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Abstract. This paper is devoted to study the convergence rates of a second-order

dynamical system and its corresponding discretization associated with a continuously

differentiable bilinearly coupled convex-concave saddle point problem. First, we consider

the second-order dynamical system with asymptotically vanishing damping term and show

the existence and uniqueness of the trajectories as global twice continuously differentiable

solutions. We derive the convergence rate for the primal-dual gap along the generated

trajectories for all damping coefficients α > 0 and prove that the primal-dual trajectory

of the second-order dynamical system asymptotically weakly converges to a primal-dual

optimal solution of the original saddle point problem when α > 3. In addition, we obtain

a faster convergence rate for the second-order dynamical system with the assumption of

strongly convexity. Second, we develop the corresponding inertial algorithm which results

from the discretization of the dynamical system and prove convergence properties for

the primal-dual gap and the sequence of iterates. We show that the sequence of iterates

generated by the inertial algorithm weakly converges to a primal-dual optimal solution

which is compatible with the fact in the continuous setting.
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1 Introduction

Let X ,Y be two real Hilbert spaces equipped with inner products 〈·, ·〉X , 〈·, ·〉Y (abbreviated 〈·, ·〉) and norms

‖ · ‖X = 〈·, ·〉
1
2

X , ‖ · ‖Y = 〈·, ·〉
1
2

Y (abbreviated ‖ · ‖). The mapping A : X → Y is a continuous linear operator

with induced norm

‖A‖ = max {‖Ax‖ : x ∈ X with ‖x‖ ≤ 1} .
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(2021128), China Scholarship Council (202100850001).
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In this paper, we consider the following bilinearly coupled convex-concave saddle point problem

min
x∈X

max
y∈Y

L(x, y) ≡ f(x) + 〈Ax, y〉 − g(y), (1.1)

where f : X → R and g : Y → R are two continuously differentiable convex functions. Here we call 〈Ax, y〉
the bilinear coupling term. Problem (1.1) is an important model for many applications arising in various

areas, such as imaging procssing [16, 19], reinforcement learning [31, 21], and robust Learning and empirical

risk minimization [26].

A pair (x∗, y∗) ∈ X × Y is called a saddle point of the function L if for every (x, y) ∈ X × Y,

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗).

We denote by S the set of saddle points of problem (1.1). We assume that problem (1.1) has at least one

optimal solution (x∗, y∗), which also satisfies the following KKT conditions{
Of(x∗) +A∗y∗ = 0,

Ax∗ − Og(y∗) = 0,
(1.2)

where A∗ is the adjoint operator of A. Define the operator TL : X × Y → X × Y as

TL(x, y) =

(
OxL(x, y)

OyL(x, y)

)
=

(
Of(x) +A∗y

Og(y)−Ax

)
. (1.3)

It is obvious that the optimality condition (1.2) can be reformulated as TL(x∗, y∗) = 0 and S can be viewed

as the set of zeros of the operator TL. Since f(·) (resp. g(·)) is convex and continuously differentiable and A

(resp. A∗) is a linear operator, it is obvious that TL(x, y) is maximally monotone (see,[10],Corollary 20.28).

Moreover, we notice that S can be interpreted as the set of zeros of the maximally monotone operator TL
and so S is closed and convex.

We recall some significant primal-dual algorithms for the saddle point problem (1.1). Chambolle and Pock

[16] show an ergodic convergence rate O (1/k) of their celebrated primal-dual algorithm for the primal-dual

gap of problem (1.1) with f and g are proper, convex and lower semicontinuous. Based on the primal-dual

algorithm described in [16], He et al. [22] propose a generalized primal-dual algorithm and relax the condition

for ensuring its convergence, and obtain the convergence rate O (1/k) in both the ergodic and pointwise sense.

If f is strongly convex, Chambolle and Pock [17] obtain a faster ergodic convergence rate O
(
1/k2

)
for the

same primal-dual gap. With the assumption that f is a convex and Fréchet differentiable function with

L-Lipschitz continuous gradient, Chen et al. [19] present an ergodic convergence rate O
(
L/k + ‖A‖/k2

)
for the primal-dual gap of problem (1.1). On the other hand, with the assumption that both f and g are

smooth, Kovalev et al. [25] propose an accelerated primal-dual gradient method for solving the saddle point

problem and presented the linear convergence rate when the objective function is strongly convex-concave,

convex-strongly concave, or even just convex-concave. Thekumparampil et al. [31] developed a lifted Primal-

Dual first order algorithm and show a lower complexity bound under the assumption that f and g are both

strongly convex smooth functions. More results regarding (1.1) can be found in [16, 17, 19, 20, 22] and

references therein.

1.1 Fast primal-dual algorithm via dynamical system

Recently, continuous-time dissipative dynamical systems have been extensively studied in the context of

solving various different optimization problems. Alvarez and Attouch [1, 2, 8] studied second order inertial

2



dynamics with fixed viscous damping coefficient, in line with the seminal work of Polyak on the heavy ball

method with friction for unconstrained optimization problems. A decisive step was taken by Su et al. in

[30], where, for the minimization of a continuously differentiable convex function Φ : X → R, the authors

considered the following second order inertial dynamic with asymptotic vanishing viscous damping

ẍ(t) +
α

t
ẋ(t) + OΦ(x(t)) = 0, t > 0. (1.4)

The authors successfully link the inertial dynamic (1.4) with the accelerated gradient method of Nesterov

[12, 28] in the case α = 3. Moreover, Attouch et al. [9] showed that any trajectory of (1.4) converges

weakly to a minimizer of Φ when α > 3 and establish the strong convergence properties in various practical

situations. In addition, Attouch and Peypouquet [4] and May [27] showed that the asymptotic convergence

rate of (1.4) is o
(
1/k2

)
when α > 3. When α ≤ 3, Attouch et al. [5] and Apidopoulos et al. [3] present the

convergence rate of the objective values O
(

1/t
2α
3

)
for the continuous dynamical system (1.4) as well as a

corresponding numerical algorithm.

Subsequetnly, the inertial dynamic method has been generalized to linear equality constrained convex

optimization problems by employing the augmented Lagrangian approach. Correspondingly, He [23] in-

vestigated asymptotic properties of a second-order continuous primal-dual dynamical system with viscous

damping and extrapolation for a separable convex optimization problem with linear equality constraints. At-

touch et al. [6] introduced a second-order continuous dynamical system with viscous damping, extrapolation,

and temporal scaling for linear equality constrained convex optimization problems and paved the way for

developing the corresponding accelerated alternating direction method of multipliers (ADMM) algorithms

via temporal discretization. Boţ and Nguyen [14] discussed the convergence behavior of the primal-dual

gap, the feasibility measure, the objective function value and trajectory for a second-order dynamical system

with asymptotically vanishing damping term. Recently, Boţ et al.[15] presented the corresponding numerical

optimization algorithm originating from the second-order dynamical system in [14]. They also provided

convergence results regarding the sequence of iterates generated by a fast algorithm for linearly constrained

convex optimization problems without additional assumptions such as strong convexity.

It thus seems natural to employ the dynamical system framework to study bilinearly coupled convex-

concave saddle point problems. It is worth mentioning here that Li et al. [26] provided a novel first order

algorithm based on continuous-time dynamical systems for a smooth bilinearly-coupled strongly-convex-

concave saddle point problem and showed matching polynomial convergence behavior in discrete time.

In this paper, we consider the following second order primal dual dynamical system
ẍ(t) + α

t ẋ(t) + OxL (x(t), y + θtẏ(t)) = 0,

ÿ(t) + α
t ẏ(t)− OyL (x(t) + θtẋ(t), y) = 0,

(x(t0), y(t0)) = (x0, y0) and (ẋ(t0), ẏ(t0)) = (ẋ0, ẏ0),

(1.5)

where t0 > 0, α > 0, θ ≥ 0 and (x0, y0), (ẋ0, ẏ0) ∈ X × Y.

By unfolding the expressions of the partial gradients of L(·, ·) in the dynamical system (1.5), we have the

following reformulation of system (1.5):
ẍ(t) + α

t ẋ(t) + Of(x) +A∗ (y + θtẏ(t)) = 0,

ÿ(t) + α
t ẏ(t)−A (x(t) + θtẋ(t)) + Og(y) = 0,

(x(t0), y(t0)) = (x0, y0) and (ẋ(t0), ẏ(t0)) = (ẋ0, ẏ0).

(1.6)

Here we consider problem (1.1) with the assumption that f and g are two convex and continuously differen-

tiable functions with Lipschitz continuous gradients. We establish its second-order dynamical system (1.5)
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with asymptotically vanishing damping term and design a numerical algorithm based on the discretization

of the system. Our main contributions are as follows:

(a) The continuous case. We show convergence rates O
(
1/t2

)
and O

(
1/t

2α
3

)
for the primal-dual

gap along the generated trajectories when α ≥ 3 and 0 < α ≤ 3, respectively. Our dynamical system

(1.5) is an extension of the primal-dual dynamical systems with vanishing damping for linearly constrained

minimization problems proposed by Boţ and Nguyen [14], where we replace the linear function with a

general convex and continuously differentiable function g. We also extend the convergence results of the

unconstrained convex optimization problem when 0 < α ≤ 3 given by Attouch et al. [5] to the case of the

bilinearly coupled convex-concave saddle point problem. Then, we prove that the primal-dual trajectory

asymptotically weakly converges to a primal-dual optimal solution of (1.1). By the assumption of strong

convexity, we obtain the strong convergence rate for the primal-dual dynamical system, which extends the

results for the unconstrained problem considered by Attouch [9] to the bilinearly coupled convex-concave

saddle point problem considered here.

(b) The discrete case. We present the corresponding inertial algorithm based on the discretization

of the primal-dual dynamical system with asymptotically vanishing damping term. We consider a general

setting for the inertial parameters which covers three classical rules proposed by Nesterov [28], Chambolle-

Dossal [18] and Attouch-Cabot [7]. We obtain the convergence rate of O
(
1/k2

)
for the primal-dual gap under

these rules. Moreover, we prove that the sequence of the iterates constructed by this algorithm converges

to a primal-dual solution in a general setting which covers the two latter rules, which is an extension of the

results in Boţ et al.[15].

1.2 Overview

This paper is organized as follows. We focus on an analysis of the second-order dynamical system with

asymptotically vanishing damping term in Section 2. To be specific, we show convergence rates for the primal-

dual gap in Subsection 2.1 and the weak convergence of the trajectory to a primal-dual optimal solution in

Subsection 2.2. In addition, we show faster convergence rates under the assumption of strong convexity in

Subsection 2.3. In Section 3, we present the corresponding numerical algorithm and the convergence of the

sequence of iterates that it generates. More precisely, We provide some important estimates in Subsection

3.1 and discuss the boundedness and convergence of the iterates of our algorithm in Subsection 3.2, before

we summarize the results in Section 4.

2 Primal-dual dynamical systems: convergence rates

2.1 Fast convergence rates for the primal-dual gap

In this section, we investigate the convergence properties of the dynamical system (1.5), i. e. convergence

rates for the primal dual gap, weak convergence of the trajectory to a primal-dual optimal solution and strong

convergence rates under the assumption of strongly convexity. The following result, which can be directly

proven by the Picard–Lindelof theorem (see [32], Theorem 2.2), establishes the existence and uniqueness of

local solutions to the dynamical system (1.5).

Proposition 2.1. Let f and g be two continuously differentiable convex functions and Of and Og are lf - and

lg-Lipschitz continuous, respectively. Suppose α > 0. Then for any initial condition (x(t0), y(t0)) = (x0, y0),
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(ẋ(t0), ẏ(t0)) = (ẋ0, ẏ0), there exists a unique global twice continuously differentiable solution (x, y) : [t0, T )→
X ×Y.

To prove the existence of a global solution and derive the asymptotic behavior of the dynamical system

(1.5), we notice that all the analyses are based on standard techniques of energy (Lyapunov) functions.

Many energy functions have been proposed to study dynamcial systems with various damping terms and

time scaling terms, see e. g. [30, 5, 29, 6], and choosing an appropriate one is crucial. Motivated by the

one introduced in Attouch et al. [5] and Boţ and Nguyen [14], we define the following energy function

Eα,θ,p : [t0,+∞)→ R as

Eα,θ,p(t) = E0 + E1 + E2

with

E0(t) = θ2t2p(L(x, y∗)− L(x∗, y)),

E1(t) =
1

2
‖λ(t)(x(t)− x∗) + θtpẋ(t)‖2 +

ξ(t)

2
‖x(t)− x∗‖2,

E2(t) =
1

2
‖λ(t)(y(t)− y∗) + θtpẏ(t)‖2 +

ξ(t)

2
‖y(t)− y∗‖2,

where λ(t) = tp−1 and ξ(t) = (θα− 2θp+ θ − 1)t2(p−1).

