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AsstrACT. The nonconvex second-order cone (nonconvex SOC for short)
is a nonconvex extension to the convex second-order cone, in the sense
that it consists of any vector divided into two sub-vectors for which the
Euclidean norm of the first sub-vector is at least as large as the Euclidean
norm of the second sub-vector. This cone can be used to reformulate non-
convex quadratic programs in conic format and can arise in real-world
applications. In this paper, spectral scalar and vector-valued functions
associated with the nonconvex SOC are defined analogously to the cor-
responding functions associated with the convex second-order cone. We
present several inequalities and key properties of the nonconvex SOC-
related functions. The results in this paper are useful for developing and
analyzing solution methods for solving optimization problems over the
nonconvex SOC and their complementarity problems.
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1. INTRODUCTION

The purpose of this paper is to introduce functions associated with the
nonconvex second-order cone (nonconvex SOC for short) and study their
properties. The (m + n)-dimensional nonconvex SOC is defined as [1]

=i

(1) R {x - ["] eR"xR": ]| > ||x||},

where ||-|| denotes the standard Euclidean norm. In (1), when m = 1 and
% > 0, the nonconvex SOC reduces to the well-known convex SOC

gl 2y =Y e RxR": %> |1%)|}.
+ x

The nonconvex SOC can be used to reformulate classes of nonconvex
programming problems in conic format, such as nonconvex quadratic pro-
gramming and nonconvex quadratically constrained quadratic program-
ming [1]. The cone can also arise in real-world applications, such as facility
location problems when some existing facilities are more likely to be closer
to new facilities than other existing facilities. In [1], we introduced and
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studied the nonconvex SOC IR(+m’") from an algebraic perspective. More

specifically, we extended many algebraic properties that previously existed

in the frame of the convex SOC to the frame of the nonconvex SOC.
Analogous to the special case, the convex SOC &'*1, our definition of

the vector-valued functions related to the nonconvex SOC ]R(j”'”) is based

on the spectral decomposition of vectors x in the ambient space of ]R(;”'"),
which we denote as R"". Let f be any function ranging from R to R.
By applying f to the eigenvalues in the spectral decomposition of x with

(m,n)

respect to R/, one can assign an associated vector-valued function fR+

on R If f is only appointed to a subset of R, flR(:]'") is described in
the corresponding subset of R""). Sun and Sun [2] referred to the vector-
valued function associated with the Euclidean Jordan algebra of E"*! as the
“Lowner operator” in honor of Lowner Karl’s significant contributions in
connection with this vector-valued function.

The particular structure of the nonconvex SOC allows for a deep analysis
of the properties associated with its functions. In this paper, we provide
the spectral scalar functions related to the nonconvex SOC and demonstrate
their properties and inequalities. Then, we describe the vector-valued func-
tions associated with the nonconvex SOC and point out some of their in-
triguing characteristics. We also verify and analyze the differentiability of
the vector-valued functions associated with the cone. We then show that the
Fréchet differentiability property of f R s inherited by the corresponding
real-valued function f. The importance of the study in this paper stems
from the fact that the nonconvex SOC-related functions can be employed in
developing solution methods for solving optimization problems over the
nonconvex SOC and their complementarity problems.

The paper is organized as follows. In Section 2, we introduce some
notations and review some notions and concepts from the algebraic study of
the nonconvex SOC carried outin [1]. In Section 3, we present spectral scalar
functions associated with the cone and prove some of their key properties.
In Section 4, we introduce the vector-valued functions corresponding to the
nonconvex SOC and prove some of their key characteristics. The conclusion
is made in Section 5.

2. REVIEW OF THE ALGEBRAIC STRUCTURE OF THE NONCONVEX SOC

In this section, we will briefly recall some key results and traits that
will be useful for the rest of our work. We will not seek to be exhaustive.
Developments on the subject can be found in [1]. To start with, we introduce
some notations. Most notations we employ are standard, but for the entirety,
we give a quick description before we start in earnest.

We bring to the attention of the readers that our notations closely follow
those of [1]. We review a few basic results concerning the algebraic structure
of R In this paper, we look at a Euclidean vector space (in plain English,
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we mean a finite-dimensional real vector space equipped with a standard
inner product symbolized by (-, -) and the induced norm expressed by |||| ).
When joining matrices and vectors in a row, we use the symbol “,", and
when joining them in a column, we use the symbol “;". Therefore, we obtain
(T, y"T = (x; y) for the column vectors x and v.
Let m, n be positive integers. By R we mean the (m + n)-dimensional
real vector space R™ X R" equipped with a standard inner product. That is,

R £ {x = (£;%) : £ € R", % € R"}.
The open set
int R 2 [x ¢ R - [1#] > |l

represents the interior of the nonconvex SOC JR(;”'").

