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Abstract. Decomposition approaches can be used to generate practically efficient solution algorithms for

a wide class of optimization problems. For instance, scenario-expanded two-stage stochastic optimization

problems can be solved efficiently in practice using Benders Decomposition. The performance of the

approach can be influenced by the choice of the cuts that are added during the course of the algorithm.

The so-called Magnanti-Wong method aims for Pareto-optimal cuts. Cuts based on minimal infeasible

subsystems of a modified version of the sub problem have proven to provide strong cuts. Most recently,

methods using facets of the sub problem’s value function’s epigraph have been developed.

We contribute to the field of cut selection strategies for Benders Decomposition by developing an in-

novative notion of Pareto-optimality, which implies an efficient cut selection strategy. The strategy aims

for cuts that exclude a large set of points from being optimal. We further develop the algorithmic frame-

work to exploit the potential of our cut selection strategy optimally. We benchmark our cut selection

strategy against several other cut selection strategies on various instances. Some instances are taken from

the MIPLib, some others are network design problems, and others are randomly generated mixed-integer

linear programs. The computational results show that the developed method is, measured in CPU seconds

needed to solve a problem to optimality, at least competitive for or better than the benchmark approaches

for all three instance classes, especially, when it is combined as hybrid selection strategy with the minimal

infeasible subsystem cut selection. In addition, the method clearly outperforms the other cut selection

strategies measured in the number of cuts needed to solve a problem to optimality. Hence, the method is

especially effective in situations with scarce memory or with a sub problem that is difficult to solve.
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1. Introduction and Literature Review

Originally published in Benders (1962) and developed for mixed-integer linear programs (MILP or

MIP), the approach named Benders Decomposition (BD) works, on a meta-level, as follows. The vari-

ables of the optimization problem to be solved are separated into two classes, the so-called master variables

and the sub variables. The approach alternately solves two optimization problems, the so-called master

problem and the sub problem. In each iteration, a solution of the master problem is obtained. Fixing the

variables from the master problem to the obtained values, a solution of the sub problem is determined

and a new valid constraint is derived from the dual solution of the sub problem. This constraint is added

to the master problem.

BD is the backbone of various solution methodologies for various optimization problems. It works

exceptionally well, if the sub problem has a separable structure. This means that the sub problem
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represents a collection of smaller optimization problems that can be solved separately (but are coupled if

the master variables are not fixed).

The high practical relevance of the approach is documented by a large number of articles. BD has

been applied to solve a large number of often stochastic optimization problems with the property that

fixing the first stage variable decomposes the problem into independent subproblems. In Baringo and

Conejo (2011) the approach has been applied to maximize profits from wind power investments. This

problem is highly affected by uncertainty, and hence the emerging scenario-expanded optimization model is

decomposed into algorithmically tractable parts. BD can solve the otherwise intractable problem quickly.

In Adulyasak et al. (2015), the approach is applied to solve a variant of the production routing problem

under uncertainty. The scenario-expanded model, that is in practice difficult to solve due to its size, could

be decomposed into smaller pieces, and the authors report the successful solution of instances of realistic

size, and considerable speedups of BD in comparison to standard methods. The authors also report on

several algorithmic improvements like lower-bound lifting inequalities, Pareto-optimal cuts (in the sense

of Magnanti and Wong (1981)) and cut aggregation. They report that Pareto-optimal cuts have the most

significant effect on CPU time (factor 2 to 4 on their instance set). In Maheo et al. (2019), BD is applied

to solve a variant of the network design problem to create a public transit system for Canberra. The

problem structure allows for splitting the problem into multiple independent sub problems after fixing

only few variables. The authors used Pareto-optimal cuts in the sense of Magnanti and Wong (1981), and

reported large speedups compared to standard solution methods. The authors Bärmann et al. (2015) could

solve huge network design problems using an iterative aggregation procedure that dynamically expands

subnetworks. It is shown that the expansion routines are closely related to feasibility cuts in the sense

that the latter are implied by the expansion procedure. The method outperforms standard approaches by

far when applied to railway network design problems. In Abdolmohammadi and Kazemi (2013), BD has

been applied to optimize the utilization of combined heat and power systems. The authors report that the

approach is superior to several benchmark methods. In Nasri et al. (2015), the approach has been applied

to solve a network-constrained AC unit commitment problem with uncertain wind power production. It

is used to decompose the emerging intractable scenario-expanded optimization problems into tractable

parts, that can be solved independently. In Contreras et al. (2011), BD is very successfully applied to

solve large-scale uncapacitated hub location problems. The problem as well decomposes into several sub

problems if a small proportion of the variables is fixed. In Mansouri et al. (2020), the operational planning

of energy hubs with demand response under uncertainty is optimized using BD, splitting the intractable

scenario-expanded optimization model into tractable parts. The authors report considerable speedups in

comparison to to standard methods. Grimm et al. (2017) have developed a generalized decomposition

algorithm for a three-stage energy market problem that computes optimum electricity market price zones.

They could show that welfare-maximum solutions can be computed within reasonable time although the

problem itself is very complex. In Ambrosius et al. (2020) the approach is specified for the German

electricity market, also taking network expansion as well as renewable energy into account. In Bayram

and Yaman (2018), generalized BD has been applied to optimize the location of shelters and evacuation

routes under uncertainty, being able to split the intractable scenario-expanded model into tractable parts.

The authors applied several acceleration strategies, including Pareto-optimal cuts, and report significant

CPU time savings. In You and Grossmann (2013), a multi-cut version of the approach is applied to solve

a supply chain planning problem under uncertainty. The authors report considerable CPU time savings

compared to the single-cut version.



PARETO-OPTIMAL CUT SELECTION FOR BENDERS DECOMPOSITION 3

Applications of BD to optimization problems without block structure exist as well. In Botton et al.

(2013) it has been applied to efficiently handle extended formulations of the hop-constrained survivable

network design problem. The authors report a considerable speedup compared to standard methods. In

Qian et al. (2013), it has been successfully used to optimize communication networks. In Azad et al. (2013),

it has been applied to optimize supply chain networks suffering facility and transportation disruptions.

The authors report considerable CPU time savings, using the covering-cut-bundle method as presented in

Saharidis et al. (2010), and maximum density cuts, compared to standard solution methods. In Fischetti

et al. (2016), it is tuned to be applicable to capacitated facility location problems, while in Fischetti et al.

(2017) it is applied to the uncapacitated version of this problem. The authors use several acceleration

strategies and achieve considerable CPU time savings compared to alternative solution approaches for

both problem versions. In Glomb et al. (2023b), a logic-based variant of BD has been applied to solve an

integrated tail assignment and turnaround planning problem. The authors report considerable speedups

compared to classical solution approaches. In Glomb et al. (2023c), it has been applied to solve the tail

assignment problem suffering of part failure scenarios. Solving the huge scenario-expanded model with

the decomposition led to significant CPU time savings in comparison to standard approaches.

Several approaches and techniques to accelerate BD are known. Many of them have been used in Rah-

maniani et al. (2018), where the approach has been applied to solve large-scale stochastic network design

problems. For this reason, this article is a good starting point to acquire knowledge about acceleration

techniques. The authors of Geoffrion and Graves (1974) proposed a strategy that avoids solving the mas-

ter problem to optimality in each iteration to attain performance benefits. In Cote and Laughton (1984)

it has been shown that heuristic solutions of the master problems generate valid cuts. This has been

specified, e.g., in Poojari and Beasley (2009), where a genetic algorithm is applied to generate solutions of

the master problem. In McDaniel and Devine (1977) it is shown that valid cuts can also be calculated if

relaxations of the master problems are used. Based on that, approaches to solve MIPs have been proposed

that are often referred to as the two-phase-algorithm, that solve the linear programming relaxation of

the master problem in the first phase, and reestablish the integrality constraints of the master problem

in the second phase. The authors of Costa et al. (2012) proposed several strategies that aim for the

determination of points in a superset of the master problem domain, for which it is beneficial to generate

cuts. Several authors made the observation that a stabilization of the solution process of the master

problems leads to performance gains. A concrete implementation of a stabilization procedure is Rei et al.

(2009), where local branching has been used to limit the distance of subsequent master solutions. An

alternative implementation of a stabilization approach has been set up in Santoso et al. (2005) by limiting

the Hamming distance to a specified stabilization point. We want to note that our algorithmic framework

makes use of modern MIP solvers being capable to insert additional constraints to an optimization prob-

lem on-the-fly during a single Branch-and-Cut run. The approach is called Branch-and-Benders-Cut, and

is described, e.g., in Rahmaniani et al. (2017), and applied, e.g., in Gendron et al. (2016). The authors

of Saharidis et al. (2011) point out that for several optimization problems it is beneficial to initialize the

master problem with several valid inequalities, that can either be added upfront, or treated as cutting

planes, that are added to the master problem during the solution process whenever it seems to be suitable.

This strategy has also been applied in Fischetti et al. (2016).

An important step to improve the performance of BD is the cut selection strategy. The authors of

Magnanti and Wong (1981) propose to generate a so-called non-dominated Benders cut, whenever the

dual of the sub problem has multiple solutions. To achieve this, each generated cut is readjusted by
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solving an auxiliary version of the sub problem that depends on a so-called core point. Adaptations to

this methods have been proposed. In Papadakos (2008), it is shown that clever updates of the core point

accelerate the procedure further, and Sherali and Lunday (2013) shows that the solution of a perturbed

version of the sub problem provides automatically a non-dominated cut, making the solution of a second

optimization problem in each iteration unnecessary. For certain optimization problems, it seems to be

beneficial to generate multiple cuts per master problem solution. In Saharidis et al. (2010), it is proposed

to generate a so-called covering cut bundle, i.e., a set of Benders cuts that have as many master variables

as possible in the union of their supports. In Fischetti et al. (2010) and in Stursberg (2019) cut selection

strategies based on slightly adapted sub problems are proposed. We will present their contribution in

Section 2 more precisely.

