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Abstract5

We study a class of nonlinear optimization problems with diverse practical applications, par-
ticularly in cooperative game theory. These problems are referred to as Maximum Multiplicative
Programs (MMPs), and can be conceived as instances of “Optimization Over the Frontier” in multi-
objective optimization. To solve MMPs, we introduce a feasibility pump-based heuristic that is
specifically designed to search the criterion space of their multi-objective optimization counterparts.
Through a computational study, we show the efficacy of the proposed method.
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1. Introduction8

A Multi-Objective Mixed Integer Linear Program (MOMILP) can be stated as9

max

{
f1(x), . . . , fp(x) : x ∈ X

}
, (1)

where X denotes the set of feasible solutions that is assumed to be bounded [10]. It is also10

assumed that X is characterized by only linear constraints and it can involve both integer and11

continuous decision variables. Additionally, in MOMILPs, fi(x) is a linear function for all i ∈12

{1, . . . , p}. Since objectives are often conflicting in MOMILPs, there is often no solution that can13

optimize all objectives at the same. In such cases, computing and/or selecting a Pareto-optimal14

solution that can desirably balance the conflicting objectives is a non-trivial task; A Pareto-optimal15

solution is a solution that is impossible to improve the value of one of its objectives without16

making the values of other objectives worse. One classical approach for finding a desirable Pareto-17

optimal solution in the literature of multi-objective optimization is known as optimization over the18

frontier which seeks to optimize a separate objective function over the entire Pareto-optimal frontier19

for computing a desirable Pareto-optimal solution. This study focuses on an interesting class of20

optimization over the frontier problems known as Maximum Multiplicative Programs (MMPs).21

Given a reference point r ∈ Rp in the criterion space, a MMP can be stated as22

max

{ p∏
i=1

yi(x) : x ∈ X , y(x) ≥ 0

}
, (2)

where yi(x) := fi(x)−ri and ri ∈ R is parameter for all i ∈ {1, . . . , p}. As we show in Section 2,23

solving a MMP to optimality guarantees to return a Pareto-optimal solution. The underlying logic24

behind MMPs is that a desirable solution to a MOMILP is a Pareto-optimal solution x that its25
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image in the criterion space, i.e., y(x) :=
(
y1(x), . . . , yp(x)

)
, and the reference point r ∈ Rp creates1

a box with the maximum hypervolume in the criterion space. In other words, the multiplicative2

objective function of a MMP basically measures the hypervolume for any feasible solution from the3

reference point in the criterion space.4

MMPs are notably connected to Cooperative Game Theory, specifically in the realm of bar-5

gaining games. In these games, independent players aim to form a grand coalition that maximizes6

their individual payoffs [28]. The agreement among all players becomes crucial in determining a7

fair distribution of payoffs within the grand coalition. Addressing this challenge, Nash proposed8

the use of MMPs, also referred to as Nash Social Welfare Optimization, as a means to find a fair9

solution for cooperative bargaining games [20, 21]. By leveraging MMPs, players can seek an eq-10

uitable outcome that considers the interests of all involved parties in the cooperative game. This11

approach brings a sense of fairness and promotes cooperative decision-making in situations where12

multiple players strive to maximize their collective gains.13

The application of MMPs in game theory extends beyond bargaining games to encompass other14

domains. MMPs play a significant role in computing market equilibrium in linear Fisher markets15

or Kelly capacity allocation markets [7, 8, 11, 19, 30]. Moreover, MMPs find utility beyond game16

theory and are applicable in diverse fields such as conservation planning, system reliability, and17

maximum likelihood estimation problems [2, 8, 9, 12]. Conservation planning, for instance, involves18

the selection of protected sites within a specific geographic region to preserve biodiversity [22]. This19

problem can be formulated by employing binary decision variables and incorporating constraints,20

such as budget limitations, connectivity requirements, and compactness considerations [17, 29].21

