1

u
γij
iσ(j) ≥

√√√√ nx∑
i=m1+1

nx∑
j=m2+1

u2
i,σ(j)

=⇒ ((u11, . . . , um1m1
, uσ(1),σ(1), . . . , uσ(m2),σ(m2), u1σ(1), . . . , um1,σ(m2)),

(um1+1σ(m2+1), . . . , unxσ(nx))) ∈ Pα
′

n
′
x
,

where n
′
x = m1(m1 + 1)/2 + m2(m2 + 1)/2 + m1m2 + (nx − m1 − 1)(nx − m2 − 1) and α

′
=

(α11, . . . , αm1m1
, β11, . . . , βm2m2

, γ11, . . . , γm1m2
). We can view the above inequality as a robust con-

straint, where α,β,γ, are the uncertain parameters, which need to satisfy the following constraints:

m1∑
i=1

m1∑
j=i

αij +

m2∑
i=1

m2∑
j=i

βij +

m1∑
i=1

m2∑
j=1

γij = 1,
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m1∑
j=1

αij +αii +

m2∑
j=1

γij = α1i, i∈ [m1],

m2∑
i=1

βij +βjj +

m1∑
i=1

γij = α2j, j ∈ [m2],

αij, βij, γij ≥ 0, i∈ [m1], j ∈ [m2].

We can then use the adversarial approach in a similar way as described in Section 3.1 to find the

worst-case values for α,β,γ.

3.5. Case 11 in Table 1: (P) × (E)

Consider one power cone inequality and one exponential cone inequality
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

and

x1 ≥ x2 exp

(
x3

x2

)
x2 ≥ 0,

where α≥ 0 and
∑m

i=1αi = 1.

Case 11(i) in Table 1. We multiply the nonnegativity constraints of the power cone with the

nonnegativity constraint of the exponential cone and obtain m additional linear inequalities, see

Appendix A.1. Moreover, we multiply the nonnegativity constraints of the power cone with the

exponential cone inequality and obtain m additional exponential cone inequalities, see 4(i) in Section

4.2. Finally, we multiply the nonnegativity constraint of the exponential cone as well as the LHS of

the exponential cone inequality with the power cone inequality and obtain 2 additional power cone

inequalities, see Section 3.2. Hence we obtain the following set of additional inequalities:



m∏
i=1

(x1xi)
αi ≥

√√√√ nx∑
i=m+1

(x1xi)2

m∏
i=1

(x2xi)
αi ≥

√√√√ nx∑
i=m+1

(x2xi)2

x1x1 ≥ x2x1 exp
(

x3x1
x2x1

)
...

x1xm ≥ x2xm exp
(

x3xm
x2xm

)
=⇒



m∏
i=1

uαi
1i ≥

√√√√ nx∑
i=m+1

u2
1i

m∏
i=1

uαi
2i ≥

√√√√ nx∑
i=m+1

u2
2i

x1, · · · , xm ≥ 0

u11 ≥ u21 exp
(

u31
u21

)
...

u1m ≥ u2m exp
(

u3m
u2m

)
u21, · · · , u2m ≥ 0.

Case 11(ii) in Table 1. When x3 < 0 (and hence is not part of the power cone), in addition

to the inequalities in Case 11(i), we multiply the linear inequality (22) obtained from the Taylor
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expansion with the power cone and obtain m additional linear inequalities and 1 additional power

cone inequality, see Section 3.2.

Case 11(iii) in Table 1. When x3 ≥ 0, we multiply the linear inequality and the quadratic

inequality in (23), obtained from the Taylor expansion, with the power cone and obtain m additional

linear inequalities, 1 additional power cone inequality, see Section 3.2, m additional conic quadratic

inequalities and 2 additional power cone inequalities, see Section 3.3, in addition to the inequalities

in Case 11(i).

Remark 1. Observe that also here, we can use the adversarial approach in a similar way as

described in the beginning of this section to find the best power cone reformulation, see 3(ii) in

Section 3.2 and Section 3.3.

4. Product with an exponential cone inequality

In this section, we derive valid inequalities from an exponential cone inequality, by leveraging the

Taylor expansion of the exponential function, which we can then pairwise multiply with other

existing inequalities to tighten the approximation of problem (1). Moreover, we consider all cases in

which we multiply one of the five basic cone inequalities with the exponential cone inequality as

given in Section 2, except for the multiplication with the power cone inequality, which is treated in

Section 3.

4.1. Generating valid inequalities from an exponential cone inequality

Sometimes, the pairwise multiplication of exponential cone inequalities may not lead to constraints

that involve products of the original variables, see Section 6.1, and hence do not tighten the

approximation. For this reason we derive valid inequalities from the exponential cone inequality that

we can use for pairwise multiplications. We further note that even if the pairwise multiplications

of the original constraints involving exponential cone inequalities yield good bounds on the new

variables, we can still improve them with the derived inequalities. Our main tool in deriving those

inequalities, is the Taylor expansion of the exponential function, that is

exp(t) =
∞∑
k=0

tk

k!
= 1+ t+

t2

2
+

t3

6
+ . . . . (21)

We can generate additional valid inequalities, depending on the sign of x3. When x3 < 0, there

exists a ξ ∈
[
x3
x2
,0
]
such that

exp

(
x3

x2

)
= 1+

x3

x2

+
ξ2

2
≥ 1+

x3

x2

.
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Therefore, we have x2 exp
(

x3
x2

)
≥ x2 +x3 and we derive the valid linear inequality

x1 ≥ x2 +x3. (22)

When x3 ≥ 0, there exists a ξ ∈
[
0, x3

x2

]
such that

exp

(
x3

x2

)
= 1+

x3

x2

+
x2
3

2x2
2

+
ξ3

6
≥ 1+

x3

x2

+
x2
3

2x2
2

.

Therefore, we have x2 exp
(

x3
x2

)
≥ x2 +x3 +

x23
2x2

and we derive the following valid inequalities{
x1 ≥ x2 +x3 + y,∥∥(√2x3, x2 − y

)∥∥
2
≤ x2 + y.

(23)

We next show how we can obtain additional conic inequalities from pairwise multiplying the

exponential cone inequality with one of the five basic cone inequalities as given in Section 2.

4.2. Case 4 in Table 1: (L) × (E)

Consider one linear inequality and one exponential cone inequality

b1 −a⊤
1 x≥ 0 and

{
x1 ≥ x2 exp

(
x3
x2

)
x2 ≥ 0.

Case 4(i) in Table 1. Bertsimas et al. (2023) show how to multiply a linear inequality with

a convex inequality by first reformulating the resulting inequality in its perspective form, and

subsequently linearizing all product terms. In the case of an exponential cone inequality this boils

down to the following: We multiply the linear inequality with both sides of the exponential cone

inequality and obtain 1 additional exponential cone inequality:

(b1 −a⊤
1 x)x1 ≥ (b1 −a⊤

1 x)x2 exp
(

(b1−a⊤
1 x)x3

(b1−a⊤
1 x)x2

)
=⇒ b1x1 −a⊤

1 u1 ≥ (b1x2 −a⊤
1 u2) exp

(
b1x3−a⊤

1 u3

b1x2−a⊤
1 u2

)
.

