
DeLuxing: Deep Lagrangian Underestimate Fixing for
Column-Generation-Based Exact Methods

Yu Yang
Department of Industrial and Systems Engineering, University of Florida, yu.yang@ise.ufl.edu

In this paper, we propose an innovative variable fixing strategy called deep Lagrangian underestimate fixing

(DeLuxing). It is a highly effective approach for removing unnecessary variables in column-generation (CG)-

based exact methods used to solve challenging discrete optimization problems commonly encountered in

various industries, including vehicle routing problems (VRPs). DeLuxing employs a novel linear programming

(LP) formulation with only a small subset of the enumerated variables, which is theoretically guaranteed

to yield qualified dual solutions for computing Lagrangian underestimates (LUs). Due to their small sizes,

DeLuxing can efficiently solve a sequence of similar LPs to generate multiple high-quality LUs, and thus

can, in most cases, remove over 75% of the variables from the enumerated pool. We extend the funda-

mental concept underpinning the new formulation to contexts beyond variable fixing, namely variable type

relaxation and cutting plane addition. We demonstrate the effectiveness of the proposed method in accel-

erating CG-based exact methods via the capacitated multi-trip vehicle routing problem with time windows

(CMTVRPTW) and two important variants with loading times or release dates. Enhanced by DeLuxing

and the extensions, one of the best exact methods for solving the CMTVRPTW developed in Yang (2023)

doubles the size of instances solved optimally for the first time while being more than 7 times on average

and up to over 20 times as fast as top-performing exact methods reported in the literature.

Keywords : column generation ¨ variable fixing ¨ Lagrangian underestimate ¨ multi-trip vehicle routing

1. Introduction

The textbook Dantzig-Wolfe decomposition (DWD; Dantzig and Wolfe 1960) naturally gives rise to a

column generation (CG) approach for solving challenging linear programs (LPs), where “promising”

variables1 are generated and added to the restricted master program (RMP) as needed throughout

the solution process. This idea of implicitly dealing with variables when there are too many of them

dates back to Ford and Fulkerson (1958) and has expanded well beyond the original context of

LP solving. In particular, it has been successfully combined with the well-known branch-and-bound

framework Land and Doig (2010) into the branch-and-price (BP) approach (Barnhart et al. 1998)

and additionally with problem-specific cutting planes into the branch-price-and-cut (BPC) approach

(e.g., Kohl et al. 1999, Fukasawa et al. 2006, Jepsen et al. 2008) for solving integer programs (IPs).

1 Columns and variables are used interchangeably in this paper in view of their correspondence.

1

Yang: DeLuxing for CG-Based Exact Methods
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

BP and BPC methods are now the leading exact algorithms to approach various challenging discrete

optimization problems arising in the industry, including vehicle routing problems (VRPs; Pessoa

et al. 2020, Desaulniers et al. 2016a), inventory routing problems (Desaulniers et al. 2016b, Engineer

et al. 2012), and crew rostering problems (CRPs; Breugem et al. 2022, Quesnel et al. 2020).

A persistent challenge associated with CG is its tendency to generate an excessive number of

columns when solving large-scale instances, which slows down the solution process and consumes a

large amount of memory. To alleviate this problem, it is possible to adopt a straightforward column

clean-up procedure that drops columns with large reduced costs (see Section 5.2 of Pessoa et al. 2020)

at the expense of more CG iterations required to solve the LPs optimally. To further mitigate the

issue, most BPC methods incorporate reduced cost fixing (RCF) as a default functionality to remove

variables (Pecin et al. 2017a,b). RCF builds upon the fact that the reduced cost of a given variable

xi lower bounds the absolute change in the optimal value of the LP relaxation for each unit change

in the value of xi. The variable bound can thus be tightened accordingly to prevent the LP from

achieving objective values worse than a known primal bound of the mixed integer program (MIP;

for more details, see Wolsey and Nemhauser 1999, p. 389). For problems involving binary variables

(e.g., Crowder et al. 1983, Johnson et al. 1985), RCF can directly fix variables, and those fixed to 0

can be safely removed from the formulation without compromising solution optimality.

1.1. Motivation

Compared to classic compact formulations (e.g., vehicle or commodity flow-based formulations, see

Baldacci et al. 2004, Cappanera and Gallo 2004), an extensive formulation, such as a set partitioning

formulation or DWD reformulation, usually produces much tighter lower bounds2 but needs to be

solved by a CG approach due to the exponential number of variables. Such tight lower bounds make

it possible to enumerate all columns with reduced costs no larger than the current integrality gap

at an early stage. The enumeration implicitly applies RCF and was first recommended by Baldacci

et al. (2008) for solving VRPs, which has led to remarkable acceleration (Yang 2023, Sadykov et al.

2021, Paradiso et al. 2020).

The enumeration is usually activated when the current integrality gap drops blew a threshold ∆.

Thus, the aggressiveness of enumeration is directly controlled by ∆, with larger values indicating

higher aggressiveness. Increasing the aggressiveness within a certain range helps to close an open

branch-and-bound node (BBN) faster, while too large a ∆ results in the enumeration of an excessively

large column pool or even failure of enumeration due to hitting limits on, e.g., time, memory, or the

2 By default, we consider minimization problems in this paper. A maximization problem can be solved by minimizing
the negation of the original objective function.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

pool size, causing deterioration in overall performance. For challenging instances with a reasonable

∆, it is common to have millions of columns or more enumerated.

Although RCF can also be applied after enumeration to reduce the pool size gradually (see Pessoa

et al. 2020), its effectiveness is generally limited for three major reasons. First, the columns in the

pool are promising ones and tend to be difficult to remove because they have implicitly passed the

initial screening by RCF in the enumeration phase. Second, the effectiveness of RCF relies heavily on

the changes in the lower and upper bounds. Multiple rounds of cutting plane addition and branching

are typically required before the pool can be shrunk to a tractable size such that the BBN can be

closed by directly solving an IP with all columns left in the pool. Consequently, RCF may iterate

through the entire pool many times in this process, incurring a substantial increase in computational

load. Finally, RCF usually uses only one optimal dual solution from the most recent LP, which can

be somewhat arbitrary within the optimal face of the corresponding polyhedron and thus results in

fluctuating and mostly mediocre performance.

Unfortunately, to the best of our knowledge, not much progress has been made in addressing the

said causes of ineffectiveness, which motivates this research. Specifically, we seek to unlock the full

potential of variable fixing for CG-based exact methods when an enumeration procedure is employed.

1.2. Contributions and Outline

This paper proposes a deep Lagrangian underestimate fixing (DeLuxing) method widely applicable

to accelerate CG-based exact methods. We summarize our contributions as follows.

• We introduce a novel LP formulation that yields high-quality Lagrangian underestimates (LUs)

and rigorously prove its validity. The LP includes only a small subset of variables (i.e., those with

reduced costs no larger than half of the current gap), allowing for a rapid search for promising

dual solutions. The variable fixing induced by employing such dual solutions addresses the

ineffectiveness of RCF from three perspectives: (i) it imposes much less restriction on qualified

dual solutions while the standard RCF generally necessitates the use of optimal dual solutions;

(ii) it takes effect at the current BBN by reducing the strong reliance on the quality of the

lower bound, avoiding repeated branching or addition of cutting planes before achieving its

significance; (iii) it proactively seeks multiple dual solutions to generate LUs of high quality that

fix a large number of variables with mild computational overhead.

• We extend the basic principle underpinning the proposed LP formulation beyond the context of

variable fixing, leading to further acceleration. Specifically, based on the principle, we prove that

a large proportion of the integer variables can be relaxed to continuous ones in the final IP

solved to close a BBN in some cases. Moreover, the iterative process of adding cutting planes is

enhanced by performing the computation on a restricted reformulation that again only includes

Yang: DeLuxing for CG-Based Exact Methods
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

variables with reduced costs no larger than half of the current gap. This enhancement incurs

negligible or no sacrifice in the quality of the obtained lower bound.

• We propose a straightforward yet effective algorithmic framework that systematically directs the

exploration for promising dual solutions, and we provide insights into the mechanisms contribut-

ing to its success. The key idea involves bundling columns with similar characteristics into a

reference point to guide the search. A clustering procedure is initially employed to identify

Euclidean distance-based similarities among columns. The algorithm then starts from each clus-

ter and conducts a deep search using a reference point computed with newly identified removable

columns at each iteration until a stopping criterion is reached. One can view this iterative

procedure as implicitly revealing the similarities among columns via the reference points.

• We demonstrate that DeLuxing, as a versatile variable screening tool, effectively removes unnec-

essary variables and can be flexibly applied throughout a BPC method. Our experiments on the

capacitated multi-trip vehicle routing problem with time window (CMTVRPTW) show that

DeLuxing can remove over 75% of the variables in most cases. Its effectiveness is even more

pronounced as the problem size increases, achieving a reduction of up to 99%. In addition to

its standard usage of removing variables after an exact enumeration, DeLuxing can serve as a

crucial component in a highly effective primal heuristic.

• We conduct an extensive numerical study and show that DeLuxing, along with several accelera-

tion techniques inspired by it, takes the performance of BPC methods to an entirely new level.

One of the best exact methods for solving the CMTVRPTW in Yang (2023) enhanced by the

proposed DeLuxing can solve all instances with 140 customers for the first time, doubling the

size of instances that can be solved to optimality. Furthermore, it achieves near-optimal solutions

with an average optimality gap of 0.5% for instances with up to 200 customers.

The rest of the paper is structured as follows. Section 2 provides a review of some variable fixing

techniques related to RCF. Section 3 describes preliminaries on the enumeration procedure and

variable fixing techniques. Section 4 introduces the theoretical foundations and relevant formulations

for dual picking, and gives an overview of DeLuxing. A detailed explanation of DeLuxing is provided

in Section 5. Three extensions inspired by DeLuxing are presented in Section 6. We report the results

of four sets of numerical experiments in Section 7. Finally, in Section 8, we make concluding remarks

and identify potential avenues for future research. The detailed numerical results can be found in

the e-companion. The compiled C++ library for reproducing the results and solving new instances of

the CMTVRPTW and its two variants is made publicly available at https://github.com/Yu1423/

DeLuxing.

https://github.com/Yu1423/DeLuxing
https://github.com/Yu1423/DeLuxing

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

2. Literature Review

In this section, we review variable fixing techniques that rely on the well-known RCF, specifically

focusing on those integrated into customized CG-based algorithms. Additionally, we discuss some

recent efforts to enhance the effectiveness of RCF in more general settings.

The idea of what is now known as RCF was originally introduced in the seminal work Dantzig et al.

(1954) for solving the traveling salesman problem. Its practical effectiveness and ease of implemen-

tation have made it a standard procedure in cutting-edge MIP solvers such as Gurobi (Achterberg

2018), CPLEX (Bixby et al. 2000), and SCIP (Achterberg et al. 2008). Moreover, RCF has been

applied to leverage the strengths of MIP in a constraint programming (CP) framework (Yunes et al.

2010, Bacchus et al. 2017). Beyond MIP and CP, RCF has also been employed in two-stage stochastic

programming (Crainic et al. 2018), semidefinite relaxation (Posta et al. 2012), and many others.

However, applying RCF to fix nominal variables in an extensive formulation solved by a CG-based

method cannot be done blindly as it necessitates restructuring the pricing subproblem to prevent the

regeneration of eliminated variables. Therefore, fixing by reduced costs is typically applied to implicit

variables, which is equivalent to removing a subset of the variables in the RMP. Irnich and Desaulniers

(2005) propose to use path-reduced cost to remove arcs from the underlying network of routing and

scheduling problems without sacrificing optimality. The authors conclude that approximately 80%

of the arcs can be eliminated when the optimality gap is around 1%. This arc elimination technique

has also been successfully applied in Pecin et al. (2017a) for solving the VRPTW.

Pessoa et al. (2010) and Pecin et al. (2017b) refine this approach to a resource-value-dependent arc

elimination procedure for solving parallel machine scheduling problems and the CVRP, respectively.

Using a similar approach, Sadykov et al. (2021) perform the so-called bucket arc elimination on a

sophisticated way of organizing labels in the labeling algorithm called bucket graph. They report a

6% speedup compared to a standard arc elimination procedure independent of resources and conclude

that hard instances with small primal-dual gaps benefit more from this new bucket arc elimination.

Desaulniers et al. (2020) propose to generalize the idea to fix sequences of two arcs with a modification

in the labeling algorithm for pricing. Experiments on the VRPTW and four variants of the electric

VRPTW show that single-arc fixing can eliminate more than 90% of the feasible two-arc sequences,

and two-arc sequence fixing can fix approximately half of the remaining ones, achieving an overall

reduction of around 19% in the BPC computation time.

Enumeration, which identifies all potential columns with reduced costs not exceeding the cur-

rent integrality gap, is another effective way to utilize RCF. This procedure has been employed in

many high-performing BPC approaches (e.g., Yang 2023, Pessoa et al. 2020, Baldacci et al. 2013,

2011a,b,c,d) since its inception in Baldacci et al. (2008). After enumeration, RCF can be applied to

Yang: DeLuxing for CG-Based Exact Methods
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

the nominal variables in the conventional manner as columns are no longer generated by the labeling

algorithm. Nonetheless, the efficacy of RCF is limited, especially at the current BBN, due to the

three reasons explained in Section 1.1, which leaves room for improving RCF when applied in this

way. It has been observed in Sellmann (2004) that distinct dual solutions can result in significantly

different effectiveness and sub-optimal dual solutions could potentially result in even more variable

fixing than optimal ones, which suggests a promising research avenue.

Bajgiran et al. (2017) take a step in exploring such improvement and propose to search for a dual

solution maximizing the number of variables that can be fixed by solving a MIP. Their experiments

demonstrate that the new dual picking method yields an average speedup of 20% in geometric mean

over the default CPLEX. The authors also observe that by limiting the search to the optimal dual

face instead of the entire dual feasible space, almost the same amount of fixing can be achieved while

being orders of magnitude faster. However, solving the MIP constructed by Bajgiran et al. (2017)

can be challenging as it includes n binary variables, where n is the number of variables in the original

problem. The authors thus set a time limit of 10 minutes and use all feasible solutions obtained in

the process for variable fixing. In Yang (2023), the author proposes to solve a new auxiliary problem

that computes a second dual solution for fixing variables after enumeration in the price-cut-and-

enumerate method for the CMTVRPTW. Based on a similar idea, de Lima et al. (2023) develop two

strategies to compute alternative dual solutions for variable fixing when dealing with network flow

models. It is worth mentioning that since they consider the DWD reformulation, the variable fixing

is conducted on the arcs of the underlying network. These methods can be performed iteratively,

with each iteration building upon the previous round of variable fixing. They demonstrate that these

techniques speed up the proof of optimality despite their high computational overhead.

Our proposed DeLuxing method eliminates nominal variables in the RMP via multiple dual solu-

tions. It fundamentally differs from existing approaches in several key aspects. First, DeLuxing uses

a novel small-sized LP formulation to search for qualified dual solutions that are not restricted to

be (sub)-optimal or feasible for the original dual problem. Second, it uses a completely new way of

searching that exploits the underlying column similarities revealed iteratively. Last, DeLuxing does

not rely on specific problem structures, unlike previous approaches such as those in de Lima et al.

(2023), making it generally applicable to both CG-based exact methods and MIPs.

3. Preliminaries

In this section, we first formally describe the enumeration procedure that is now widely applied in

the BPC framework for solving challenging discrete optimization problems. Then, we review the

general variable fixing technique by Lagrangian bounds. Lastly, we discuss a special variable fixing

strategy via dual picking introduced in Yang (2023) and its major drawbacks, which serve as a

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

natural motivation for this study. Throughout the paper, we use R`, Z, and Z` to denote the set

of non-negative real numbers, integers, and non-negative integers, respectively. Little letters in bold

are used to represent vectors. The inner product of two vectors x and y is denoted by xx,yy.

3.1. The Enumeration Procedure

Consider the following extensive formulation that can be a standard set partitioning formulation or a

DWD reformulation. Since the proposed method will be applied exclusively to fix integer variables, we

omit continuous variables in the presentation without loss of generality. Moreover, we only consider

that all variables are non-negative in our presentation. This requirement is not necessary and can be

removed through a straightforward variable substitution.

FpRq : z˚ “ min
ÿ

rPR
crxr

s.t.
ÿ

rPR
airxr “ bi, @i P N ,

xr P Z`, @r P R.

In the context of VRPs, N represents the set of customers, each of which should be visited exactly

once (i.e., bi “ 1 for i P N), R consists of all feasible routes and possibly some relaxed routes that

are not necessarily feasible (e.g., ng-routes from Baldacci et al. 2012), xr is a binary decision variable

taking the value of one if route r P R is used and zero otherwise, cr and air denote the cost and

the number of times customer i is visited by route r, respectively. Due to the exponential size of R,

formulation FpRq is typically solved by a BPC method (Baldacci et al. 2008, Pecin et al. 2017b).

Let lb and ub, separately, be a lower bound and an upper bound of the optimal value z˚. An lb is

usually obtained by solving some LP relaxations of FpRq, and an ub is usually set to the objective

value of the best feasible solution found so far. The optimality gap, denoted by g, is computed as

the difference between ub and lb, i.e., g :“ ub´ lb. A BPC method can try to enumerate all variables

with reduced costs no larger than g with respect to (w.r.t.) the current dual solution when the gap

g falls below some prespecified threshold. This idea was first proposed for solving VRPs in Baldacci

et al. (2008) and has been successfully applied in most state-of-the-art BPC methods.

Let R denote the set of variables that have been enumerated. In the case of VRPs, the set R only

consists of qualified elementary routes, as non-elementary routes are not feasible. RCF guarantees

that solving FpRq will yield an optimal solution to FpRq because a variable with a reduced cost

greater than g cannot take a positive integer value in any optimal solution. When the cardinality

of R is in the tens of thousands, solving FpRq as an IP by a general MIP solver such as Gurobi

(Gurobi Optimization, LLC 2023) can yield an optimal solution within a reasonable time frame. In

case of |R| being too large, the algorithm can continue the BPC procedure using inspection for CG

Yang: DeLuxing for CG-Based Exact Methods
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

(Contardo and Martinelli 2014). Specifically, instead of running the dynamic programming-based

labeling algorithm, which can be computationally intensive, especially when many non-robust cuts

(Pecin et al. 2017b) have been added, pricing is done by evaluating the reduced costs of the columns

in the pool. In both cases, the pool size significantly impacts the time required to prove optimality.

3.2. Variable Fixing by Lagrangian Bounds

A natural way to reduce the computational burden after enumeration is to remove variables from

FpRq. Consider the following LP relaxation of FpRq with cutting planes added in the solution process.

FpRq : z̄˚ “ min
ÿ

rPR
crxr

s.t.
ÿ

rPR
airxr “ bi, @i P N , (1)

ÿ

rPR
akrxr ď bk, @k P K, (2)

xr ě 0, @r P R,

where K denotes the index set of the added cuts. For VRPs, they typically include the rounded

capacity cuts (RCCs; Laporte and Nobert 1983, Lysgaard et al. 2004), the (limited memory) subset

row cuts (SRCs; Jepsen et al. 2008, Pecin et al. 2017b) and problem-specific feasibility cuts, e.g., the

relaxed (super)structure feasibility cuts for the CMTVRPTW (Yang 2023, Paradiso et al. 2020).