Some authors demonstrated the potential of making the approach more efficient by implementing

problem specific techniques to strengthen the cuts, like, e.g., in Van Roy (1986) or Wentges (1996) for

some variants of the well-known facility location problem. In Wu and Shahidehpour (2010), the approach

is accelerated using several acceleration strategies like Pareto-optimal cuts or cuts with increased density,

for network-constrained unit commitment problems. The authors report considerable speedups compared

to a standard implementation of the approach.

In Bonami et al. (2020), several crucial numerical aspects regarding BD have been addressed. The

authors provide a guideline how to implement the approach such that features of state-of-the-art MIP

solvers, such as pre-solve, are actively exploited. The authors provide an extensive benchmark of their

implementation and report considerable speedups.

Our contribution is the following. We develop a novel cut selection strategy, in the sense of Magnanti

and Wong (1981), who presented Pareto-optimal Benders cuts. To implement this, we first develop a

novel notion of Pareto-optimality. The idea is to compare the sets of points in the domain of the master

problem, that have a chance to be the optimal solution of the overall problem after the corresponding

cut is inserted into the master problem. Based on this, we develop a novel cut selection strategy, i.e.,

it generates, under mild assumptions, Pareto-optimal cuts according to our notion. The strategy only

requires the solution of one linear program per generated cut, that is not considerably more difficult

than the original sub problem. Further, we develop an algorithmic framework to apply this cut selection

strategy. The framework specifies some details that are relevant for a good performance of the proposed

strategy. We further conduct a computational study benchmarking our algorithmic framework against

other cut selection strategies: the Magnanti-Wong method as presented in Magnanti and Wong (1981),

cuts based on minimal infeasible subsystems (MIS) as presented in Fischetti et al. (2010), and facet

defining cuts as presented in Stursberg (2019). We want to note that, even though we present straight-

forward motivation and proofs for our results, the method we propose amounts to a transfer of Conforti

and Wolsey (2019) to the special case BD, following a suggestion made in the final remarks of Conforti and

Wolsey (2019). Nevertheless, several algorithmic specifications we defined led to considerable performance

benefits.

In Section 2 we introduce BD, as well as known cut selection strategies. Then, we propose our novel

notion of Pareto-optimality, our cut selection strategy and prove several important statements about it.

In Section 3 we present the algorithmic framework that enables to apply the cut selection strategy. In

Section 4 we describe our computational study and its results. In Section (5) we summarize our results

and give an outlook on future research directions.
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2. A general Cut Selection Strategy for Benders Decomposition

In this section, we want to present a new approach to select valid cutting planes for BD. First, BD

as originally presented in Benders (1962) is introduced. Afterwards, we will present and discuss known

cut selection strategies. Some of these are variants of the popular Magnanti-Wong method originally

presented in Magnanti and Wong (1981). Furthermore, we present a framework referred to as MIS-cuts,

which has originally been presented in Fischetti et al. (2010). We also present an innovative cut selection

strategy proposed by Stursberg (2019), that is capable of generating so-called facet generating cuts under

mild assumptions. The main part of this section is the presentation of a new cut selection strategy that

we developed based on the insights that we gained from the existing ones.

For a more detailed overview, we refer to Rahmaniani et al. (2017) which is an excellent survey about

recent developments in this field.

2.1. Benders Decomposition. Originally presented in Benders (1962), the approach has been devel-

oped for optimization problems containing a set of “complicating”, i.e., very often integer, variables,

typically of the form

min fTx+ cT y(1a)

s.t. Hx+Ay ≥ b(1b)

x ∈ X, y ≥ 0,(1c)

where X ⊂ Rn (the n-dimensional Euclidean space), b ∈ Rm, f ∈ Rn, H ∈ Rm×n, c ∈ Rp, A ∈ Rm×p.

The approach works straight-forwardly under the mild assumption that minx∈X f
Tx exists and a lower

bound η̂ ∈ R for

η̃ := min
x∈X

S(x),

where

S(x) :=min
y≥0

cT y

s.t. Ay ≥ b−Hx,

exists and is easily obtainable. This is, e.g., the case, if c is non-negative. Then, the inner product cT y is

certainly non-negative as well, and the choice η̂ := 0 is hence valid.

An artificial variable η along with the lower bound η̂ is introduced, and afterwards the so-called master

problem is solved repeatedly, which is defined as

min fTx+ η(2a)

s.t. 0 ≥ ω(x) for all ω ∈ Ωfeas(2b)

η ≥ ω(x) for all ω ∈ Ωopt(2c)

η ≥ η̂, x ∈ X.(2d)

Constraints (2b) and (2c) are the so-called Benders cuts and are frequently updated, as described in the

following. The set Ω := Ωfeas ∪ Ωopt is initialized as ∅. Hence, in the first iteration, the solution (x̄, η̄) of

Model (2) is generally x̄ = minx∈X f
Tx, η̄ = η̂.
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After an optimal solution (x̄, η̄) of (2) is obtained, one solves the so-called dual sub problem, which is

the linear programming dual of the primal sub problem,

max πT (b−Hx̄)(3a)

s.t. πTA ≤ cT(3b)

π ≥ 0.(3c)

We note, that (3) is a linear program which is defined, independently on x̄, on the polyhedron P := {π :

πTA ≤ cT , π ≥ 0}. P is non-empty, implied by the assumption that S(x) is bounded from below.

If the outcome of the optimization of (3) is “unbounded”, we insert a so-called feasibility cut to Ωfeas,

which reads as

π̄T (b−Hx) ≤ 0,

where π̄ is an extreme ray of P with a positive objective function value, i.e.,

π̄TA ≤ 0, π̄T (b−Hx̄) > 0.

If the outcome of the optimization of (3) is “optimal”, we insert a so-called optimality cut to Ωopt,

which reads as

π̄T (b−Hx) ≤ η,

where π̄ is an optimal solution of (3).

The procedure is repeated, until the optimal value of (3) coincides with η̄. This happens after a finite

number of steps, if extreme rays and optimal solutions of (3) are chosen out of a (necessarily finite) inner

representation of P . For a detailed proof of convergence, we refer the interested reader to Benders (1962).

2.2. Known Cut Selection Strategies. If (3) has multiple optimal solutions in some iterations, the

approach can be accelerated by choosing an appropriate one. In certain cases, the appropriate solution

implying an efficient cut does not even have to be implied by an optimal solution of Model (3). In the

following, some approaches defining which cuts should be used are described.

2.2.1. The Magnanti-Wong Method. A well-known cut selection strategy has been proposed by Magnanti

and Wong (1981). The idea is to generate a non-dominated cut. A cut implied by a solution π̄ of Model (3)

dominates another cut implied by π̃, if and only if for all feasible master points x ∈ X

π̄T (b−Hx) ≥ π̃T (b−Hx),

with a strict inequality for at least one x ∈ X. We call a cut non-dominated, if no other cut dominates it.

According to Magnanti and Wong (1981), a non-dominated cut can be obtained if a so-called core point,

that is contained in the relative interior of the convex hull of the feasible master solutions, is known, i.e.,

a point x̂ ∈ ri(conv(X)). In this case, in each cut generating step Model (3) is solved first, providing a

solution π̂. Then the constraint

πT (b−Hx̄) ≥ π̂T (b−Hx̄)

is inserted, while the objective function is changed to

πT (b−Hx̂).

Then, the emerging Model is solved again to get a possibly new solution π̄, which is guaranteed to define

a non-dominated cut. For details regarding the proof of the statement, we refer to Magnanti and Wong

(1981). The procedure has proven to accelerate the approach for various applications, e.g., Froyland et al.
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(2014), to name only one. A drawback is the necessity to determine an appropriate core point, which is

difficult for some problems. The authors of Papadakos (2008) suggest a strategy how an approximate core

point can be determined on-the-fly with the help of an iterative procedure to overcome this drawback.

2.2.2. Cuts defined by Minimal Infeasible Subsystems. Fischetti et al. (2010) proposed a method to de-

termine cuts using MIS of the slightly adapted variant the sub problem, which is the feasibility problem

Find y ≥ 0

s.t. cT y ≤ η̄

Ay ≤ b−Hx̄.

Their computational study implies large speedups. Practically, the approach is implemented by adding a

variable and a constraint to Model (3). The modified dual sub problem then reads

max πT (b−Hx̄)− π0η̄(4a)

s.t. πTA ≤ π0cT(4b)

πTw + π0w0 = 1(4c)

π ≥ 0.(4d)

The program uses an appropriately dimensioned positive-valued weight vector w, which can be arbitrarily

chosen. The authors of Fischetti et al. (2010) suggest to choose wi to be 1 for i = 0 and for indices i for

which the corresponding row of H is not the zero row, and 0 otherwise.

The cut that is generated by a solution (π̄, π̄0) of the modified dual sub problem (4) would read

π̄T (b−Hx) ≤ π̄0η

An advantage of the proposed framework is that the feasibility cuts and optimality cuts can be derived

in the same way, as dual solutions instead of extreme rays, since we note that in case π̄0 is 0, we get a

cut that does not depend on the variable η. Hence, in this case it is a feasibility cut.