MMPs are commonly employed in biodiversity preservation, where yi(x) represents the survival22

probability of species i ∈ {1, . . . , p} for a feasible solution x ∈ X [6, 22, 31]. In the realm of23

maximum likelihood estimation, MMPs are shown to be useful for problems involving nested logit24

models, where binary decision variables represent option selection [13, 18]. Furthermore, for system25

reliability, MMPs can be utilized to maximize the dependability of series-parallel systems, where26

binary decision variables represent individual subsystems [9].27

The existing literature on solving MMPs primarily focuses on exact solution methods. Numerous28

precise techniques have been developed for solving different subclasses of MMPs. One popular29

strategy for MMPs involving no integer variables (referred to as Linear MMPs) is to log-transform30

the objective function and solve the modified problem using a convex programming solver, such as31

IBM ILOG CPLEX, Gurobi, or FICO Xpress [16, 8]. Some authors have developed iterative linear-32

programming based solution methods for solving Linear MMPs [30, 8]. Alternatively, converting the33

problem into a Second-Order Cone Program (SOCP) using the approach proposed by Ben-Tal and34

Nemirovski [3] and solving it with a commercial solver is also an effective method for solving Linear35

MMPs [8]. For MMPs involving integer decision variables, converting the problems into mixed36

integer SOCPs and solving them with commercial solvers such as IBM ILOG CPLEX has shown to37

be an effective approach [24, 26]. Additionally several effective criterion-space search methods are38

also developed in recent years for solving MMPs with integer decision variables. Criterion space39

search methods are the method that search the objective space of Problem (1) to find an optimal40

solution of a MMP.41

Although current exact solution methods have demonstrated success, they are limited in their42

ability to tackle large-scale MMPs. As a result, the literature lacks accessible and generic heuristic43

solution approaches that can produce high-quality solutions for MMPs. Consequently, the main44

contribution of this study is to present an efficient heuristic approach that effectively addresses this45
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gap. Our approach customizes the well-known feasibility pump for this purpose [1, 4, 5, 14, 15].1

The feasibility pump has emerged as a successful heuristic solution approach for tackling single-2

objective mixed integer linear programs. In recent years, customized variations of the feasibility3

pump heuristic have proven effective in generating the complete Pareto-optimal frontier for multi-4

objective mixed integer linear programs (MOMILPs) [23]. However, no prior attempts have been5

made to utilize this approach for optimization over the frontier in the context of multi-objective6

optimization. Therefore, this study is the first attempt (to the best of our knowledge) in leveraging7

the feasibility pump-based approach for a specific class of optimization over the frontier problems,8

i.e., MMPs. Our method operates within the criterion space and employs a cut-generating technique9

tailored to this space, enabling the generation of high-quality solutions. Through a computational10

study with 270 large randomly generated instances, we show that our approach can quickly generate11

near optimal solutions, i.e., about 1.5% optimality gap.12

The remainder of this paper is organized as follows. Section 2 offers problem description.13

Section 3 provides a detailed description of the proposed heuristic. Section 4 offers a computational14

study. Finally, Section 5 presents some concluding remarks.15

2. Problem Description16

A MMP can be stated as17

max

p∏
i=1

yi

s.t. y = Dx+ d

Ax ≤ b

x,y ≥ 0, x ∈ Bnb × Rnc , y ∈ Rp,

(3)

where nb and nc represents the number of decision variables in binary and continuous forms,18

respectively. In this study, vectors are shown using bold fonts. Since MMP is assumed to be19

bounded, without loss of generality, we can assume that any general integer variable is transformed20

into a set of binary decision variables using standard transformation techniques. We also make21

a pragmatic assumption regarding the optimal objective value of Problem (3) stating that it is22

strictly positive, i.e., there exists a feasible solution with y > 0. We employ the notation D to23

indicate a p×n matrix where n := nc+nb. Furthermore, the vector d is of p-dimension and A is an24

m×n matrix, while b is an m-dimensional vector. For the sake of notation simplicity, we partition25

the variable index set N := {1, 2, ..., n} into binary Nb and continuous Nc variable index sets.26