Fixing variables by Lagrangian bounds is a widely applied technique in solving discrete optimization

problems (e.g., Balas and Saltzman 1991, Balas and Carrera 1996, Holmberg and Yuan 2000). The

general idea is that when a variable is set to a given value, if the Lagrangian bound is larger than the

best upper bound, then this value can be excluded from the variable’s feasible region. More precisely,

consider the following Lagrangian dual function obtained from FpRq by dualizing the constraints.

Lpy,xq “
ÿ

iPI
biyi `

ÿ

rPR

˜

cr ´
ÿ

iPI
airyi

¸

xr,

where I :“ N Y K, yi for i P I are the dual variables associated with constraints (1) and (2),

y “ pyiqiPI , and x “ pxrqrPR. For convenience, we define the set Y :“ ty P R|I| : yk ď 0, @k P Ku.

Let FpRq|xj“v be the formulation obtained by adding an additional constraint xj “ v to FpRq, and

z̄˚|xj“v be its optimal value, which is set to `8 in case of infeasibility. Due to LP weak dual-

ity, it follows that maxyPY minxě0,xj“v Lpy,xq ď z̄˚|xj“v. If, for any given dual vector ŷ P Y , we

have minxě0,xj“v Lpŷ,xq ą ub, then it immediately leads to z̄˚|xj“v ě maxyPY minxě0,xj“v Lpy,xq ě

minxě0,xj“v Lpŷ,xq ą ub. Therefore, xj cannot equal v in any optimal solution to FpRq. RCF can

be viewed as a special case of this general technique. Specifically, if minxě0,xj“1Lpy˚,xq ą ub for an

optimal dual solution y˚, then the binary variable xj can be fixed to 0 and thus removed.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 9

3.3. Variable Fixing by Dual Picking

The Lagrangian bound minxě0,xj“1Lpy,xq depends on the dual y used and it reduces to z̄˚ ` c̄j `

minxě0

ř

rPR c̄rxr when y is an optimal dual solution to FpRq, where c̄r “ cr ´
ř

iPI airyi “ cr ´xy,ary

is the corresponding reduced cost of xr, and ar “ pairqiPI . Let Y˚ be the set of optimal dual solutions

to FpRq. In Yang (2023), the author proposes to pick a special point in Y˚ to obtain large reduced

costs, thereby fixing a large number of columns to 0. This involves solving the following LP, denoted

by DF, that maximizes the sum of the reduced costs of all variables. According to the LP duality

theorem, it is equivalent to solving AUX in the primal space (see Section 6.5 of Yang 2023 for details).

pDFq :
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

max
ÿ

rPR

˜

cr ´
ÿ

iPI
airyi

¸

s.t.
ÿ

iPI
airyi ď cr, @r P R,

ÿ

iPI
biyi “ z̄˚,

yi ď 0, @i P K.

pAUXq :

Dual
ùùùùñ

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

min
ÿ

rPR
crpxr ` 1q ` z̄˚w

s.t.
ÿ

rPR
airxr ` biw “ ´

ÿ

rPR
air, @i P N ,

ÿ

rPR
akrxr ` bkw ď ´

ÿ

rPR
akr, @k P K,

xr ě 0, @r P R.

3.3.1. Major Drawbacks The above approach has several drawbacks. First, by design, AUX

searches within the dual optimal face, using a dual solution from Y˚ to update the reduced costs.

However, Y˚ only constitutes a small portion of all feasible dual solutions to FpRq, so the number

of variables that can be removed by solving AUX may be limited. Second, solving AUX, possibly

with different objective coefficients, to obtain multiple dual solutions can lead to more variable

fixings. However, AUX has p|R| ` 1q variables, which can easily top tens of millions for challenging

instances, making AUX time-consuming and memory-intensive to solve, particularly for interior point

methods that are known to outperform the simplex method for large-sized LPs. Consequently, it is

computationally prohibitive to repeatedly solve AUX with varied objective coefficients.

In fact, for each individual r P R, we want to maximize the reduced cost c̄r, which can be achieved

by solving an AUX with c̄r as the objective function. Thus, it requires solving AUX by a total of |R|

times and is computationally intractable. Instead, maximizing the sum
ř

rPR c̄r can be viewed as a

coarse approximation that works reasonably well when the set of |I |-dimensional vectors, t´ar : r P

Ru, have some nice structure. For example, when they are close to the ray generated by y as depicted

in the left subfigure of Figure 1, where y is an extreme point of the polyhedron Y˚, almost all reduced

costs c̄r are maximized at the same extreme point y.

However, this approach can be problematic, particularly when ´ar for r P R are scattered in the

|I |-dimensional Euclidean space. Let o1 :“ 1
|R|

ř

rPRp´arq be the center and r1 :“ maxrPR } ´ ar ´ o1}

be the radius. Maximizing the sum
ř

rPR c̄r essentially maximizes the inner product xy,o1y for y P Y˚,

which is achieved at extreme point y1. However, as shown in the right subfigure of Figure 1, when

Yang: DeLuxing for CG-Based Exact Methods
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

the radius r1 is relatively large, y1 may not be the maximizer for a majority of c̄r. For instance, all

the purple and yellow points are maximized at extreme points y2 and y3, respectively. As a result,

some variables could have been fixed if a better dual solution, such as y2 or y3 in this example, had

been used to compute the reduced costs.

Figure 1 An example illustrating that a direct maximization of the sum of all reduced costs can be problematic,

where o represents the origin, Y˚ represents the feasible region of DF, y, y1, y2, and y3 are extreme

points of Y˚, and the points in green, purple, and yellow represent ´ar for some r P R.

4. The DeLuxing

The proposed DeLuxing aims to overcome the previously mentioned limitations. More specifically,

DeLuxing enables the removal of variables by using LUs computed with dual solutions that are not

necessarily optimal and may even be infeasible, which enlarges the search space substantially. In this

process, a sequence of carefully crafted LPs of much smaller size than the AUX is solved instead

of just solving a single AUX, significantly increasing the chance of an unnecessary variable being

removed. According to our numerical experiments detailed in Section 7, DeLuxing can remove more

than 75% of the columns in most cases, reducing R to a quarter or less of its original size.

4.1. Theoretical Foundations

Constructing small-sized LPs to obtain multiple dual solutions fast is one of the key ideas behind

DeLuxing, which is motivated by the observation that the number of variables with reduced costs no

greater than g
2

only comprises a small proportion (mostly less than 15%) of the elements in R. This

ratio is observed to be even smaller for larger instances. In other words, |Rπ
| is much smaller than

|R|, where π is a given optimal dual solution to FpRq, Rπ :“ tr P R : c̄πr ď g
2
u, and c̄πr “ cr ´ xπ,ary

is the reduced cost of variable xr w.r.t. π. Thus, it is expected that substantial acceleration will be

achieved if the computation can be performed using solely variables xr for r in set Rπ instead of the

whole set R. This is made possible by the following Lemma 1 (Proposition 4 from Yang 2023), which

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

ensures that any optimal solution to FpRq can have pk ´ 1q variables with reduced costs larger than
g
k

taking positive integer values.

Lemma 1 (Proposition 4 in Yang 2023). For any given positive integer k, the inequality
ř

rPRπ
k
xr ď k ´ 1 is valid for FpRq, where Rπ

k :“ tr P R : cπr ą g
k

u.

Evidently, Lemma 1 also reduces to the standard RCF when k “ 1. We consider the case when

k “ 2, and work with the formulation FpRπ
q obtained from FpRq with the set of variables xr for

r P R replaced by r P Rπ. Let Yπ be the set of all feasible dual solutions to FpRπ
q, i.e., Yπ :“ ty P

R|I| :
ř

iPI airyi ď cr, @r P Rπ, yi ď 0, @i P Ku.

Proposition 1. For any given ŷ P Yπ and j P Rπ
2 , if xf j, ŷy ą ub ´ cj is satisfied, where f j “

pbi ´ aijqiPI , then variable xj can be removed from formulation FpRq.

Proof Let F1pRq be the formulation obtained from FpRq by adding the additional constraint
ř

rPRπ
2
xr ď 1. Due to Lemma 1, we know

ř

rPRπ
2
xr ď 1 is valid for FpRq. Therefore, F1pRq can be view

as a relaxation of FpRq. Let z1|xj“1 and z˚|xj“1 be the optimal value of F1pRq and FpRq, respectively,

when xj “ 1 is enforced for a given j P Rπ
2 . Then we have z1|xj“1 ď z˚|xj“1. For convenience, we

define c̄ŷ
r :“ cr ´ xŷ,ary. Note that Rπ

“ RzRπ
2 .

min
xě0,xj“1,

ř

rPRπ
2

xrď1

Lpŷ,xq “ min
xě0,xj“1,

ř

rPRπ
2 ztju xr“0

Lpŷ,xq

“
ÿ

iPI
biŷi ` min

xě0,xj“1,
ř

rPRπ
2 ztju xr“0

ÿ

rPR

˜

cr ´
ÿ

iPI
airŷi

¸

xr

“
ÿ

iPI
biŷi ` c̄ŷ

j ` min
xrě0,@rPRπ

ÿ

rPRπ

c̄ŷ
rxr

ě
ÿ

iPI
biŷi ` c̄ŷ

j “ cj `
ÿ

iPI
pbi ´ aijqŷi “ cj ` xf j, ŷy ą ub

where the inequality is due to c̄ŷ
r ě 0 for r P Rπ, given ŷ is a feasible dual to FpRπ

q. Consequently,

z˚|xj“1 ě z1|xj“1 “ z̄˚|xj“1,
ř

rPRπ
2

xrď1 ě max
yPY

min
xě0,xj“1,

ř

rPRπ
2

xrď1

Lpy,xq ě min
xě0,xj“1,

ř

rPRπ
2

xrď1

Lpŷ,xq ą ub,

where z̄˚|xj“1,
ř

rPRπ
2

xrď1 is the optimal value of FpRq when xj “ 1 and
ř

rPRπ
2
xr ď 1 are enforced,

and the second inequality is due to weak duality. We conclude that any feasible solution to FpRq

with xj equal to 1 must have an objective value larger than ub, and thus xj can be removed from

the formulation, which completes the proof. ■
Remarks: According to Proposition 1, any ŷ P Yπ can be used for removing unnecessary variables,

even if it may be infeasible to the dual of FpRq. It provides an easily verifiable criterion to decide if

a variable xj for j P Rπ
2 can be removed for a given ŷ. Note that vectors f j and values ub ´ cj for

Yang: DeLuxing for CG-Based Exact Methods
12 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

all j P Rπ
2 need to be calculated only once and can be reused throughout the computation. Upon

obtaining a new feasible dual solution ŷ to FpRπ
q, it suffices to compute the inner product xf j, ŷy

and make the comparison. The following Proposition 2 provides a sufficient condition for removing

a variable xj for j P Rπ.

Proposition 2. For any given ŷ P Yπ and j P Rπ, if xf j, ŷy ą ub´cj ´mintηj,0u is satisfied, where

ηj “ min
rPSj

tcr ´ xŷ,aryu and Sj “ tr P Rπ
2 : xr is compatible with xju, then variable xj can be removed

from formulation FpRq.

Proof We use the notation defined in the above proof of Proposition 1. Note that j P Rπ in this

case. Additionally, let Sj “ Rπ
2 zSj . By the definition of Sj , it follows that for any j1 P Sj , xj `xj1 ď 1

is valid for FpRq. Let F2pRq be the formulation obtained from F1pRq by adding the additional

constraints xj ` xj1 ď 1,@j1 P Sj . Let X :“
!

x P R|R|
` :

ř

rPRπ
2
xr ď 1, xj “ 1, xj `xj1 ď 1,@j1 P Sj

)

“
!

x P R|R|
` :

ř

rPRπ
2
xr ď 1, xj “ 1, xj1 “ 0,@j1 P Sj

)

, and X 1 :“ X X tx P R|R|
` : xr “ 0,@r P Rπ, r ‰ ju.

Let z2|xj“1 be the optimal value of F2pRq when xj “ 1 is enforced. Since F2pRq again can be view

as a relaxation of FpRq, we have z2|xj“1 ď z˚|xj“1.

min
xPX

Lpŷ,xq “
ÿ

iPI
biŷi `min

xPX

ÿ

rPR

˜

cr ´
ÿ

iPI
airŷi

¸

xr

ě
ÿ

iPI
biŷi `min

xPX 1

ÿ

rPR
c̄ŷ
rxr

“
ÿ

iPI
biŷi ` c̄ŷ

j ` min
xrě0,@rPRπ

2 ,
ř

rPSj xrď1

ÿ

rPRπ
2

c̄ŷ
rxr

“
ÿ

iPI
biŷi ` c̄ŷ

j `min

"

0,min
rPSj

c̄ŷ
j

*

“ cj ` xf j, ŷy `min

"

0,min
rPSj

c̄ŷ
j

*

ą ub

where the first inequality is again due to the fact that c̄ŷ
r ě 0 for r P Rπ. Finally,

z˚|xj“1 ě z2|xj“1 “ z̄˚|xPX ě max
yPY

min
xPX

Lpy,xq ě min
xPX

Lpŷ,xq ą ub,

where z̄˚|xPX is the optimal value of FpRq when x is restricted to X . Therefore, any feasible solution

to FpRq with xj equal to 1 must have an objective value larger than ub, and thus xj can be removed

from the formulation, which completes the proof. ■
Remarks: Applying Proposition 2 requires identifying variables with index in Rπ

2 that can take a

positive value simultaneously with xj . For VRPs, Sj can be defined as the set tr P Rπ
2 : air ` aij ď

1,@i P N u, which essentially identifies routes in Rπ
2 that do not conflict with the given route j while

ensuring that each customer is visited only once. It is worth mentioning that if additional information,

such as time windows for the CMTVRPTW and battery constraints for EV or drone routing (e.g.,

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

Desaulniers et al. 2016a, Roberti and Ruthmair 2021), is available to tell that a route j1 P Rπ
2 is

incompatible with route j, then it can be removed from Sj . As a result, more variables might be

removed from FpRq because the condition in Proposition 2 becomes easier to satisfy. In addition, the

conflict graph constructed in this process can help solve the FpRq as an IP at the end. To accelerate

each iteration, it is possible to skip computing Sj exactly and set Sj “ Rπ
2 instead, which potentially

leads to fewer variables being removed each time. Since each iteration is faster now, we can afford to

run more iterations and thus find more feasible dual solutions to FpRπ
q for variable fixing.

4.2. Novel LP Formulation for Dual Picking

In this paper, we refer to ℓy
j :“ cj ` xf j,yy as the Lagrangian underestimate of variable xj w.r.t. y

and use the number of variables deemed removable by ℓy “ pℓy
j qjPR as a measure of the quality of

y. Our numerical experiments show that ℓy significantly differs depending on y P Yπ, and thus the

quality of y varies substantially, which aligns with the observation from Sellmann (2004).

4.2.1. High Level Idea Finding a y P Yπ of the best quality is NP-hard in general because

it involves satisfying the maximum number of linear constraints defined in Propositions 1 and 2,

which is equivalent to solving a generalized maximum feasible subsystem problem that is known to

be NP-hard (Amaldi and Kann 1995). Nonetheless, finding a single best-quality y is overkill since we

do not have to be restricted to using a single y for this purpose. In the extreme case, we can solve

maxyPYπ xf j,yy for each j P R to decide individually if xj can be removed, which requires solving

|R| linear programs in total and is polynomial in time complexity. This suggests that we should

use multiple y P Yπ to compute different LUs. Now the question becomes how to efficiently obtain

multiple y from Yπ that yield high-quality LUs.

Based on the discussion in Section 3.3.1, we propose to iteratively identify a subset J of R such

that the vectors f j for j P J are close to each other, and then compute y P Yπ that maximizes

the inner product x
ř

jPJ f j,yy. The intuition is that when the vectors f j for j P J are sufficiently

similar, a solution y maximizing
ř

jPJ xf j,yy is likely to also achieve a close-to-maximum value for

each individual inner product xf j,yy, leading to LUs that can potentially eliminate many variables.

4.2.2. Potential Issue and Fix The unboundedness of Yπ implies that there might exist j P J
such that maxyPYπ xf j,yy goes to `8. In this case, dJ :“ maxyPYπ

ř

jPJ xf j,yy is also unbounded.

By LP strong duality, it is equivalent to the optimization problem LPj being infeasible, where LPj

is defined as minimizing
ř

rPRπ crxr subject to
ř

rPRπ airxr “ f j
i , @i P N ,

ř

rPRπ akrxr ď f j
k , @k P K,

and xr ě 0, @r P Rπ. By the definition of f j , this means no feasible solution can be constructed

using variables from Rπ when xj “ 1, which occurs infrequently in our experiments. A plausible

explanation is that all enumerated variables, particularly those in Rπ, are promising ones due to

Yang: DeLuxing for CG-Based Exact Methods
14 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

their relatively small reduced costs. Therefore, the chance that any j P J Ď R cannot form a feasible
solution along with variables in Rπ is slim.

However, when LPj is indeed infeasible for some j P J , solving maxyPYπ

ř

jPJ xf j,yy by an LP
solver terminates once infeasibility is detected, yielding a possibly low-quality ŷ P Yπ due to the
somewhat arbitrary termination. To address this issue, we only consider bounded Yπ. More precisely,
for i P I , we lower and upper bound yi by ´ub and ub, respectively, and let xYπ :“ Yπ X ty P R|I| :

´ub ď yi ď ub, @i P Iu. Note that for VRPs, lower bounding yi for i P I suffices to make Yπ bounded
since air P t0,1u,@i P N , r P Rπ. Our dual picking thus involves the following LPs.

xDFpRπ,J q : pFpRπ,J q :

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

max
ÿ

jPJ

@

f j,y
D

s.t.
ÿ

iPI
airyi ď cr, @r P Rπ,

yi ě ´ub, @i P I ,

yi ď ub, @i P N ,

yi ď 0, @i P K.

Dual
ùùùùùñ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

min
ÿ

rPRπ

crxr `ub ¨

˜

ÿ

iPI
wi `

ÿ

iPN
vi

¸

s.t.
ÿ

rPRπ

airxr ` vi ´wi “
ÿ

jPJ
f j
i , @i P N ,

ÿ

rPRπ

akrxr ´wi ď
ÿ

jPJ
f j
k , @k P K,

xr ě 0, @r P Rπ,

wi ě 0, @i P I , vi ě 0, @i P N .

We choose to work with pFpRπ,J q instead of xDFpRπ,J q for implementation simplicity and compu-
tational efficiency. First of all, pFpRπ,J q can be modified from FpRq more easily than xDFpRπ,J q

inside a solver. Moreover, the dual simplex method has been empirically demonstrated to be superior
to the primal simplex method (Bixby 2002). State-of-the-art LP solvers, such as Gurobi and CPLEX,
almost always apply the dual simplex method in the default setting when running with a single
thread. We iteratively vary the set J and solve pFpRπ,J q by the dual simplex to obtain an optimal
dual solution ŷ, which is subsequently used to compute LUs and identify the removable variables as
per Propositions 1 and 2. Notably, it suffices to modify the right-hand side of pFpRπ,J q when J is
changed. Furthermore, the revised LP can be solved fast due to the warm-start effect of the dual
simplex method in this case.