Here, the first inequality follows from multiplying both the nominator and denominator in the

exponential function by the left hand side (LHS) of the linear inequality, and the second inequality

follows from linearizing the product terms xx⊤ by the matrix U = [u1,u2,u3]. Observe that the

second inequality is jointly convex in x and U , since the right hand side (RHS) is the perspective

function of a convex function, which is convex, see Rockafellar (1970). Moreover, we multiply the

linear inequality with the nonnegativity constraint of the exponential cone and obtain 1 additional

linear inequality, see Appendix A.1.
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Case 4(ii) in Table 1. When x3 < 0, in addition to the additional inequalities in Case 4(i), we

can multiply the linear inequality (22) obtained from (21) with the linear inequality b1 −a⊤
1 x≥ 0

and obtain one additional linear inequality, see Appendix A.1.

Case 4(iii) in Table 1. When x3 ≥ 0, in addition to the additional inequalities in Case 4(i), we can

multiply the valid inequalities (23) obtained from (21) with the linear inequality b1 −a⊤
1 x≥ 0 and

obtain one additional linear inequality and one additional conic quadratic inequality, see Appendix

A.1 and Appendix A.4.

4.3. Case 8 in Table 1: (Q) × (E)

Consider one conic quadratic inequality and one exponential cone inequality

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ and

{
x1 ≥ x2 exp

(
x3
x2

)
x2 ≥ 0.

Case 8(i) in Table 1. We multiply the conic quadratic inequality with the nonnegativity constraint

and the LHS of the exponential cone inequality and obtain 2 additional conic quadratic inequalities,

see Appendix A.2. Moreover, we multiply the LHS of the conic quadratic inequality with the

exponential cone inequality and obtain 1 additional exponential cone inequality, see 4(i) in Section

4.2.

Case 8(ii) in Table 1. When x3 < 0, in addition to the inequalities in Case 8(i), we multiply

linear inequality (22) with the conic quadratic inequality and obtain 1 additional conic quadratic

inequality, see Appendix A.2.

Case 8(iii) in Table 1. When x3 ≥ 0, in addition to the inequalities in Case 8(i), we multiply the

linear inequality in (23) with the conic quadratic inequality and obtain 1 additional conic quadratic

inequality, see Appendix A.2. Moreover, we multiply the conic quadratic inequality in (23) with the

conic quadratic inequality and obtain 3 additional conic quadratic inequalities, see Appendix A.4.

4.4. Case 13 in Table 1: (E) × (E)

Consider two exponential cone inequalities{
x1 ≥ x2 exp

(
x3
x2

)
x2 ≥ 0

and

{
x4 ≥ x5 exp

(
x6
x5

)
x5 ≥ 0.

Case 13(i) in Table 1. We multiply the LHSs and RHSs of the exponential cone inequalities and

obtain 1 additional exponential cone inequality:

x1x4 ≥ x2x5 exp (x3x5/x2x5 +x6x2/x2x5) =⇒ u14 ≥ u25 exp ((u35 +u26)/u25).
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Moreover, we multiply the nonnegativity constraints of the exponential cones with each other and

obtain 1 additional linear inequality, see Appendix A.1, we multiply the nonnegativity constraints of

each exponential cone with the exponential cone inequality of the other cone and obtain 2 additional

exponential cone inequalities and finally we multiply the LHS of each exponential cone inequality

with both sides of the other exponential cone inequality and obtain 2 additional exponential cone

inequalities, see Section 4.2.

Case 13(ii) in Table 1. When x3 < 0 and x6 < 0, for each exponential cone we obtain an additional

linear inequality from (21). We multiply those two linear inequalities with each other and for each

exponential cone we multiply the corresponding linear inequality from (21) with the inequalities

from the other exponential cone and obtain in total 3 additional linear inequalities and 2 additional

exponential cone inequalities, in addition to the inequalities in Case 13(i).

Case 13(iii) in Table 1. When x3 ≥ 0 and x6 ≥ 0, for each exponential cone, we obtain one

additional linear and conic quadratic inequality from (21). We multiply each of those linear

inequalities with the inequalities belonging to the other exponential cone (including the corresponding

inequalities from (21)) and obtain 3 additional linear inequalities, 2 conic quadratic inequalities,

and 2 exponential cone inequalities, see Appendix A.1, Appendix A.2 and Section 4.2. We also

multiply each of those conic quadratic inequalities with each other and the inequalities belonging to

the other exponential cone and obtain 7 additional conic quadratic inequalities and 2 exponential

cone inequalities, see Appendix A.2, Appendix A.4 and Section 4.3.

Case 13(iv) in Table 1. When x3 < 0 and x6 ≥ 0, we obtain the linear inequalities x1 ≥ x2 +x3

and x4 ≥ x5 +x6 + ȳ from (21). We multiply each of those linear inequalities with the inequalities

belonging to the other exponential cone and with each other and obtain 3 additional linear

inequalities and 2 additional exponential cone inequalities. We also obtain the conic quadratic

inequality
∥∥(√2x6, x5 − ȳ)

∥∥≤ x5 + ȳ from (21), which we multiply with the inequalities belonging

to the first exponential cone and the corresponding linear inequality x1 ≥ x2 + x3 obtained from

(21). We then obtain 3 additional conic quadratic inequalities and 1 additional exponential cone

inequality, in addition to the inequalities obtained from 13(i). Notice that we obtain the same

number of additional constraints in case x3 ≥ 0 and x6 < 0.

4.5. Case 14 in Table 1: (E) × (S)

Consider one exponential cone inequality and one LMI{
x1 ≥ x2 exp

(
x3
x2

)
x2 ≥ 0

and A(x)⪰ 0.
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Case 14(i) in Table 1. We multiply the nonnegativity constraint and the LHS of the exponential

cone inequality with the LMI and obtain 2 additional LMIs:{
x1A(x)⪰ 0
x2A(x)⪰ 0

=⇒
{
A(u1)⪰ 0
A(u2)⪰ 0.

Note that the pairwise multiplication of a linear inequality with an LMI is already studied in

Anstreicher (2017).

Case 14(ii) in Table 1. When x3 < 0, in addition to the inequalities in Case 14(i), we multiply

the linear inequality (22) with the LMI and obtain 1 additional LMI.

Case 14(iii) in Table 1. When x3 ≥ 0, we multiply the inequalities in (23) with the LMI and

obtain 2 additional LMIs, see Appendix A.3 and Appendix A.5.

Remark 2. Note that for each case, we have only detailed how to pairwise multiply two generic

inequalities from any of the five basic cones. However, one can also multiply each inequality by

itself to derive additional inequalities.

