
DeLuxing: Deep Lagrangian Underestimate Fixing for
Column-Generation-Based Exact Methods

Yu Yang
Department of Industrial and Systems Engineering, University of Florida, yu.yang@ise.ufl.edu

In this paper, we propose an innovative variable fixing strategy called deep Lagrangian underestimate fixing

(DeLuxing). It is a highly effective approach for removing unnecessary variables in column-generation (CG)-

based exact methods used to solve challenging discrete optimization problems commonly encountered in

various industries, including vehicle routing problems (VRPs). DeLuxing employs a novel linear programming

(LP) formulation with only a small subset of the enumerated variables, which is theoretically guaranteed

to yield qualified dual solutions for computing Lagrangian underestimates (LUs). Due to their small sizes,

DeLuxing can efficiently solve a sequence of similar LPs to generate multiple high-quality LUs, and thus

can, in most cases, remove over 75% of the variables from the enumerated pool. We extend the funda-

mental concept underpinning the new formulation to contexts beyond variable fixing, namely variable type

relaxation and cutting plane addition. We demonstrate the effectiveness of the proposed method in accel-

erating CG-based exact methods via the capacitated multi-trip vehicle routing problem with time windows

(CMTVRPTW), its two important variants with loading times or release dates, and the classic CVRP

and VRPTW. Enhanced by DeLuxing and the extensions, one of the best exact methods for solving the

CMTVRPTW developed in Yang (2023) doubles the size of instances solved optimally for the first time

while being more than 7 times on average and up to over 20 times as fast as top-performing exact methods

reported in the literature. It further accelerates RouteOpt, one of the world’s fastest VRP solvers (You et al.

2023), by 48% and 74%, respectively, for solving the 200-node CVRP and 300-node VRPTW instances.

Keywords : column generation ¨ variable fixing ¨ Lagrangian underestimate ¨ multi-trip vehicle routing

1. Introduction

The textbook Dantzig-Wolfe decomposition (DWD; Dantzig and Wolfe 1960) naturally gives rise to a

column generation (CG) approach for solving challenging linear programs (LPs), where “promising”

variables1 are generated and added to the restricted master program (RMP) as needed throughout

the solution process. This idea of implicitly dealing with variables when there are too many of them

dates back to Ford and Fulkerson (1958) and has expanded well beyond the original context of

LP solving. In particular, it has been successfully combined with the well-known branch-and-bound

framework Land and Doig (2010) into the branch-and-price (BP) approach (Barnhart et al. 1998)

and additionally with problem-specific cutting planes into the branch-price-and-cut (BPC) approach

1 Columns and variables are used interchangeably in this paper in view of their correspondence.

1

Yang: DeLuxing for CG-Based Exact Methods
2 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

(e.g., Kohl et al. 1999, Fukasawa et al. 2006, Jepsen et al. 2008) for solving integer programs (IPs).

BP and BPC methods are now the leading exact algorithms to approach various challenging discrete

optimization problems arising in the industry, including vehicle routing problems (VRPs; Pessoa

et al. 2020, Desaulniers et al. 2016a), inventory routing problems (Desaulniers et al. 2016b, Engineer

et al. 2012), and crew rostering problems (CRPs; Breugem et al. 2022, Quesnel et al. 2020).

A persistent challenge associated with CG is its tendency to generate an excessive number of

columns when solving large-scale instances, which slows down the solution process and consumes a

large amount of memory. To alleviate this problem, it is possible to adopt a straightforward column

clean-up procedure that drops columns with large reduced costs (see Section 5.2 of Pessoa et al.

2020) at the expense of more CG iterations required to solve the LPs optimally. To further mitigate

the issue, most BPC methods incorporate reduced cost fixing (RCF), which fixes variables based on

their reduced costs, as a default functionality to remove variables (Pecin et al. 2017a,b). RCF builds

upon the fact that the reduced cost of a given variable xi lower bounds the absolute change in the

optimal value of the LP relaxation for each unit change in the value of xi. The variable bound can

thus be tightened accordingly to prevent the LP from achieving objective values worse than a known

primal bound of the mixed integer program (MIP; for more details, see Wolsey and Nemhauser 1999,

p. 389). For problems involving binary variables (e.g., Crowder et al. 1983, Johnson et al. 1985), RCF

can directly fix variables, and those fixed to 0 can be safely removed from the formulation without

compromising solution optimality.

1.1. Motivation

Compared to classic compact formulations (e.g., vehicle or commodity flow-based formulations, see

Baldacci et al. 2004, Cappanera and Gallo 2004), an extensive formulation, such as a set partitioning

formulation or DWD reformulation, usually produces much tighter lower bounds2 but needs to be

solved by a CG approach due to the exponential number of variables. Such tight lower bounds make

it possible to enumerate all columns with reduced costs no larger than the current integrality gap

at an early stage. The enumeration implicitly applies RCF and was first recommended by Baldacci

et al. (2008) for solving VRPs, which has led to remarkable acceleration (Yang 2023, Sadykov et al.

2021, Paradiso et al. 2020).

The enumeration is usually activated when the current integrality gap drops blew a threshold ∆.

Thus, the aggressiveness of enumeration is directly controlled by ∆, with larger values indicating

higher aggressiveness. Increasing the aggressiveness within a certain range helps to close an open

branch-and-bound node (BBN) faster, while too large a ∆ results in the enumeration of an excessively

2 By default, we consider minimization problems in this paper. A maximization problem can be solved by minimizing
the negation of the original objective function.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

large column pool or even failure of enumeration due to hitting limits on, e.g., time, memory, or the

pool size, causing deterioration in overall performance (Costa et al. 2019). For challenging instances

with a reasonable ∆, it is common to have millions of columns or more enumerated.

Although RCF can also be applied after enumeration to reduce the pool size gradually (see Pessoa

et al. 2020), when the route length is not long (usually no more than 15 customers per route), its

effectiveness is limited for three major reasons. First, the columns in the pool are promising ones and

tend to be difficult to remove because they have implicitly passed the initial screening by RCF in the

enumeration phase. Second, the effectiveness of RCF relies heavily on the changes in the lower and

upper bounds. Multiple rounds of cutting plane addition and branching are typically required before

the pool can be shrunk to a tractable size such that the BBN can be closed by directly solving an IP

with all columns left in the pool. Consequently, RCF may iterate through the entire pool many times

in this process, incurring a substantial increase in computational load. Finally, RCF usually uses only

one optimal dual solution from the most recent LP, which can be somewhat arbitrary within the

optimal face of the corresponding polyhedron and thus results in fluctuating and mostly mediocre

performance.

Unfortunately, to the best of our knowledge, not much progress has been made in addressing the

said causes of ineffectiveness, which motivates this research. Specifically, we seek to unlock the full

potential of variable fixing for CG-based exact methods when an enumeration procedure is employed.

1.2. Contributions, Limitations, and Outline

This paper proposes a deep Lagrangian underestimate fixing (DeLuxing) method widely applicable

to accelerate CG-based exact methods. We summarize our contributions as follows.

• We introduce a novel LP formulation that yields high-quality Lagrangian underestimates (LUs)

and rigorously prove its validity. The LP includes only a small subset of variables (i.e., those with

reduced costs no larger than half of the current gap), allowing for a rapid search for promising

dual solutions. The variable fixing induced by employing such dual solutions addresses the

ineffectiveness of RCF from three perspectives: (i) it imposes much less restriction on qualified

dual solutions while the standard RCF generally necessitates the use of optimal dual solutions;

(ii) it takes effect at the current BBN by reducing the strong reliance on the quality of the

lower bound, avoiding repeated branching or addition of cutting planes before achieving its

significance; (iii) it proactively seeks multiple dual solutions to generate LUs of high quality that

fix a large number of variables with mild computational overhead.

• We expand the fundamental idea behind the proposed LP formulation to achieve additional accel-

eration beyond variable fixing. More precisely, following this principle, we prove that, under mild

conditions, a large proportion of the integer variables can be relaxed to continuous ones in the

Yang: DeLuxing for CG-Based Exact Methods
4 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

RMP, thereby expediting the computation. Additionally, we enhance the iterative process of
adding cutting planes by conducting computations on a restricted reformulation, which includes
only a subset of all variables — those with reduced costs not exceeding half of the current gap.
This new approach to cut addition further accelerates the computation while resulting in mini-
mal or no deterioration in the quality of the obtained lower bound. It is worth mentioning that
these extensions preserve the exactness of the entire algorithm.

• We propose a straightforward yet effective algorithmic framework that systematically directs the
exploration for promising dual solutions, and we provide insights into the mechanisms contribut-
ing to its success. The key idea involves bundling columns with similar characteristics into a
reference point to guide the search. A clustering procedure is initially employed to identify
Euclidean distance-based similarities among columns. The algorithm then starts from each clus-
ter and conducts a deep search using a reference point computed with newly identified removable
columns at each iteration until a stopping criterion is reached. One can view this iterative
procedure as implicitly revealing the similarities among columns via the reference points.

• We demonstrate that DeLuxing, as a versatile variable screening tool, effectively removes unnec-
essary variables and can be flexibly applied throughout a BPC method. Our experiments on the
capacitated multi-trip vehicle routing problem with time window (CMTVRPTW) show that
DeLuxing can remove over 75% of the variables in most cases. Its effectiveness is even more
pronounced as the problem size increases, achieving a reduction of up to 99%. In addition to
its standard usage of removing variables after an exact enumeration, DeLuxing can serve as a
crucial component in a highly effective primal heuristic.

• We conduct an extensive numerical study and show that DeLuxing, along with several accel-
eration techniques inspired by it, takes the performance of BPC methods to an entirely new
level. One of the best exact methods for solving the CMTVRPTW in Yang (2023) enhanced by
the proposed DeLuxing can solve all instances with 140 customers for the first time, doubling
the size of instances that can be solved to optimality. Furthermore, it achieves near-optimal
solutions with an average optimality gap of 0.5% for instances with up to 200 customers. Addi-
tionally, remarkable acceleration (48% and 74%, respectively) is achieved on top of RouteOpt
when solving the 200-node CVRP and 300-node VRPTW instances.

The effectiveness of DeLuxing relies on enumerating all necessary columns early in the optimiza-
tion process, as seen in the CMTVRPTW and its two variants. For classic VRPs (e.g., CVRP and
VRPTW) with short to moderate routes, considerable computation is still required after enumera-
tion, and DeLuxing can significantly accelerate the solution process. However, in instances where the
route length is excessively long, enumeration may not succeed until a very late stage. A node can be
closed rapidly without much branching after a successful enumeration. In such cases, DeLuxing may

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

not be particularly effective. Nonetheless, the primal heuristic inspired by DeLuxing demonstrates

remarkable effectiveness even for long-route instances.

The rest of the paper is structured as follows. Section 2 provides a review of some variable fixing

techniques related to RCF. Section 3 describes preliminaries on the enumeration procedure and

variable fixing techniques. Section 4 introduces the theoretical foundations and relevant formulations

for dual picking, and gives an overview of DeLuxing. A detailed explanation of DeLuxing is provided

in Section 5. Three extensions inspired by DeLuxing are presented in Section 6. We report the results

of five sets of numerical experiments in Section 7. Finally, in Section 8, we make concluding remarks

and identify potential avenues for future research. The detailed numerical results can be found in

the e-companion. The compiled C++ library for reproducing the results and solving new instances of

the CMTVRPTW and its two variants is made publicly available at https://github.com/Yu1423/

DeLuxing.

2. Literature Review

In this section, we review variable fixing techniques that rely on the well-known RCF, specifically

focusing on those integrated into customized CG-based algorithms. Additionally, we discuss some

recent efforts to enhance the effectiveness of RCF in more general settings. Finally, we review the

current state-of-the-art exact methods for solving the CMTVRPTW, its two variants, CVRP, and

VRPTW to facilitate the comprehension of our numerical results in Section 7.

The idea of what is now known as RCF was originally introduced in the seminal work Dantzig et al.

(1954) for solving the traveling salesman problem. Its practical effectiveness and ease of implemen-

tation have made it a standard procedure in cutting-edge MIP solvers such as Gurobi (Achterberg

2018), CPLEX (Bixby et al. 2000), and SCIP (Achterberg et al. 2008). Moreover, RCF has been

applied to leverage the strengths of MIP in a constraint programming (CP) framework (Yunes et al.

2010, Bacchus et al. 2017). Beyond MIP and CP, RCF has also been employed in two-stage stochastic

programming (Crainic et al. 2018), semidefinite relaxation (Posta et al. 2012), and many others.

However, applying RCF to fix nominal variables in an extensive formulation solved by a CG-based

method cannot be done blindly as it necessitates restructuring the pricing subproblem to prevent

the regeneration of eliminated variables. Therefore, fixing by reduced costs is typically applied to

implicit variables, which is equivalent to removing a subset of the variables in the RMP. Irnich et al.

(2010) propose to use path-reduced cost to remove arcs from the underlying network of routing

and scheduling problems without sacrificing optimality. They derive analytical results on which dual

solutions to the pricing subproblem can achieve the largest reduced cost for an arc-flow variable under

a given dual solution to the LP relaxation of the RMP. The authors conclude that approximately 80%

https://github.com/Yu1423/DeLuxing
https://github.com/Yu1423/DeLuxing

Yang: DeLuxing for CG-Based Exact Methods
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

of the arcs can be eliminated when the optimality gap is around 1%. This arc elimination technique
has also been successfully applied in Pecin et al. (2017a) for solving the VRPTW.

Pessoa et al. (2010) and Pecin et al. (2017b) refine this approach to a resource-value-dependent arc
elimination procedure for solving parallel machine scheduling problems and the CVRP, respectively.
Using a similar approach, Sadykov et al. (2021) perform the so-called bucket arc elimination on a
sophisticated way of organizing labels in the labeling algorithm called bucket graph. They report a
6% speedup compared to a standard arc elimination procedure independent of resources and conclude
that hard instances with small primal-dual gaps benefit more from this new bucket arc elimination.
Desaulniers et al. (2020) propose to generalize the idea to fix sequences of two arcs with a modification
in the labeling algorithm for pricing. Experiments on the VRPTW and four variants of the electric
VRPTW show that single-arc fixing can eliminate more than 90% of the feasible two-arc sequences,
and two-arc sequence fixing can fix approximately half of the remaining ones, achieving an overall
reduction of around 19% in the BPC computation time.

Enumeration, which identifies all potential columns with reduced costs not exceeding the cur-
rent integrality gap, is another effective way to utilize RCF. This procedure has been employed in
many high-performing BPC approaches (e.g., Yang 2023, Pessoa et al. 2020, Baldacci et al. 2013,
2011a,b,c,d) since its inception in Baldacci et al. (2008). After enumeration, RCF can be applied to
the nominal variables in the conventional manner as columns are no longer generated by the labeling
algorithm. Nonetheless, the efficacy of RCF is limited, especially at the current BBN, due to the
three reasons explained in Section 1.1, which leaves room for improving RCF when applied in this
way. It has been observed in Sellmann (2004) that distinct dual solutions can result in significantly
different effectiveness and sub-optimal dual solutions could potentially result in even more variable
fixing than optimal ones, which suggests a promising research avenue.

Bajgiran et al. (2017) take a step in exploring such improvement and propose to search for a dual
solution maximizing the number of variables that can be fixed by solving a MIP. Their experiments
demonstrate that the new dual picking method yields an average speedup of 20% in geometric mean
over the default CPLEX. The authors also observe that by limiting the search to the optimal dual
face instead of the entire dual feasible space, almost the same amount of fixing can be achieved while
being orders of magnitude faster. However, solving the MIP constructed by Bajgiran et al. (2017)
can be challenging as it includes n binary variables, where n is the number of variables in the original
problem. The authors thus set a time limit of 10 minutes and use all feasible solutions obtained in
the process for variable fixing. In Yang (2023), the author proposes to solve a new auxiliary problem
that computes a second dual solution for fixing variables after enumeration in the price-cut-and-
enumerate method (EPCEM) for the CMTVRPTW. Based on a similar idea, de Lima et al. (2023)
develop two strategies to compute alternative dual solutions for variable fixing when dealing with

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 7

network flow models. It is worth mentioning that since they consider the DWD reformulation, the
variable fixing is conducted on the arcs of the underlying network. These methods can be performed
iteratively, with each iteration building upon the previous round of variable fixing. They demonstrate
that these techniques speed up the proof of optimality despite their high computational overhead.
Lastly, Mingozzi et al. (2013) propose four bounding procedures to enhance lower bounds in solving
multi-trip VRPs, where the dual solution from each procedure is additionally utilized for RCF. Note
that they do not actively search for new dual solutions for variable fixing purposes.

Our proposed DeLuxing method eliminates nominal variables in the RMP via multiple dual solu-
tions. It fundamentally differs from existing approaches in several key aspects. First, DeLuxing uses
a novel small-sized LP formulation to search for qualified dual solutions that are not restricted to
be (sub)-optimal or feasible for the original dual problem. Second, it uses a completely new way of
searching that exploits the underlying column similarities revealed iteratively. Last, DeLuxing does
not rely on specific problem structures, unlike previous approaches such as those in de Lima et al.
(2023), making it generally applicable to both CG-based exact methods and MIPs.

The CMTVRPTW is an increasingly popular extension of the well-known capacitated VRPTW
by allowing each vehicle to perform multiple trips, catering to real-world scenarios with constraints
such as limited vehicles, driver availability, vehicle capacity, or trip duration (Cattaruzza et al.
2016b). In this study, we also consider two notable variants of the CMTVRPTW: the CMTVRPTW
with loading times (CMTVRPTW-LT; Hernandez et al. 2016) and CMTVRPTW with release dates
(CMTVRPTW-R; Cattaruzza et al. 2016a). In the CMTVRPTW-LT, a loading time, computed as a
fixed percentage of the total service time of all customers visited in the route, is required at the depot
before a vehicle can start the trip. In the CMTVRPTW-R, the requested goods by each customer
become available at the depot at possibly different times, called release dates. Consequently, a vehicle
cannot depart from the depot until all the goods to be aboard are available, i.e., its departure time
should be no earlier than the latest release date among the goods it ships. Although the loading
times and release dates do not affect the objective, which is to minimize the total distance traveled
by all vehicles, they impact the solution space and thus the problem difficulty.

Paradiso et al. (2020) develop the first exact solution framework (ESF) capable of solving the
CMTVRPTW and its four variants including the CMTVRPTW-LT and CMTVRPTW-R. The ESF,
operating as a BPC type of algorithm, solves a novel structure-based formulation, which signifi-
cantly outperforms all previously leading exact methods such as those proposed by Hernandez et al.
(2014, 2016), and Cheng et al. (2020). Inspired by Paradiso et al. (2020), Yang (2023) introduce a
superstructure-based formulation with fewer variables while maintaining the same theoretical tight-
ness. The EPCEM developed therein demonstrates substantially superior numerical performance
compared to the ESF. Two very recent studies achieve remarkable advancements, representing the

Yang: DeLuxing for CG-Based Exact Methods
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

state-of-the-art. Roboredo et al. (2023) propose a new graph-based model, effectively solved by the

VRP-Solver developed in Pessoa et al. (2020) with a simple parameterization. Zhang (2022) propose

a novel three-phase exact method for solving all five problems. In the initial two phases, a route-based

and a trip-based model are solved, respectively, to obtain tight lower bounds, followed by solving

a trip-based model with dynamic time discretization in the last phase. In contrast, our approach

works only with route-based models. Specifically, incorporating DeLuxing and the three extensions

developed in this paper into the EPCEM (see Section 7.2), we obtain an enhanced exact method,

denoted as Default, expanding the frontiers of this field even further. For the classic CVRP and

VRPTW, the VRP-Solver (Pessoa et al. 2020) consistently achieves one of the best results in the

literature and thus serves as a benchmark for experiments in Section 7.5.

3. Preliminaries

In this section, we first formally describe the enumeration procedure that is now widely applied in

the BPC framework for solving challenging discrete optimization problems. Then, we review the

general variable fixing technique by Lagrangian bounds. Lastly, we discuss a special variable fixing

strategy via dual picking introduced in Yang (2023) and its major drawbacks, which serve as a

natural motivation for this study. Throughout the paper, we use R`, Z, and Z` to denote the set

of non-negative real numbers, integers, and non-negative integers, respectively. Little letters in bold

are used to represent vectors. The inner product of two vectors x and y is denoted by xx,yy.

3.1. The Enumeration Procedure

Consider the following extensive formulation that can be a standard set partitioning formulation or a

DWD reformulation. Since the proposed method will be applied exclusively to fix integer variables, we

omit continuous variables in the presentation without loss of generality. Moreover, we only consider

that all variables are non-negative in our presentation. This requirement is not necessary and can be

removed through a straightforward variable substitution.

FpRq : z˚ “ min
ÿ

rPR
crxr

s.t.
ÿ

rPR
airxr “ bi, @i P N ,

xr P Z`, @r P R.

In the context of VRPs, N represents the set of customers, each of which should be visited exactly

once (i.e., bi “ 1 for i P N), R consists of all feasible routes and possibly some relaxed routes that

are not necessarily feasible (e.g., ng-routes from Baldacci et al. 2012), xr is a binary decision variable

taking the value of one if route r P R is used and zero otherwise, cr and air denote the cost and

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 9

the number of times customer i is visited by route r, respectively. Due to the exponential size of R,

formulation FpRq is typically solved by a BPC method (Fukasawa et al. 2006, Pecin et al. 2017b).

Let lb and ub, separately, be a lower bound and an upper bound of the optimal value z˚. An lb is

usually obtained by solving some LP relaxations of FpRq, and an ub is usually set to the objective

value of the best feasible solution found so far. The optimality gap, denoted by g, is computed as

the difference between ub and lb, i.e., g :“ ub´ lb. A BPC method can try to enumerate all variables

with reduced costs no larger than g with respect to (w.r.t.) the current dual solution when the gap

g falls below some prespecified threshold. This idea was first proposed for solving VRPs in Baldacci

et al. (2008) and has been successfully applied in most state-of-the-art BPC methods.

Let R denote the set of variables that have been enumerated. In the case of VRPs, the set R only

consists of qualified elementary routes, as non-elementary routes are not feasible. RCF guarantees

that solving FpRq will yield an optimal solution to FpRq because a variable with a reduced cost

greater than g cannot take a positive integer value in any optimal solution. When the cardinality

of R is in the tens of thousands, solving FpRq as an IP by a general MIP solver such as Gurobi

(Gurobi Optimization, LLC 2023) can yield an optimal solution within a reasonable time frame. In

case of |R| being too large, the algorithm can continue the BPC procedure using inspection for CG

(Contardo and Martinelli 2014). Specifically, instead of running the dynamic programming-based

labeling algorithm, which can be computationally intensive, especially when many non-robust cuts

(Pecin et al. 2017b) have been added, pricing is done by evaluating the reduced costs of the columns

in the pool. In both cases, the pool size significantly impacts the time required to prove optimality.

3.2. Variable Fixing by Lagrangian Bounds

A natural way to reduce the computational burden after enumeration is to remove variables from

FpRq. Consider the following LP relaxation of FpRq with cutting planes added in the solution process.

FpRq : z̄˚ “ min
ÿ

rPR
crxr

s.t.
ÿ

rPR
airxr “ bi, @i P N , (1)

ÿ

rPR
akrxr ď bk, @k P K, (2)

xr ě 0, @r P R,

where K denotes the index set of the added cuts. For VRPs, they typically include the rounded

capacity cuts (RCCs; Laporte and Nobert 1983, Lysgaard et al. 2004), the (limited memory) subset

row cuts (SRCs; Jepsen et al. 2008, Pecin et al. 2017b) and problem-specific feasibility cuts, e.g., the

relaxed (super)structure feasibility cuts for the CMTVRPTW (Yang 2023, Paradiso et al. 2020).

Yang: DeLuxing for CG-Based Exact Methods
10 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Fixing variables by Lagrangian bounds is a widely applied technique in solving discrete optimization

problems (e.g., Balas and Saltzman 1991, Balas and Carrera 1996, Holmberg and Yuan 2000). The

general idea is that when a variable is set to a given value, if the Lagrangian bound is larger than the

best upper bound, then this value can be excluded from the variable’s feasible region. More precisely,

consider the following Lagrangian dual function obtained from FpRq by dualizing the constraints.

Lpy,xq “
ÿ

iPI
biyi `

ÿ

rPR

˜

cr ´
ÿ

iPI
airyi

¸

xr,

where I :“ N Y K, yi for i P I are the dual variables associated with constraints (1) and (2),

y “ pyiqiPI , and x “ pxrqrPR. For convenience, we define the set Y :“ ty P R|I| : yk ď 0, @k P Ku.

Let FpRq|xj“v be the formulation obtained by adding an additional constraint xj “ v to FpRq, and

z̄˚|xj“v be its optimal value, which is set to `8 in case of infeasibility. Due to LP weak dual-

ity, it follows that maxyPY minxě0,xj“v Lpy,xq ď z̄˚|xj“v. If, for any given dual vector ŷ P Y , we

have minxě0,xj“v Lpŷ,xq ą ub, then it immediately leads to z̄˚|xj“v ě maxyPY minxě0,xj“v Lpy,xq ě

minxě0,xj“v Lpŷ,xq ą ub. Therefore, xj cannot equal v in any optimal solution to FpRq. RCF can

be viewed as a special case of this general technique. Specifically, if minxě0,xj“1Lpy˚,xq ą ub for an

optimal dual solution y˚, then the binary variable xj can be fixed to 0 and thus removed.

3.3. Variable Fixing by Dual Picking

The Lagrangian bound minxě0,xj“1Lpy,xq depends on the dual y used and it reduces to z̄˚ ` c̄j `

minxě0

ř

rPR c̄rxr when y is an optimal dual solution to FpRq, where c̄r “ cr ´
ř

iPI airyi “ cr ´xy,ary

is the corresponding reduced cost of xr, and ar “ pairqiPI . Let Y˚ be the set of optimal dual solutions

to FpRq. In Yang (2023), the author proposes to pick a special point in Y˚ to obtain large reduced

costs, thereby fixing a large number of columns to 0. This involves solving the following LP, denoted

by DF, that maximizes the sum of the reduced costs of all variables. According to the LP duality

theorem, it is equivalent to solving AUX in the primal space (see Section 6.5 of Yang 2023 for details).

pDFq :
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

max
ÿ

rPR

˜

cr ´
ÿ

iPI
airyi

¸

s.t.
ÿ

iPI
airyi ď cr, @r P R,

ÿ

iPI
biyi “ z̄˚,

yi ď 0, @i P K.

pAUXq :

Dual
ùùùùñ

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

min
ÿ

rPR
crpxr ` 1q ` z̄˚w

s.t.
ÿ

rPR
airxr ` biw “ ´

ÿ

rPR
air, @i P N ,

ÿ

rPR
akrxr ` bkw ď ´

ÿ

rPR
akr, @k P K,

xr ě 0, @r P R.

3.3.1. Major Drawbacks The above approach has several drawbacks. First, by design, AUX

searches within the dual optimal face, using a dual solution from Y˚ to update the reduced costs.

However, Y˚ only constitutes a small portion of all feasible dual solutions to FpRq, so the number

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

of variables that can be removed by solving AUX may be limited. Second, solving AUX, possibly

with different objective coefficients, to obtain multiple dual solutions can lead to more variable

fixings. However, AUX has p|R| ` 1q variables, which can easily top tens of millions for challenging

instances, making AUX time-consuming and memory-intensive to solve, particularly for interior point

methods that are known to outperform the simplex method for large-sized LPs. Consequently, it is

computationally prohibitive to repeatedly solve AUX with varied objective coefficients.

In fact, for each individual r P R, we want to maximize the reduced cost c̄r, which can be achieved

by solving an AUX with c̄r as the objective function. Thus, it requires solving AUX by a total of |R|

times and is computationally intractable. Instead, maximizing the sum
ř

rPR c̄r can be viewed as a

coarse approximation that works reasonably well when the set of |I |-dimensional vectors, t´ar : r P

Ru, have some nice structure. For example, when they are close to the ray generated by y as depicted

in the left subfigure of Figure 1, where y is an extreme point of the polyhedron Y˚, almost all reduced

costs c̄r are maximized at the same extreme point y.