4.2.3. Further Discussion Changing Yπ into xYπ narrows the search region, which can poten-
tially deteriorate the quality of ŷ obtained. However, according to our numerical experiments, such a
presumed side effect is negligible. To provide some intuition for this observation, let us consider the
formulation with J “ j, denoted by xDFpRπ, jq, and its dual LP, denoted by pFpRπ, jq, for a given
j P R. Let d̂tju be the optimal value of xDFpRπ, jq. Suppose dtju :“ maxyPYπ xf j,yy ą ub, then there
exists y P Yπ certifying that variable xj can be removed. Let px˚,w˚,v˚q be an optimal solution to
pFpRπ, tjuq. When

ř

iPI w
˚
i `

ř

iPN vi “ 0, we have that x˚ is feasible to LPj , and thus, according to
strong duality, it holds that d̂tju ě dtju ą ub. If

ř

iPI w
˚
i `

ř

iPN vi ě 1, then again, we have d̂tju ą ub

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

when cr ą 0, suggesting that xYπ still contains some elements which can certify that variable xj

is removable. In this sense, changing Yπ to xYπ causes a minimum difference. It is worth noticing

that the above two cases (i.e.,
ř

iPI w
˚
i `

ř

iPN vi ď 0 or
ř

iPI w
˚
i `

ř

iPN vi ě 1) are likely to happen

because, for many problems including VRPs and CRPs, we have f j
i P Z for i P I .

4.3. Overview of DeLuxing

Algorithm 1 outlines the DeLuxing method, which consists of three steps explained in detail in

Section 5. It is controlled by three input hyperparameters: the number of clusters p and two threshold

constants β1 and β2. In Step 1, an optimal dual solution to FpRq is first obtained to compute reduced

costs and initialize the index sets. In Step 2, the index set R is first partitioned into p clusters via

either the k-means++ clustering method (Arthur and Vassilvitskii 2007) or a simple but effective

heuristic approach. In Step 3, a deep search for qualified dual solutions of good quality is performed

using the centroid of each cluster as an initial reference point. This process involves calling the

subroutine Algorithm 2 repeatedly with refined reference points, whose correctness is guaranteed by

Propositions 1 and 2. Finally, Algorithm 1 outputs the index set of all variables certified as removable.

Algorithm 1: The Deep Lagrangian Underestimate Fixing (DeLuxing) Algorithm
Input: The number of clusters p, two threshold constants β1 and β2.

Step 1. Initialization: Solve FpRq and obtain an optimal dual solution π. Set R Ð tr P R : c̄πr ď gu,

R1 Ð tr P R : c̄πr ď g

2
u, R2 Ð RzR1, and H Ð H.

Step 2. Clustering: If |R| ď β1

Apply the k-means++ method to partition R into p clusters, R1, ¨ ¨ ¨ ,Rp.

Else

Apply the ClustByNorm heuristic to partition R into p clusters, R1, ¨ ¨ ¨ ,Rp.

Step 3. Deep Search:

For i = 1 to p

Set rJ Ð Ri
zH.

Do

Call the subroutine with input rJ , R1, R2, and obtain the output D.

Set H Ð HYD, rJ Ð Dz rJ , R1 Ð R1zH, and R2 Ð R2zH.

While |D| ě β2

Set H Ð HYD.

End

Output: The index set H.

Yang: DeLuxing for CG-Based Exact Methods
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Algorithm 2: The Subroutine in DeLuxing
Input: Three index sets rJ , R1, and R2.

Substep 1. Solve pFpR1, rJ q and obtain an optimal dual solution ŷ.

Substep 2. Compute D Ð tj P R2 : xf j , ŷy ą ub´ cju Y tj P R1 : xf j , ŷy ą ub´ cj ´mintηj ,0uu, where

ηj “ min
rPSj

tcr ´ xŷ,aryu and Sj “ tr P R2 : xr is compatible with xju.

Output: The index set D.

5. Elaboration on Every Step of DeLuxing

5.1. Step 1: Initialization

In this step, we first solve the linear program FpRq to obtain an optimal dual solution π. Then

π is used to initialize two index sets R1 and R2, which keep track of the columns with reduced

cost no larger than half of the current gap g and those within p g
2
, gs w.r.t. π, respectively. It is

worth noting that the dual solution used to enumerate R, referred to as π̃, can also be used for

this purpose. However, we compute a new π because it updates the reduced costs and can help

to remove some variables. We observe in our numerical experiments that, on average, about 10%

of the enumerated variables can be certified to be removable using the updated reduced costs, i.e.,

|tr P R : c̄πr ą gu| « 10%ˆ |R|. To improve computational efficiency, when the cardinality of R is in

the millions or higher, we skip solving FpRq and directly set π “ π̃ to initialize R1 and R2.

5.2. Step 2: Clustering

We maximize the inner product x
ř

jPJ f j,yy “ |J |x̄f ,yy in the hope that the resulting y achieves

close-to-optimal value for each individual xf j,yy, where f̄ “ 1
|J |

ř

jPJ , f j . Using the Cauchy-Schwarz

inequality, we can derive |xf j,yy ´ x̄f ,yy| ď }f j ´ f̄ }}y}, which suggests we are likely to achieve our

goal as long as }f j ´ f̄ } is small. This naturally leads us to the well-known k-means clustering problem

that seeks to partition n observations tu1,u2, ¨ ¨ ¨ ,unu in d dimension into k clusters C1,C2, ¨ ¨ ¨ ,Ck

to minimize the within-cluster sum of squares, defined as
řk

i“1

ř

uPCi
}u´µi}2, where µi is the mean

(also called centroid) of points in the i-th cluster Ci.

While finding the optimal solution to the k-means clustering problem in d dimension is NP-hard

even for two clusters (Aloise et al. 2009), many effective heuristics are available such as the Lloyd’s

algorithm (Lloyd 1982), refinement with Bradley and Fayyad’s initialization (Bradley and Fayyad

1998), and the k-means++ (Arthur and Vassilvitskii 2007). Since k-means++ is known for its generally

good performance (Celebi et al. 2013) and easy implementation, it has been used as the default

method for determining initial cluster centroid positions in the “kmeans” function of Matlab. We

also choose to use it in our C++ implementation.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

We observe in our experiments that clustering vectors t̂f jujPR instead of tf jujPR significantly

improves the speed while yielding clusters that achieves nearly the same or sometimes even better

overall performance for Algorithm 1. Here, f̂ j :“ pf j
i qiPN is a subvector of f j that includes only the

dimensions in N . A possible explanation for this observation is that when two columns j1, j2 P R
have similar coefficients aij1 and aij2 for i P N , it is likely that aij1 and aij2 are also close for i P K
since they correspond to coefficients of cutting planes. As a result, f̂ j serves as a good representation

of f j for the purpose of clustering. In our implementation, we cluster t̂f jujPR. However, readers are

encouraged to explore alternative options that may be more suitable for their specific problems.

5.2.1. The ClustByNorm Heuristic Although we can easily parallelize the computation

using OpenMP (a library for parallel programming that supports C, C++, and Fortran) to achieve

significant acceleration, the clustering process can still be time-consuming when the size of R is in

the millions. In such cases, we propose to use a simple but surprisingly effective heuristic, which

we call ClustByNorm, to perform the clustering in place of the k-means++ method. It starts with

computing the l2 norm of each vector }f j} for j P R and sorts them in non-increasing order. Then, we

partition the sorted list into p clusters, each containing roughly q “ t|R|{pu vectors. Specifically, we

assign the pk´1q ˚ q`1 to pk ˚ qq-th vectors in the sorted list to the k-th cluster for k “ 1, ¨ ¨ ¨ , p´1,

and the remaining vectors to the p-th cluster. Although ClustByNorm is slightly less effective than

the k-means++ method in terms of the resulting DeLuxing’s capability to remove columns, it leads

to significant speedup when |R| is large. We provide a detailed comparison of the performance of

k-means++ and ClustByNorm in Section 7.1. By default, we use the k-means++ method for clustering

and switch to ClustByNorm when |R| exceeds a threshold constant β1.

5.3. Step 3: Deep Search

For each cluster i, we first update it by rJ Ð Ri
zI to exclude those identified as removable. Then its

centroid µ :“ 1

| rJ |

ř

jP rJ f j is used as a reference point to start the search. Specifically, we try to find a y

that maximizes xµ,yy, which is accomplished by solving pFpR1, rJ q using the subroutine Algorithm 2.

It returns the index set of removable variables D with the given input. However, bundling elements in

a cluster according to this one-time clustering may not achieve the most desirable result. One reason

is that the conditions in Propositions 1 and 2 aim to satisfy inequalities, whereas the clustering only

concerns part of the inequalities, i.e., it tries to maximize the inner product on the left-hand side.

Adding one extra dimension with a value of cj to each vector f j and clustering the updated vectors

do not provide noticeable improvements, indicating the difficulty of incorporating information from

the right-hand side. Moreover, the k-means++ method or the ClustByNorm is not perfect and is not

likely to yield the best clusters.

Yang: DeLuxing for CG-Based Exact Methods
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The proposed deep search tries to address this concern. Essentially, it iteratively builds an artificial

cluster by utilizing the most recently identified set D excluding rJ (i.e., those that were used as

input to Algorithm 2 to generate this D). To the best of our knowledge, this idea is new in the

literature. The rationale behind this approach is that the elements in a set D correspond to variables

deemed removable by a common dual solution, which implicitly considers the whole inequalities and

captures hidden similarities that might have been missed by the initial clustering. We remove rJ
from D because its information has already been used to generate D and is likely to be redundant

and can adversely impact the next iteration. Multiple high-quality dual solutions are effectively

picked in the do-while loop, and the total computational effort can be easily controlled by the input

threshold constant β2. Specifically, the total number of calls to the subroutine is upper bounded by

pp` r|R|{β2sq because, by design, all the index sets D produced are non-overlapping.

6. Extensions

In this section, we expand upon the fundamental concept underlying DeLuxing to a broader range

of contexts. Firstly, based on this concept, we prove that many integer variables can be relaxed into

continuous ones in the IP solved to close a BBN, resulting in significant acceleration. Additionally,

we demonstrate the concept can also be applied to enhance cutting plane addition. Furthermore,

we propose an effective primal heuristic in which DeLuxing plays a crucial role. The effectiveness of

these extensions is demonstrated individually using instances of the CMTVRPTW in Section 7.2.

6.1. Variable Relaxation

Solving FpRq as an IP by a solver is a convenient and effective way to close a BBN. The computational

difficulty of FpRq relies heavily on the number of integer variables, and it usually takes many rounds of

branching and cutting plane addition before reducing the size of R to a manageable level (e.g., Pessoa

et al. 2020 requires |R| ď 10,000). Relaxing the integer requirement for a large portion of variables

is expected to bring substantial acceleration. If such relaxation is allowed, FpRq can be solved as a

MIP at a much earlier stage in the BPC method, saving a considerable amount of computational

effort on branching and adding cutting planes to reduce the size of R. The following Proposition 3

indicates that in some cases, we can relax xr for r P Rπ
2 in FpRq as continuous variables without

compromising optimality. Let qFpRq be the formulation obtained by relaxing variables xr for r P Rπ
2

in FpRq to be continuous and adding the constraint
ř

rPRπ
2
xr ď 1. Let P Ă R|R|

` be the polyhedron

corresponding to the feasible region of qFpRq, E Ă P be the set of extreme points of P , and X ˚ Ă P
be the set of optimal solutions to qFpRq.

Proposition 3. If in FpRq, air P t0,1u and bi P Z @i P N , r P R, then it follows that X ˚ XE Ă Z|R|
` .

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

Proof Let us consider any x̄ P X ˚ X E . It holds that x̄r P Z` for r P Rπ due to the integer
requirement in qFpRq. With the coefficients air P t0,1u and bi P Z for all i P N and r P R, it follows
that

ř

rPRπ airx̄r P Z @i P N . Let ui :“
ř

rPRπ
2
airx̄r. Consequently, ui “ bi ´

ř

rPRπ airx̄r is integral
for all i P N . For r P Rπ

2 , x̄r is non-negative, thus ui P Z`. Additionally, the constraint
ř

rPRπ
2
xr ď 1

in qFpRq implies
ř

rPRπ
2
x̄r ď 1. Let Q :“ tr P Rπ

2 : 0 ă x̄r ă 1u. If Q is an empty set, no further proof
is needed. Let N r :“ ti P N : air “ 1u for r P Q and ĂN :“ YrPQN r.

We claim that if Q ‰ H, then N r1 “ N r2 @r1, r2 P Q . The claim is proved by contradiction.
First, Q ‰ H and

ř

rPRπ
2
x̄r ď 1 imply there does not exist r P Rπ

2 such that x̄r ě 1. Thus, we have
xr “ 0 @r P Rπ

2 zQ. Suppose there exist r1, r2 P Q such that N r1 ‰ N r2 . As a result, there exist k P ĂN ,
r1, r2 P Q such that k P N r1 and k R N r2 . Therefore, we have 0 ă xr1 ď

ř

rPRπ
2
akrx̄r “

ř

rPQ akrx̄r ă
ř

rPQ x̄r “
ř

rPRπ
2
x̄r ď 1. This implies uk P p0,1q, which contradicts the fact that uk is an integer and

thus proves the claim. Next we will show that if Q ‰ H then x̄ R E .
Note that Q cannot be a singleton because if Q “ tru, then 0 ă

ř

rPRπ
2
airx̄r “ x̄r ă 1 for i P N r,

which again contradicts the fact that ui is integral. Consider any two distinct r1, r2 P Q. According
to the claim, we have N r1 “ N r2 , i.e., air1 “ air2 for all i P N . Let x̃1

“ px̃1
rqrPR and x̃2

“ px̃2
rqrPR

be set to x̃1
r “ x̃2

r “ x̄r for r P Rztr1, r2u and x̃1
r1

“ x̄r1 ´ ϵ, x̃1
r2

“ x̄r2 ` ϵ, x̃2
r1

“ x̄r1 ` ϵ, and x̃2
r2

“

x̄r2 ´ ϵ, where ϵ ą 0 is small enough to ensure x̃1
r1

and x̃2
r2

are non-negative. Then
ř

rPR airx̄r “
ř

rPR airx̃
1
r “

ř

rPR airx̃
2
r and thus x̃1 and x̃2 are feasible solutions to qFpRq. Furthermore, it follows

that x̄ “ px̃1
` x̃2

q{2, suggesting that x̄ is not an extreme point of P , i.e., x̄ R E .
Therefore, the set Q has to be empty when x̄ P E . The fact that

ř

rPRπ
2
xr ď 1 guarantees that

0 ď xr ď 1. Consequently, all the elements of x̄ take an integer value, which completes the proof. ■
Remarks: Proposition 3 guarantees that when the constraint coefficients air are binaries and bi

are integers, any optimal solution to qFpRq is also integral as long as it is an extreme point of
the underlying polyhedron. For set partitioning formulations of VRPs and CRPs, the coefficients
air P t0,1u and bi “ 1 for all i P N and r P R, and thus the conditions are satisfied. However, it should
be noted that when there exist two distinct r1, r2 P R such that cr1 “ cr2 and air1 “ air2 @i P N , it
is possible for qFpRq to have an optimal solution that is not integral. This means there could be two
identical columns that cannot be deleted due to the absence of certain feasibility requirements in
the formulation, which is added as lazy cuts during the solution process. For the standard CVRP
and VRPTW, this does not occur because there are no missing feasibility requirements in their
formulations. In the case of CMTVRPTW, where the superstructure feasibility constraints (Yang
2023) are initially absent and are added dynamically using a callback function, such a scenario can
happen. Nonetheless, as long as the solver returns an optimal solution that represents an extreme
point of P , the proposed relaxation in proposition 3 can still be applied without sacrificing optimality.
Note that modern MIP solvers may yield an optimal solution that is not necessarily an extreme

Yang: DeLuxing for CG-Based Exact Methods
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

point via some primal heuristics. In this case, a callback function that cuts off such solutions by lazy
constraints (so-called no-good cuts, Hooker et al. 1999) can be used to guarantee correctness.

The proposed relaxation can be performed even more aggressively with the help of a simple search
and some lazy constraints to ensure optimality and integrality. Let rFpRq be the formulation obtained
by relaxing variables xr for r P Rπ

3 in the original formulation FpRq to be continuous and adding
the constraints

ř

rPRπ
2
xr ď 1 and

ř

rPRπ
3
xr ď 2. We solve rFpRq by a MIP solver with the callback

function presented in Algorithm 3 that adds lazy constraints.
To ease the presentation, given a feasible solution x̄ to rFpRq, we define Rf :“ tr P Rπ

3 : x̄r ą 0u,
Rt :“ tr P RzRπ

3 : x̄r ą 0u, c̃ :“
ř

rPRt crx̄r, and b̃ :“ pb̃iqiPN , where b̃i “ bi ´
ř

rPRt airx̄r. The
callback function is triggered whenever such a feasible solution x̄ is identified. It first examines
whether all x̄r values for r P Rπ

3 are integers. If they are, no further action is required, and the
callback function terminates, returning control to the solver. If any x̄r for r P Rπ

3 is not an integer,
the callback function proceeds by searching for a feasible solution better than the one achieving the
current upper bound (known as the incumbent). Specifically, it checks whether any two columns
r1 ‰ r2 and r1, r2 P Rf , together with columns with indices in Rt that have been selected an integral
number of times in x̄, can form a superior feasible solution. This search can be conducted in a
brute-force fashion, as we only need to consider |Rf |2 combinations. Notably, the size of Rf is small,
typically less than a few dozen. After the search, a lazy constraint

ř

rPRf YRt xr ď |Rt| ` 1 is added
and the callback terminates.

Algorithm 3: The Callback Function
Input: A feasible solution x̄ to rFpRq and current upper bound z̃

if Dr P Rπ
3 such that x̄r P R`zZ` then

Step 1. Search for r1, r2 P Rf , r1 ‰ r2 with the smallest cr1 ` cr2 such that ar1 ` ar2 “ b̃

and cr1 ` cr2 ă z̃ ´ c̃. If one is found, update the incumbent solution to x̃ by Equation (3).

Step 2. Add a lazy constraint
ř

rPRf YRt xr ď |Rt| ` 1.

x̃ :“ px̃rqrPR, where x̃r “

#

1, if r P Rt Y tr1, r2u,

0, otherwise.
(3)

The following Proposition 4 guarantees that under some mild conditions, we can obtain an optimal
solution to FpRq by solving rFpRq with the proposed callback function in Algorithm 3.

Proposition 4. Suppose in FpRq, all variables xr for r P R are required to be binary, air P t0,1u,
and bi P Z @i P N , r P R. Solving rFpRq by a MIP solver that is equipped with the callback function
described in Algorithm 3 and can find an optimal solution corresponding to an extreme point of the
polyhedron (i.e., the feasible region of rFpRq) guarantees to find an optimal solution to FpRq.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

Proof If all x̄r values for r P Rπ
3 are integers, then x̄ is feasible to FpRq. We only need to consider

the case that there exists x̄r taking a fractional value for some r P Rπ
3 . Since

ř

rPRf xr ď
ř

rPRπ
3
xr ď

2 and xr P t0,1u for r P Rt Ď R, we have
ř

rPRf YRt xr “
ř

rPRt xr `
ř

rPRf xr ď |Rt| ` 2. Since
ř

rPRf YRt xr P Z`, the lazy constraint
ř

rPRf YRt xr ď |Rt|`1 will eliminate part of the feasible region
with

ř

rPRf YRt xr “ |Rt| ` 2. We claim that if an optimal solution exists in this eliminated part, it
can be found, and thus optimality can still be guaranteed.