5. Justification and enhancements

In this section, we investigate additional constraint multiplications and describe several ways to

improve the approximation of nonconvex problem (1). First, we have a result on the best order

of the multiplication of a linear inequality with a conically representable constraint. Further, we

identify the best linearization for quadratic inequalities and finally, for DC problems, we derive

additional conic constraints, by leveraging first order conditions.

5.1. Justification for first reformulating into conic constraints

It might be the case that one of the constraints is not in conic form, but since it is conically

representable we can reformulate it such that it satisfies problem format (1). The question that

arises then is which of the following options is better:

• Option 1: Multiply all linear constraints directly with this convex constraint that is not

reformulated in conic form, following the methodology from Bertsimas et al. (2023).

• Option 2: Reformulate the conically representable constraints in conic form and then multiply

this constraint with all linear constraints.

We will prove that both options lead to the same approximation. We use the definition of a conically

representable constraint from Serrano (2015), that is, a constraint f(x)≤ 0, where f :Rn →R, is

conically representable if its feasible set can be written as

{x | f(x)≤ 0}= {x | ∃u∈Rm, S(x,u) = 0, T (x,u)∈K} , (24)
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where S :Rn ×Rm →Rk1 and T :Rn ×Rm →Rk2 are affine mappings and K is a cone. We have the

following result.

Lemma 1. Suppose the convex constraint f(x) ≤ 0 is conically representable, and suppose we

multiply this constraint with a linear constraint b− a⊤x ≥ 0. Then, the additional inequalities

generated from the pairwise multiplication of the linear inequality with the convex constraint are

equivalent for Options 1 and 2.

Proof. Let S,T be the affine mappings that define the conic representation of the feasible set

{x | f(x)≤ 0} and let K be the corresponding cone. Let us denote the linear function b−a⊤x by

ℓ(x) and denote the linear function that results after linearizing xℓ(x) by ℓ̃(x,U), where U =xx⊤,

and ℓ̃i(x,U) = bxi − a⊤Ui. Then after RPT we obtain the constraint

ℓ(x)f

(
ℓ̃(x,U)

ℓ(x)

)
≤ 0. (25)

On the other hand, we can first derive the affine mappings S and T that define the conic represen-

tation of the feasible set of the original constraint, and then multiply it by ℓ(x), and apply RPT.

Then we obtain the set{
(x,U)

∣∣∣∣∣ ∃u∈Rm, S

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
= 0, T

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
∈K

}
. (26)

Moreover we find{
(x,U)

∣∣∣∣∣ ℓ(x)f

(
ℓ̃(x,U)

ℓ(x)

)
≤ 0

}

=

{
(x,U)

∣∣∣∣∣ ∃u∈Rm, S

(
ℓ̃(x,U)

ℓ(x)
,u

)
= 0, T

(
ℓ̃(x,U)

ℓ(x)
,u

)
∈K

}

=

{
(x,U)

∣∣∣∣∣ ∃u∈Rm, S

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
= 0, T

(
ℓ̃(x,U)

ℓ(x)
,

u

ℓ(x)

)
∈K

}
,

which concludes the proof. □

5.2. The best linearization for the quadratic case

In this section we describe that as for power cone inequalities, also for quadratic inequalities there

are multiple choices for linearization. We first give an example that shows that different choices

may lead to different solutions.

Example 2. Consider the following toy example

max
x

x2
1 +x2

s.t. x2
1 +x2

2 ≤ 1, (27)

x1, x2 ≥ 0.
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The optimal solution of this problem is ( 1
2

√
3, 1

2
) and the optimal value is 5

4
. By applying RLT we

obtain the following relaxation

min
x

u11 +x2

s.t. x2
1 +x2

2 ≤ 1, (28)

u11 +u22 ≤ 1,

x1, x2, u11, u22 ≥ 0.

The solution of (28) appears to be u11 = x2 = 1, u22 = x1 = 0, with optimal value 2. This solution is

suboptimal for the original problem (27). However, if we add the inequality that occurs when we

partially linearize, i.e., the inequality u11 +x2
2 ≤ 1, then we do obtain the optimal solution of (27).

It can easily be verified that if we add the LMI (3) to (28) then we also get the optimal solution to

(27). □

The question hence arises whether we should linearize all quadratic terms, or only a part of

these terms, such that the remaining part is convex. The following lemma shows that linearizing all

quadratic terms in combination with adding the LMI (3) yields the tightest approximation. Hence,

when LMI (3) is included, then the full linearization always yields the best approximation.

Lemma 2. Consider the quadratic inequality

x⊤Ax+ b⊤x+ c≤ 0,

where A is not necessarily positive semidefinite. Then the best linearization of the above quadratic

inequality is obtained by linearizing all quadratic terms if LMI (3) is included in the constraints.

Proof. We search for the best value of a semidefinite matrix B such that linearizing x⊤(A−B)x

and keeping x⊤Bx yields the tightest approximation. In other words we consider the following

inequality

max
B⪰0

{
x⊤Bx+Tr((A−B)U)+ b⊤x+ c

}
≤ 0,

which is equivalent to

max
B⪰0

{
Tr
(
B(xx⊤ −U)

)}
+Tr(AU)+ b⊤x+ c≤ 0.

Taking the dual of the maximization problem we obtain that this is equivalent to

Tr (AU)+ b⊤x+ c≤ 0,

(
U x
x⊤ 1

)
⪰ 0,

where the LMI is the same as (3). Therefore, the LMI can be interpreted (from its dual) as obtaining

the best B, and we do not need to add different LMIs. □
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5.3. First-order conditions for DC problems

Derivation. In this section, we consider the following DC constraint

c0(x)− c1(x)≤ 0,

where c0, c1 :Rnx → (−∞,+∞] are proper, closed, and convex functions. Rockafellar (1970) showed

that, using the biconjugate reformulation, the above inequality can be equivalently written as{
c0(x)−x⊤y+ c∗1(y)≤ 0,

y ∈ dom(c∗1),

as long as the infimum is attained, see also (Bertsimas et al., 2023, Example 1). Note that the

obtained problem in this case is in the format of problem (1). Now suppose c1(x) is differentiable,

then we have

y=∇xc1(x). (29)

We can leverage this extra equation to get a better approximation, as illustrated in the following

examples.

Examples.

Example 3. Suppose c1(x) =− log(x). Then (29) becomes y=−1/x, or xy=−1. We introduce

the variable v to linearize the product xy and obtain the equality v=−1. □

Example 4. Suppose c1(x) = x log(x). Then (29) becomes y= 1+ log(x). Hence, we can add the

following convex inequalities to problem (1): y≤ 1+ log(x), v≥ x+x log(x), where v= xy. □

Example 5. Suppose c1(x) = log
(∑

j exp(xj)
)
. Then (29) becomes

yi =
exp(xi)∑
j exp(xj)

⇐⇒ log(yi)+log

(∑
j

exp(xj)

)
= xi ⇐⇒ yi log(yi)+yi log

(∑
j

exp(xj)

)
= xiyi.