For a real number a € R, we express a* = max{a, 0}. For a vector x € R",
we denote |x| = ([x1];. . .; |xnl), i.e., x| is the vector x with every ith coordinate
is replaced by |x;].

Let x € R If £ = 0, the element £/ ||#]| is considered to be any vector
in R" of Euclidean norm one. Similarly, if ¥ = 0, the element ¥/ ||¥|| is
regarded to be any vector in IR"” of Euclidean norm one. For x € R, we
define x/|x| = sgn(x), where sgn(x) = 1if x > 0, sgn(x) = -1 if x < 0, and
sgn(x) = 0if x = 0.

In R, each vector x is associated with a crane-shaped matrix, Crn(x),
which is defined as [1]

. X _
%] L, TxT
(1]

x( i ) 1211 L,
El

Note that, the symmetric matrix Crn(x) is positive definite (and hence in-
vertible) iff x € int IR(J:”’") . Itis not hard to verify that

Crn(x) =

1
5 (Crn(x)y + Crn(y)x) =x© y, ¥ x, y € R™",

where the product @ : R » R — ROMM) g defined as [1]
anllall o T £ ¥
[1%] + %7 — +
( ”y” y) 12 |

y
T2 g ( Ti)
|hH+x“ﬂJy+| |+y|m|x

(2) X0y = =
[ ’

The product “@" in R is not bilinear, but it is commutative.
The fact that we can specify the eigen-decomposition of any element
x € R makes the algebraic structure (R"""), ®) so appealing. Associated

with the nonconvex SOC ]Rim’"), each x € R" can be factorized as
3) x = A1(x)er(x) + Az (x)ea(x),
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where, for i = 1,2, Adi(x) 2 ||#]| + (=1)*!||%|| are termed the eigenvalues
of x, and c;(x) = %(32/ 1]l ; (=1)"*1%/ ||%||) are termed the eigenvectors of x.
The factorization in (3) is called the spectral decomposition or spectral
factorization of x [1]. The determinant and the trace of x are defined in
terms of the eigenvalues as

det(x) = A1 (x)A2(x) = 8l — ||, and trace(x) = A1(x) + Aa(x) = 2%,
respectively. We have the following lemma [1].

Lemma 2.1. For any x € R, its eigenvalues A1 (x) and Ao(x) and eigenvectors
c1(x) and c3(x) have the following properties:

(i) A1(x) and Ao(x) are nonnegative (respectively, positive) iff x € ]R(;”'”) (respec-
tively, x € int IRS:”’")).

(ii) A1(x) and Ay(x) are eigenvalues of Crn(x). Moreover, if A1(x) # Ax(x) then
each one has multiplicity one; the corresponding eigenvectors are c1(x) and
c2(x). Furthermore, the remaining m + n — 2 eigenvalues of Crn(x) are |||
when x # 0.

(iii) c1(x) and co(x) have length 1/ V2 and are orthogonal with respect to the
multiplication “®". That is, |lc1(®)|| = lle2(x)l| = 1/ V2 and ¢1(x)©ca(x) = 0.

(iv) c1(x) and ca(x) are idempotent under the product “©”, i.e., cf(x) = ci(x) ©

ci(x) = ci(x) for i = 1,2. More generally, cf(x) = c¢(x), for any positive

integer p.
Let x € RO"M), Using Lemma 2.1, one can show that
(4) ¥ = (e ) + @)’ = A3@er(x) + AE)ea(x),
and, more generally, that
©) ¥ = (hi(@)er(®) + a(x)e2(x) = A (¥)er (x) + Af(x)ea(x),

for any nonnegative integer p. For a formal proof of (5), see the proof
of Lemma 4.1 in [1]. From (5), for any positive integer p, it is clear that
Ai() = AP(x) fori=1,2.

The product “®" in R"" is power-associative. Thatis, x® y = y ® x and
¥’ @ x1 = ¥’*1 for any positive integers p and g. It is also worth noting that
the product (2) is not generally associative.

3. SPECTRAL SCALAR FUNCTIONS ASSOCIATED WITH THE NONCONVEX SOC

In this section, we present with proofs key properties of the spectral scalar
functions associated with the nonconvex SOC.

The result in the following lemma for the nonconvex SOC generalizes
that in [3, Lemma 2] for the convex SOC.