Note that
ř

rPRf YRt xr “ |Rt| ` 2 implies xr “ 1 for all r P Rt and
ř

rPRf xr “ 2. Thus, we only
need to search for all r1, r2 P Rf and r1 ‰ r2, which, when combined with columns indexed by r P Rt,
can form a superior feasible solution to the current incumbent solution. As shown in Algorithm 3, the
callback function searches all such qualified pairs of columns and picks the best one, which completes
the claim. It remains to show that integrality is also guaranteed.

It suffices to show the lazy constraints added by the callback can prevent any fractional solution
from being considered feasible. We only need to consider fractional solutions x̄ with

ř

rPRf x̄r ď 1.
By a similar argument to that provided in the above proof of Proposition 3, we can show that such
x̄ cannot be an extreme point of the corresponding polyhedron, which completes the proof. ■

6.2. A New Way of Cutting Plane Addition

Cutting planes play a key role in modern branch-and-cut and BPC methods, which iteratively improve
the dual bound and thus close the optimality gap. After obtaining an optimal solution to the current
LP relaxation, cut separators are employed to identify violated valid inequalities. These inequalities
can cut off the current fractional (infeasible) LP solution and are then incorporated as constraints
in the LP. This process continues until some termination criteria are met.

For BPC methods, solving each LP after each round of cut addition requires repeated CG. When
an enumerated pool is available, CG can be performed through inspection, which is much more
efficient compared to a labeling algorithm. Nevertheless, this process can still be time-consuming
when a considerable number of columns and cuts are added to the LP. Inspired by DeLuxing, we
propose to include columns with reduced costs not exceeding half of the gap when the enumeration is
successfully performed. In other words, we work with the formulation FpRπ

q and iteratively generate
cuts to tighten it without adding any more columns from the pool.

This approach offers two advantages. First, since Rπ is relatively small compared to R, we can
avoid solving large LPs when CG adds an excessive number of columns. Second, we can directly apply
Propositions 1 and 2 to remove columns whenever we obtain a new dual solution. We acknowledge
that using only columns with indices in Rπ may result in LP values that are not the most accurate,
potentially affecting the lower bound and the cuts added. However, our numerical experiments suggest
that adding cuts in this manner yields comparable bounds when we add all remaining columns from
the pool back into the formulation at termination.

Yang: DeLuxing for CG-Based Exact Methods
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

6.3. An Effective Primal Heuristic

Using a solver to solve the current RMP as an IP serves as a commonly employed primal heuristic

within the BPC framework. The success of this approach is closely tied to the number of columns

present in the RMP. An excessive number of columns can result in long computation times, whereas

too few columns may produce feasible solutions of poor quality or result in infeasibility. To tackle

this challenge, a straightforward approach is to only keep in the IP the smallest β̂ columns in terms

of reduced costs, where β̂ is a constant. This approach does not yield satisfactory results in practice.

We propose to perform a trial enumeration with a small tentative gap and subsequently apply

DeLuxing to remove unnecessary columns from the enumerated pool. Finally, we solve an IP using

the columns remaining in the pool. In case the pool still contains more than β̂ columns, we can keep

the smallest β̂ ones based on their reduced costs.

This simple heuristic has proven highly effective. One of the main factors contributing to its success

is that some columns essential for constructing high-quality feasible solutions might be absent in the

current RMP but can be generated through the trial enumeration. DeLuxing plays a crucial role in

this heuristic, as the trial enumeration can still produce a large number of columns. Nonetheless,

a direct screening based solely on reduced costs, as described in the previous paragraph, performs

badly. DeLuxing can often reduce the size of the column pool to be much smaller than β̂ while

ensuring that necessary columns are retained in the pool.

7. Numerical Results

In this section, we present an extensive numerical study comprising four sets of experiments with a

total computational time exceeding 27 days. The first set aims to show the effectiveness of the key

components of DeLuxing in removing columns. In the second set, we individually evaluate the effec-

tiveness of DeLuxing and each extension introduced in Section 6 using CMTVRPTW instances. The

third set compares our default method (with DeLuxing and the three extensions enabled) with the

state-of-the-art algorithms on the CMTVRPTW and its two important variants, the CMTVRPTW

with loading times (CMTVRPTW-LT; Hernandez et al. 2016) and CMTVRPTW with release dates

(CMTVRPTW-R; Cattaruzza et al. 2016). We exclude the other two variants, the CMTVRPTW

with limited trip duration (CMTVRPTW-LD) and the drone routing problem (DRP) considered in

Yang (2023) as the difficulty of solving them does not stem from generating excessive variables in

the solution process. In fact, the number of routes generated in solving the CMTVRPTW-LD and

DRP instances is relatively small (mostly several thousand for the CMTVRPTW-LD and tens of

thousands for the DRP) according to Tables EC.8 and EC.10 in Yang (2023). The last set of exper-

iments seeks to further demonstrate the potential of the proposed approach by solving significantly

larger instances, with sizes twice as large as the largest ones currently documented in the literature.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

For the CMTVRPTW, we consider two datasets, totaling 171 instances. The first set comprises 81

instances described in Section 7.4.1. of Yang (2023), which are derived from the 27 type 2 Solomon

instances. For each instance, we consider three cases: the first 70, 80, and all 100 customers. The

second set consists of 90 large instances derived from the 30 instances (C2, R2, and RC2) in the G02

group (see Homberger and Gehring 2005). For each instance, we use the first 140, 170, and all 200

customers. The numbers of vehicles are set to 6, 7, 8, 12, 16, and 20 for instances with 70, 80, 100, 140,

170, and 200 customers, respectively, and the vehicle capacity is set to 100 for all the instances. For

the CMTVRPTW-LT, we use the same 171 instances as the CMTVRPTW with the same parameters.

The loading time of each customer is set to 20% of its service time following the procedure in

Hernandez et al. (2016). For the CMTVRPTW-R, we use a total of 513 instances: 243 instances from

Section 7.4.4. of Yang (2023) generated from the 81 CMTVRPTW instances via the procedure in

Cattaruzza et al. (2016) with κ P t0.25,0.5,0.75u, and an additional 270 instances generated from

the 90 large CMTVRPTW instances using the same procedure. The number of vehicles and vehicle

capacity are set to the same as those of the corresponding CMTVRPTW instances.

All experiments are conducted on a workstation running Ubuntu 20.04 equipped with an Intel(R)

Core(TM) i9-12900K CPU @ 3.90GHz and 128GB of RAM. The code is implemented in C++ language

and compiled by g++ 9.4.0. Gurobi 9.1.1 is used as an LP and IP solver. All LPs are solved in the single-

thread mode, and 8 threads are used to solve all IPs (MIPs). The k-means++ method is run parallelly

with all available threads. The time limit for each instance is set to 3 hours. The compiled C++ library

and all the test instances are made publicly available at https://github.com/Yu1423/DeLuxing.

7.1. Effectiveness of the Key Components of DeLuxing

In this section, we aim to demonstrate the effectiveness of the key components of DeLuxing. The

Benchmark is Algorithm 1 with β1 “ 500,000 and β2 “ 50. We consider the following four variants,

where the parameters β1 and β2 are set to the same values as Benchmark unless otherwise specified.

1. FullForm: This variant modifies Substep 1 of Algorithm 2 to solve the full formulation pFpR, rJ q

instead of our formulation pFpR1, rJ q enabled by the proposed Propositions 1 and 2.

2. ClustByNorm: This variant sets β1 to 0 and thus always applies the proposed ClustByNorm

heuristic for the initial clustering.

3. Random: This variant randomly partitions R into p clusters of equal size.

4. NoDeepSearch: This variant sets β2 to `8 to skip the proposed deep search.

We compare the performance of these five methods on the column pools enumerated in the pro-

cess of solving the CMTVRPTW instances. The advantages of the new formulation enabled by

Propositions 1 and 2 can be demonstrated through a comparison of Benchmark and FullForm. The

effectiveness of the straightforward heuristic approach, ClustByNorm, will be shown by comparing

https://github.com/Yu1423/DeLuxing

Yang: DeLuxing for CG-Based Exact Methods
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

it with Benchmark and Random. Lastly, the benefits of the proposed deep search can be observed
by comparing Benchmark with NoDeepSearch. The following information is included: the number
of customers n, the average percentage of columns removed, and the average computing time (in
seconds; CPU). Each average value is taken over all instances of the same size.

84.6%

89.6%

82.3%

78.1%

80.4%81.5%

87.3%

78.9%

76.3%
78.0%

79.9%

84.7%

74.5%
73.0% 73.5%72.0%

74.0%
76.0%
78.0%
80.0%
82.0%
84.0%
86.0%
88.0%
90.0%

Benchmark FullForm ClustByNorm Random NoDeepSearch

Percentage of Columns Removed
n=70 n=80 n=100

9.1

118.5

5.4

4.2

5.2

11.6

180.7

6.9

5.4

6.7

42.2

831.7

32.3

23.0

14.1

0.0 200.0 400.0 600.0 800.0

Benchmark

FullForm

ClustByNorm

Random

NoDeepSearch

CPU (s)

n=70 n=80 n=100

80.7%
83.1%

78.9%

74.4%

69.6%

76.2%
78.3%

74.5%

69.8%

59.8%

71.7%
74.1%

69.8%

64.9%

56.4%55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

Benchmark FullForm ClustByNorm Random NoDeepSearch

Percentage of Columns Removed
n=140 n=170 n=200

151.2

2320.2

132.3

97.1

35.9

736.1

4813.6

711.3

401.9

67.4

993.3

4830.1

997.0

592.0

96.3

0.0 1000.0 2000.0 3000.0 4000.0 5000.0

Benchmark

FullForm

ClustByNorm

Random

NoDeepSearch

CPU (s)

n=140 n=170 n=200

Figure 2 Comparison on the percentage of columns removed and the computing time (in seconds) for the

CMTVRPTW. Each number is the average value taken over instances of the same size.

Figure 2 illustrates the performance comparison among different variants. Benchmark outperforms
all other variants except FullForm, in terms of the percentage of columns removed. This superiority
becomes more pronounced when dealing with larger instances, where the number of customers is
higher and the challenges are greater. It is important to note that even a 1% increase in the removal
percentage translates to thousands of additional variables being eliminated, considering the average
pool size of over 100,000 columns. Such extra reductions in variables drastically impact the overall
algorithmic performance. While Benchmark may not remove as many columns as FullForm, it man-
ages to reduce the computational time to less than one-tenth that of FullForm for instances with 140
or fewer customers. Such CPU reductions are crucial for the success of DeLuxing and highlight the
significance of the new formulation. It is worth mentioning that FullForm hits the 3-hour time limit
for most 170- and 200-customer R and RC instances, which is the reason why the CPU differences
between Benchmark and FullForm are less significant.

Comparing ClustByNorm with Random and Benchmark, we conclude that ClustByNorm is effec-
tive, exhibiting much better performance than random initial clustering, albeit slightly inferior to

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 25

Benchmark. Furthermore, the computational overhead associated with ClustByNorm is smaller than

Benchmark. The importance of the proposed deep search is evident when comparing Benchmark with

NoDeepSearch. Notably, for large instances, i.e., those with 140 or more customers, the proposed

deep search substantially increases the percentage of columns removed.

7.2. Effectiveness of DeLuxing and Three Extensions

We demonstrate the isolated effectiveness of DeLuxing and the three inspired extensions described

in Section 6. Our baseline method, denoted by Default, is an implementation of the exact price-

cut-and-enumerate method from Yang (2023) with DeLuxing and the three extensions incorporated.

We disable each component separately on top of Default each time, and the resulting settings are

denoted by NoDeluxing, NoVarRelax, OldCutAdd, and NoPrimalHeu, respectively. We report the

number of customers (n), the number of instances of this size (#Inst), the number of instances solved

to optimality (Solved), and the average optimality gap ub´lb
ub

ˆ 100% at termination (Gap%). The

Gap is averaged over instances that cannot be solved optimally within the time limit.

According to Table 1 and Figure 3, Default solves significantly more instances than NoDeLuxing

and NoPrimalHeu while being 32%, 17%, 62%, 53%, 16%, and 20% faster than NoDeLuxing, and

52%, 67%, 89%, 71%, 27%, and 40% faster than NoPrimalHeu, respectively, for instances of sizes 70

to 200. These results confirm the high effectiveness of DeLuxing in accelerating the algorithm and

its essential contribution to solving challenging instances. Furthermore, the inclusion of the primal

heuristic, in which DeLuxing plays a pivotal role, significantly enhances the algorithm’s capability

to solve large instances by providing tight upper bounds at an early stage. Although the variable

relaxation and the new approach for cutting plane addition may have limited effectiveness for small-

sized instances, they prove to be valuable in achieving optimality faster for larger instances. In

particular, Default outperforms NoVarRelax by solving two more instances, and is 12% faster for

100-customer instances. While Default and OldCutAdd solve the same total number of instances,

Default surpasses OldCutAdd by being 20% faster for instances of size 140.

Table 1 Summary of the results for the CMTVRPTW.

n #Inst Default NoDeLuxing NoVarRelax OldCutAdd NoPrimalHeu
Solved Gap% Solved Gap% Solved Gap% Solved Gap% Solved Gap%

70 27 27 0.0 27 0.0 27 0.0 27 0.0 27 0.0
80 27 27 0.0 27 0.0 27 0.0 27 0.0 27 0.0
100 27 27 0.0 27 0.0 27 0.0 27 0.0 23 2.6
140 30 29 0.1 27 0.4 30 0.0 30 0.0 21 2.2
170 30 22 0.5 18 0.4 21 0.5 22 0.5 15 1.6
200 30 22 0.4 17 0.5 20 0.3 21 0.4 12 1.4

Yang: DeLuxing for CG-Based Exact Methods
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

n=70

n=80

n=100

n=140

n=170

n=200

Default

NoDeLuxing

NoVarRelax

OldCutAdd

NoPrimalHeu

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

n=70

n=80

n=100

n=140

n=170

n=200

Default

NoDeLuxing

NoVarRelax

OldCutAdd

NoPrimalHeu

Figure 3 Comparison on CPU. Each number is the average value taken over instances of the same size.

7.3. Comparison with State-of-the-Art Algorithms

In this section, we compare our Default with three state-of-the-art algorithms: Yang (2023), Roboredo

et al. (2023), and Zhang et al. (2022). It is worth mentioning that our hardware is better than others.

To ensure a fair comparison, we scale the computational times of the other three methods based on

their CPU frequencies. More precisely, the CPU frequencies reported in Yang (2023), Roboredo et al.

(2023), and Zhang et al. (2022) are 3.7GHz, 3.6GHz, and 2.9GHz, respectively, which necessitates

dividing their reported times by a factor of 1.05, 1.08, and 1.34.

In Tables 2 to 4, we report the values of n, #Inst, Solved, Gap, and the computational time in

seconds (CPU). Detailed results for each instance are reported in Tables EC.2 to EC.4 in Section

EC.2 of the e-companion. The CPU values presented in Tables 2 to 4 are averaged over all instances

of the same size and are scaled values for the three benchmark methods. If an instance cannot be

solved to optimality within the 3-hour time limit, its CPU value is recorded as 10,800 even though

it may be terminated early due to insufficient memory. Note that Zhang et al. (2022) only reporters

results for instances of sizes 80 and 100. Moreover, Roboredo et al. (2023) did not experiment with the

two variants considered in this paper and did not report the optimality gap at termination. Roboredo

et al. (2023) reported results for two settings, i.e., with or without initial ub. For consistency with

other methods, we use the setting without ub in Table 2.

7.3.1. Comparison on the CMTVRPTW As shown in Table 2, our method can solve all 81

CMTVRPTW instances optimally while being, on average, more than 10 and 7 times, respectively,

as fast as Zhang et al. (2022) for instances of sizes 70 and 100. In contrast, Yang (2023) and Roboredo

et al. (2023) can only solve 65 and 55, respectively, out of the 81 instances to optimality and both of

them are more than 20 times slower than our method.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

Table 2 Comparison on the CMTVRPTW.

n #Inst This Paper (Default) Yang (2023) Roboredo et al. (2023) Zhang et al. (2022)
Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU

70 27 27 0.0 26.7 27 0.0 1230.3 22 — 3443.6 27 0.0 343.9
80 27 27 0.0 49.6 24 1.0 2197.5 18 — 4446.9 — — —
100 27 27 0.0 240.5 14 1.3 7122.5 11 — 6357.9 27 0.0 1686.4

7.3.2. Comparison on the CMTVRPTW-LT According to Table 3, our method consistently

outperforms all the benchmark algorithms substantially on the CMTVRPTW-LT. Specifically, it

can solve all 81 instances optimally, with computational speeds more than 10 times for 70-customer

instances and over 5 times for 100-customer instances as fast as those of Zhang et al. (2022). In

contrast, Yang (2023) only solves 64 of the 81 instances optimally, and it once again takes over 20

times more time than our method.

Table 3 Comparison on the CMTVRPTW-LT.

n #Inst This Paper (Default) Yang (2023) Zhang et al. (2022)
Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU

70 27 27 0.0 27.4 27 0.0 1497.0 27 0.0 329.7
80 27 27 0.0 48.4 24 1.1 2558.2 — — —
100 27 27 0.0 362.3 13 1.2 7201.4 27 0.0 1868.4

7.3.3. Comparison on the CMTVRPTW-R Table 4 summarizes the results for 243

CMTVRPTW-R instances. Our method can solve all but one instance optimally and achieves an

optimality gap of 0.3% for the only unsolved instance. In terms of computational speed, our method

is, once again, significantly faster than Zhang et al. (2022) and Yang (2023).

Table 4 Comparison on the CMTVRPTW-R.

n κ #Inst This Paper (Default) Yang (2023) Zhang et al. (2022)
Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU

70 0.25 27 27 0.0 23.2 27 0.0 251.9 27 0.0 190.8
70 0.50 27 27 0.0 13.8 27 0.0 190.2 27 0.0 164.8
70 0.75 27 27 0.0 24.9 26 0.6 490.6 27 0.0 156.5
80 0.25 27 27 0.0 17.9 27 0.0 1055.8 — — —
80 0.50 27 27 0.0 26.4 27 0.0 433.7 — — —
80 0.75 27 27 0.0 50.0 27 0.0 542.7 — — —
100 0.25 27 27 0.0 196.8 23 2.0 3534.8 27 0.0 771.6
100 0.50 27 26 0.3 583.5 23 1.4 3140.9 27 0.0 743.4
100 0.75 27 27 0.0 182.7 21 1.6 3288.0 27 0.0 536.5

7.4. Computational Results for Large Instances

In this section, we test Default on significantly larger instances with sizes twice as large as the largest

ones currently documented in the literature, which are exponentially more difficult to solve. For the

CMTVRPTW and CMTVRPTW-LT, the CPU of an instance whose optimality cannot be proved

within the 3-hour time limit is again counted as 10,800, and the values of Gap and CPU are averaged

over all instances. However, for some CMTVRPTW-R instances, no feasible solution can be found

Yang: DeLuxing for CG-Based Exact Methods
28 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

at termination. Such instances (3, 2, and 9 instances of sizes 140, 170, and 200, respectively; 15 in

total) are excluded from the computation of Gap and CPU values. Table 5 summarizes the results

and more details can be found in Tables EC.2 to EC.4 in Section EC.2 of the e-companion.