However, this approach can be problematic, particularly when ´ar for r P R are scattered in the

|I |-dimensional Euclidean space. Let o1 :“ 1
|R|

ř

rPRp´arq be the center and r1 :“ maxrPR } ´ ar ´ o1}

be the radius. Maximizing the sum
ř

rPR c̄r essentially maximizes the inner product xy,o1y for y P Y˚,

which is achieved at extreme point y1. However, as shown in the right subfigure of Figure 1, when

the radius r1 is relatively large, y1 may not be the maximizer for a majority of c̄r. For instance, all

the purple and yellow points are maximized at extreme points y2 and y3, respectively. As a result,

some variables could have been fixed if a better dual solution, such as y2 or y3 in this example, had

been used to compute the reduced costs.

Figure 1 An example illustrating that a direct maximization of the sum of all reduced costs can be problematic,

where o represents the origin, Y˚ represents the feasible region of DF, y, y1, y2, and y3 are extreme

points of Y˚, and the points in green, purple, and yellow represent ´ar for some r P R.

Yang: DeLuxing for CG-Based Exact Methods
12 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

4. The DeLuxing

The proposed DeLuxing aims to overcome the previously mentioned limitations. More specifically,

DeLuxing enables the removal of variables by using LUs computed with dual solutions that are not

necessarily optimal and may even be infeasible, which enlarges the search space substantially. In this

process, a sequence of carefully crafted LPs of much smaller size than the AUX is solved instead

of just solving a single AUX, significantly increasing the chance of an unnecessary variable being

removed. According to our numerical experiments detailed in Section 7, DeLuxing can remove more

than 75% of the columns in most cases, reducing R to a quarter or less of its original size.

4.1. Theoretical Foundations

Constructing small-sized LPs to obtain multiple dual solutions fast is one of the key ideas behind

DeLuxing, which is motivated by the observation that the number of variables with reduced costs no

greater than g
2

only comprises a small proportion (mostly less than 15%) of the elements in R. This

ratio is observed to be even smaller for larger instances. In other words, |Rď
2 | is much smaller than

|R|, where Rď
2 :“ tr P R : c̄πr ď g

2
u, π is a given optimal dual solution to FpRq, and c̄πr “ cr ´ xπ,ary

is the reduced cost of variable xr w.r.t. π. Although we use the simplified notation Rď
2 that does not

explicitly show its dependence on π, it should not cause any confusion. Once Rď
2 is computed using

a given π, it will not be recomputed w.r.t. another dual solution unless otherwise specified. Thus, it

is expected that substantial acceleration will be achieved if the computation can be performed using

solely variables xr for r in set Rď
2 instead of the whole set R. This is made possible by the following

Lemma 1 (Proposition 4 from Yang 2023), which ensures that any optimal solution to FpRq can have

pk ´ 1q variables with reduced costs larger than g
k

taking positive integer values.

Lemma 1 (Proposition 4 in Yang 2023). For any given positive integer k, the inequality
ř

rPRą
k
xr ď k ´ 1 is valid for FpRq, where Rą

k :“ tr P R : c̄πr ą g
k

u.

Evidently, Lemma 1 also reduces to the standard RCF when k “ 1. We consider the case when

k “ 2, and work with the formulation FpRď
2 q obtained from FpRq with the set of variables xr for

r P R replaced by r P Rď
2 . Let Yπ be the set of all feasible dual solutions to FpRď

2 q, i.e., Yπ :“ ty P

R|I| :
ř

iPI airyi ď cr, @r P Rď
2 , yi ď 0, @i P Ku.

Proposition 1. For any given ŷ P Yπ and j P Rą
2 , if xf j, ŷy ą ub ´ cj is satisfied, where f j “

pbi ´ aijqiPI , then variable xj can be removed from formulation FpRq.

Proof Let F1pRq be the formulation obtained from FpRq by adding the additional constraint
ř

rPRą
2
xr ď 1. Due to Lemma 1, we know

ř

rPRą
2
xr ď 1 is valid for FpRq. Therefore, F1pRq can

be viewed as a relaxation of FpRq. Let z1|xj“1 and z˚|xj“1 be the optimal value of F1pRq and

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

FpRq, respectively, when xj “ 1 is enforced for a given j P Rą
2 . Then we have z1|xj“1 ď z˚|xj“1. For

convenience, we define c̄ŷ
r :“ cr ´ xŷ,ary. Note that Rď

2 “ RzRą
2 .

min
xě0,xj“1,

ř

rPRą
2

xrď1

Lpŷ,xq “ min
xě0,xj“1,

ř

rPRą
2 ztju

xr“0

Lpŷ,xq

“
ÿ

iPI
biŷi ` min

xě0,xj“1,
ř

rPRą
2 ztju

xr“0

ÿ

rPR

˜

cr ´
ÿ

iPI
airŷi

¸

xr

“
ÿ

iPI
biŷi ` c̄ŷ

j ` min
xrě0,@rPRď

2

ÿ

rPRď
2

c̄ŷ
rxr

ě
ÿ

iPI
biŷi ` c̄ŷ

j “ cj `
ÿ

iPI
pbi ´ aijqŷi “ cj ` xf j, ŷy ą ub

where the inequality is due to c̄ŷ
r ě 0 for r P Rď

2 , given ŷ is a feasible dual to FpRď
2 q. Consequently,

z˚|xj“1 ě z1|xj“1 “ z̄˚|xj“1,
ř

rPRą
2

xrď1 ě max
yPY

min
xě0,xj“1,

ř

rPRą
2

xrď1

Lpy,xq ě min
xě0,xj“1,

ř

rPRą
2

xrď1

Lpŷ,xq ą ub,

where z̄˚|xj“1,
ř

rPRą
2

xrď1 is the optimal value of FpRq when xj “ 1 and
ř

rPRą
2
xr ď 1 are enforced,

and the second inequality is due to weak duality. We conclude that any feasible solution to FpRq

with xj equal to 1 must have an objective value larger than ub, and thus xj can be removed from

the formulation, which completes the proof. ■
Remarks: According to Proposition 1, any ŷ P Yπ can be used for removing unnecessary variables,

even if it may be infeasible to the dual of FpRq. It provides an easily verifiable criterion to decide if

a variable xj for j P Rą
2 can be removed for a given ŷ. Note that vectors f j and values ub ´ cj for

all j P Rą
2 need to be calculated only once and can be reused throughout the computation. Upon

obtaining a new feasible dual solution ŷ to FpRď
2 q, it suffices to compute the inner product xf j, ŷy

and make the comparison. Two distinct variables, xi, xj P R, are said to be compatible if there exists a

feasible solution to FpRq with both xi and xj equal to 1. In other words, xi and xj are incompatible if

xi `xj ď 1 is valid for FpRq. The following Proposition 2 provides a sufficient condition for removing

a variable xj for j P Rď
2 .

Proposition 2. For any given ŷ P Yπ and j P Rď
2 , if xf j, ŷy ą ub ´ cj ´ mintηj,0u is satisfied,

where ηj “ min
rPSj

tcr ´ xŷ,aryu and Sj “ tr P Rą
2 : xr is compatible with xju, then variable xj can be

removed from formulation FpRq.

Proof We use the notation defined in the above proof of Proposition 1. Note that j P Rď
2 in this

case. Additionally, let Sj “ Rą
2 zSj . By the definition of Sj , it follows that for any j1 P Sj , xj `xj1 ď 1

is valid for FpRq. Let F2pRq be the formulation obtained from F1pRq by adding the additional

constraints xj ` xj1 ď 1,@j1 P Sj . Let X :“
!

x P R|R|
` :

ř

rPRą
2
xr ď 1, xj “ 1, xj `xj1 ď 1,@j1 P Sj

)

“
!

x P R|R|
` :

ř

rPRą
2
xr ď 1, xj “ 1, xj1 “ 0,@j1 P Sj

)

, and X 1 :“ X X tx P R|R|
` : xr “ 0,@r P Rď

2 , r ‰ ju.

Yang: DeLuxing for CG-Based Exact Methods
14 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Let z2|xj“1 be the optimal value of F2pRq when xj “ 1 is enforced. Since F2pRq again can be view
as a relaxation of FpRq, we have z2|xj“1 ď z˚|xj“1.

min
xPX

Lpŷ,xq “
ÿ

iPI
biŷi `min

xPX

ÿ

rPR

˜

cr ´
ÿ

iPI
airŷi

¸

xr

ě
ÿ

iPI
biŷi `min

xPX 1

ÿ

rPR
c̄ŷ
rxr

“
ÿ

iPI
biŷi ` c̄ŷ

j ` min
xrě0,@rPRą

2 ,
ř

rPSj xrď1

ÿ

rPRą
2

c̄ŷ
rxr

“
ÿ

iPI
biŷi ` c̄ŷ

j `min

"

0,min
rPSj

c̄ŷ
j

*

“ cj ` xf j, ŷy `min

"

0,min
rPSj

c̄ŷ
j

*

ą ub

where the first inequality is again due to the fact that c̄ŷ
r ě 0 for r P Rď

2 . Finally,

z˚|xj“1 ě z2|xj“1 “ z̄˚|xPX ě max
yPY

min
xPX

Lpy,xq ě min
xPX

Lpŷ,xq ą ub,

where z̄˚|xPX is the optimal value of FpRq when x is restricted to X . Therefore, any feasible solution
to FpRq with xj equal to 1 must have an objective value larger than ub, and thus xj can be removed
from the formulation, which completes the proof. ■
Remarks: Applying Proposition 2 requires identifying variables with index in Rą

2 that can take a
positive value simultaneously with xj . For VRPs, Sj can be defined as the set tr P Rą

2 : air ` aij ď

1,@i P N u, which essentially identifies routes in Rą
2 that do not conflict with the given route j while

ensuring that each customer is visited only once. It is worth mentioning that if additional information,
such as time windows for the CMTVRPTW and battery constraints for EV or drone routing (e.g.,
Desaulniers et al. 2016a, Roberti and Ruthmair 2021), is available to tell that a route j1 P Rą

2 is
incompatible with route j, then it can be removed from Sj . As a result, more variables might be
removed from FpRq because the condition in Proposition 2 becomes easier to satisfy. In addition,
the conflict graph constructed in this process can help solve FpRq as an IP at the end. To accelerate
each iteration, it is possible to skip computing Sj exactly and set Sj “ Rą

2 instead, which potentially
leads to fewer variables being removed each time. Since each iteration is faster now, we can afford to
run more iterations and thus find more feasible dual solutions to FpRď

2 q for variable fixing.

4.2. Novel LP Formulation for Dual Picking

In this paper, we refer to ℓy
j :“ cj ` xf j,yy as the Lagrangian underestimate of variable xj w.r.t. y

and use the number of variables deemed removable by ℓy “ pℓy
j qjPR as a measure of the quality of

y. Our numerical experiments show that ℓy significantly differs depending on y P Yπ, and thus the
quality of y varies substantially, which aligns with the observation from Sellmann (2004).

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 15

4.2.1. High Level Idea Finding a y P Yπ of the best quality is NP-hard in general because

it involves satisfying the maximum number of linear constraints defined in Propositions 1 and 2,

which is equivalent to solving a generalized maximum feasible subsystem problem that is known to

be NP-hard (Amaldi and Kann 1995). Nonetheless, finding a single best-quality y is overkill since we

do not have to be restricted to using a single y for this purpose. In the extreme case, we can solve

maxyPYπ xf j,yy for each j P R to decide individually if xj can be removed, which requires solving

|R| linear programs in total and is polynomial in time complexity. This suggests that we should

use multiple y P Yπ to compute different LUs. Now the question becomes how to efficiently obtain

multiple y from Yπ that yield high-quality LUs.

Based on the discussion in Section 3.3.1, we propose to iteratively identify a subset J of R such

that the vectors f j for j P J are close to each other, and then compute y P Yπ that maximizes

the inner product x
ř

jPJ f j,yy. The intuition is that when the vectors f j for j P J are sufficiently

similar, a solution y maximizing
ř

jPJ xf j,yy is likely to also achieve a close-to-maximum value for

each individual inner product xf j,yy, leading to LUs that can potentially eliminate many variables.

4.2.2. Potential Issue and Fix The unboundedness of Yπ implies that there might exist j P J

such that maxyPYπ xf j,yy goes to `8. In this case, dJ :“ maxyPYπ

ř

jPJ xf j,yy is also unbounded.

By LP strong duality, it is equivalent to the optimization problem LPj being infeasible, where LPj

is defined as minimizing
ř

rPRď
2
crxr subject to

ř

rPRď
2
airxr “ f j

i , @i P N ,
ř

rPRď
2
akrxr ď f j

k , @k P K,

and xr ě 0, @r P Rď
2 . By the definition of f j , this means no feasible solution can be constructed

using variables from Rď
2 when xj “ 1, which occurs infrequently in our experiments. A plausible

explanation is that all enumerated variables, particularly those in Rď
2 , are promising ones due to

their relatively small reduced costs. Therefore, the chance that any j P J Ď R cannot form a feasible

solution along with variables in Rď
2 is slim.

However, when LPj is indeed infeasible for some j P J , solving maxyPYπ

ř

jPJ xf j,yy by an LP

solver terminates once infeasibility is detected, yielding a possibly low-quality ŷ P Yπ due to the

somewhat arbitrary termination. To address this issue, we only consider bounded Yπ. More precisely,

for i P I , we lower and upper bound yi by ´ub and ub, respectively, and let xYπ :“ Yπ X ty P R|I| :

´ub ď yi ď ub, @i P Iu. Note that for VRPs, lower bounding yi for i P I suffices to make Yπ bounded

since air P t0,1u,@i P N , r P Rď
2 . Our dual picking thus involves the following LPs.

Yang: DeLuxing for CG-Based Exact Methods
16 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

xDFpRď
2 ,J q : pFpRď

2 ,J q :

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

max
ÿ

jPJ

@

f j,y
D

s.t.
ÿ

iPI
airyi ď cr, @r P Rď

2 ,

yi ě ´ub, @i P I ,

yi ď ub, @i P N ,

yi ď 0, @i P K.

Dual
ùùùùùñ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

min
ÿ

rPRď
2

crxr `ub ¨

˜

ÿ

iPI
wi `

ÿ

iPN
vi

¸

s.t.
ÿ

rPRď
2

airxr ` vi ´wi “
ÿ

jPJ
f j
i , @i P N ,

ÿ

rPRď
2

akrxr ´wi ď
ÿ

jPJ
f j
k , @k P K,

xr ě 0, @r P Rď
2 ,

wi ě 0, @i P I , vi ě 0, @i P N .

We choose to work with pFpRď
2 ,J q instead of xDFpRď

2 ,J q for implementation simplicity and compu-
tational efficiency. First of all, pFpRď

2 ,J q can be modified from FpRq more easily than xDFpRď
2 ,J q

inside a solver. Moreover, the dual simplex method has been empirically demonstrated to be superior
to the primal simplex method (Bixby 2002). State-of-the-art LP solvers, such as Gurobi and CPLEX,
almost always apply the dual simplex method in the default setting when running with a single
thread. We iteratively vary the set J and solve pFpRď

2 ,J q by the dual simplex to obtain an optimal
dual solution ŷ, which is subsequently used to compute LUs and identify the removable variables as
per Propositions 1 and 2. Notably, it suffices to modify the right-hand side of pFpRď

2 ,J q when J
is changed. Furthermore, the revised LP can be solved fast due to the warm-start effect of the dual
simplex method in this case.

4.2.3. Further Discussion Changing Yπ into xYπ narrows the search region, which can poten-
tially deteriorate the quality of ŷ obtained. However, according to our numerical experiments, such
a presumed side effect is negligible. To provide some intuition for this observation, let us consider
the formulation with J “ tju, denoted by xDFpRď

2 , jq, and its dual LP, denoted by pFpRď
2 , jq, for

a given j P R. Let d̂tju be the optimal value of xDFpRď
2 , jq. Suppose dtju :“ maxyPYπ xf j,yy ą ub,

then there exists y P Yπ certifying that variable xj can be removed. Let px˚,w˚,v˚q be an optimal
solution to pFpRď

2 , tjuq. When
ř

iPI w
˚
i `

ř

iPN v˚
i “ 0, we have that x˚ is feasible to LPj , and thus,

according to strong duality, it holds that d̂tju ě dtju ą ub. If
ř

iPI w
˚
i `

ř

iPN v˚
i ě 1, then again, we

have d̂tju ą ub when cr ą 0, suggesting that xYπ still contains some elements which can certify that
variable xj is removable. In this sense, changing Yπ to xYπ causes a minimum difference. It is worth
noticing that the above two cases (i.e.,

ř

iPI w
˚
i `

ř

iPN v˚
i ď 0 or

ř

iPI w
˚
i `

ř

iPN v˚
i ě 1) are likely

to happen because, for many problems including VRPs and CRPs, we have f j
i P Z for i P I .

4.3. Overview of DeLuxing

Algorithm 1 outlines the DeLuxing method, which consists of three steps explained in detail in Section
5. It is controlled by three input parameters: the number of clusters p and two threshold constants

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

β1 and β2. In Step 1, an optimal dual solution to FpRq is first obtained to compute reduced costs

and initialize the index sets. In Step 2, the index set R is first partitioned into p clusters via either

the k-means++ clustering method (Arthur and Vassilvitskii 2007) or a simple but effective heuristic

approach. In Step 3, a deep search for qualified dual solutions of good quality is performed using

the centroid of each cluster as an initial reference point. This process involves calling the subroutine

Algorithm 2 repeatedly with refined reference points, whose correctness is guaranteed by Propositions

1 and 2. Finally, Algorithm 1 outputs the index set of all variables certified as removable.

Algorithm 1: The Deep Lagrangian Underestimate Fixing (DeLuxing) Algorithm
Input: The number of clusters p, two threshold constants β1 and β2.

Step 1. Initialization: Solve FpRq and obtain an optimal dual solution π. Set R Ð tr P R : c̄πr ď gu,

R1 Ð tr P R : c̄πr ď g

2
u, R2 Ð RzR1, and H Ð H.

Step 2. Clustering: If |R| ď β1

Apply the k-means++ method to partition R into p clusters, R1, ¨ ¨ ¨ ,Rp.

Else

Apply the ClustByNorm heuristic to partition R into p clusters, R1, ¨ ¨ ¨ ,Rp.

Step 3. Deep Search:

For i = 1 to p

Set rJ Ð Ri
zH.

Do

Call the subroutine with input rJ , R1, R2, and obtain the output D.

Set H Ð HYD, rJ Ð Dz rJ , R1 Ð R1zH, and R2 Ð R2zH.

While |D| ě β2

End

Output: The index set H.

Algorithm 2: The Subroutine in DeLuxing
Input: Three index sets rJ , R1, and R2.

Substep 1. Solve pFpR1, rJ q and obtain an optimal dual solution ŷ.

Substep 2. Compute D Ð tj P R2 : xf j , ŷy ą ub´ cju Y tj P R1 : xf j , ŷy ą ub´ cj ´mintηj ,0uu, where

ηj “ min
rPSj

tcr ´ xŷ,aryu and Sj “ tr P R2 : xr is compatible with xju.

Output: The index set D.

Yang: DeLuxing for CG-Based Exact Methods
18 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

5. Elaboration on Every Step of DeLuxing

5.1. Step 1: Initialization

In this step, we first solve the linear program FpRq to obtain an optimal dual solution π. Then
π is used to initialize two index sets R1 and R2, which keep track of the columns with reduced
cost no larger than half of the current gap g and those within p g

2
, gs w.r.t. π, respectively. It is

worth noting that the dual solution used to enumerate R, referred to as π̃, can also be used for
this purpose. However, we compute a new π because it updates the reduced costs and can help
to remove some variables. We observe in our numerical experiments that, on average, about 10%
of the enumerated variables can be certified to be removable using the updated reduced costs, i.e.,
|tr P R : c̄πr ą gu| « 10%ˆ |R|. To improve computational efficiency, when the cardinality of R is in
the millions or higher, we skip solving FpRq and directly set π “ π̃ to initialize R1 and R2.

5.2. Step 2: Clustering

We maximize the inner product x
ř

jPJ f j,yy “ |J |x̄f ,yy in the hope that the resulting y achieves
close-to-optimal value for each individual xf j,yy, where f̄ “ 1

|J |

ř

jPJ , f j . Using the Cauchy-Schwarz
inequality, we can derive |xf j,yy ´ x̄f ,yy| ď }f j ´ f̄ }}y}, which suggests we are likely to achieve our
goal as long as }f j ´ f̄ } is small. This naturally leads us to the well-known k-means clustering problem
that seeks to partition n observations tu1,u2, ¨ ¨ ¨ ,unu in d dimension into k clusters C1,C2, ¨ ¨ ¨ ,Ck

to minimize the within-cluster sum of squares, defined as
řk

i“1

ř

uPCi
}u´µi}2, where µi is the mean

(also called centroid) of points in the i-th cluster Ci.
While finding the optimal solution to the k-means clustering problem in d dimension is NP-hard

even for two clusters (Aloise et al. 2009), many effective heuristics are available such as the Lloyd’s
algorithm (Lloyd 1982), refinement with Bradley and Fayyad’s initialization (Bradley and Fayyad
1998), and the k-means++ (Arthur and Vassilvitskii 2007). Since k-means++ is known for its generally
good performance (Celebi et al. 2013) and easy implementation, it has been used as the default
method for determining initial cluster centroid positions in the “kmeans” function of Matlab. We
also choose to use it in our C++ implementation.

We observe in our experiments that clustering vectors t̂f jujPR instead of tf jujPR significantly
improves the speed while yielding clusters that achieve nearly the same or sometimes even better
overall performance for Algorithm 1. Here, f̂ j :“ pf j

i qiPN is a subvector of f j that includes only the
dimensions in N . A possible explanation for this observation is that when two columns j1, j2 P R
have similar coefficients aij1 and aij2 for i P N , it is likely that aij1 and aij2 are also close for i P K
since they correspond to coefficients of cutting planes. As a result, f̂ j serves as a good representation
of f j for the purpose of clustering. In our implementation, we cluster t̂f jujPR. However, readers are
encouraged to explore alternative options that may be more suitable for their specific problems.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 19

5.2.1. The ClustByNorm Heuristic Although we can easily parallelize the computation

using OpenMP (a library for parallel programming that supports C, C++, and Fortran) to achieve

significant acceleration, the clustering process can still be time-consuming when the size of R is in

the millions. In such cases, we propose to use a simple but surprisingly effective heuristic, which

we call ClustByNorm, to perform the clustering in place of the k-means++ method. It starts with

computing the l2 norm of each vector }f j} for j P R and sorts them in non-increasing order. Then, we

partition the sorted list into p clusters, each containing roughly q “ t|R|{pu vectors. Specifically, we

assign the pk´1q ˚ q`1 to pk ˚ qq-th vectors in the sorted list to the k-th cluster for k “ 1, ¨ ¨ ¨ , p´1,

and the remaining vectors to the p-th cluster. Although ClustByNorm is slightly less effective than

the k-means++ method in terms of the resulting DeLuxing’s capability to remove columns, it leads

to significant speedup when |R| is large. We provide a detailed comparison of the performance of

k-means++ and ClustByNorm in Section 7.1. By default, we use the k-means++ method for clustering

and switch to ClustByNorm when |R| exceeds a threshold constant β1.

5.3. Step 3: Deep Search

For each cluster i, we first update it by rJ Ð Ri
zI to exclude those identified as removable. Then its

centroid µ :“ 1

| rJ |

ř

jP rJ f j is used as a reference point to start the search. Specifically, we try to find a y
that maximizes xµ,yy, which is accomplished by solving pFpR1, rJ q using the subroutine Algorithm 2.

It returns the index set of removable variables D with the given input. However, bundling elements in

a cluster according to this one-time clustering may not achieve the most desirable result. One reason

is that the conditions in Propositions 1 and 2 aim to satisfy inequalities, whereas the clustering only

concerns part of the inequalities, i.e., it tries to maximize the inner product on the left-hand side.

Adding one extra dimension with a value of cj to each vector f j and clustering the updated vectors

do not provide noticeable improvements, indicating the difficulty of incorporating information from

the right-hand side. Moreover, the k-means++ method or the ClustByNorm is not perfect and is not

likely to yield the best clusters.

The proposed deep search tries to address this concern. Essentially, it iteratively builds an artificial

cluster by utilizing the most recently identified set D excluding rJ (i.e., those that were used as

input to Algorithm 2 to generate this D). To the best of our knowledge, this idea is new in the

literature. The rationale behind this approach is that the elements in a set D correspond to variables

deemed removable by a common dual solution, which implicitly considers the whole inequalities and

captures hidden similarities that might have been missed by the initial clustering. We remove rJ
from D because its information has already been used to generate D and is likely to be redundant

and can adversely impact the next iteration. Multiple high-quality dual solutions are effectively

picked in the do-while loop, and the total computational effort can be easily controlled by the input

Yang: DeLuxing for CG-Based Exact Methods
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

threshold constant β2. Specifically, the total number of calls to the subroutine is upper bounded by

pp` r|R|{β2sq because, by design, all the index sets D produced are non-overlapping.

6. Extensions

In this section, we expand upon the fundamental concept underlying DeLuxing to a broader range

of contexts. Firstly, based on this concept, we prove that many integer variables can be relaxed into

continuous ones in the IP solved to close a BBN, resulting in significant acceleration when the IP

is large-scale and difficult to solve. Additionally, we demonstrate the concept can also be applied

to enhance cutting plane addition. Furthermore, we propose an effective primal heuristic in which

DeLuxing plays a crucial role. The effectiveness of these extensions is demonstrated individually using

instances of the CMTVRPTW in Section 7.2. Moreover, we present the acceleration achieved by the

new primal heuristic for solving the CVRP and VRPTW in Section 7.5. The first two extensions

are not effective for the CVRP and VRPTW because a large number of relatively easy LPs and IPs

are solved therein, while these extensions focus on dealing with a few more challenging LPs and IPs.

Nonetheless, we believe the ideas behind them can potentially be applied to general MIP settings.

6.1. Variable Relaxation

Solving FpRq as an IP by a solver is a convenient and effective way to close a BBN. The computational

difficulty of FpRq relies heavily on the number of integer variables, and it usually takes many rounds

of branching and cutting plane additions before reducing the size of R to a manageable level (e.g.,

Pessoa et al. 2020 requires |R| ď 10,000). Relaxing the integer requirement for a large portion of

variables is expected to bring substantial acceleration. If such relaxation is allowed, FpRq can be

solved as a MIP at a much earlier stage in the BPC method, saving a considerable amount of

computational effort on branching and adding cutting planes to reduce the size of R. The following

Proposition 3 indicates that in some cases, we can relax xr for r P Rą
2 in FpRq as continuous variables

without compromising optimality. Let qFpRq be the formulation obtained by relaxing variables xr

for r P Rą
2 in FpRq to be continuous and adding the constraint

ř

rPRą
2
xr ď 1. Let P Ă R|R|

` be the

polyhedron corresponding to the feasible region of qFpRq, E Ă P be the set of extreme points of P ,

and X ˚ Ă P be the set of optimal solutions to qFpRq.

Proposition 3. If in FpRq, air P t0,1u and bi P Z @i P N , r P R, then it follows that X ˚ XE Ă Z|R|
` .

Proof Let us consider any x̄ P X ˚ X E . It holds that x̄r P Z` for r P Rď
2 due to the integer

requirement in qFpRq. With the coefficients air P t0,1u and bi P Z for all i P N and r P R, it follows

that
ř

rPRď
2
airx̄r P Z @i P N . Let ui :“

ř

rPRą
2
airx̄r. Consequently, ui “ bi ´

ř

rPRď
2
airx̄r is integral

for all i P N . For r P Rą
2 , x̄r is non-negative, thus ui P Z`. Additionally, the constraint

ř

rPRą
2
xr ď 1

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

in qFpRq implies
ř

rPRą
2
x̄r ď 1. Let Q :“ tr P Rą

2 : 0 ă x̄r ă 1u. If Q is an empty set, no further proof
is needed. Let N r :“ ti P N : air “ 1u for r P Q and ĂN :“ YrPQN r.