Lemma 3.1. Let x,y € R have eigenvalues A1(x), A2(x), and A1(y), A2(y),
respectively. Then

|Nix) = Ai(y)| < V2 jx -y

,1=1,2.
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Proof. Letx = (£%),y = (; ) € R"™". Using the triangle inequality and

the fact thata + b < /2(a? + b?), for any two real numbers a and b, we have
@) - )| = |1+ 1= g - (9]

(1t = []) + (= — [}

IANIN

1l — || )| + [l - |7
& -9 + |z -7
o
< ‘ﬁ(ilx—yll +||x—y||) = V2[x-y].

An analogous argument can be made for |/12(x) - Aa(y)|,
result follows. O

Below, we prove more basic properties of the trace, determinant, and
eigenvalue functions associated with the ambient space of the nonconvex
SOC.

Theorem 3.2. For any x,y € R"™", we have

(i) |11 = )|+ [120) - 22| < 2 (il + ||y||)2.
(ii) Alz(x)?\z(yz) + A1(y)Aa(x) < A1(0)A1(y) + Az (x)A2(y).
AT() + A3) (A )\ (Ailx) - Aj(x)\?
A _(Al(x)”f(x)) :(—Al(x)z)\](x)) ,forij=1,2.

(iii) > >

Proof. Letx = (%;%),y = () € R have eigenvalues A1(x), A2(x), and
A(y), A2(y), respectively. We prove the theorem item by item.

(i) The proof is a simple chain of obvious equalities and inequalities:
@) = @) + 2@ = @) = (@) — @) + (Aa@) - Ax(y))®
= (Il + 1 all)” -+ (1l - 1l - [l9]] + [|a)°
(lxll )"+ 21t ) 11— ) + e~ )
+ (1l - ||y||) 2(lkl - ||y||>(||y|| ) + (| - i)
2(( nxu—||y||><uxu—||y||+||y||—uxu> (1 - 19"
2(J1P - A| + 151?21 ] + a1
2| il - 20l }a])
2(||x||2 + ||y|| +2(%, ) + 2%, y))
= 2P + [l + 2% )

~2ffer gl < 2(el + o)

Note that the first inequality follows from the Cauchy-Schwartz in-
equality, and the second one from the triangle inequality.

Jad]

IA
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(ii) An easy computation shows that

@A) + @A) = (=i + 1 (7] - [71) + (19 + [7]]) Qi - e
21 9] - et
2(jst 1]+ 1 | ]
(lklt + 1=l (|| 31] + 1|7]]) + et = ey ([} a]] - || 3])
= @Ay + A2x)A2(y).
(iif) We verify the identity in item (iii) for i = 1 and j = 2, and obtain the
other cases similarly. We have

ﬁw+@@_FMHM®2

IA 1l

¥

2 2
:mw+MW+mw—ww_ww+mwww—wW
2

_ IRIE -+ 20+ I + DRI = 2 W o
= 1P + 111" — 211
= |l ,
:“mﬂw4w+wf: M) — Ao()

2 2 )

The proof is complete. O

Lemma 3.3. Forany x,y € R™™ we have
(i) 2trace(x)||x|| = A%(x) - /\%(x).
(ii) (trace(x + y))2 < (trace(x) + trace(y))2.

Proof. Let x, y € R0™™.
(i) Note that

A2(x) = A2(x) (%I + N1l = (11— [1=11)* ,
(112 + 2 (2] &) + [12]1* — [12]1* + 211%]] [1%]] - |12

4|%(HIxll = 2trace(x) [|%|.

(ii) Itis enough to show that
(trace(x + y))2 — (trace(x))? — (trace(y))2 < 2trace(x)trace(y).
Using the Cauchy-Schwartz inequality, we have

)" - @2 - (2

)

(trace(x + y))2 — (trace(x))* — (trace(y))2 = (2
PN ~12 n 12

= 4|2 + 8(%, 9) + 4|9 - 41%17 - 4|y

=8(%,9) < 8l1&ll||9]| = 2trace(x)trace(y).

£+ g
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Lemma 3.4. For any x € R"", we have
(i) Il = (13 + 3@).
(ii) |Ix* = Ltrace(x?).
(iii) ¢l 2 & (A2(x) - A2()).
(iv) ||xl* < L(trace(x))?, provided that x € R,
@) |xl* = det(x).
Proof. Let x = (£;%) € R, We prove the lemma item by item.
(i) We have

A2(x) + A2(x) = (&1l + 1=l + (1)l — [1%1])?
= |RIP + 2 1l 17| + (1= + (1217 — 2 1%]] 1%]] + |12
= 2(|I=I + 1#7) = 21k

as desired.