Lemma 2.1. Let (x, y) be a solution of the dynamical system (1.5) and (x∗, y∗) ∈ S . For every t ≥ t0, it

holds that

Ėα,θ,p(t) ≤ θ(2θp− 1)t2p−1(L(x, y∗)− L(x∗, y)) + θ(1 + θp− θα)t2p−1
(
‖ẋ‖2 + ‖ẏ‖2

)
+(p− 1)θ(α− 2p+ 1)t2p−3(‖x− x∗‖2 + ‖y − y∗‖2). (2.1)

Proof. We have

Ė0(t) = 2pθ2t2p−1(L(x, y∗)− L(x∗, y)) + θ2t2p (〈Of(x), ẋ〉+ 〈Aẋ, y∗〉 − 〈Ax∗, ẏ〉+ 〈Og(y), ẏ〉) ,

Ė1(t) = 〈tp−1(x− x∗) + θtpẋ, (p− 1)tp−2(x− x∗) + tp−1ẋ+ θptp−1ẋ+ θtpẍ〉+
ξ̇

2
‖x−x∗‖2 + ξ〈x− x∗, ẋ〉

= 〈tp−1(x− x∗) + θtpẋ, (p− 1)tp−2(x− x∗) + (θ(p− α) + 1)tp−1ẋ− θtpOf(x)− θtpA∗ (y + θtẏ(t))〉

+
ξ̇

2
‖x(t)− x∗‖2 + ξ〈x− x∗, ẋ〉

= ((p− 1)t2p−3 +
ξ̇

2
)‖x− x∗‖2 + (ξ − θα+ 2θp− θ + 1) 〈x− x∗, ẋ〉 − θt2p−1〈x− x∗,Of(x)〉

−θt2p−1〈x− x∗, A∗y〉 − θ2t2p〈x− x∗, A∗ẏ〉+ θ(1 + θp− θα)t2p−1‖ẋ‖2 − θ2t2p〈ẋ,Of(x)〉

−θ2t2p〈ẋ, A∗(y + θtẏ)〉

= (p− 1)θ(α− 2p+ 1)t2p−3‖x− x∗‖2 − θt2p−1〈x− x∗,Of(x)〉 − θt2p−1〈x− x∗, A∗y〉

−θ2t2p〈x− x∗, A∗ẏ〉+ θ(1 + θp− θα)t2p−1‖ẋ‖2 − θ2t2p〈ẋ,Of(x)〉 − θ2t2p〈ẋ, A∗(y + θtẏ)〉,

Ė2(t) = (p− 1)θ(α− 2p+ 1)t2p−3‖y − y∗‖2 + θt2p−1〈y − y∗,Og(y)〉 − θt2p−1〈y − y∗, Ax〉

−θ2t2p〈y − y∗, Aẋ〉+ θ(1 + θp− θα)t2p−1‖ẏ‖2 − θ2t2p〈ẏ,Og(y)〉+ θ2t2p〈ẏ, A(x+ θtẋ)〉.
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Combining these terms, we arrive at

Ėα,θ,p(t) = 2pθ2t2p−1(L(x, y∗)− L(x∗, y)) + (p− 1)θ(α− 2p+ 1)t2p−3(‖x− x∗‖2 + ‖y − y∗‖2)

−θt2p−1 (〈x− x∗,Of(x)〉 − 〈x∗, A∗y〉+ 〈y − y∗,Og(y)〉+ 〈Ax, y∗〉)

+θ(1 + θp− θα)t2p−1
(
‖ẋ‖2 + ‖ẏ‖2

)
≤ 2pθ2t2p−1(L(x, y∗)− L(x∗, y)) + (p− 1)θ(α− 2p+ 1)t2p−3(‖x− x∗‖2 + ‖y − y∗‖2)

+θt2p−1 (f(x∗)− f(x) + 〈x∗, A∗y〉+ g(y∗)− g(y)− 〈Ax, y∗〉)

+θ(1 + θp− θα)t2p−1
(
‖ẋ‖2 + ‖ẏ‖2

)
= θ(2θp− 1)t2p−1(L(x, y∗)− L(x∗, y)) + θ(1 + θp− θα)t2p−1

(
‖ẋ‖2 + ‖ẏ‖2

)
+(p− 1)θ(α− 2p+ 1)t2p−3(‖x− x∗‖2 + ‖y − y∗‖2), (2.2)

where the inequality follows from the convexity of f and g. This completes the proof.

To guarantee the energy function Eα,θ,p is nonnegative and nonincreasing, we impose the following con-

ditions:

(A1) : θα− 2θp+ θ − 1 ≥ 0,

(A2) : 2θp− 1 ≤ 0,

(A3) : 1 + θp− θα ≤ 0,

(A4) : (p− 1)θ(α− 2p+ 1) ≤ 0.

Then, we immediately have the following result.

Proposition 2.2. Let f and g be two continuously differentiable convex functions and let Of and Og bet lf -

and lg-Lipschitz continuous, respectively. Suppose α > 0 and assumptions (A1)− (A4) hold. Let (x∗, y∗) ∈ S
and (x, y) be a solution of the dynamical system (1.5) defined on [t0, T ) for some initial value. Then,

Ėα,θ,p ≤ 0. In addtion, if θα− 2θp+ θ − 1 > 0, we can use T = +∞.

Proof. By the assumptions (A1) − (A4), it is obvious that Ėα,θ,p ≤ 0 and so the energy function E(t)α,θ,p

is nonincreasing on [t0, T ). Then, Eα,θ,p(t) ≤ Eα,θ,p(t0), ∀ t ∈ [t0, T ). This implies that the energy function

E(t)α,θ,p is bounded on [t0, T ) and so with

1

2
‖tp−1(x(t)− x∗) + θtpẋ(t)‖2 +

(θα− 2θp+ θ − 1)t2(p−1)

2
‖x(t)− x∗‖2 ≤ Eα,θ,p(t0), ∀ t ∈ [t0, T ),

it follows that

tp−1‖x(t)− x∗‖ ≤

√
2Eα,θ,p(t0)

θα− 2θp+ θ − 1
and ‖tp−1(x(t)− x∗) + θtpẋ(t)‖ ≤

√
2E(t0)α,θ,p

for ∀ t ∈ [t0, T ). Thus,

θtp‖ẋ(t)‖ ≤ ‖tp−1(x(t)− x∗) + θtpẋ(t)‖+ tp−1‖x(t)− x∗‖

≤

√
2Eα,θ,p(t0)

θα− 2θp+ θ − 1
+
√

2Eα,θ,p(t0)

≤
(

1 +
1

θα− 2θp+ θ − 1

)√
2Eα,θ,p(t0),∀ t ∈ [t0, T ), (2.3)

which yields supt∈[t0,T ) ‖ẋ(t)‖ < +∞ with the fact tp ≥ tp0 > 0.
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Similarly, we have supt∈[t0,T ) ‖ẏ(t)‖ < +∞. Assume that T < +∞ and so the trajectory (x(t), y(t)) is

bounded on [t0, T ). Consequently, (x(t), y(t), ẋ(t), ẏ(t)) has a limit at t = T and therefore can be continued,

which is a contradiction. In conclusion, T = +∞, which completes the proof.

We will now simplify the conditions (A1)− (A4). From (A1), we have θ(α− 2p+ 1) ≥ 1 and so θ > 0. In

addition, condition (A4) becomes p ≤ 1. By transforming (A2) into − 1
θ ≤ −2p, we have p ≤ α− 1

θ ≤ α− 2p

and p ≤ α+1
2 −

1
2θ ≤

α+1
2 − p, from which it follows that p ≤ α

3 and p ≤ α+1
4 . Combining the results above,

we have p ≤ min{1, α3 ,
α+1
4 }.

It is obvious that α
3 ≤

α+1
4 ≤ 1 when α ≤ 3 and 1 ≤ α+1

4 ≤ α
3 when α ≥ 3. Therefore, the formula

p ≤ min{1, α3 ,
α+1
4 } can be simplified to p ≤ min{1, α3 }. In other words, we can set p = 1 when α ≥ 3 and

p = α
3 when α ≤ 3. Based on the energy functions Eα,θ,1(t) and Eα,θ,α3 (t), we now have the following results.

Theorem 2.1. Let f and g be two continuously differentiable convex functions, (x, y) be a solution of

dynamical system (1.5) and (x∗, y∗) ∈ S. The following statements are true:

(1) When α ≥ 3 and p = 1, conditions (A1)− (A4) can be further simplified to 1
α−1 ≤ θ ≤

1
2 . Then,

(1− 2θ)

∫ +∞

t0

t(L(x(t), y∗)− L(x∗, y(t)))dt ≤ Eα,θ(t0)

θ
< +∞, (2.4)

(θα− θ − 1)

∫ +∞

t0

t
(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
dt ≤ Eα,θ(t0)

θ
< +∞. (2.5)

Moreover, if 1
α−1 < θ ≤ 1

2 then ‖ẋ(t)‖ = O( 1
t ) .

(2) When α ≤ 3 and p ≤ α
3 , conditions (A1) − (A4) can be further simplified to 1

α−p ≤ θ ≤ 1
2p , and we

have

(1− 2θp)

∫ +∞

t0

t2p−1(L(x(t), y∗)− L(x∗, y(t)))dt ≤ Eα,θ,p(t0)

θ
< +∞, (2.6)

(θα− θp− 1)

∫ +∞

t0

t2p−1
(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
dt ≤ Eα,θ,p(t0)

θ
< +∞. (2.7)

Moreover, if 1
α−p < θ ≤ 1

2p then

‖ẋ(t)‖ = O(
1

tp
). (2.8)

Proof. When p = 1, by (2.2) and 1
α−1 ≤ θ ≤

1
2 , we have

Ėα,θ,1(t) = θ(2θ − 1)t(L(x, y∗)− L(x∗, y)) + θ(1 + θ − θα)t
(
‖ẋ‖2 + ‖ẏ‖2

)
≤ 0. (2.9)

Then, the energy function Eα,θ,1(t) is nonincreasing on [t0,+∞). For every t ≥ t0, it holds that

Eα,θ,1(t) = θ2t2(L(x, y∗)− L(x∗, y)) +
1

2
‖(x(t)− x∗) + θtẋ(t)‖2 +

θα− θ − 1

2
‖x(t)− x∗‖2

+
1

2
‖(y(t)− y∗) + θtẏ(t)‖2 +

θα− θ − 1

2
‖y(t)− y∗‖2

≤ Eα,θ,1(t0). (2.10)

By integrating (2.9) from t0 to t, we have

θ(1− 2θ)

∫ t

t0

s(L(x(s), y∗)− L(x∗, y(s)))ds+ θ(θα− θ − 1)

∫ t

t0

s
(
‖ẋ(s)‖2 + ‖ẏ(s)‖2

)
ds ≤ E(t0)α,θ,1.
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All items inside the integrals are nonnegative. Thus, we arrive at (2.4) and (2.5) by passing t → +∞. By

setting p = 1 in (2.3), we get

‖ẋ(t)‖ ≤ 1

θt

(
1 +

1

θα− θ − 1

)√
2Eα,θ,p(t0),∀ t ∈ [t0,+∞),

which yields ‖ẋ(t)‖ = O( 1
t ). When α ≤ 3 and p ≤ α

3 , we clearly have p ≤ 1 and α − 2p + 1 ≥ α − p > 0.

Thus, condition (A4) is satisfied. From condition (A1 − A3), It is obvious that 1
α−2p+1 ≤

1
α−p ≤ θ ≤ 1

2p .

Since

Ėα,θ,p(t) = θ(2θp− 1)t2p−1(L(x, y∗)− L(x∗, y)) + θ(1 + θp− θα)t2p−1
(
‖ẋ‖2 + ‖ẏ‖2

)
+(p− 1)θ(α− 2p+ 1)t2p−3(‖x− x∗‖2 + ‖y − y∗‖2) ≤ 0,

similarly to the proof in the case α ≥ 3, we get (2.6) and (2.7) and (2.8).

Remark 2.1. If Of and Og are lf - and lg-Lipschitz continuous, respectively, formula (2.2) in the proof of

Lemma 2.1 can be sharpened to

Ėα,θ,p(t) ≤ 2pθ2t2p−1(L(x, y∗)− L(x∗, y)) + (p− 1)θ(α− 2p+ 1)t2p−3(‖x− x∗‖2 + ‖y − y∗‖2)

+θt2p−1
(
f(x∗)− f(x) + 〈x∗, A∗y〉+ g(y∗)− g(y)− 〈Ax, y∗〉 − 1

2lf
‖Of(x)− Of(x∗)‖2

− 1

2lg
‖Og(y)− Og(y∗)‖2

)
+ θ(1 + θp− θα)t2p−1

(
‖ẋ‖2 + ‖ẏ‖2

)
= θ(2θp− 1)t2p−1(L(x, y∗)− L(x∗, y)) + (p− 1)θ(α− 2p+ 1)t2p−3(‖x− x∗‖2 + ‖y − y∗‖2)

+θ(1 + θp− θα)t2p−1
(
‖ẋ‖2 + ‖ẏ‖2

)
− θt2p−1

2lf
‖Of(x)− Of(x∗)‖2 − θt2p−1

2lg
‖Og(y)− Og(y∗)‖2.