Table 5 Computational results for large instances.

n
CMTVRPTW CMTVRPTW-LT CMTVRPTW-R

#Inst Solved Gap% CPU #Inst Solved Gap% CPU #Inst Solved Gap% CPU
140 30 29 0.1 1254.0 30 28 0.2 1372.5 90 84 1.4 365.9
170 30 22 0.5 4210.7 30 21 0.5 4048.4 90 61 1.1 722.0
200 30 22 0.4 4306.3 30 21 0.5 4649.6 90 47 1.3 930.0

According to Table 5, all but one CMTVRPTW instance of size 140 can be solved within 3

hours, and the optimality of the only unsolved one can be proved within 5 hours. Among the 60

CMTVRPTW instances of sizes 170 and 200, 44 instances can be solved. The average gaps for the

unsolved instances are approximately 0.5% and 0.4%, respectively. Our method achieves very similar

results for the CMTVRPTW-LT: it solves all but two instances of size 140 and proves the optimality

of these two in 5 hours. In addition, 70% of 170- and 200-customer instances can be solved, and the

average gaps of the unsolved ones are 0.5%. For the CMTVRPTW-R, around 93%, 68%, and 52% of

instances of sizes 140, 170, and 200 can be solved. The average gaps of the unsolved instances are all

below 1.5%. The optimality of all solved instances can be proved, on average, in less than 16 minutes.

These results clearly demonstrate that the Default brings our capabilities of solving CMTVRPTW,

CMTVRPTW-LT, and CMTVRPTW-R to an entirely new level.

8. Concluding Remarks

We propose a highly effective variable fixing strategy, called DeLuxing, that employs a novel deep

search method for identifying promising dual solutions. Based on theoretical results, it solves a novel

LP formulation with only a small subset of the enumerated variables in each iteration. DeLuxing

can remove more than 75% variables in most cases, achieving a direct acceleration of over 50%.

Enhanced by the additional three extensions inspired by DeLuxing, our method can be more than

7 times on average and up to more than 20 times as fast as the best-performing exact method

in the literature. In particular, our method can solve all but one CMTVRPTW instance with 140

customers in 3 hours and prove optimality for the remaining one in 5 hours, which doubles the size

of previously completely solvable instances. Significant performance improvement is also achieved for

the two important variants, the CMTVRPTW-LT and CMTVRPTW-R.

Currently, in the subroutine of DeLuxing (Algorithm 2), we employ the dual simplex method to

solve the LP formulation pFpR1, rJ q and obtain each time one optimal dual solution for determining

the set of removable columns D. In future research, it would be beneficial to explore the possibility of

recording all feasible dual solutions encountered during the dual simplex process and utilizing them

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 29

to compute LUs for further variable fixing. Another potential research direction is to investigate the

similarities among columns in an artificial cluster Dz rJ and develop even more effective approaches

to bundle columns for computing qualified dual solutions. In addition, extending the basic princi-

ple underpinning DeLuxing to other contexts such as the pricing algorithm and branching variable

selection can potentially lead to extra acceleration. Finally, establishing theoretical guarantees, in a

probabilistic sense, regarding the performance of DeLuxing under potentially mild assumptions can

also be an interesting research direction.

Acknowledgments
This work is partially supported by National Science Foundation [Grant CMMI-2309667] and Alibaba DAMO

Academy [Grant AGR00022274].

References
Achterberg T (2018) Exploiting degeneracy in MIP. Talk at Aussois 22nd Combinatorial Optimization Work-

shop, URL http://www.iasi.cnr.it/aussois/web/uploads/2018/slides/achterbergt.pdf.

Achterberg T, Berthold T, Koch T, Wolter K (2008) Constraint integer programming: A new approach to

integrate CP and MIP. Integration of AI and OR Techniques in Constraint Programming for Combina-

torial Optimization Problems: 5th International Conference, CPAIOR 2008 Paris, France, May 20-23,

2008 Proceedings 5, 6–20 (Springer).

Aloise D, Deshpande A, Hansen P, Popat P (2009) NP-hardness of euclidean sum-of-squares clustering.

Machine Learning 75:245–248.

Amaldi E, Kann V (1995) The complexity and approximability of finding maximum feasible subsystems of

linear relations. Theoretical Computer Science 147(1-2):181–210.

Arthur D, Vassilvitskii S (2007) K-means++ the advantages of careful seeding. Proceedings of the Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, 1027–1035.

Bacchus F, Hyttinen A, Järvisalo M, Saikko P (2017) Reduced cost fixing in maxsat. Principles and Prac-

tice of Constraint Programming: 23rd International Conference, CP 2017, Melbourne, VIC, Australia,

August 28–September 1, 2017, Proceedings 23, 641–651 (Springer).

Bajgiran OS, Cire AA, Rousseau LM (2017) A first look at picking dual variables for maximizing reduced cost

fixing. Integration of AI and OR Techniques in Constraint Programming: 14th International Conference,

CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings 14, 221–228 (Springer).

Balas E, Carrera MC (1996) A dynamic subgradient-based branch-and-bound procedure for set covering.

Operations Research 44(6):875–890.

Balas E, Saltzman MJ (1991) An algorithm for the three-index assignment problem. Operations Research

39(1):150–161.

http://www.iasi.cnr.it/aussois/web/uploads/2018/slides/achterbergt.pdf

Yang: DeLuxing for CG-Based Exact Methods
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Baldacci R, Bartolini E, Mingozzi A (2011a) An exact algorithm for the pickup and delivery problem with

time windows. Operations Research 59(2):414–426.

Baldacci R, Bartolini E, Mingozzi A, Valletta A (2011b) An exact algorithm for the period routing problem.

Operations Research 59(1):228–241.

Baldacci R, Christofides N, Mingozzi A (2008) An exact algorithm for the vehicle routing problem based on

the set partitioning formulation with additional cuts. Mathematical Programming 115(2):351–385.

Baldacci R, Hadjiconstantinou E, Mingozzi A (2004) An exact algorithm for the capacitated vehicle routing

problem based on a two-commodity network flow formulation. Operations Research 52(5):723–738.

Baldacci R, Mingozzi A, Roberti R (2011c) New route relaxation and pricing strategies for the vehicle routing

problem. Operations Research 59(5):1269–1283.

Baldacci R, Mingozzi A, Roberti R (2012) New state-space relaxations for solving the traveling salesman

problem with time windows. INFORMS Journal on Computing 24(3):356–371.

Baldacci R, Mingozzi A, Roberti R, Calvo RW (2013) An exact algorithm for the two-echelon capacitated

vehicle routing problem. Operations Research 61(2):298–314.

Baldacci R, Mingozzi A, Wolfler Calvo R (2011d) An exact method for the capacitated location-routing

problem. Operations Research 59(5):1284–1296.

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MW, Vance PH (1998) Branch-and-price: Column

generation for solving huge integer programs. Operations Research 46(3):316–329.

Bixby ER, Fenelon M, Gu Z, Rothberg E, Wunderling R (2000) Mip: Theory and practiceclosing the gap.

System Modelling and Optimization: Methods, Theory and Applications. 19 th IFIP TC7 Conference

on System Modelling and Optimization July 12–16, 1999, Cambridge, UK 19, 19–49 (Springer).

Bixby RE (2002) Solving real-world linear programs: A decade and more of progress. Operations Research

50(1):3–15.

Bradley PS, Fayyad UM (1998) Refining initial points for k-means clustering. ICML, volume 98, 91–99

(Citeseer).

Breugem T, Dollevoet T, Huisman D (2022) Is equality always desirable? Analyzing the trade-off between

fairness and attractiveness in crew rostering. Management Science 68(4):2619–2641.

Cappanera P, Gallo G (2004) A multicommodity flow approach to the crew rostering problem. Operations

Research 52(4):583–596.

Cattaruzza D, Absi N, Feillet D (2016) The multi-trip vehicle routing problem with time windows and release

dates. Transportation Science 50(2):676–693.

Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the

k-means clustering algorithm. Expert systems with applications 40(1):200–210.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

Contardo C, Martinelli R (2014) A new exact algorithm for the multi-depot vehicle routing problem under
capacity and route length constraints. Discrete Optimization 12:129–146.

Crainic TG, Maggioni F, Perboli G, Rei W (2018) Reduced cost-based variable fixing in two-stage stochastic
programming. Annals of Operations Research 1–37.

Crowder H, Johnson EL, Padberg M (1983) Solving large-scale zero-one linear programming problems.
Operations Research 31(5):803–834.

Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. Journal of
the Operations Research Society of America 2(4):393–410.

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Operations Research 8(1):101–111.

de Lima VL, Iori M, Miyazawa FK (2023) Exact solution of network flow models with strong relaxations.
Mathematical Programming 197(2):813–846.

Desaulniers G, Errico F, Irnich S, Schneider M (2016a) Exact algorithms for electric vehicle-routing problems
with time windows. Operations Research 64(6):1388–1405.

Desaulniers G, Gschwind T, Irnich S (2020) Variable fixing for two-arc sequences in branch-price-and-cut
algorithms on path-based models. Transportation Science 54(5):1170–1188.

Desaulniers G, Rakke JG, Coelho LC (2016b) A branch-price-and-cut algorithm for the inventory-routing
problem. Transportation Science 50(3):1060–1076.

Engineer FG, Furman KC, Nemhauser GL, Savelsbergh MW, Song JH (2012) A branch-price-and-cut algo-
rithm for single-product maritime inventory routing. Operations Research 60(1):106–122.

Ford LR, Fulkerson DR (1958) A suggested computation for maximal multi-commodity network flows. Man-
agement Science 5(1):97–101.

Fukasawa R, Longo H, Lysgaard J, Aragão MPd, Reis M, Uchoa E, Werneck RF (2006) Robust branch-and-
cut-and-price for the capacitated vehicle routing problem. Mathematical Programming 106:491–511.

Gurobi Optimization, LLC (2023) Gurobi Optimizer Reference Manual. URL https://www.gurobi.com/

documentation/10.0/refman/index.html.

Hernandez F, Feillet D, Giroudeau R, Naud O (2016) Branch-and-price algorithms for the solution of
the multi-trip vehicle routing problem with time windows. European Journal of Operational Research
249(2):551–559.

Holmberg K, Yuan D (2000) A Lagrangian heuristic based branch-and-bound approach for the capacitated
network design problem. Operations Research 48(3):461–481.

Homberger J, Gehring H (2005) A two-phase hybrid metaheuristic for the vehicle routing problem with time
windows. European Journal of Operational Research 162(1):220–238.

Hooker JN, Ottosson G, Thorsteinsson ES, Kim HJ (1999) On integrating constraint propagation and linear
programming for combinatorial optimization. AAAI/IAAI, 136–141.

https://www.gurobi.com/documentation/10.0/refman/index.html
https://www.gurobi.com/documentation/10.0/refman/index.html

Yang: DeLuxing for CG-Based Exact Methods
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints (Springer).

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-
routing problem with time windows. Operations Research 56(2):497–511.

Johnson EL, Kostreva MM, Suhl UH (1985) Solving 0-1 integer programming problems arising from large
scale planning models. Operations Research 33(4):803–819.

Kohl N, Desrosiers J, Madsen OB, Solomon MM, Soumis F (1999) 2-path cuts for the vehicle routing problem
with time windows. Transportation Science 33(1):101–116.

Land AH, Doig AG (2010) An automatic method for solving discrete programming problems (Springer).

Laporte G, Nobert Y (1983) A branch and bound algorithm for the capacitated vehicle routing problem.
Operations Research Spektrum 5:77–85.

Lloyd S (1982) Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2):129–
137.

Lysgaard J, Letchford AN, Eglese RW (2004) A new branch-and-cut algorithm for the capacitated vehicle
routing problem. Mathematical Programming 100:423–445.

Paradiso R, Roberti R, Laganá D, Dullaert W (2020) An exact solution framework for multitrip vehicle-
routing problems with time windows. Operations Research 68(1):180–198.

Pecin D, Contardo C, Desaulniers G, Uchoa E (2017a) New enhancements for the exact solution of the
vehicle routing problem with time windows. INFORMS Journal on Computing 29(3):489–502.

Pecin D, Pessoa A, Poggi M, Uchoa E (2017b) Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation 9(1):61–100.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F (2020) A generic exact solver for vehicle routing and related
problems. Mathematical Programming 183(1):483–523.

Pessoa A, Uchoa E, De Aragão MP, Rodrigues R (2010) Exact algorithm over an arc-time-indexed formulation
for parallel machine scheduling problems. Mathematical Programming Computation 2:259–290.

Posta M, Ferland JA, Michelon P (2012) An exact method with variable fixing for solving the generalized
assignment problem. Computational Optimization and Applications 52:629–644.

Quesnel F, Desaulniers G, Soumis F (2020) Improving air crew rostering by considering crew preferences in
the crew pairing problem. Transportation Science 54(1):97–114.

Roberti R, Ruthmair M (2021) Exact methods for the traveling salesman problem with drone. Transportation
Science 55(2):315–335.

Roboredo M, Sadykov R, Uchoa E (2023) Solving vehicle routing problems with intermediate stops using
vrpsolver models. Networks 81(3):399–416.

Sadykov R, Uchoa E, Pessoa A (2021) A bucket graph–based labeling algorithm with application to vehicle
routing. Transportation Science 55(1):4–28.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

Sellmann M (2004) Theoretical foundations of CP-based Lagrangian relaxation. Principles and Practice of

Constraint Programming–CP 2004: 10th International Conference, CP 2004, Toronto, Canada, Septem-

ber 27-October 1, 2004. Proceedings 10, 634–647 (Springer).

Wolsey LA, Nemhauser GL (1999) Integer and combinatorial optimization, volume 55 (John Wiley & Sons).

Yang Y (2023) An exact price-cut-and-enumerate method for the capacitated multitrip vehicle routing prob-

lem with time windows. Transportation Science 57(1):230–251.

Yunes T, Aron ID, Hooker JN (2010) An integrated solver for optimization problems. Operations Research

58(2):342–356.

Zhang S, et al. (2022) Solving the capacitated multi-trip vehicle routing problem with time windows. Tech-

nical report, Hong Kong Polytechnic University.

Online Supplement
EC.1. Detailed Results for the First Set of Experiments

Table EC.1 presents the detailed results for each individual instance of the first set of experiments

in Section 7.1. The following information is included: the instance name (Name), the number of

customers (n), the size of the enumerated column pool (|R|), the number of columns with reduced

costs not exceeding half of the gap (|Rπ
2 |), the percentage of columns removed by each method (D),

and the computational time of each instance in seconds (CPU).

Table EC.1: Detailed results for the first set of experiments.

Name n |R| |Rπ
2 |

Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

C201 70 69,562 9,341 86.3 4.7 88.3 37.9 82.8 2.5 80.4 2.1 80.7 3.0
C202 70 167,231 17,318 91.2 14.4 91.7 220.9 89.3 8.3 87.1 7.2 86.9 8.3
C203 70 2,148 862 70.9 0.5 92.2 1.0 75.8 0.4 59.2 0.4 69.2 0.5
C204 70 2,384 1,203 58.4 0.8 87.6 1.2 59.1 0.6 70.9 0.4 46.3 0.7
C205 70 241,821 21,775 92.6 22.2 95.0 371.1 90.5 11.0 91.0 9.7 90.6 13.2
C206 70 198,754 20,027 91.4 19.7 92.8 278.8 86.2 9.5 87.3 8.8 87.8 10.4
C207 70 232,952 27,594 88.1 30.1 92.9 460.5 88.2 14.9 87.2 13.3 84.7 16.6
C208 70 2,590 958 77.6 0.5 92.7 1.1 77.4 0.4 64.6 0.3 77.1 0.5
R201 70 11,097 1,774 89.6 1.0 90.3 3.7 82.3 0.4 81.5 0.5 87.3 0.8
R202 70 61,021 7,130 84.4 7.6 88.9 79.9 83.2 5.0 77.6 3.2 81.2 4.3
R203 70 54,387 6,897 90.6 7.9 91.2 75.2 85.9 4.4 83.7 3.8 86.6 5.2
R204 70 108,401 12,046 89.7 17.9 90.6 309.5 86.9 13.0 82.1 7.7 84.2 9.2
R205 70 86,765 9,129 83.9 17.6 84.2 232.7 78.9 10.9 71.8 6.7 76.2 8.4
R206 70 111,271 11,024 88.2 18.5 89.5 331.4 84.5 10.8 81.4 8.8 82.3 10.2
R207 70 65,745 7,935 87.6 12.1 89.8 120.0 83.7 8.3 81.0 5.7 83.1 6.6
R208 70 113,628 12,424 89.4 14.2 90.6 256.2 87.3 9.9 84.5 7.5 84.9 7.7
R209 70 37,046 4,555 89.5 5.4 90.5 37.6 84.0 3.3 80.8 2.7 84.7 3.6
R210 70 52,710 6,757 88.8 11.6 89.9 113.2 84.3 6.8 78.8 5.3 83.8 6.6
R211 70 69,533 8,261 88.0 9.3 89.3 117.1 84.7 5.6 80.6 4.2 82.7 5.5

RC201 70 5,806 1,160 79.4 0.6 89.3 2.0 81.0 0.4 76.3 0.4 75.5 0.6
RC202 70 6,423 1,409 76.8 0.7 82.5 2.5 72.6 0.4 66.9 0.4 74.5 0.6
RC203 70 19,780 3,984 74.6 2.7 86.5 12.4 74.2 1.7 67.2 0.9 74.0 2.0
RC204 70 41,386 7,811 86.4 6.7 90.8 31.7 88.2 4.7 82.6 3.7 82.0 4.7
RC205 70 9,659 2,444 79.3 2.4 82.0 8.5 73.2 1.6 63.1 1.4 74.4 1.9
RC206 70 12,448 2,666 87.9 2.3 89.2 10.1 85.1 1.6 81.6 1.7 84.8 1.8
RC207 70 28,008 4,919 87.4 4.4 89.5 28.3 86.6 3.1 81.0 2.5 83.3 3.1
RC208 70 48,135 8,129 87.2 8.2 91.3 55.2 86.6 6.0 80.0 4.4 83.0 5.4