(ii) Note that

= (Tun )

x
Tx A
[ad]

(iii) From item (i) in Lemma 3.3, we get

Consequently

trace(x?) = =2|lxll?.

23(x) ~ A2(x) = 2trace(@) ||l = 41l el < 2(JRIF + [1€IP) = 2P
(iv) Ifx € ]Rim’") then A1(x), A2(x) > 0. It follows that
1
|lxl* = —(/\2(X) +A5(%)) < (/\1(X) + Aa(%))? = (’frélce(X))2

(v) We have ||x|% = [|#]% + 1€ > 12l - ||I%]% = det(x) as desired.

The proof is complete. O

Theorem 3.5. For any x,y € R, we have

(i) trace(x) > 2 +/det(x).
(ii) A1(x) + A1(y) < trace(x) + trace(y).
(iii) A1(x)A1(y) < trace(x)trace(y).
(iv) det(x + y) — det(x) — det(y) < trace(x)trace(y).

(©) (Mx+)* = (M) = (A(y))* < (trace(x) + trace(y))™.
(vi) (Aa(x+ y)) — (Aa(x))? - (AQ(y)) > 1 (trace(x) + trace(y))

Proof. Letx = (%), y = (#; §) € R”"". We prove the theorem item by item.
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(i) Note that A1(x), A2(x) > 0, hence

trace(x) = Ai(x) + Ax(x)
> 24A1(0)A2(x) = 2+/det(x).
(i) We have
M) +M(y) = IRl + (I + ||| + ||y
<RI+ NI+ (1] + |9
= 2||:2||+2||g = trace(x) + trace(y)
as desired.
(iii) We have
MMy = =1+ =) ([l9]] + [|7])
< 4||92||||9|| = trace(x)trace(y)
as desired.

(iv) Applying the Cauchy-Schwartz inequality and using the fact thatx, y €

R, we get

det(x + y) — det(x) — det(y)

=+ 9l - lle+ gl - (1® - 1e1R) - (1" - la1”)

— 5 + 265, =269 = ol = 1417 + P - "+ ol

= 2<52/ }” - 2(32', g)

< 21| 1] +2 el | 7]

< 4|%||{|g|| = trace(x)trace(y).

(v) The result follows from a straightforward series of equalities and in-
equalities. The first inequality below follows from the fact that 2ab <
a% + b? for any a,b > 0, the second one follows from Cauchy-Schwartz

inequality, the third one follows from the fact that x, y € 1R(+m'”), and
the fourth one follows from item (i).

(M(x +9)* = (L®)? - (M)
= (le-+ 9+ e+ 9l - o+ 1m0 (gl + )
Ih+ﬂ|+ﬂh+th+ﬂLﬂh+ﬂ|—mW—zmmmrme

~[lal* - 2llg] 1ol - |JolI
—ﬂny>+ﬂh+y”x+y“+ﬂxy> 2 |1&1! 1l -

szwﬂth+ﬂ|+W+ﬂ|+xxm 2|1%]! 1%l -

=2 |3 |19l
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<420 ||g]] + 1P + || ] + 4 121 || 3] + 112 + |7 - 20212 - 2|3

= 8 2l|g] + (412 - 11?) + [l - 1)
= 2trace(x)trace(y) + det(x) + det(y)

1 1
< 2trace(x)trace(y) + 1 (trace(x))* + 1 (trace(y))2
< 2trace(x)trace(y) + (trace(x))* + (trace(y))2
= (trace(x) + trace(y))2 .
(vi) The first inequality below follows from the fact that —2ab > —a% - b?

for any a,b > 0, the second one follows from the fact that x, y € ]Rim’”),
the third one follows from item (i), and the fourth one follows from
the fact that a® + b* < (a + b)* for any a,b > 0.

(Aaox + y)* - (Az(x))i ~ (Aa(y))? ,
= (e + 9] ~[le + ol — izt = ey” ~ (o] - 1)
=g+ 9| - 2|+ 9| [|= + 7] + [[= + 7] — 121> + 2 0 121l - 1121

~lal* -+ 2|jal 7] - 171
= 2%, ) = 22 + 9| [le + g + 2% 7) + 2001121 + 2| 3] 9]
> 2%, 9) = [}& + 9" = e+ 9" + 265, 9) + 21021+ 2 ] | ]
= —11RIP = |9]" — 1= = ||g]l” + 20l =l + 2 9] || ]
> — ((we? - e?) + (sl - NaI”))
= — (det(x) + det(y))

\%

—% ((’crac:e(x))2 - (trace(y))z) > _411 (trace(x) + (’cracey))2 .