Furthermore, the authors of Fischetti et al. (2010) report large computational benefits compared to

alternative implementations.

Even though the MIS approach is performing extraordinarily well in practice, it has several drawbacks.

It might generate cuts that do not support the epigraph of the sub problem’s value function, as defined

later in (5), in any point. As a result, multiple cuts might have to be generated in order to cut off a single

assignment of master variables. Furthermore, the scaling of the constraints influences the behavior of the

MIS approach, as well as the existence of constraints that are unnecessary in a sense that they are implied

by other constraints. Furthermore, the strategy cannot be applied straight-forwardly to solve problems

with equality constraints, leading to dual variables that are not restricted in sign. Several adaptations to

the framework have to be made in this case. Hence, especially if the optimization problem to be solved

is formulated rather poorly, MIS cut selection might not be the means of choice.

2.2.3. Facet Generating Cuts. Most recently, Stursberg (2019) proposed a cut selection framework which

has some parallels to MIS cut selection. The relevant results of the dissertation have also been published

in the journal article Brandenberg and Stursberg (2021). The idea is to aim for cuts that represent facets

of the polyhedral epigraph of the sub problem’s value function,

(5) E := {(x, η) | η ≥ min cT y : Ay ≥ b−Hx, y ≥ 0}.
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The theory developed in Stursberg (2019) is based on reverse polar sets of the epigraph. Since immediate

representations of reverse polar sets are likely to be intractable, the author solves optimization problems

defined over the so-called Relaxed Alternative Polyhedron, that are under mild assumptions equivalent

to the optimization problems over the reverse polar set. The Relaxed Alternative Polyhedron is defined

as

(6) P≤(x, η) := {π, π0 ≥ 0 | πTA+ π0c
T = 0, πT (b−Hx) + π0η ≥ 1}.

According to Theorem 3.32 of Stursberg (2019), there is an optimal extremal point of the Relaxed

Alternative Polyhedron inducing a cut that supports the epigraph in one of its facets under mild as-

sumptions on the objective function, or, as the author calls it, weight vector, that we denote as (w̃, w̃0).

The author states further, that the dimension of the set of weight vectors leading necessarily to a facet

defining cut is higher than the dimension of the set of weight vectors that might lead to a cut that is not

facet defining. Further, a procedure is proposed which deterministically leads to a facet defining cut, even

though the author claims that its application is computationally inefficient in many cases.

In the empirical study, it turns out that setting (w̃, w̃0) to (H(x̃− x̄), η̃− η̄) is quite efficient. The vector

(x̃, η̃) is a, possibly frequently updated, feasible solution of the master problem and an upper bound on

the corresponding sub problem objective value, that has been obtained heuristically beforehand. The

vector (x̄, η̄) is the current master solution and the corresponding sub problem objective estimate. The

author calls this strategy “adaptive cuts”. Since this seems to be an efficient choice of objective functions,

we will use this strategy throughout in our benchmarks, calling the cuts “facet generating” or simply

“facet”.

The author proposes furthermore several equivalent variants of sub problems than can be chosen when

the “facet” cut selection is applied. One is the following, slightly adapted from Stursberg (2019).

max πT (b−Hx̄)− π0η̄(7a)

s.t. πTA ≤ π0cT(7b)

πTH(x̃− x̄) + π0(η̃ − η̄) = 1(7c)

π ≥ 0.(7d)

We note that the difference of the MIS sub problem and the facet generating sub problem reduces to an

adapted normalization constraint: While (4c) is the normalization constraint of Model (4), Constraint (7c)

is the normalization constraint of Model (7). Apart from the normalization constraint, the two models

are identical.

Remark. While MIS cut selection relies on sign-restricted dual variables, the facet approach can also

be applied when the dual variables are free. Furthermore, as discussed before, MIS cut selection depends,

e.g., on the scaling of certain constraints. In contrast to that, the author of Stursberg (2019) claims that

a cut that is generated using Model (7) supports the epigraph of the sub problem value function at a

point on the connection line of the iterate (x̄, η̄) and the incumbent (x̃, η̃). This implies especially, that

the facet technique is independent from algebraic transformations of the optimization problems under

consideration, that leave the epigraph of the sub problem unaffected.

2.3. β-Dominance and our Cut Selection Strategy. In the following, we propose a cut selection

strategy with the goal to generate cuts which are suited to solve the overall optimization problem (1)
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efficiently. The idea of the new strategy incorporates knowledge about the master problem and solutions

obtained in previous iterations of the algorithm.

2.3.1. An Introductory Example. We first motivate the strategy we propose. The idea of the strategy is

that in some cases it is not beneficial to solve the dual sub problem to optimality. Instead, it is beneficial

to determine a dual solution that leads to a cut that excludes as many points as possible (including

the current master iterate) from having a chance to be the optimal solution of the overall optimization

problem. The fact that an optimal dual solution does not necessarily lead to such a cut is demonstrated

with the following example.

Example 2.1. Consider the following optimization problem, which is defined on the Euclidean plane:

min− 1

10
x+ y(8a)

s.t. y ≥ 1

4
x(8b)

y ≥ −x(8c)

y ≥ −1− 2x(8d)

x ∈ [−2, 2].(8e)

x

η

1

1

(x, η) : η − x
10 = 0.3

x1

ω1

x2

ω2

x3

ω3

x4

x

η

1

1

(x, η) : η − x
10 = 0.3

x1

ω1

x2

ω2

x3

Figure 1. Value function of sub problem, and iterates of BD: Left describes the classical
course where optimal solutions of the dual sub problem are used, Right describes the course
where β-dominant cuts are used. The number of iterations required to solve the problem
is reduced.

Since x̄ = 2 optimizes −1
10 x on the interval [−2, 2], we initialize the set of cuts Ω = {ω1} with ω1(x) =

1
4x,

and set up the master problem as

min− 1

10
x+ η

s.t. η ≥ ω(x) for all ω ∈ Ω.
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New cuts, as well as the already calculated cut ω1, are obtained from the dual sub problem:

maxπ1 ·
1

4
x+ π2 · (−x) + π3 · (−1− 2x)(9a)

π1 + π2 + π3 = 1(9b)

π ≥ 0.(9c)

The sub problem in this form just evaluates the maximum of the three functions (14x), (−x), and (−1−2x),
with the freedom to generate a convex combination of all maxima, if the maximum is not unique.

The course of the classical version (using dual optimal solutions) of BD is shown in the left side of

Figure 1. The algorithm first finds the point which minimizes the pure master objective, which is x̄ = 2.

Then, it solves the sub problem to generate the cut η ≥ 1
4x. The next point evaluates to (x̄, η̄) = (−2,−0.5)

with an objective value of −0.3. Then, the sub problem is solved again to generate the cut η ≥ −1 − 2x.

The next point evaluates to (x̄, η̄) = (−4
9 ,

−1
9 ) with an objective value of −1

15 . Then, the sub problem is

solved again to generate the cut η ≥ −x. The next point evaluates to (x̄, η̄) = (0, 0), with an objective

value of 0. This is the optimal point, since η̄ equals the optimal value of the sub problem at this point.

We investigate a set which is defined in terms of the best solution to the master problem found in the

first iteration of the algorithm, which is (x̃, η̃) = (2, 0.5), with a combined value β = 0.3. The set contains

all points which are candidates to be optimal solutions of the overall optimization problem, i.e.,

{x ∈ X | ∃η : fTx+ η ≤ fT x̃+ η̃ and η ≥ ω(x) for all ω ∈ Ω}.

After the first iteration, this set reads

{x ∈ [−2, 2] | ∃η : −1
10
x+ η ≤ 0.3 and η ≥ 1

4
x} = [−2, 2].

In the next iteration, the algorithm chooses exactly one candidate x̄ out of this set. The sub problem is

solved to optimality, and a cut is derived that especially makes sure that for this candidate all feasible

assignments of η in future iterations of the algorithm have to be greater or equal to the optimal value of

the sub problem attained for this candidate x̄.

This especially makes sure, that no non-optimal point in X is visited more than once in the course

of the algorithm. Nevertheless, this can also be assured, if we postulate that a cut leads to a new set

of candidates to be optimal solutions, which excludes the current iterate. This is always the case, if we

choose a dual solution π̄ of the sub problem, that fulfills

π̄(b−Hx̄) > fT x̃− fT x̄+ η̃.

Starting again from the beginning of iteration two of the prior run of the algorithm, this extends the

possibilities to choose a valid cut, cutting off point x̄ = −2. E.g., one could choose π2 = 1, leading to the

cut η ≥ −x, or the choice π1 = 0.5, π3 = 0.5, leading to the cut η ≥ −0.5− 7
8x.

Depending on what cut is chosen, the set of candidate optimal solution in the next iteration varies. The

original cut η ≥ −1 − 2x produces as candidate set the interval [−13
21 , 2], while the cut η ≥ −x produces

[−3
11 , 2], which is a strict subset. This fact reflects also in the course of the standard version, which chooses

x = −4
9 as next candidate solution, which is not in the candidate set of the cut η ≥ −x, and hence would

have been excluded upfront if this cut would have been chosen.

Overall, the choice of η ≥ −1 − 2x as second cut leads to three cuts in total, while choice of η ≥ −x
leads to two cuts in total.
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Nevertheless, we note that the cut η ≥ −1− 2x is non-dominated in the notion of Magnanti and Wong

(1981), and furthermore also corresponds to a MIS of the sub problem, since the dual solution corresponds

to a single violated constraint. It defines a facet of the epigraph as well.