We claim that if Q ‰ H, then N r1 “ N r2 @r1, r2 P Q . The claim is proved by contradiction.
First, Q ‰ H and

ř

rPRą
2
x̄r ď 1 imply there does not exist r P Rą

2 such that x̄r ě 1. Thus, we have
xr “ 0 @r P Rą

2 zQ. Suppose there exist r1, r2 P Q such that N r1 ‰ N r2 . As a result, there exist k P ĂN ,
r1, r2 P Q such that k P N r1 and k R N r2 . Therefore, we have 0 ă xr1 ď

ř

rPRą
2
akrx̄r “

ř

rPQ akrx̄r ă
ř

rPQ x̄r “
ř

rPRą
2
x̄r ď 1. This implies uk P p0,1q, which contradicts the fact that uk is an integer and

thus proves the claim. Next we will show that if Q ‰ H then x̄ R E .
Note that Q cannot be a singleton because if Q “ tru, then 0 ă

ř

rPRą
2
airx̄r “ x̄r ă 1 for i P N r,

which again contradicts the fact that ui is integral. Consider any two distinct r1, r2 P Q. According
to the claim, we have N r1 “ N r2 , i.e., air1 “ air2 for all i P N . Let x̃1

“ px̃1
rqrPR and x̃2

“ px̃2
rqrPR

be set to x̃1
r “ x̃2

r “ x̄r for r P Rztr1, r2u and x̃1
r1

“ x̄r1 ´ ϵ, x̃1
r2

“ x̄r2 ` ϵ, x̃2
r1

“ x̄r1 ` ϵ, and x̃2
r2

“

x̄r2 ´ ϵ, where ϵ ą 0 is small enough to ensure x̃1
r1

and x̃2
r2

are non-negative. Then
ř

rPR airx̄r “
ř

rPR airx̃
1
r “

ř

rPR airx̃
2
r and thus x̃1 and x̃2 are feasible solutions to qFpRq. Furthermore, it follows

that x̄ “ px̃1
` x̃2

q{2, suggesting that x̄ is not an extreme point of P , i.e., x̄ R E .
Therefore, the set Q has to be empty when x̄ P E . The fact that

ř

rPRą
2
xr ď 1 guarantees that

0 ď xr ď 1. Consequently, all the elements of x̄ take an integer value, which completes the proof. ■
Remarks: Proposition 3 guarantees that when the constraint coefficients air are binaries and bi are
integers, any optimal solution to qFpRq is also integral as long as it is an extreme point of the under-
lying polyhedron. For set partitioning formulations of VRPs and CRPs, the coefficients air P t0,1u

and bi “ 1 for all i P N and r P R, and thus the conditions are satisfied. However, it should be noted
that when there exist two distinct r1, r2 P R such that cr1 “ cr2 and air1 “ air2 @i P N , it is possible
for qFpRq to have an optimal solution that is not integral. This means there could be two identical
columns that cannot be deleted due to the absence of certain feasibility requirements in the formula-
tion, which is added as lazy cuts during the solution process. For the standard CVRP and VRPTW,
this does not occur because there are no missing feasibility requirements in their formulations. In the
case of CMTVRPTW, where the superstructure feasibility constraints are initially absent and are
added dynamically using a callback function, such a scenario can happen. These constraints decide
if there exists a feasible schedule to execute the selected vehicle routes by a given fleet, allowing each
vehicle to make multiple trips (refer to Section 3.2 of Yang (2023) for details). Nonetheless, as long as
the solver returns an optimal solution that represents an extreme point of P , the proposed relaxation
in Proposition 3 can still be applied without sacrificing optimality. Note that modern MIP solvers
may yield an optimal solution that is not necessarily an extreme point via some primal heuristics. In
this case, a callback function that cuts off such solutions by lazy constraints (so-called no-good cuts,
Hooker et al. 1999) can be used to guarantee correctness.

Yang: DeLuxing for CG-Based Exact Methods
22 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The proposed relaxation can be performed even more aggressively with the help of a simple search

and some lazy constraints to ensure optimality and integrality. Let rFpRq be the formulation obtained

by relaxing variables xr for r P Rą
3 in the original formulation FpRq to be continuous and adding

the constraints
ř

rPRą
2
xr ď 1 and

ř

rPRą
3
xr ď 2. We solve rFpRq by a MIP solver with the callback

function presented in Algorithm 3 that adds lazy constraints.

To ease the presentation, given a feasible solution x̄ to rFpRq, we define Rf :“ tr P Rą
3 : x̄r ą 0u,

Rt :“ tr P RzRą
3 : x̄r ą 0u, c̃ :“

ř

rPRt crx̄r, and b̃ :“ pb̃iqiPN , where b̃i “ bi ´
ř

rPRt airx̄r. The

callback function is triggered whenever such a feasible solution x̄ is identified. It first examines

whether all x̄r values for r P Rą
3 are integers. If they are, no further action is required, and the

callback function terminates, returning control to the solver. If any x̄r for r P Rą
3 is not an integer,

the callback function proceeds by searching for a feasible solution better than the one achieving the

current upper bound (known as the incumbent). Specifically, it checks whether any two columns

r1 ‰ r2 and r1, r2 P Rf , together with columns with indices in Rt that have been selected an integral

number of times in x̄, can form a superior feasible solution. This search can be conducted in a

brute-force fashion, as we only need to consider |Rf |2 combinations. Notably, the size of Rf is small,

typically less than a few dozen. After the search, a lazy constraint
ř

rPRf YRt xr ď |Rt| ` 1 is added

and the callback terminates.

Algorithm 3: The Callback Function
Input: A feasible solution x̄ to rFpRq and current upper bound z̃

if Dr P Rą
3 such that x̄r P R`zZ` then

Step 1. Search for r1, r2 P Rf , r1 ‰ r2 with the smallest cr1 ` cr2 such that ar1 ` ar2 “ b̃

and cr1 ` cr2 ă z̃ ´ c̃. If one is found, update the incumbent solution to x̃ by Equation (3).

Step 2. Add a lazy constraint
ř

rPRf YRt xr ď |Rt| ` 1.

x̃ :“ px̃rqrPR, where x̃r “

#

1, if r P Rt Y tr1, r2u,

0, otherwise.
(3)

The following Proposition 4 guarantees that under some mild conditions, we can obtain an optimal

solution to FpRq by solving rFpRq with the proposed callback function in Algorithm 3.

Proposition 4. Suppose in FpRq, all variables xr for r P R are required to be binary, air P t0,1u,

and bi P Z @i P N , r P R. Solving rFpRq by a MIP solver that is equipped with the callback function

described in Algorithm 3 and can find an optimal solution corresponding to an extreme point of the

polyhedron (i.e., the feasible region of rFpRq) guarantees to find an optimal solution to FpRq.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 23

Proof If all x̄r values for r P Rą
3 are integers, then x̄ is feasible to FpRq. We only need to consider

the case that there exists x̄r taking a fractional value for some r P Rą
3 . Since

ř

rPRf xr ď
ř

rPRą
3
xr ď

2 and xr P t0,1u for r P Rt Ď R, we have
ř

rPRf YRt xr “
ř

rPRt xr `
ř

rPRf xr ď |Rt| ` 2. Since
ř

rPRf YRt xr P Z`, the lazy constraint
ř

rPRf YRt xr ď |Rt|`1 will eliminate part of the feasible region

with
ř

rPRf YRt xr “ |Rt| ` 2. We claim that if an optimal solution exists in this eliminated part, it

can be found, and thus, optimality can still be guaranteed.

Note that
ř

rPRf YRt xr “ |Rt| ` 2 implies xr “ 1 for all r P Rt and
ř

rPRf xr “ 2. Thus, we only

need to search for all r1, r2 P Rf and r1 ‰ r2, which, when combined with columns indexed by r P Rt,

can form a superior feasible solution to the current incumbent solution. As shown in Algorithm 3, the

callback function searches all such qualified pairs of columns and picks the best one, which completes

the claim. It remains to show that integrality is also guaranteed.

It suffices to show the lazy constraints added by the callback can prevent any fractional solution

from being considered feasible. We only need to consider fractional solutions x̄ with
ř

rPRf x̄r ď 1.

By a similar argument to that provided in the above proof of Proposition 3, we can show that such

x̄ cannot be an extreme point of the corresponding polyhedron, which completes the proof. ■

6.2. A New Way of Cutting Plane Addition

Cutting planes play a key role in modern branch-and-cut and BPC methods, which iteratively improve

the dual bound and thus close the optimality gap. After obtaining an optimal solution to the current

LP relaxation, cut separators are employed to identify violated valid inequalities. These inequalities

can cut off the current fractional LP solution and are then incorporated as constraints in the LP.

This process continues until some termination criteria are met.

For BPC methods, solving each LP after each round of cut addition requires repeated CG. When

an enumerated pool is available, CG can be performed through inspection, which is much more

efficient compared to a labeling algorithm. Nevertheless, this process can still be time-consuming

when a considerable number of rounds of cut addition and CG are performed to solve the LP.

Inspired by DeLuxing, we propose a new approach to streamline this procedure. Specifically, instead

of starting with the columns currently present in the LP, we first include a moderate-sized (typically

no larger than 50,000) subset of columns, denoted by rR, from the enumerated pool R. We then

obtain formulation Fp rRq, with R in formulation FpRq from Section 3.2 replaced by rR. One particular

selection criterion that works well numerically is to include all columns from the enumerated pool

with reduced costs not surpassing half of the gap, i.e., rR “ Rď
2 . Subsequently, we generate cuts,

such as subset-row inequalities (Jepsen et al. 2008) and rounded capacity cuts (Laporte and Nobert

1983), to tighten Fp rRq and directly resolve it without introducing new columns from the remaining

pool. This process is repeated until tailing off or hitting prespecified limits. Before termination, all

Yang: DeLuxing for CG-Based Exact Methods
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

remaining columns in the pool are introduced into the tightened Fp rRq to compute the final lower

bound, ensuring its validity.

This approach presents two notable advantages. Firstly, due to the significantly smaller size of rR
compared to R, we can circumvent the need to solve large LPs when CG adds an excessive number of

columns. Secondly, when rR is selected such that Rď
2 Ď rR, additional opportunities for variable fixing

emerge. More precisely, we can directly apply Propositions 1 and 2 to remove columns whenever the

LP is resolved and a new dual solution is obtained. We acknowledge that inexact objective values are

computed in the process since only a subset of columns are included in the current LP, which affects

the cuts generated and potentially the quality of the lower bound obtained at the termination of the

procedure. However, we emphasize the validity of the final lower bound, as all remaining columns

in the pool will be added back to compute the bound. Our numerical experiments demonstrate that

adding cuts in this manner yields almost identical bounds in our numerical experiments and results

in significant speedup for some instances, as shown in Figure 5.

6.3. An Effective Primal Heuristic

Using a solver to solve the current RMP as an IP serves as a commonly employed primal heuristic

within the BPC framework (Pessoa et al. 2020). The success of this approach is closely tied to

the number of columns present in the RMP. An excessive number of columns can result in long

computation times, whereas too few columns may produce feasible solutions of poor quality or result

in infeasibility. To tackle this challenge, a straightforward approach is to only keep in the IP the

smallest β̂ columns in terms of reduced costs, where β̂ is a constant. This approach leaves room for

improvement, especially for the CMTVRPTW and its variants.

We propose to perform a trial enumeration with a small tentative gap. For the CMTVRPTW

and its two variants tested in this paper, our experiments suggest that setting the trial gap to be

mint1%ˆ lb,10u works well, where lb is the current lower bound. For the CVRP and VRPTW tested

in Section 7.5, we used mint0.2% ˆ lb,40u for standard instances and mint0.2% ˆ lb,20u for long

instances. In practice, this value can be straightforwardly determined through several trials aimed at

creating a pool of moderate size (containing 50,000 to 500,000 columns) in most cases. Subsequently,

DeLuxing is applied to remove unnecessary columns from this enumerated trial pool. Finally, we

solve an IP using the columns remaining in the pool. In case the pool still contains more than β̂

columns, we can keep the smallest β̂ ones based on their reduced costs.

This simple heuristic has proven highly effective. One of the main factors contributing to its success

is that some columns essential for constructing high-quality feasible solutions might be absent in the

current RMP but can be generated through the trial enumeration. DeLuxing plays a crucial role in

this heuristic, as the trial enumeration can still produce a large number of columns. Nonetheless,

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 25

a direct screening based solely on reduced costs, as described in the previous paragraph, performs

badly. DeLuxing can often reduce the size of the column pool to be much smaller than β̂ while

ensuring that necessary columns are retained in the pool.

7. Numerical Results

In this section, we present an extensive numerical study comprising five sets of experiments. The first

set aims to show the effectiveness of the key components of DeLuxing in removing columns. In the

second set, we individually evaluate the effectiveness of DeLuxing and each extension introduced in

Section 6 using CMTVRPTW instances. The third set compares our default method (with DeLux-

ing and the three extensions enabled) with the state-of-the-art algorithms on the CMTVRPTW

and its two important variants, CMTVRPTW-LT and CMTVRPTW-R. We exclude the other two

variants, the CMTVRPTW with limited trip duration (CMTVRPTW-LD) and the drone routing

problem (DRP) considered in Yang (2023) as the difficulty of solving them does not stem from

generating excessive variables in the solution process. In fact, the number of routes generated in

solving the CMTVRPTW-LD and DRP instances is relatively small (mostly several thousand for the

CMTVRPTW-LD and tens of thousands for the DRP) according to Tables EC.8 and EC.10 in Yang

(2023). The fourth set of experiments seeks to further demonstrate the potential of the proposed

approach by solving significantly larger multi-trip instances, with sizes twice as large as the largest

ones currently documented in the literature. The last set of experiments is dedicated to showing

that the proposed DeLuxing and the primal heuristic also substantially accelerate one of the world’s

leading solvers, RouteOpt (You et al. 2023), for solving the CVRP and VRPTW instances. Note

that RouteOpt incorporates the bucket arc elimination (Sadykov et al. 2021), a sophisticated type

of arc-flow fixing. Throughout the solution process, RouteOpt also applies standard RCF.

For the CMTVRPTW, we consider two datasets, totaling 171 instances. The first set comprises 81

instances described in Section 7.4.1. of Yang (2023), which are derived from the 27 type 2 Solomon

instances. For each instance, we consider three cases: the first 70, 80, and all 100 customers. The

second set consists of 90 large instances derived from the 30 instances (C2, R2, and RC2) in the G02

group (see Homberger and Gehring 2005). For each instance, we use the first 140, 170, and all 200

customers. The numbers of vehicles are set to 6, 7, 8, 12, 16, and 20 for instances with 70, 80, 100, 140,

170, and 200 customers, respectively, and the vehicle capacity is set to 100 for all the instances. For

the CMTVRPTW-LT, we use the same 171 instances as the CMTVRPTW with the same parameters.

The loading time of each customer is set to 20% of its service time following the procedure in

Hernandez et al. (2016). For the CMTVRPTW-R, we use a total of 513 instances: 243 instances from

Section 7.4.4. of Yang (2023) generated from the 81 CMTVRPTW instances via the procedure in

Cattaruzza et al. (2016a) with κ P t0.25,0.5,0.75u, and an additional 270 instances generated from

Yang: DeLuxing for CG-Based Exact Methods
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

the 90 large CMTVRPTW instances using the same procedure. The number of vehicles and vehicle

capacity are set to the same as those of the corresponding CMTVRPTW instances.

For classic VRPs, we employ the most difficult instances from You et al. (2023): 200-node CVRP

and 300-node VRPTW instances that cannot be solved within an hour by the VRP-Solver (Pessoa

et al. 2020) even with an initial upper bound equal to p1` 0.1%q ¨ v˚, where v˚ is the optimal value.

This selection comprises 76 CVRP and 100 VRPTW instances, generated according to the procedure

outlined in Uchoa et al. (2017). The instances feature branch-and-bound trees with hundreds of

nodes, and thus are generally challenging to solve. Meanwhile, the route length is moderate, making

the pricing not overly difficult when many non-robust cuts, e.g., limited memory rank-1 cuts (Pecin

et al. 2017b), are present. Instances from the well-known CVRPLIB (Lima et al. 2014) are not ideal

for demonstrating the advantages of our proposed methods because most of them are either too easy

(resulting in trees with several nodes or even being solved at the root) or too challenging (unsolvable

within a day) for cutting-edge solvers.

All experiments are conducted on a workstation running Ubuntu 20.04 equipped with an Intel(R)

Core(TM) i9-12900K CPU @ 3.90GHz and 128GB of RAM. The code is implemented in C++ language

and compiled by g++ 9.4.0. Gurobi 9.1.1 is used as an LP and IP solver. All LPs are solved in the

single-thread mode, and 8 threads are used to solve all IPs (MIPs). As a benchmark for our last set

of experiments, the VRP-Solver is run on the same machine in the same mode (one thread for LPs

and 8 threads for IPs/MIPs) using CPLEX 22.1.0. The k-means++ method is run parallelly with all

available threads. The time limit for each multi-trip instance is set to 3 hours, and no limit is set for

the CVRP and VRPTW instances. The compiled C++ library and all the test instances are made

publicly available at https://github.com/Yu1423/DeLuxing. The source code of RouteOpt can be

found at https://github.com/Zhengzhong-You/RouteOpt.

7.1. Effectiveness of the Key Components of DeLuxing

In this section, we aim to demonstrate the effectiveness of the key components of DeLuxing. The

Benchmark is Algorithm 1 with p “ 50, β1 “ 500,000, and β2 “ 50. We consider the following four

variants, where the parameters p, β1, and β2 are set to the same values as Benchmark unless otherwise

specified.

1. FullForm: This variant modifies Substep 1 of Algorithm 2 to solve the full formulation pFpR, rJ q

instead of our formulation pFpR1, rJ q enabled by the proposed Propositions 1 and 2.

2. ClustByNorm: This variant sets β1 to 0 and thus always applies the proposed ClustByNorm

heuristic for the initial clustering.

3. Random: This variant randomly partitions R into p clusters of equal size.

4. NoDeepSearch: This variant sets β2 to `8 to skip the proposed deep search.

https://github.com/Yu1423/DeLuxing
https://github.com/Zhengzhong-You/RouteOpt

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

We compare the performance of these five methods on the column pools enumerated in the pro-

cess of solving the CMTVRPTW instances. The advantages of the new formulation enabled by

Propositions 1 and 2 can be demonstrated through a comparison of Benchmark and FullForm. The

effectiveness of the straightforward heuristic approach, ClustByNorm, will be shown by comparing

it with Benchmark and Random. Lastly, the benefits of the proposed deep search can be observed

by comparing Benchmark with NoDeepSearch. The following information is included: the number

of customers n, the average percentage of columns removed, and the average computing time (in

seconds; CPU). Each average value is taken over all instances of the same size.

83.6%

89.7%

81.5%

78.4% 79.2%80.2%

88.0%

78.3%
76.3% 77.2%

80.5%

85.5%

76.5%
74.6% 74.2%72.0%

74.0%
76.0%
78.0%
80.0%
82.0%
84.0%
86.0%
88.0%
90.0%

Benchmark FullForm ClustByNorm Random NoDeepSearch

Percentage of Columns Removed
n=70 n=80 n=100

80.4%
83.4%

78.6%
74.5%

69.6%

76.2%
79.8%

75.3%
72.2%

59.9%

70.9%

76.6%

68.9%

64.8%

55.4%54.0%

58.0%

62.0%

66.0%

70.0%

74.0%

78.0%

82.0%

86.0%

Benchmark FullForm ClustByNorm Random NoDeepSearch

Percentage of Columns Removed
n=140 n=170 n=200

4.8

50.5

2.7

2.4

3.2

6.6

78.7

3.7

3.1

4.4

19.0

417.2

14.3

10.3

8.3

1.00 10.00 100.00 1,000.00

Benchmark

FullForm

ClustByNorm

Random

NoDeepSearch

CPU (s)

n=70

n=80

n=100

56.2

1228.0

47.3

33.2

18.3

259.9

3557.8

252.5

159.9

35.3

346.8

3812.5

341.3

214.9

45.4

1.0 10.0 100.0 1000.0 10000.0

Benchmark

FullForm

ClustByNorm

Random

NoDeepSearch

CPU (s)

n=140
n=170
n=200

Figure 2 Comparison of the percentage of columns removed and the CPU in seconds (the x-axis is in logarithmic

scale) for the CMTVRPTW. Each number is the average value taken over instances of the same size.

Figure 2 illustrates the performance comparison among different variants. Benchmark outperforms

all other variants except FullForm, in terms of the percentage of columns removed. This superiority

becomes more pronounced when dealing with larger instances, where the number of customers is

higher and the challenges are greater. It is important to note that even a 1% increase in the removal

percentage translates to thousands of additional variables being eliminated, considering the average

pool size of over 100,000 columns. Such extra reductions in variables drastically impact the overall

algorithmic performance. While Benchmark may not remove as many columns as FullForm, it man-

ages to reduce the computational time to less than one-tenth that of FullForm for instances with 140

Yang: DeLuxing for CG-Based Exact Methods
28 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

or fewer customers. Such CPU reductions are crucial for the success of DeLuxing and highlight the

significance of the new formulation. It is worth mentioning that FullForm hits the 3-hour time limit

for most 170- and 200-customer R and RC instances, which is the reason why the CPU differences

between Benchmark and FullForm are less significant.

Comparing ClustByNorm with Random and Benchmark, we conclude that ClustByNorm is effec-

tive, exhibiting much better performance than random initial clustering, albeit slightly inferior to

Benchmark. Furthermore, the computational overhead associated with ClustByNorm is smaller than

Benchmark. The importance of the proposed deep search is evident when comparing Benchmark with

NoDeepSearch. Notably, for large instances, i.e., those with 140 or more customers, the proposed

deep search substantially increases the percentage of columns removed.

7.1.1. Sensitivity Analysis In this section, we aim to justify our selection of values for the

three parameters p, β1, and β2 and illustrate their sensitivity. We conduct tests with varying values:

p P t10,20,50,100u, β1 P t100,000; 200,000; 500,000; 1,000,000u, and β2 P t10,50,100u, resulting in

a total of 48 combinations. For each combination, we run an experiment on the same 30 column pools

from the 30 instances with 170 customers. We present the average percentage of columns removed

and the average CPU in seconds.

10

20

50

100

100,000

200,000

500,000

1,000,000

10

50

100

70.5

72.0

73.5

75.0

76.5

78.0

79.5

69.0

81.0

210

280

350

420

490

560

630

150

680

69.4

70.8

72.3

73.7

75.1

76.5

78.0

79.4

80.8

Percentage

Percentage CPU

10

20

50

100

100,000

200,000

500,000

1,000,000

10

50

100

70.5

72.0

73.5

75.0

76.5

78.0

79.5

69.0

81.0

210

280

350

420

490

560

630

150

680

69.4

70.8

72.3

73.7

75.1

76.5

78.0

79.4

80.8

Percentage

Percentage CPU

Figure 3 Comparison of the average percentage of columns removed and the average CPU in seconds for the

170-customer instances. The right subfigure highlights the choice of p “ 50, β1 “ 500,000, and β2 “ 50.

As shown in Figure 3, our chosen values of p “ 50, β1 “ 500,000, and β2 “ 50 achieve a 76.2%

column reduction in 259.9 seconds, striking a suitable balance between the percentage of columns

removed and the computational time. Moreover, the parameters are not overly sensitive to variations.

In particular, multiple combinations, such as (1) p “ 50, β1 “ 100,000, β2 “ 50; (2) p “ 50, β1 “

200,000, β2 “ 50; (3) p “ 100, β1 “ 200,000, β2 “ 100; and (4) p “ 100, β1 “ 500,000, β2 “ 100,

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 29

achieve a comparable reduction of around 76% within the range of 220 to 260 seconds. Detailed

results are summarized in Table EC.2 in Section EC.1 of the e-companion.

7.2. Effectiveness of DeLuxing and Three Extensions

We demonstrate the isolated effectiveness of DeLuxing and the three inspired extensions described

in Section 6. Our baseline method, denoted by Default, is a modified implementation of the EPCEM

from Yang (2023) with DeLuxing and the three extensions incorporated as follows (see Figure 4 for

an illustration). The extension in Section 6.3 (our new primal heuristic) is applied in Step 2 in place

of the standard primal heuristic to compute a valid UB. In addition, we replace Steps 4 and 5 of

the EPCEM with Step 4’ that performs multiple rounds of alternating cut addition and column

removal by DeLuxing. In each round, we add cuts using the extension in Section 6.2 (the new way

of cut addition), followed by DeLuxing to remove columns. Finally, the extension in Section 6.1 (the

variable relaxation) is applied to relax the IP in Step 7 and calculate the optimal solution by solving

the resulting MIP.

Multiple rounds of cut additions using the new
way (Extension in Section 6.2), with each round
followed by applying DeLuxing to remove columns
(structures).

The Default

Figure 4 An illustration of the development of Default from the EPCEM in Yang (2023).

We disable each component separately on top of Default each time, and the resulting settings

are denoted by NoDeluxing, NoVarRelax, OldCutAdd, and OldPrimalHeu (applying the traditional

primal heuristic used in the EPCEM to compute a UB), respectively. We report the number of cus-

tomers (n), the number of instances of this size (#Inst), the number of instances solved to optimality

(Solved), and the average optimality gap ub´lb
ub

ˆ100% at termination (Gap%). The Gap is averaged

over instances that cannot be solved optimally within the time limit.

According to Table 1 and Figure 5, Default solves significantly more instances than NoDeLuxing

and OldPrimalHeu while being 48%, 21%, 161%, 115%, 18%, and 26% faster than NoDeLuxing,

and 106%, 206%, 813%, 249%, 38%, and 67% faster than OldPrimalHeu, respectively, for instances

of sizes 70 to 200. These results confirm the high effectiveness of DeLuxing in accelerating the

algorithm and its essential contribution to solving challenging instances. Furthermore, the adoption

Yang: DeLuxing for CG-Based Exact Methods
30 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

of the primal heuristic, in which DeLuxing plays a pivotal role, significantly enhances the algorithm’s

capability to solve large instances by providing tight upper bounds at an early stage. Although the

variable relaxation and the new approach for cutting plane addition may have limited effectiveness

for small-sized instances, they prove to be valuable in achieving optimality faster for larger instances.

In particular, Default outperforms NoVarRelax by solving two more instances, and is 14% faster for

140-customer instances. While Default and OldCutAdd solve the same total number of instances,

Default surpasses OldCutAdd by being 25% faster for instances of size 140.

Table 1 Summary of the results for the CMTVRPTW.

n #Inst Default NoDeLuxing NoVarRelax OldCutAdd OldPrimalHeu
Solved Gap% Solved Gap% Solved Gap% Solved Gap% Solved Gap%

70 27 27 0.0 27 0.0 27 0.0 27 0.0 27 0.0
80 27 27 0.0 27 0.0 27 0.0 27 0.0 27 0.0
100 27 27 0.0 27 0.0 27 0.0 27 0.0 23 2.6
140 30 29 0.1 27 0.4 30 0.0 30 0.0 21 2.2
170 30 22 0.5 18 0.4 21 0.5 22 0.5 15 1.6
200 30 22 0.4 17 0.5 20 0.3 21 0.4 12 1.4

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

94.0%

94.8%

105.0%

114.3%

106.0%

105.0%

97.0%

97.0%

99.5%

125.1%

101.4%

99.9%

90.0% 95.0% 100.0% 105.0% 110.0% 115.0% 120.0% 125.0%

n=70

n=80

n=100

n=140

n=170

n=200

Default

NoVarRelax

OldCutAdd

100.0%

100.0%

100.0%

100.0%

100.0%

100.0%

147.9%

120.8%

261.1%

214.5%

118.4%

125.7%

206.4%

305.8%

348.5%

137.8%

167.3%

0.0% 100.0% 200.0% 300.0%

n=70

n=80

n=100

n=140

n=170

n=200

Default

NoDeLuxing

OldPrimalHeu

913.2%

Figure 5 Comparison on CPU. Each number represents the ratio of the average CPU time compared to that of

the Default method, where each average value is taken over instances of the same size.