The proof is complete. O

The results in the following lemma for the nonconvex SOC generalize
the corresponding ones in Chen [4, Lemma 3.1] for the convex SOC.

Lemma 3.6. For any x, y € R™", we have

2
(0 (trace(x) 42- trace(y) N ”?“) > trace(x) (trace(y) 4 ||?||)

2
(i1) (trace(x) Ztrace(y)) - ||]?||2 > 2trace(x) /det(y).

(i) trace(xltrace(y) — 11l |[7] > vdet(x) det(y).

2
(i) (@) Ztrace(y)) —|le+ 9| = 4 /det() det(y).
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Proof.

(i) The desired inequality follows by noting that

(trace(x) + trace(y
2

2
) + ||y||) — trace(x) (trace(y) +2 ||g||)

2 2
_ (trace(®))” + (trace(y))* | trace(x)ztrace(y) N ”?”2 & trace(®) (7] = trace(y))
+trace(y) U;“
(trace(x))* + (trace(y))? B trace(x)trace(y)

= + ||37||2 F trace(x) ||]7||

2
+trace(y) ||yT4“

2
_ (trace(x) ; trace(y) - ||y||) > 0.

(ii) The firstinequality below follows from the inequality of arithmetic and
geometric means (AM-GM inequality for nonnegative real numbers,
which is applied on trace(x) and det(y); we point out that det(y) is
nonnegative because y € ]Rim’")), and the second one from item (i) of
Theorem 3.5.

(trace(x) + trace(y))® | 2

7 ol
((trace(x))2 + 2trace(x)trace(y) + (trace(y))z) - ||y||2
racz(x))2 N trace(x)trace(y) N 9”2 B ”17”2
(trace(x))? trace(x)trace(y)

= Fdet(y) +

> trace(x) y/det(y) + trace(x)ztrace(y) > 2trace(x) v/det(y).

1
4
(t

(iii) The desired inequality follows by noting that

2
(trace("face(y) ~ el IIyII) - det(x) det(y)
_ (trace(x)*(trace(y))? _ trace(trace(y) el [lg| o
_ i - — . + 1%l | 7]
- (1512 = 1?) (19" - 1)
_ (race))*(trace(y)? _ tracetrace) g oo oo

2

+ 1% |9
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B (trace(x))?(trace(y))? trace(x)trace(y)llfll||y|| (trace(x))?(trace(y))?
- - - 16

16
2 |51 2 11112
 (race@? [[g]"  (trace(y)? |

4

(trace()? g trace()trace(y) Il 3] (trace(y))? I
= ) 7 - ; + 1

=1 (trace(x) ||y|| — trace(y) IIXII) > 0.

(iv) The first inequality below is obtained from the AM-GM inequality
(which is applied on det(x) and det(y); they are both nonnegative
because x,y € ]Rfrm’”)), the second one is obtained from the Cauchy-
Schwartz inequality, and the last inequality is due to item (iii).

(trace(x) + ’crace(y))‘2 o
1 - e+ 3l

_ i ((trace(®))? + 2trace(¥)trace(y) + (trace(y))?) - I - 2%, 7) — ||

= det(x) + det(y) + 2

trace(x)trace(y)

1 ) - 2%, i)

trace(x)trace(y) o
4 ) - 2<xr y>

> 2 y/det(x) det(y) + 2 (trace(xltrace(y)) ~ 2|kl [|7]]

2 3T ey + 2 (trace(xltrace(y) 1l ||9||)

> 2 4/det(x) det(y) + 2 y/det(x) det(y) = 4 +/det(x) det(y).

The proof is complete. O

> 2 4/det(x) det(y) + 2

4. VECTOR-VALUED FUNCTIONS ASSOCIATED WITH THE NONCONVEX SOC

In this section, we define the vector-valued functions associated with the
nonconvex SOC ]Rfrm’n) and present some of their remarkable properties.
Definition 4.1. Let n and m be positive integers. For any function f : R — R, we

. . . (m,n) .
define a corresponding vector-valued function fR+"" : R0*" — R0™™ gssociated
with the nonconvex SOC R gs

(©) R @) 2 Fa@)a ) + fha@)ew),
where Ai(x) and c;(x) (for i = 1,2) are the eigenvalues and eigenvectors of x €
RO™M, respectively.