The example demonstrates that the existing cut selection strategies might miss to choose the clearly

superior cut. Hence, we next present a new technique for generating Benders cuts.

2.3.2. Cut Selection Paradigm. The cuts in the example aimed for minimizing the size of the set of points

in the master problem domain that are potentially better than an already obtained solution. This is

the paradigm our cut selection strategy follows. Hence, we formally define a solution candidate set that

depends on the value of a feasible solution x̃ ∈ X and the corresponding sub problem optimal value η̃ ∈ R.
This value is called budget throughout and is denoted as β. It holds that β := fT x̃+ η̃.

Definition 2.2 (Solution Candidate Set.). Given the master problem (2) with feasibility and optimality

cuts Ω = Ωfeas ∪ Ωopt, and β ∈ R, we define the solution candidate set (SC-set) as

CΩ,β := {x ∈ X | ∃η : fTx+ η ≤ β, 0 ≥ ω(x) for ω ∈ Ωfeas, η ≥ ω(x) for ω ∈ Ωopt}.

For a feasible solution x̃ of Model (2) with η̃ denoting the corresponding sub problem optimal value, we

define the SC-set analogously as

CΩ,x̃,η̃ := CΩ,fT x̃+η̃.

We first observe, that the SC-set of a system of cuts and for a budget which is the value of the best

solution found so far is exactly the set where a potential optimal solution of (1) can be.

Observation 2.3. Given Problem (1), and a system of valid cuts Ω, it holds that the set of points in X

that can be completed to an optimal solution of (1) is a subset of CΩ,β for all budgets β that are not lower

than the optimal value of (1).

We can state a criterion that excludes a certain point in X from the SC-set for a certain budget.

Observation 2.4. Given a feasible master solution x̄ ∈ X and a budget β ∈ R. Given an optimality cut

ωπ̄ induced by a feasible solution π̄ of (3), it holds that

x̄ ∈ Cωπ̄ ,β ⇔ fT x̄+ π̄T (b−Hx̄) ≤ β.

The observation implies, that a version of the approach, that generates a cut that has a value of greater

than the current budget at the point where it is generated has the property that the algorithm never

visits a point in X twice before it terminates.

We further note that an algorithm that follows that paradigm also has the possibility to exclude points

in X with an infeasible sub problem by optimality cuts instead of feasibility cuts.

Next, we propose a dominance criterion similar to that of Magnanti and Wong (1981), which is based

on SC-sets. One obvious advantage is that it includes also feasibility cuts, in contrast to the dominance

notion of Magnanti and Wong (1981).

Definition 2.5 (β-Dominance). Given the master problem (2) with valid cuts ω1 and ω2, cut ω1 β-

dominates cut ω2 for a budget β ∈ R, if
Cω1,β ⊊ Cω2,β.

In the following we want to point out the connection between β-dominance and the dominance notion

of Magnanti and Wong (1981).
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Theorem 2.6. Given the master problem (2) with a convex feasible set X and two optimality cuts ω1

and ω2 with

ω1(x) ≥ ω2(x) for all x ∈ X and ω1(x) > ω2(x) for at least one x ∈ X.

Then, ω1 β-dominates ω2 for all budgets β in

B := (inf
β̃
Cω2,β̃

∩X ̸= ∅, sup
β̃

Cω1,β̃
∩X ̸= X).

Proof. Let x̄ ∈ Cω1,β for an arbitrary β. Then, there is an η ∈ R such that

fT x̄+ η ≤ β and η ≥ ω1(x̄).

Since ω1(x̄) ≥ ω2(x̄), this implies that for this choice of η

fT x̄+ η ≤ β and η ≥ ω2(x̄)

also applies, and hence x̄ ∈ Cω2,β. Assume, that there is a budget β in B such that Cω1,β = Cω2,β. Let x̄

be a point for which ω1(x̄) > ω2(x̄). If x̄ ∈ Cω1,β, we choose x̃ /∈ Cω1,β, if x̄ /∈ Cω1,β, we choose x̃ ∈ Cω1,β.

Both choices are guaranteed by the properties of B.
We consider the case with x̄ ∈ Cω1,β first. This implies, that

fT x̄+ ω2(x̄) < fT x̄+ ω1(x̄) ≤ β.

On the other hand, we have

fT x̃+ ω1(x̃) ≥ fT x̃+ ω2(x̃) > β.

We consider for i ∈ {1, 2} the functions

gi : λ 7→ fT (x̄+ λ(x̃− x̄)) + ωi(x̄+ λ(x̃− x̄))

Since ωi are affine functions, gi is also an affine function. We conclude that since gi(0) ≤ β and gi(1) ≥ β
with one strict inequality each, there is exactly one point in [0, 1] where gi evaluates to β. Let λi be

the point in [0, 1] with gi(λi) = 0. Since g2(0) < g1(0) and g2(1) ≤ g1(1), λ2 > λ1 holds. If we choose

λ̄ = λ1+λ2
2 , then x̄ + λ̄(x̃ − x̄) is a point in X which is contained in Cω2,β, but not in Cω1,β. This is a

contradiction to our assumption. The second case is analogue. This proves the statement. □

We note that the set B denotes the budgets, for which at least one of the cuts ω1, ω2 has a non-

trivial, i.e., /∈ {∅, X}, candidate set. Theorem 2.6 has the consequence, that if a cut is generated which

is not β-dominated for reasonable budgets, it is also non-dominated in the sense of Magnanti and Wong

(1981) under mild assumptions. The opposite direction is not true, i.e., it is possible that cut that is

non-dominated in the sense of Magnanti and Wong (1981) is β-dominated, as already demonstrated in

Example 2.1.

The next theorem states, that a valid cut that β-dominates another cut does this also for smaller

budgets under certain conditions. This gives further justification for choosing the dominating cut over

the dominated one, if these conditions apply for two cuts.

Theorem 2.7. Given the master problem (2) with a convex feasible set X, a point x̄ ∈ X, a budget β̄

and two optimality cuts ω1 and ω2 with

Cω1,β̄
⊆ Cω2,β̄

and ω2(x̄) > ω1(x̄) ≥ β̄ − fT x̄.

Then it holds that

Cω1,β ⊊ Cω2,β
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for all β ∈ B, where
B := (inf

β̃
Cω1,β̃

̸= ∅, β̄).

Proof. Assume there is a β ∈ B for which

Cω1,β ⊈ Cω2,β, i.e., ∃x̃ ∈ X with ω1(x̃) + fT x̃ ≤ β, ω2(x̃) + fT x̃ > β.

We first note that ω1(x̄) + fT x̄ > β̄, since otherwise x̄ ∈ Cω1,β̄
and x̄ /∈ Cω2,β̄

, which is a contradiction

to our assumption. This implies that x̃ ̸= x̄. We further note that ω2(x̃) + fT x̃ ≤ β̄ since otherwise

x̃ ∈ Cω1,β̄
and x̃ /∈ Cω2,β̄

, which is a contradiction to our assumption. Especially, this implies that

β̄ < fT x̄+ ω1(x̄) < fT x̄+ ω2(x̄) and f
T x̃+ ω1(x̃) < fT x̃+ ω2(x̃) ≤ β̄.

We consider for i ∈ {1, 2} the affine functions

gi : λ 7→ fT (x̄+ λ(x̃− x̄)) + ωi(x̄+ λ(x̃− x̄)).

We note that g2(λ) > g1(λ) for all λ ∈ [0, 1]. We further note that g1(0) > β̄ and g1(1) < β̄. Since g1

is continuous, there exists λ̄ ∈ [0, 1] with g1(λ̄) = β̄. Since g2 is strictly larger than g1 on [0, 1], we have

that g2(λ̄) > β̄. Hence, x̄ + λ̄(x̃ − x̄) is contained in Cω1,β̄
, but not in Cω2,β̄

. This is a contradiction to

our assumption and we can conclude that Cω1,β ⊆ Cω2,β. Assume there is a β ∈ B for which

Cω1,β = Cω2,β.

Then there exists x̃ ∈ X such that

ω1(x̃) + fT x̃ = β,

since ∅ ≠ X \ Cω1,β and ∅ ≠ Cω1,β. It further holds that

ω2(x̃) + fT x̃ = β

as well, since ω2(x̃)+ fT x̃ > β would imply that the candidate sets are not equal, and if ω2(x̃)+ fT x̃ < β

would hold we could define gi, i = 1, 2 similar as before, and could observe that there is a small ε > 0

such that g1(ε) > β, but g2(ε) < β, what would also imply that the candidate sets are not equal.

So, to conclude our argument, we take gi, i = 1, 2 as defined before. We note that g2(λ) > g1(λ) for

λ ∈ [0, 1). Since g1 is continuous, this interval contains a point λ̄ for which g1(λ̄) = β̄, and this implies

that g2(λ̄) > β̄. This implies that x̄+ λ̄(x̃− x̄) ∈ Cω1,β̄
, but not in Cω2,β̄

. This is a contradiction to our

assumption and concludes the proof. □

2.3.3. The role of feasibility cuts. The focus of the presented theory is on optimality cuts. This is appro-

priate, since the theory proposes that each feasible solution of the dual sub problem with a value high

enough defines a valid cut that cuts off the current master solution.

The question arises if there is a need for feasibility cuts at all. We discuss in the following, in which

cases which kind of cut should be added.