7.3. Comparison with State-of-the-Art Algorithms

In this section, we compare our Default with three state-of-the-art algorithms: Yang (2023), Roboredo

et al. (2023), and Zhang (2022). It is worth mentioning that our hardware is better than others.

To ensure a fair comparison, we scale the computational times of the other three methods based on

their CPU frequencies. More precisely, the CPU frequencies reported in Yang (2023), Roboredo et al.

(2023), and Zhang (2022) are 3.7GHz, 3.6GHz, and 2.9GHz, respectively, which necessitates dividing

their reported times by a factor of 1.05, 1.08, and 1.34.

In Tables 2 to 5, we report the values of n, #Inst, Solved, Gap, and the computational time in

seconds (CPU). Detailed results for each instance are reported in Tables EC.3 to EC.5 in Section

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

EC.2 of the e-companion. The CPU values presented in Tables 2 to 5 are averaged over all instances
of the same size and are scaled values for the three benchmark methods. If an instance cannot be
solved to optimality within the 3-hour time limit, its CPU value is recorded as 10,800 even though
it may be terminated early due to insufficient memory. Note that Zhang (2022) only reported results
for instances of sizes 80 and 100. Moreover, Roboredo et al. (2023) did not experiment with the two
variants considered in this paper and did not report the optimality gap at termination. Roboredo
et al. (2023) reported results for two settings, i.e., with or without initial ub. For consistency with
other methods, we use the setting without ub in Table 2.

7.3.1. Comparison on the CMTVRPTW As shown in Table 2, our method can solve all 81
CMTVRPTW instances optimally while being, on average, more than 10 and 7 times, respectively,
as fast as Zhang (2022) for instances of sizes 70 and 100. In contrast, Yang (2023) can only solve 65
out of the 81 instances to optimality and is more than 20 times slower than our method. For a fair
comparison with Roboredo et al. (2023), we conducted two additional sets of experiments: one with
the optimal value as an initial upper bound and the other without the upper bound. Both experiments
were run using a single thread for solving all LPs and IPs, and the results are summarized in the
following Table 3. In both cases, our method can still solve all instances optimally while Roboredo
et al. (2023) solves 51 and 67 instances, respectively, without/with an upper bound.

Table 2 Comparison on the CMTVRPTW using eight threads.

n #Inst This Paper (Default) Yang (2023) Zhang (2022)
Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU

70 27 27 0.0 26.7 27 0.0 1230.3 27 0.0 343.9
80 27 27 0.0 49.6 24 1.0 2197.5 — — —
100 27 27 0.0 240.5 14 1.3 7122.5 27 0.0 1686.4

Table 3 Comparison on the CMTVRPTW with and without UB using one thread.

n #Inst
Default (one thread) Default (one thread) Roboredo et al. (2023) Roboredo et al. (2023)

without UB with UB without UB with UB
Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU

70 27 27 0.0 39.0 27 0.0 20.1 22 — 3443.6 25 — 2511.3
80 27 27 0.0 83.1 27 0.0 43.5 18 — 4446.9 25 — 2261.7
100 27 27 0.0 570.0 27 0.0 589.2 11 — 6357.9 17 — 5380.1

Table 4 Comparison on the CMTVRPTW-LT.

n #Inst This Paper (Default) Yang (2023) Zhang (2022)
Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU

70 27 27 0.0 27.4 27 0.0 1497.0 27 0.0 329.7
80 27 27 0.0 48.4 24 1.1 2558.2 — — —
100 27 27 0.0 362.3 13 1.2 7201.4 27 0.0 1868.4

7.3.2. Comparison on the CMTVRPTW-LT According to Table 4, our method consistently
outperforms all the benchmark algorithms substantially on the CMTVRPTW-LT. Specifically, it
can solve all 81 instances optimally, with computational speeds more than 10 times for 70-customer
instances and over 5 times for 100-customer instances as fast as those of Zhang (2022). In contrast,
Yang (2023) only solves 64 of the 81 instances optimally, and it once again takes over 20 times more
time than our method.

Yang: DeLuxing for CG-Based Exact Methods
32 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

7.3.3. Comparison on the CMTVRPTW-R Table 5 summarizes the results for 243

CMTVRPTW-R instances. Our method can solve all but one instance optimally and achieves an

optimality gap of 0.3% for the only unsolved instance. In terms of computational speed, our method

is, once again, significantly faster than Zhang (2022) and Yang (2023).

Table 5 Comparison on the CMTVRPTW-R.

n κ #Inst This Paper (Default) Yang (2023) Zhang (2022)
Solved Gap% CPU Solved Gap% CPU Solved Gap% CPU

70 0.25 27 27 0.0 23.2 27 0.0 251.9 27 0.0 190.8
70 0.50 27 27 0.0 13.8 27 0.0 190.2 27 0.0 164.8
70 0.75 27 27 0.0 24.9 26 0.6 490.6 27 0.0 156.5
80 0.25 27 27 0.0 17.9 27 0.0 1055.8 — — —
80 0.50 27 27 0.0 26.4 27 0.0 433.7 — — —
80 0.75 27 27 0.0 50.0 27 0.0 542.7 — — —
100 0.25 27 27 0.0 196.8 23 2.0 3534.8 27 0.0 771.6
100 0.50 27 26 0.3 583.5 23 1.4 3140.9 27 0.0 743.4
100 0.75 27 27 0.0 182.7 21 1.6 3288.0 27 0.0 536.5

7.4. Computational Results for Large Multi-Trip Instances

In this section, we test Default on significantly larger instances with sizes twice as large as the largest

ones currently documented in the literature, which are exponentially more difficult to solve. For the

CMTVRPTW and CMTVRPTW-LT, the CPU of an instance whose optimality cannot be proved

within the 3-hour time limit is again counted as 10,800, and the values of Gap and CPU are averaged

over all instances. However, for some CMTVRPTW-R instances, no feasible solution can be found

at termination. Such instances (3, 2, and 9 instances of sizes 140, 170, and 200, respectively; 15 in

total) are excluded from the computation of Gap and CPU values. Table 6 summarizes the results

and more details can be found in Tables EC.3 to EC.5 in Section EC.2 of the e-companion.

Table 6 Computational results for large instances.

n
CMTVRPTW CMTVRPTW-LT CMTVRPTW-R

#Inst Solved Gap% CPU #Inst Solved Gap% CPU #Inst Solved Gap% CPU
140 30 29 0.1 1254.0 30 28 0.2 1372.5 90 84 1.4 365.9
170 30 22 0.5 4210.7 30 21 0.5 4048.4 90 61 1.1 722.0
200 30 22 0.4 4306.3 30 21 0.5 4649.6 90 47 1.3 930.0

According to Table 6, all but one CMTVRPTW instance of size 140 can be solved within 3

hours, and the optimality of the only unsolved one can be proved within 5 hours. Among the 60

CMTVRPTW instances of sizes 170 and 200, 44 instances can be solved. The average gaps for the

unsolved instances are approximately 0.5% and 0.4%, respectively. Our method achieves very similar

results for the CMTVRPTW-LT: it solves all but two instances of size 140. In addition, 70% of 170-

and 200-customer instances can be solved, and the average gaps of the unsolved ones are 0.5%. For

the CMTVRPTW-R, around 93%, 68%, and 52% of instances of sizes 140, 170, and 200 can be

solved. The average gaps of the unsolved instances are all below 1.5%. The optimality of all solved

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

instances can be proved, on average, in less than 16 minutes. These results clearly demonstrate that
the Default brings our capabilities of solving CMTVRPTW, CMTVRPTW-LT, and CMTVRPTW-R
to an entirely new level.

7.5. Computational Results for CVRP and VRPTW Instances

In this section, we focus on demonstrating the effectiveness of DeLuxing and the new primal heuristic
from Section 6.3 for solving two classic types of VRPs: CVRP and VRPTW. For each problem class,
we conduct six sets of experiments: the basic VRP-Solver, basic RouteOpt (RouteOpt0), RouteOpt
with DeLuxing (RouteOp1), RouteOpt with the traditional (old) primal heuristic (RouteOpt2),
RouteOpt with our new primal heuristic (RouteOpt3), and RouteOpt with both DeLuxing and the
new primal heuristic (RouteOpt4). The initial upper bound is set to ub0 “ p1` 0.1%q ¨ v˚ so that all
176 (76 CVRP + 100 VRPTW) instances can be solved to optimality while ensuring the enumeration
does not often succeed at the root, where v˚ is the optimal value.

It is important to note that branching proves ineffective in solving the multi-trip instances in
previous sections and, thus, is not performed. In such scenarios, we apply DeLuxing aggressively to
make the final IP as small as possible because the primary challenge lies in solving this IP. However,
this is not the case anymore when solving the CVRP and VRPTW. Branching is indispensable,
leading to the generation of many nodes and, thus, IPs to solve. Applying DeLuxing immediately after
a successful enumeration at each BBN becomes inefficient. Instead, branching can initially downsize
an enumerated pool rapidly. We further observe that in a later stage, branching does not reduce the
pool effectively and ends up creating too many nodes.

The goal of DeLuxing, in this case, shifts to lessening dependence on branching. It closes each
node early, thereby reducing the BB tree size. Specifically, DeLuxing is applied moderately at each
node once the pool size falls below a set threshold, denoted as N̄ . The reduced IP can then be solved
efficiently by Gurobi, and thus, the node is closed without further branching. Through experimenta-
tion, we found that setting p “ 20, β1 “ 1000, β2 “ 1000, and N̄ “ 50,000 typically halves the pool
size within 10 seconds across most instances. Consequently, these parameters are adopted across all
experiments in this section.

7.5.1. Effectiveness of DeLuxing Table 7 summarizes the average time in seconds (CPU) and
the tree size measured by the number of BBNs (Node). For detailed results, readers are referred to
Tables EC.6 and EC.7 in Section EC.3 of the e-companion. Without DeLuxing, RouteOpt is already,
on average, about 110% faster than the VRP-Solver for the CVRP instances and 47% faster for the
VRPTW instances. DeLuxing further speeds up it by more than 23% and 33%, respectively, resulting
in a more than 2.5X speed for the CVRP and a nearly 2X speed for the VRTPW compared with
the VRP-Solver. This acceleration is primarily attributed to DeLuxing consistently reducing the tree
size by more than two-thirds.

Yang: DeLuxing for CG-Based Exact Methods
34 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Table 7 Computational results for the CVRP and VRPTW instances.

n #Inst Solved VRP-Solver RouteOpt0 RouteOpt1 RouteOpt2 RouteOpt3 RouteOpt4
CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

CVRP 200 76 76 9020.5 320.7 4303.9 317.4 3489.4 97.5 4263.2 309.8 3239.2 175.0 2912.0 55.2
VRPTW 300 100 100 9618.3 262.5 6528.3 770.4 4869.4 224.4 6598.0 772.4 4679.7 506.0 3751.1 139.1

7.5.2. Effectiveness of Our Primal Heuristic We observe in our experiments that the stan-
dard primal heuristic yields a solution of better value than the given initial upper bound for only
5 out of the 76 CVRP instances and 1 out of the 100 VRPTW instances. According to Table 7,
its application in RouteOpt results in little difference: 1% speedup for the CVRP instances and 1%
slowdown for the VRPTW instances. By comparing RouteOpt0 and Routeopt3, we conclude that our
proposed primal heuristic accelerates RouteOpt by around 33% and 40%, substantially outperforming
the standard primal heuristic.

7.5.3. Effectiveness of DeLuxing and Our Primal Heuristic Combined Comparing
RouteOpt3 and RouteOpt4 in Table 7, we can conclude that even when DeLuxing is enabled, our
primal heuristic can still accelerate RouteOpt by around 20% and 30%, respectively. When DeLuxing
and our primal heuristic are both enabled, they reduce the tree size by more than 80%, making
RouteOpt 48% and 74% faster. Overall, the speed is about 210% and 156%, respectively, faster than
the VRP-Solver for solving the CVRP and VRPTW instances.

7.5.4. Results for Long CVRP Instances The 176 CVRP and VRPTW instances tested
have moderate route lengths: the average number of customers per route is 7.0 (with a maximum of
15) for the CVRP and 7.9 (with a maximum of 10) for the VRPTW. For these instances, enumera-
tion typically succeeds relatively early in the solution process, with the first successful enumeration
occurring at around 12.6% and 4.5% of the whole process for the CVRP and VRPTW, respectively,
and the last success happening at 93.3% and 90.8% of the duration. Despite early enumeration, the
branching tree remains large, with average tree sizes of 317.4 and 770.4, respectively, when solved
under setting RouteOpt0 (see Table 7).

In instances with long routes, successful enumeration tends to occur much later in the process.
Once successful, branching can rapidly close a node, resulting in much smaller BB trees. In such
cases, DeLuxing is expected to be less effective. To verify this intuition, we conducted additional
experiments on long CVRP instances. To this end, we increased the capacity of the 76 CVRP instances
by 80%, on average lengthening the routes to 15.6 (with a maximum of 23). We obtained optimal
solutions for 65 of these instances and used them for the following analysis. As expected, the first
successful enumeration occurs much later, at around 27.8%, and the last happens at 99.8% of the
process. Additionally, the tree size is significantly smaller, with an average of 63.7. In this scenario, our
experiments indicate that DeLuxing is no longer effective, as nodes are closed rapidly by branching
following successful enumeration. Nonetheless, our primal heuristic still accelerates RouteOpt by
more than 25%. Detailed results are included in Table EC.8 in Section EC.3 of the e-companion.

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 35

8. Concluding Remarks

We propose a highly effective variable fixing strategy, called DeLuxing, that employs a novel deep

search method for identifying promising dual solutions. Based on theoretical results, it solves a novel

LP formulation with only a small subset of the enumerated variables in each iteration. DeLuxing

can remove more than 75% variables in most cases, achieving a direct acceleration of over 50%.

Enhanced by the additional three extensions inspired by DeLuxing, our method can be more than

7 times on average and up to more than 20 times as fast as the best-performing exact method

in the literature. In particular, our method can solve all but one CMTVRPTW instance with 140

customers in 3 hours and prove optimality for the remaining one in 5 hours, which doubles the size

of previously completely solvable instances. Significant performance improvement is also achieved for

the two important variants (the CMTVRPTW-LT and CMTVRPTW-R) and two classic VRPs (the

CVRP and VRPTW). It is worth mentioning that the enumeration of all necessary columns early

in the solution process is crucial to the success of DeLuxing. Nonetheless, the new primal inspired

by DeLuxing performs consistently well across all tested instances in this paper, even when full

enumeration only succeeds late.

Currently, in the subroutine of DeLuxing (Algorithm 2), we employ the dual simplex method or

interior point method without crossover to solve the LP formulation pFpR1, rJ q and obtain each time

one optimal dual solution for determining the set of removable columns D. In future research, it

would be beneficial to explore the possibility of recording all feasible dual solutions encountered

during the solution process and utilizing them to compute LUs for further variable fixing. Another

potential research direction is to investigate the similarities among columns in an artificial cluster

Dz rJ and develop even more effective approaches to bundle columns for computing qualified dual

solutions. In addition, extending the basic principle underpinning DeLuxing to other contexts such

as the pricing algorithm and branching variable selection can potentially lead to extra acceleration.

Finally, establishing theoretical guarantees, in a probabilistic sense, regarding the performance of

DeLuxing under potentially mild assumptions can also be an interesting research direction.

Acknowledgments
This work is partially supported by National Science Foundation [Grant CMMI-2309667] and Alibaba Group

US [Grant AGR00022274]. We would like to thank the area editor, associate editor, and three anonymous

referees for providing valuable comments and suggestions.

Yang: DeLuxing for CG-Based Exact Methods
36 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

References
Achterberg T (2018) Exploiting degeneracy in MIP. Talk at Aussois 22nd Combinatorial Optimization Work-

shop, URL http://www.iasi.cnr.it/aussois/web/uploads/2018/slides/achterbergt.pdf.

Achterberg T, Berthold T, Koch T, Wolter K (2008) Constraint integer programming: A new approach to
integrate CP and MIP. Integration of AI and OR Techniques in Constraint Programming for Combina-
torial Optimization Problems: 5th International Conference, CPAIOR 2008 Paris, France, May 20-23,
2008 Proceedings 5, 6–20 (Springer).

Aloise D, Deshpande A, Hansen P, Popat P (2009) NP-hardness of euclidean sum-of-squares clustering.
Machine Learning 75:245–248.

Amaldi E, Kann V (1995) The complexity and approximability of finding maximum feasible subsystems of
linear relations. Theoretical Computer Science 147(1-2):181–210.

Arthur D, Vassilvitskii S (2007) K-means++ the advantages of careful seeding. Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 1027–1035.

Bacchus F, Hyttinen A, Järvisalo M, Saikko P (2017) Reduced cost fixing in maxsat. Principles and Prac-
tice of Constraint Programming: 23rd International Conference, CP 2017, Melbourne, VIC, Australia,
August 28–September 1, 2017, Proceedings 23, 641–651 (Springer).

Bajgiran OS, Cire AA, Rousseau LM (2017) A first look at picking dual variables for maximizing reduced cost
fixing. Integration of AI and OR Techniques in Constraint Programming: 14th International Conference,
CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings 14, 221–228 (Springer).

Balas E, Carrera MC (1996) A dynamic subgradient-based branch-and-bound procedure for set covering.
Operations Research 44(6):875–890.

Balas E, Saltzman MJ (1991) An algorithm for the three-index assignment problem. Operations Research
39(1):150–161.

Baldacci R, Bartolini E, Mingozzi A (2011a) An exact algorithm for the pickup and delivery problem with
time windows. Operations Research 59(2):414–426.

Baldacci R, Bartolini E, Mingozzi A, Valletta A (2011b) An exact algorithm for the period routing problem.
Operations Research 59(1):228–241.

Baldacci R, Christofides N, Mingozzi A (2008) An exact algorithm for the vehicle routing problem based on
the set partitioning formulation with additional cuts. Mathematical Programming 115(2):351–385.

Baldacci R, Hadjiconstantinou E, Mingozzi A (2004) An exact algorithm for the capacitated vehicle routing
problem based on a two-commodity network flow formulation. Operations Research 52(5):723–738.

Baldacci R, Mingozzi A, Roberti R (2011c) New route relaxation and pricing strategies for the vehicle routing
problem. Operations Research 59(5):1269–1283.

Baldacci R, Mingozzi A, Roberti R (2012) New state-space relaxations for solving the traveling salesman
problem with time windows. INFORMS Journal on Computing 24(3):356–371.

http://www.iasi.cnr.it/aussois/web/uploads/2018/slides/achterbergt.pdf

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 37

Baldacci R, Mingozzi A, Roberti R, Calvo RW (2013) An exact algorithm for the two-echelon capacitated
vehicle routing problem. Operations Research 61(2):298–314.

Baldacci R, Mingozzi A, Wolfler Calvo R (2011d) An exact method for the capacitated location-routing
problem. Operations Research 59(5):1284–1296.

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MW, Vance PH (1998) Branch-and-price: Column
generation for solving huge integer programs. Operations Research 46(3):316–329.

Bixby ER, Fenelon M, Gu Z, Rothberg E, Wunderling R (2000) Mip: Theory and practiceclosing the gap.
System Modelling and Optimization: Methods, Theory and Applications. 19 th IFIP TC7 Conference
on System Modelling and Optimization July 12–16, 1999, Cambridge, UK 19, 19–49 (Springer).

Bixby RE (2002) Solving real-world linear programs: A decade and more of progress. Operations Research
50(1):3–15.

Bradley PS, Fayyad UM (1998) Refining initial points for k-means clustering. ICML, volume 98, 91–99
(Citeseer).

Breugem T, Dollevoet T, Huisman D (2022) Is equality always desirable? Analyzing the trade-off between
fairness and attractiveness in crew rostering. Management Science 68(4):2619–2641.

Cappanera P, Gallo G (2004) A multicommodity flow approach to the crew rostering problem. Operations
Research 52(4):583–596.

Cattaruzza D, Absi N, Feillet D (2016a) The multi-trip vehicle routing problem with time windows and
release dates. Transportation Science 50(2):676–693.

Cattaruzza D, Absi N, Feillet D (2016b) Vehicle routing problems with multiple trips. 4OR 14(3):223–259.

Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the
k-means clustering algorithm. Expert systems with applications 40(1):200–210.

Cheng C, Adulyasak Y, Rousseau LM (2020) Drone routing with energy function: Formulation and exact
algorithm. Transportation Research Part B: Methodological 139:364–387.

Contardo C, Martinelli R (2014) A new exact algorithm for the multi-depot vehicle routing problem under
capacity and route length constraints. Discrete Optimization 12:129–146.

Costa L, Contardo C, Desaulniers G (2019) Exact branch-price-and-cut algorithms for vehicle routing. Trans-
portation Science 53(4):946–985.

Crainic TG, Maggioni F, Perboli G, Rei W (2018) Reduced cost-based variable fixing in two-stage stochastic
programming. Annals of Operations Research 1–37.

Crowder H, Johnson EL, Padberg M (1983) Solving large-scale zero-one linear programming problems.
Operations Research 31(5):803–834.

Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-scale traveling-salesman problem. Journal of
the Operations Research Society of America 2(4):393–410.

Yang: DeLuxing for CG-Based Exact Methods
38 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Operations Research 8(1):101–111.

de Lima VL, Iori M, Miyazawa FK (2023) Exact solution of network flow models with strong relaxations.
Mathematical Programming 197(2):813–846.

Desaulniers G, Errico F, Irnich S, Schneider M (2016a) Exact algorithms for electric vehicle-routing problems
with time windows. Operations Research 64(6):1388–1405.

Desaulniers G, Gschwind T, Irnich S (2020) Variable fixing for two-arc sequences in branch-price-and-cut
algorithms on path-based models. Transportation Science 54(5):1170–1188.

Desaulniers G, Rakke JG, Coelho LC (2016b) A branch-price-and-cut algorithm for the inventory-routing
problem. Transportation Science 50(3):1060–1076.

Engineer FG, Furman KC, Nemhauser GL, Savelsbergh MW, Song JH (2012) A branch-price-and-cut algo-
rithm for single-product maritime inventory routing. Operations Research 60(1):106–122.

Ford LR, Fulkerson DR (1958) A suggested computation for maximal multi-commodity network flows. Man-
agement Science 5(1):97–101.

Fukasawa R, Longo H, Lysgaard J, Aragão MPd, Reis M, Uchoa E, Werneck RF (2006) Robust branch-and-
cut-and-price for the capacitated vehicle routing problem. Mathematical Programming 106:491–511.

Gurobi Optimization, LLC (2023) Gurobi Optimizer Reference Manual. URL https://www.gurobi.com/

documentation/10.0/refman/index.html.

Hernandez F, Feillet D, Giroudeau R, Naud O (2014) A new exact algorithm to solve the multi-trip vehicle
routing problem with time windows and limited duration. 4or 12(3):235–259.

Hernandez F, Feillet D, Giroudeau R, Naud O (2016) Branch-and-price algorithms for the solution of
the multi-trip vehicle routing problem with time windows. European Journal of Operational Research
249(2):551–559.

Holmberg K, Yuan D (2000) A Lagrangian heuristic based branch-and-bound approach for the capacitated
network design problem. Operations Research 48(3):461–481.

Homberger J, Gehring H (2005) A two-phase hybrid metaheuristic for the vehicle routing problem with time
windows. European Journal of Operational Research 162(1):220–238.

Hooker JN, Ottosson G, Thorsteinsson ES, Kim HJ (1999) On integrating constraint propagation and linear
programming for combinatorial optimization. AAAI/IAAI, 136–141.

Irnich S, Desaulniers G, Desrosiers J, Hadjar A (2010) Path-reduced costs for eliminating arcs in routing
and scheduling. INFORMS Journal on Computing 22(2):297–313.

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-
routing problem with time windows. Operations Research 56(2):497–511.

Johnson EL, Kostreva MM, Suhl UH (1985) Solving 0-1 integer programming problems arising from large
scale planning models. Operations Research 33(4):803–819.

https://www.gurobi.com/documentation/10.0/refman/index.html
https://www.gurobi.com/documentation/10.0/refman/index.html

Yang: DeLuxing for CG-Based Exact Methods
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 39

Kohl N, Desrosiers J, Madsen OB, Solomon MM, Soumis F (1999) 2-path cuts for the vehicle routing problem
with time windows. Transportation Science 33(1):101–116.

Land AH, Doig AG (2010) An automatic method for solving discrete programming problems (Springer).

Laporte G, Nobert Y (1983) A branch and bound algorithm for the capacitated vehicle routing problem.
Operations Research Spektrum 5:77–85.

Lima I, Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A, Oliveira D, Queiroga E (2014)
Cvrplib: Capacitated vehicle routing problem library. URL http://vrp.galgos.inf.puc-rio.br/

index.php/en/.

Lloyd S (1982) Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2):129–
137.

Lysgaard J, Letchford AN, Eglese RW (2004) A new branch-and-cut algorithm for the capacitated vehicle
routing problem. Mathematical Programming 100:423–445.

Mingozzi A, Roberti R, Toth P (2013) An exact algorithm for the multitrip vehicle routing problem.
INFORMS Journal on Computing 25(2):193–207.

Paradiso R, Roberti R, Laganá D, Dullaert W (2020) An exact solution framework for multitrip vehicle-
routing problems with time windows. Operations Research 68(1):180–198.

Pecin D, Contardo C, Desaulniers G, Uchoa E (2017a) New enhancements for the exact solution of the
vehicle routing problem with time windows. INFORMS Journal on Computing 29(3):489–502.

Pecin D, Pessoa A, Poggi M, Uchoa E (2017b) Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation 9(1):61–100.

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F (2020) A generic exact solver for vehicle routing and related
problems. Mathematical Programming 183(1):483–523.

Pessoa A, Uchoa E, De Aragão MP, Rodrigues R (2010) Exact algorithm over an arc-time-indexed formulation
for parallel machine scheduling problems. Mathematical Programming Computation 2:259–290.

Posta M, Ferland JA, Michelon P (2012) An exact method with variable fixing for solving the generalized
assignment problem. Computational Optimization and Applications 52:629–644.

Quesnel F, Desaulniers G, Soumis F (2020) Improving air crew rostering by considering crew preferences in
the crew pairing problem. Transportation Science 54(1):97–114.

Roberti R, Ruthmair M (2021) Exact methods for the traveling salesman problem with drone. Transportation
Science 55(2):315–335.

Roboredo M, Sadykov R, Uchoa E (2023) Solving vehicle routing problems with intermediate stops using
vrpsolver models. Networks 81(3):399–416.

Sadykov R, Uchoa E, Pessoa A (2021) A bucket graph–based labeling algorithm with application to vehicle
routing. Transportation Science 55(1):4–28.

http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/

Yang: DeLuxing for CG-Based Exact Methods
40 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Sellmann M (2004) Theoretical foundations of CP-based Lagrangian relaxation. Principles and Practice of

Constraint Programming–CP 2004: 10th International Conference, CP 2004, Toronto, Canada, Septem-

ber 27-October 1, 2004. Proceedings 10, 634–647 (Springer).

Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian A (2017) New benchmark instances for the

capacitated vehicle routing problem. European Journal of Operational Research 257(3):845–858.

Wolsey LA, Nemhauser GL (1999) Integer and combinatorial optimization, volume 55 (John Wiley & Sons).

Yang Y (2023) An exact price-cut-and-enumerate method for the capacitated multitrip vehicle routing prob-

lem with time windows. Transportation Science 57(1):230–251.

You Z, Yang Y, Wang X, Yin W (2023) Two-stage learning to branch in branch-price-and-cut algorithms for

solving vehicle routing problems exactly. Available at SSRN: https://ssrn.com/abstract=4630549.

Under major revision at Operations Research .

Yunes T, Aron ID, Hooker JN (2010) An integrated solver for optimization problems. Operations Research

58(2):342–356.