We linearize yixj with vij and obtain the following convex inequality

yi log(yi)+ yi log

(∑
j

exp

(
vij
yi

))
≤ vii, ∀i (30)

which we can include in problem (1). Note that yi log
(∑

j exp
(

vij
yi

))
is a perspective function of

the convex function log
(∑

j exp(vij)
)
. □
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Showing the benefit in a nonconvex optimization problem. We consider the following

problem:

max
x

log

(
nx∑
i=1

exp(xi)

)
(31a)

s.t. x1 exp(xi)≤ ρ, i∈ [nx], (31b)

x1 ≥ 0. (31c)

Using the biconjugate of the convex objective, we obtain the following equivalent problem:

max
x,y

x⊤y+

nx∑
i=1

wi (32a)

s.t. x1 exp(xi)≤ ρ, i∈ [nx], (32b)

yi exp

(
wi

yi

)
≤ 1, i∈ [nx], (32c)

nx∑
i=1

yi = 1, (32d)

x1,y≥ 0. (32e)

We can consider the valid inequalities (30) derived from the first order conditions, see Example 5.

We next compare the obtained upper bounds for problem (32), when we use the decomposition

of the exponential cone as well as the first order conditions. The results are illustrated in Table

2. We refer to Appendix C.1 for the formulations of the three different approximations. From

Table 2 Comparison of the obtained upper bounds for problem (32), including the LMI, with and without

decomposing the exponential cone (dec) as well as with and without including the first order conditions (foc). nx is

the dimension of the variables. In all instances we fix ρ= 1.

nx w/o dec-foc w dec w/o foc w/o dec w foc w dec-foc
10 243,922 196,411 29,335 20,314
20 435,374 429,614 26,559 10,820
30 452,940 243,679 28,396 9,909
40 542,497 487,828 20,532 11,032
50 317,332 255,552 30,662 15,259

Table 2 we observe that when we include the inequalities obtained from the decomposition of the

exponential cone, the upper bound improves. We further notice a more significant improvement

in the upper bound when including the inequalities obtained from the first order conditions. We

therefore observe that in the considered problem, the valid inequalities obtained from the first order

conditions improve the approximation significantly.
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6. Numerical experiments

In this section, we demonstrate empirically the benefit of the cone product reformulations introduced

in this paper. More precisely, we consider a quadratic optimization problem over exponential cone

constraints, demonstrating the value of the proposed methodology for the exponential cone as well

as a robust palatable diet problem showing the benefit of the proposed methodology for the power

cone.

All numerical experiments are performed on an Intel i9 2.3GHz CPU core with 16 GB RAM. All

computations for RPT-BB and SCIP are conducted with MOSEK version 9.2.45 (MOSEK ApS,

2020), Gurobi version 9.0.2 Gurobi Optimization (2019), and implemented using Julia 1.5.3 and

the Julia package JuMP.jl version 0.21.6, and all computations for BARON are conducted with

BARON version 20.10.16 Sahinidis (1996) implemented using the Python package pyomo version

6.4.1.

6.1. Quadratic optimization with exponential cone constraints

In this section we consider the following problem

min
x

x⊤A0x+ b⊤0 x+ c0 (33a)

s.t. log

(
nx∑
i=1

exp(−xi)

)
≤ α, (33b)

nx∑
i=1

exp(xi)≤ β. (33c)

Using the conic representation of constraints (33b), (33c), problem (33) is equivalent to the following

problem:

min
x

x⊤A0x+ b⊤0 x+ c0 (34a)

s.t.

nx∑
i=1

zi ≤ 1, (34b)

exp(−xi −α)≤ zi, i∈ [nx], (34c)∑
i

ti ≤ β, (34d)

exp(xi)≤ ti. (34e)

Using the decomposition of the exponential cone, we obtain the additional constraints

β ≥ xi +1, zi ≥−xi −α+1, i∈ [nx].

We note that without the decomposition of the exponential cone, the relaxation obtained from

multiplying constraints and linearizing products with new variables is unbounded, since xx⊤ does
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not appear in the constraints. However, we can link them by considering the decomposition of the

exponential cone and as a result obtain tighter bounds. In Table 3 we solve the problem to optimality

using RPT-BB, with and without the LMI, while also comparing with BARON. The formulation

after multiplying all constraints and the data generation for each instance are summarized in

Appendix C.2 and Appendix D respectively.

Instance nx w/o LMI w LMI BARON
Opt Time(s) Hyp Opt Time(s) Hyp Opt Time(s)

1 5 -102 0.07 0 -102 0.1 0 -102 1
2 10 -175.8 0.1 0 -175.8 0.1 0 -175.8 0.5
3 10 -1885.4 0.2 0 -1885.4 0.7 0 -1885.4 220.2
4 20 -8172.8 4.4 1 -8172.8 25.1 1 -8172.8 3600∗

5 50 -37306.6 101.4 3.2 -37306.6 2100.2 3.1 -37306.6 3600∗

6 100 -326577.3 75.4 1 - 3600∗ 0 -326577.3 3600∗

Table 3 Comparison of RPT-BB, when including/ not including the LMI, for problem instances 1,2 and, 3,4,5,6

which reflect the average of 10 randomly generated instances. Opt represents the optimal value, Hyp represents the

total number of hyperplanes generated during branch and bound, Time represents the computation time in seconds

and nx represents the problem dimension. We set the maximum time limit equal to 3600 seconds, hence if the

computation time equals 3600∗, the optimum cannot be found within 3600 seconds and all approaches return the best

value they can obtain within 3600 seconds.

From Table 3, we observe that for all instances we were able to solve the problem to optimality

with branch and bound in less computational time than BARON, when decomposing the exponential

cone. Moreover, we observe that in instances 4, 5, and 6 corresponding to 20, 50, and 100 variables

respectively, when using the proposed valid inequalities the problem could be solved to optimality

in seconds, while BARON located the global optimal solution but could not prove optimality within

one hour. Finally, we note that in instance 6 which involves 100 variables, the problem could not be

solved at the root node after one hour when including the LMI.

6.2. Robust palatable diet problem

In this section, we consider the palatable diet problem where there is uncertainty in the coefficients

of one nutrient. The palatable diet problem is an important part of the World Food Programme’s

(WFP) food supply chain. The problem is to maximize palatability, while satisfying diet requirements.

The main variables are the ration variables rk, i.e. the amount of ingredient k in the ration.