Similar to the proof in Theorem 2.1, the following statements then hold:

If α ≥ 3,

∫ +∞

t0

t‖Of(x)− Of(x∗)‖2dt < +∞,
∫ +∞

t0

t‖Og(y)− Og(y∗)‖2dt < +∞; (2.11)

If α ≤ 3 and p ≤ α
3 ,

∫ +∞

t0

t2p−1‖Of(x)− Of(x∗)‖2dt < +∞,
∫ +∞

t0

t2p−1‖Og(y)− Og(y∗)‖2dt < +∞.

Remark 2.2. When a ≥ 3, from (2.10) we obtain a convergence rate for the primal-dual gap of

L(x, y∗)− L(x∗, y) = O
(
1/t2

)
.

When α ≤ 3, we set p = α
3 to obtain the best decay rate. From 1

α−p ≤ θ ≤ 1
2p , it follows that θ = 3

2α .

Similarly, we then obtain a convergence rate for the primal-dual gap of

L(x, y∗)− L(x∗, y) = O
(

1/t
2α
3

)
.

With this we extend (Attouch et al., [5], Theorem 2.1 and Theorem 2.4) from the unconstrained convex

optimization case with 0 < α ≤ 3 to the case of the bilinearly coupled convex-concave saddle point problem.

In addition, it is easy to verify that (2.6) and (2.7) still hold, but (2.8) fails in this case.

2.2 Weak convergence of the trajectory to a primal-dual optimal solution

In this subsection, we assume that f and g be two continuously differentiable functions and Of and Og are

lf - and lg-Lipschitz continuous, respectively. In addition, we suppose α > 3, and 1
α−1 < θ < 1

2 . To discuss
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weak convergence, we define the following two mappings on [t0,+∞):

W (t) := L(x, y∗)− L(x∗, y) +
1

2

(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
,

ϕ(t) :=
1

2

(
‖x(t)− x∗‖2 + ‖y(t)− y∗‖2

)
.

From inequalites (2.4) and (2.5), it is obvious that tW (t) belongs to the Lebesgue space L1([t0,+∞)).

Lemma 2.2. Let (x, y) be a solution of the dynamical system (1.5) and (x∗, y∗) ∈ S. Then, we have

ϕ̈(t) +
α

t
ϕ̇(t) + θtẆ (t) +

1

2lf
‖Of(x)− Of(x∗)‖2 +

1

2lg
‖Og(y)− Og(y∗)‖2 ≤ 0. (2.12)

Proof. For any fixed t ≥ t0, by differentiating W with respect to t, we arrive at

Ẇ (t) = (〈Of(x), ẋ〉+ 〈Aẋ, y∗〉 − 〈Ax∗, ẏ〉+ 〈Og(y), ẏ〉) + 〈ẍ, ẋ〉+ 〈ÿ, ẏ〉, (2.13)

Substituting the expressions for ẍ and ÿ in the dynamical system (1.5) into (2.13), we also have

Ẇ (t) = 〈Aẋ, y∗ − y〉+ 〈A(x− x∗), ẏ〉 − α

t

(
‖ẋ‖2 + ‖ẏ‖2

)
. (2.14)

This leads to

ϕ̈(t) +
α

t
ϕ̇(t)

= 〈x− x∗, ẍ+
α

t
ẋ〉+ 〈y − y∗, ÿ +

α

t
ẏ〉+ ‖ẋ‖2 + ‖ẏ‖2

= 〈x− x∗,−Of(x)−A∗ (y + θtẏ)〉+ 〈y − y∗, A (x+ θtẋ)− Og(y)〉+ ‖ẋ‖2 + ‖ẏ‖2

= −〈x− x∗,Of(x)〉+ 〈Ax∗, y〉 − 〈y − y∗,Og(y)〉 − 〈y∗, Ax〉

+θt〈y − y∗, Aẋ〉 − θt〈A(x− x∗), ẏ〉+ ‖ẋ‖2 + ‖ẏ‖2.

By the Lipschitz continuity of Of(x) and Og(y), we obtain

ϕ̈(t) +
α

t
ϕ̇(t)

≤ − (f(x)− f(x∗)− 〈Ax∗, y〉+ g(y)− g(y∗) + 〈y∗, Ax〉)− 1

2lf
‖Of(x)− Of(x∗)‖2

− 1

2lg
‖Og(y)− Og(y∗)‖2 + θt〈y − y∗, Aẋ〉 − θt〈A(x− x∗), ẏ〉+ ‖ẋ‖2 + ‖ẏ‖2

= − (L(x, y∗)− L(x∗, y))− 1

2lf
‖Of(x)− Of(x∗)‖2

− 1

2lg
‖Og(y)− Og(y∗)‖2 + θt〈y − y∗, Aẋ〉 − θt〈A(x− x∗), ẏ〉+ ‖ẋ‖2 + ‖ẏ‖2. (2.15)

Then, adding θtẆ (t) to (2.15) yields

ϕ̈(t) +
α

t
ϕ̇(t) + θtẆ (t)

≤ − (L(x, y∗)− L(x∗, y))− 1

2lf
‖Of(x)− Of(x∗)‖2 − 1

2lg
‖Og(y)− Og(y∗)‖2 + (1− θα)

(
‖ẋ‖2 + ‖ẏ‖2

)
.

With the fact that 1− θα < −θ, we obtain (2.12) which completes the proof.

The following lemma provides one of the two conditions of the Opial Lemma (see Lemma A.3 in [14])

which is a classical tool to prove weak convergence of the trajectory.
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Lemma 2.3. Let (x, y) be a solution of the dynamical system (1.5) and (x∗, y∗) ∈ S. Then, the positive part

[ϕ̇]+ of ϕ̇ belongs to L1([t0,+∞)) and limt→+∞ ϕ(t) exists.

Proof. As this proof is similar to the one in Lemma 4.4 in [14], we omit it here.

Lemma 2.4. Let (x, y) be a solution of the dynamical system (1.5) and (x∗, y∗) ∈ S. Then, for all t ≥ t0,

the following statement holds:

(1− θ)
(
‖A (x− x∗) ‖2 + ‖A∗ (y − y∗) ‖2

)
+ θ

d

dt

(
t‖A (x− x∗) ‖2 + t‖A∗ (y − y∗) ‖2

)
+
α

t

d

dt

(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
+ 2〈ẍ(t) +

α

t
ẋ(t), A∗(y − y∗)〉 − 2〈ÿ(t) +

α

t
ẏ(t), A(x− x∗)〉

≤ ‖Of(x)− Of(x∗)‖2 + ‖Og(y)− Og(y∗)‖2. (2.16)

Proof. From (1.5), we have

‖Of(x) +A∗y∗‖2 + ‖Og(y)−Ax∗‖2

= ‖ẍ(t) +
α

t
ẋ(t) +A∗ (y − y∗ + θtẏ(t)) ‖2 + ‖ÿ(t) +

α

t
ẏ(t)−A∗ (x− x∗ + θtẋ(t)) ‖2

= ‖ẍ(t) +
α

t
ẋ(t)‖2 + ‖ÿ(t) +

α

t
ẏ(t)‖2 + ‖A∗ (y − y∗ + θtẏ(t)) ‖2 + ‖A∗ (x− x∗ + θtẋ(t)) ‖2

+2〈ẍ(t) +
α

t
ẋ(t), A∗(y − y∗)〉 − 2〈ÿ(t) +

α

t
ẏ(t), A(x− x∗)〉

+2θt〈ẍ(t), A∗ẏ〉 − 2θt〈ÿ(t), Aẋ〉. (2.17)

Accordingly, we arrive at

2θt〈ẍ(t), A∗ẏ〉 − 2θt〈ÿ(t), Aẋ〉 ≥ −‖ẍ(t)‖2 − ‖ÿ(t)‖2 − θ2t2‖A∗ẏ‖2 − θ2t2‖Aẋ‖2, (2.18)

‖ẍ(t) +
α

t
ẋ(t)‖2 + ‖ÿ(t) +

α

t
ẏ(t)‖2 − ‖ẍ(t)‖2 − ‖ÿ(t)‖2 ≥ α

t

d

dt

(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
, (2.19)

and

‖A∗ (y − y∗ + θtẏ(t)) ‖2 + ‖A∗ (x− x∗ + θtẋ(t)) ‖2 − θ2t2‖A∗ẏ‖2 − θ2t2‖Aẋ‖2

= ‖A (x− x∗) ‖2 + ‖A∗ (y − y∗) ‖2 + 2θt〈A (x− x∗) , Aẋ〉+ 2θt〈A∗ (y − y∗) , A∗ẏ〉

= (1− θ)
(
‖A (x− x∗) ‖2 + ‖A∗ (y − y∗) ‖2

)
+ θ

d

dt

(
t‖A (x− x∗) ‖2 + t‖A∗ (y − y∗) ‖2

)
. (2.20)

Then, combining (2.17) with (2.18), (2.19) and (2.20), we have

‖Of(x) +A∗y∗‖2 + ‖Og(y)−Ax∗‖2

≥ (1− θ)
(
‖A (x− x∗) ‖2 + ‖A∗ (y − y∗) ‖2

)
+ θ

d

dt

(
t‖A (x− x∗) ‖2 + t‖A∗ (y − y∗) ‖2

)
+
α

t

d

dt

(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
+ 2〈ẍ(t) +

α

t
ẋ(t), A∗(y − y∗)〉 − 2〈ÿ(t) +

α

t
ẏ(t), A(x− x∗)〉.

We notice that A∗y∗ = −Of(x∗) and Ax∗ = Og(y∗), which completes the proof.

The following theorem provides a further important integrability result.

Theorem 2.2. Let (x, y) be a solution of the dynamical system (1.5) and (x∗, y∗) ∈ S. Then,∫ +∞

t0

t‖A (x(t)− x∗) ‖2dt < +∞ and

∫ +∞

t0

t‖A∗ (y(t)− y∗) ‖2dt < +∞. (2.21)

Moreover, ‖A(x− x∗)‖ = o
(

1√
t

)
and ‖A(y − y∗)‖ = o

(
1√
t

)
for t→ +∞.
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Proof. Summing (2.12) and (2.16), for every t ≥ t0, we have

ϕ̈(t) +
α

t
ϕ̇(t) + θtẆ (t) + θ

d

dt

(
t‖A (x− x∗) ‖2 + t‖A∗ (y − y∗) ‖2

)
(2.22)

+
α

t

d

dt

(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
+ 2〈ẍ(t) +

α

t
ẋ(t), A∗(y − y∗)〉 − 2〈ÿ(t) +

α

t
ẏ(t), A(x− x∗)〉

≤ C31‖Of(x)− Of(x∗)‖2 + C32‖Og(y)− Og(y∗)‖2 + (θ − 1)
(
‖A (x− x∗) ‖2 + ‖A∗ (y − y∗) ‖2

)
,

where C31 :=
[
1− 1

2lf

]
+
≥ 0 and C32 :=

[
1− 1

2lg

]
+
≥ 0.

Multiplying (2.22) by tα and integrating, for every t ≥ t0, we get

I1(t) + I2(t) + I3(t) + I4(t) + I5(t) ≤ C31

∫ t

t0

sα‖Of(x(s))−Of(x∗)‖2ds+ C32

∫ t

t0

sα‖Og(y(s))−Og(y∗)‖2ds

+(θ − 1)

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds, (2.23)

where

I1(t) :=

∫ t

t0

(
sαϕ̈(s) + αsα−1ϕ̇(s)

)
ds,

I2(t) :=

∫ t

t0

θsα+1Ẇ (s)ds,

I3(t) :=

∫ t

t0

θsα
d

ds

(
s‖A (x(s)− x∗) ‖2 + s‖A∗ (y(s)− y∗) ‖2

)
ds,

I4(t) :=

∫ t

t0

αsα−1
d

ds

(
‖ẋ(s)‖2 + ‖ẏ(s)‖2

)
ds,

I5(t) :=

∫ t

t0

2sα
(
〈ẍ(t) +

α

t
ẋ(t), A∗(y(s)− y∗)〉 − 2〈ÿ(t) +

α

t
ẏ(t), A(x(s)− x∗)〉

)
ds.