C201 80 295,358 24,793 91.8 26.1 94.6 392.1 92.0 15.3 90.3 11.3 87.0 15.7
C202 80 356 260 49.4 0.1 76.4 0.2 52.0 0.1 57.0 0.1 49.4 0.1
C203 80 484 316 57.0 0.1 73.8 0.2 66.9 0.1 60.3 0.1 57.0 0.1
C204 80 656,380 36,786 94.8 25.9 95.7 367.7 93.7 15.0 89.8 8.2 92.6 14.7
C205 80 264 75 87.9 0.0 88.3 0.0 87.1 0.0 85.6 0.0 87.9 0.0
C206 80 380,825 19,787 93.2 12.1 96.5 159.8 92.7 5.9 92.4 4.9 92.1 8.4
C207 80 389,157 37,695 87.5 27.6 93.8 377.5 91.3 16.6 86.4 12.8 85.6 16.6
C208 80 449,968 23,097 94.9 15.0 95.2 212.0 91.9 7.8 90.9 5.4 92.9 8.7
R201 80 68,398 7,588 93.0 9.4 93.6 127.1 89.0 5.6 87.2 4.8 88.6 6.0
R202 80 70,136 7,965 88.0 10.2 89.5 120.5 83.6 5.7 81.9 4.8 81.5 6.0
R203 80 121,315 11,818 92.4 18.5 92.7 349.7 89.7 12.2 87.5 10.0 87.6 10.4
R204 80 10,718 3,955 68.3 7.9 78.2 23.1 58.3 4.7 49.1 4.0 61.3 5.7
R205 80 118,485 11,828 86.3 23.3 86.9 386.6 82.1 13.5 79.8 11.0 79.0 11.0
R206 80 136,015 14,122 88.4 30.1 89.4 590.7 84.7 18.9 83.4 15.3 81.7 15.1
R207 80 193,472 16,674 91.7 33.7 92.3 884.9 89.4 22.2 86.3 14.8 86.4 17.9
R208 80 1,041 731 47.7 0.7 75.2 1.0 40.1 0.4 50.1 0.3 47.7 0.7

Continued on next page

ec1

ec2 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.1 – Continued from previous page

Name n |R| |Rπ
2 |

Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

R209 80 113,636 11,458 89.0 24.5 89.7 402.7 83.1 12.1 83.2 11.7 83.0 12.9
R210 80 98,047 10,691 87.7 22.4 88.6 371.6 83.5 14.6 80.3 10.2 81.0 11.1
R211 80 12,271 4,022 65.5 7.1 74.3 23.1 55.4 3.7 50.3 3.5 59.9 5.3

RC201 80 7,950 1,808 86.6 1.1 90.1 4.3 83.6 0.8 81.9 0.8 84.8 1.0
RC202 80 13,712 2,640 85.0 2.1 87.3 9.3 79.7 1.3 72.6 1.1 80.4 1.6
RC203 80 24,426 3,816 86.0 2.2 87.8 11.2 83.8 1.5 76.7 1.2 81.4 1.6
RC204 80 39,195 5,394 89.8 2.9 93.6 13.7 90.3 2.0 88.0 2.1 87.5 2.0
RC205 80 21,824 3,972 82.1 4.1 83.3 19.4 75.9 2.6 71.2 2.4 77.5 3.0
RC206 80 20,353 3,411 87.9 3.3 88.5 18.2 83.4 2.0 82.1 2.0 84.3 2.8
RC207 80 3,261 1,390 45.6 0.7 69.2 1.6 42.0 0.4 32.4 0.3 44.2 0.7
RC208 80 36,018 4,782 83.9 2.5 91.9 9.7 84.1 1.9 82.9 1.6 83.5 1.7

C201 100 313,754 28,662 95.3 33.8 95.6 694.3 95.0 23.1 93.6 18.5 92.8 21.0
C202 100 596 373 52.7 0.2 83.9 0.2 47.2 0.1 47.0 0.1 52.7 0.2
C203 100 735,149 51,877 94.6 48.8 95.2 909.4 94.6 48.8 94.3 37.3 90.2 13.5
C204 100 827 347 68.3 0.1 90.5 0.1 68.2 0.1 78.2 0.1 68.3 0.1
C205 100 243 198 77.8 0.1 77.4 0.1 75.7 0.1 71.6 0.1 77.8 0.1
C206 100 334,947 52,320 93.1 32.8 94.6 332.3 92.5 22.7 90.6 18.2 89.3 18.3
C207 100 318 191 77.4 0.0 80.8 0.0 47.5 0.0 80.5 0.0 77.4 0.0
C208 100 290 184 73.1 0.1 79.3 0.1 74.1 0.1 72.1 0.0 73.1 0.1
R201 100 362,623 25,327 89.1 59.2 89.8 1729.4 87.6 38.4 84.7 25.4 80.6 24.0
R202 100 892,622 60,239 85.1 352.4 85.8 8268.1 85.1 334.0 82.2 207.1 61.6 48.1
R203 100 43,969 11,380 55.9 37.8 61.3 159.3 44.9 21.4 32.7 13.0 46.1 19.3
R204 100 18,178 5,707 70.1 17.3 84.2 56.6 67.6 10.8 60.5 8.7 67.1 11.4
R205 100 490,622 31,381 88.1 100.1 88.1 3099.2 84.9 55.1 82.1 39.1 78.7 35.0
R206 100 541,592 42,314 81.0 124.0 80.5 2978.6 81.0 126.5 78.6 96.7 56.2 17.5
R207 100 32,326 8,203 75.5 37.2 80.0 131.9 63.6 21.0 57.6 16.7 65.6 19.3
R208 100 10,876 4,210 72.4 10.6 82.9 27.9 64.7 6.1 58.4 5.5 66.3 7.9
R209 100 15,708 4,733 66.8 12.7 72.1 39.6 49.3 6.4 42.6 4.5 59.5 7.5
R210 100 27,332 7,188 65.2 29.0 76.8 120.4 51.7 14.1 49.6 12.5 58.0 16.5
R211 100 73,958 13,997 81.7 55.9 84.4 399.7 73.8 29.0 72.8 24.5 72.7 24.2

RC201 100 9,551 1,932 76.7 1.6 79.8 5.8 70.1 1.0 65.4 0.8 73.6 1.2
RC202 100 100,395 11,242 85.2 16.5 86.1 253.2 81.1 10.1 75.9 7.4 77.9 9.0
RC203 100 108,682 13,054 92.1 20.5 92.9 332.8 89.7 13.5 87.3 9.7 87.8 12.1
RC204 100 235,679 23,142 94.6 32.0 95.3 729.2 93.2 20.5 91.9 16.6 90.9 17.5
RC205 100 188,739 19,565 83.7 50.2 84.0 1085.3 79.0 27.9 77.1 23.0 74.6 21.7
RC206 100 109,935 12,147 84.7 20.2 84.6 339.9 78.7 10.9 77.7 8.9 78.3 10.8
RC207 100 60,775 8,129 86.6 14.8 87.7 149.8 82.3 9.7 79.3 7.8 81.2 8.0
RC208 100 208,715 22,256 91.4 31.9 92.8 612.8 89.5 21.8 88.2 18.0 85.5 18.0

C2_2_01 140 30,507 5,035 77.7 6.3 85.0 25.8 78.6 4.2 70.5 2.5 73.5 4.4
C2_2_02 140 79,763 11,962 79.4 21.7 81.1 199.2 74.5 13.3 71.9 10.4 71.8 12.3
C2_2_03 140 103,992 13,880 90.1 23.7 90.7 330.4 88.2 16.7 86.2 13.4 84.9 13.9
C2_2_04 140 1,470 925 54.3 1.1 73.5 2.0 52.6 0.7 47.7 0.6 49.5 1.0
C2_2_05 140 39,657 6,303 81.5 9.1 83.1 48.0 77.8 5.7 72.6 4.6 76.3 6.0
C2_2_06 140 114,300 15,117 80.4 28.7 81.1 357.1 77.9 19.5 73.3 12.7 72.2 15.0
C2_2_07 140 86,989 11,225 83.6 17.5 83.3 174.2 81.0 11.4 76.7 7.6 76.5 9.9
C2_2_08 140 214,605 25,333 81.9 46.1 82.8 881.6 79.4 30.1 75.0 19.0 74.2 21.4
C2_2_09 140 398,209 39,695 85.8 109.2 86.1 2212.4 84.2 73.7 80.7 45.0 76.8 45.2
C2_2_10 140 227,213 26,170 81.0 50.6 81.4 815.3 78.8 33.2 73.6 19.9 71.5 24.1
R2_2_01 140 193,870 16,440 77.7 32.7 78.1 677.0 74.4 17.9 70.2 12.2 67.5 14.7
R2_2_02 140 84,668 9,409 76.4 14.8 77.8 176.6 72.9 10.1 67.3 6.0 68.6 7.7
R2_2_03 140 166,339 22,680 72.5 121.8 73.2 2090.5 67.4 78.2 63.3 57.4 61.5 48.9
R2_2_04 140 56,430 7,650 79.7 7.7 86.4 48.5 83.2 6.0 77.4 4.0 76.7 5.1
R2_2_05 140 278,203 23,707 83.6 54.1 83.6 1448.5 81.1 33.8 77.8 20.7 75.1 25.0
R2_2_06 140 552,662 38,409 82.4 55.8 83.5 2155.3 82.4 54.4 77.6 29.8 65.6 12.6
R2_2_07 140 882,247 57,874 85.4 192.3 85.9 5567.2 85.4 189.2 81.9 113.8 67.8 30.0
R2_2_08 140 37,185 5,788 77.3 5.3 85.2 24.4 75.5 3.4 73.3 2.8 73.7 3.5
R2_2_09 140 379,979 29,070 77.0 58.5 80.8 1967.2 73.7 35.7 55.6 7.2 68.4 30.3
R2_2_10 140 974,093 57,093 80.3 150.5 81.1 4200.5 80.3 157.4 78.8 111.2 56.6 20.9

RC2_2_01 140 329,296 31,979 88.1 83.8 88.8 2020.8 86.6 56.3 84.8 43.5 80.1 35.7
RC2_2_02 140 737,639 94,056 77.1 865.4 78.3 10800.3 77.1 862.1 76.6 844.7 33.7 72.3
RC2_2_03 140 234,689 34,292 86.6 239.8 88.0 3797.1 83.7 166.5 76.8 97.8 78.0 104.8
RC2_2_04 140 16,701 5,506 69.4 16.2 82.3 45.6 67.7 11.5 59.5 8.2 66.0 11.6

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec3

Table EC.1 – Continued from previous page

Name n |R| |Rπ
2 |

Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

RC2_2_05 140 643,875 57,682 84.6 192.8 85.4 3946.4 84.6 197.6 82.0 140.9 65.2 40.2
RC2_2_06 140 1,073,216 102,595 85.7 1131.0 83.0 10819.2 85.7 1172.5 83.1 774.1 56.2 102.2
RC2_2_07 140 229,745 23,267 84.8 64.4 85.5 1229.7 82.6 44.5 78.3 28.2 76.8 29.3
RC2_2_08 140 349,177 51,598 86.0 405.0 85.6 5733.0 81.6 224.4 78.7 210.7 75.7 170.0
RC2_2_09 140 221,394 36,329 87.0 247.4 86.6 3315.0 84.2 162.0 79.5 107.4 78.9 109.2
RC2_2_10 140 756,533 71,592 84.0 283.3 85.9 4495.8 84.0 278.6 81.2 157.9 69.9 51.4

C2_2_01 170 162,493 19,681 80.3 56.5 82.6 742.9 76.7 35.1 73.4 20.9 72.2 26.6
C2_2_02 170 115,713 14,967 87.6 38.8 89.6 443.6 83.0 23.6 77.8 14.8 78.2 22.4
C2_2_03 170 11,130 4,316 59.1 7.4 73.0 17.1 54.1 5.0 43.4 3.8 57.4 5.6
C2_2_04 170 10,131 4,109 62.2 9.4 81.4 20.4 55.4 5.9 58.1 4.7 57.9 7.0
C2_2_05 170 289,587 27,646 86.1 72.7 87.2 1457.0 84.1 50.1 81.1 31.5 78.1 30.6
C2_2_06 170 77,616 10,088 79.3 16.4 84.4 133.8 77.4 9.6 72.8 6.4 74.0 10.4
C2_2_07 170 91,257 11,084 81.8 19.3 85.3 162.7 80.6 12.9 75.8 8.3 75.5 11.6
C2_2_08 170 104,173 12,218 89.1 20.1 90.1 195.2 82.8 11.0 81.7 10.1 84.3 14.6
C2_2_09 170 1,427 870 45.3 1.0 74.9 1.4 49.5 0.6 38.2 0.5 45.3 1.0
C2_2_10 170 547 424 32.9 0.3 68.6 0.3 29.4 0.2 26.1 0.2 32.9 0.3
R2_2_01 170 870,862 68,260 73.2 655.6 70.4 10809.9 73.2 672.1 68.0 419.2 40.0 38.3
R2_2_02 170 1,075,281 78,286 76.2 978.1 72.2 10822.1 76.2 948.5 74.7 671.7 38.2 57.7
R2_2_03 170 119,149 13,238 84.3 35.6 86.5 475.7 81.6 23.6 79.0 16.9 78.2 18.6
R2_2_04 170 440,199 34,103 88.5 85.2 89.5 2669.2 86.8 52.4 84.2 38.6 81.6 46.4
R2_2_05 170 1,108,306 80,580 72.4 874.1 69.0 10800.4 72.4 902.3 69.6 592.2 31.2 43.3
R2_2_06 170 1,458,809 99,309 77.5 1476.9 69.4 10822.1 77.5 1473.9 71.4 710.7 43.2 86.2
R2_2_07 170 264,562 22,349 87.8 63.0 88.1 1334.9 85.8 38.7 82.9 27.7 80.7 31.4
R2_2_08 170 432,248 33,744 88.4 83.8 88.5 2109.3 86.9 54.2 83.2 32.6 80.8 42.9
R2_2_09 170 922,050 70,477 74.8 605.1 74.7 10800.4 74.8 531.5 71.6 373.9 33.7 35.9
R2_2_10 170 929,278 52,301 79.8 186.6 79.7 5901.7 79.8 187.6 75.6 116.3 55.5 20.4

RC2_2_01 170 2,510,141 185,642 73.7 2958.7 61.3 10874.3 73.7 2920.6 71.2 2018.9 38.4 124.2
RC2_2_02 170 140,353 21,674 77.7 133.4 77.9 1788.9 72.3 84.6 65.5 56.0 69.0 61.1
RC2_2_03 170 2,363,139 194,616 77.4 4048.3 65.8 10853.3 77.4 4034.0 73.4 2497.0 44.7 216.8
RC2_2_04 170 262,193 36,896 78.4 299.0 79.3 4491.1 75.4 232.9 65.1 143.9 66.4 123.6
RC2_2_05 170 414,124 53,899 82.2 600.7 82.6 9933.5 79.7 451.6 74.2 288.1 71.0 228.0
RC2_2_06 170 221,690 32,635 79.4 314.9 80.2 4896.8 76.4 215.9 70.2 140.9 69.8 126.5
RC2_2_07 170 513,743 69,264 80.8 639.3 82.0 9443.9 80.8 647.7 76.5 392.4 57.2 108.3
RC2_2_08 170 2,680,336 238,054 77.8 6092.9 58.9 10960.6 77.8 6042.9 71.1 2498.2 43.3 288.8
RC2_2_09 170 113,256 17,365 74.6 48.2 82.5 645.6 74.1 36.0 64.7 16.8 67.0 24.1
RC2_2_10 170 868,556 96,623 78.8 1661.6 73.9 10800.4 78.8 1633.2 73.6 904.2 48.8 169.6

C2_2_01 200 14,760 4,986 68.0 10.1 73.6 30.5 62.4 7.2 50.3 5.7 63.2 7.2
C2_2_02 200 24,626 10,236 53.0 35.5 56.1 95.3 37.6 20.8 25.9 12.8 43.3 20.2
C2_2_03 200 7,098 3,148 50.2 8.2 74.1 15.3 52.4 5.0 49.6 4.6 51.7 6.8
C2_2_04 200 52,665 15,476 71.7 60.5 77.1 272.4 68.9 51.6 62.1 40.2 60.0 34.9
C2_2_05 200 8,922 3,471 50.0 5.9 71.5 14.4 47.5 3.2 42.1 3.1 47.6 4.6
C2_2_06 200 15,128 5,522 50.8 12.8 58.4 32.3 42.0 7.6 26.2 4.7 44.5 8.6
C2_2_07 200 1,215 793 41.5 1.1 68.0 2.0 36.9 0.6 39.6 0.6 41.5 1.1
C2_2_08 200 652 511 32.7 0.4 67.3 0.6 35.7 0.3 36.7 0.3 32.7 0.4
C2_2_09 200 191,241 22,002 85.7 55.2 86.8 962.0 84.1 39.2 79.8 30.0 78.4 29.2
C2_2_10 200 1,152 798 42.4 1.0 65.5 1.5 43.5 0.7 37.4 0.6 42.4 1.0
R2_2_01 200 2,186,524 133,332 74.7 3410.9 59.7 10816.5 74.7 3399.6 72.2 2546.0 35.4 143.5
R2_2_02 200 317,183 33,884 76.7 304.5 77.3 6982.1 74.8 212.7 70.2 141.7 65.9 120.8
R2_2_03 200 99,222 13,041 82.6 34.8 84.3 452.1 80.2 22.3 75.6 17.1 75.4 19.9
R2_2_04 200 169,281 26,527 80.9 189.0 81.7 2800.5 78.1 144.9 72.5 98.6 70.0 82.7
R2_2_05 200 1,265,511 87,735 78.1 1289.0 69.1 10816.1 78.1 1940.4 72.3 777.6 47.1 83.2
R2_2_06 200 749,779 63,666 76.0 663.6 73.6 10821.7 76.0 717.5 73.2 492.1 45.3 62.9
R2_2_07 200 579,843 42,921 84.7 108.6 85.7 3866.2 84.7 112.7 82.1 72.6 67.7 27.9
R2_2_08 200 173,780 27,619 80.6 211.3 81.5 3291.2 76.9 155.0 71.5 110.7 69.1 93.7
R2_2_09 200 4,020,994 221,799 76.7 6927.2 50.5 10943.5 76.7 6925.9 74.2 4327.7 37.7 210.2
R2_2_10 200 267,272 29,237 76.5 210.6 76.0 3896.5 73.5 144.8 66.9 89.3 62.6 78.2

RC2_2_01 200 776,563 63,300 88.0 312.9 87.7 6561.9 88.0 310.6 86.5 218.8 70.5 54.7
RC2_2_02 200 240,386 34,388 76.0 392.5 77.5 6167.9 71.0 281.9 67.3 191.9 65.6 155.9
RC2_2_03 200 437,521 43,994 81.1 241.1 82.8 4628.9 78.4 178.8 75.5 124.9 70.2 129.7
RC2_2_04 200 769,750 67,584 86.7 329.0 87.3 5942.8 86.7 316.2 81.3 187.0 63.6 60.0
RC2_2_05 200 1,016,354 100,181 78.4 1226.4 75.9 10808.9 78.4 1237.5 74.1 695.3 44.2 155.8
RC2_2_06 200 1,926,998 174,312 80.9 4142.4 64.6 10865.5 80.9 4138.1 78.3 2633.6 42.9 342.3

Continued on next page

ec4 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.1 – Continued from previous page

Name n |R| |Rπ
2 |

Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

RC2_2_07 200 1,654,753 166,848 80.8 5216.5 68.9 10930.0 80.8 5196.5 75.0 2385.8 57.4 447.8
RC2_2_08 200 698,876 77,658 84.3 1019.0 82.1 10802.7 84.3 971.8 78.5 523.1 65.7 135.6
RC2_2_09 200 1,839,184 161,452 83.2 3234.2 75.8 10820.1 83.2 3237.4 80.9 1943.5 58.3 296.8
RC2_2_10 200 98,714 18,102 79.7 144.7 82.1 1262.9 78.3 128.7 69.7 81.7 72.0 74.6

EC.2. Detailed Results for the Last Two Sets of Experiments

Tables EC.2 to EC.4 present the detailed results for each individual instance of the last two sets of

experiments in Sections 7.3 and 7.4. We report the instance name (Name), the number of customers

(n), the upper bound (ub), the optimality gap ub´lb
ub

ˆ 100 at termination (Gap), and the computa-

tional time in seconds (CPU). It is worth mentioning the algorithm may terminate before reaching

the 3-hour time limit due to insufficient memory. In this case, the reported CPU corresponds to the

elapsed time. When the information about an entry in the table is not available at termination, it is

reported as “—”.