Zhang S (2022) Solving the capacitated multi-trip vehicle routing problem with time windows. MPhil Thesis,

Hong Kong Polytechnic University.

https://ssrn.com/abstract=4630549

Online Supplement
EC.1. Detailed Results for the First Set of Experiments

Table EC.1 presents the detailed results for each individual instance of the first set of experiments

in Section 7.1. The following information is included: the instance name (Name), the number of

customers (n), the size of the enumerated column pool (|R|), the number of columns with reduced

costs not exceeding half of the gap (|Rď
2 |), the number of columns with reduced costs more than half

the gap (|Rą
2 |), the percentage of columns removed by each method (D%), and the computational

time of each instance in seconds (CPU).

Table EC.1: Detailed results for the first set of experiments.

Name n |R| |Rď
2 | |Rą

2 |
Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

C201 70 69,562 10,625 58,937 84.7 2.7 88.3 16.9 79.7 1.6 76.8 1.3 77.8 2.1
C202 70 167,231 14,858 152,373 91.1 7.9 91.7 104.3 88.6 4.5 85.9 3.9 86.9 5.3
C203 70 2,148 781 1,367 63.6 0.6 91.2 0.8 61.2 0.3 61.6 0.3 59.3 0.6
C204 70 2,384 1,215 1,169 49.0 0.7 89.1 0.9 71.4 0.4 63.4 0.3 51.3 0.7
C205 70 241,821 13,520 228,301 94.4 10.9 95.0 188.0 93.1 5.7 91.8 4.8 90.8 8.9
C206 70 198,754 17,205 181,549 91.3 12.1 92.7 131.3 86.4 5.9 87.3 5.3 87.6 7.1
C207 70 232,952 32,147 200,805 86.2 16.6 93.0 216.0 84.0 7.2 88.8 8.6 84.7 9.9
C208 70 2,590 807 1,783 68.8 0.5 92.0 0.9 61.7 0.3 62.8 0.2 65.4 0.5
R201 70 11,097 1,724 9,373 84.5 0.8 92.9 2.6 82.6 0.5 78.7 0.4 83.0 0.6
R202 70 61,021 8,917 52,104 85.4 4.0 88.3 27.4 81.1 2.6 78.6 1.9 80.2 2.6
R203 70 54,387 5,080 49,307 90.7 3.5 91.5 30.4 86.5 2.0 83.6 1.9 86.7 2.6
R204 70 108,401 11,160 97,241 89.7 9.0 90.9 113.7 86.5 5.6 83.9 4.3 84.2 5.4
R205 70 86,765 14,008 72,757 83.9 8.9 83.9 82.2 78.3 5.1 73.0 3.9 76.1 5.0
R206 70 111,271 12,828 98,443 88.5 9.5 89.6 126.7 84.4 5.3 82.8 4.8 82.0 5.8
R207 70 65,745 7,951 57,794 87.9 6.1 89.7 43.0 83.5 4.0 80.8 3.0 82.4 3.7
R208 70 113,628 12,608 101,020 88.9 7.5 90.6 100.2 87.6 4.9 84.5 3.8 84.8 4.6
R209 70 37,046 4,220 32,826 88.6 2.9 90.6 18.4 84.8 1.8 81.2 1.5 84.5 2.1
R210 70 52,710 5,888 46,822 88.8 5.2 90.3 47.3 84.0 3.2 81.6 3.0 82.4 3.8
R211 70 69,533 8,444 61,089 87.9 4.9 89.3 39.1 85.1 2.8 81.9 2.4 83.3 3.0

RC201 70 5,806 1,343 4,463 76.9 0.6 88.8 1.1 81.8 0.4 76.9 0.3 76.3 0.5
RC202 70 6,423 1,555 4,868 75.8 0.6 82.5 1.4 70.5 0.4 66.5 0.3 72.4 0.5
RC203 70 19,780 4,251 15,529 78.5 1.8 86.8 7.4 74.8 1.1 69.2 1.0 73.8 1.3
RC204 70 41,386 4,973 36,413 88.0 3.4 91.5 14.9 87.5 2.1 82.3 1.8 81.8 2.6
RC205 70 9,659 1,955 7,704 79.8 1.5 81.8 4.6 74.1 1.1 65.2 0.9 74.6 1.3
RC206 70 12,448 1,526 10,922 87.7 1.2 89.6 5.6 87.7 0.7 82.2 0.9 83.6 1.2
RC207 70 28,008 3,394 24,614 87.9 2.4 89.6 13.1 86.4 1.6 82.4 1.3 82.9 1.8
RC208 70 48,135 5,936 42,199 87.7 3.9 91.3 24.1 86.4 2.8 82.7 2.4 80.6 3.1

C201 80 295,358 32,044 263,314 89.2 15.7 94.7 216.1 88.5 7.2 91.2 6.3 87.0 11.3
C202 80 356 153 203 57.0 0.1 80.9 0.2 68.8 0.1 62.4 0.1 57.0 0.1
C203 80 484 280 204 42.2 0.2 77.3 0.3 41.3 0.1 38.4 0.1 42.2 0.2
C204 80 656,380 37,455 618,925 94.3 17.8 95.6 184.4 93.7 9.1 92.7 8.0 91.3 11.8
C205 80 264 20 244 92.4 0.0 92.4 0.0 92.4 0.0 92.4 0.0 92.4 0.0
C206 80 380,825 25,544 355,281 93.3 8.9 96.7 79.8 92.9 4.9 93.5 4.2 92.2 6.4
C207 80 389,157 46,998 342,159 87.9 17.8 94.2 195.9 87.3 8.2 91.0 7.0 85.5 11.7
C208 80 449,968 33,450 416,518 92.6 9.8 95.2 112.0 93.3 5.4 92.9 4.9 92.6 6.7
R201 80 68,398 4,887 63,511 92.9 4.2 93.3 42.8 88.5 2.5 87.4 2.2 88.9 3.2
R202 80 70,136 8,662 61,474 87.7 5.1 88.9 40.9 84.0 2.7 80.4 2.2 81.9 3.4
R203 80 121,315 9,427 111,888 92.2 8.1 92.4 129.8 89.6 5.4 88.8 4.8 87.8 5.5
R204 80 10,718 4,375 6,343 59.2 5.1 78.2 12.3 56.6 2.9 46.6 2.3 60.9 3.6
R205 80 118,485 16,211 102,274 86.3 11.9 86.7 124.5 81.2 6.9 77.4 5.0 78.9 6.5
R206 80 136,015 16,004 120,011 88.2 15.9 89.2 237.2 84.0 8.9 82.4 7.4 81.8 8.8

Continued on next page

ec1

ec2 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.1 – Continued from previous page

Name n |R| |Rď
2 | |Rą

2 |
Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

R207 80 193,472 15,664 177,808 91.9 17.9 92.1 392.6 88.9 10.7 87.3 7.9 86.2 11.0
R208 80 1,041 648 393 37.8 0.8 82.2 1.1 38.6 0.5 50.5 0.4 37.8 0.8
R209 80 113,636 12,240 101,396 89.2 12.3 90.0 155.4 83.9 6.4 82.8 5.7 82.8 7.3
R210 80 98,047 11,839 86,208 87.9 10.5 88.6 139.5 83.8 6.8 78.9 5.5 81.2 6.1
R211 80 12,271 4,371 7,900 64.4 4.4 74.5 13.1 54.8 2.5 50.7 2.1 58.1 3.3

RC201 80 7,950 1,065 6,885 86.6 0.7 90.7 2.4 83.0 0.4 81.9 0.4 82.5 0.7
RC202 80 13,712 2,324 11,388 83.1 1.3 87.1 5.1 79.7 0.8 76.2 0.8 79.7 1.1
RC203 80 24,426 3,487 20,939 85.7 1.3 87.4 5.9 83.3 0.8 78.3 0.7 81.2 1.0
RC204 80 39,195 4,798 34,397 87.8 1.7 93.1 6.8 88.1 1.2 87.9 1.0 87.3 1.3
RC205 80 21,824 4,542 17,282 79.2 2.6 83.4 11.6 76.5 1.6 70.2 1.6 76.3 1.9
RC206 80 20,353 2,746 17,607 86.5 2.1 89.0 10.1 84.7 1.3 80.2 1.3 82.9 2.0
RC207 80 3,261 1,740 1,521 46.6 0.6 69.2 1.0 43.0 0.4 34.5 0.3 46.0 0.6
RC208 80 36,018 5,704 30,314 84.2 1.7 91.9 5.4 85.0 1.1 83.9 1.1 82.5 1.2

C201 100 313,754 14,701 299,053 95.3 16.2 95.7 336.9 95.2 9.7 93.9 7.3 92.9 13.1
C202 100 596 256 340 57.1 0.2 89.1 0.3 58.2 0.2 57.6 0.2 57.1 0.2
C203 100 735,149 38,193 696,956 94.8 17.6 95.2 506.4 94.8 17.7 94.0 14.6 90.3 7.3
C204 100 827 158 669 80.9 0.1 93.1 0.2 73.0 0.1 84.8 0.1 77.4 0.1
C205 100 243 51 192 79.0 0.1 76.1 0.2 86.0 0.1 81.9 0.1 79.0 0.1
C206 100 334,947 22,312 312,635 93.3 15.3 94.4 158.9 92.2 7.8 91.5 6.5 89.4 11.0
C207 100 318 38 280 88.1 0.0 89.9 0.1 64.2 0.1 89.3 0.0 88.1 0.0
C208 100 290 61 229 79.0 0.1 83.8 0.1 85.5 0.0 83.8 0.0 79.0 0.1
R201 100 362,623 39,147 323,476 89.2 32.0 89.8 937.2 87.8 21.4 86.2 15.7 80.7 16.7
R202 100 892,622 128,224 764,398 85.6 121.0 86.2 4230.1 85.6 124.6 82.6 78.6 61.7 21.3
R203 100 43,969 20,005 23,964 54.5 20.6 59.7 75.8 44.9 12.0 36.7 8.5 45.8 11.0
R204 100 18,178 6,414 11,764 64.7 11.5 85.5 32.2 60.3 5.9 57.4 5.2 63.7 7.4
R205 100 490,622 59,700 430,922 87.8 52.4 88.3 1653.6 85.4 29.3 82.3 21.5 78.7 23.0
R206 100 541,592 103,294 438,298 80.9 53.3 80.8 1591.4 80.9 53.4 77.4 37.2 56.5 9.6
R207 100 32,326 8,648 23,678 73.3 18.8 79.6 76.4 64.8 12.1 55.0 9.8 65.3 10.8
R208 100 10,876 3,003 7,873 72.4 5.8 83.4 17.0 65.7 3.7 57.6 3.3 66.9 4.5
R209 100 15,708 5,850 9,858 62.8 7.0 71.8 20.9 48.6 4.3 39.4 3.4 55.9 4.9
R210 100 27,332 9,770 17,562 64.3 16.3 76.1 58.5 54.3 9.5 50.4 8.1 57.1 10.1
R211 100 73,958 15,480 58,478 79.1 29.2 84.9 165.7 73.7 18.8 72.4 14.2 71.5 13.8

RC201 100 9,551 2,368 7,183 75.2 1.2 79.7 3.2 70.8 0.7 65.5 0.5 71.3 0.9
RC202 100 100,395 14,447 85,948 85.6 9.1 86.3 95.2 81.6 5.6 76.1 3.8 77.9 5.5
RC203 100 108,682 8,109 100,573 92.5 8.7 93.2 113.8 89.6 5.5 88.3 3.8 87.6 6.4
RC204 100 235,679 14,422 221,257 93.9 14.3 95.0 317.6 93.1 9.0 91.9 7.4 90.7 10.5
RC205 100 188,739 29,647 159,092 84.3 27.3 84.6 444.9 79.3 15.6 76.0 12.2 74.5 13.7
RC206 100 109,935 16,990 92,945 84.6 10.1 84.9 119.4 79.7 5.4 76.7 4.2 78.0 6.5
RC207 100 60,775 8,995 51,780 85.2 7.0 87.9 54.4 82.4 4.6 78.8 3.5 81.4 4.3
RC208 100 208,715 18,462 190,253 91.2 17.3 92.9 255.4 89.0 10.8 88.0 8.8 85.6 11.6

C2_2_01 140 30,507 6,467 24,040 78.8 4.5 86.3 15.8 76.5 2.8 72.8 2.4 75.0 3.5
C2_2_02 140 79,763 16,182 63,581 79.7 13.9 81.0 72.3 73.4 7.4 70.1 6.8 71.5 8.3
C2_2_03 140 103,992 12,320 91,672 88.2 11.4 91.2 116.6 88.2 7.5 85.5 6.5 84.7 8.1
C2_2_04 140 1,470 837 633 43.1 1.0 76.1 1.6 43.3 0.7 33.3 0.7 43.1 1.0
C2_2_05 140 39,657 7,239 32,418 81.8 5.3 82.9 23.1 78.6 3.6 72.6 2.8 76.3 3.9
C2_2_06 140 114,300 22,663 91,637 80.2 15.9 80.8 196.2 77.3 8.6 72.2 6.7 71.7 10.0
C2_2_07 140 86,989 14,821 72,168 83.0 9.4 83.9 60.1 79.7 6.2 78.4 4.3 76.6 5.9
C2_2_08 140 214,605 38,124 176,481 82.2 27.0 82.6 455.7 79.3 15.8 76.3 11.8 74.3 14.2
C2_2_09 140 398,209 57,192 341,017 85.6 55.6 86.0 1066.7 84.5 34.9 80.7 22.3 76.8 29.4
C2_2_10 140 227,213 43,288 183,925 81.0 29.6 81.6 366.9 79.8 19.4 75.1 12.7 71.7 17.0
R2_2_01 140 193,870 42,937 150,933 77.9 20.2 78.4 336.4 74.4 10.8 70.7 7.6 67.3 11.3
R2_2_02 140 84,668 19,590 65,078 76.9 8.8 77.6 53.4 73.8 5.1 68.5 3.7 68.7 5.0
R2_2_03 140 166,339 46,093 120,246 72.3 61.3 73.2 859.6 67.7 39.5 62.4 27.0 61.4 28.1
R2_2_04 140 56,430 10,471 45,959 81.4 4.9 86.6 50.1 80.7 3.6 78.9 2.3 80.8 3.2
R2_2_05 140 278,203 46,275 231,928 83.4 32.4 83.5 648.9 81.2 17.7 78.3 12.9 75.0 17.8
R2_2_06 140 552,662 93,918 458,744 83.0 35.4 83.6 1132.3 83.0 35.4 79.4 24.7 67.9 7.1
R2_2_07 140 882,247 126,877 755,370 85.6 62.6 86.0 2748.0 85.6 62.5 81.5 37.4 67.8 12.4
R2_2_08 140 37,185 8,463 28,722 77.2 3.6 85.6 14.9 78.4 2.4 72.9 1.8 74.2 2.5
R2_2_09 140 379,979 76,850 303,129 79.8 50.1 80.9 987.4 78.8 32.9 74.5 19.1 69.4 24.5
R2_2_10 140 974,093 189,266 784,827 80.6 59.0 81.2 2137.2 80.6 59.0 78.4 41.0 56.6 10.2

RC2_2_01 140 329,296 39,548 289,748 88.0 44.1 88.7 987.4 86.6 28.1 83.1 18.5 80.1 22.2
RC2_2_02 140 737,639 178,492 559,147 75.8 271.3 77.1 4722.2 75.8 285.1 74.8 237.0 33.7 31.8

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec3

Table EC.1 – Continued from previous page

Name n |R| |Rď
2 | |Rą

2 |
Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

RC2_2_03 140 234,689 33,056 201,633 85.9 97.3 87.5 1655.6 84.7 65.7 77.9 45.1 77.9 50.5
RC2_2_04 140 16,701 5,352 11,349 68.0 12.1 83.9 30.6 62.5 8.1 59.1 6.0 62.2 8.2
RC2_2_05 140 643,875 99,072 544,803 84.6 70.7 85.4 2130.0 84.6 70.8 80.8 43.0 65.1 16.1
RC2_2_06 140 1,073,216 151,743 921,473 85.9 326.9 85.8 8411.0 85.9 337.0 81.6 215.9 56.1 43.0
RC2_2_07 140 229,745 33,752 195,993 85.3 37.2 85.8 557.5 82.4 24.2 78.0 18.1 76.9 18.7
RC2_2_08 140 349,177 49,715 299,462 85.8 137.9 86.1 3290.1 81.1 81.3 77.6 66.8 75.9 67.4
RC2_2_09 140 221,394 30,244 191,150 86.3 84.9 86.3 1567.5 85.0 51.8 78.1 36.7 79.1 49.4
RC2_2_10 140 756,533 118,577 637,956 84.3 91.9 85.4 2145.1 84.3 89.7 80.2 56.0 69.7 19.5

C2_2_01 170 162,493 33,815 128,678 79.2 33.7 82.9 306.3 77.0 20.7 73.7 12.4 71.5 18.1
C2_2_02 170 115,713 19,386 96,327 83.3 24.9 89.9 161.1 82.5 12.1 82.2 10.2 79.7 15.7
C2_2_03 170 11,130 4,135 6,995 62.9 5.3 74.4 10.4 55.8 3.4 46.4 2.8 53.1 3.7
C2_2_04 170 10,131 3,163 6,968 68.8 4.8 81.9 11.6 68.8 3.8 59.4 3.2 62.4 3.9
C2_2_05 170 289,587 41,474 248,113 85.7 48.0 87.4 702.6 84.1 28.0 82.2 20.0 78.1 24.9
C2_2_06 170 77,616 16,300 61,316 79.0 10.4 84.5 51.8 77.9 6.1 77.6 5.4 74.4 7.6
C2_2_07 170 91,257 16,338 74,919 82.1 11.4 85.4 64.6 81.3 7.1 78.0 5.8 77.9 7.5
C2_2_08 170 104,173 12,405 91,768 88.1 16.2 90.8 82.5 84.9 6.6 83.4 6.8 82.9 10.8
C2_2_09 170 1,427 878 549 38.5 1.1 78.7 1.3 47.2 0.7 38.4 0.7 38.5 1.2
C2_2_10 170 547 338 209 38.2 0.4 75.7 0.6 38.9 0.4 75.5 0.3 38.2 0.4
R2_2_01 170 870,862 236,740 634,122 72.8 219.7 73.6 7473.0 72.8 217.9 69.6 158.8 40.0 20.2
R2_2_02 170 1,075,281 259,338 815,943 75.9 258.8 75.9 9132.7 75.9 266.1 70.0 164.2 38.2 25.3
R2_2_03 170 119,149 19,171 99,978 83.9 21.6 87.8 169.4 81.4 13.7 79.8 10.2 78.5 12.4
R2_2_04 170 440,199 50,925 389,274 88.4 65.3 89.2 1265.1 86.6 39.6 83.3 22.5 81.9 36.4
R2_2_05 170 1,108,306 309,317 798,989 72.1 244.0 71.5 7546.1 72.1 253.1 66.8 161.5 31.2 20.0
R2_2_06 170 1,458,809 323,333 1,135,476 77.8 396.8 71.7 10800.4 77.8 422.7 75.3 323.8 43.2 35.3
R2_2_07 170 264,562 34,200 230,362 87.1 36.3 88.1 585.9 86.4 20.9 82.5 14.7 80.7 24.0
R2_2_08 170 432,248 52,062 380,186 88.0 53.9 88.5 1056.9 85.8 28.7 83.1 17.3 80.4 33.0
R2_2_09 170 922,050 241,016 681,034 73.9 167.7 74.3 5554.0 73.9 174.5 71.4 142.9 33.6 20.4
R2_2_10 170 929,278 189,258 740,020 79.6 78.0 80.3 3292.4 79.6 77.9 77.7 57.1 55.6 11.0

RC2_2_01 170 2,510,141 622,751 1,887,390 75.2 1345.2 68.9 10810.1 75.2 1333.1 71.5 829.1 38.3 62.6
RC2_2_02 170 140,353 30,900 109,453 78.0 67.5 78.2 612.1 71.7 39.8 66.4 29.9 69.0 34.4
RC2_2_03 170 2,363,139 561,610 1,801,529 76.2 1321.1 68.5 10827.3 76.2 1326.1 72.5 766.5 44.7 105.1
RC2_2_04 170 262,193 55,361 206,832 78.9 114.5 79.7 2000.0 76.6 88.9 68.8 59.6 66.8 56.5
RC2_2_05 170 414,124 76,137 337,987 81.6 272.6 82.4 5375.8 80.0 212.0 73.9 113.7 71.2 115.4
RC2_2_06 170 221,690 46,266 175,424 79.1 130.7 79.8 2124.0 76.8 91.3 69.1 61.5 69.7 63.8
RC2_2_07 170 513,743 95,088 418,655 81.5 209.3 82.0 4823.2 81.5 214.5 78.6 147.3 57.0 54.3
RC2_2_08 170 2,680,336 603,111 2,077,225 77.5 2127.7 61.5 10898.0 77.5 2160.4 74.0 1413.5 43.3 149.0
RC2_2_09 170 113,256 28,185 85,071 75.1 30.8 81.0 176.2 74.0 21.5 64.9 11.0 68.4 17.8
RC2_2_10 170 868,556 192,761 675,795 77.8 478.8 78.7 10818.8 77.8 484.0 70.8 223.8 48.8 67.5

C2_2_01 200 14,760 5,496 9,264 62.8 5.6 73.6 15.7 63.3 4.4 53.1 3.6 60.3 4.6
C2_2_02 200 24,626 12,246 12,380 50.3 18.9 56.3 46.1 40.2 10.9 26.8 7.8 39.5 11.6
C2_2_03 200 7,098 3,777 3,321 46.8 6.3 74.9 10.2 44.4 3.8 39.2 3.7 46.0 5.5
C2_2_04 200 52,665 15,463 37,202 70.6 32.8 76.3 123.4 69.4 27.3 59.6 20.1 62.4 19.7
C2_2_05 200 8,922 4,420 4,502 50.5 4.6 72.0 8.7 48.5 2.7 42.5 2.5 48.8 3.7
C2_2_06 200 15,128 7,789 7,339 48.5 8.0 58.9 18.1 41.9 5.2 28.0 3.9 43.1 5.9
C2_2_07 200 1,215 796 419 34.5 1.4 74.3 1.9 32.4 0.9 31.9 0.9 34.5 1.5
C2_2_08 200 652 471 181 27.8 0.7 71.0 0.9 21.5 0.5 40.2 0.4 27.8 0.7
C2_2_09 200 191,241 26,298 164,943 86.3 32.3 86.6 416.0 84.7 21.1 80.1 15.8 78.6 20.0
C2_2_10 200 1,152 710 442 38.4 1.3 73.5 1.9 30.8 0.9 38.5 0.8 38.4 1.3
R2_2_01 200 2,186,524 522,063 1,664,461 76.1 1179.5 65.5 10819.9 76.1 1185.7 72.2 746.3 35.5 58.8
R2_2_02 200 317,183 72,181 245,002 77.2 144.1 77.9 3365.9 74.1 83.0 69.8 60.2 66.0 69.2
R2_2_03 200 99,222 17,168 82,054 82.7 18.8 84.7 151.9 80.1 11.5 74.7 8.3 75.5 12.6
R2_2_04 200 169,281 32,663 136,618 80.7 81.0 81.2 1026.9 78.1 59.2 76.0 45.7 70.0 46.8
R2_2_05 200 1,265,511 276,063 989,448 78.2 427.4 75.8 10814.5 78.2 430.9 74.4 276.4 47.1 38.4
R2_2_06 200 749,779 179,829 569,950 76.0 254.5 76.5 7896.9 76.0 255.8 73.0 184.4 45.3 29.5
R2_2_07 200 579,843 86,053 493,790 85.2 54.1 85.5 1899.1 85.2 54.0 82.7 38.6 67.6 11.8
R2_2_08 200 173,780 34,160 139,620 80.3 87.7 81.1 1222.2 76.8 65.0 71.4 48.2 68.9 50.5
R2_2_09 200 4,020,994 909,531 3,111,463 77.4 3015.4 62.5 10814.3 77.4 3054.6 73.9 1924.0 37.7 108.4
R2_2_10 200 267,272 64,256 203,016 76.0 103.9 76.9 1953.5 73.5 66.7 69.4 50.5 62.6 47.6

RC2_2_01 200 776,563 92,601 683,962 88.1 93.1 88.1 3603.9 88.1 93.1 86.8 72.2 70.6 26.3
RC2_2_02 200 240,386 56,893 183,493 76.3 194.7 77.7 2636.2 73.6 124.6 67.3 76.9 65.7 81.3
RC2_2_03 200 437,521 79,433 358,088 81.8 133.5 82.0 2246.3 79.3 100.0 74.7 65.0 70.0 57.6
RC2_2_04 200 769,750 112,560 657,190 85.4 109.3 87.3 3112.8 85.4 111.4 81.8 82.7 63.4 25.0

Continued on next page

ec4 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.1 – Continued from previous page

Name n |R| |Rď
2 | |Rą

2 |
Benchmark FullForm ClustByNorm Random NoDeepSearch
D% CPU D% CPU D% CPU D% CPU D% CPU

RC2_2_05 200 1,016,354 202,905 813,449 80.0 459.1 80.3 10800.3 80.0 461.3 78.6 350.6 44.0 68.8
RC2_2_06 200 1,926,998 371,656 1,555,342 80.7 1182.1 75.5 10818.7 80.7 1177.3 77.4 806.5 42.9 148.2
RC2_2_07 200 1,654,753 318,170 1,336,583 80.8 1500.4 74.2 10807.4 80.8 1538.0 74.5 794.1 57.3 172.4
RC2_2_08 200 698,876 103,638 595,238 85.2 317.7 84.8 8399.9 85.2 320.8 79.3 183.5 65.7 65.9
RC2_2_09 200 1,839,184 310,862 1,528,322 83.1 866.3 80.5 10847.6 83.1 900.3 78.8 517.7 58.3 120.8
RC2_2_10 200 98,714 19,487 79,227 80.3 70.1 82.4 493.6 77.6 67.4 68.1 57.0 69.1 48.4

Table EC.2: Detailed results for the sensitivity analysis.

p β1 β2 D% CPU p β1 β2 D% CPU
10 100,000 10 75.1 377.9 50 100,000 10 78.6 496.9
10 100,000 50 71.6 222 50 100,000 50 75.4 252.5
10 100,000 100 69.5 166 50 100,000 100 73.2 186.4
10 200,000 10 75 382.3 50 200,000 10 78.7 489.4
10 200,000 50 71.4 222.6 50 200,000 50 75.8 249.7
10 200,000 100 69.5 167.3 50 200,000 100 73.8 187.3
10 500,000 10 74.8 382.2 50 500,000 10 78.8 495.2
10 500,000 50 71 220.9 50 500,000 50 76.2 259.9
10 500,000 100 69.4 168.6 50 500,000 100 74.2 193.7
10 1,000,000 10 74.7 373.8 50 1,000,000 10 79.1 534.9
10 1,000,000 50 71.1 219.3 50 1,000,000 50 76.7 286
10 1,000,000 100 69.5 166 50 1,000,000 100 74.9 218.9
20 100,000 10 76.4 449.2 100 100,000 10 80.1 574.2
20 100,000 50 73.1 237.8 100 100,000 50 76.8 293.7
20 100,000 100 71.2 179.4 100 100,000 100 74.9 218.4
20 200,000 10 76.3 436.9 100 200,000 10 80.2 588.1
20 200,000 50 73.1 233.4 100 200,000 50 77.5 300
20 200,000 100 71.4 177 100 200,000 100 75.8 220.7
20 500,000 10 76.2 439.8 100 500,000 10 80.4 605.1
20 500,000 50 73.2 236.9 100 500,000 50 78.3 317.3
20 500,000 100 71.5 179.6 100 500,000 100 76.8 238.5
20 1,000,000 10 76.3 447.6 100 1,000,000 10 80.8 648
20 1,000,000 50 73.5 247.4 100 1,000,000 50 78.9 353.4
20 1,000,000 100 71.9 190.5 100 1,000,000 100 77.6 274.5

EC.2. Detailed Results for the Experiments in Sections 7.3 and 7.4

Tables EC.3 to EC.5 present the detailed results for each individual instance of the two sets of experi-

ments in Sections 7.3 and 7.4. We report the instance name (Name), the number of customers (n), the

upper bound (ub), and the optimality gap ub´lb
ub

ˆ 100 at termination (Gap) for the CMTVRPTW-

LT and CMTVRPTW-R. For the CMTVRPTW, we additionally report the total number of CG

iterations before the finishing phase (CG), the number of branch-and-bound nodes in the finishing

phase (Node), the size of the enumerated pool (Pool), the time spent on the column and cut gen-

eration (tCCG), the time spent on column enumeration (tENU), the time spent on DeLuxing (tDX),

the time spent on solving the IP in the primal heuristic (tIP1), the time spent on solving the final IP

(tIP2), and the total computation time (CPU). All times are in seconds. It is worth mentioning the

algorithm may terminate before reaching the 3-hour time limit due to insufficient memory. In this

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec5

case, the reported CPU corresponds to the elapsed time. When the information about an entry in

the table is not available at termination, it is reported as “—”.