Next, we will focus on the integrals Ii(t) (i = 1, 2, . . . , 5) separately. First, I1(t) =
∫ t
t0

d
ds (sαϕ̇(s)) ds =

tαϕ̇(t)− tα0 ϕ̇(t0) yields

0 = I1(t) + tα0 ϕ̇(t0)− tαϕ̇(t). (2.24)

Using integration by parts, we obtain

I2(t) = θ

∫ t

t0

sα+1dW (s) = θtα+1W (t)− θtα+1
0 W (t0)− θ(α+ 1)

∫ t

t0

sαW (s)ds

and so

0 ≤ θtα+1W (t) ≤ I2(t) + θtα+1
0 W (t0) + θ(α+ 1)

∫ t

t0

sαW (s)ds. (2.25)

By integration by parts again, we get

I3(t) = θtα+1
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
− θtα+1

0

(
‖A (x0 − x∗) ‖2 + ‖A∗ (y0 − y∗) ‖2

)
−θα

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds,

by which it follows that

θtα+1
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
= I3(t) + θtα+1

0

(
‖A (x0 − x∗) ‖2 + ‖A∗ (y0 − y∗) ‖2

)
+ θα

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds.
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Similarly,

I4(t) = αtα−1
(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
− αtα−10

(
‖ẋ0‖2 + ‖ẏ0)‖2

)
− α(α− 1)

∫ t

t0

sα−2
(
‖ẋ(s)‖2 + ‖ẏ(s)‖2

)
ds.

which yields

0 ≤ I4(t) + αtα−10

(
‖ẋ(t0)‖2 + ‖ẏ0)‖2

)
+
α(α− 1)

t20

∫ t

t0

sα
(
‖ẋ(s)‖2 + ‖ẏ(s)‖2

)
ds. (2.26)

Then, again by integration by parts, we have

I5(t) = 2

∫ t

t0

(〈
d

ds
(sαẋ(s)) , A∗(y(s)− y∗)

〉
−
〈
d

ds
(sαẏ(s)) ,K(x(s)− x∗)

〉)
ds

= 2tα〈ẋ(t), A∗(y(t)− y∗)〉 − 2tα〈ẏ(t), A(x(t)− x∗)〉+ 2tα0 〈ẋ0, A∗(y0 − y∗)〉 − 2tα0 〈ẏ0, A(x0 − x∗)〉

and so

0 = I5(t)−2tα〈ẋ, A∗(y(t)− y∗)〉+2tα〈ẏ, A(x(t)− x∗)〉 − 2tα0 〈ẋ0, A∗(y0 − y∗)〉+ 2tα0 〈ẏ0, A(x0 − x∗)〉. (2.27)

Summing (2.24), (2.25), (2.26), (2.26) and (2.27), we arrive at

θtα+1
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
≤ I1(t) + I2(t) + I3(t) + I4(t) + I5(t)− tαϕ̇(t) + θ(α+ 1)

∫ t

t0

sαW (s)ds

+θα

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds+

α(α− 1)

t20

∫ t

t0

sα
(
‖ẋ(s)‖2 + ‖ẏ(s)‖2

)
ds

−2tα〈ẋ(t), A∗(y(t)− y∗)〉+ 2tα〈ẏ(t), A(x(t)− x∗)〉+ C33.

Combining this with (2.23) yields

θtα+1
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
≤ C31

∫ t

t0

sα‖Of(x(s))− Of(x∗)‖2ds+ C32

∫ t

t0

sα‖Og(y(s))− Og(y∗)‖2ds

+(θ − 1)

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds− tαϕ̇(t) + θ(α+ 1)

∫ t

t0

sαW (s)ds

+θα

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
+
α(α− 1)

t20

∫ t

t0

sα
(
‖ẋ(s)‖2 + ‖ẏ(s)‖2

)
ds

−2tα〈ẋ(t), A∗(y(t)− y∗)〉+ 2tα〈ẏ(t), A(x(t)− x∗)〉+ C33

≤
∫ t

t0

sαV (s)ds+ (θα+ θ − 1)

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds− tαϕ̇(t)

−2tα〈ẋ(t), A∗(y(t)− y∗)〉+ 2tα〈ẏ(t), A(x(t)− x∗)〉+ C33, (2.28)

where

C33 := tα0 ϕ̇(t0) + θtα+1
0 W (t0) + θtα+1

0

(
‖K (x(t0)− x∗) ‖2 + ‖A∗ (y(t0)− y∗) ‖2

)
+αtα−10

(
‖ẋ(t0)‖2 + ‖ẏ0)‖2

)
− 2tα0 〈ẋ0, A∗(y0 − y∗)〉+ 2tα0 〈ẏ0, A(x0 − x∗)〉;

V (s) := C31‖Of(x(s))−Of(x∗)‖2 + C32‖Og(y(s))−Og(y∗)‖2 + θ(α+ 1)W (s) +
α(α− 1)

t20

(
‖ẋ(s)‖2 + ‖ẏ(s)‖2

)
.

Now, dividing (2.28) by tα, we have

θt
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
≤ 1

tα

∫ t

t0

sαV (s)ds+
(θα+ θ − 1)

tα

∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds− ϕ̇(t)

−2〈ẋ(t), A∗(y(t)− y∗)〉+ 2〈ẏ(t), A(x(t)− x∗)〉+
C33

tα
. (2.29)
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By integrating (2.29) from t0 to r for any r ≥ t0, we have

θ

∫ r

t0

t
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
dt

≤
∫ r

t0

1

tα

(∫ t

t0

sαV (s)ds

)
dt+ (θα+ θ − 1)

∫ r

t0

1

tα

(∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds

)
dt

−ϕ(r) + ϕ(t0)− 2

∫ r

t0

(〈ẋ(t), A∗(y(t)− y∗)〉 − 〈ẏ(t), A(x(t)− x∗)〉) dt+ C33

∫ r

t0

1

tα
dt. (2.30)

Since V (t) and ‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2 are continuous on [t0,+∞), by Lemma A.1 in [14],

we arrive at ∫ r

t0

1

tα

(∫ t

t0

sαV (s)ds

)
dt ≤ 1

α− 1

∫ r

t0

tV (t)dt (2.31)

and ∫ r

t0

1

tα

(∫ t

t0

sα
(
‖A (x(s)− x∗) ‖2 + ‖A∗ (y(s)− y∗) ‖2

)
ds

)
dt

≤ 1

α− 1

∫ r

t0

t
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
dt. (2.32)

By 1−2θ
α−1 > 0, we have

−2

∫ r

t0

(〈ẋ(t), A∗(y(t)− y∗)〉 − 〈ẏ(t), A(x(t)− x∗)〉) dt

≤
∫ r

t0

(
(α− 1)t

1− 2θ
‖ẋ(t)‖2 +

1− 2θ

(α− 1)t
‖A∗(y(t)− y∗)‖2 +

(α− 1)t

1− 2θ
‖ẏ(t)‖2 +

1− 2θ

(α− 1)t
‖A(x(t)− x∗)‖2

)
dt

=
(α− 1)

1− 2θ

∫ r

t0

t
(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
dt+

1− 2θ

α− 1

∫ r

t0

1

t

(
‖A∗(y(t)− y∗)‖2 + ‖A(x(t)− x∗)‖2

)
dt. (2.33)

In addition, it holds that ∫ r

t0

1

tα
dt =

t1−α0

α− 1
− r1−α

α− 1
≤ t1−α0

α− 1
. (2.34)

Since ϕ(t) ≥ 0, by (2.31), (2.32), (2.33), (2.34) and (2.30) we get

1− 2θ

α− 1

∫ r

t0

(
t− 1

t

)(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
dt

≤ 1

α− 1

∫ r

t0

tV (t)dt+
(α− 1)

1− 2θ

∫ r

t0

t
(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
dt+ ϕ(t0) + C33

t1−α0

α− 1
.

From (2.5), (2.11) and the fact tW (t) ∈ L1([t0,+∞)), we notice that tV (t) and t
(
‖ẋ(t)‖2 + ‖ẏ(t)‖2

)
belong

to L1([t0,+∞)). By passing r → +∞ in (2.35), we have the following statement∫ +∞

t0

(
t− 1

t

)(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
dt < +∞.

Due to limt→+∞
t− 1

t

t = 1 and using that ‖K (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2 is nonnegative, we have∫ +∞

t0

t
(
‖A (x(t)− x∗) ‖2 + ‖A∗ (y(t)− y∗) ‖2

)
dt < +∞,

which is nothing else than (2.21). In addition,

d

dt

(
t‖A (x(t)− x∗) ‖2

)
= ‖A (x(t)− x∗) ‖2 + 2t〈A∗A(x− x∗), ẋ〉 ≤ (1 + ‖A‖2t)‖A (x(t)− x∗) ‖2 + t‖ẋ‖2.

Since t‖A (x(t)− x∗) ‖2, t‖ẋ‖2 ∈ L1([t0,+∞)), by Lemma A.2 in [14], we have ‖A(x − x∗)‖ = o
(

1√
t

)
.

Similarly, we get ‖A(y − y∗)‖ = o
(

1√
t

)
.
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Theorem 2.3. Let (x(t), y(t)) be a solution of the dynamical system (1.5) and (x∗, y∗) ∈ S. Then, it holds

that

‖Of(x)− Of(x∗)‖ = o

(
1√
t

)
and ‖Og(y)− Og(y∗)‖ = o

(
1√
t

)
(2.35)

for t→ +∞. Consequently,

‖OxL(x, y)‖ = o
(

1/
√
t
)

and ‖OyL(x, y)‖ = o
(

1/
√
t
)
.

Proof. We note that

d

dt

(
t‖Of(x)− Of(x∗)‖2

)
= ‖Of(x)− Of(x∗)‖2 + 2t〈Of(x)− Of(x∗),

d

dt
Of(x)〉

≤ (1 + t)‖Of(x)− Of(x∗)‖2 + l2f t‖ẋ‖2,

where the inequality follows from the fact that Of is lf -Lipschitz continuous. From (2.11) we have t‖Of(x)−
Of(x∗)‖2 ∈ L1([t0,+∞)). By Lemma A.2 in [14] again, we obtain ‖Of(x)−Of(x∗)‖ = o

(
1√
t

)
. Furthermore,

since

t‖OxL(x, y)‖ = t‖Of(x)− Of(x∗)−A∗y∗ +A∗y‖ ≤ ‖tOf(x)− Of(x∗)‖+ t‖A∗y∗ −A∗y‖,

it follows that ‖OxL(x, y)‖ = o
(
1/
√
t
)
. In a similar fashion it follows that ‖OyL(x, y)‖ = o

(
1/
√
t
)
. This

completes the proof.

Theorem 2.4. Let (x(t), y(t)) be a solution of the dynamical system (1.5) and (x∗, y∗) ∈ S. Then (x(t), y(t))

converges weakly to a primal-dual optimal solution of (1.1) as t→ +∞.

Proof. Suppose (x̄, ȳ) is an arbitrary weak sequential cluster point of (x(t), y(t)) as t → +∞, and so there

exists a sequence (x(tn), y(tn)) such that (x(tn), y(tn))→ (x̄, ȳ) as n→ +∞. By Theorem 2.3, we get

Of(x(tn))−A∗y(tn)→ Of(x∗)−A∗y∗ = 0 and Og(y(tn))−Ax(tn)→ Og(y∗)−Ax∗ = 0, as n→ +∞,

respectively. On the one hand, since the graph of the operator TL in (1.3) is sequentially closed (Proposition

20.38, [10]), we conclude that

Of(x̄)−A∗ȳ → Of(x∗)−A∗y∗ = 0 and Og(ȳ)−Ax̄→ Og(y∗)−Ax∗ = 0, as n→ +∞,

which means that (x̄, ȳ) ∈ S. On the other hand, from Lemma 2.3 we notice that limt→+∞ (‖x− x∗‖+ ‖y − y∗‖)
exists for every (x∗, y∗) ∈ S. With this, we complete the proof via Opial’s Lemma as given in [14].

2.3 Strong convergence results

In this subsection we assume that f (respectively, g) is a µf -strongly (respectively, µg-strongly) convex

continuously differentiable function. Let µ = min{µf , µg}. We show that the convergence rate of the

dynamical system (1.5) with strongly convex functions rapidly increase while α increases. The following

theorem extends the corresponding result for the unconstrained problem from Attouch et al. [9] to the

bilinearly coupled convex-concave saddle point problem.
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Theorem 2.5. Let f and g be two continuously differentiable and strongly convex functions, and (x, y) be

a solution of the dynamical system (1.5) with α > 3. Then, for t → +∞, (x(t), y(t)) converges strongly to

the unique element (x∗, y∗) ∈ S. Moreover,

L(x(t), y∗)− L(x∗, y(t)) = O(
1

t
2
3α

), (2.36)

‖x(t)− x∗‖2 = O(
1

t
2
3α

), ‖y(t)− y∗‖2 = O(
1

t
2
3α

), (2.37)

‖ẋ(t)‖2 = O(
1

t
2
3α

), ‖ẏ(t)‖2 = O(
1

t
2
3α

). (2.38)

Proof. First, we define the following energy function:

E(t) = tp
(
θ2t2(L(x, y∗)− L(x∗, y)) +

1

2
‖(x(t)− x∗) + θtẋ(t)‖2 +

1

2
‖(y(t)− y∗) + θtẏ(t)‖2

)
. (2.39)

By a discussion similar to the one in the proof of in Lemma (2.1), we have

Ė(t) = θ2(p+ 2)tp+1(L(x, y∗)− L(x∗, y)) +
p

2
tp−1(‖x− x∗‖2 + ‖y − y∗‖2)

(1 + θ + θp− θα) tp (〈x− x∗, ẋ〉+ 〈y − y∗, ẏ〉)

+θ

(
1 + θ − θα+

1

2
θp

)
tp+1(‖ẋ‖2 + ‖ẏ‖2)

−θtp+1 (〈x− x∗,Of(x)〉 − 〈x∗, A∗y〉+ 〈y − y∗,Og(y)〉+ 〈Ax, y∗〉)

≤ θ2(p+ 2)tp+1(L(x, y∗)− L(x∗, y)) +
p

2
tp−1(‖x− x∗‖2 + ‖y − y∗‖2)

(1 + θ + θp− θα) tp (〈x− x∗, ẋ〉+ 〈y − y∗, ẏ〉)

+θ

(
1 + θ − θα+

1

2
θp

)
tp+1(‖ẋ‖2 + ‖ẏ‖2)

−θtp+1
(
f(x)− f(x∗) +

µf
2
‖x− x∗‖2 − 〈x∗, A∗y〉+ g(y)− g(y∗) +

µg
2
‖y − y∗‖2 + 〈Ax, y∗〉

)
≤ θ (θ(p+ 2)− 1) tp+1(L(x, y∗)− L(x∗, y))− 1

2

(
µθt2 − p

)
tp−1(‖x− x∗‖2 + ‖y − y∗‖2)

(1 + θ + θp− θα) tp (〈x− x∗, ẋ〉+ 〈y − y∗, ẏ〉) + θ

(
1 + θ − θα+

1

2
θp

)
tp+1(‖ẋ‖2 + ‖ẏ‖2).