The SC-set of a feasibility cut ωπ̄, induced by an extreme ray π̄ of (3), in general does not depend on

the budget β:

Cωπ̄ ,β = {x ∈ X : ωπ̄(x) ≤ 0}

The SC-set of an optimality cut gets smaller with β, while the SC-set of a feasibility cut remains

constant. From that perspective, optimality cuts are preferable. Nevertheless, it is possible that a

feasibility cut is the only non-dominated valid cut for some budgets β.
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In the following, we describe how cuts can be obtained that are not β-dominated.

2.3.4. Optimal line shifts. In the following we want to introduce an approach to generate Benders cuts,

that are, under certain conditions, non-dominated in the sense of Definition 2.5.

The idea is to exclude as many points on a line from further consideration. We call this line shift.

Definition 2.8 (Line shift.). Given the master problem (2) with a feasible set X, and points x̃ ∈ X,

x̄ ∈ X, and β ∈ R with the property that

fT x̃+ S(x̃) ≤ β and fT x̄+ S(x̄) ≥ β,

we define a line shift induced by (x̄, x̃, β) as an optimality cut ω̄, for which a parameter µ ∈ [0, 1] exists,

such that

fT (x̄+ µ(x̃− x̄)) + ω̄(x̄+ µ(x̃− x̄)) = β,

fT x̄+ ω̄(x̄) ≥ β,

fT (x̄+ µ̃(x̃− x̄)) + ω̃(x̄+ µ̃(x̃− x̄)) < β for all µ̃ ∈ (µ, 1),

or a feasibility cut, ω̄, for which a parameter µ ∈ [0, 1] exists, such that

ω̄(x̄+ µ(x̃− x̄)) = 0,

ω̄(x̄) > 0,

ω̄(x̄+ µ̃(x̃− x̄)) < 0 for all µ̃ ∈ (µ, 1).

In both cases, we call µ the depth of the line shift.

We observe that for all points x̄ ∈ X, arbitrary feasibility cuts or optimality cuts ω̄ with fT x̄+ω̄(x̄) ≥ β
are line shifts with a certain depth. The following theorem states that under certain conditions determining

a line shift with a depth that is as high as possible provides a cut that is not β-dominated. We call a line

shift with maximum depth optimal line shift (OLS).

Theorem 2.9. Given the master problem (2) with a convex feasible set X, and points x̃ ∈ X, x̄ ∈ X,

and β ∈ R. A line shift ω̄ induced by (x̄, x̃, β) with maximal depth µ̄ < 1 is not β-dominated, if

x̂ := x̄+ µ̄(x̃− x̄) ∈ relint(X).

Proof. We provide the proof for the statement that a line shift that is an optimality cut is not β-dominated

by another optimality cut. This proof can be easily adapted for the cases with feasibility cuts. For this

reason, we omit the analogue reasoning.

Assume there is a valid Benders cut ω̃ that β-dominates ω̄, i.e.,

Cω̃,β ⊊ Cω̄,β ⇔ Cω̃,β \ Cω̄,β = ∅.

We first note that µ̄ < 1 implies that fT x̄+ ω̄(x̄) > β. This in turn implies that fT x̄+ ω̃(x̄) > β holds,

since otherwise x̄ ∈ Cω̃,β, but x̄ /∈ Cω̄,β. We further note that the depth of ω̃ is µ̄ as well, since if the

depth of ω̃ would be µ̃ < µ̄, then x̂ ∈ Cω̃,β, but x̂ /∈ Cω̄,β.
Our assumption implies that a point x̆ ∈ X exists with fT x̆ + ω̃(x̆) > β, but fT x̆ + ω̄(x̆) ≤ β. Since

x̂ ∈ relint(X), there exists a parameter θ > 1, such that x̆ + θ(x̂ − x̆) ∈ X. This in turn implies that

fT x̆+ ω̄(x̆) = β, as well as fT (x̆+ θ(x̂− x̆)) + ω̄(x̆+ θ(x̂− x̆)) = β.

We note that fTx+ ω̃(x) > β has to hold for all x in a relatively open neighborhood of x̆+x̂2 . Using the

same argument as before, on this open neighborhood it holds that fT (x) + ω̄(x) = β. Hence, fTx+ ω̄(x)
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is constant on X. This implies that ω̄ is a line shift with depth 1, which contradicts the assumptions

made upfront. □

As a consequence, we would be able to determine cuts that are non-dominated in the sense of Defini-

tion 2.5, if we could determine OLS. The following observation states that an OLS can be obtained by

solving a certain optimization problem.

Observation 2.10. Given Problem (1) and the corresponding master problem (2) with feasible set X,

a budget β ∈ R and points x̃ ∈ X, x̄ ∈ X, with fT x̄ + S(x̄) ≥ β, fT x̃ + S(x̃) ≤ β. If no optimality

cut ω̄ exists for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, then a solution (π̄, µ̄) of the following

optimization problem defines an optimality cut that is a line shift induced by (x̄, x̃, β) with depth µ̄ ≤ 1,

and no optimality cut that is a line shift induced by this triple has a higher depth.

max µ(10a)

s.t. πT (b−H(x̄+ µ(x̃− x̄))) + fT (x̄+ µ(x̃− x̄)) = β(10b)

πTA ≤ cT(10c)

πT (b−Hx̄) + fT x̄ ≥ β(10d)

π ≥ 0, µ ≥ 0.(10e)

Especially, the optimization problem has at least one feasible solution, and it is not unbounded.

Containing products of variables, Model (10) is not a linear program anymore, since it contains the

bilinear constraint (10b). Nevertheless, Model (10) can be reformulated to a fractional linear program,

and under some mild assumptions which are easy to check on the fly of an algorithmic BD approach,

Model (10) can be reformulated, following the method presented in Charnes and Cooper (1962), to an

equivalent linear program with one variable that is restricted to be strictly positive. This is the statement

of Lemma 2.11.

Lemma 2.11. Given Problem (1) and the corresponding master problem (2) with feasible set X, a budget

β ∈ R and points x̃ ∈ X, x̄ ∈ X, with fT x̄+ S(x̄) ≥ β ≥ fT x̃+ S(x̃).

i) If further no optimality cut ω̄ exists for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, then, each

optimal solution (ρ̄, ᾱ) of

max ρT (b−Hx̄) + α(fT x̄− β)(11a)

ρTH(x̃− x̄)− αfT (x̃− x̄) = 1(11b)

ρTA ≤ αcT(11c)

α ≥ 0, ρ ≥ 0.(11d)

has the property, that π̄ := ρ̄
ᾱ , µ̄ := ρ̄T (b−Hx̄)+ ᾱ(fT x̄−β) is an optimal solution of Model (10),

if ᾱ > 0.

ii) If S(x̄) <∞, then ᾱ > 0.

Remark. As a consequence of Lemma 2.13 and Theorem 2.15 that are presented later in this paper, it

follows that the condition S(x̄) < ∞ is not restrictive. Even if it does not hold, Model (11) can be used

as surrogate for the dual sub problem.
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Proof. For i), it is easy to check, that Constraint (10b) is equivalent to

µ =
πT (b−Hx̄) + fT x̄− β
πTH(x̃− x̄)− fT (x̃− x̄)

,

if we can prove that the denominator is nonzero over the feasible set of Model (10). Hence, µ can be

replaced in the objective function of Model (10). The result is an optimization problem with linear

constraints and a fractional objective function. We use the approach of Charnes and Cooper (1962) to

reformulate this optimization problem to obtain an equivalent linear program.

In order to apply the reformulation method, one has to ensure that the denominator term does not

change its sign over the whole feasible space of the program to be reformulated. This requirement is

fulfilled for Model (10): If we assume, that there is a feasible solution π̄ of Model (10), for which the

denominator is not positive, we can derive

0 ≥ π̄TH(x̃− x̄)− fT (x̃− x̄)

= π̄T (b−Hx̄) + fT x̄− (π̄T (b−Hx̃) + fT x̃)

> β − β = 0.

The last inequality can is implied by Constraint (10d) and the conditions of the Lemma.

Hence, we can reformulate Model (10) by introducing a new variable α > 0 and the constraint

α =
1

πTH(x̃− x̄)− fT (x̃− x̄)
⇔ α(πTH(x̃− x̄)− fT (x̃− x̄)) = 1.

The objective function gets

α(πT (b−Hx̄) + fT x̄− β).

Further, we can multiply Constraints (10b) to (10d) with α. Substituting απ = ρ, relaxing α > 0 to

α ≥ 0 and dropping the reformulation of Constraint (10d) yields

ρT (b−Hx̄) ≥ α(β − fT x̄).

This constraint bounds the objective function from below and is hence not necessary. Taking all together,

we get Model (11).

For ii), it remains to show, that an optimal solution (ρ̄, ᾱ) of Model (11) has the property ᾱ > 0.

Assume, ᾱ = 0. Then, we know that

ρ̄T (b−Hx̄) ≤


maxπT (b−Hx̄)

s.t. πTA ≤ 0

π ≥ 0.