Table EC.3: Detailed results for the CMTVRPTW.

Name n ub Gap% CG Node Pool tCCG tENU tDX tIP1 tIP2 CPU
C201 70 1052.2 0.00 143 0 69,562 0.9 0.1 3.4 0.3 0.0 4.7
C202 70 1047.7 0.00 144 0 167,231 2.0 0.3 10.9 5.9 0.0 19.4
C203 70 1040.4 0.00 190 24 286,653 3.6 0.9 19.4 3.5 0.4 28.4
C204 70 1036.8 0.00 226 1 549,100 4.8 2.9 31.7 3.8 0.8 45.3
C205 70 1047.9 0.00 161 0 241,821 3.8 0.9 14.9 2.7 0.0 22.9
C206 70 1042.0 0.00 189 0 198,754 2.6 0.6 14.8 4.2 0.0 22.6
C207 70 1040.3 0.00 191 0 232,952 3.0 0.7 15.7 15.2 0.0 35.1
C208 70 1040.3 0.00 177 21 185,324 3.0 0.6 14.1 10.5 0.5 29.0
R201 70 1118.4 0.00 111 0 11,097 2.8 0.9 0.8 0.5 0.0 5.1
R202 70 1041.1 0.00 140 3,068 61,021 8.1 7.8 8.8 3.2 3.6 32.1
R203 70 958.0 0.00 157 0 54,387 10.0 9.4 4.2 2.3 0.0 26.7
R204 70 921.8 0.00 216 0 108,401 9.0 11.1 10.2 6.1 0.0 37.1
R205 70 1033.4 0.00 132 7,334 86,765 10.9 10.9 22.3 10.6 33.9 89.7
R206 70 985.9 0.00 156 3,910 111,271 15.2 22.7 24.8 9.3 20.3 94.7
R207 70 942.0 0.00 190 0 65,745 7.6 9.0 6.2 5.8 0.0 29.2
R208 70 917.5 0.00 204 0 113,628 8.4 10.5 8.9 5.7 0.0 34.1
R209 70 955.3 0.00 170 0 37,046 9.7 7.7 3.4 2.8 0.0 24.4
R210 70 980.4 0.00 170 0 52,710 8.9 6.7 6.6 4.2 0.0 27.0
R211 70 914.8 0.00 210 0 69,533 5.7 5.0 6.2 2.8 0.0 19.9

RC201 70 1364.5 0.00 88 0 5,806 1.8 0.6 0.6 0.5 0.0 3.4
RC202 70 1284.6 0.00 124 0 6,423 1.9 1.6 0.7 0.5 0.0 4.6
RC203 70 1230.5 0.00 157 0 19,780 3.3 3.3 2.1 0.7 0.0 9.5
RC204 70 1206.6 0.00 220 0 41,386 4.4 5.4 3.3 0.9 0.0 14.1
RC205 70 1335.3 0.00 109 166 9,659 7.5 3.1 4.1 1.0 0.5 16.4
RC206 70 1285.5 0.00 118 0 12,448 2.9 1.4 1.3 0.9 0.0 6.6
RC207 70 1236.5 0.00 168 0 28,008 3.4 2.3 2.5 0.5 0.0 8.8
RC208 70 1208.2 0.00 205 0 48,135 5.3 3.9 4.4 17.2 0.0 30.9

C201 80 1182.5 0.00 189 0 295,358 2.7 0.5 21.7 1.7 0.0 27.1
C202 80 1178.4 0.00 233 0 251,585 4.9 0.5 15.8 4.4 0.0 26.0
C203 80 1172.1 0.00 263 1 432,608 4.2 1.0 25.6 3.5 0.1 35.4
C204 80 1163.1 0.00 325 0 656,380 4.3 1.9 27.2 1.2 0.0 36.0
C205 80 1170.6 0.00 237 0 259,584 3.0 0.5 14.7 1.8 0.0 20.5
C206 80 1168.9 0.00 289 0 380,825 2.1 0.8 14.9 1.2 0.0 19.8
C207 80 1167.2 0.00 262 0 389,157 3.0 1.0 17.0 1.8 0.0 23.8
C208 80 1167.2 0.00 322 0 449,968 2.9 1.1 20.5 1.0 0.0 26.6
R201 80 1201.5 0.00 164 1,401 68,398 8.9 3.3 10.7 2.2 4.1 29.5
R202 80 1121.2 0.00 210 1,864 70,136 11.7 11.1 16.7 37.4 5.0 82.9
R203 80 1034.6 0.00 251 0 121,315 11.6 11.6 10.7 8.4 0.0 43.4
R204 80 1002.1 0.00 377 1,087 332,728 33.3 62.7 42.5 24.0 2.6 171.3
R205 80 1103.6 0.00 224 5,146 118,485 13.2 6.2 28.0 14.0 30.9 92.7
R206 80 1055.4 0.00 303 6,676 136,015 30.4 33.5 44.5 39.5 33.6 184.8
R207 80 1011.3 0.00 300 0 193,472 23.7 24.2 21.3 6.1 0.0 77.7
R208 80 993.5 0.00 335 1 365,127 18.2 23.4 40.4 4.6 0.1 88.8
R209 80 1034.9 0.00 240 0 113,636 12.0 7.8 14.1 19.8 0.0 54.4
R210 80 1052.8 0.00 251 0 98,047 11.4 6.7 12.2 16.6 0.0 47.4
R211 80 999.0 0.00 319 1,688 288,485 26.8 22.3 36.0 24.5 4.4 116.4

RC201 80 1545.8 0.00 131 146 7,950 2.8 1.6 1.7 0.6 0.3 7.1
RC202 80 1458.3 0.00 169 1,780 13,712 3.6 4.5 3.2 1.1 0.9 13.3
RC203 80 1392.3 0.00 217 0 24,426 2.6 4.2 1.7 0.1 0.0 8.7
RC204 80 1366.5 0.00 270 0 39,195 3.8 6.8 2.2 0.2 0.0 13.2
RC205 80 1516.8 0.00 176 1,120 21,824 6.4 3.7 6.2 1.4 2.5 20.4
RC206 80 1455.6 0.00 172 0 20,353 4.7 2.0 2.2 1.3 0.0 10.4
RC207 80 1402.9 0.00 192 7,567 23,901 3.0 2.9 3.0 36.5 3.6 49.0
RC208 80 1364.1 0.00 286 0 36,018 4.7 4.5 2.3 1.2 0.0 12.8

C201 100 1473.3 0.00 235 0 313,754 3.3 0.5 22.9 0.9 0.0 28.3
C202 100 1464.1 0.00 358 1 717,519 10.1 2.0 22.4 3.0 0.1 39.0
C203 100 1456.3 0.00 410 0 735,149 5.5 1.7 26.5 2.8 0.0 38.7

Continued on next page

ec6 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.3 – Continued from previous page
Name n ub Gap% CG Node Pool tCCG tENU tDX tIP1 tIP2 CPU
C204 100 1448.7 0.00 568 0 957,982 8.2 2.8 41.9 2.8 0.0 59.4
C205 100 1460.2 0.00 300 0 387,733 4.5 0.9 27.9 1.9 0.0 36.2
C206 100 1455.1 0.00 321 0 334,947 3.2 0.7 17.1 1.1 0.0 22.8
C207 100 1454.5 0.00 336 1 433,450 4.6 0.8 26.4 6.0 0.0 39.2
C208 100 1451.9 0.00 323 0 659,624 5.0 1.4 20.6 2.7 0.0 31.7
R201 100 1399.6 0.00 233 9,394 362,623 16.3 8.3 58.0 13.1 94.9 191.9
R202 100 1304.7 0.00 300 9,751 892,622 314.8 43.1 256.3 299.5 477.1 1396.4
R203 100 1204.8 0.00 383 9,112 463,065 43.8 25.0 77.7 51.1 138.0 338.5
R204 100 1162.2 0.00 452 424 1,241,771 63.0 41.6 10.7 34.1 5.8 162.3
R205 100 1267.3 0.00 296 11,670 490,622 24.3 13.8 105.6 107.0 184.0 436.5
R206 100 1220.9 0.00 360 85,003 541,592 34.2 29.2 169.6 275.2 1138.6 1650.4
R207 100 1182.5 0.00 401 1,410 850,676 45.3 25.0 108.6 39.2 11.7 233.2
R208 100 1157.5 0.00 537 199 1,528,311 72.7 51.4 6.6 42.6 3.4 185.2
R209 100 1205.4 0.00 337 934 276,293 33.6 16.1 44.3 29.7 6.6 132.0
R210 100 1211.8 0.00 332 1,843 526,470 44.7 25.8 81.9 159.3 18.9 333.6
R211 100 1160.6 0.00 500 1,698 1,380,290 66.9 36.9 30.2 51.9 20.7 214.0

RC201 100 1806.8 0.00 197 0 9,551 5.2 1.4 1.3 0.9 0.0 8.7
RC202 100 1680.2 0.00 266 4,738 100,395 10.6 9.5 18.0 4.5 13.8 56.8
RC203 100 1601.0 0.00 323 0 108,682 37.2 60.3 13.2 8.4 0.0 125.2
RC204 100 1574.6 0.00 450 0 235,679 24.4 13.3 15.8 1.8 0.0 55.9
RC205 100 1732.6 0.00 250 15,018 188,739 22.4 12.3 49.8 26.8 139.9 252.3
RC206 100 1698.1 0.00 258 17,173 109,935 9.4 7.3 20.1 20.1 49.9 107.2
RC207 100 1640.7 0.00 297 0 60,775 27.3 6.6 8.5 218.3 0.0 261.0
RC208 100 1570.7 0.00 456 0 208,715 24.5 9.4 19.0 2.9 0.0 56.6

C2_2_01 140 3436.2 0.00 216 762 30,507 14.5 0.2 11.9 4.4 3.7 34.9
C2_2_02 140 3380.3 0.00 354 2,550 79,763 18.0 1.0 29.6 18.0 17.6 84.4
C2_2_03 140 3304.6 0.00 547 0 103,992 15.6 0.9 14.1 15.9 0.0 46.8
C2_2_04 140 3289.5 0.00 1,001 1 160,467 29.5 1.4 21.5 3.5 0.6 57.0
C2_2_05 140 3382.9 0.00 277 2,116 39,657 10.6 0.6 12.2 7.2 5.6 36.3
C2_2_06 140 3367.4 0.00 295 5,737 114,300 14.2 0.8 28.7 12.6 66.9 123.5
C2_2_07 140 3362.5 0.00 352 1,081 86,989 19.1 0.8 19.6 17.6 6.1 63.4
C2_2_08 140 3354.6 0.00 313 8,338 214,605 19.9 1.7 48.6 39.3 153.6 263.6
C2_2_09 140 3345.1 0.00 374 8,186 398,209 22.7 3.8 93.6 60.1 268.4 449.7
C2_2_10 140 3337.4 0.00 371 11,883 227,213 17.6 2.0 54.9 54.1 142.0 271.1
R2_2_01 140 3998.9 0.00 286 51,033 193,870 17.8 1.4 32.1 19.4 321.6 392.6
R2_2_02 140 3734.7 0.00 348 3,573 84,668 32.7 3.8 17.5 4.2 17.7 76.4
R2_2_03 140 3601.9 0.00 472 105,181 1,032,610 592.7 12.8 67.4 109.1 2624.8 3409.5
R2_2_04 140 3473.3 0.00 529 1,692 56,430 46.4 4.5 13.6 3.5 4.3 72.8
R2_2_05 140 3859.3 0.00 327 16,349 278,203 29.7 2.3 48.8 7.0 162.7 251.1
R2_2_06 140 3671.9 0.00 379 29,862 552,662 46.6 7.7 81.8 39.6 486.5 663.8
R2_2_07 140 3558.3 0.00 466 167,554 882,247 579.2 11.4 159.5 227.8 2577.9 3558.4
R2_2_08 140 3468.4 0.00 603 0 37,185 40.5 2.3 3.9 5.2 0.0 52.1
R2_2_09 140 3779.6 0.00 333 35,678 379,979 30.4 3.6 74.0 25.4 624.8 759.2
R2_2_10 140 3693.5 0.00 365 57,031 974,093 619.5 7.3 157.7 44.3 896.4 1727.4

RC2_2_01 140 3718.2 0.00 400 6,546 329,296 36.0 2.4 70.0 8.4 135.8 253.3
RC2_2_02 140 3573.6 0.11 472 127,834 3,240,326 1677.1 32.8 1007.9 517.4 7556.6 10800.1
RC2_2_03 140 3487.5 0.00 681 2,513 1,319,745 782.8 20.4 125.9 151.0 207.2 1291.5
RC2_2_04 140 3449.3 0.00 913 165 203,825 166.1 6.6 58.2 18.7 4.3 254.7
RC2_2_05 140 3598.7 0.00 594 3,638 643,875 430.6 4.7 165.4 25.1 102.8 730.2
RC2_2_06 140 3622.4 0.00 549 27,445 3,127,825 1684.3 16.1 1001.9 200.2 3260.4 6169.8
RC2_2_07 140 3565.6 0.00 641 2,757 229,745 56.3 4.4 79.2 90.0 39.8 270.6
RC2_2_08 140 3539.1 0.00 739 46,385 2,285,608 1007.1 16.8 168.1 1153.8 961.5 3312.3
RC2_2_09 140 3532.4 0.00 866 5,078 1,392,640 852.3 14.8 106.1 141.9 206.5 1325.1
RC2_2_10 140 3511.4 0.00 848 1,634 756,533 518.2 9.0 165.4 83.3 41.8 819.8

C2_2_01 170 4048.3 0.00 312 6,814 162,493 31.2 1.0 64.8 52.9 125.3 275.5
C2_2_02 170 3976.9 0.00 526 0 115,713 24.5 1.2 25.2 3.3 0.0 54.5
C2_2_03 170 3932.0 0.00 772 233 233,244 41.9 2.1 37.2 16.3 4.1 102.1
C2_2_04 170 3914.0 0.00 1,231 279 441,040 53.5 4.8 69.5 26.0 2.9 157.9
C2_2_05 170 3987.2 0.00 408 6,187 289,587 36.3 3.9 91.3 42.2 132.7 307.3
C2_2_06 170 3964.3 0.00 477 0 77,616 15.0 0.7 13.7 26.4 0.0 56.0
C2_2_07 170 3958.6 0.00 493 0 91,257 14.1 1.1 14.1 15.0 0.0 44.5
C2_2_08 170 3937.0 0.00 522 0 104,173 13.1 1.0 15.4 3.5 0.0 33.2
C2_2_09 170 3931.6 0.00 570 1 149,680 36.5 1.6 20.3 4.7 0.2 63.7

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec7

Table EC.3 – Continued from previous page
Name n ub Gap% CG Node Pool tCCG tENU tDX tIP1 tIP2 CPU

C2_2_10 170 3930.7 0.00 585 0 188,221 18.5 1.9 31.0 3.4 0.0 55.4
R2_2_01 170 4631.2 0.41 529 788,455 4,847,649 1577.4 19.4 738.9 389.1 8067.3 10800.1
R2_2_02 170 4379.8 0.00 616 233,234 3,208,480 1733.4 38.1 1038.1 391.7 5897.9 9107.6
R2_2_03 170 4194.6 0.00 893 4,321 119,149 138.0 22.5 40.1 13.3 18.1 234.3
R2_2_04 170 4099.7 0.00 1,064 7,403 440,199 225.6 26.7 90.4 65.4 71.9 483.4
R2_2_05 170 4476.5 0.43 603 507,632 3,936,236 1634.9 20.0 928.5 278.0 7931.7 10800.3
R2_2_06 170 4296.6 0.41 618 655,166 4,256,119 1690.9 43.1 1297.9 668.1 7089.8 10800.4
R2_2_07 170 4170.2 0.00 851 19,389 264,562 192.4 28.5 66.4 51.8 159.8 501.9
R2_2_08 170 4098.5 0.00 1,048 10,352 432,248 180.2 27.5 89.9 68.0 95.4 464.8
R2_2_09 170 4378.1 0.27 589 523,315 3,958,346 1520.3 20.5 647.2 546.5 8058.0 10800.1
R2_2_10 170 4306.9 0.00 575 33,304 929,278 633.4 9.1 155.1 55.5 853.1 1708.5

RC2_2_01 170 4404.3 0.61 564 200,302 11,590,760 3486.8 49.2 2144.8 1418.4 3677.4 10800.2
RC2_2_02 170 4231.7 0.00 607 15,079 1,315,197 840.8 11.4 80.2 221.6 561.3 1717.9
RC2_2_03 170 4160.2 0.31 768 1,802 12,984,600 3810.1 103.4 5019.5 1524.4 302.4 10800.0
RC2_2_04 170 4126.3 0.00 1,118 5,232 3,931,459 1195.1 48.6 217.6 239.4 498.6 2212.8
RC2_2_05 170 4302.0 0.00 702 8,211 4,450,275 1628.2 31.7 280.6 514.4 923.5 3388.3
RC2_2_06 170 4297.2 0.00 691 12,036 2,015,810 1123.9 13.8 158.7 230.0 665.9 2196.3
RC2_2_07 170 4242.6 0.00 716 121,402 3,939,113 1563.7 27.6 252.0 1506.0 3881.9 7240.6
RC2_2_08 170 4231.2 0.49 925 0 16,086,535 3841.4 112.7 4671.4 2140.2 0.0 10800.2
RC2_2_09 170 4236.6 1.21 985 0 113,256 56.6 — 30.7 2142.8 0.0 2232.1
RC2_2_10 170 4197.6 0.00 1,016 18,957 5,616,301 2984.1 59.5 1444.3 523.9 4487.2 9514.9

C2_2_01 200 4623.9 0.00 477 535 104,350 41.6 0.5 29.6 22.5 4.3 98.7
C2_2_02 200 4562.2 0.00 789 2,373 233,389 81.5 1.7 78.8 79.8 24.6 267.1
C2_2_03 200 4517.1 0.00 1,208 196 400,386 115.1 3.8 117.2 21.3 3.3 261.9
C2_2_04 200 4505.3 0.00 1,875 3,946 685,366 123.4 6.8 165.8 71.3 59.5 429.1
C2_2_05 200 4558.3 0.00 717 401 108,552 67.5 0.8 22.9 24.8 4.7 120.9
C2_2_06 200 4543.6 0.00 659 603 140,157 65.4 1.2 36.6 45.6 6.9 156.0
C2_2_07 200 4528.9 0.00 748 59 150,819 65.0 1.1 33.7 10.1 0.3 110.6
C2_2_08 200 4517.3 0.00 778 0 195,794 55.1 1.7 36.6 3.6 0.0 97.5
C2_2_09 200 4512.8 0.00 781 0 191,241 77.5 1.7 42.5 3.9 0.0 126.1
C2_2_10 200 4511.1 0.00 821 0 212,946 64.5 2.2 50.4 4.9 0.2 122.7
R2_2_01 200 5295.8 0.47 601 164,080 13,963,381 2944.9 57.8 2480.8 1371.5 3920.3 10800.0
R2_2_02 200 5021.4 0.00 817 32,240 4,117,501 1157.1 73.3 149.7 194.8 1196.4 2784.7
R2_2_03 200 4860.0 0.00 1,019 6,999 99,222 218.4 16.2 54.0 148.6 26.5 465.3
R2_2_04 200 4761.1 0.00 1,277 6,456 1,183,334 951.9 39.0 109.8 139.0 287.1 1532.8
R2_2_05 200 5119.5 0.33 642 439,129 8,750,436 2343.0 46.0 1392.8 1283.9 5715.8 10800.1
R2_2_06 200 4950.1 0.22 845 176,313 5,273,862 2261.0 68.8 798.2 1597.0 6061.1 10800.1
R2_2_07 200 4847.6 0.00 1,137 28,706 579,843 287.3 27.3 132.1 200.1 708.5 1358.7
R2_2_08 200 4760.4 0.00 1,319 6,894 1,381,585 1180.4 34.0 102.5 156.6 287.4 1766.7
R2_2_09 200 5034.4 0.48 700 1,530 16,597,634 3502.0 95.2 4825.6 2147.6 193.0 10800.0
R2_2_10 200 4942.0 0.00 719 60,921 1,462,597 837.4 16.9 111.6 211.5 2285.6 3466.3

RC2_2_01 200 4902.0 0.00 857 22,264 776,563 147.9 5.6 239.8 191.7 1590.1 2177.3
RC2_2_02 200 4795.5 0.00 1,004 6,421 2,704,604 1451.3 28.6 224.4 299.8 475.5 2486.4
RC2_2_03 200 4733.5 0.55 1,399 0 437,521 246.0 — 152.7 2079.0 0.0 2768.1
RC2_2_04 200 4688.9 0.51 1,629 0 769,750 281.0 — 120.9 837.4 0.0 1597.6
RC2_2_05 200 4841.8 0.00 1,167 16,341 5,145,831 2724.6 38.6 1193.2 858.8 3918.4 8746.5
RC2_2_06 200 4844.7 0.29 1,084 2,200 12,088,394 4895.5 78.1 3224.0 2131.5 438.1 10800.0
RC2_2_07 200 4790.3 0.30 1,519 0 11,550,782 5822.1 85.6 2748.3 2114.5 0.0 10800.1
RC2_2_08 200 4776.0 0.00 1,621 4,505 6,334,097 2521.6 60.2 791.1 548.7 436.9 4374.7
RC2_2_09 200 4752.0 0.00 1,707 18,849 9,692,588 4147.4 90.1 2586.1 2103.0 1263.9 10218.8
RC2_2_10 200 4739.4 0.00 1,907 4,442 1,268,032 1189.1 22.1 142.0 116.1 146.0 1619.4

Table EC.4: Detailed results for the CMTVRPTW-LT.

Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU
C201 70 1063.2 0.00 18.6 80 1185.7 0.00 34.1 100 1480.6 0.00 48.8
C202 70 1053.4 0.00 38.6 80 1180.2 0.00 28.1 100 1465.5 0.00 29.9
C203 70 1045.2 0.00 37.2 80 1172.9 0.00 40.0 100 1459.6 0.00 42.3
C204 70 1038.4 0.00 42.0 80 1163.1 0.00 22.4 100 1448.7 0.00 28.2
C205 70 1048.2 0.00 17.4 80 1172.8 0.00 42.2 100 1461.9 0.00 33.6
C206 70 1044.1 0.00 23.7 80 1171.1 0.00 124.4 100 1456.9 0.00 25.6

Continued on next page

ec8 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.4 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU
C207 70 1040.3 0.00 27.3 80 1167.2 0.00 19.1 100 1454.8 0.00 32.3
C208 70 1040.3 0.00 23.5 80 1167.2 0.00 13.3 100 1451.9 0.00 25.1
R201 70 1118.4 0.00 5.9 80 1205.6 0.00 27.8 100 1403.1 0.00 122.8
R202 70 1041.1 0.00 31.7 80 1121.2 0.00 37.2 100 1305.8 0.00 625.9
R203 70 959.5 0.00 40.4 80 1035.4 0.00 44.0 100 1206.4 0.00 477.7
R204 70 921.8 0.00 35.4 80 1002.1 0.00 117.0 100 1162.2 0.00 209.3
R205 70 1033.4 0.00 36.4 80 1105.7 0.00 115.7 100 1267.7 0.00 158.5
R206 70 985.9 0.00 52.6 80 1055.7 0.00 82.7 100 1222.9 0.00 3601.4
R207 70 942.0 0.00 31.9 80 1011.4 0.00 61.8 100 1182.5 0.00 251.6
R208 70 917.5 0.00 37.9 80 993.5 0.00 85.9 100 1157.5 0.00 178.0
R209 70 955.9 0.00 20.1 80 1038.4 0.00 130.6 100 1207.8 0.00 167.5
R210 70 983.4 0.00 57.7 80 1053.7 0.00 68.0 100 1215.8 0.00 383.1
R211 70 914.8 0.00 18.1 80 999.0 0.00 99.9 100 1164.0 0.00 901.4

RC201 70 1367.5 0.00 3.8 80 1554.1 0.00 11.3 100 1809.5 0.00 8.7
RC202 70 1284.6 0.00 4.6 80 1459.9 0.00 16.9 100 1689.2 0.00 253.2
RC203 70 1230.5 0.00 9.8 80 1392.3 0.00 7.6 100 1601.0 0.00 52.7
RC204 70 1206.6 0.00 13.8 80 1366.5 0.00 14.1 100 1574.6 0.00 58.8
RC205 70 1340.4 0.00 20.1 80 1519.8 0.00 22.6 100 1737.7 0.00 230.5
RC206 70 1290.2 0.00 7.2 80 1457.5 0.00 14.8 100 1702.5 0.00 1632.7
RC207 70 1241.1 0.00 12.5 80 1402.9 0.00 13.2 100 1641.7 0.00 50.0
RC208 70 1209.4 0.00 71.7 80 1365.6 0.00 12.4 100 1572.7 0.00 151.5

C2_2_01 140 3461.7 0.00 51.8 170 4059.8 0.00 176.6 200 4641.6 0.00 666.1
C2_2_02 140 3392.2 0.00 183.7 170 3981.5 0.00 42.6 200 4566.7 0.00 343.5
C2_2_03 140 3306.3 0.00 32.8 170 3932.0 0.00 115.0 200 4517.1 0.00 242.8
C2_2_04 140 3289.5 0.00 72.6 170 3914.3 0.00 115.9 200 4505.3 0.00 392.6
C2_2_05 140 3396.6 0.00 109.3 170 3995.6 0.00 575.0 200 4559.0 0.00 70.6
C2_2_06 140 3369.6 0.00 35.4 170 3967.2 0.00 125.8 200 4544.2 0.00 145.2
C2_2_07 140 3367.7 0.00 50.0 170 3964.1 0.00 126.4 200 4531.4 0.00 101.5
C2_2_08 140 3358.7 0.00 309.9 170 3938.9 0.00 32.9 200 4519.6 0.00 136.7
C2_2_09 140 3348.6 0.00 318.5 170 3931.6 0.00 38.1 200 4513.4 0.00 77.1
C2_2_10 140 3339.4 0.00 283.5 170 3930.9 0.00 65.4 200 4511.1 0.00 135.4
R2_2_01 140 4004.3 0.00 369.5 170 4631.6 0.00 3373.8 200 5298.1 0.45 10800.0
R2_2_02 140 3735.4 0.00 71.3 170 4387.7 0.45 10800.1 200 5021.4 0.00 2024.9
R2_2_03 140 3607.6 0.00 2693.1 170 4194.6 0.00 257.5 200 4860.0 0.00 410.6
R2_2_04 140 3473.3 0.00 78.7 170 4099.7 0.00 413.8 200 4761.1 0.00 1559.7
R2_2_05 140 3859.3 0.00 171.8 170 4476.5 0.24 10800.1 200 5122.8 0.40 10800.2
R2_2_06 140 3672.6 0.00 317.2 170 4297.4 0.22 10800.1 200 4950.1 0.23 10800.0
R2_2_07 140 3562.6 0.28 10815.6 170 4170.2 0.00 326.8 200 4847.6 0.00 1232.4
R2_2_08 140 3468.4 0.00 56.2 170 4098.5 0.00 591.8 200 4760.4 0.00 1818.0
R2_2_09 140 3780.9 0.00 406.9 170 4378.1 0.11 10800.1 200 5037.9 0.93 2364.1
R2_2_10 140 3693.5 0.00 1334.1 170 4306.9 0.00 1481.2 200 4946.0 0.00 9282.1

RC2_2_01 140 3722.8 0.00 332.2 170 4406.6 0.57 10800.1 200 4904.9 0.00 989.1
RC2_2_02 140 3575.4 0.08 10800.1 170 4231.7 0.00 1429.9 200 4796.2 0.00 2452.9
RC2_2_03 140 3487.9 0.00 1325.8 170 4158.5 0.36 10800.3 200 4733.6 0.55 2749.6
RC2_2_04 140 3449.3 0.00 192.1 170 4126.3 0.00 2250.1 200 4688.9 0.50 1264.7
RC2_2_05 140 3600.1 0.00 224.0 170 4302.9 0.00 4252.0 200 4842.1 0.00 6369.6
RC2_2_06 140 3623.4 0.00 5391.4 170 4299.2 0.00 2622.1 200 4848.6 0.67 2492.1
RC2_2_07 140 3566.2 0.00 206.3 170 4242.6 0.00 5838.0 200 4784.0 0.00 8265.5
RC2_2_08 140 3539.1 0.00 3394.3 170 4236.2 0.89 2457.4 200 4787.8 0.64 2677.6
RC2_2_09 140 3532.4 0.00 1023.0 170 4226.2 0.97 2477.1 200 4754.9 0.17 10800.0
RC2_2_10 140 3511.4 0.00 539.7 170 4200.2 0.25 10800.4 200 4739.4 0.00 5573.0

Table EC.5: Detailed results for the CMTVRPTW-R.

Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU
C201R0.25 70 1068.7 0.00 2.1 80 1213.4 0.00 3.6 100 1500.6 0.00 15.3
C201R0.5 70 1072.0 0.00 1.2 80 1216.1 0.00 2.1 100 1500.6 0.00 6.0
C201R0.75 70 1080.9 0.00 0.7 80 1226.8 0.00 1.3 100 1504.0 0.00 2.7
C202R0.25 70 1121.0 0.00 1.7 80 1249.5 0.00 2.8 100 1545.4 0.00 11.4
C202R0.5 70 1121.0 0.00 2.0 80 1249.5 0.00 3.0 100 1547.3 0.00 12.6
C202R0.75 70 1121.0 0.00 1.0 80 1251.7 0.00 3.6 100 1552.9 0.00 83.0

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec9

Table EC.5 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

C203R0.25 70 1156.3 0.00 9.1 80 1283.0 0.00 17.6 100 1577.7 0.00 40.4
C203R0.5 70 1156.3 0.00 15.9 80 1283.0 0.00 20.0 100 1578.7 0.00 64.5
C203R0.75 70 1156.3 0.00 29.1 80 1287.1 0.00 33.7 100 1579.6 0.00 90.2
C204R0.25 70 1145.6 0.00 22.0 80 1269.0 0.00 57.7 100 1560.5 0.00 113.2
C204R0.5 70 1145.6 0.00 23.7 80 1269.0 0.00 35.2 100 1560.9 0.00 253.3
C204R0.75 70 1145.6 0.00 26.2 80 1274.4 0.00 94.3 100 1569.1 0.00 427.7
C205R0.25 70 1063.2 0.00 1.9 80 1202.3 0.00 2.7 100 1488.2 0.00 44.0
C205R0.5 70 1066.6 0.00 1.7 80 1210.1 0.00 1.8 100 1490.0 0.00 7.8
C205R0.75 70 1075.9 0.00 1.1 80 1213.6 0.00 1.8 100 1491.7 0.00 6.0
C206R0.25 70 1053.4 0.00 2.8 80 1195.6 0.00 3.2 100 1476.0 0.00 12.5
C206R0.5 70 1062.3 0.00 2.6 80 1201.3 0.00 4.1 100 1481.7 0.00 13.3
C206R0.75 70 1072.5 0.00 2.8 80 1206.6 0.00 4.5 100 1490.5 0.00 8.3
C207R0.25 70 1047.2 0.00 3.5 80 1192.3 0.00 3.6 100 1472.8 0.00 7.8
C207R0.5 70 1051.9 0.00 3.2 80 1193.9 0.00 3.7 100 1474.4 0.00 6.3
C207R0.75 70 1060.6 0.00 2.8 80 1199.9 0.00 4.1 100 1480.4 0.00 10.3
C208R0.25 70 1050.6 0.00 2.7 80 1192.7 0.00 3.6 100 1471.2 0.00 12.9
C208R0.5 70 1055.9 0.00 3.3 80 1198.3 0.00 3.9 100 1477.4 0.00 12.2
C208R0.75 70 1058.5 0.00 2.5 80 1198.3 0.00 2.7 100 1481.2 0.00 8.5
R201R0.25 70 1159.1 0.00 2.9 80 1244.7 0.00 5.9 100 1435.6 0.00 22.5
R201R0.5 70 1173.9 0.00 3.1 80 1261.8 0.00 6.5 100 1442.6 0.00 15.8
R201R0.75 70 1214.4 0.00 3.2 80 1284.3 0.00 3.1 100 1483.6 0.00 14.6
R202R0.25 70 1115.4 0.00 2.4 80 1185.2 0.00 3.5 100 1401.4 0.00 44.6
R202R0.5 70 1125.5 0.00 2.4 80 1203.4 0.00 8.7 100 1413.8 0.00 60.0
R202R0.75 70 1125.5 0.00 2.9 80 1212.6 0.00 6.3 100 1429.0 0.00 55.4
R203R0.25 70 1113.0 0.00 5.5 80 1196.1 0.00 16.4 100 1370.9 0.00 115.8
R203R0.5 70 1123.8 0.00 7.5 80 1205.1 0.00 34.1 100 1372.8 0.00 216.3
R203R0.75 70 1148.1 0.00 264.0 80 1227.5 0.00 657.8 100 1394.7 0.00 385.2
R204R0.25 70 1057.7 0.00 154.1 80 1152.7 0.00 105.7 100 1324.6 0.00 894.7
R204R0.5 70 1057.7 0.00 101.7 80 1152.7 0.00 215.7 100 1324.6 0.00 1031.4
R204R0.75 70 1079.8 0.00 114.0 80 1162.3 0.00 155.4 100 1334.6 0.00 301.4
R205R0.25 70 1073.5 0.00 6.0 80 1147.0 0.00 5.8 100 1314.4 0.00 44.3
R205R0.5 70 1083.0 0.00 4.4 80 1159.7 0.00 6.9 100 1332.3 0.00 51.6
R205R0.75 70 1084.6 0.00 2.6 80 1185.5 0.00 14.8 100 1361.8 0.00 46.5
R206R0.25 70 1039.6 0.00 3.7 80 1111.5 0.00 13.9 100 1274.8 0.00 41.6
R206R0.5 70 1059.3 0.00 16.8 80 1122.4 0.00 19.1 100 1298.1 0.00 545.4
R206R0.75 70 1070.6 0.00 9.1 80 1149.1 0.00 49.3 100 1323.5 0.00 103.0
R207R0.25 70 1049.3 0.00 8.5 80 1113.7 0.00 14.0 100 1286.7 0.00 133.4
R207R0.5 70 1056.5 0.00 14.8 80 1128.7 0.00 30.8 100 1297.3 0.00 119.4
R207R0.75 70 1056.5 0.00 11.7 80 1128.7 0.00 78.2 100 1304.7 0.00 115.9
R208R0.25 70 997.4 0.00 137.7 80 1083.2 0.00 19.4 100 1253.1 0.00 707.9
R208R0.5 70 997.4 0.00 45.0 80 1083.2 0.00 108.6 100 1253.1 0.00 785.3
R208R0.75 70 997.4 0.00 30.3 80 1086.2 0.00 79.1 100 1253.1 0.00 1790.9
R209R0.25 70 995.4 0.00 19.7 80 1079.1 0.00 33.2 100 1255.8 0.00 528.8
R209R0.5 70 997.4 0.00 14.5 80 1083.5 0.00 33.9 100 1258.8 0.00 887.6
R209R0.75 70 1033.8 0.00 8.6 80 1109.9 0.00 5.4 100 1291.6 0.00 60.6
R210R0.25 70 1026.5 0.00 7.5 80 1098.9 0.00 14.4 100 1277.3 0.00 732.1
R210R0.5 70 1032.7 0.00 7.0 80 1111.1 0.00 22.9 100 1283.7 0.00 147.0
R210R0.75 70 1094.5 0.00 5.4 80 1165.0 0.00 8.9 100 1341.5 0.00 73.1
R211R0.25 70 930.4 0.00 23.9 80 1012.3 0.00 53.1 100 1171.4 0.00 114.8
R211R0.5 70 930.4 0.00 19.4 80 1013.1 0.00 48.6 100 1175.0 0.00 138.2
R211R0.75 70 959.1 0.00 36.3 80 1039.0 0.00 56.2 100 1199.3 0.00 476.3

RC201R0.25 70 1367.5 0.00 1.3 80 1573.3 0.00 3.9 100 1839.1 0.00 19.4
RC201R0.5 70 1397.6 0.00 2.8 80 1596.6 0.00 4.0 100 1849.6 0.00 7.1
RC201R0.75 70 1434.6 0.00 3.2 80 1625.1 0.00 3.3 100 1871.2 0.00 3.2
RC202R0.25 70 1409.8 0.00 5.3 80 1558.6 0.00 3.4 100 1790.8 0.00 15.5
RC202R0.5 70 1413.9 0.00 5.1 80 1565.2 0.00 3.0 100 1813.4 0.00 15.4
RC202R0.75 70 1438.3 0.00 1.8 80 1609.3 0.00 2.7 100 1841.7 0.00 29.7
RC203R0.25 70 1397.9 0.00 4.9 80 1579.8 0.00 19.6 100 1808.2 0.00 485.7
RC203R0.5 70 1407.7 0.00 9.4 80 1606.7 0.00 16.6 100 1831.1 0.00 184.1
RC203R0.75 70 1483.9 0.00 4.7 80 1665.2 0.00 38.6 100 1880.7 0.00 637.4
RC204R0.25 70 1354.0 0.00 164.3 80 1540.4 0.00 44.2 100 1749.4 0.00 241.8
RC204R0.5 70 1354.0 0.00 36.1 80 1540.4 0.00 40.8 100 1749.4 0.00 241.1
RC204R0.75 70 1409.5 0.00 79.1 80 1567.1 0.00 16.9 100 1780.4 0.00 80.8
RC205R0.25 70 1361.5 0.00 2.4 80 1537.3 0.00 3.6 100 1760.4 0.00 20.9
RC205R0.5 70 1433.0 0.00 7.9 80 1610.2 0.00 7.1 100 1819.0 0.00 27.6

Continued on next page

ec10 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.5 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

RC205R0.75 70 1474.6 0.00 3.0 80 1661.1 0.00 2.4 100 1877.8 0.00 16.5
RC206R0.25 70 1309.1 0.00 2.3 80 1500.8 0.00 3.5 100 1734.1 0.00 9.9
RC206R0.5 70 1309.9 0.00 2.0 80 1502.0 0.00 3.4 100 1746.9 0.00 16.7
RC206R0.75 70 1347.7 0.00 2.1 80 1539.0 0.00 5.8 100 1793.6 0.00 11.5
RC207R0.25 70 1281.8 0.00 4.5 80 1462.5 0.00 7.7 100 1694.4 0.00 72.3
RC207R0.5 70 1281.8 0.00 4.6 80 1462.5 0.00 7.1 100 1694.4 0.00 73.0
RC207R0.75 70 1382.5 0.00 14.3 80 1554.0 0.00 11.4 100 1780.4 0.00 23.2
RC208R0.25 70 1216.4 0.00 22.7 80 1382.9 0.00 15.1 100 1595.5 0.00 809.3
RC208R0.5 70 1216.4 0.00 15.5 80 1386.4 0.00 22.5 100 1602.8 0.34 10815.8
RC208R0.75 70 1235.3 0.00 9.9 80 1419.9 0.00 8.6 100 1620.1 0.00 71.1

C2_2_01R0.25 140 3503.9 0.00 22.2 170 4107.2 0.00 49.7 200 4687.6 0.00 102.0
C2_2_01R0.5 140 3515.3 0.00 17.2 170 4126.7 0.00 48.3 200 4702.5 0.00 126.8
C2_2_01R0.75 140 3530.4 0.00 6.0 170 4135.3 0.00 22.2 200 4738.7 0.00 240.2
C2_2_02R0.25 140 3569.5 0.00 101.4 170 4182.5 0.00 687.0 200 4787.7 0.00 1965.6
C2_2_02R0.5 140 3578.7 0.00 64.9 170 4194.6 0.00 182.6 200 4798.5 0.00 1652.3
C2_2_02R0.75 140 3604.5 0.00 57.7 170 4204.7 0.00 110.7 200 4819.0 0.00 1755.0
C2_2_03R0.25 140 3514.7 0.00 62.3 170 4147.3 0.00 293.5 200 4750.3 0.00 1716.7
C2_2_03R0.5 140 3539.0 0.00 110.8 170 4170.7 0.00 952.7 200 4773.4 0.77 535.1
C2_2_03R0.75 140 3546.4 0.00 104.7 170 4180.8 0.00 775.7 200 — — —
C2_2_04R0.25 140 3514.3 0.00 384.2 170 4121.7 0.00 530.5 200 4706.0 0.00 717.6
C2_2_04R0.5 140 3521.3 0.00 505.1 170 4121.7 0.41 884.0 200 — — —
C2_2_04R0.75 140 3547.3 0.00 572.7 170 — — — 200 — — —
C2_2_05R0.25 140 3446.8 0.00 9.7 170 4045.3 0.00 45.8 200 4631.9 0.00 172.5
C2_2_05R0.5 140 3466.7 0.00 25.8 170 4076.6 0.00 60.3 200 4645.3 0.00 76.5
C2_2_05R0.75 140 3479.3 0.00 4.0 170 4084.0 0.00 65.5 200 4669.4 0.00 278.1
C2_2_06R0.25 140 3441.5 0.00 61.8 170 4027.6 0.00 68.5 200 4610.7 0.00 135.0
C2_2_06R0.5 140 3457.8 0.00 42.0 170 4050.3 0.00 67.0 200 4631.0 0.00 136.7
C2_2_06R0.75 140 3462.8 0.00 34.2 170 4062.0 0.00 84.2 200 4653.4 0.00 1009.6
C2_2_07R0.25 140 3418.7 0.00 9.7 170 4020.5 0.00 61.1 200 4597.3 0.00 103.0
C2_2_07R0.5 140 3444.8 0.00 33.7 170 4041.0 0.00 71.1 200 4605.2 0.00 81.5
C2_2_07R0.75 140 3460.0 0.00 17.7 170 4063.6 0.00 113.4 200 4654.5 0.00 1727.6
C2_2_08R0.25 140 3413.6 0.00 35.9 170 4006.4 0.00 33.8 200 4585.3 0.00 129.3
C2_2_08R0.5 140 3431.2 0.00 33.7 170 4033.5 0.00 57.3 200 4598.8 0.00 103.8
C2_2_08R0.75 140 3448.2 0.00 9.9 170 4062.4 0.00 88.5 200 4659.9 1.13 834.7
C2_2_09R0.25 140 3381.9 0.00 12.5 170 3999.4 0.00 89.4 200 4581.0 0.00 97.0
C2_2_09R0.5 140 3387.0 0.00 10.7 170 4008.7 0.00 79.4 200 4586.6 0.00 41.0
C2_2_09R0.75 140 3416.2 0.00 49.7 170 4043.7 0.00 238.3 200 4620.8 0.00 131.7
C2_2_10R0.25 140 3381.7 0.00 14.3 170 3989.7 0.00 53.6 200 4580.2 0.00 163.8
C2_2_10R0.5 140 3384.1 0.00 12.4 170 3989.7 0.00 24.7 200 4588.7 0.00 163.2
C2_2_10R0.75 140 3411.6 0.00 9.6 170 4018.8 0.00 61.4 200 4601.8 0.00 100.6
R2_2_01R0.25 140 4066.5 0.00 117.4 170 4695.3 0.00 106.4 200 5398.6 0.00 2696.0
R2_2_01R0.5 140 4104.8 0.00 32.8 170 4771.3 0.00 835.6 200 5456.6 0.00 651.1
R2_2_01R0.75 140 4160.4 0.00 25.9 170 4811.3 0.00 43.5 200 5527.1 0.00 765.8
R2_2_02R0.25 140 4066.2 0.00 59.9 170 4674.0 0.00 63.0 200 5388.7 1.28 193.0
R2_2_02R0.5 140 4096.5 0.00 40.2 170 4729.4 0.00 702.5 200 5418.7 0.00 1734.7
R2_2_02R0.75 140 4206.7 0.00 56.4 170 4834.6 0.00 731.1 200 5514.8 0.00 980.6
R2_2_03R0.25 140 4005.5 0.00 57.2 170 4680.6 1.25 220.0 200 5346.5 1.04 426.9
R2_2_03R0.5 140 4018.8 0.00 59.7 170 4709.9 1.23 396.9 200 5358.9 0.00 759.8
R2_2_03R0.75 140 4189.8 0.00 339.2 170 4865.4 0.98 286.1 200 5544.5 1.21 505.9
R2_2_04R0.25 140 3902.4 0.00 149.2 170 4555.9 0.90 485.8 200 5171.4 0.00 1026.3
R2_2_04R0.5 140 3902.4 0.00 169.4 170 4555.9 0.79 537.7 200 5219.3 0.69 707.8
R2_2_04R0.75 140 3902.4 0.00 92.0 170 4569.5 0.67 764.8 200 — — —
R2_2_05R0.25 140 3919.3 0.00 18.4 170 4546.2 0.00 1058.3 200 5219.6 0.00 1469.0
R2_2_05R0.5 140 4001.4 0.00 19.4 170 4637.4 0.00 53.1 200 5302.0 0.00 989.8
R2_2_05R0.75 140 4032.8 0.00 34.8 170 4686.3 0.00 48.1 200 5344.6 0.00 702.9
R2_2_06R0.25 140 3963.8 0.00 44.9 170 4585.1 0.00 669.9 200 5266.3 0.00 1238.3
R2_2_06R0.5 140 4022.9 0.00 43.7 170 4640.4 0.00 712.7 200 5319.5 1.13 193.4
R2_2_06R0.75 140 4070.4 0.00 72.7 170 4702.1 0.00 1036.4 200 5359.4 1.13 155.8
R2_2_07R0.25 140 3932.8 0.00 61.5 170 4577.5 1.27 251.1 200 5264.0 0.92 314.5
R2_2_07R0.5 140 3951.2 0.00 46.6 170 4601.8 0.00 1554.9 200 5320.2 1.25 318.2
R2_2_07R0.75 140 4027.5 0.00 142.1 170 4666.5 0.00 1234.4 200 5388.4 1.19 390.1
R2_2_08R0.25 140 3843.9 0.00 145.0 170 4462.0 0.00 1233.5 200 5119.3 0.84 534.7
R2_2_08R0.5 140 3850.4 0.00 153.7 170 4474.2 0.00 737.8 200 — — —
R2_2_08R0.75 140 3953.1 0.87 532.2 170 — — — 200 — — —

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec11

Table EC.5 – Continued from previous page
Name n ub Gap% CPU n ub Gap% CPU n ub Gap% CPU

R2_2_09R0.25 140 3854.4 0.00 60.1 170 4465.3 0.00 4496.8 200 5135.7 0.00 1658.9
R2_2_09R0.5 140 3920.3 0.00 25.4 170 4553.6 0.00 1091.6 200 5213.8 0.00 1043.1
R2_2_09R0.75 140 3997.3 0.00 29.4 170 4609.6 0.00 719.5 200 5277.3 0.00 970.7
R2_2_10R0.25 140 3769.1 0.00 19.4 170 4404.1 0.00 729.4 200 5066.0 0.00 1112.3
R2_2_10R0.5 140 3866.0 0.00 40.4 170 4497.5 0.00 929.2 200 5148.6 0.00 1317.0
R2_2_10R0.75 140 3916.1 0.00 56.5 170 4556.4 0.00 644.2 200 5185.7 0.00 1033.4

RC2_2_01R0.25 140 3813.1 0.00 1639.1 170 4505.0 0.00 3835.5 200 5024.8 0.00 1118.6
RC2_2_01R0.5 140 3859.7 0.00 723.0 170 4588.1 0.00 2252.5 200 5157.9 1.60 626.3
RC2_2_01R0.75 140 3994.8 0.00 708.0 170 4656.3 0.00 235.0 200 5236.7 0.00 2058.2
RC2_2_02R0.25 140 3837.3 0.00 83.2 170 4577.5 0.00 1065.5 200 5153.5 0.00 3065.1
RC2_2_02R0.5 140 3853.9 0.00 99.2 170 4626.5 0.00 1811.4 200 5187.6 0.00 3887.4
RC2_2_02R0.75 140 3867.6 0.00 85.8 170 4631.3 0.00 1027.7 200 5201.3 0.00 505.4
RC2_2_03R0.25 140 3897.9 0.00 158.9 170 4654.1 0.00 867.1 200 5209.9 1.23 766.1
RC2_2_03R0.5 140 3910.0 0.00 140.1 170 4661.9 0.00 1032.0 200 5238.2 1.13 1106.2
RC2_2_03R0.75 140 3924.4 0.00 151.0 170 4692.5 0.00 1261.9 200 5248.3 1.08 1121.0
RC2_2_04R0.25 140 — — — 170 4631.7 1.09 2689.7 200 — — —
RC2_2_04R0.5 140 — — — 170 4634.2 0.89 1774.4 200 — — —
RC2_2_04R0.75 140 — — — 170 4635.3 0.73 1442.7 200 — — —
RC2_2_05R0.25 140 3693.4 0.00 1339.8 170 4415.1 0.00 3142.2 200 4981.0 1.47 383.5
RC2_2_05R0.5 140 3739.0 0.00 1252.5 170 4499.9 1.47 227.1 200 5098.5 1.95 896.5
RC2_2_05R0.75 140 3834.7 0.00 1977.5 170 4562.9 1.30 222.3 200 5139.8 1.10 1275.4
RC2_2_06R0.25 140 3692.7 0.00 733.4 170 4411.4 0.15 10800.1 200 4965.1 1.01 688.9
RC2_2_06R0.5 140 3756.5 0.00 1098.2 170 4473.9 1.31 269.2 200 5039.6 0.96 255.9
RC2_2_06R0.75 140 3836.4 0.00 1594.8 170 4525.0 0.92 107.1 200 5149.2 1.51 431.2
RC2_2_07R0.25 140 3666.5 0.00 1223.3 170 4376.9 1.29 683.3 200 4933.7 1.14 1175.7
RC2_2_07R0.5 140 3703.4 0.00 881.1 170 4425.4 1.33 401.3 200 4987.7 1.21 299.7
RC2_2_07R0.75 140 3832.6 1.65 247.7 170 4527.6 1.65 159.8 200 5099.8 1.74 219.3
RC2_2_08R0.25 140 3609.9 0.00 1505.2 170 4323.8 1.25 1612.1 200 4940.1 2.18 2281.5
RC2_2_08R0.5 140 3646.6 0.00 1280.5 170 4376.6 1.27 1687.5 200 4934.0 0.97 334.1
RC2_2_08R0.75 140 3731.3 0.00 2373.5 170 4434.5 1.39 278.1 200 5068.1 2.34 2348.1
RC2_2_09R0.25 140 3612.3 0.00 360.6 170 4313.9 1.18 373.8 200 4857.2 0.86 572.3
RC2_2_09R0.5 140 3658.7 0.00 1235.7 170 4364.5 1.12 1339.8 200 4923.1 1.01 2368.1
RC2_2_09R0.75 140 3737.3 0.00 153.2 170 4449.2 1.56 148.7 200 5078.6 2.61 2337.6
RC2_2_10R0.25 140 3588.6 0.00 4498.3 170 4279.0 0.00 3065.3 200 4843.4 0.92 483.4
RC2_2_10R0.5 140 3588.7 0.00 789.6 170 4316.8 1.45 1441.7 200 4888.0 1.48 799.8
RC2_2_10R0.75 140 3722.7 1.77 193.9 170 4390.7 1.14 212.4 200 4967.6 0.96 300.1

EC.3. Detailed Results for the Experiments in Section 7.5

Tables EC.6 to EC.8 present the detailed results for each individual instance of the experiments in

Section 7.5. Recall that we use the following notation.

• RouteOpt0: basic RouteOpt

• RouteOpt1: RouteOpt with DeLuxing

• RouteOpt2: RouteOpt with the standard (old) primal heuristic

• RouteOpt3: RouteOpt with our new primal heuristic from Section 6.3

• RouteOpt4: RouteOpt with DeLuxing and our new primal heuristic from Section 6.3

Table EC.6: Detailed results for the CVRP instances.