The first inequality follows f and g being strongly convex, while the second one follows from the expansion

of L(x, y∗)−L(x∗, y). To deduce the best decay rate of the dynamical system (1.5), we now fix p = 2
3 (α− 3)

and θ = 3
2α , from which it follows that θ(p+ 2)− 1 = 1 + θ − θα+ 1

2θp = 0 and 1 + θ + θp− θα = p
2 . With

this, we arrive at

Ė(t) ≤ −1

2

(
µθt2 − p

)
tp−1(‖x− x∗‖2 + ‖y − y∗‖2) +

θp

2
tp (〈x− x∗, ẋ〉+ 〈y − y∗, ẏ〉) .

Let t1 := max
{
t0,
√

p
θµ

}
= max

{
t0,

2
3

√
α(α−3)

µ

}
. For t ≥ t1, we have

Ė(t) ≤ θp

2
tp (〈x− x∗, ẋ〉+ 〈y − y∗, ẏ〉) .

Using integration by parts we see that

E(t) ≤ E(t1) +
θp

4

(
tp(‖x− x∗‖2 + ‖y − y∗‖2)− p

∫ t

t1

sp−1(‖x(s)− x∗‖2 + ‖y(s)− y∗‖2)ds

)
,

by which follows that

E(t) ≤ E(t1) +
θp

4
tp
(
‖x− x∗‖2 + ‖y − y∗‖2

)
.
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Since f is µf -strongly convex and 〈x,A∗y∗〉 is linear in x, so f(·) + 〈x,A∗y∗〉 is µf -strongly convex. By the

fact that x∗ is the minimum of f(·) + 〈x,A∗y∗〉 − g(y∗) and Theorem 5.25 [13], we have

f(x) + 〈x,A∗y∗〉 − f(x∗)− 〈x∗, A∗y∗〉 ≥ µf
2
‖x− x∗‖2 (2.40)

for all x ∈ X . Similarly,

g(y)− 〈x∗, A∗y〉 − g(y∗) + 〈x∗, A∗y∗〉 ≥ µg
2
‖y − y∗‖2 (2.41)

for all y ∈ Y. Summing (2.40) and (2.41), we obtain

L(x, y∗)− L(x∗, y) ≥ µf
2
‖x− x∗‖2 +

µg
2
‖y − y∗‖2 ≥ µ

2
(‖x− x∗‖2 + ‖y − y∗‖2) (2.42)

and so

E(t) ≤ E(t1) +
θp

2µ
tp (L(x, y∗)− L(x∗, y)) . (2.43)

By the definition of E(t), we have

tp+2 (L(x, y∗)− L(x∗, y)) ≤ E(t) ≤ E(t1) +
θp

2µ
tp (L(x, y∗)− L(x∗, y)) . (2.44)

Dividing (2.44) by tp+2 for all t ≥ t1, we have

L(x, y∗)− L(x∗, y) ≤ E(t1)t−p−2 +
θp

2µ
t−2 (L(x, y∗)− L(x∗, y))

≤ E(t1)t−p−2 +
θp

2µ
t−21 (L(x, y∗)− L(x∗, y))

≤ E(t1)t−p−2 +
1

8
(L(x, y∗)− L(x∗, y)) ,

where the first inequality follows from the definition of t1 and the last one follows from θ = 3
2α < 1

2 .

Obviously,

L(x, y∗)− L(x∗, y) ≤ 8

7
E(t1)t−p−2 =

8

7
E(t1)t−

2α
3 . (2.45)

By (2.42), it follows that

‖x− x∗‖2 + ‖y − y∗‖2 ≤ 2

µ
(L(x, y∗)− L(x∗, y)) ≤ 16

7µ
E(t1)t−

2α
3 .

With this we arrive at (2.36) and (2.37). Revisiting (2.43) and (2.45), for every t ≥ t1 we have

E(t) ≤ E(t1) +
4θp

7µ
t−2E(t1) ≤

(
1 +

4θp

7µ
t−21

)
E(t1) ≤

(
1 +

4θ2

7

)
E(t1) ≤ 8

7
E(t1).

Then, the definition of E(t) gives

‖(x(t)− x∗) + θtẋ(t)‖2 ≤ 16

7
t−pE(t1).

Therefore,

‖tẋ(t)‖ ≤ 1

θ
(‖(x(t)− x∗) + θtẋ(t)‖+ ‖(x(t)− x∗)‖)

≤ 1

θ

(√
16

7
t−pE(t1) +

√
16

7µ
E(t1)t−p−2

)

≤ 4

θ

√
1

7
E(t1)

(
1 + 4

√
θ

µp

)
t−

p
2 ,
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by which it follows that

‖ẋ(t)‖2 ≤ 64α2

63
E(t1)

(
1 + 4

√
9α

4µ(α− 3)

)2

t−p−2.

Similarly, we have

‖ẏ(t)‖2 ≤ 64α2

63
E(t1)

(
1 + 4

√
9α

4µ(α− 3)

)2

t−p−2,

Since p+ 2 = 2
3α, we see that (2.38) holds, which completes the proof.

3 A fast algorithm for bilinearly coupled saddle point problems

Fast gradient algorithms originating from various second order dynamical systems in the spirit of Nesterov’s

accelerated gradient method have been proposed in [9, 15, 24, 30]. In the following, we will investigate the

convergence properties of a discretized version of the dynamical system (1.5), i. e. the convergence rate for

the primal dual gap and the convergence of the trajectory to a primal-dual optimal solution. For convenience,

we suppose α ≥ 3 and 1
α−1 ≤ θ ≤ 1

2 . In order to provide a reasonable time discretization of the dynamical

system (1.5), we follow the techniques mentioned in Boţ et al. [15]. Let{
u := x+ t

α−1 ẋ,

v := y + t
α−1 ẏ,

and

{
uγ := γ (x+ θtẋ) ,

vγ := γ (y + θtẏ) ,

where γ := 1
θ(α−1) ∈

[
2

α−1 , 1
]
. Then, (1.5) can be reformulated as

u̇ = − t
α−1Of(x)− t

γ(α−1)A
∗vγ ,

v̇ = t
γ(α−1)Au

γ − t
α−1Og(y),

u = x+ t
α−1 ẋ,

uγ = γ (x+ θtẋ) ,

v = y + t
α−1 ẏ,

vγ = γ (y + θtẏ) ,

(3.1)

Let σ, ρ > 0. For every k ≥ 1, we take for x and y two different time steps

σk := σ

(
1 +

α− 1

k

)
and ρk := σ

(
1 +

α− 1

k

)
(3.2)

respectively, and set x(
√
σkk) ≈ xk+1, u(

√
σkk) ≈ uk+1 and uγ(

√
σkk) ≈ uγk+1, which follows from the

fact that
√
σkk is closer to

√
σ(k + 1) than

√
σk. Similarly, we set y(

√
ρkk) ≈ yk+1, v(

√
ρkk) ≈ vk+1 and

vγ(
√
ρkk) ≈ vγk+1. The implicit discretization scheme for (3.1) at time t :=

√
σkk for x, u, uγ and at time

t :=
√
ρkk for y, v, vγ gives then

uk+1−uk√
σk

= −
√
σkk
α−1 Of(zk)−

√
σkk

γ(α−1)A
∗ṽγk+1,

uk+1−uk√
ρk

=
√
ρkk

γ(α−1)Au
γ
k+1 −

√
ρkk

α−1 Og(λk),

uk+1 = xk+1 +
√
σkk
α−1

xk+1−xk√
σk

,

uγk+1 = γxk+1 +
√
σkk
α−1

xk+1−xk√
σk

,

vk+1 = yk+1 +
√
ρkk

α−1
yk+1−yk√

ρk
,

vγk+1 = γyk+1 +
√
ρkk

α−1
yk+1−yk√

ρk
,

(3.3)
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where zk and λk are obtained by the constructions of the proximal operator, and the term ṽγk+1 first con-

structed in [15] is appropriately chosen to achieve an easily implementable iterative scheme. Here we choose

zk, λk and ṽγk+1 as follows:

zk := xk +
k − 1

k + α− 1
(xk − xk−1), λk := yk +

k − 1

k + α− 1
(yk − yk−1), ṽγk+1 := vγk+1 + (1− γ)(yk+1 − yk).

To derive another acceleration scheme for the original bilinearly coupled convex-concave saddle point problem

(1.1), we consider the following change of variables for every k ≥ 1: tk = 1 + k−1
α−1 . Then, by recalling the

definitions of zk, λk, we can transform (3.3) into the following:

zk := xk + tk−1
tk+1

(xk − xk−1),

xk+1 = zk − σOf(zk)− σA∗ṽγk+1,

uγk+1 = γxk+1 + (tk+1 − 1)(xk+1 − xk),

λk := yk + tk−1
tk+1

(yk − yk−1),

yk+1 = λk − ρOg(λk) + ρ
γAu

γ
k+1,

vγk+1 = γyk+1 + (tk+1 − 1)(yk+1 − yk),

(3.4)

By the relations given in (3.4), we have

ṽγk+1 = γyk + tk+1(yk+1 − yk)

= γyk + (tk − 1)(yk − yk−1) + tk+1

(
yk+1 − yk −

tk − 1

tk+1
(yk − yk−1)

)
= vγk +

ρtk+1

γ
(A(γxk+1 + (tk+1 − 1)(xk+1 − xk))− γOg(λk)) . (3.5)

Substituting (3.5) into the second equation of (3.4), we arrive at

xk+1

σ
+
ρ

γ
tk+1(tk+1 + γ − 1)A∗Axk+1 =

zk
σ
− Of(zk)−A∗vγk + +

ρ

γ
tk+1(tk+1 − 1)A∗Axk + ρtk+1A

∗Og(λk).

Now we are in a position to present our main algorithm as follows:

Algorithm 1 Choose γ, σ, ρ,m > 0 be such that

0 < max{m,σlf , ρlg} ≤ γ ≤ 1. (3.6)

Choose {tk}k≥1 as a nondecreasing sequence such that

t1 := 1 and t2k+1 −mtk+1 − t2k ≤ 0, ∀ k ≥ 1. (3.7)

Given x0 = x1, y0 = y1. For every k ≥ 1, we set

zk := xk +
tk − 1

tk+1
(xk − xk−1), (3.8)

λk := yk +
tk − 1

tk+1
(yk − yk−1), (3.9)

vγk := γyk + (tk − 1)(yk − yk−1), (3.10)

sk+1 :=
ρ

γ
tk+1(tk+1 + γ − 1), (3.11)

ηk :=
1

tk+1 + γ − 1
((tk+1 − 1)Axk + γOg(λk)) , (3.12)

xk+1 := arg min
x∈X

{
1

2σ
‖x− zk‖2 +

sk+1

2γ
‖Ax − ηk‖2 + 〈Of(zk), x〉+

1

γ
〈vγk , Ax〉

}
, (3.13)

uγk+1 := γxk+1 + (tk+1 − 1)(xk+1 − xk), (3.14)

yk+1 := λk − ρOg(λk) +
ρ

γ
Auγk+1. (3.15)
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3.1 Preliminary estimates

To prove the convergence of Algorithm 1, we first provide some important and useful estimates.