The optimal value is 0, since we assumed S(x̄) <∞. Nevertheless, there is always a solution π̃ of Model (3)

implying a cut ω̃ that has the property that ω̃(x̄) = S(x̄). If we define

α̃ :=
1

π̃TH(x̃− x̄)− fT (x̃− x̄)
, ρ̃ := α̃π̃,

This is a feasible solution of Model (11) with a positive objective value - a contradiction. □

One can directly obtain results for the line shift procedure including only feasibility cuts, which are

presented next.
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Observation 2.12. Given Problem (1) and the corresponding master problem (2) with feasible set and

points x̃ ∈ X, x̄ ∈ X, with S(x̃) < ∞ and S(x̄) = ∞. A solution (π̄, µ̄) of the following optimization

problem is a line shift induced by (x̃, x̄, β), for all β ∈ R, with depth µ̄, and no feasibility cut induced by

this triple has a higher depth.

max µ(12a)

s.t. πT (b−H(x̄+ µ(x̃− x̄))) = 0(12b)

πTA ≤ 0(12c)

πT (b−Hx̄) = 1(12d)

π ≥ 0, µ ≥ 0.(12e)

Especially, the optimization problem is bounded and has at least one feasible solution.

The following Lemma states that Model (12) can be reformulated similar to Model (10).

Lemma 2.13. Given Problem (1) and the corresponding master problem (2) with feasible set and points

x̃ ∈ X, x̄ ∈ X, with S(x̃) <∞ and S(x̄) =∞. Then, each optimal solution ρ̄ of

max ρT (b−Hx̄)(13a)

ρTH(x̃− x̄) = 1(13b)

ρTA ≤ 0(13c)

ρ ≥ 0.(13d)

has the property, that π̄ := ρ̄
ρ̄T (b−Hx̄) , µ̄ := ρ̄T (b−Hx̄) is an optimal solution of Model (12).

Proof. It is easy to check, that Constraint (12b) is equivalent to

µ =
πT (b−Hx̄)
πTH(x̃− x̄)

Hence, µ can be replaced in the objective function of Model (12). The result is an optimization problem

with linear constraints and a fractional objective function. We use the approach of Charnes and Cooper

(1962) to reformulate this optimization problem to obtain an equivalent linear program.

That the reformulation method is applicable, it has to be guaranteed that the denominator term does

not change its sign over the whole feasible space of the program to be reformulated. This requirement

is fulfilled for Model (12): If we assume, that there is a feasible solution π̄ of Model (12), for which the

denominator is not positive, we can derive

0 ≥ π̄TH(x̃− x̄)

= π̄T (b−Hx̄)− π̄T (b−Hx̃)

≥ 1− 0 = 1.

The last inequality can be derived from Constraint (12d) and the conditions of the Lemma.

Hence, we can reformulate Model (12) by introducing a new variable α > 0 and the constraint

α =
1

πTH(x̃− x̄)
⇔ απTH(x̃− x̄) = 1.

The objective function gets

απT (b−Hx̄) = α.
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Further, we can multiply Constraints (12b) to (12d) with α. Substituting απ = ρ, and substituting α

by ρT (b−Hx̄) according to Constraint (12d) leads to Model (13). An optimal solution of Model (11) has

a positive objective value. □

We note that Model (13) is exactly Model (11) with α restricted to be 0. Hence, next lemma connects

the results regarding feasibility cuts and optimality cuts.

Lemma 2.14. Given Problem (1) and the corresponding master problem (2) with feasible set X, a budget

β ∈ R and points x̃ ∈ X, x̄ ∈ X, with fT x̄ + S(x̄) ≥ β, fT x̃ + S(x̃) ≤ β. If no optimality cut ω̄ with

ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β exists, and if for an optimal solution (ρ̄, ᾱ) of Model (11) ᾱ = 0

holds, then the optimal value of Model (10) is not greater than the optimal value of Model (12).

Proof. Assume the optimal value of Model (10) is µ̄, attained at π̄, and the optimal value of Model (12)

is µ̃ with µ̄ > µ̃. Then, the constraint

πT (b−Hx̄) ≤ π̄T (b−Hx̄)

can be added to Model (10) without changing the optimal value. This corresponds to an alternative dual

sub problem which definitely has no unbounded rays. Lemma 2.11 ascertains that in this case, for an

optimal solution (ρ̃, α̃) of the modified sub problem, Model (11), it holds that α̃ > 0, with an optimal

value of µ̄. Since (ρ̄, ᾱ) is an optimal solution of the original Model (11), its value is hence at least µ̄.

Since ρ̄ is feasible for Model (13) and the optimal values of Model (12) and Model (13) coincide, we obtain

µ̃ ≥ µ̄ > µ̃,

a contradiction. □

Taking Lemmas 2.11, 2.13 and 2.14 together, we get the following result.

Theorem 2.15. Given Problem (1) and the corresponding master problem (2) with feasible set X, a

budget β ∈ R and points x̃ ∈ X, x̄ ∈ X, with fT x̄ + S(x̄) ≥ β, fT x̃ + S(x̃) ≤ β. If no optimality cut ω̄

exists for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, then each optimal solution (ρ̄, ᾱ) of Model (11)

defines a line shift with maximal depth. The depth equals the objective value of the model, and the cut

that is added to Model (2) reads

ρ̄T (b−Hx) ≤ ᾱη.

Proof. A line shift with maximal depth is either a feasibility cut, which is captured by Model (12), or an

optimality cut, captured by Model (10), depending on which model has the higher optimal value. If we

consider a solution (ρ̄, ᾱ) of Model (11) with ᾱ = 0, Lemma 2.14 guarantees that the optimal value of

Model (12) is not lower than the optimal value of Model (10). Furthermore, ρ̄ is feasible for Model (13),

and we can apply Lemma 2.13 to transform this solution into a feasibility cut, that reads

ρ̄T (b−Hx) ≤ 0.

If ᾱ > 0, the solution is also a solution to Model (11) with α restricted to be positive. We further know

that the optimal value of this model is not lower than the solution of Model (13), since it is a relaxation

of the latter. The solution (ρ̄, ᾱ) can be transformed by applying Lemma 2.11 to a solution of Model (10)

with the same objective function value, and this can be transformed into a valid optimality cut that reads

ρ̄T (b−Hx) ≤ ᾱη.

Taking all together, we get the desired result. □
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The following lemma states, that Model (11) gets infeasible, if the requirements of Lemma 2.11 are not

met, i.e., if S(x̃) + fT x̃ > S(x̄) + fT x̄ for the current iterate x̄ and incumbent x̃.

Lemma 2.16. Given Problem (1) and the corresponding master problem (2) with feasible set X, a budget

β ∈ R and points x̃ ∈ X, x̄ ∈ X, with fT x̄ + S(x̄) < β, fT x̃ + S(x̃) ≤ β. Then, Model (11) is either

infeasible or has a negative optimal value.

Proof. Assume, Model (11) has an optimal value that is positive, or is unbounded. Then it has a feasible

solution (ρ̄, ᾱ) with a positive value. If ᾱ = 0, we can derive that ρ̄TA ≤ 0 and ρ̄T (b − Hx̄) > 0. This

translates into a valid feasibility cut that cuts off x̄, and this is a contradiction. If ᾱ > 0, we can derive

that 1
ᾱ ρ̄

TA ≤ cT , and 1
ᾱ ρ̄

T (b−Hx̄)+fT x̄ > β. This translates into a valid optimality cut, that guarantees

that fT x̄+ S(x̄) > β, and this is a contradiction as well. □

The construction of OLS relies on the knowledge of good feasible solutions of the original optimization

problems. We observed that it is beneficial, if the feasible solution the approach relies on is varied in

every iteration. This is the motivation of the following corollary, stating how a new point in the convex

hull of the master problem’s feasible space can be constructed after an OLS cut is generated.

Corollary 2.17. Given Problem (1) and the corresponding master problem (2) with feasible set X, a

budget β ∈ R and points x̃ ∈ X, x̄ ∈ X, with fT x̄ + S(x̄) ≥ β, fT x̃ + S(x̃) ≤ β. If no optimality cut ω̄

exists for which ω̄(x̃)+ fT x̃ = β and ω̄(x̄)+ fT x̄ = β, x̂ := x̄+ µ̄(x̃− x̄), where µ̄ < 1 denotes the optimal

value of Model (11) corresponding to this setting, then, it holds that

fT x̂+ S(x̂) ≤ β,

fTx+ S(x) < β for all x ∈ {x̂+ λ(x̃− x̂), λ ∈ (0, 1)}.

Proof. First, we show fT x̂ + S(x̂) ≤ β. To do this, assume first that S(x̂) = ∞. Then, there exists a

valid feasibility cut ω̃, such that ω̃(x̂) > 0. Since the cut is valid, it holds that ω̃(x̃) ≤ 0. Hence, there is

µ̂ ∈ (0, 1) for which ω̃(x̄ + µ̂(x̃ − x̄)) = 0 and ω̃(x̄ + µ(x̃ − x̄)) > 0 for all µ ∈ (0, µ̂). Hence, ω̃ implies a

solution of Model (11) with value µ̂ > µ̄, and this is a contradiction to our assumption.

Assume, that ∞ > fT x̂ + S(x̂) > β. Then, there exists a valid optimality cut ω̃ such that fT x̂ +

ω̃(x̂) > β. Since the cut is valid, it holds that fT x̃ + ω̃(x̃) ≤ β. Hence, there is µ̂ ∈ (0, 1), such that

fT (x̄+ µ̂(x̃− x̄)) + ω̃(x̄+ µ̂(x̃− x̄)) = β and fT (x̄+ µ(x̃− x̄)) + ω̃(x̄+ µ(x̃− x̄)) > β for all µ ∈ (0, µ̂).

Hence, ω̃ implies a solution of Model (11) with value µ̂ > µ̄, and this is a contradiction.