Further, the palatability is defined as a function ĥ(r), which we assume is quadratic, that is

ĥ(r) = r⊤Ar+b⊤r+d. Utilizing the dataset from Maragno et al. (2021), consisting of observations

(ri, ĥ(ri)), we find the values of A,b and d that fit them best by regression. Moreover, we include

diet constraints, ensuring that the total nutritional value of a certain nutrient l is not below the
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required nutritional value ηl for that nutrient, that is
∑

k∈K βklrk ≥ ηl. Finally, we also have a budget

constraint, that is
∑

k∈K ckrk ≤W . The problem formulation is as follows:

max
r

r⊤Ar+ b⊤r+ d (35a)

s.t.
∑
k∈K

ckrk ≤W, (35b)∑
k∈K

βklrk ≥ ηl l ∈L, (35c)

r≥ 0. (35d)

It is often the case that the nutrient coefficients are uncertain. Assuming uncertainty in the

coefficients of nutrient m, we obtain the following robust constraint:

(βm +z)⊤r≥ ηm, ∀z ∈ U ,

where U = {z : ∥z∥p ≤ ρ}, for p≥ 1. In this case, the robust counterpart is as follows (Bertsimas

and den Hertog (2022))

β⊤
mr− ρ∥r∥q ≥ ηm,

where 1/p+1/q= 1. The constraint can be written as ∥r∥q ≤ 1
ρ
(β⊤

mr− ηm) and, by using auxiliary

variables t, can be reformulated as the following set of linear and power cone inequalities:{∑
k tk =

1
ρ
(β⊤

mr− ηm),

t
1/q
k ( 1

ρ
(β⊤

mr− ηm))
1−1/q ≥ |rk|, k ∈K.

Hence, the final problem formulation is as follows:

max
r,t

r⊤Ar+ b⊤r+ d (36a)

s.t.
∑
k∈K

ckrk ≤W, (36b)∑
k

βklrk ≥ ηl, l ∈L/{m}, (36c)

∑
k

tk =
1

ρ
(β⊤

mr− ηm), (36d)

t
1/q
k (

1

ρ
(β⊤

mr− ηm))
1−1/q ≥ |rk|, k ∈K, (36e)

r≥ 0. (36f)

We compare the optimal solution and computational time of problem (36) with and without the

multiplication of power cone inequalities with each other. We also compare the results with BARON.

The results for ThiamineB1 and NicacinB3 as the robust nutrient, are illustrated in Table 4. The
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Table 4 Comparison of optimal solutions for problem (36), including the LMI, with and without the proposed

additions. Opt represents the optimal value, Hyp represents the total number of hyperplanes generated during branch

and bound, and Time represents the computation time in seconds. We set the maximum time limit equal to 3600

seconds, hence if the computation time equals 3600∗, the optimum cannot be found within 3600 seconds and all

approaches return the best value they can obtain within 3600 seconds. We fix p= 3, ρ= 0.1, W = 5.

Rob Nutr w/o additions w additions BARON
Opt Time(s) Hyp Opt Time(s) Hyp Opt Time(s)

ThiamineB1 269.1 111.2 9 269.1 16 0 269.1 1.9
NicacinB3 213 44.5 4 213 39.6 1 212.2 3600∗

nutrient coefficients βkl are from Peters et al. (2022) and the costs ck are from de Moor et al. (2023).

The problem formulation after multiplying all constraints is provided in Appendix C.3.

From Table 4 we observe that for ThiamineB1 as the robust nutrient, all methods find the

global optimal solution, with BARON achieving the best computational time. We also notice that

including the multiplication of power cone inequalities improves the approximation and as a result

the computational time decreases from 111.20 to 16.01 seconds. In case the robust nutrient is

NicacinB3, we observe that adding the power cone multiplications improves the computational time,

while also finding the global optimal solution. In this case BARON could not solve the problem

within one hour and returned a solution with slightly smaller objective value.

7. Discussion and conclusion

In this paper, we studied in detail the pairwise multiplications of cone inequalities. In particular,

we showed how we can pairwise multiply one of the five basic cone constraints with exponential

and power cone inequalities and obtain convex constraints. Moreover, we derived valid inequalities

from exponential and power cone inequalities, which can further strengthen the approximation. In

addition, for DC problems we derived valid inequalities from first order conditions. In the numerical

experiments, we provided empirical evidence, suggesting that the cone product reformulations

introduced in this paper improve the approximation, while often leading to smaller computational

times than BARON. In future work, it would be interesting to investigate adaptations of the

proposed methodology, including partial constraint multiplications as well as partial generation of

product variables.
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Appendix

A. Multiplication of cone inequalities from the literature

In this appendix, we provide all multiplications of cone inequalities from Table 1 that are from the

literature.

A.1. Case 1 in Table 1: (L) × (L)

Consider two linear inequalities

b1 −a⊤
1 x≥ 0 and b2 −a⊤

2 x≥ 0.

Multiplying the two linear inequalities yields 1 additional linear inequality (Sherali and Alameddine,

1992):

(b1 −a⊤
1 x)(b2 −a⊤

2 x)≥ 0 ⇐⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 xx
⊤a2 ≥ 0

=⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 Ua2 ≥ 0.

A.2. Case 2 in Table 1: (L) × (Q)

Consider one linear inequality and one conic quadratic inequality

b1 −a⊤
1 x≥ 0 and b2 −a⊤

2 x≥
∥∥Dx+d

∥∥.
Multiplying the linear inequality with both sides of the conic quadratic inequality yields 1 additional

conic quadratic inequality (Sturm and Zhang (2003)) :

(b1 −a⊤
1 x)

∥∥Dx+d
∥∥≤ (b1 −a⊤

1 x)(b2 −a⊤
2 x)

⇐⇒
∥∥(b1 −a⊤

1 x)(Dx+d)
∥∥≤ (b1 −a⊤

1 x)(b2 −a⊤
2 x)

=⇒
∥∥b1Dx+ b1d−DUa1 −a⊤

1 xd
∥∥≤ b1b2 − b1a

⊤
2 x− b2a

⊤
1 x+a⊤

1 Ua2.
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A.3. Case 5 in Table 1: (L) × (S)

Consider one linear inequality and one LMI respectively

b1 −a⊤
1 x≥ 0 and A(x)⪰ 0.

We apply RPT to the multiplication of these inequalities, and obtain one additional LMI:

(b1 −a⊤
1 x)A(x)⪰ 0

⇐⇒ (b1 −a⊤
1 x)A0 +(b1 −a⊤

1 x)A1x1 + · · ·+(b1 −a⊤
1 x)Anxxnx ⪰ 0

=⇒ (b1 −a⊤
1 x)A0 +(b1x1 −a⊤

1 u1)A1 + · · ·+(b1xnx −a⊤
1 unx)Anx ⪰ 0.

A.4. Case 6 in Table 1 (Q) × (Q)

Consider two conic quadratic inequalities

b1 −a⊤
1 x≥

∥∥D1x+p1

∥∥ and b2 −a⊤
2 x≥

∥∥D2x+p2

∥∥. (37)

We multiply the left-hand side of the first conic quadratic inequality with both sides of the second

conic quadratic inequality and the left-hand side of the second conic quadratic inequality with both

sides of the first conic quadratic inequality to obtain 2 additional conic quadratic inequalities, see

Appendix A.2. Moreover, we multiply the left-hand sides and right-hand sides of the conic quadratic

inequalities with each other and obtain 1 additional conic quadratic inequality:

(b1 −a⊤
1 x)(b2 −a⊤

2 x)≥
∥∥D1x+p1

∥∥∥∥D2x+p2

∥∥ (38)

⇐⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 xx
⊤a2 ≥

∥∥(D1x+p1)(D2x+p2)
⊤
∥∥
F

(39)

=⇒ b1b2 − b1a
⊤
2 x− b2a

⊤
1 x+a⊤

1 Ua2 ≥
∥∥D1UD⊤

2 +p1x
⊤D⊤ +Dxp⊤

2 +p1p
⊤
2

∥∥
F
. (40)

This is Case 6(i) in Table 1.