As mentioned in the Introduction, an effective method to solve an MMP is to transform it into27

a mixed integer SOCP problem using the technique proposed by Ben-Tal and Nemirovski [3], and28

then solving the transformed problem using a commercial solver such as CPLEX. The underlying29

idea behind the transformation comes from the observation that an equivalent problem to the MMP30

can be constructed by adding a new non-negative variable, denoted by γ, and a constraint known31

as the “geometric-mean constraint” to the problem as follows32

max

{
γ : 0 ≤ γ ≤

( p∏
i=1

yi

) 1
p
, y ∈ Y

}
.
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Upon solving the equivalent problem to optimality, the objective value of the solution raised
to the power of p, i.e., γ̄p, represents the optimal objective value for the corresponding MMP. It
is important to note that the geometric mean constraint mentioned earlier may not necessarily be
a second-order cone constraint. However, any constraint in the form of {u, v, w ≥ 0 : u ≤

√
vw}

is a second-order cone constraint because it is equivalent to {u, v, w ≥ 0 :
√

u2 + (v−w2 )2 ≤ v+w
2 }.

To convert the geometric-mean constraint formulation into a mixed integer SOCP, Ben-Tal and
Nemirovski [3] demonstrate a straightforward method involving the introduction of additional sets
of constraints and variables. Specifically, if k is the smallest integer value such that 2k ≥ p, the
resulting equivalent mixed integer SOCP is

max γ

s.t. 0 ≤ γ ≤
√
τk−11 τk−12

0 ≤ τ lj ≤
√
τ l−12j−1τ

l−1
2j for j = 1, . . . , 2k−l and l = 1, . . . , k − 1

0 ≤ τ0j = yj for j = 1, . . . , p

0 ≤ τ0j = γ for j = p+ 1, . . . , 2k

y ∈ Y.

In this study, we utilize the above-mentioned mixed-integer SOCP reformulation to compute
bounds and assess the quality of our proposed multi-objective optimization-based heuristic. Con-
sidering our approach operates in the criterion space, we define two sets:

X := {x ∈ Bnb × Rnc : Ax ≤ b, x ≥ 0}

and
Y := {y ∈ Rp : ∃ x ∈ X , y = Dx+ d, y ≥ 0}.

These sets represent the feasible set in the decision and criterion spaces, respectively. In this1

context, x ∈ X is referred to as a feasible solution, and y ∈ Y is referred to as a feasible point,2

where y represents the image of x in the criterion space. Next, we present a formal definition and3

a proposition that are beneficial for comprehending our proposed methodology.4

Definition 1. A feasible solution x ∈ X is called Pareto-optimal, if there is no other x′ ∈ X such
that

yi ≤ y′i ∀i ∈ {1, 2, ..., p}
yi < y′i for at least one i ∈ {1, 2, ..., p},

where y := Dx+ d and y′ := Dx′ + d. If x is Pareto-optimal solution, then y is called a Pareto-5

optimal point.6

Proposition 1. An optimal solution of Problem (3), denoted by x∗, is a Pareto-optimal solution7

and therefore its corresponding image in the criterion space, denoted by y∗ where y∗ := Dx∗ + d,8

is a Pareto-optimal point.9
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Proof. Let us assume that x∗ is an optimal solution of Problem (3) but is not a Pareto-optimal
solution. According to Definition 1, this implies the existence of a feasible solution denoted by
x ∈ X that dominates x∗. In other words, the following conditions hold:

y∗i ≤ yi ∀i ∈ {1, 2, . . . , p}
y∗i < yi for at least one i ∈ {1, 2, . . . , p}

where y := Dx + d. Additionally, based on the assumptions of Problem (3), we know that1

y∗ > 0. Therefore, it follows that 0 <
p∏

i=1
y∗i <

p∏
i=1

yi. As a result, we can conclude that x∗ cannot2

be an optimal solution, leading to a contradiction. □3

The significance of Proposition 1 lies in its indication that the search for an optimal point in a4