Table EC.2: Detailed results for the CMTVRPTW.

Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU
C201 70 1052.2 0.00 4.7 80 1182.5 0.00 27.1 100 1473.3 0.00 28.3
C202 70 1047.7 0.00 19.4 80 1178.4 0.00 26.0 100 1464.1 0.00 39.0
C203 70 1040.4 0.00 28.4 80 1172.1 0.00 35.4 100 1456.3 0.00 38.7
C204 70 1036.8 0.00 45.3 80 1163.1 0.00 36.0 100 1448.7 0.00 59.4
C205 70 1047.9 0.00 22.9 80 1170.6 0.00 20.5 100 1460.2 0.00 36.2
C206 70 1042.0 0.00 22.6 80 1168.9 0.00 19.8 100 1455.1 0.00 22.8
C207 70 1040.3 0.00 35.1 80 1167.2 0.00 23.8 100 1454.5 0.00 39.2
C208 70 1040.3 0.00 29.0 80 1167.2 0.00 26.6 100 1451.9 0.00 31.7
R201 70 1118.4 0.00 5.1 80 1201.5 0.00 29.5 100 1399.6 0.00 191.9
R202 70 1041.1 0.00 32.1 80 1121.2 0.00 82.9 100 1304.7 0.00 1396.4
R203 70 958.0 0.00 26.7 80 1034.6 0.00 43.4 100 1204.8 0.00 338.5
R204 70 921.8 0.00 37.1 80 1002.1 0.00 171.3 100 1162.2 0.00 162.3
R205 70 1033.4 0.00 89.7 80 1103.6 0.00 92.7 100 1267.3 0.00 436.5
R206 70 985.9 0.00 94.7 80 1055.4 0.00 184.8 100 1220.9 0.00 1650.4
R207 70 942.0 0.00 29.2 80 1011.3 0.00 77.7 100 1182.5 0.00 233.2
R208 70 917.5 0.00 34.1 80 993.5 0.00 88.8 100 1157.5 0.00 185.2
R209 70 955.3 0.00 24.4 80 1034.9 0.00 54.4 100 1205.4 0.00 132.0
R210 70 980.4 0.00 27.0 80 1052.8 0.00 47.4 100 1211.8 0.00 333.6
R211 70 914.8 0.00 19.9 80 999.0 0.00 116.4 100 1160.6 0.00 214.0

RC201 70 1364.5 0.00 3.4 80 1545.8 0.00 7.1 100 1806.8 0.00 8.7
RC202 70 1284.6 0.00 4.6 80 1458.3 0.00 13.3 100 1680.2 0.00 56.8
RC203 70 1230.5 0.00 9.5 80 1392.3 0.00 8.7 100 1601.0 0.00 125.2
RC204 70 1206.6 0.00 14.1 80 1366.5 0.00 13.2 100 1574.6 0.00 55.9
RC205 70 1335.3 0.00 16.4 80 1516.8 0.00 20.4 100 1732.6 0.00 252.3
RC206 70 1285.5 0.00 6.6 80 1455.6 0.00 10.4 100 1698.1 0.00 107.2
RC207 70 1236.5 0.00 8.8 80 1402.9 0.00 49.0 100 1640.7 0.00 261.0
RC208 70 1208.2 0.00 30.9 80 1364.1 0.00 12.8 100 1570.7 0.00 56.6

C2_2_01 140 3436.2 0.00 34.9 170 4048.3 0.00 275.5 200 4623.9 0.00 98.7
C2_2_02 140 3380.3 0.00 84.4 170 3976.9 0.00 54.5 200 4562.2 0.00 267.1
C2_2_03 140 3304.6 0.00 46.8 170 3932.0 0.00 102.1 200 4517.1 0.00 261.9
C2_2_04 140 3289.5 0.00 57.0 170 3914.0 0.00 157.9 200 4505.3 0.00 429.1
C2_2_05 140 3382.9 0.00 36.3 170 3987.2 0.00 307.3 200 4558.3 0.00 120.9
C2_2_06 140 3367.4 0.00 123.5 170 3964.3 0.00 56.0 200 4543.6 0.00 156.0
C2_2_07 140 3362.5 0.00 63.4 170 3958.6 0.00 44.5 200 4528.9 0.00 110.6
C2_2_08 140 3354.6 0.00 263.6 170 3937.0 0.00 33.2 200 4517.3 0.00 97.5
C2_2_09 140 3345.1 0.00 449.7 170 3931.6 0.00 63.7 200 4512.8 0.00 126.1

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec5

Table EC.2 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

C2_2_10 140 3337.4 0.00 271.1 170 3930.7 0.00 55.4 200 4511.1 0.00 122.7
R2_2_01 140 3998.9 0.00 392.6 170 4631.2 0.41 10800.1 200 5295.8 0.47 10800.0
R2_2_02 140 3734.7 0.00 76.4 170 4379.8 0.00 9107.6 200 5021.4 0.00 2784.7
R2_2_03 140 3601.9 0.00 3409.5 170 4194.6 0.00 234.3 200 4860.0 0.00 465.3
R2_2_04 140 3473.3 0.00 72.8 170 4099.7 0.00 483.4 200 4761.1 0.00 1532.8
R2_2_05 140 3859.3 0.00 251.1 170 4476.5 0.43 10800.3 200 5119.5 0.33 10800.1
R2_2_06 140 3671.9 0.00 663.8 170 4296.6 0.41 10800.4 200 4950.1 0.22 10800.1
R2_2_07 140 3558.3 0.00 3558.4 170 4170.2 0.00 501.9 200 4847.6 0.00 1358.7
R2_2_08 140 3468.4 0.00 52.1 170 4098.5 0.00 464.8 200 4760.4 0.00 1766.7
R2_2_09 140 3779.6 0.00 759.2 170 4378.1 0.27 10800.1 200 5034.4 0.48 10800.0
R2_2_10 140 3693.5 0.00 1727.4 170 4306.9 0.00 1708.5 200 4942.0 0.00 3466.3

RC2_2_01 140 3718.2 0.00 253.3 170 4404.3 0.61 10800.2 200 4902.0 0.00 2177.3
RC2_2_02 140 3573.6 0.11 10800.1 170 4231.7 0.00 1717.9 200 4795.5 0.00 2486.4
RC2_2_03 140 3487.5 0.00 1291.5 170 4160.2 0.31 10800.0 200 4733.5 0.55 2768.1
RC2_2_04 140 3449.3 0.00 254.7 170 4126.3 0.00 2212.8 200 4688.9 0.51 1597.6
RC2_2_05 140 3598.7 0.00 730.2 170 4302.0 0.00 3388.3 200 4841.8 0.00 8746.5
RC2_2_06 140 3622.4 0.00 6169.8 170 4297.2 0.00 2196.3 200 4844.7 0.29 10800.0
RC2_2_07 140 3565.6 0.00 270.6 170 4242.6 0.00 7240.6 200 4790.3 0.30 10800.1
RC2_2_08 140 3539.1 0.00 3312.3 170 4231.2 0.49 10800.2 200 4776.0 0.00 4374.7
RC2_2_09 140 3532.4 0.00 1325.1 170 4236.6 1.21 10800.2 200 4752.0 0.00 10218.8
RC2_2_10 140 3511.4 0.00 819.8 170 4197.6 0.00 9514.9 200 4739.4 0.00 1619.4

Table EC.3: Detailed results for the CMTVRPTW-LT.

Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU
C201 70 1063.2 0.00 18.6 80 1185.7 0.00 34.1 100 1480.6 0.00 48.8
C202 70 1053.4 0.00 38.6 80 1180.2 0.00 28.1 100 1465.5 0.00 29.9
C203 70 1045.2 0.00 37.2 80 1172.9 0.00 40.0 100 1459.6 0.00 42.3
C204 70 1038.4 0.00 42.0 80 1163.1 0.00 22.4 100 1448.7 0.00 28.2
C205 70 1048.2 0.00 17.4 80 1172.8 0.00 42.2 100 1461.9 0.00 33.6
C206 70 1044.1 0.00 23.7 80 1171.1 0.00 124.4 100 1456.9 0.00 25.6
C207 70 1040.3 0.00 27.3 80 1167.2 0.00 19.1 100 1454.8 0.00 32.3
C208 70 1040.3 0.00 23.5 80 1167.2 0.00 13.3 100 1451.9 0.00 25.1
R201 70 1118.4 0.00 5.9 80 1205.6 0.00 27.8 100 1403.1 0.00 122.8
R202 70 1041.1 0.00 31.7 80 1121.2 0.00 37.2 100 1305.8 0.00 625.9
R203 70 959.5 0.00 40.4 80 1035.4 0.00 44.0 100 1206.4 0.00 477.7
R204 70 921.8 0.00 35.4 80 1002.1 0.00 117.0 100 1162.2 0.00 209.3
R205 70 1033.4 0.00 36.4 80 1105.7 0.00 115.7 100 1267.7 0.00 158.5
R206 70 985.9 0.00 52.6 80 1055.7 0.00 82.7 100 1222.9 0.00 3601.4
R207 70 942.0 0.00 31.9 80 1011.4 0.00 61.8 100 1182.5 0.00 251.6
R208 70 917.5 0.00 37.9 80 993.5 0.00 85.9 100 1157.5 0.00 178.0
R209 70 955.9 0.00 20.1 80 1038.4 0.00 130.6 100 1207.8 0.00 167.5
R210 70 983.4 0.00 57.7 80 1053.7 0.00 68.0 100 1215.8 0.00 383.1
R211 70 914.8 0.00 18.1 80 999.0 0.00 99.9 100 1164.0 0.00 901.4

RC201 70 1367.5 0.00 3.8 80 1554.1 0.00 11.3 100 1809.5 0.00 8.7
RC202 70 1284.6 0.00 4.6 80 1459.9 0.00 16.9 100 1689.2 0.00 253.2
RC203 70 1230.5 0.00 9.8 80 1392.3 0.00 7.6 100 1601.0 0.00 52.7
RC204 70 1206.6 0.00 13.8 80 1366.5 0.00 14.1 100 1574.6 0.00 58.8
RC205 70 1340.4 0.00 20.1 80 1519.8 0.00 22.6 100 1737.7 0.00 230.5
RC206 70 1290.2 0.00 7.2 80 1457.5 0.00 14.8 100 1702.5 0.00 1632.7
RC207 70 1241.1 0.00 12.5 80 1402.9 0.00 13.2 100 1641.7 0.00 50.0
RC208 70 1209.4 0.00 71.7 80 1365.6 0.00 12.4 100 1572.7 0.00 151.5

C2_2_01 140 3461.7 0.00 51.8 170 4059.8 0.00 176.6 200 4641.6 0.00 666.1
C2_2_02 140 3392.2 0.00 183.7 170 3981.5 0.00 42.6 200 4566.7 0.00 343.5
C2_2_03 140 3306.3 0.00 32.8 170 3932.0 0.00 115.0 200 4517.1 0.00 242.8
C2_2_04 140 3289.5 0.00 72.6 170 3914.3 0.00 115.9 200 4505.3 0.00 392.6
C2_2_05 140 3396.6 0.00 109.3 170 3995.6 0.00 575.0 200 4559.0 0.00 70.6
C2_2_06 140 3369.6 0.00 35.4 170 3967.2 0.00 125.8 200 4544.2 0.00 145.2
C2_2_07 140 3367.7 0.00 50.0 170 3964.1 0.00 126.4 200 4531.4 0.00 101.5
C2_2_08 140 3358.7 0.00 309.9 170 3938.9 0.00 32.9 200 4519.6 0.00 136.7
C2_2_09 140 3348.6 0.00 318.5 170 3931.6 0.00 38.1 200 4513.4 0.00 77.1

Continued on next page

ec6 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.3 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

C2_2_10 140 3339.4 0.00 283.5 170 3930.9 0.00 65.4 200 4511.1 0.00 135.4
R2_2_01 140 4004.3 0.00 369.5 170 4631.6 0.00 3373.8 200 5298.1 0.45 10800.0
R2_2_02 140 3735.4 0.00 71.3 170 4387.7 0.45 10800.1 200 5021.4 0.00 2024.9
R2_2_03 140 3607.6 0.00 2693.1 170 4194.6 0.00 257.5 200 4860.0 0.00 410.6
R2_2_04 140 3473.3 0.00 78.7 170 4099.7 0.00 413.8 200 4761.1 0.00 1559.7
R2_2_05 140 3859.3 0.00 171.8 170 4476.5 0.24 10800.1 200 5122.8 0.40 10800.2
R2_2_06 140 3672.6 0.00 317.2 170 4297.4 0.22 10800.1 200 4950.1 0.23 10800.0
R2_2_07 140 3562.6 0.28 10815.6 170 4170.2 0.00 326.8 200 4847.6 0.00 1232.4
R2_2_08 140 3468.4 0.00 56.2 170 4098.5 0.00 591.8 200 4760.4 0.00 1818.0
R2_2_09 140 3780.9 0.00 406.9 170 4378.1 0.11 10800.1 200 5037.9 0.93 2364.1
R2_2_10 140 3693.5 0.00 1334.1 170 4306.9 0.00 1481.2 200 4946.0 0.00 9282.1

RC2_2_01 140 3722.8 0.00 332.2 170 4406.6 0.57 10800.1 200 4904.9 0.00 989.1
RC2_2_02 140 3575.4 0.08 10800.1 170 4231.7 0.00 1429.9 200 4796.2 0.00 2452.9
RC2_2_03 140 3487.9 0.00 1325.8 170 4158.5 0.36 10800.3 200 4733.6 0.55 2749.6
RC2_2_04 140 3449.3 0.00 192.1 170 4126.3 0.00 2250.1 200 4688.9 0.50 1264.7
RC2_2_05 140 3600.1 0.00 224.0 170 4302.9 0.00 4252.0 200 4842.1 0.00 6369.6
RC2_2_06 140 3623.4 0.00 5391.4 170 4299.2 0.00 2622.1 200 4848.6 0.67 2492.1
RC2_2_07 140 3566.2 0.00 206.3 170 4242.6 0.00 5838.0 200 4784.0 0.00 8265.5
RC2_2_08 140 3539.1 0.00 3394.3 170 4236.2 0.89 2457.4 200 4787.8 0.64 2677.6
RC2_2_09 140 3532.4 0.00 1023.0 170 4226.2 0.97 2477.1 200 4754.9 0.17 10800.0
RC2_2_10 140 3511.4 0.00 539.7 170 4200.2 0.25 10800.4 200 4739.4 0.00 5573.0

Table EC.4: Detailed results for the CMTVRPTW-R.

Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU
C201R0.25 70 1068.7 0.00 2.1 80 1213.4 0.00 3.6 100 1500.6 0.00 15.3
C201R0.5 70 1072.0 0.00 1.2 80 1216.1 0.00 2.1 100 1500.6 0.00 6.0
C201R0.75 70 1080.9 0.00 0.7 80 1226.8 0.00 1.3 100 1504.0 0.00 2.7
C202R0.25 70 1121.0 0.00 1.7 80 1249.5 0.00 2.8 100 1545.4 0.00 11.4
C202R0.5 70 1121.0 0.00 2.0 80 1249.5 0.00 3.0 100 1547.3 0.00 12.6
C202R0.75 70 1121.0 0.00 1.0 80 1251.7 0.00 3.6 100 1552.9 0.00 83.0
C203R0.25 70 1156.3 0.00 9.1 80 1283.0 0.00 17.6 100 1577.7 0.00 40.4
C203R0.5 70 1156.3 0.00 15.9 80 1283.0 0.00 20.0 100 1578.7 0.00 64.5
C203R0.75 70 1156.3 0.00 29.1 80 1287.1 0.00 33.7 100 1579.6 0.00 90.2
C204R0.25 70 1145.6 0.00 22.0 80 1269.0 0.00 57.7 100 1560.5 0.00 113.2
C204R0.5 70 1145.6 0.00 23.7 80 1269.0 0.00 35.2 100 1560.9 0.00 253.3
C204R0.75 70 1145.6 0.00 26.2 80 1274.4 0.00 94.3 100 1569.1 0.00 427.7
C205R0.25 70 1063.2 0.00 1.9 80 1202.3 0.00 2.7 100 1488.2 0.00 44.0
C205R0.5 70 1066.6 0.00 1.7 80 1210.1 0.00 1.8 100 1490.0 0.00 7.8
C205R0.75 70 1075.9 0.00 1.1 80 1213.6 0.00 1.8 100 1491.7 0.00 6.0
C206R0.25 70 1053.4 0.00 2.8 80 1195.6 0.00 3.2 100 1476.0 0.00 12.5
C206R0.5 70 1062.3 0.00 2.6 80 1201.3 0.00 4.1 100 1481.7 0.00 13.3
C206R0.75 70 1072.5 0.00 2.8 80 1206.6 0.00 4.5 100 1490.5 0.00 8.3
C207R0.25 70 1047.2 0.00 3.5 80 1192.3 0.00 3.6 100 1472.8 0.00 7.8
C207R0.5 70 1051.9 0.00 3.2 80 1193.9 0.00 3.7 100 1474.4 0.00 6.3
C207R0.75 70 1060.6 0.00 2.8 80 1199.9 0.00 4.1 100 1480.4 0.00 10.3
C208R0.25 70 1050.6 0.00 2.7 80 1192.7 0.00 3.6 100 1471.2 0.00 12.9
C208R0.5 70 1055.9 0.00 3.3 80 1198.3 0.00 3.9 100 1477.4 0.00 12.2
C208R0.75 70 1058.5 0.00 2.5 80 1198.3 0.00 2.7 100 1481.2 0.00 8.5
R201R0.25 70 1159.1 0.00 2.9 80 1244.7 0.00 5.9 100 1435.6 0.00 22.5
R201R0.5 70 1173.9 0.00 3.1 80 1261.8 0.00 6.5 100 1442.6 0.00 15.8
R201R0.75 70 1214.4 0.00 3.2 80 1284.3 0.00 3.1 100 1483.6 0.00 14.6
R202R0.25 70 1115.4 0.00 2.4 80 1185.2 0.00 3.5 100 1401.4 0.00 44.6
R202R0.5 70 1125.5 0.00 2.4 80 1203.4 0.00 8.7 100 1413.8 0.00 60.0
R202R0.75 70 1125.5 0.00 2.9 80 1212.6 0.00 6.3 100 1429.0 0.00 55.4
R203R0.25 70 1113.0 0.00 5.5 80 1196.1 0.00 16.4 100 1370.9 0.00 115.8
R203R0.5 70 1123.8 0.00 7.5 80 1205.1 0.00 34.1 100 1372.8 0.00 216.3
R203R0.75 70 1148.1 0.00 264.0 80 1227.5 0.00 657.8 100 1394.7 0.00 385.2
R204R0.25 70 1057.7 0.00 154.1 80 1152.7 0.00 105.7 100 1324.6 0.00 894.7
R204R0.5 70 1057.7 0.00 101.7 80 1152.7 0.00 215.7 100 1324.6 0.00 1031.4
R204R0.75 70 1079.8 0.00 114.0 80 1162.3 0.00 155.4 100 1334.6 0.00 301.4
R205R0.25 70 1073.5 0.00 6.0 80 1147.0 0.00 5.8 100 1314.4 0.00 44.3