In the literature also two LMIs are proposed. First observe that the two conic quadratic inequalities

(37) can be written as

b1 −a⊤
1 x≥

∥∥D1x+p1

∥∥ ⇐⇒
[
b1 −a⊤

1 x (D1x+p1)
⊤

D1x+p1 (b1 −a⊤
1 x)I

]
⪰ 0

and

b2 −a⊤
2 x≥

∥∥D2x+p2

∥∥ ⇐⇒
[
b2 −a⊤

2 x (D2x+p2)
⊤

D2x+p2 (b2 −a⊤
2 x)I

]
⪰ 0.

We now assume that, without loss of generality, the matrices D1 and D2 are of the same size.

Indeed, suppose that D1 has less rows than D2, then we can extend matrix D1 by zero rows or
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by copying scaled versions of some of the original rows. Using Lemma 3, see Appendix E, for the

Kronecker product, and linearizing each element of the product, we obtain[
b1 −a⊤

1 x (D1x+p1)
⊤

D1x+p1 (b1 −a⊤
1 x)I

]
⊗
[
b2 −a⊤

2 x (D2x+p2)
⊤

D2x+p2 (b2 −a⊤
2 x)I

]
⪰ 0

=⇒



α γ⊤

γ αI
δ1 η⊤

1

η1 δ1I
· · · δr η⊤

r

ηr δrI
δ1 η⊤

1

η1 δ1I
α γ⊤

γ αI
...

. . .

δr η⊤
r

ηr δrI
α γ⊤

γ αI


⪰ 0,

where

α= b1b2 − b2a
⊤
1 x− b1a

⊤
2 x+ a⊤

1 Ua2

γ = b1(D2x+p2)− (a⊤
1 x)p2 −D2Ua1

δi = b2(d
⊤
1ix)+ p1i(b2 −a⊤

2 x)−d⊤
1iUa1, i= 1, . . . , r

ηi = (d⊤
1ix+ p1i)p2 + p1iD2x+D2Ud1i, i= 1, . . . , r,

and d1i and d2i denote the i-th row of D1 and D2, respectively. This is Case 6(ii) in Table 1.

Another LMI is proposed by Jiang and Li (2016), using the Hadamard product instead of the

Kronecker product. It follows for the Hadamard product that[
b1 −a⊤

1 x (D1x+p1)
⊤

D1x+p1 (b1 −a⊤
1 x)I

]
◦
[
b2 −a⊤

2 x (D2x+p2)
⊤

D2x+p2 (b2 −a⊤
2 x)I

]
⪰ 0,

which implies [
α β⊤

β αI

]
⪰ 0, (41)

where

α= b1b2 − b2a
⊤
1 x− b1a

⊤
2 x+ a⊤

1 Ua2 (42)

βi = d1iUd1i + p1ip2i + p2id1ix+ p1id2ix, i= 1, . . . , r, (43)

and d1i and d2i is the i-th row of D1 and D2, respectively. Notice that the matrix in the left-hand

side of (41) has an arrow structure, and hence LMI (41) is equivalent with the following conic

quadratic inequality:

∥β∥2 ≤ α. (44)

It can easily be verified that (44) is a weaker inequality than (40). This is Case 6(iii) in Table 1.
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A.5. Case 9 in Table 1: (Q) × (S)

Consider one conic quadratic inequality and one LMI

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ and A(x)⪰ 0. (45)

First observe that the conic quadratic inequality can be formulated as an LMI, Anstreicher (2017)

b2 −a⊤
2 x≥

∥∥Dx+p
∥∥ ⇐⇒

[
b2 −a⊤

2 x (Dx+p)⊤

Dx+p (b2 −a⊤
2 x)I

]
⪰ 0.

We now multiply these inequalities. Using the fact that the Kronecker product of two positive

semidefinite matrices is also positive semidefinite, see Anstreicher (2017) and Lemma 3, see Appendix

E, we obtain 1 additional LMI:

(
b2 −a⊤

2 x−
∥∥Dx+p

∥∥)A(x)⪰ 0 =⇒
[
b2 −a⊤

2 x (Dx+p)⊤

Dx+p (b2 −a⊤
2 x)I

]
⊗A(x)⪰ 0

⇐⇒


(b2 −a⊤

2 x)A(x) (d⊤
1 x+p1)A(x) · · · (d⊤

r x+pr)A(x)
(d⊤1 x+p1)A(x) (b2 −a⊤

2 x)A(x)
...

. . .
(d⊤r x+pr)A(x) (b2 −a⊤

2 x)A(x)

⪰ 0

=⇒


A(b2x−Ua2) A(p1x+Ud1) · · · A(prx+Udr)
A(p1x+Ud1) A(b2x−Ua2)

...
. . .

A(prx+Udr) A(b2x−Ua2)

⪰ 0, (46)

where di is the i-th row of D. We could also directly multiply the left-hand side of the conic

quadratic inequality with the LMI and obtain 1 additional LMI:

A(b2x−Ua2)⪰ 0,

which is also implied by (46).

A.6. Case 12 in Table 1: (P) × (S)

Consider one power cone inequality and one LMI
m∏
i=1

xαi
i ≥

√√√√ nx∑
i=m+1

x2
i

x1, · · · , xm ≥ 0

and A(x)⪰ 0.

We multiply the nonnegativity constraints of the power cone with the LMI and obtain m additional

LMIs:

xiA(x)⪰ 0 =⇒ A(ui)⪰ 0, i= 1, · · · ,m.
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A.7. Case 15 in Table 1: (S) × (S)

Consider two LMIs {
A(x)⪰ 0
B(x)⪰ 0.

If A(x) and B(x) are of different sizes, it follows from Lemma 3, see Appendix E, that the Kronecker

product of A(x) and B(x) is positive semidefinite, that is A(x)⊗B(x) ⪰ 0. Notice that each

element in the Kronecker product is the multiplication of two affine functions of x. After linearizing

the quadratic terms in A(x)⊗B(x) with the matrix C(x,U), which is linear in both x and U ,

we obtain Case 15(i) of Table 1. If A(x) and B(x) are of the same size, it follows from Lemma

3, see Appendix E, that the Hadamard product of A(x) and B(x) is positive semidefinite, that

is A(x) ◦B(x)⪰ 0. Notice that each element in the Hadamard product is the multiplication of

two affine functions of x. After linearizing the quadratic terms in A(x) ◦B(x) with the matrix

D(x,U), which is linear in both x and U , we obtain Case 15(ii) of Table 1.