MMP can be narrowed down to the set of Pareto-optimal points rather than considering all feasible5

points. This realization transforms a MMP into a special class of optimization over the frontier.6

We exploit this property to develop a generic criterion-space for solving MMPs.7

Algorithm 1: Criterion Space Search Feasibility Pump Heuristic
Input: A feasible instance of Problem (3) represented by Y in the criterion space

1 (x∗,y∗)← (−,0)
2 SearchDone← False
3 while time < TimeLimit & SearchDone=False do
4 (x̃, ỹ)← FeasibilityPump

(
R(Y)

)
5 if x̃ is not integer feasible or ỹ ̸> 0 then
6 SearchDone← True

7 else

8 Y ← Y ∩
{
y ∈ Rp :

∑p
i=1

yi
ỹi

> p
}

9 if
∏p

i=1 ỹi >
∏p

i=1 y
∗
i then

10 (x∗,y∗)← (x̃, ỹ)

11 return (x∗,y∗)

3. Proposed Algorithm8

To simplify our discussion in this section, we use the notation R(Y) to represent the set of all9

relaxed feasible solutions and their corresponding images in the criterion space. More specifically,10

we define R(Y) as follows:11

R(Y) :=
{
(x,y) : x ∈ XR, y ∈ Y, y = Dx+ d

}
Here, XR represents the LP-relaxation of X , where binary variables are relaxed and allowed to12

take values between 0 and 1. Our proposed approach, outlined in Algorithm 1, aims to generate a13

high-quality solution for the MMP problem. The algorithm receives a feasible MMP and iteratively14

applies two main operations. The first operation, a special case of the classical feasibility pump15

(Line 4), finds feasible solutions, while the second operation, a criterion space-based cut-generating16

mechanism (Line 8), enhances solution quality. Throughout the algorithm, the best solution and17

point found, denoted as (x∗,y∗), are continuously updated if a better feasible solution and point in18
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terms of the multiplicative objective function are discovered (Lines 9-10). Upon termination, the1

algorithm reports (x∗,y∗). The termination condition occurs either when the time limit is reached2

(Line 3) or when the feasibility pump operation fails to find an integer feasible solution with a strictly3

positive image in the criterion space (Lines 5-6). If x̃ /∈ Bnb × Rnc , the feasibility pump operation4

has failed to generate an integer feasible solution, making it unlikely to find any other solutions5

using this approach. Similarly, if ỹ ̸> 0, the feasibility pump operation has failed to generate a6

strictly positive feasible point, rendering the cut-generating mechanism unusable. Next, we explain7

both feasibility pump and criterion space-based cut-generating operations in more details.8

ỹ

y1

y2

Figure 1: ỹ maximizes y1 × y2 among all points in the triangle

3.1. Cut-generating Operation9

We begin by introducing the cut-generating operation, which draws inspiration from the research10

conducted by Charkhgard et al. [8]. The fundamental concept behind the cut stems from the11

observation that, given any strictly positive feasible point ỹ ∈ Y, it is feasible to create a right-12

angled triangle in the criterion space. This triangle’s corner points consist of the origin and one point13

on each axis. Within this triangle, ỹ attains the maximum value for the multiplicative objective14

function among all points present. Let’s consider Figure 1 for illustration purposes, assuming p = 215

and ỹ as a strictly positive feasible point. The assertion is that we can generate the depicted triangle16

in the figure, which maximizes y1 × y2 among all points within the triangle. To construct such a17

triangle, it suffices to determine its hypotenuse. According to Proposition 2 explained subsequently,18

when p = 2, the equation for the hypotenuse can be shown as
∑2

i=1

yi
ỹi

= 2. Consequently, the19

right-angled triangle is defined as {y ∈ R2 : y ≥ 0,
∑p

i=1

yi
ỹi
}.20

Proposition 2. Let ỹ be a strictly positive point. It is the unique optimal point of

max

{ p∏
i=1

yi : y ≥ 0,

p∑
i=1

yi
ỹi
≤ p

}
.