Lemma 3.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Then, for every (x, y) ∈ X × Y
and every k ≥ 1 it holds that

f(xk+1) ≤ f(x)− 1

γ
〈vγk+1, Axk+1 −Ax〉+

1− γ
γ
〈yk − yk+1, Axk+1 −Ax〉

+
1

σ
〈zk − xk+1, xk+1 − x〉+

lf
2
‖xk+1 − zk‖2 −

1

2lf
‖Of(zk)− Of(x)‖2 (3.16)

and

g(yk+1) ≤ g(y) + 〈Og(λk), yk+1 − y〉+
lg
2
‖yk+1 − λk‖2 −

1

2lg
‖Og(λk)− Og(y)‖2. (3.17)

Proof. By (3.13), we have

Of(zk) +
1

γ
A∗vγk +

1

σ
(xk+1 − zk) +

sk+1

γ
A∗(Axk+1 − ηk) = 0. (3.18)

According to (3.11), (3.12) and (3.14), (3.15), we also have

sk+1

γ
A∗(Axk+1 − ηk) =

ρ

γ2
tk+1(tk+1 + γ − 1)

(
Axk+1 −

1

tk+1 + γ − 1
((tk+1 − 1)Axk + γOg(λk))

)
=

ρ

γ2
tk+1

(
Auγk+1 − γOg(λk)

)
=

1

γ

(
vγk+1 − v

γ
k + (1− γ)(yk+1 − yk)

)
. (3.19)

Then, by substituting (3.18) in (3.19), we see that

Of(zk) = − 1

γ
A∗vγk+1 +

1− γ
γ

(A∗yk −A∗yk+1) +
1

σ
(zk − xk+1) (3.20)

holds Let (x, y) ∈ X × Y be fixed. By the Descent Lemma, we obtain

f(xk+1) ≤ f(zk) + 〈Of(zk), xk+1 − zk〉+
lf
2
‖xk+1 − zk‖2,

and

f(zk) ≤ f(x) + 〈Of(zk), zk − x〉 −
1

2lf
‖Of(zk)− Of(x)‖2.

Summing the above two inequalities yields

f(xk+1) ≤ f(x) + 〈Of(zk), xk+1 − x〉+
lf
2
‖xk+1 − zk‖2 −

1

2lf
‖Of(zk)− Of(x)‖2

≤ f(x)− 1

γ
〈vγk+1, Axk+1 −Ax〉+

1− γ
γ
〈yk − yk+1, Axk+1 −Ax〉

+
1

σ
〈zk − xk+1, xk+1 − x〉+

lf
2
‖xk+1 − zk‖2 −

1

2lf
‖Of(zk)− Of(x)‖2,

which completes the proof of inequality (3.16). Employing the Descent Lemma again, we have

g(yk+1) ≤ g(λk) + 〈Og(λk), yk+1 − λk〉+
lg
2
‖yk+1 − λk‖2

and

g(λk) ≤ g(y) + 〈Og(λk), λk − y〉 −
1

2lg
‖Og(λk)− Og(y)‖2.

With this we obtain (3.17) by summing the above two inequalities.
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Lemma 3.2. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Then, for every (x, y) ∈ X × Y
and every k ≥ 1 the following inequalities hold

L(xk+1, y)− L(x, yk+1)

≤ 1− γ
γ
〈yk − yk+1, Axk+1 −Ax〉+

1

σ
〈zk − xk+1, xk+1 − x〉+

1

ρ
〈λk − yk+1, yk+1 − y〉

lf
2
‖xk+1 − zk‖2 −

1

2lf
‖Of(zk)− Of(x)‖2 +

lg
2
‖yk+1 − λk‖2 −

1

2lg
‖Og(λk)− Og(y)‖2

− tk+1 − 1

γ
〈yk+1 − yk, Axk+1 −Ax〉+

tk+1 − 1

γ
〈Axk+1 −Axk, yk+1 − y〉 (3.21)

and

L(xk+1, y)− L(x, yk+1)− (L(xk, y)− L(x, yk))

≤ 1− γ
γ
〈yk − yk+1, Axk+1 −Axk〉+

1

σ
〈zk − xk+1, xk+1 − xk〉+

1

ρ
〈λk − yk+1, yk+1 − yk〉

+
lf
2
‖xk+1 − zk‖2 −

1

2lf
‖Of(zk)− Of(xk)‖2 +

lg
2
‖yk+1 − λk‖2 −

1

2lg
‖Og(λk)− Og(yk)‖2

+〈y − yk+1, Axk+1 −Axk〉+ 〈Axk+1 −Ax, yk+1 − yk〉. (3.22)

Proof. From Lemma 3.1, we conclude that

L(xk+1, y)− L(x, yk+1)

= f(xk+1) + 〈Axk+1, y〉 − g(y)− f(x)− 〈Ax, yk+1〉+ g(yk+1)

≤ 〈y − 1

γ
vγk+1, Axk+1 −Ax〉+

1− γ
γ
〈yk − yk+1, Axk+1 −Ax〉+

1

σ
〈zk − xk+1, xk+1 − x〉

+〈Og(λk)−Ax, yk+1 − y〉+
lf
2
‖xk+1 − zk‖2 −

1

2lf
‖Of(zk)− Of(x)‖2

+
lg
2
‖yk+1 − λk‖2 −

1

2lg
‖Og(λk)− Og(y)‖2. (3.23)

According to (3.15), we have

0 = λk − yk+1 − ρOg(λk) +
ρ

γ
Auγk+1,

which further gives

0 =
1

ρ
〈λk − yk+1, yk+1 − y〉+

1

γ
〈Auγk+1 − γOg(λk), yk+1 − y〉. (3.24)

From (3.10) and (3.14), we further see that

〈y − 1

γ
vγk+1, Axk+1 −Ax〉+

1

γ
〈Auγk+1 − γOg(λk), yk+1 − y〉

= 〈y − yk+1 −
tk+1 − 1

γ
(yk+1 − yk), Axk+1 −Ax〉

+
1

γ
〈γAxk+1 + (tk+1 − 1)(Axk+1 −Axk)− γOg(λk), yk+1 − y〉

= 〈y − yk+1, Axk+1 −Ax〉 −
tk+1 − 1

γ
〈yk+1 − yk, Axk+1 −Ax〉

+〈Axk+1 − Og(λk), yk+1 − y〉+
tk+1 − 1

γ
〈Axk+1 −Axk, yk+1 − y〉

= 〈y − yk+1,Og(λk)−Ax〉 − tk+1 − 1

γ
〈yk+1 − yk, Axk+1 −Ax〉+

tk+1 − 1

γ
〈Axk+1 −Axk, yk+1 − y〉.

(3.25)
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Summing (3.23),(3.24) and (3.25) yields inequality (3.21). By recalling inequality (3.16) with x := xk and

inequality (3.17) with y := yk, we obtain

L(xk+1, y)− L(x, yk+1)− (L(xk, y)− L(x, yk))

≤ 〈y − 1

γ
vγk+1, Axk+1 −Axk〉+

1− γ
γ
〈yk − yk+1, Axk+1 −Axk〉

+
1

σ
〈zk − xk+1, xk+1 − xk〉+

lf
2
‖xk+1 − zk‖2 −

1

2lf
‖Of(zk)− Of(xk)‖2

+〈Og(λk)−Ax, yk+1 − yk〉+
lg
2
‖yk+1 − λk‖2 −

1

2lg
‖Og(λk)− Og(yk)‖2. (3.26)

In additon, from (3.10) and (3.14), we have

〈y − 1

γ
vγk+1, Axk+1 −Axk〉+

1

γ
〈Auγk+1 − γOg(λk), yk+1 − yk〉

= 〈y − yk+1, Axk+1 −Axk〉 −
tk+1 − 1

γ
〈yk+1 − yk, Axk+1 −Axk〉

〈Axk+1 − Og(λk), yk+1 − yk〉+
tk+1 − 1

γ
〈Axk+1 −Axk, yk+1 − yk〉

= 〈y − yk+1, Axk+1 −Axk〉+ 〈Axk+1 − Og(λk), yk+1 − yk〉. (3.27)

By summing (3.26), (3.27) and (3.24) with y := yk we obtain (3.22), this completes the proof.

For (x, y) ∈ X × Y and k ≥ 1, we introduce the following energy function:

Ek(x, y) := tk(tk − 1 + γ) (L(xk, y)− L(x, yk)) +
1

2σ
‖uγk − γx‖

2 +
1

2ρ
‖vγk − γy‖

2

+
γ(1− γ)

2σ
‖xk − x‖2 +

γ(1− γ)

2ρ
‖yk − y‖2 +

(1− γ)(tk − 1)

2ρ
‖yk − yk−1‖2.

It is obvious that Ek(x∗, y∗) ≥ 0 for every (x∗, y∗) ∈ S and every k ≥ 1. Next we show an important

inequality for this family of energy functions which will play a significant role in the following analysis.

Proposition 3.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Then, for every (x∗, y∗) ∈ S
and every k ≥ 1, we have

Ek+1(x∗, y∗)− Ek(x∗, y∗)

≤ (tk+1(tk+1 − 1)− tk(tk − 1 + γ)) (L(xk, y
∗)− L(x∗, yk))

−
(
t2k+1

2σ
(γ − lfσ) + (1− γ)

lf tk+1

2

)
‖xk+1 − zk‖2 −

(
t2k+1

2ρ
(γ − lgρ) + (1− γ)

lgtk+1

2

)
‖yk+1 − λk‖2

−γtk+1

2lf
‖Of(zk)−Of(x∗)‖2 − tk+1(tk+1 − 1)

2lf
‖Of(zk)−Of(xk)‖2 − tk+1(tk+1 − 1)

2lg
‖Og(λk)−Og(yk)‖2

− tk+1

2lg
(γ − ρlg(1− γ)) ‖Og(λk)− Og(y∗)‖2 − (1− γ)tk+1

2ρ
‖yk+1 − yk − ρ (Og(λk)− Og(y∗)) ‖2

− (1− γ)(tk+1 − 1)

σ
‖xk+1 − xk‖2 −

(1− γ)(tk+1 − 1)

2ρ
‖yk+1 − yk‖2. (3.28)
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Proof. By taking x := x∗ in (3.21) and y := y∗ in (3.22), we have

tk+1(tk+1 − 1 + γ) (L(xk+1, y
∗)− L(x∗, yk+1))− tk(tk − 1 + γ) (L(xk, y

∗)− L(x∗, yk))

= γtk+1 (L(xk+1, y
∗)− L(x∗, yk+1)) + tk+1(tk+1 − 1) (L(xk+1, y

∗)− L(x∗, yk+1)− (L(xk, y
∗)− L(x∗, yk)))

+ (tk+1(tk+1 − 1)− tk(tk − 1 + γ)) (L(xk, y
∗)− L(x∗, yk))

≤ (tk+1(tk+1 − 1)− tk(tk − 1 + γ)) (L(xk, y
∗)− L(x∗, yk))

+
(1− γ)tk+1

γ
〈yk − yk+1, γ(Axk+1 −Ax∗) + (tk+1 − 1) (Axk+1 −Axk)〉

+
tk+1

σ
〈zk − xk+1, γ(xk+1 − x∗) + (tk+1 − 1) (xk+1 − xk)〉

+
tk+1

ρ
〈λk − yk+1, γ(yk+1 − y∗) + (tk+1 − 1) (yk+1 − yk)〉

+
lf tk+1

2
(tk+1 − 1 + γ) ‖xk+1 − zk‖2 +

lgtk+1

2
(tk+1 − 1 + γ) ‖yk+1 − λk‖2

−γtk+1

2lf
‖Of(zk)− Of(x∗)‖2 − tk+1(tk+1 − 1)

2lf
‖Of(zk)− Of(xk)‖2

−γtk+1

2lg
‖Og(λk)− Og(y∗)‖2 − tk+1(tk+1 − 1)

2lg
‖Og(λk)− Og(yk)‖2. (3.29)

Then, by (3.9), (3.14) and (3.15) we arrive at

(1− γ)tk+1

γ
〈yk − yk+1, γ(Axk+1 −Ax∗) + (tk+1 − 1) (Axk+1 −Axk)〉

=
(1− γ)tk+1

ρ
〈yk − yk+1, yk+1 − λk〉+ (1− γ)tk+1〈yk − yk+1,Og(λk)−Ax∗〉

=
(1− γ)tk+1

2ρ

(
−‖yk+1 − yk‖2 − ‖yk+1 − λk‖2 + ‖yk − λk‖2

)
+ (1− γ)tk+1〈yk − yk+1,Og(λk)− Og(y∗)〉

≤ (1− γ)tk+1

2ρ

(
−‖yk+1 − yk‖2 +

(tk − 1)2

t2k+1

‖yk − yk−1‖2
)

+ (1− γ)tk+1〈yk − yk+1,Og(λk)− Og(y∗)〉

≤ − (1− γ)tk+1

2ρ
‖yk+1 − yk‖2 +

(1− γ)(tk − 1)

2ρ
‖yk − yk−1‖2 + (1− γ)tk+1〈yk − yk+1,Og(λk)− Og(y∗)〉,

(3.30)

where the last inequality follows from the fact that tk is nondecreasing and tk ≥ 1. We notice that

tk+1(zk − xk+1) = tk+1(xk − xk+1) + uγk − u
γ
k+1 + (1− tk+1)(xk − xk+1)− γ(xk − xk+1)

= uγk − u
γ
k+1 + (1− γ)(xk − xk+1),

which we combine with (3.8) and (3.14) to see that

tk+1

σ
〈zk − xk+1, γ(xk+1 − x∗) + (tk+1 − 1) (xk+1 − xk)〉

=
1

σ

(
〈uγk − u

γ
k+1, u

γ
k+1 − γx

∗〉 − (1− γ)(tk+1 − 1)‖xk+1 − xk‖2 + (1− γ)γ〈(xk − xk+1), (xk+1 − x∗)〉
)