B. Adversarial approach for best power cone reformulation

In Algorithm 1 we include generic pseudocode for the adversarial approach, utilized for finding the

best reformulation when multiplying a cone inequality with the power cone. The function g(x,U)

refers to the right-hand side of the constraint obtained after the multiplication of a cone inequality

with a power cone inequality.

Algorithm 1 Adversarial approach for best reformulation

Input: θ0: Initial guess for the uncertain parameters.

Output: (x∗,U ∗): Optimal solutions of the best reformulated problem.

1: Initialize V = {θ0}.

2: Solve the master problem with input V and obtain optimal solutions (x∗,U ∗).

3: Solve the sub-problem with input (x∗,U ∗) and obtain optimal solution θ∗ with cost c∗.

4: if c∗ < log(g(x∗,U ∗)) then

5: V = V ∪{θ∗}.

6: Go to Step 2.

7: else

8: Return the optimal solutions (x∗,U ∗).

9: end if
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C. RPT formulations of numerical experiments

In this section, we include the formulations obtained when multiplying all constraints in the problems

encountered in the numerical experiments.

C.1. RPT formulation of Section 5.3

We linearize xx⊤ with X, yy⊤ with Y , xy⊤ with U , and xw⊤ with Q. After multiplying all

constraints, we obtain the following problem:

max
x,y,X,
Y ,UQ,
W ,Q

Tr(U)+
∑
i

wi (47a)

s.t. x1 exp

(
X1i

x1

)
≤ ρ, i∈ [n], (47b)

yi exp

(
wi

yi

)
≤ 1, i∈ [n], (47c)

U1i exp

(
Q1i

U1i

)
≤ x1, i∈ [n], (47d)

Yij exp

(
Pji

Yij

)
≤ yj, i, j ∈ [n], (47e)

Yij exp

(
Pij +Pji

Yij

)
≤ 1, i≤ j ∈ [n], (47f)∑

i

yi = 1, (47g)∑
i

Ui =x, (47h)∑
i

Yi = y, (47i)∑
i

P⊤
i =w, (47j)

x1,u1,X1,Y ,y≥ 0, (47k)X U Q x
U⊤ Y P y
Q⊤ P⊤ W w
x⊤ y⊤ w⊤ 1

⪰ 0. (47l)

We can further decompose the exponential cone inequality for y and obtain the following additional

inequalities

1≥ yi +wi, i∈ [n],

x1 ≥U1i +Q1i, i∈ [n],

y≥Yi +Pi, i∈ [n],

Yij +Wij +Pij +Pji − yi − yj −wi −wj +1≥ 0, i, j ∈ [n].
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We can reformulate the first order conditions into cone inequalities and then multiply them with

the rest to obtain more cone inequalities. We linearize xt⊤, yt⊤, wt⊤ with H,G and R respectively.

We have the following:

ti + ri ≤Uii, i∈ [n],

yi exp

(
−ti
yi

)
≤ 1, i∈ [n],∑

j

qij ≤ 1, i∈ [n],

yi exp

(
Uji − ri

yi

)
≤ Vij, i, j ∈ [n],∑

j

Vij ≤ yi, i∈ [n],

U1i exp

(
−H1i

U1i

)
≤ 1, i∈ [n],

Yij exp

(
−Gji

Yij

)
≤ 1, i, j ∈ [n],

Yij exp

(
Pji −Gij

Yij

)
≤ 1, i, j ∈ [n],

Yij exp

(
−Gji −Gij

Yij

)
≤ 1,∑

i

G⊤
i = t,

X U Q H x
U⊤ Y P G y
Q⊤ P⊤ W R w
H⊤ G⊤ R⊤ T t
x⊤ y⊤ w⊤ t⊤ 1

⪰ 0.

We can further decompose the exponential cone inequalities obtained from first order conditions

and obtain the following:

1≥ yi − ti, i∈ [n],

x1 ≥U1i −H1i, i∈ [n],

y≥Yi −Gi, i∈ [n],

(yi −Yij +Gij) exp

(
wi −Pji +Rij

yi −Yij +Gij

)
≤ 1− yj + tj, i, j ∈ [n],

Yij +Pji −Gij −Rij − yi − yj −wi + tj +1≥ 0, i, j ∈ [n],

Yij +Tij −Gij −Gji − yi − yj + ti + tj +1≥ 0, i, j ∈ [n].

C.2. RPT formulation of Section 6.1

We linearize xx⊤ with X, zz⊤ with Z, xz⊤ with V , xt⊤ with W and zt⊤ with Q. When

multiplying the constraints in problem (33), without any additions, we obtain the following problem:
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min
x,z,X,
V ,Z

Tr(A0X)+ b⊤0 x+ c0 (48a)

s.t.

nx∑
i=1

zi ≤ 1, (48b)

exp(−xi − a)≤ zi, i∈ [nx], (48c)
nx∑
i=1

ti ≤ β, (48d)

exp(xi)≤ ti, i∈ [nx], (48e)(
1−

nx∑
j=1

zj

)
exp

(
−xi −α+

∑nx
j=1 Vij +α

∑nx
j=1 zj

1−
∑nx

j=1 zj

)
≤ zi −

nx∑
j=1

Zij i∈ [nx], (48f)

β−
nx∑
j=1

tj −β

nx∑
j=1

zj +

nx∑
i,j=1

Qij ≥ 0, (48g)(
1−

nx∑
j=1

zj

)
exp

(
xi −

∑nx
j=1 Vij

1−
∑nx

j=1 zj

)
≤ ti −

nx∑
j=1

Qji, i∈ [nx], (48h)

nx∑
i,j=1

Zij − 2

nx∑
i=1

zi +1≥ 0, (48i)(
β−

nx∑
j=1

tj

)
exp

(
−βxi −αβ+

∑nx
j=1Wij +α

∑nx
j=1 tj

β−
∑nx

j=1 tj

)
≤ ziβ−

nx∑
j=1

Qij , i∈ [nx], (48j)(
β−

nx∑
j=1

tj

)
exp

(
βxi −

∑nx
j=1Wij

β−
∑nx

j=1 tj

)
≤ βti −

nx∑
j=1

Tij , i∈ [nx], (48k)

nx∑
i,j=1

Tij − 2

nx∑
j=1

tj +β2 ≥ 0, (48l)

zj exp

(
Vij

zj

)
≤Qji, i, j ∈ [nx], (48m)

exp(−xi −xj − 2α)≤Zij , i≤ j ∈ [nx], (48n)

exp (−xi − a+xj)≤Qij , i, j ∈ [nx], (48o)

zj exp

(
−Vij − azj

zj

)
≤Zij , i, j ∈ [nx], (48p)

tj exp

(
−Wij − atj

tj

)
≤Qij , i, j ∈ [nx], (48q)

tj exp

(
Wij

tj

)
≤ Tij , i, j ∈ [nx], (48r)

exp (xi +xj)≤ Tij , i≤ j ∈ [nx], (48s)

(48t)