Proof. Observe that

max

{ p∏
i=1

yi : y ≥ 0,

p∑
i=1

yi
ỹi
≤ p

}
≡ max

{ p∑
i=1

log(yi) : y ≥ 0,

p∑
i=1

yi
ỹi
≤ p

}

6



≡ min

{
−

p∑
i=1

log(yi) : y ≥ 0,

p∑
i=1

yi
ỹi
≤ p

}
The equivalent optimization problem is a convex optimization problem. We relax the problem by
dropping the non-negativity constraint:

min

{
−

p∑
i=1

log(yi) :

p∑
i=1

yi
ỹi
− p ≤ 0

}
.

The KKT optimality conditions of the relaxed problem are as follows,1

1

yi
− λ

ỹi
= 0 ∀i ∈ {1, . . . , p}

λ

( p∑
i=1

yi
ỹi
− p

)
= 0

p∑
i=1

yi
ỹi
− p ≤ 0

λ ≥ 0

where λ is the dual variable associated with constraint
∑p

i=1

yi
ỹi
− p ≤ 0. It is evident that the2

KKT conditions are satisfied by setting y = ỹ and λ = 1. This implies that the strictly positive ỹ3

is optimal for both relaxed and not-relaxed problems. □4

Proposition 2 is generic and holds for any arbitrary value of p. Specifically, it states that
when working with right-angled triangles in higher dimensions, the hypotenuse can be stated as∑p

i=1

yi
ỹi

= p. Thus, if we aim to discover a feasible point with a higher value for the multiplicative

objective function compared to the one corresponding to ỹ, denoted as
∑p

i=1 ỹi, it is necessary to
search beyond the boundaries of the triangle. In simpler terms, the condition Thus, if we aim to
discover a feasible point with a higher value for the multiplicative objective function compared to
the one corresponding to ỹ, denoted as

∑p
i=1 ỹi, it is necessary to search beyond the boundaries of

the triangle. In simpler terms, the condition

p∑
i=1

yi
ỹi

> p

needs to be included as a cut in the criterion space. This precise step is carried out in Line 8 of5

Algorithm 1.6

3.2. Feasibility Pump Operation7

Our proposed feasibility pump operation resembles the classical approach used for single-8

objective integer linear programs. If the problem is feasible, the method operates on two solutions:9

x̃ and x̃I . The former is a feasible solution for the LP-relaxation, x̃ ∈ XR, that may not be an10

integer solution, i.e., x̃I /∈ Bnb ×Rn
c , while the latter is an integer solution, i.e., x̃I ∈ Bnb ×Rn

c , that11
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Algorithm 2: FeasibilityPump
(
R(Y)

)
1 (x̃, ỹ) = argmax

{∑p
i=1 yi : (x,y) ∈ R(Y)

}
2 if x̃ = null then
3 Terminate ← True

4 else
5 Terminate ← False

6 x̃I ← Round(x̃)

7 while Terminate = False & time < SearchTimeLimit do
8 if x̃j ∈ B for all j ∈ Nb then
9 Terminate ← True

10 else
11 (x̃, ỹ)← argmin

{∑
{j∈Nb: x̃I

j=0} xj +
∑

{j∈Nb: x̃I
j=1}(1− xj) : (x,y) ∈ R(Y)

}
12 if ∃ j ∈ Nb such that Round(x̃j) ̸= x̃I

j then

13 x̃I ← Round(x̃)

14 else

15 x̃I ← Flip(x̃I)

16 return (x̃, ỹ)

may not be feasible for the LP-relaxation, i.e., x̃I /∈ XR. Through iterative updates, the feasibility1

pumping method aims to minimize the distance between x̃ and x̃I , ultimately seeking an integer2

feasible solution. Algorithm 2 shows the details of the proposed feasibility pump approach.3