Second, we show fTx + S(x) < β for all x ∈ {x̂ + λ(x̃ − x̂), λ ∈ (0, 1)}. Assume, that there exists

x̆ ∈ {x̂ + λ(x̃ − x̂), λ ∈ (0, 1)}, i.e., x̆ = x̂ + λ̆(x̃ − x̂) for a λ̆ ∈ (0, 1), with fT x̆ + S(x̆) ≥ β. Then there

is a valid optimality cut ω̃ with fT x̆ + ω̃(x̆) ≥ β. Since this cut is valid, it holds that fT x̂ + ω̃(x̂) ≤ β

and fT x̃ + ω̃(x̃) ≤ β. Since one condition of the lemma was, that no optimality cut ω̄ exists for which

ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, we can derive that

β > λ̆(fT x̂+ ω̃(x̂)) + (1− λ̆)(fT x̃+ ω̃(x̃)) = fT x̆+ S(x̆) ≥ β,

and this is a contradiction. □

Remark. On the conditions of Theorem 2.15. We want to note that none of the conditions of Theo-

rem 2.15 has to be checked before Model (11) is set up and solved. Since x̃ is supposed to correspond

to be the best feasible solution of Model (1) found so far, and β is its optimal value, fT x̃ + S(x̃) ≤ β

is trivial. Lemma 2.16 ascertains, that whenever fT x̄ + S(x̄) < β, i.e., x̄ improves the currently best
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known objective value of Model (1), this reflects in the solution process of Model (11) in any case. Hence,

this condition has not to be checked upfront. In contrast, if a valid optimality cut ω̄ exists, for which

ω̄(x̃)+fT x̃ = β and ω̄(x̄)+fT x̄ = β, it is not implied by a feasible solution of Model (11), since such a cut

would let the left-hand side of Constraint (11b) be equal to 0. Nevertheless, such a cut is preferable, since

it is a line shift maximum depth. However, solving Model (11) results in any case either in a negative

optimal value or infeasibility. We proceed with solving the original dual sub problem, or a non-negative

optimal value between 0 and 1, that implies a cut that cuts off the current iterate, and we simply insert

it. Alternatively, the condition can easily be checked on the fly in an algorithmic implementation of the

method, and under the assumption that we have a point x̃ at hand with the property that fT x̃+S(x̃) < β,

it holds in any case. Corollary 2.17 states how such points can be obtained.

Remark: Connection of facet cuts and optimal line shifts. The OLS strategy can also be considered as

a facet generating strategy, with the difference, that instead of the point (x̄, η̄) the point (x̄, β − fT x̄) is
separated from the epigraph.

Remark: Sub problems with block-diagonal structure. BD works exceptionally well, if the sub problem

(3) decomposes into several independent optimization problems. This is the case, if the sub problem has a

so-called block-diagonal structure. The independent optimization problems can then be solved separately,

which leads to a considerably reduced computational effort.

Block-diagonal structure is, strictly speaking, not immediately compatible with the procedure intro-

duced within this chapter, since the surrogate problems do not decompose into blocks anymore (Con-

straint (11b) couples the blocks).

Nevertheless, we want to superficially propose a strategy how an existing block-diagonal structure can

be exploited within the provided approach. The idea is based on the last remark, i.e., the fact that we

separate the point (x̄, β − fT x̄) from the epigraph of S in the sense of Stursberg (2019), whenever this is

possible, i.e., if β−fT x̄ < S(x̄). This condition can easily be checked by optimizing the duals of the single

blocks simultaneously, until the cumulated solution value reaches β− fT x̄. A value η̄ is obtained for each

block of the sub problem, such that (x̄, η̄) is not in the epigraph of the value function of the corresponding

block. Hence, this point can be separated from this epigraph, optimizing only over a single block of the

dual sub problem. It is not guaranteed that this procedure delivers a line shift with maximal depth for

the overall optimization problem. Nevertheless, some properties of the original approach are pertained:

The current iterate x̄ is excluded from further consideration, and in certain cases a set of points can be

determined, for which the value of the overall problem is lower than β.

The following chapter specifies the algorithmic framework we propose to solve optimization problems

with the approach provided in this chapter.

3. The algorithmic framework.

In this section, we discuss different solution algorithms. First, we explain how the OLS procedure is

implemented.

The implementation of the methods Magnanti-Wong, MIS and facet is quite straight-forward: The

corresponding sub problems presented in Section 2.2 are created, solved, and the corresponding cut is

added to the master problem. In contrast, Theorem 2.15 can only be applied if the current master solution

has a value that is above the value of the currently best known solution. Furthermore, the theorem has as
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the condition, that no valid optimality cut ω̄ exists that has the property that fT x̄+ ω̄(x̄) = fT x̃+ ω̄(x̃) =

β. Hence we elaborate more on frameworks how this condition can be handled.

We first note that it can easily be checked if there is a valid optimality cut ω̄ that has the property

that fT x̄+ ω̄(x̄) = fT x̃+ ω̄(x̃) = β. We only need to solve Model (3) with the additional constraint

(14) πT (b−Hx̃) = β − fT x̃.

Since it is clear that this model is infeasible if fT x̃+ S(x̃) < β, this step can be omitted if we know this

to hold. As pointed out in the first remark in the end of the last section, this step is optional.

There are different ways to continue. One could solve Model (3), depending on the current master

solution x̄, but only until a feasible solution, that has a value that exceeds β − fT x̄, or unboundedness is
detected. In both cases, this guarantees the conditions of Theorem 2.15. Furthermore, the solution/ray

obtained in the incomplete optimization process of Model (3) can be completed to a feasible solution of

Model (11).

In the first case, we receive a vector π̄, with the property that

π̄T (b−Hx̄) ≥ β − fT x̄

π̄TA ≤ cT

Using the same argument as in the proof of Lemma 2.11, we state that

ψ := π̄TH(x̃− x̄)− fT (x̃− x̄) ≥ 0,

with equality, if and only if

ωπ̄(x̄) + fT x̄ = ωπ̄(x̃) + fT x̃.

If this holds, π̄ induces an OLS. If it is not the case, we set ρ̄ := 1
ψ π̄, and ᾱ := 1

ψ to obtain a feasible

solution of Model (11). We use this as a start solution and continue optimizing Model (11).

We note that it is also be possible to solve Model (3) first to optimality to check the conditions of

Theorem 2.15. Nevertheless, we made the experience that the conditions to apply Theorem 2.15 seem to

be met in the majority of iterations. This implies, that firstly solving Model (3) results in having to solve

two LPs in the majority of iterations. In contrast, we can apply Lemma (2.16), that ascertains that the

Model (11) gets infeasible or has a negative optimal value if and only if the conditions of Theorem 2.15 are

not met. This is the second framework we propose. It solves Model (11) first. Afterwards, it is observed

if it is infeasible or has a negative optimal value. If this is the case, we solve Model (3) to obtain the true

value of S(x̄). With this strategy, we have to solve one LP in the majority of iterations, and we only have

to solve two LPs in very few iterations.

We want to benchmark our cut selection strategy against the existing ones. This includes the Magnanti-

Wong method, MIS cut selection, and facet generating cuts. Since we test the algorithms on mixed-integer

linear programs, with the integer variables in the master problem and the continuous variables in the sub

problem, we implemented a Branch-and-Benders-Cut procedure, that starts a single Branch-and-Cut

framework, and generates valid cuts whenever a new integer solution of the master problem is generated.

It maintains values for x∗ ∈ X, x̃ ∈ conv(X), and β ∈ R. Algorithm 1 shows which steps are conducted

whenever the Branch-and-Cut framework detects a new integral solution that has a value that is lower

than the value of the best solution found so far. The Branch-and-Cut framework inserts the returned cut

ω and updates the values of x̃, x∗ and β afterwards. It terminates, as soon as “optimal” is returned, with

a solution x∗ that is part of a solution of Model (1), that is at most tol ∈ R worse than an optimal one.
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Algorithm 1 OLS Benders cut generation

Input x̄, x∗ ∈ X, η̄ ∈ R, x̃ ∈ conv(X), with ∞ ≠ β := fTx∗ + S(x∗) ≥ fT x̃+ S(x̃), (x̄, η̄) integral
solution of (2) with fT x̄+ η̄ < β, and a lower bound l on (2).
Output Message, that (1) is solved or a valid cut and updated x̃, x∗, β.

1: if l ≤ β − tol then
2: Solve (11). Let µ̄ denote its optimal value.
3: if Model (11) is infeasible or µ̄ < 0 then
4: Solve Model (3).
5: ω ← Benders cut implied by (3).
6: β ← optimal value of (3).
7: x̃, x∗ ← x̄.
8: else
9: ω ← Benders cut implied by (11).

10: x̃← x̃ ∈ {x̄+ µ(x̃− x̄), µ ∈ [µ̄, 1]}.
11: end if
12: return x̃, x∗, β, ω.
13: else
14: return optimal.
15: end if

For the cut selection methods that require a feasible solution of the optimization problem to get

started, i.e., facet and OLS, a feasible solution calculated using a heuristic is provided. The time required

to execute this heuristic does not contribute to the solution time of the methods. In the following section,

the results of our computational study are presented.

4. Computational Results

In this section, we present our computational results. This includes a description of our computational

setup, and the presentation of results for different classes of instances: Instances taken from the MIPLib,

multicommodity-flow network design instances, and instances of randomly generated MIPs. All instances

and our code are publicly available, see Glomb et al. (2023a).