For instance, based on Definition 4.1 (see also (4)), the eigenvalues of
x* are /\%(x) and /\%(x), which are nonnegative, hence X% € IRSrm'") even if
x € IR(’”'”)\]RSrm’"). Conversely, when x € ]Rim’"), we have A1(x), A2(x) > 0,
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and therefore t = /A1(x)c1(x) + A2(x)c2(x) is well defined in ]RE:"’”). In
addition, an intuitive but rigorous computation can show that #* = x (see
the proof of Theorem 4.1 in [1] for a formal proof). Thus x/2 =t e,

7)) 2= (M@ @) + @) = Vi@ ) + Vi (x)e ).
Thus, if x € ]Rim’"), then there exists a unique vector in ]Rim’"), which we
denote by x1/2, such that (x!/2)? = x.

For any x € R"", we have x? € IRSrm’"). Consequently, there is a unique

vector (x?)1/2 ¢ IRErm’”), which we denote by [x|, such that 2% = |x|*. The
following lemma demonstrates that |x| has the same form as in (6).
Lemma 4.2. For any vector x = (%;,%) € R"™", we have |x| = (x*)'/? =
IA1(x)ler(x) + [A2(x)le2(x).

Proof. From (4) and (7), we have that x> = /\%(x)cl (%) + /\%(x)cz(x) and that

x12 = \JA1(x)er(x) + JA2(x)ca(x). Tt follows that

OV = (R2@e @ + 2Eem)
= (Af()2e1(x) + (A3(x))*e2(x)
= [M@lerx) + [2()le2(x) = |xl.
The proof is complete. O

The following proposition stated in the nonconvex SOC setting is the
counterpart of [5, Proposition 3.1] in the convex SOC setting. The proposi-
tion establishes an important property of the vector-valued functions asso-

ciated with IRSrm’").

Proposition 4.3. Assume that f : R — R admits a power series expansion

fla) = Z;‘;O apal for some real coefficients ag,a1,.... Then the corresponding
function R L ROW) — ROV g5 defined in (6) has the power series expansion
(m,n) >
f]R+ (x) = Z apx?, for x € R™M)
p=0

Proof. Note that
R @) = FE)a® + fRa@)er)

= [Z apA? (x)] 1 (x) + [Z a,,A’;(x)J (%)

p=0 p=0
= Z ap (A’;(x)cl (%) + /\Z(x)cz(x)) = Z apx?,
p=0 p=0

where we used (5) to obtain the last equality. O
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The real exponential function exp(a) is commonly represented by the
power series

[0e]

p
exp(a) = Z a—,, Ya e R.
o V-

We, in turn, depending on the result obtained in Proposition 4.3, define
(m,n)
the function exp]R+ (+) on R™™ in this way as in the following definition.

(m,n)

Definition 4.4. The exponential vector-valued function exp®+ " : R"" —s
R s given by

]Rs-m,n) _ = x_P (m’n)
exp (x)—zp!,forxe]R .
p=0
(m,n)
We also define the natural logarithmic function In® " (1) on R ag the

m,n)

unique vector w € R"™" satisfying eprR(+ (w) = x for each x € int ]R(;”'”).

Carefully written definitions can occasionally obscure the main idea,
although they are appealing for their tightness. In these situations, it is
better to use straightforward examples to convey the notion. The following
theorem employs two instances to explain and illustrate the concept of the
functions associated with the nonconvex SOC. The proof of this theorem
requires some technicalities.

Theorem 4.5. Let x = (#;%) € R,

(i) The exponential function exle(fz'n) (x) can be written as

(m,n) x

exp™"”"(x) = exp(ll) (cosh(sl) s sinhl) - ).

o]

.. . . . (m,n) .
(ii) The logarithmic function In®+ " (x) can be written as

(mm) . 0| % I%]] + [1x]] | *
In® (%) = ln( ||X||2—||x||2) —;In o = |
) [ V R

provided that x € int R""",

Proof. Letx = (%,%) € R have the eigenvalues A1>(x) and eigenvectors
c1,2(x).
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(i) Note that

eXP (x) = exp(A1(x))e1(x) + exp(Aa(x))ea(x)

= exp (|IX]] + [1%(]) c1(x) + exp (1% — |%]]) c2(x)

= exp(|I2ll) exp(|lx|[)c1 (x) + exp(]|%]]) exp(— [%]])c2(x)
= exp(|I2ll) (eXp(IIxII)q (x) + exp(~||®|)c2(x))

= exp(ll) (explel) (3) (5 7oz ) + exet= 1 (3) (i~ )

exp(lxl)) % +e><p(—|lxll) x exp(lEl) #  exp(-|ixl) =

- explan 25D g SIS D L SRC D g
— expls ([ SR+ expClih) 2 fexpllel) - exp(-

= explix A2 ”x” ”x”

= exp(|[%[]) (Cosh(llxll)” ”,smh(||x||)m

This proves the first item.
(ii) The proof of this part is constructive. Let x = (%;%) € int IR(m’n) ie.,
|I%[| > ||l¥]|. We show that there is a unique element w e R™ satlsfylng

exp]R(m " (w) = x, which demonstrates that In® v (x) 1s well defined.