The algorithm initiates by solving max
{∑p

i=1 yi : (x,y) ∈ R(Y)
}
, aiming to obtain the initial4

solution x̃ and its corresponding criterion space representation ỹ (Line 1). This optimization5

problem exhibits linearity and can be efficiently solved, as it has a relaxed feasible set compared6

to the MMP and employs a summation objective function instead of multiplication. Notably,7

based on the principles of multi-objective optimization, the summation objective function always8

yields a Pareto-optimal solution for any given feasible set, which aligns with the nature of the9

multiplicative objective function as well. Moreover, a beneficial relationship exists between any10

MMP and its counterpart in summation-objective optimization, enabling the computation of a11

dual/upper bound for the corresponding MMP. For instance,
(∑p

i=1 ỹi
p

)p
serves as a dual/upper12

bound for its corresponding MMP, i.e., max
{∏p

i=1 yi : (x,y) ∈ R(Y)
}
. It is noteworthy that13 (∑p

i=1 ỹi
p

)p
holds intuitive meaning in Cooperative Game Theory, signifying that in an ideal scenario,14

each player’s share/utility should precisely match the average of the maximum attainable total15

benefits. This claim can be proven using the well-known “inequality of arithmetic and geometric16

means” [25].17

In the proposed feasibility pump approach, the algorithm first checks if it is possible to find a
possibly fractional solution (x̃, ỹ) by solving the summation optimization problem. If the problem
is infeasible and returns ‘null’, the search is immediately terminated (Lines 2-3). Otherwise, the
algorithm proceeds by rounding x̃ to obtain an initial integer but possibly infeasible solution x̃I

(Lines 4-6). The rounding operation is only applied to binary variables and not continuous variables.
Next, the algorithm iteratively minimizes the distance between x̃ and x̃I in order to approach an
integer feasible solution (Lines 7-15). The algorithm terminates if an integer feasible solution is
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found, indicated by x̃j ∈ B for all j ∈ Nb (Lines 8-9), or if the time limit is reached (Line 7). During
each iteration, a new x̃ and its corresponding image ỹ are computed by solving an optimization
problem that seeks to minimize the sum of variables that differ from the current x̃I in terms of
binary values. This is achieved by solving the following optimization problem (Line 11):

min
{ ∑
{j∈Nb: x̃I

j=0}

xj +
∑

{j∈Nb: x̃I
j=1}

(1− xj) : (x,y) ∈ R(Y)
}
.

If rounding the new x̃ results in a solution different from the current x̃I , rounding is applied1

to generate a new x̃I (Lines 12-13). Otherwise, some components of the current x̃I are flipped2

according to the classical flipping procedure described in Fischetti et al. [14]. A random selection is3

made between 0.5v and 1.5v binary variables, and their values are flipped in x̃I , i.e., if the selected4

component’s value is zero, it is changed to one, and vice versa (Lines 12-13). It is important to5

highlight that the parameter v is defined by the user. In this research, we fine-tuned and established6

its default value as 10, aligning with the value employed in Fischetti et al. [14]. Similarly, the7

parameter SearchTimeLimit, also user-defined, underwent tuning in our computational analysis,8

leading to its configuration as log(m+n)
4 .9

4. Computational study10

In this section, we conduct a computational study using IBM CPLEX 22.1. Note that CPLEX11

is used both in our proposed algorithm when solving linear programs and also for solving mixed-12

integer SOCP reformulation of MMPs for showing the quality of the solutions found by our proposed13

algorithm. We use Python for implementing our proposed algorithm and running all experiments14

in this section. All our computational experiments are conducted on a Dell PowerEdge R360 with15

two Intel Xeon E5-2650 2.2 GHz 12-Core Processors (30MB), 128GB RAM, the RedHat Enterprise16