= − 1

2σ
‖uγk − u

γ
k+1‖

2 − 1

2σ
‖uγk+1 − γx‖

2 +
1

2σ
‖uγk − γx‖

2 − (1− γ)(tk+1 − 1)

σ
‖xk+1 − xk‖2

− (1− γ)γ

2σ
‖xk − xk+1‖2 −

(1− γ)γ

2σ
‖xk+1 − x∗‖2 +

(1− γ)γ

2σ
‖xk − x∗‖2. (3.31)
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By (3.14) and Corollary 2.14 in [10] we deduce now

− 1

2σ
‖uγk − u

γ
k+1‖

2 = − 1

2σ
‖uk − uk+1 + (γ − 1)(xk+1 − xk)‖2

= − γ

2σ
‖uk − uk+1‖2 +

γ(1− γ)

2σ
‖xk+1 − xk‖2 −

1− γ
2σ
‖uk − uk+1 − xk+1 + xk‖2

≤ −
γt2k+1

2σ
‖xk+1 − zk‖2 +

γ(1− γ)

2σ
‖xk+1 − xk‖2. (3.32)

Summing (3.31) and (3.32) yields

tk+1

σ
〈zk − xk+1, γ(xk+1 − x∗) + (tk+1 − 1) (xk+1 − xk)〉

≤ − 1

2σ
‖uγk+1 − γx

∗‖2 +
1

2σ
‖uγk − γx

∗‖2 − (1− γ)(tk+1 − 1)

σ
‖xk+1 − xk‖2

− (1− γ)γ

2σ
‖xk+1 − x∗‖2 +

(1− γ)γ

2σ
‖xk − x∗‖2 −

γt2k+1

2σ
‖xk+1 − zk‖2. (3.33)

By a similar discussion, we obtain the inequality

tk+1

ρ
〈λk − yk+1, γ(yk+1 − y∗) + (tk+1 − 1) (yk+1 − yk)〉

≤ − 1

2ρ
‖vγk+1 − γy

∗‖2 +
1

2ρ
‖vγk − γy

∗‖2 − (1− γ)(tk+1 − 1)

ρ
‖yk+1 − yk‖2

− (1− γ)γ

2ρ
‖yk+1 − y∗‖2 +

(1− γ)γ

2ρ
‖yk − y∗‖2 −

γt2k+1

2ρ
‖yk+1 − λk‖2. (3.34)

Summing (3.29), (3.30), (3.33) and (3.34), we have

Ek+1(x∗, y∗)− Ek(x∗, y∗)

≤ (tk+1(tk+1 − 1)− tk(tk − 1 + γ)) (L(xk, y
∗)− L(x∗, yk))

−
(
t2k+1

2σ
(γ − lfσ) + (1− γ)

lf tk+1

2

)
‖xk+1 − zk‖2 −

(
t2k+1

2ρ
(γ − lgρ) + (1− γ)

lgtk+1

2

)
‖yk+1 − λk‖2

−γtk+1

2lf
‖Of(zk)−Of(x∗)‖2 − tk+1(tk+1 − 1)

2lf
‖Of(zk)−Of(xk)‖2 − tk+1(tk+1 − 1)

2lg
‖Og(λk)−Og(yk)‖2

−γtk+1

2lg
‖Og(λk)−Og(y∗)‖2 − (1− γ)tk+1

2ρ
‖yk+1 − yk‖2 + (1− γ)tk+1〈yk − yk+1,Og(λk)−Og(y∗)〉

− (1− γ)(tk+1 − 1)

σ
‖xk+1 − xk‖2 −

(1− γ)(tk+1 − 1)

2ρ
‖yk+1 − yk‖2, (3.35)

and thus

−γtk+1

2lg
‖Og(λk)− Og(y∗)‖2 − (1− γ)tk+1

2ρ
‖yk+1 − yk‖2 + (1− γ)tk+1〈yk − yk+1,Og(λk)− Og(y∗)〉

= − tk+1

2lg
(γ − ρlg(1− γ)) ‖Og(λk)− Og(y∗)‖2 − (1− γ)tk+1

2ρ
‖yk+1 − yk − ρ (Og(λk)− Og(y∗)) ‖2.(3.36)

By replacing the corresponding term in (3.35) with (3.36), we arrive at (3.28), which completes the proof.

Proposition 3.2. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Then, for (x∗, y∗) ∈ S and
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every k ≥ 1, the sequence {Ek(x∗, y∗)}k≥1 is nonincreasing and we have the following statements:∑
k≥1

(γ −m)tk (L(xk, y
∗)− L(x∗, yk)) < +∞,

∑
k≥1

(
t2k+1

2σ
(γ − lfσ) + (1− γ)

lf tk+1

2

)
‖xk+1 − zk‖2 < +∞,

∑
k≥1

(1− γ)(tk+1 − 1)

2ρ
‖yk+1 − yk‖2 < +∞,

∑
k≥1

(
t2k+1

2ρ
(γ − lgρ) + (1− γ)

lgtk+1

2

)
‖yk+1 − λk‖2 < +∞,

∑
k≥1

(1− γ)(tk+1 − 1)

σ
‖xk+1 − xk‖2 < +∞,

∑
k≥1

γtk+1

2lf
‖Of(zk)− Of(x∗)‖2 < +∞,

∑
k≥1

tk+1(tk+1 − 1)

2lf
‖Of(zk)− Of(xk)‖2 < +∞,

∑
k≥1

tk+1(tk+1 − 1)

2lg
‖Og(λk)− Og(yk)‖2 < +∞,

∑
k≥1

tk+1

2lg
(γ − ρlg(1− γ)) ‖Og(λk)− Og(y∗)‖2 < +∞.

Proof. Due to γ − lgρ ≥ 0 and 0 ≤ γ ≤ 1, it follows that lgρ(1− γ) ≤ γ(1− γ) ≤ γ and
t2k+1

2ρ (γ − lgρ) + (1−

γ)
lgtk+1

2 ≥ 0. Similarly, we get
t2k+1

2σ (γ − lfσ) + (1− γ)
lf tk+1

2 ≥ 0. According to (3.7), we have

tk+1(tk+1 − 1)− tk(tk − 1 + γ) ≤ (m− 1)tk+1 + (1− γ)tk ≤ (m− γ)tk ≤ 0.

Thus, all the coeffcients in the right-hand side of (3.28) are nonpositive, it follows that the sequence

{Ek(x∗, y∗)}k≥1 is nonincreasing and so Ek+1(x∗, y∗) ≤ Ek(x∗, y∗). We complete the proof via Lemma 1.1 in

[15].

Remark 3.1. Since tk ≥ 1, we have

γt2k (L(xk, y
∗)− L(x∗, yk)) ≤ tk(tk − 1 + γ) (L(xk, y

∗)− L(x∗, yk)) ≤ Ek(x∗, y∗) ≤ E1(x∗, y∗)

and so

L(xk, y
∗)− L(x∗, yk) ≤ 1

γt2k
E1(x∗, y∗).

In Boţ et al. [15], the authors show that three most prominent choices for the sequence {tk}k≥1, i.e. Nesterov

rule [28], Chambolle-Dossal rule [18] and Attouch-Cabot rule [7] (here this rule requires k ≥ [α] + 1) are all

satified the conditions (3.7) in Algorithm 1. Since tk ≥ k+1
2 in the Nesterov rule and tk = 1 + k−1

α−1 in the

Chambolle-Dossal rule and the Attouch-Cabot rule, we see that

L(xk, y
∗)− L(x∗, yk) = O

(
1/k2

)
.

holds.

3.2 Boundedness and convergence of the iterates

In this subsection, we show the boundedness of the sequence generated by Algorithm 1. under some ad-

ditional assumptions on the parameters of the algorithm. By Proposition 3.2, we notice that the sequence

{Ek(x∗, y∗)}k≥1 is nonincreasing, and so byEk(x∗, y∗) ≤ E1(x∗, y∗) it follows that

1

2σ
‖uγk − γx

∗‖2 +
1

2ρ
‖vγk − γy

∗‖2 +
γ(1− γ)

2σ
‖xk − x∗‖2 +

γ(1− γ)

2ρ
‖yk − y∗‖2 ≤ E1(x∗, y∗) < +∞.
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We obtain that the sequences {uγk}k≥1 and {vγk}k≥1 are bounded. In addition, if γ < 1, the sequences

{xk}k≥1 and {yk}k≥1 also are bounded. From (3.14) and (3.10), we have

tk(xk − xk−1) = uγk − γx
∗ + (1− γ)(xk − x∗)− (xk−1 − x∗),

tk(yk − yk−1) = vγk − γy
∗ + (1− γ)(yk − y∗)− (yk−1 − y∗),

which yield the sequences {tk(xk − xk−1)}k≥1 and {tk(yk − yk−1)}k≥1 are bounded.

We can now show the boundedness of the sequences {xk}k≥1 and {yk}k≥1 under the mild condition

(3.37) below, which has been proposed in [11, 15]. Moreover, Boţ et al. [15] prove that some classical

inertial parameters rules satisfy (3.37), i.e., the Nesterov rule [28], the Chambolle-Dossal rule [18] and the

Attouch-Cabot rule [7]. For brevity, we define on X × Y the inner product

〈h, h′〉W = 〈(x, y), (x′, y′)〉W =
1

σ
〈x, x′〉X +

1

ρ
〈y, y′〉Y , ∀h := (x, y), h′ := (x′, y′) ∈ X × Y,

and the norm induced by this scalar product,

‖u‖W =

√
1

σ
‖x‖2 +

1

ρ
‖y‖2, ∀h := (x, y) ∈ X × Y.

Proposition 3.3. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Suppose that

τ := inf
k≥1

tk
k
> 0. (3.37)

Then, the sequences {xk}k≥1, {yk}k≥1, {tk(xk − xk−1)}k≥1 and {tk(yk − yk−1)}k≥1 are bounded.

Proof. Let (x∗, y∗) ∈ S be fixed. We denote

h∗ := (x∗, y∗) ∈ S, and hk := (xk, yk) ∈ X × Y, ∀ k ≥ 1.

By (3.14) in Algorithm 1 and Corollary 2.14 in [10], for every k ≥ 1, we see that

‖uγk − γx
∗‖2 = ‖(tk − 1 + γ)(xk − x∗)− (tk − 1)(xk−1 − x∗)‖2

= γ(tk − 1 + γ)‖xk − x∗‖2 − γ(tk − 1)‖xk−1 − x∗‖2 + (tk − 1 + γ)(tk − 1)‖xk − xk−1‖2

holds. Similarly, we have

‖vγk − γy
∗‖2 = γ(tk − 1 + γ)‖yk − y∗‖2 − γ(tk − 1)‖yk−1 − y∗‖2 + (tk − 1 + γ)(tk − 1)‖yk − yk−1‖2,

and so the energy function can be rewritten as

Ek(x, y) = tk(tk − 1 + γ) (L(xk, y)− L(x, yk)) +
γ

2
tk‖hk − h∗‖2W −

γ

2
(tk − 1)‖hk−1 − h∗‖2W

+
1

2
(tk − 1 + γ)(tk − 1)‖hk − hk−1‖2W +

(1− γ)(tk − 1)

2ρ
‖yk − yk−1‖2. (3.38)

From the fact that Ek(x∗, y∗) is nonincreasing, for every k ≥ 1 we get

γ

2
tk‖hk − h∗‖2W −

γ

2
(tk − 1)‖hk−1 − h∗‖2W ≤ Ek(x∗, y∗) ≤ E1(x∗, y∗),

from which it follows that

γ

2
tk‖hk − h∗‖2W ≤

γ

2
(tk − 1)‖hk−1 − h∗‖2W + E1(x∗, y∗) ≤ γ

2
tk−1‖hk−1 − h∗‖2W + E1(x∗, y∗),
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where the second inequality holds due totk− tk−1 < 1 which is a straightforward result via (3.7). (The proof

is also provided in Lemma 3.5 in [15].) We set t0 := 0 for convention. After summing up (3.39) from 1 to k,

we have for every k ≥ 1

γ

2
tk‖hk − h∗‖2W ≤ kE1(x∗, y∗) (3.39)

and so

‖hk − h∗‖2W ≤
2k

γtk
E1(x∗, y∗) ≤ 2

γτ
E1(x∗, y∗) < +∞. (3.40)

With this, we conclude that {xk}k≥1, {yk}k≥1 are bounded and consequently {tk(xk − xk−1)}k≥1, {tk(yk −
yk−1)}k≥1 are bounded.

Proposition 3.4. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1 with (3.37) and (x∗, y∗) ∈ S.

In addition, we assume that 0 < max{m, lfσ, lgρ} < γ ≤ 1. Then it holds that∑
k≥1

((
1− m

γ

)
tk+1 − 1

)
‖A∗ (yk − y∗)‖2 < +∞, (3.41)

∑
k≥1

(tk+1 − 1)3

γ2
‖A∗ (yk+1 − yk)‖2 < +∞, (3.42)

(
1− m

γ

)∑
k≥1

tk ‖A (xk − x∗)‖2 < +∞, (3.43)

∑
k≥1

tk
(tk+1 − 1)2

γ2
‖A (xk+1 − xk)‖2 < +∞. (3.44)

Moreover, there exists M > 0 such that

‖A∗ (yk − y∗)‖ ≤
M

tk − 1
, and ‖A (xk − x∗)‖ ≤

M

tk
.