Using item (i), w = (@; @) € R"™" satisfies exp™+ (w) = x iff

(8) % = exp(||wll) (exp(”w”) +2eXp(— ||ﬁ’||)) IIZII
and
9) x = exp(|lwl)) (eXp(“w”) _;XP(_ ||w||)) IIZII'

The crux of the formation is highlighted in the following steps,
which are simply implementable. To simplify and make things easier,
let us replace exp(||@||) with a and exp(||@|]) with b. From (8) and (9),

we have
-1 _p1
(10) i =a( ") and et =a( 5.
Now, we solve the two equations in (10) uniquely for a and b. Note
that

(b+b‘1) (b—b‘l)
R _ a +a —~ —
-+ el _ 2 2 ) _ab oy [EIE
0= 1 a(b+b‘1)_u(b—b‘1) ab 1~ R
2 2
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From the first equation of (10), we have a = 2 ||| /(b + b~1), where

1] + |1 1] — {1
&1l — {1 1] + {1

an (VIET+TR) + (VIRT=TRI) 2y

- 7
.‘/Q - j .ﬁ + f s112 =12
NERERERE i — 1

b+b1

and
_— T R
ERENRE R
(12) S EREEESERE) 2 ||

Thus, from (11), we have

A oS 2 ] 2
2080 IRIE - 18P
= = IR - [P

13 a —
(12 211
From the expressions of a and b, it follows that
(14)
A . _ _ x|| + [|x
o]l = In(a) = ln( i - ||x||2) and [l = In(b) = ln(\/”A”—”_”).
[1%]] — [l]l
From (8) and (9), we have
. 2a7 |, __2a7 Ml
(15) w = mx and w = mx

Now, substituting (11), (13) and the expression of ||@|| from (14) for
the respective expressions in the first equation of (15), we get

21n(\/||ae||2 - ||x||2) N .
&= 1n( VI - ||x||2) =
2118l P - [

Similarly, substituting (12), (13), and the expression of ||@|| from (14)
for the respective expressions in the second equation of (15), we get

IR+ 1=\ o2 oo
1n( Ll ad 4 B R [ R
121l — [|] i ( ||x||+||x||]
X¥=1n
2|1l AIEI2 - [l%I

w =

x
il

1] — {1



16 LILIA BENAKKOUCHE AND BAHA ALZALG

Given this, the explicit form of ln (x) can be written now as

(m,n)
In®"(x) = (w,w)

(ln(\/llfllz - ||x||2) ”;E”;ln(1 /H] ﬁ]

The proof is complete. O

Note that from Theorem 4.5, the logarithmic function is well defined
when x € int ]Rim’"). Note also, in view of item (ii), we can immediately

write
ln]R(+m’ﬂ) (x) = ln( det(x)) * In M) X for x € int R"™"
¢ Aa(x) ) IIxll )

|1£1l”

The remaining part of this section concludes a key result that the function

f R associated with the nonconvex SOC inherits the Fréchet-differentiability
property from the corresponding real-valued function f. The work of
Fukushima et al. [5] inspired the idea of determining the differentiability
interpretation of f R They established the Jacobian of the vector-valued
function on the framework of the convex SOC 8’1“. In this part, we derive a

closed-form formula for the Jacobian of the vector-valued function defined
in (6).

Theorem 4.6. Let f : R — R be a real-valued function, and f]R(+m'n) : ROW —s
R be the corresponding vector-valued function as defined in (6). If f is Fréchet-
differentiable, then fR""" is also Fréchet-differentiable at x = (£,%) € R

provided that £ # 0 and X # 0. Moreover, the Jacobian of f]R(+m'n>(-) is given
by

Iy + (r—5s) #41 £ %
Jf]Rs_m/n)(x) _ " ||32||2 ”x” ”x”
) x & dl d sl
WiE e
where
f(i(x)) + f(A2(x)) P f(Ai(x)) — f(A2(x))
/\(x)+/\2x) ’ a A(x) = Ap(x) 7
P fr(Ax) + f '(Az(x)) no- f(hx) - f '(Az(x))
2 2