Linux 7.0 operating system, and using a single thread. Also, a time limit of 1200 seconds is imposed17

for solving each instance for all algorithms. All our instances and our Python source codes can be18

found in https://github.com/Ashim-Khanal/MIMMPs.19

In this computational study, a total of 270 instances are employed. To generate challenging20

instances, we adopt a similar procedure as detailed in existing literature (e.g., [27]). We fix the21

values of nc = 0.2n and nb = 0.8n. The instances are categorized into three main classes, distin-22

guished by their p values from the set {3, 4, 5}. Each of these classes encompasses nine subclasses,23

which further differentiate instances based on the dimensions of the matrix Am×n. Within each24

subclass, we generate 10 instances at random. Our parameter settings involve considering different25

values of n from the set {2000, 3000, 4000}, where m is defined as m = αn, with α taking on26

values from the set {2, 2.5, 3}. As a result, our smallest subclass corresponds to 2000× 4000, with27

n = 2000 x-variables and m = 4000 constraints tied to x-variables. Conversely, our largest subclass28

corresponds to 4000×12000, with n = 4000 x-variables and m = 12000 constraints associated with29

x-variables.30

We establish a sparsity level of 50% for matrix A, denoted as sA := 0.5. Entries of matrix A31

corresponding to ‘binary’ variables are randomly selected from the discrete uniform distribution32

[1, 30], while entries associated with ‘continuous’ variables are drawn from the discrete uniform33

distribution [−10, 30]. For vector b, its components are chosen randomly from the discrete uniform34

distribution [nsA, 10nsA], where nsA signifies the anticipated count of non-zero elements in each row35

of matrix A. Matrix D is also characterized by a sparsity of 50%, with entries in row i ∈ {1, . . . , p}36

9
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being randomly sampled from the discrete uniform distribution [−10i, 10i]. It is worth noting that1

each row corresponds to a linear function that defines a y-variable.2

To guarantee the complexity of the instances, we introduce conflict into the y-variables. Specifi-3

cally, when deciding to assign a non-zero value to an entry located at row i ∈ {1, . . . , p} and column4

j ∈ N of matrix D, we analyze the historical distribution of positive and negative values in column5

j across previously generated rows of D. If the count of positives (negatives) surpasses the count6

of negatives (positives), we ensure that the entry’s value in row i ∈ {1, . . . , p} and column j ∈ N7

becomes negative (positive). In instances of a tie, no limitations on the sign are imposed. Lastly,8

to ensure non-negativity in each objective function, we stipulate that the elements of vector d lie9

within the range [|Li|, 100|Li|+ 10], where Li is the sum of absolute values of negative coefficients10

in row i. We randomly draw components for d from the mentioned discrete uniform distribution.11

Table 1: Performance comparison for Class p = 3

Subclass
SOCP-Solver Proposed Approach

Time (sec.) Gap (%)
Without Cuts With Cuts

(m× n) Time (sec.) Gap (%) Time (sec.) Gap (%)
4,000 × 2,000 398.8 0 4.5 5.1 14.2 0.8
5,000 × 2,000 756.2 0 5.6 6.2 19.1 1.2
6,000 × 2,000 839.4 0 23.6 4.0 41.9 1.7
6,000 × 3,000 825.0 0 9.8 6.0 32.8 1.6
7,500 × 3,000 1,095.1 40 11.8 5.0 35.5 1.5
9,000 × 3,000 1,200 100 113.5 4.2 186.4 1.4
8,000 × 4,000 1,200 90 18.2 7.0 61.4 1.6
10,000 × 4,000 1,200 100 22.3 6.3 71.0 1.5
12,000 × 4,000 1,200 100 206.4 5.2 279.5 2.9

Table 1-3 presents an in-depth performance comparison between our proposed method and12

the SOCP-Solver. The values in each row of these tables represent averages across 10 instances.13

Note that when the SOCP-Solver successfully solves an instance within the specified time limit, it14

provides an optimal solution and its optimal objective value. If not, it is capable of reporting an15

upper bound (i.e., dual bound) for the optimal objective value in addition to the best solution that16

it has found. In either scenario, the SOCP-Solver aids us in calculating the optimality gap for our17

proposed approach. Consequently, we can leverage the SOCP-Solver’s findings to demonstrate the18

efficacy of our proposed method. To underscore the significance of the cuts in our approach, we19

present the outcomes of our method under two distinct settings: ‘With Cuts’ and ‘Without Cuts’.20