Name n
VRP-Solver RouteOpt0 RouteOpt1 RouteOpt2 RouteOpt3 RouteOpt4
CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

CVRP_200_003 200 9718.7 443 3596.6 410 1901.1 95 3611.9 410 2211.5 137 1955.3 35
CVRP_200_004 200 13426.1 383 7395.5 491 5478.7 89 7463.1 491 8429.8 491 6513.1 89
CVRP_200_006 200 12145.8 335 8211.6 384 4292.7 85 8251.6 384 9257.7 384 5338.8 85
CVRP_200_008 200 4570.5 207 1883.7 202 1020.1 71 1886.9 202 1883.3 202 1031.4 69

Continued on next page

ec12 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.6 – Continued from previous page

Name n
VRP-Solver RouteOpt0 RouteOpt1 RouteOpt2 RouteOpt3 RouteOpt4
CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

CVRP_200_010 200 5606.9 187 3214.3 237 2397.9 63 3237.8 237 1791.6 91 1577.5 29
CVRP_200_014 200 8242.5 293 7852.0 797 3667.5 117 3252.5 209 8872.4 797 4688.1 117
CVRP_200_015 200 4718.9 103 2017.0 60 1968.8 33 1692.8 70 1977.2 39 1967.4 13
CVRP_200_019 200 3756.9 129 1857.2 147 1337.1 47 1880.0 147 1111.4 51 1088.1 17
CVRP_200_023 200 11930.6 445 8299.3 472 6193.5 169 8362.4 472 5862.5 289 4735.6 105
CVRP_200_025 200 18083.1 423 6393.5 212 6098.9 83 6422.0 212 4245.0 107 4240.9 41
CVRP_200_028 200 8606.8 245 3569.7 110 3427.9 51 3594.1 110 2340.4 61 2630.1 29
CVRP_200_030 200 7266.0 333 3453.7 393 2935.7 127 3469.8 393 2217.4 193 1858.0 59
CVRP_200_034 200 5081.6 221 1788.3 151 1290.9 37 1805.3 151 1766.0 115 1618.9 31
CVRP_200_036 200 5178.6 177 2108.9 181 1903.4 51 2125.6 181 1287.1 81 1224.8 29
CVRP_200_039 200 4502.0 139 1852.8 111 1592.6 49 1883.5 111 1338.7 39 1296.0 13
CVRP_200_040 200 14321.7 787 2124.7 417 1476.8 75 2133.6 417 1697.0 205 1534.2 47
CVRP_200_042 200 6064.6 181 5040.8 389 3392.2 119 5056.0 389 2722.8 89 3015.7 47
CVRP_200_045 200 13609.7 399 7281.1 378 4185.0 89 7302.9 378 4034.4 135 4417.7 57
CVRP_200_046 200 7851.4 375 4659.8 710 2405.9 103 4718.4 710 1645.8 159 1298.2 39
CVRP_200_048 200 6019.4 165 3180.3 141 2562.3 53 3205.3 141 2230.2 47 1969.7 17
CVRP_200_051 200 7797.8 199 5153.7 108 5167.3 59 5184.7 108 2357.1 37 2437.4 15
CVRP_200_053 200 8342.6 399 2305.7 277 1427.1 77 2332.8 277 1608.3 149 1257.1 37
CVRP_200_060 200 4520.4 115 2916.1 115 3061.1 43 2943.0 115 3164.2 85 2870.7 29
CVRP_200_068 200 4066.9 159 5117.5 615 3674.2 165 5131.6 615 1528.8 125 1206.3 31
CVRP_200_069 200 8085.7 251 5507.2 229 4748.4 81 5530.0 229 4972.4 153 5290.5 73
CVRP_200_071 200 5011.6 243 1360.3 154 945.4 45 1373.9 154 1098.4 89 932.6 25
CVRP_200_075 200 4385.2 163 983.9 76 1275.8 53 970.7 77 985.3 76 1277.4 53
CVRP_200_078 200 6030.6 265 5844.3 645 4372.4 143 5883.8 645 2623.5 161 2441.3 53
CVRP_200_080 200 11525.2 313 5507.9 199 4493.7 73 5559.1 199 4520.1 131 4271.3 49
CVRP_200_081 200 5445.2 133 3740.8 144 3283.1 55 3782.4 144 3268.6 87 2842.0 31
CVRP_200_082 200 6350.4 137 6378.6 140 6003.5 67 6402.6 140 7501.9 140 7126.6 67
CVRP_200_083 200 13333.9 415 4954.4 261 3865.4 91 4973.4 261 5988.2 261 4899.2 91
CVRP_200_092 200 3624.3 225 1127.1 258 1151.3 85 1133.4 258 529.6 81 444.4 19
CVRP_200_095 200 5718.2 167 4175.3 191 3413.3 69 4192.3 191 1594.2 51 1604.2 21
CVRP_200_096 200 28239.7 1,145 5104.9 560 4309.7 197 5114.9 560 6259.0 606 5055.2 183
CVRP_200_098 200 4244.0 177 2193.4 296 2779.6 85 2203.6 296 1839.8 137 1673.9 29
CVRP_200_100 200 5926.2 275 4800.0 626 4152.6 211 4834.7 626 2029.5 141 1849.1 55
CVRP_200_105 200 23930.5 867 8564.9 611 4010.1 107 8612.6 611 3465.5 177 3608.3 59
CVRP_200_107 200 6516.3 215 5453.8 229 5985.0 133 5468.9 229 2826.9 101 2881.9 61
CVRP_200_110 200 3855.5 113 1584.1 67 1504.6 27 1607.8 67 3340.5 111 2981.5 43
CVRP_200_111 200 3737.7 167 1348.3 153 970.8 43 1359.1 153 906.4 55 888.1 15
CVRP_200_112 200 9382.8 387 3643.5 319 3523.0 135 3661.8 319 1422.5 79 1324.2 33
CVRP_200_115 200 6839.5 223 6876.7 518 4592.4 149 7000.7 518 3721.0 179 3013.5 53
CVRP_200_117 200 4341.8 197 1700.1 217 1421.4 65 1748.2 217 2190.2 241 1895.4 81
CVRP_200_118 200 7329.8 319 4420.8 517 4130.5 157 4433.2 517 3113.0 283 2736.2 73
CVRP_200_121 200 4512.1 127 2269.7 113 2211.3 47 2283.2 113 1472.5 49 1412.7 23
CVRP_200_123 200 5628.8 193 3132.4 173 2226.4 45 3147.3 173 2107.1 97 2135.0 47
CVRP_200_127 200 24451.8 1,095 5511.3 535 4039.7 199 5526.2 535 4699.0 443 3783.8 137
CVRP_200_130 200 3847.8 159 1766.7 169 1220.3 43 1778.5 169 1114.7 73 912.6 19
CVRP_200_133 200 7922.2 375 6041.6 743 6104.4 237 6060.1 743 1535.7 169 1643.8 57
CVRP_200_135 200 40711.3 1,459 10279.3 750 8965.5 297 10307.3 750 7192.4 445 6935.7 203
CVRP_200_138 200 7149.7 285 1541.3 124 1497.0 57 1593.8 124 2912.8 153 2760.6 61
CVRP_200_146 200 5518.7 179 5091.0 329 5076.3 129 5114.2 329 5270.5 342 4605.8 93
CVRP_200_147 200 3747.3 115 3288.4 145 2964.2 57 3322.6 145 2466.5 55 2275.1 23
CVRP_200_150 200 5353.0 183 1846.4 118 1891.2 43 1876.4 118 1861.1 81 2011.2 31
CVRP_200_151 200 12318.1 437 9318.9 650 9229.8 185 9335.1 650 10348.6 650 10259.7 185
CVRP_200_152 200 6127.9 263 2693.3 343 2458.1 121 2737.9 343 3456.8 289 2705.4 77
CVRP_200_154 200 7951.0 423 4287.9 753 3268.5 175 4308.3 753 2387.5 241 2393.4 75
CVRP_200_155 200 17015.1 585 9787.6 864 6754.3 211 9816.9 864 3574.1 237 2782.2 61
CVRP_200_156 200 38462.7 1,357 10694.1 1,227 7978.0 349 10720.1 1,227 5591.9 499 4906.3 157
CVRP_200_158 200 5427.9 83 16083.8 185 14910.4 125 16117.7 185 7699.0 55 9696.7 47
CVRP_200_162 200 10118.9 329 3059.2 197 2187.1 65 3078.7 197 2750.4 109 2425.1 45
CVRP_200_165 200 4038.1 101 2559.9 53 2511.7 31 2584.2 53 3309.4 53 3255.4 31
CVRP_200_167 200 3652.9 77 2303.3 54 2535.9 29 2341.7 54 2361.1 31 2457.6 13
CVRP_200_170 200 4028.9 117 1929.1 136 2104.6 69 1950.9 136 1458.4 71 1210.3 19
CVRP_200_171 200 15557.7 517 5212.5 307 5042.1 133 5231.5 307 3654.4 185 3394.3 75
CVRP_200_176 200 13714.9 459 4314.4 340 2992.7 93 4358.0 340 2078.1 89 1903.2 27
CVRP_200_180 200 14313.4 375 4936.2 173 4459.9 77 4968.3 173 6011.2 173 5534.9 77

Continued on next page

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec13

Table EC.6 – Continued from previous page

Name n
VRP-Solver RouteOpt0 RouteOpt1 RouteOpt2 RouteOpt3 RouteOpt4
CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

CVRP_200_183 200 4350.5 129 3289.3 240 3098.2 91 3313.0 240 1878.1 101 1681.4 29
CVRP_200_185 200 3644.9 125 1792.0 188 1365.1 57 1611.5 182 1285.3 79 1142.4 27
CVRP_200_193 200 5931.1 191 823.5 62 785.5 19 843.7 62 1254.8 37 1217.8 11
CVRP_200_195 200 4973.1 125 2854.8 76 2774.2 35 2878.5 76 3087.8 77 3940.6 31
CVRP_200_196 200 7240.3 175 1942.6 44 2093.3 27 1975.1 44 1921.0 37 1936.0 15
CVRP_200_197 200 14930.4 693 7089.0 852 4965.5 263 7132.8 852 7864.0 795 5416.7 207
CVRP_200_198 200 8746.4 281 3127.7 205 2135.2 59 3148.2 205 1694.2 77 1847.1 27
CVRP_200_200 200 4891.3 125 1687.7 59 1560.2 23 1743.8 59 2103.1 63 1919.1 19

Average 9020.5 320.7 4303.9 317.4 3489.4 97.5 4263.2 309.8 3239.2 175.0 2912.0 55.2

Table EC.7: Detailed results for the VRPTW instances.

Name n
VRP-Solver RouteOpt0 RouteOpt1 RouteOpt2 RouteOpt3 RouteOpt4
CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

VRPTW_300_002 300 8436.9 213 11436.3 1,002 7481.3 289 11467.9 1,002 3254.6 273 2879.8 77
VRPTW_300_003 300 7237.5 245 3549.3 536 2775.9 157 3575.3 536 3004.7 335 2729.1 105
VRPTW_300_007 300 10746.5 269 6770.2 566 6753.8 267 6809.8 566 3034.4 229 3240.2 83
VRPTW_300_009 300 26976.7 863 15914.8 2,112 15112.9 727 15930.3 2,112 14300.7 1,903 10138.0 485
VRPTW_300_010 300 6237.9 207 3345.2 592 2228.2 123 3374.7 592 991.1 119 1154.9 43
VRPTW_300_012 300 4506.8 97 2867.2 254 1774.1 87 2911.4 254 795.4 55 777.5 19
VRPTW_300_013 300 12048.0 403 6846.4 998 6957.6 401 6868.5 998 3670.4 475 3842.0 149
VRPTW_300_014 300 17855.6 569 7776.8 1,186 7568.0 497 7799.1 1,186 9907.5 1,405 8539.0 415
VRPTW_300_015 300 10651.0 311 5796.0 592 6667.8 297 5819.5 592 5217.1 623 3901.3 131
VRPTW_300_017 300 9872.8 259 7972.7 704 4951.4 187 7993.2 704 1673.8 105 1633.2 43
VRPTW_300_022 300 4217.0 157 4463.5 803 3808.0 223 4476.8 803 3172.2 451 2451.5 93
VRPTW_300_024 300 7092.4 233 2450.3 390 1854.3 95 2472.7 390 4654.6 598 3622.3 177
VRPTW_300_025 300 8112.3 209 7076.0 784 5578.8 199 7092.6 784 2006.3 179 1687.2 43
VRPTW_300_026 300 14100.8 469 9764.8 1,991 6717.6 431 9794.9 1,991 13691.7 2,855 9929.5 523
VRPTW_300_029 300 6866.1 223 5914.7 776 3372.7 151 5939.5 776 4032.2 497 2668.9 93
VRPTW_300_030 300 12503.8 359 6367.3 644 3647.5 196 6412.2 644 7219.8 799 5097.8 225
VRPTW_300_032 300 12404.0 273 16555.0 1,848 9455.0 333 16580.2 1,848 6610.7 497 6174.8 153
VRPTW_300_033 300 3698.0 89 2405.4 164 2064.1 92 2433.9 164 1800.9 130 1697.2 57
VRPTW_300_037 300 5584.7 125 1380.8 80 1305.9 37 1403.6 80 1293.1 65 1585.8 31
VRPTW_300_039 300 19137.7 595 6226.2 930 6083.4 343 6283.3 930 5106.2 609 3951.0 119
VRPTW_300_041 300 6633.2 139 9232.4 1,118 4327.0 202 9262.8 1,118 6189.8 668 3604.6 113
VRPTW_300_043 300 3932.8 103 2092.6 150 1775.9 79 2117.0 150 2614.7 150 2299.3 79
VRPTW_300_044 300 6522.9 113 3732.4 175 2780.1 77 3789.1 175 2885.0 100 2610.1 45
VRPTW_300_048 300 3717.5 79 3588.2 250 3378.2 91 3622.2 250 4275.0 250 4065.7 91
VRPTW_300_050 300 4020.4 139 1710.7 204 1282.5 91 1750.7 204 2476.8 276 2108.8 111
VRPTW_300_051 300 8118.2 215 3764.2 413 3269.0 157 3829.5 413 7329.9 872 4758.8 199
VRPTW_300_052 300 5446.7 157 7576.0 1,024 6161.0 339 7595.3 1,024 3229.4 355 3271.8 121
VRPTW_300_053 300 8486.3 319 6113.9 820 4177.1 217 6146.9 820 6358.0 820 4421.3 217
VRPTW_300_059 300 8255.2 179 3497.7 306 2730.2 89 3544.3 306 2743.9 151 2599.0 51
VRPTW_300_060 300 7313.8 225 6124.2 903 6132.6 335 6144.4 903 2868.3 355 2319.8 77
VRPTW_300_066 300 22991.4 657 14738.8 1,798 11410.6 501 14764.1 1,798 3731.1 327 3696.9 137
VRPTW_300_067 300 8069.0 263 5744.2 612 4835.9 227 5757.0 612 2381.8 203 2649.6 69
VRPTW_300_068 300 21948.5 477 14738.1 1,400 8551.8 289 14789.6 1,400 7372.1 687 5169.2 149
VRPTW_300_072 300 11094.1 291 5971.9 758 3953.7 165 5992.5 758 1531.3 143 1509.8 45
VRPTW_300_073 300 30408.2 847 5833.1 548 4789.2 254 5894.5 548 6854.2 548 5810.4 254
VRPTW_300_075 300 17700.9 443 5635.6 600 4872.5 166 5673.9 600 4428.2 399 3794.7 111
VRPTW_300_077 300 12559.3 337 7061.4 904 4508.3 175 7106.0 904 6099.7 711 3694.6 135
VRPTW_300_079 300 5286.1 135 2927.2 305 2372.6 97 3013.2 305 2165.9 145 2042.7 53
VRPTW_300_081 300 3869.3 129 1112.5 226 1367.2 115 1141.6 226 992.5 157 1059.9 61
VRPTW_300_083 300 4725.6 139 4927.5 710 5050.2 261 4944.2 710 3289.8 433 3217.4 135
VRPTW_300_088 300 5043.0 151 3404.3 426 3072.2 197 3420.6 426 1583.8 209 1313.3 53
VRPTW_300_089 300 5322.0 161 3502.5 520 6316.3 347 3524.1 520 3648.1 483 3803.3 199
VRPTW_300_090 300 6556.4 211 3178.9 378 2090.8 137 3194.6 378 2076.0 230 1902.5 71
VRPTW_300_092 300 8873.3 209 4147.4 328 3616.9 122 4195.9 328 4748.1 314 3172.1 93
VRPTW_300_093 300 13366.6 391 5678.4 470 4715.2 173 5726.5 470 5668.5 475 4156.1 129
VRPTW_300_094 300 5935.5 197 4692.7 783 3350.8 195 4743.2 783 1617.2 249 1341.2 57

Continued on next page

ec14 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.7 – Continued from previous page

Name n
VRP-Solver RouteOpt0 RouteOpt1 RouteOpt2 RouteOpt3 RouteOpt4
CPU Node CPU Node CPU Node CPU Node CPU Node CPU Node

VRPTW_300_095 300 5843.4 177 1551.2 216 1308.9 97 1565.1 216 1879.0 158 2082.4 85
VRPTW_300_097 300 3869.6 91 2384.4 234 2340.8 105 2489.1 234 2623.8 217 2279.8 75
VRPTW_300_098 300 9619.3 249 5147.8 498 3694.8 203 5207.3 498 5459.7 498 4006.3 203
VRPTW_300_100 300 4096.2 117 5061.3 919 3566.3 253 5080.2 919 4048.8 671 2626.7 157
VRPTW_300_102 300 4955.2 107 4337.8 318 2600.2 110 4366.6 318 2659.5 121 2533.8 45
VRPTW_300_104 300 14653.3 347 10431.3 1,056 8164.5 305 10494.2 1,056 10451.4 1,092 7436.7 223
VRPTW_300_106 300 5939.6 131 12161.3 1,468 5444.9 201 12188.3 1,468 4899.8 397 4893.1 147
VRPTW_300_107 300 7972.7 179 7517.2 522 4390.1 121 7575.2 522 2936.3 181 2999.2 57
VRPTW_300_113 300 37049.8 1,207 21927.7 3,552 8960.5 485 21955.1 3,552 6381.2 975 3262.6 129
VRPTW_300_114 300 15154.9 339 16767.3 1,602 10297.0 349 16801.4 1,602 17799.3 1,602 11329.1 349
VRPTW_300_116 300 11930.5 289 12665.8 1,314 10037.9 379 12919.2 1,314 5517.2 569 4401.8 151
VRPTW_300_117 300 9522.9 309 3754.9 552 2178.2 135 3781.9 552 2019.4 239 1592.5 67
VRPTW_300_118 300 4764.0 105 6985.9 724 4562.9 167 7025.7 724 5393.8 446 3928.6 117
VRPTW_300_121 300 4846.8 135 5210.2 652 3904.1 207 5229.7 652 2622.4 228 2600.4 83
VRPTW_300_123 300 10348.0 291 3548.9 638 4464.8 242 3576.3 638 3586.7 527 3342.4 147
VRPTW_300_128 300 8671.5 219 7307.3 1,028 6486.5 299 7371.3 1,028 4880.5 581 3592.0 121
VRPTW_300_129 300 9382.0 263 4959.7 612 3468.5 175 4974.1 612 2154.0 241 2145.2 87
VRPTW_300_130 300 9409.7 355 11776.6 1,596 7802.2 419 11795.0 1,596 6454.9 790 4786.1 229
VRPTW_300_134 300 10447.9 263 3914.0 524 2952.8 127 3932.7 524 1884.5 139 1730.8 45
VRPTW_300_138 300 9094.3 231 12254.9 1,510 8896.2 371 12272.4 1,510 6451.8 697 4555.7 147
VRPTW_300_139 300 6348.8 121 5633.3 526 4221.6 165 5672.3 526 2989.2 228 2735.6 97
VRPTW_300_140 300 5668.0 113 7258.5 705 3553.4 115 7286.6 705 2557.3 150 2513.0 81
VRPTW_300_143 300 7291.4 159 6266.9 712 10029.5 469 6292.9 712 7177.4 929 5854.6 251
VRPTW_300_144 300 10590.5 227 4166.6 364 3427.6 121 4254.1 364 3381.4 229 2961.2 75
VRPTW_300_145 300 7063.6 203 5852.7 948 5652.8 385 5873.7 948 6869.9 948 6670.0 385
VRPTW_300_147 300 10162.2 237 4222.5 422 4180.9 234 4234.8 422 2742.6 295 2541.6 97
VRPTW_300_148 300 4797.9 111 1934.0 142 1687.9 53 1966.7 142 906.6 39 923.1 15
VRPTW_300_149 300 8441.6 275 9265.7 1,214 5618.5 327 9286.6 1,214 5959.3 855 3291.2 115
VRPTW_300_150 300 4571.6 163 2099.9 238 1468.5 95 2117.5 238 887.0 69 826.6 17
VRPTW_300_153 300 31578.5 875 9001.6 914 8676.2 351 9077.2 914 10027.5 914 9702.1 351
VRPTW_300_154 300 6406.6 133 7174.0 682 5144.2 179 7216.3 682 7290.3 682 5260.5 179
VRPTW_300_156 300 4269.6 111 2148.3 172 2392.3 118 2173.5 172 2177.8 179 1875.4 61
VRPTW_300_157 300 16241.8 429 18118.7 2,454 11778.1 527 18140.6 2,454 19133.9 2,454 12793.3 527
VRPTW_300_160 300 10482.0 271 13769.1 1,629 6388.5 303 13794.4 1,629 5678.9 603 4166.9 163
VRPTW_300_161 300 14392.5 259 18041.4 1,774 11132.0 459 18089.6 1,774 15465.1 1,464 10624.8 369
VRPTW_300_163 300 6264.1 163 3338.8 352 4145.4 197 3364.5 352 3458.5 352 4264.8 197
VRPTW_300_164 300 16090.1 343 18435.4 2,620 8365.8 353 18474.2 2,620 14607.9 1,924 9462.3 383
VRPTW_300_168 300 3628.2 81 1518.4 139 2676.2 132 1536.8 139 1629.5 139 2787.3 132
VRPTW_300_169 300 8575.0 199 8689.4 325 8740.6 325 12121.4 529 1742.1 143 1608.1 59
VRPTW_300_171 300 7620.0 297 4807.7 606 2293.0 127 4827.4 606 3073.7 361 2194.6 83
VRPTW_300_172 300 10350.3 321 10568.4 1,558 9436.3 473 10592.6 1,558 8989.9 1,242 8879.5 401
VRPTW_300_174 300 11751.3 223 7283.9 686 5223.3 233 7337.3 686 10121.0 1,013 7433.7 209
VRPTW_300_175 300 9163.9 377 2065.0 408 1750.3 155 2097.9 408 3078.3 408 2763.5 155
VRPTW_300_176 300 21582.5 443 11396.1 929 8599.2 271 11421.1 929 7134.1 503 5998.7 133
VRPTW_300_177 300 5033.5 143 2813.3 242 2826.8 164 2836.9 242 3017.2 220 3858.9 216
VRPTW_300_178 300 3732.6 69 1449.8 68 1512.1 49 1479.3 68 1848.6 68 1908.9 49
VRPTW_300_182 300 5712.0 109 3163.2 292 2383.9 111 3200.5 292 1479.7 93 1452.0 39
VRPTW_300_184 300 4173.8 109 1282.6 96 1463.8 66 1308.1 96 1510.7 116 1189.1 43
VRPTW_300_188 300 4286.3 115 1881.9 172 2415.1 133 1915.2 172 1589.4 129 1646.1 43
VRPTW_300_190 300 7057.5 211 1991.2 294 1819.6 117 2002.3 294 1829.9 205 1733.1 87
VRPTW_300_192 300 3833.3 103 6129.9 764 3925.9 149 6159.5 764 1326.7 97 1476.0 39
VRPTW_300_195 300 5407.7 157 2687.1 304 1950.6 101 2705.6 304 1321.6 115 1650.2 47
VRPTW_300_196 300 16585.4 559 11110.9 1,502 7494.3 331 11203.2 1,502 9085.4 989 4479.8 153
VRPTW_300_197 300 10617.8 261 1989.0 166 1997.7 74 2014.8 166 3182.0 164 3363.1 77

Average 9618.3 262.5 6528.3 770.4 4869.4 224.4 6598.0 772.4 4679.7 506.0 3751.1 139.1

e-companion to Yang: DeLuxing for CG-Based Exact Methods ec15

Table EC.8: Detailed results for the long CVRP instances.

Name n
RouteOpt0 RouteOpt1 RouteOpt3
CPU Node CPU Node CPU Node

CVRP_200_18_003 200 449.7 5 509.8 3 376.4 3
CVRP_200_18_006 200 16335.6 129 16056.8 129 16414.8 129
CVRP_200_18_008 200 14153.3 111 14656.7 109 14353.0 111
CVRP_200_18_010 200 2170.9 17 2144.8 17 1917.8 17
CVRP_200_18_014 200 6088.9 35 6030.3 35 1287.8 7
CVRP_200_18_015 200 917.8 7 915.7 7 890.6 5
CVRP_200_18_023 200 10062.6 91 9732.5 89 10134.1 91
CVRP_200_18_025 200 1263.1 9 1264.2 9 734.4 3
CVRP_200_18_028 200 13669.2 109 13002.3 103 13799.1 109
CVRP_200_18_030 200 6259.7 77 6194.6 75 5656.3 77
CVRP_200_18_034 200 6475.1 67 6486.5 63 1739.2 21
CVRP_200_18_036 200 1149.4 9 1140.7 7 512.2 3
CVRP_200_18_039 200 3094.4 39 3055.0 35 3340.9 39
CVRP_200_18_040 200 321.8 3 321.2 3 345.2 3
CVRP_200_18_042 200 2379.4 21 2390.9 21 895.2 5
CVRP_200_18_046 200 120.9 1 120.7 1 121.0 1
CVRP_200_18_048 200 2170.5 15 2191.8 15 587.7 3
CVRP_200_18_051 200 6212.0 45 4576.9 37 6265.1 45
CVRP_200_18_053 200 485.2 3 485.8 3 531.6 3
CVRP_200_18_060 200 2029.7 13 2027.4 13 835.5 5
CVRP_200_18_069 200 557.4 3 551.2 3 639.6 3
CVRP_200_18_071 200 706.9 5 702.7 5 526.3 3
CVRP_200_18_078 200 8595.5 133 8804.7 131 8640.5 133
CVRP_200_18_081 200 6313.0 53 6297.4 53 1978.2 13
CVRP_200_18_082 200 13028.5 89 14134.7 87 7373.4 49
CVRP_200_18_083 200 10944.3 95 17992.3 139 11019.7 95
CVRP_200_18_092 200 2082.1 25 2068.6 23 2205.7 25
CVRP_200_18_095 200 682.7 7 680.4 7 375.5 3
CVRP_200_18_096 200 13411.5 111 12676.7 103 7660.3 61
CVRP_200_18_098 200 9071.0 131 9568.0 125 5251.3 79
CVRP_200_18_100 200 7755.5 89 7246.0 91 3199.2 37
CVRP_200_18_105 200 8965.2 105 9063.2 107 6261.1 73
CVRP_200_18_107 200 4332.9 19 4634.1 17 2184.2 7
CVRP_200_18_110 200 2190.2 11 2170.1 11 853.2 3
CVRP_200_18_111 200 2373.7 19 2365.4 19 1155.3 7
CVRP_200_18_112 200 17255.2 201 15591.3 133 17369.9 201
CVRP_200_18_115 200 4193.3 39 4221.9 33 1828.5 13
CVRP_200_18_117 200 2481.4 31 2457.7 31 3130.2 41
CVRP_200_18_118 200 8291.5 89 8464.5 87 4510.0 41
CVRP_200_18_121 200 163.2 1 163.0 1 165.3 1
CVRP_200_18_123 200 3209.1 25 3199.2 25 1589.6 11
CVRP_200_18_127 200 11175.6 103 11066.1 103 11219.7 103
CVRP_200_18_130 200 417.1 3 416.4 3 430.8 3
CVRP_200_18_133 200 12863.1 271 13094.3 227 12896.5 271
CVRP_200_18_135 200 11131.3 105 11299.0 107 8368.0 87
CVRP_200_18_138 200 369.7 3 364.8 3 369.2 3
CVRP_200_18_146 200 2768.4 25 3307.5 27 4338.9 33
CVRP_200_18_147 200 2998.4 25 2718.9 23 1266.5 9
CVRP_200_18_150 200 5828.2 71 4639.1 41 3824.6 47
CVRP_200_18_151 200 19519.2 115 24471.3 131 14249.8 85
CVRP_200_18_152 200 9014.7 109 9006.7 107 9054.4 109
CVRP_200_18_155 200 40425.3 451 40458.1 443 27249.4 263
CVRP_200_18_162 200 208.9 1 208.5 1 212.6 1
CVRP_200_18_165 200 5377.6 41 7138.9 47 5493.8 41
CVRP_200_18_170 200 402.5 3 401.9 3 427.5 3
CVRP_200_18_171 200 1509.4 13 1497.5 13 2682.4 21
CVRP_200_18_176 200 10753.7 99 9490.5 87 6511.5 55
CVRP_200_18_180 200 21599.7 179 22084.5 183 21719.1 179
CVRP_200_18_183 200 5642.0 37 5611.3 37 1871.9 11
CVRP_200_18_185 200 23332.1 199 30633.0 261 23732.6 199
CVRP_200_18_193 200 2238.6 19 2229.2 19 1024.1 7
CVRP_200_18_195 200 6533.6 51 6507.8 51 2560.6 17
CVRP_200_18_197 200 5966.1 74 5975.0 73 7415.3 91

Continued on next page

ec16 e-companion to Yang: DeLuxing for CG-Based Exact Methods

Table EC.8 – Continued from previous page

Name n
RouteOpt0 RouteOpt1 RouteOpt3
CPU Node CPU Node CPU Node

CVRP_200_18_198 200 4814.6 47 4881.9 47 4844.7 47
CVRP_200_18_200 200 1036.3 9 1032.9 9 466.8 3

Average 6589.8 63.7 6844.5 62.3 5244.4 50.3

	Introduction
	Motivation
	Contributions, Limitations, and Outline

	Literature Review
	Preliminaries
	The Enumeration Procedure
	Variable Fixing by Lagrangian Bounds
	Variable Fixing by Dual Picking
	Major Drawbacks

	The DeLuxing
	Theoretical Foundations
	Novel LP Formulation for Dual Picking
	High Level Idea
	Potential Issue and Fix
	Further Discussion

	Overview of DeLuxing

	Elaboration on Every Step of DeLuxing
	Step 1: Initialization
	Step 2: Clustering
	The ClustByNorm Heuristic

	Step 3: Deep Search

	Extensions
	Variable Relaxation
	A New Way of Cutting Plane Addition
	An Effective Primal Heuristic

	Numerical Results
	Effectiveness of the Key Components of DeLuxing
	Sensitivity Analysis

	Effectiveness of DeLuxing and Three Extensions
	Comparison with State-of-the-Art Algorithms
	Comparison on the CMTVRPTW
	Comparison on the CMTVRPTW-LT
	Comparison on the CMTVRPTW-R

	Computational Results for Large Multi-Trip Instances
	Computational Results for CVRP and VRPTW Instances
	Effectiveness of DeLuxing
	Effectiveness of Our Primal Heuristic
	Effectiveness of DeLuxing and Our Primal Heuristic Combined
	Results for Long CVRP Instances

	Concluding Remarks