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec7

Table EC.4 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

R205R0.5 70 1083.0 0.00 4.4 80 1159.7 0.00 6.9 100 1332.3 0.00 51.6
R205R0.75 70 1084.6 0.00 2.6 80 1185.5 0.00 14.8 100 1361.8 0.00 46.5
R206R0.25 70 1039.6 0.00 3.7 80 1111.5 0.00 13.9 100 1274.8 0.00 41.6
R206R0.5 70 1059.3 0.00 16.8 80 1122.4 0.00 19.1 100 1298.1 0.00 545.4
R206R0.75 70 1070.6 0.00 9.1 80 1149.1 0.00 49.3 100 1323.5 0.00 103.0
R207R0.25 70 1049.3 0.00 8.5 80 1113.7 0.00 14.0 100 1286.7 0.00 133.4
R207R0.5 70 1056.5 0.00 14.8 80 1128.7 0.00 30.8 100 1297.3 0.00 119.4
R207R0.75 70 1056.5 0.00 11.7 80 1128.7 0.00 78.2 100 1304.7 0.00 115.9
R208R0.25 70 997.4 0.00 137.7 80 1083.2 0.00 19.4 100 1253.1 0.00 707.9
R208R0.5 70 997.4 0.00 45.0 80 1083.2 0.00 108.6 100 1253.1 0.00 785.3
R208R0.75 70 997.4 0.00 30.3 80 1086.2 0.00 79.1 100 1253.1 0.00 1790.9
R209R0.25 70 995.4 0.00 19.7 80 1079.1 0.00 33.2 100 1255.8 0.00 528.8
R209R0.5 70 997.4 0.00 14.5 80 1083.5 0.00 33.9 100 1258.8 0.00 887.6
R209R0.75 70 1033.8 0.00 8.6 80 1109.9 0.00 5.4 100 1291.6 0.00 60.6
R210R0.25 70 1026.5 0.00 7.5 80 1098.9 0.00 14.4 100 1277.3 0.00 732.1
R210R0.5 70 1032.7 0.00 7.0 80 1111.1 0.00 22.9 100 1283.7 0.00 147.0
R210R0.75 70 1094.5 0.00 5.4 80 1165.0 0.00 8.9 100 1341.5 0.00 73.1
R211R0.25 70 930.4 0.00 23.9 80 1012.3 0.00 53.1 100 1171.4 0.00 114.8
R211R0.5 70 930.4 0.00 19.4 80 1013.1 0.00 48.6 100 1175.0 0.00 138.2
R211R0.75 70 959.1 0.00 36.3 80 1039.0 0.00 56.2 100 1199.3 0.00 476.3

RC201R0.25 70 1367.5 0.00 1.3 80 1573.3 0.00 3.9 100 1839.1 0.00 19.4
RC201R0.5 70 1397.6 0.00 2.8 80 1596.6 0.00 4.0 100 1849.6 0.00 7.1
RC201R0.75 70 1434.6 0.00 3.2 80 1625.1 0.00 3.3 100 1871.2 0.00 3.2
RC202R0.25 70 1409.8 0.00 5.3 80 1558.6 0.00 3.4 100 1790.8 0.00 15.5
RC202R0.5 70 1413.9 0.00 5.1 80 1565.2 0.00 3.0 100 1813.4 0.00 15.4
RC202R0.75 70 1438.3 0.00 1.8 80 1609.3 0.00 2.7 100 1841.7 0.00 29.7
RC203R0.25 70 1397.9 0.00 4.9 80 1579.8 0.00 19.6 100 1808.2 0.00 485.7
RC203R0.5 70 1407.7 0.00 9.4 80 1606.7 0.00 16.6 100 1831.1 0.00 184.1
RC203R0.75 70 1483.9 0.00 4.7 80 1665.2 0.00 38.6 100 1880.7 0.00 637.4
RC204R0.25 70 1354.0 0.00 164.3 80 1540.4 0.00 44.2 100 1749.4 0.00 241.8
RC204R0.5 70 1354.0 0.00 36.1 80 1540.4 0.00 40.8 100 1749.4 0.00 241.1
RC204R0.75 70 1409.5 0.00 79.1 80 1567.1 0.00 16.9 100 1780.4 0.00 80.8
RC205R0.25 70 1361.5 0.00 2.4 80 1537.3 0.00 3.6 100 1760.4 0.00 20.9
RC205R0.5 70 1433.0 0.00 7.9 80 1610.2 0.00 7.1 100 1819.0 0.00 27.6
RC205R0.75 70 1474.6 0.00 3.0 80 1661.1 0.00 2.4 100 1877.8 0.00 16.5
RC206R0.25 70 1309.1 0.00 2.3 80 1500.8 0.00 3.5 100 1734.1 0.00 9.9
RC206R0.5 70 1309.9 0.00 2.0 80 1502.0 0.00 3.4 100 1746.9 0.00 16.7
RC206R0.75 70 1347.7 0.00 2.1 80 1539.0 0.00 5.8 100 1793.6 0.00 11.5
RC207R0.25 70 1281.8 0.00 4.5 80 1462.5 0.00 7.7 100 1694.4 0.00 72.3
RC207R0.5 70 1281.8 0.00 4.6 80 1462.5 0.00 7.1 100 1694.4 0.00 73.0
RC207R0.75 70 1382.5 0.00 14.3 80 1554.0 0.00 11.4 100 1780.4 0.00 23.2
RC208R0.25 70 1216.4 0.00 22.7 80 1382.9 0.00 15.1 100 1595.5 0.00 809.3
RC208R0.5 70 1216.4 0.00 15.5 80 1386.4 0.00 22.5 100 1602.8 0.34 10815.8
RC208R0.75 70 1235.3 0.00 9.9 80 1419.9 0.00 8.6 100 1620.1 0.00 71.1

C2_2_01R0.25 140 3503.9 0.00 22.2 170 4107.2 0.00 49.7 200 4687.6 0.00 102.0
C2_2_01R0.5 140 3515.3 0.00 17.2 170 4126.7 0.00 48.3 200 4702.5 0.00 126.8
C2_2_01R0.75 140 3530.4 0.00 6.0 170 4135.3 0.00 22.2 200 4738.7 0.00 240.2
C2_2_02R0.25 140 3569.5 0.00 101.4 170 4182.5 0.00 687.0 200 4787.7 0.00 1965.6
C2_2_02R0.5 140 3578.7 0.00 64.9 170 4194.6 0.00 182.6 200 4798.5 0.00 1652.3
C2_2_02R0.75 140 3604.5 0.00 57.7 170 4204.7 0.00 110.7 200 4819.0 0.00 1755.0
C2_2_03R0.25 140 3514.7 0.00 62.3 170 4147.3 0.00 293.5 200 4750.3 0.00 1716.7
C2_2_03R0.5 140 3539.0 0.00 110.8 170 4170.7 0.00 952.7 200 4773.4 0.77 535.1
C2_2_03R0.75 140 3546.4 0.00 104.7 170 4180.8 0.00 775.7 200 — — —
C2_2_04R0.25 140 3514.3 0.00 384.2 170 4121.7 0.00 530.5 200 4706.0 0.00 717.6
C2_2_04R0.5 140 3521.3 0.00 505.1 170 4121.7 0.41 884.0 200 — — —
C2_2_04R0.75 140 3547.3 0.00 572.7 170 — — — 200 — — —
C2_2_05R0.25 140 3446.8 0.00 9.7 170 4045.3 0.00 45.8 200 4631.9 0.00 172.5
C2_2_05R0.5 140 3466.7 0.00 25.8 170 4076.6 0.00 60.3 200 4645.3 0.00 76.5
C2_2_05R0.75 140 3479.3 0.00 4.0 170 4084.0 0.00 65.5 200 4669.4 0.00 278.1
C2_2_06R0.25 140 3441.5 0.00 61.8 170 4027.6 0.00 68.5 200 4610.7 0.00 135.0
C2_2_06R0.5 140 3457.8 0.00 42.0 170 4050.3 0.00 67.0 200 4631.0 0.00 136.7
C2_2_06R0.75 140 3462.8 0.00 34.2 170 4062.0 0.00 84.2 200 4653.4 0.00 1009.6
C2_2_07R0.25 140 3418.7 0.00 9.7 170 4020.5 0.00 61.1 200 4597.3 0.00 103.0
C2_2_07R0.5 140 3444.8 0.00 33.7 170 4041.0 0.00 71.1 200 4605.2 0.00 81.5

Continued on next page

ec8 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.4 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

C2_2_07R0.75 140 3460.0 0.00 17.7 170 4063.6 0.00 113.4 200 4654.5 0.00 1727.6
C2_2_08R0.25 140 3413.6 0.00 35.9 170 4006.4 0.00 33.8 200 4585.3 0.00 129.3
C2_2_08R0.5 140 3431.2 0.00 33.7 170 4033.5 0.00 57.3 200 4598.8 0.00 103.8
C2_2_08R0.75 140 3448.2 0.00 9.9 170 4062.4 0.00 88.5 200 4659.9 1.13 834.7
C2_2_09R0.25 140 3381.9 0.00 12.5 170 3999.4 0.00 89.4 200 4581.0 0.00 97.0
C2_2_09R0.5 140 3387.0 0.00 10.7 170 4008.7 0.00 79.4 200 4586.6 0.00 41.0
C2_2_09R0.75 140 3416.2 0.00 49.7 170 4043.7 0.00 238.3 200 4620.8 0.00 131.7
C2_2_10R0.25 140 3381.7 0.00 14.3 170 3989.7 0.00 53.6 200 4580.2 0.00 163.8
C2_2_10R0.5 140 3384.1 0.00 12.4 170 3989.7 0.00 24.7 200 4588.7 0.00 163.2
C2_2_10R0.75 140 3411.6 0.00 9.6 170 4018.8 0.00 61.4 200 4601.8 0.00 100.6
R2_2_01R0.25 140 4066.5 0.00 117.4 170 4695.3 0.00 106.4 200 5398.6 0.00 2696.0
R2_2_01R0.5 140 4104.8 0.00 32.8 170 4771.3 0.00 835.6 200 5456.6 0.00 651.1
R2_2_01R0.75 140 4160.4 0.00 25.9 170 4811.3 0.00 43.5 200 5527.1 0.00 765.8
R2_2_02R0.25 140 4066.2 0.00 59.9 170 4674.0 0.00 63.0 200 5388.7 1.28 193.0
R2_2_02R0.5 140 4096.5 0.00 40.2 170 4729.4 0.00 702.5 200 5418.7 0.00 1734.7
R2_2_02R0.75 140 4206.7 0.00 56.4 170 4834.6 0.00 731.1 200 5514.8 0.00 980.6
R2_2_03R0.25 140 4005.5 0.00 57.2 170 4680.6 1.25 220.0 200 5346.5 1.04 426.9
R2_2_03R0.5 140 4018.8 0.00 59.7 170 4709.9 1.23 396.9 200 5358.9 0.00 759.8
R2_2_03R0.75 140 4189.8 0.00 339.2 170 4865.4 0.98 286.1 200 5544.5 1.21 505.9
R2_2_04R0.25 140 3902.4 0.00 149.2 170 4555.9 0.90 485.8 200 5171.4 0.00 1026.3
R2_2_04R0.5 140 3902.4 0.00 169.4 170 4555.9 0.79 537.7 200 5219.3 0.69 707.8
R2_2_04R0.75 140 3902.4 0.00 92.0 170 4569.5 0.67 764.8 200 — — —
R2_2_05R0.25 140 3919.3 0.00 18.4 170 4546.2 0.00 1058.3 200 5219.6 0.00 1469.0
R2_2_05R0.5 140 4001.4 0.00 19.4 170 4637.4 0.00 53.1 200 5302.0 0.00 989.8
R2_2_05R0.75 140 4032.8 0.00 34.8 170 4686.3 0.00 48.1 200 5344.6 0.00 702.9
R2_2_06R0.25 140 3963.8 0.00 44.9 170 4585.1 0.00 669.9 200 5266.3 0.00 1238.3
R2_2_06R0.5 140 4022.9 0.00 43.7 170 4640.4 0.00 712.7 200 5319.5 1.13 193.4
R2_2_06R0.75 140 4070.4 0.00 72.7 170 4702.1 0.00 1036.4 200 5359.4 1.13 155.8
R2_2_07R0.25 140 3932.8 0.00 61.5 170 4577.5 1.27 251.1 200 5264.0 0.92 314.5
R2_2_07R0.5 140 3951.2 0.00 46.6 170 4601.8 0.00 1554.9 200 5320.2 1.25 318.2
R2_2_07R0.75 140 4027.5 0.00 142.1 170 4666.5 0.00 1234.4 200 5388.4 1.19 390.1
R2_2_08R0.25 140 3843.9 0.00 145.0 170 4462.0 0.00 1233.5 200 5119.3 0.84 534.7
R2_2_08R0.5 140 3850.4 0.00 153.7 170 4474.2 0.00 737.8 200 — — —
R2_2_08R0.75 140 3953.1 0.87 532.2 170 — — — 200 — — —
R2_2_09R0.25 140 3854.4 0.00 60.1 170 4465.3 0.00 4496.8 200 5135.7 0.00 1658.9
R2_2_09R0.5 140 3920.3 0.00 25.4 170 4553.6 0.00 1091.6 200 5213.8 0.00 1043.1
R2_2_09R0.75 140 3997.3 0.00 29.4 170 4609.6 0.00 719.5 200 5277.3 0.00 970.7
R2_2_10R0.25 140 3769.1 0.00 19.4 170 4404.1 0.00 729.4 200 5066.0 0.00 1112.3
R2_2_10R0.5 140 3866.0 0.00 40.4 170 4497.5 0.00 929.2 200 5148.6 0.00 1317.0
R2_2_10R0.75 140 3916.1 0.00 56.5 170 4556.4 0.00 644.2 200 5185.7 0.00 1033.4

RC2_2_01R0.25 140 3813.1 0.00 1639.1 170 4505.0 0.00 3835.5 200 5024.8 0.00 1118.6
RC2_2_01R0.5 140 3859.7 0.00 723.0 170 4588.1 0.00 2252.5 200 5157.9 1.60 626.3
RC2_2_01R0.75 140 3994.8 0.00 708.0 170 4656.3 0.00 235.0 200 5236.7 0.00 2058.2
RC2_2_02R0.25 140 3837.3 0.00 83.2 170 4577.5 0.00 1065.5 200 5153.5 0.00 3065.1
RC2_2_02R0.5 140 3853.9 0.00 99.2 170 4626.5 0.00 1811.4 200 5187.6 0.00 3887.4
RC2_2_02R0.75 140 3867.6 0.00 85.8 170 4631.3 0.00 1027.7 200 5201.3 0.00 505.4
RC2_2_03R0.25 140 3897.9 0.00 158.9 170 4654.1 0.00 867.1 200 5209.9 1.23 766.1
RC2_2_03R0.5 140 3910.0 0.00 140.1 170 4661.9 0.00 1032.0 200 5238.2 1.13 1106.2
RC2_2_03R0.75 140 3924.4 0.00 151.0 170 4692.5 0.00 1261.9 200 5248.3 1.08 1121.0
RC2_2_04R0.25 140 — — — 170 4631.7 1.09 2689.7 200 — — —
RC2_2_04R0.5 140 — — — 170 4634.2 0.89 1774.4 200 — — —
RC2_2_04R0.75 140 — — — 170 4635.3 0.73 1442.7 200 — — —
RC2_2_05R0.25 140 3693.4 0.00 1339.8 170 4415.1 0.00 3142.2 200 4981.0 1.47 383.5
RC2_2_05R0.5 140 3739.0 0.00 1252.5 170 4499.9 1.47 227.1 200 5098.5 1.95 896.5
RC2_2_05R0.75 140 3834.7 0.00 1977.5 170 4562.9 1.30 222.3 200 5139.8 1.10 1275.4
RC2_2_06R0.25 140 3692.7 0.00 733.4 170 4411.4 0.15 10800.1 200 4965.1 1.01 688.9
RC2_2_06R0.5 140 3756.5 0.00 1098.2 170 4473.9 1.31 269.2 200 5039.6 0.96 255.9
RC2_2_06R0.75 140 3836.4 0.00 1594.8 170 4525.0 0.92 107.1 200 5149.2 1.51 431.2
RC2_2_07R0.25 140 3666.5 0.00 1223.3 170 4376.9 1.29 683.3 200 4933.7 1.14 1175.7
RC2_2_07R0.5 140 3703.4 0.00 881.1 170 4425.4 1.33 401.3 200 4987.7 1.21 299.7
RC2_2_07R0.75 140 3832.6 1.65 247.7 170 4527.6 1.65 159.8 200 5099.8 1.74 219.3
RC2_2_08R0.25 140 3609.9 0.00 1505.2 170 4323.8 1.25 1612.1 200 4940.1 2.18 2281.5
RC2_2_08R0.5 140 3646.6 0.00 1280.5 170 4376.6 1.27 1687.5 200 4934.0 0.97 334.1
RC2_2_08R0.75 140 3731.3 0.00 2373.5 170 4434.5 1.39 278.1 200 5068.1 2.34 2348.1
RC2_2_09R0.25 140 3612.3 0.00 360.6 170 4313.9 1.18 373.8 200 4857.2 0.86 572.3

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec9

Table EC.4 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

RC2_2_09R0.5 140 3658.7 0.00 1235.7 170 4364.5 1.12 1339.8 200 4923.1 1.01 2368.1
RC2_2_09R0.75 140 3737.3 0.00 153.2 170 4449.2 1.56 148.7 200 5078.6 2.61 2337.6
RC2_2_10R0.25 140 3588.6 0.00 4498.3 170 4279.0 0.00 3065.3 200 4843.4 0.92 483.4
RC2_2_10R0.5 140 3588.7 0.00 789.6 170 4316.8 1.45 1441.7 200 4888.0 1.48 799.8
RC2_2_10R0.75 140 3722.7 1.77 193.9 170 4390.7 1.14 212.4 200 4967.6 0.96 300.1

	Introduction
	Motivation
	Contributions and Outline

	Literature Review
	Preliminaries
	The Enumeration Procedure
	Variable Fixing by Lagrangian Bounds
	Variable Fixing by Dual Picking
	Major Drawbacks

	The DeLuxing
	Theoretical Foundations
	Novel LP Formulation for Dual Picking
	High Level Idea
	Potential Issue and Fix
	Further Discussion

	Overview of DeLuxing

	Elaboration on Every Step of DeLuxing
	Step 1: Initialization
	Step 2: Clustering
	The ClustByNorm Heuristic

	Step 3: Deep Search

	Extensions
	Variable Relaxation
	A New Way of Cutting Plane Addition
	An Effective Primal Heuristic

	Numerical Results
	Effectiveness of the Key Components of DeLuxing
	Effectiveness of DeLuxing and Three Extensions
	Comparison with State-of-the-Art Algorithms
	Comparison on the CMTVRPTW
	Comparison on the CMTVRPTW-LT
	Comparison on the CMTVRPTW-R

	Computational Results for Large Instances

	Concluding Remarks