Proof. From (3.20), we have

A∗
(

1

γ
vγk+1 − y

∗
)

= −Of(zk)−A∗y∗ +
1− γ
γ

A∗(yk − yk+1) +
1

σ
(zk − xk+1).

By Theorem 3.29 and tk ≥ 1, it follows that∑
k≥1

(tk+1 − 1)

∥∥∥∥A∗( 1

γ
vγk+1 − y

∗
)∥∥∥∥2 ≤ 3

∑
k≥1

(tk+1 − 1)‖Of(zk)− Of(x∗)‖2

+
3(1− γ)2‖A‖2

γ2

∑
k≥1

(tk+1 − 1)‖yk+1 − yk‖2 +
3

σ2

∑
k≥1

(tk+1 − 1)‖zk − xk+1‖2 < +∞.

According to (3.10), for every k ≥ 1, we have

A∗
(

1

γ
vγk+1 − y

∗
)

= A∗
(
yk+1 +

tk+1 − 1

γ
(yk+1 − yk)− y∗

)
=

(
1 +

tk+1 − 1

γ

)
A∗ (yk+1 − y∗)−

tk+1 − 1

γ
A∗ (yk − y∗) .

Then, by Corollary 2.14 in [10], it follows that∥∥∥∥A∗( 1

γ
vγk+1 − y

∗
)∥∥∥∥2 =

(
1 +

tk+1 − 1

γ

)
‖A∗ (yk+1 − y∗)‖2 −

tk+1 − 1

γ
‖A∗ (yk − y∗)‖2

+
tk+1 − 1

γ

(
1 +

tk+1 − 1

γ

)
‖A∗ (yk+1 − yk)‖2 .

26



But by (3.7), we see that

(tk+1 − 1)2

γ
− (tk − 1)

(
1 +

tk − 1

γ

)
≤

(
1− 2

γ

)
(tk+1 − tk) + 1−

(
1− m

γ

)
tk+1

≤ −
((

1− m

γ

)
tk+1 − 1

)
,

where the last inequality follows from the fact that
(

1− 2
γ

)
< 0 and {tk} is nondecreasing. Therefore,

(tk+1 − 1)

(
1 +

tk+1 − 1

γ

)
‖A∗ (yk+1 − y∗)‖2

= (tk − 1)

(
1 +

tk − 1

γ

)
‖A∗ (yk − y∗)‖2 + (tk+1 − 1)

∥∥∥∥A∗( 1

γ
vγk+1 − y

∗
)∥∥∥∥2

+

(
(tk+1 − 1)2

γ
− (tk − 1)

(
1 +

tk − 1

γ

))
‖A∗ (yk − y∗)‖2

− (tk+1 − 1)2

γ

(
1 +

tk+1 − 1

γ

)
‖A∗ (yk+1 − yk)‖2

≤ (tk − 1)

(
1 +

tk − 1

γ

)
‖A∗ (yk − y∗)‖2 + (tk+1 − 1)

∥∥∥∥A∗( 1

γ
vγk+1 − y

∗
)∥∥∥∥2

−
((

1− m

γ

)
tk+1 − 1

)
‖A∗ (yk − y∗)‖2 −

(tk+1 − 1)3

γ2
‖A∗ (yk+1 − yk)‖2 .

By the assumption (3.37), we notice that
(

1− m
γ

)
tk+1 − 1 will be nonnegative when k ≥ k1, where k1 =[

γ
(γ−m)τ

]
. For every k ≥ k1 let us set

ak := (tk − 1)

(
1 +

tk − 1

γ

)
‖A∗ (yk − y∗)‖2 ≥ 0,

bk :=

((
1− m

γ

)
tk+1 − 1

)
‖A∗ (yk − y∗)‖2 +

(tk+1 − 1)3

γ2
‖A∗ (yk+1 − yk)‖2 ≥ 0,

dk := (tk+1 − 1)

∥∥∥∥A∗( 1

γ
vγk+1 − y

∗
)∥∥∥∥2 ≥ 0.

By employing Lemma 1.1 in [15] we then obtain that

∑
k≥k1

((
1− m

γ

)
tk+1 − 1

)
‖A∗ (yk − y∗)‖2 < +∞,

∑
k≥k1

(tk+1 − 1)3

γ2
‖A∗ (yk+1 − yk)‖2 < +∞,

and the sequence
{

(tk − 1)
(

1 + tk−1
γ

)
‖A∗ (yk − y∗)‖2

}
is convergent and bounded. Thus, there exists

M > 0 such that (tk − 1)2 ‖A∗ (yk − y∗)‖2 ≤ ak ≤ M2, for every k ≥ 1. We notice that the convergence

or divergence of series will not be affected by its first few terms, and we thus arrive at (3.41) and (3.42).

Similarly, we obtain (3.43), (3.44) and the fact that tk

(
1 + 1

γ (tk − 1)
)
‖A∗ (xk − x∗)‖2 is convergent. Since

tk ≤
(

1 + 1
γ (tk − 1)

)
, we also have

t2k ‖A∗ (xk − x∗)‖2 ≤ tk
(

1 +
1

γ
(tk − 1)

)
‖A∗ (xk − x∗)‖2 ≤M2,

and so ‖A∗ (xk − x∗)‖ ≤ M
tk

. This completes the proof.

Proposition 3.5. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm and let 0 < m < γ < 1. Then,

for every (x∗, y∗) ∈ S, the limit limk→+∞ ‖(xk, yk)− (x∗, y∗)‖W exists.
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Proof. By Proposition 3.2, we notice that Ek+1(x∗, y∗) ≤ Ek(x∗, y∗). By the reformulation (3.38) of the

energy function Ek(x∗, y∗), for every k ≥ 1 we have

tk+1(tk+1 − 1 + γ)

(
(L(xk+1, y)− L(x, yk+1)) +

1

2
‖hk+1 − hk‖2W

)
+
γ

2
tk+1

(
‖hk+1 − h∗‖2W − ‖hk − h∗‖2W

)
+

(1− γ)

2ρ
tk+1‖yk+1 − yk‖2

≤ (tk − 1)(tk − 1 + γ)

(
(L(xk, y)− L(x, yk)) +

1

2
‖hk − hk−1‖2W

)
+
γ

2
(tk − 1)

(
‖hk − h∗‖2W − ‖hk−1 − h∗‖2W

)
+

(1− γ)(tk − 1)

2ρ
‖yk − yk−1‖2

(tk − 1 + γ) (L(xk, y)− L(x, yk)) +
1

2
(tk+1 − 1 + γ)‖hk+1 − hk‖2W +

1− γ
2ρ
‖yk+1 − yk‖2. (3.45)

Denote

ak := ‖hk − h∗‖2W ≥ 0,

βk := (tk − 1 + γ)

(
(L(xk, y)− L(x, yk)) +

1

2
‖hk − hk−1‖2W

)
+ (ak − ak−1) +

(1− γ)

2ρ
‖yk − yk−1‖2,

lk := (tk − 1 + γ) (L(xk, y)− L(x, yk)) +
1

2
(tk+1 − 1 + γ)‖hk+1 − hk‖2W +

1− γ
2ρ
‖yk+1 − yk‖2 ≥ 0.

From these definitions, it is obvious that ak+1 ≤ ak + βk+1. By (3.45) we have tk+1βk+1 ≤ (tk − 1)βk + dk.

In addition, from Proposition 3.2, we notice that
∑
k≥1 lk < +∞ if 0 < m < γ < 1. Thus, by Lemma 4.1 in

[15], we conclude that {ak} is convergent which completes the proof.

Theorem 3.1. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Assume further that the sequence

{tk}k≥1 is chosen to satisfy (3.37), that 0 < max{m, lfσ, lgρ} < γ < 1 holds and that (x∗, y∗) ∈ S. Then,

‖Of(xk)− Of(x∗)‖ = o
(

1/
√
k
)
, ‖Og(yk)− Og(y∗)‖ = o

(
1/
√
k
)
,

‖Axk −Ax∗‖ = o
(

1/
√
k
)
, ‖A∗yk −A∗y∗‖ = o

(
1/
√
k
)
.

Consequently,

‖OxL(x, y)‖ = o
(

1/
√
k
)
, ‖OyL(x, y)‖ = o

(
1/
√
k
)
.

Proof. From the results of Proposition 3.2, we see that

lim
k→+∞

tk+1‖Of(zk)− Of(x∗)‖2 = 0, lim
k→+∞

tk+1(tk+1 − 1)‖Of(xk)− Of(zk)‖2 = 0

holds By (3.37), it follows that

lim
k→+∞

√
k‖Of(zk)− Of(x∗)‖ = 0, lim

k→+∞

√
k‖Of(xk)− Of(zk)‖ = 0

and so

lim
k→+∞

√
k‖Of(xk)− Of(x∗)‖ ≤ lim

k→+∞

√
k‖Of(zk)− Of(x∗)‖+ lim

k→+∞

√
k‖Of(xk)− Of(zk)‖ = 0,

which further gives ‖Of(xk) − Of(x∗)‖ = o
(

1/
√
k
)

. Similarly, ‖Og(yk) − Og(y∗)‖ = o
(

1/
√
k
)

holds.

By (3.41) and (3.37), we obtain ‖A∗yk − Ay∗‖ = o
(

1/
√
k
)

and so ‖OxL(x, y)‖ = o
(

1/
√
k
)

. Similarly,

‖OyL(x, y)‖ = o
(

1/
√
k
)

. This completes the proof.

28



Now we can present the main result and establish the convergence of the sequence of iterates generated

by Algorithm 1, which is the discrete counterpart of Theorem 2.4.

Theorem 3.2. Let {(xk, yk)}k≥0 be the sequence generated by Algorithm 1. Suppose that the sequence

{tk}k≥1 has been chosen such that (3.37) holds. Further assume 0 < max{m, lfσ, lgρ} < γ < 1 and (x∗, y∗) ∈
S. Then, the sequence {(xk, yk)}k≥1 converges weakly to a primal-dual optimal solution of the bilinearly

coupled convex-concave saddle point problem (1.1).

Proof. This proof is a straightforward result via Opial’s Lemma and the fact that the graph of the monotone

operator TL in (1.3) is sequentially closed. It is similar to the proof of Theorem 2.4, so we omit it here.

4 Conclusion and perspectives

As a brief review of the main result, the inertial primal-dual dynamics (1.5) introduce a novel class of first-

order algorithms for a bilinearly coupled saddle point problem. These algorithms not only maintain the fast

convergence rate of the primal-dual values found in several classical accelerated algorithms but also possess

additional exciting properties, such as the convergence of gradients towards zero, global convergence of the

iterates to optimal saddle points. By recalling the proof process of (2.10), we can obtain the convergence

rate O
(
1/t2

)
of the primal-dual gap for (1.5) without assuming continuous differentiability of all functions.

In light of this, it would be interesting to design a new discretization of (1.5) with the objective of achieving

the O
(
1/k2

)
rate when g is a convex lower semicontinuous and proper function. Additionally, it is worth

considering (1.5) in a more general context, which includes situations involving general viscous damping,

Hessian-driven damping, and temporal rescaling.
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[15] R.I. Boţ, E.R. Csetnek, and DK. Nguyen, Fast augmented Lagrangian method in the convex regime

with convergence guarantees for the iterates, Math. Program., 2022, https://doi.org/10.1007/s10107-

022-01879-4.

[16] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications

to imaging, J. Math. Imaging Vis., 40(2011), pp. 120–145.

[17] A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal–dual algorithm,

Math. Program., 2016, 159(1-2): 253-287.

[18] A. Chambolle and C. Dossal, On the Convergence of the Iterates of the “Fast Iterative Shrink-

age/Thresholding Algorithm”. J. Optim. Theory Appl., 166(2015), pp. 968–982.

[19] Y. Chen, G. Lan, Y. Ouyang, Optimal primal-dual methods for a class of saddle point problems, SIAM

J. Optimiz., 24(2014), pp. 1779-1814.

[20] L. Condat, A primal–dual splitting method for convex optimization involving Lipschitzian, proximable

and linear composite terms, J. Optim. Theory Appl., 158(2013), pp. 460-479.

[21] S.S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou, Stochastic variance reduction methods for policy

evaluation, International Conference on Machine Learning, 2017: 1049-1058.

[22] B. He, F. Ma, S. Xu, and X. Yuan, A generalized primal-dual algorithm with improved convergence

condition for saddle point problems, SIAM J. Imaging Sci., 15(2022), pp. 1157-1183.

[23] X. He, R. Hu, and Y.P. Fang, Convergence rates of inertial primal-dual dynamical methods for separable

convex optimization problems, SIAM J. Control Optim., 2021, 59(5): 3278-3301.

[24] X. He, R. Hu, and Y.P. Fang, Fast primal–dual algorithm via dynamical system for a linearly constrained

convex optimization problem, Automatica, 146(2022), 110547.

30
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