Further, from the decomposition of the exponential cone we obtain the following additional

constraints:

−xi −α+1≤ zi, i∈ [nx], (49a)

xi +1≤ ti, i∈ [nx], (49b)

zi −
nx∑
j=1

Zij +xi +α− 1−
nx∑
j=1

Vij −α

nx∑
j=1

zj +

nx∑
j=1

zj ≥ 0, i∈ [nx], (49c)

(zj +xj +α− 1) exp

(
−Vij −Xij −αxi +xi −α(zj +xj +α− 1)

zj +xj +α− 1

)
≤Zij +Vji +αzi − zi, i, j ∈ [nx], (49d)
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(zj +xj +α− 1) exp

(
Vij +Xij +αxi −xi

zj +xj +α− 1

)
≤Qji +Wji +αti − ti, i, j ∈ [nx], (49e)

(α− 1)(zj +xj +α− 1)+Zij +Vji +(α− 1)zi +Vij +Xij +(α− 1)xi ≥ 0, i, j ∈ [nx], (49f)

ti −
nx∑
j=1

Qji −xi +

nx∑
j=1

Vij − 1+

nx∑
j=1

zj ≥ 0, i∈ [nx], (49g)

(tj −xj − 1) exp

(
−Wij −αtj +Xij +α(xj +1)+xi

tj −xj − 1

)
≤Qij −Vji − zi, i, j ∈ [nx], (49h)

(tj −xj − 1) exp

(
Wij −Xij −xi

tj −xj − 1

)
≤ Tij −Qji − ti, i, j ∈ [nx], (49i)

Tij −Wij − tj −Wji +Xij +xj − ti +xi +1≥ 0, i, j ∈ [nx], (49j)

Qji +Wji +αti − ti −Vij −Xij −αxi +xi − zj −xj −α+1≥ 0, i, j ∈ [nx], (49k)

βzj −
∑
i

Qji +βxj −
∑
i

Wji −α
∑
i

ti +αβ−β+
∑
i

ti ≥ 0, j ∈ [nx], (49l)

βtj −
∑
i

Tij −βxj +
∑
i

Wji −β+
∑
i

ti ≥ 0, j ∈ [nx]. (49m)

C.3. RPT formulation of Section 6.2

We linearize rr⊤, tt⊤, rt⊤ with R,T and V respectively. We multiply all constraints in problem

(36) to obtain the following problem:

max
r,t,R,
T ,V

r⊤Ar+ b⊤r+ d (50a)

s.t. c⊤r≤W, (50b)

β⊤
l r≥ ηl, l ∈L/{m}, (50c)∑
k

tk =
1

ρ
(β⊤

mr− ηm), (50d)

t
1/q
k (

1

ρ
(β⊤

mr− ηm))
1−1/q ≥ rk, k ∈K, (50e)

β⊤
l Rk ≥ ηlrk, l ∈L/{m}, k ∈K, (50f)(
β⊤

l Vk − ηltk
) 1

q

(
1

ρ

(
β⊤

1 Rβl − ηlβ
⊤
1 r− η1β

⊤
l r+ η1ηl

))1−1/q

≥β⊤
l Rk − ηlrk, l ∈L/{m}, k ∈K,

(50g)

c⊤Rk ≤Wrk, k ∈K, (50h)

W 2 − 2Wc⊤r+ c⊤Rc≥ 0, (50i)

Wβ⊤
l r+ ηlc

⊤r− c⊤Rβl −Wηl ≥ 0, l ∈L/{m}, (50j)(
Wtk − c⊤Vk

) 1
q

(
1

ρ

(
Wβ⊤

mr−Wηm + ηmc
⊤r− c⊤Rβm

))1−1/q

≥Wrk − c⊤Rk, k ∈K,

(50k)∑
k

Vk =
1

ρ
(Rβm − ηmr), (50l)

∑
k

Tk =
1

ρ
(V ⊤βm − ηmt), (50m)
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V
1/q

k
′
k
(
1

ρ
(β⊤

mRk
′ − ηmrk′ ))

1−1/q ≥Rkk
′ , k, k

′
∈K, (50n)

T θ11

kk
′

(
1

ρ

(
β⊤

mVk − ηmtk
))θ12 (1

ρ

(
β⊤

mVk
′ − ηmtk′

))θ21

·

·
(

1

ρ2
(
β⊤

mRβm − 2ηmβ
⊤
mr+ η2

m

))θ22

≥Rkk
′ , k, k

′
∈K, (50o)

r,R≥ 0, (50p) R V r
V ⊤ T t
r⊤ t⊤ 1

⪰ 0. (50q)

For the multiplication of the power cone constraints we generate a feasible θ that satisfies the

following:

θ11 + θ21 = 1/q, θ12 + θ22 = 1− 1/q,

θ11 + θ12 = 1/q, θ21 + θ22 = 1− 1/q.

D. Data generation of Section 6.1

In problem instances 1 the objective is defined as f(x) =− 1
2

∑20

i=1(xi +5)2 and in problem instance

2 it is defined as f(x) =− 1
2

∑20

i=1(xi +7)2. In problem instances 3, 4, 5, and 6, the matrix A0 is

generated as LTL, where L∈Rn×n, with Lij ∼ [0,1], and further b0 = 0, c0 = 0. We summarize all

parameters describing each instance in Table 5.

Table 5 Problem (33) parameters for each instance. nx refers to the number of variables and α,β to the

constraint parameters.

Instance nx α β
1 5 2 20
2 5 2 20
3 10 2 3
4 20 3 4
5 50 3 4
6 100 13 20

E. Technical lemmas

Lemma 3. Suppose A and B are positive semidefinite matrices. Then also the Kronecker product

is positive semidefinite, i.e.,

A(x)⊗B(x)⪰ 0. (51)
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Moreover, if A and B are positive semidefinite matrices of the same size, then the Hadamard

product is also positive semidefinite, i.e.,

A(x) ◦B(x)⪰ 0. (52)

Proof The first statement follows from Theorem 4.2.12 of Horn and Johnson (1991). The last

statement follows from the Schur Product Theorem (Schur, 1911). □

The following lemma shows that the Kronecker product relaxation is at least as tight as the

Hadamard product relaxation.

Lemma 4. Suppose A and B are of the same size. The relaxation obtained after linearization of

the quadratic terms in the Kronecker product (51) is at least as tight as the relaxation obtained after

linearization of the quadratic terms in the Hadamard product (52).

Proof. Let us denote the matrix obtained after linearization of the quadratic terms in A(x)⊗

B(x) by C(U ,x). Let us denote the matrix obtained after linearization of the quadratic terms in

A(x) ◦B(x) by D(U ,x). It can easily be checked that D(U ,x) is a minor of C(U ,x) obtained

by the elements in rows and columns 1, n+2,2n+3, . . . , n2. Since C(U ,x) is positive semidefinite,

and each minor of a positive semidefinite matrix is positive semidefinite, we have that D(U ,x) is

positive semidefinite. □
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