Proof. Let f be Fréchet-differentiable, and x = (%, %) € R™™" with £ # 0 and
% # 0. By definition, we have fR"”(x) 2 f(A;(x))e1(x) + f(A2(x))ca(x). Note

that ;
jx o1 (1_ &)_
[l [l (Ix|?
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This implies that eigenvectors c¢;(x) and c;(x) are Fréchet-differentiable with
respect to x, with Jacobian

1 (1 aexT)
TAan lim — 7 o5

1 Ll ”f”2 fori=1,2.
2 0O (_1)i+1i (I _ E) ’ ’

RS

Jei(x) =

Furthermore, the eigenvalues A;(x) and A;(x) are also differentiable with
respect to x, with gradients

A

X

Vi) =] Bl | = 26x), fori=1,2.
(_1)z+1i
[E5]

Since f is Fréchet-differentiable, by using the product rule and the chain
rule, we obtain

(m,n)

JFR (x)
= f(A@)er(®) + e1(0) (VA1) + F(Aa()dea(x) + ea(x) (VF(A2 ()T
= f(AE)er(®) + f(Aa(x)dea(x) + e1(x) f' (A (x)) (VA (x)T
+e2(X) f (A2 (x)) (VAo (x))"
1 _T)
I AGTC TR
2 0 L, -

o
[E4] ||%|?

X%

) +2f (Mi(x)er®)er (x)"

L(I _ﬁ)
SR P2

2 1 2T\ |+ 2 (@)oo @)’
@ ——\h-—
il ||x||2)
FA(x)) + f(A2(x)) ( T ;
= 2 I "R
0 f(A1(x) = f(Aa(x)) (1 ) ﬁT)
2|1l " EIP

+2f (M @)er®)er () + 21 (Aa(x)ea(x)ea ().

Note that A1(x) + Ax(x) = 2||%|| and A1(x) — A2(x) = 2||%||. Note also that

aasT A =T
| wE .
Ci(x)Ci(x)T == ||x||_ . __ , fori=1,2.
X X xxT
(_1)i+1 — e

[l (1] |||
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In applying these observations to the expression of Jf RY™ (+), we get

JfR:
f (M(x» + f(A2(x) (I i

(m, n)

@)

_| M@+ A 112
o FAi(®) = f(Aa(x)) (1 oz )
A1 (x) — Aa(x) |1&>
RS T T Al T 1] 1]
2 |z a 2 |_x & wm
N 1= e
fa®) + f(Aa(x) (1 i o
_| M@+ A 5
o FAi(®) = f(Aa(x)) (1 oz )
A1 (x) — Aa(x) 1%

(f (M) +f'(/\2(x))) 22 (f'(M(x»—f’(Az(x))) £ &
A|2

[ 2 T
(f’ (M(x)) - f'(/\z(x))) x 27 (f’(Al(x>>+f'<Az<x>>)fxT
N 2 <[5
)i
_ 11212 |x||2 2] 1]
- x & i ) ﬁ
T T T
sl + (r — )MT X x
_ M II? (1] (1] .
x &' ix' |
h— — dl, + (r - d)—
ENE nt )uxuz

where s, d, r and h are defined in the theorem statement.
This enables the function fIRW) to be Fréchet- differentiable and the de-

sired representation of the Jacobian matrix J f]R (x) is established. The
proof is complete. O

The formula of the differential of vector-valued function may be used as
a springboard for exploring the differentiability in broader contexts, such
as Bouligand or Clarke Jacobians [6].

5. CONCLUDING REMARKS

The vector-valued functions associated with convex second-order cones
were used in solutions methods for convex second-order-cone programs
and convex second-order-cone complementarity problems, and, similarly,
the matrix-valued functions were used in solutions methods for semidefi-
nite programs and semidefinite complementarity problems. Likewise, the
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vector-valued functions associated with nonconvex second-order cones are
expected to be used in solution methods for nonconvex second-order-cone
programs and nonconvex second-order-cone complementarity problems.
In this paper, we have defined and studied the spectral and vector-valued
functions associated with the nonconvex SOC analog to those associated
with the convex SOC. We have presented several important inequalities
and key characteristics of these nonconvex SOC-related functions.

Continuing in this research line, our future work aims to show whether
the vector-valued functions introduced in this paper inherit from the cor-
responding analytical properties of the real-valued functions such as con-
tinuity, Lipschitz continuity, monotonicity and semismoothness. Another
direction to be taken is to develop a heuristic approach based on the alter-
nating direction method of multipliers for solving optimization problems
over the nonconvex SOC, for which the nonconvex SOC-related functions
studied in this paper can play a key role; they can be used to express the
Euclidean projection onto the cone. This highlights the substance of our fu-
ture research papers, which is based on this paper and the methodological
partin [7].
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