The ‘With Cuts’ configuration corresponds to the complete implementation of Algorithm 1. On21

the other hand, the ‘Without Cuts’ configuration involves executing only one iteration of the main22

loop (Lines 3-10) within Algorithm 1.23

The results in the tables reveal that the performance of the SOCP-Solver is primarily influenced24

by the number of decision variables, i.e., n. Notably, the parameter p has a minor impact on its25

performance. When dealing with a small number of decision variables, the SOCP-Solver effectively26

produces optimal solutions within the imposed time limit. However, as the number of decision27

variables increases, the SOCP-Solver’s performance experiences a steep decline. It not only fails to28

yield optimal solutions within the time limit but also struggles to generate solutions of high quality,29

with an optimality gap approaching 100%. On the contrary, our proposed heuristic approach swiftly30

produces nearly optimal solutions, accomplishing this within a fraction of the allocated time limit.31

Comparatively, the ‘Without Cuts’ setting exhibits a speed improvement of up to four times, but at32

the expense of solution quality, which can be up to six times worse than those obtained under the33

‘With Cuts’ setting. This contrast underscores the pivotal role that the generation of high-quality34

10



Table 2: Performance comparison for Class p = 4

Subclass
SOCP-Solver Proposed Approach

Time (sec.) Gap (%)
Without Cuts With Cuts

(m× n) Time (sec.) Gap (%) Time (sec.) Gap (%)
4,000 × 2,000 442.1 0 5.4 4.8 16 1.6
5,000 × 2,000 472.8 0 6.7 4.2 19.1 1.1
6,000 × 2,000 922.8 0 8.0 4.0 23.4 0.8
6,000 × 3,000 657.2 0 10.5 5.2 40.5 0.9
7,500 × 3,000 999.6 10 13.7 5.3 48 1.2
9,000 × 3,000 1,087.8 80 16.4 3.5 44.3 0.7
8,000 × 4,000 1,150.2 90 19.5 4.5 66.5 0.7
10,000 × 4,000 1,200 100 25 5.5 84.2 1.3
12,000 × 4,000 1,200 100 30.7 3.9 100.8 0.7

solutions through cuts plays in our approach. In a broader context, our observations underscore1

the capability of the proposed heuristic approach to consistently generate solutions with an average2

optimality gap of 1.5%, even for the largest values of n and p.3

Table 3: Performance comparison for Class p = 5

Subclass
SOCP-Solver Proposed Approach

Time (sec.) Gap (%)
Without Cuts With Cuts

(m× n) Time (sec.) Gap (%) Time (sec.) Gap (%)
4,000 × 2,000 408.2 0 5.5 4.3 16.6 1.3
5,000 × 2,000 682.6 0 6.7 4.3 19.9 1.4
6,000 × 2,000 865.9 0 8.0 3.3 22.0 0.7
6,000 × 3,000 857.2 0 11.2 3.8 35.2 0.6
7,500 × 3,000 1,160.1 40 14.2 4.5 44.0 1.1
9,000 × 3,000 1,200 100 17.5 4.0 35.2 1.0
8,000 × 4,000 1,118.5 80 20.3 3.9 57.0 1.0
10,000 × 4,000 1,200 100 26.9 5.2 80.2 1.8
12,000 × 4,000 1,200 100 32.5 3.7 83.7 0.8

5. Final remarks4

In this study, we proposed the first custom-built feasibility pump-based heuristic approach for5

solving MMPs. A notable attribute of our proposed method lies in its generality which makes it6

applicable for solving various MMPs as long as mathematical formulations are provided by users.7

By transforming the non-linear objective function of the MMP into a linear form, our approach8

applies the problem-solving process within the criterion space of its multi-objective optimization9

counterpart. Through the integration of criterion-space-oriented cuts, the method iteratively navi-10

gates towards high-quality solutions. We showed efficacy of our approach through a computational11

study, demonstrating its rapid ability to yield high-quality solutions.12
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