4.1. Computational Setup. In this section, the results of our computational study are presented. All

programs have been written using the programming language Python, version 3.10. Optimization prob-

lems have been solved in single-thread mode using the Gurobi optimizer, version 10.0.2, see Gurobi Op-

timization (2020). The programs have been executed on nodes of a high performance computing cluster

using a Xeon E3-1240 v6 CPU with four cores at 3.7GHz base frequency and with a total memory of

32 GB. We solved four instances on one node at a time. All calculations are terminated after one hour,

leaving the processes 180 seconds for non-optimization tasks like setting up the problems or writing out

the solution files. The duration of these tasks has not been included in the reported solution times.

Whenever a relative optimality gap of 10−4 has been reached, the calculation has been terminated as

well. Since we only consider minimization problems with a positive optimal value, the optimality gap is

defined depending on a known upper bound u > 0 on optimal value and a known lower bound u ≥ l ≥ 0

on the optimal value as u−l
u ∈ [0, 1]. All instances have been solved directly with Gurobi without using

a decomposition approach first (van). Furthermore, we tried BD using five different cut selection ap-

proaches: the Magnanti-Wong strategy (mwb), the MIS strategy (mis), the Facet strategy (fcb), the

OLS strategy (ols), and a hybrid strategy (hyb) combining MIS and OLS. The hybrid strategy uses
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Instance set Facet Magnanti-Wong MIS OLS MIP-Solver Hybrid Benders Total
MIPLib 19 18 18 18 39 18 19 43
MCF-NWD 24 16 26 26 37 26 26 50
Fischetti et al. (2010) 19 18 18 19 12 19 19 20
Random MIP 45 46 45 48 48 45 48 48

Table 1. Instances per instance set that could be solved to optimality by different solution
approaches within the time limit. The right column denotes the size of the instance set.

MIS selection for at least 180 seconds, and at least until the optimality gap reaches 10%. Then it uses

the OLS selection. We want to note that the hybrid strategy has the additional advantage that it can

be started without knowing a feasible solution. For the cut selection strategies, that rely on a feasible

solution to be known (Facet and OLS), we provided a feasible solution, that has an objective within 25%

of the optimal value. All instances are mixed-integer linear programs, and all integer variables have been

retained in the master problem, while all continuous variables have been put into the sub problem. All

cut selection strategies could hence be embedded into a Branch-and-Cut framework, analogous to the

framework described in Algorithm 1.

In order to establish a proper graphical illustration of the algorithms’ performance, performance plots

for the algorithms’ solution time, number of required cuts and optimality gap after one hour have been

generated. Cut performance plots and time performance plots have been generated including only in-

stances, that could be solved to optimality within the time limit by at least one algorithm that is based

on BD. This prevents that the evaluations are strongly biased by assigning the algorithm that produces

new cuts at the slowest rate overly high cut performance values. Table 1 shows how many instances per

instance set could be solved to optimality by the different solution approaches. The second column from

right denotes how many instances could be solved to optimality by BD for at least one of the proposed cut

selection strategies. These instances have been used to generate the performance plots for the runtime of

the algorithms. The runtime has been set to the time limit, whenever an instance has not been solved to

optimality. Hence, the performance plots that are shown might overestimate the true performance plots

by 1 − # Instances solved by algorithm
# Instances solved by Benders . The same applies to the cut efficiency plots. Whenever a significant

proportion of instances could not be solved to optimality, we additionally presented a performance plot

for the optimality gap of these instances. For the other instance sets, the gaps for instances that could

not be solved using BD are reported in tables whenever suitable.

In the following, we will present our results on MIPLIB instances, network design problems and ran-

domly generated MIPs. The results are depicted as so-called performance plots. Performance plot graphs

are defined by the monotone functions

ϕa : [1,∞)→ [0, 1], a ∈ A,

ρ 7→ |{i ∈ I : p(a, i) ≤ ρminã∈A p(ã, i)}|
|I|

,

where I is a set of instances, A is a set of algorithms and p is a performance measure, depending on

algorithm and instance, like, as in our case, “time the algorithm needs to solve the instance”, “cuts the

algorithm needs to solve the instance” or “optimality gap after termination”. The graphs of algorithms

with high performance are in the top-left region of the grid.

4.2. Results for MIPLib Instances. We benchmarked our cut selection strategy against MIS, Facet

and Magnanti-Wong cuts on a selection of decomposable instances from the MIPLib (2017) Collection
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set Gleixner et al. (2021). We identified 55 instances with the following properties:

Figure 2. Fraction of MIPLIB in-
stances that could be solved within
a multiple of fastest running time.

Figure 3. Fraction of MIPLIB in-
stances that could be solved using a
multiple of the cuts needed by the
algorithm with the fewest cuts.

Figure 4. Fraction of MIPLIB in-
stances achieving a multiple of the
gap the algorithm with the lowest
gap achieves after one hour of cal-
culation.

Figure 5. Fraction of MIPLIB in-
stances that could be solved within
a multiple of fastest running time,
including the state-of-the-art MIP
solver.

they should contain at least 1 and at most 1000 integer/binary variables, at least 1 and at most 100000

continuous variables, at most 10000 constraints. They should contain more continuous variables than

integer variables, and have a positive objective function value. We only selected instances labeled as

“easy” and not labeled as “numerics”.

Of these 55 instances, we sorted out the 12 instances binkar10 1, dano3 5, exp-1-500-5-5, fastxgemm-

n2r6s0t2, neos-3072252-nete, neos-3627168-kasai, neos-3665875-lesum, neos-480878, neos22, newdano,

rentacar and uct-subprob due to numerical problems. The results for the remaining 43 instances are

shown in Figures 2 to 5.
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19 of 43 MIPLIB instances could be solved to optimality using BD. Figure 2 shows that, measured in

time needed to solve the instances, the hybrid selection approach, the MIS selection approach and OLS

selection are competitive.

Comparing the number of cuts needed to solve instances to optimality, as shown in Figure 3, OLS

clearly dominates the other cut selection strategies, needing the fewest cuts for over 40% of all instances.

For no instance it needs more than 50% more cuts to solve it to optimality, compared to the best selection

strategy for this instance. We want to note that the hybrid strategy that has competitive solution times,

is clearly the second best strategy in terms of cut efficiency.

Figure 4 shows that for the remaining 24 instances that could not be solved using BD, OLS achieves

the lowest optimality gap for over 60% of all instances.

We are not very surprised that Figure 5 demonstrates that BD is, regardless of the cut selection strategy,

not competitive against one of the best state-of-the-art MIP solvers on MIPLIB instances.

We can conclude, that the hybrid strategy, the MIS strategy and the OLS strategy are the best ones

on the MIPLIB test set.

4.3. Results for Network Design Problems. We tested the algorithms 50 different instances that we

created ourselves, and 20 of the original instances used in Fischetti et al. (2010) (those with positive flow

costs, i.e., the “optimality” instances). The instances we created ourselves are network design problems,

with all combinations of: 20, 40, 60, 80 or 100 commodities, graphs that have either 5× 4 or 6× 4 nodes,

and edges that are created either as grid, as Erdös-Renyi-Graph, as random 5-regular graph, as graph

that is initialized as empty and adds random edges until each node has a degree between 2 and 6, and

as graph that is derived of a random 4-regular graph, removing each edge with a probability of 0.06 and

adding 13 random edges afterwards. Setup costs for an arc have been set to 5, while costs for a unit of

flow along an arc have been set to 1. Each commodity has one origin node and one destination node and

a demand of 1. The algorithmic performance is shown in Figures 6 - 9.

Figure 6. Fraction of network de-
sign instances that could be solved
within a multiple of fastest running
time.

Figure 7. Fraction of network de-
sign instances that could be solved
using a multiple of the cuts needed
by the algorithm with the fewest
cuts.



26 GLOMB, LIERS, RÖSEL

Figure 8. Fraction of network de-
sign instances achieving a multiple of
the gap the algorithm with the low-
est gap achieves after one hour of cal-
culation.

Figure 9. Fraction of network de-
sign instances that could be solved
within a multiple of fastest running
time, including the state-of-the-art
MIP solver.

Figure 6 shows that in terms of solution time, the MIS strategy and the hybrid strategy are the

competitive ones, while the hybrid strategy performs slightly better. These strategies are the optimal

ones for approximately 70% of of the instances, while the hybrid selection strategy solves almost all

instances within additional 60% of the best algorithm’s running time.

Figure 7 shows that for the instances that could be solved to optimality by BD, the OLS strategy needs

by far the fewest cuts.

Figure 8 shows that for the instances that could not be solved to optimality by one of the cut selection

strategies, OLS selection clearly achieves the best optimality gaps after one hour.

Figure 9 shows that a state-of-the-art MIP solver is the best choice for almost 60% of all network design

instances we created, while the hybrid approach/the MIS approach is the best for 40% of all instances

tested. Pure OLS selection is the best approach for around 5% of the instances.
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Figure 10. Fraction of Fischetti
et al. (2010) instances that could be
solved within a multiple of fastest
running time.

Figure 11. Fraction of Fischetti
et al. (2010) instances that could be
solved using a multiple of the cuts
needed by the algorithm with the
fewest cuts.

Figure 12. Fraction of Fischetti
et al. (2010) instances that could be
solved within a multiple of fastest
running time, including the state-of-
the-art MIP solver.

We want to note that the hybrid strategy and the Facet cuts are quite similar in their cut number

performance, while MIS has a clearly worse performance. Hence, we can conclude that the hybrid strategy

is competitive.

The results on the instances from Fischetti et al. (2010) are graphically summarized in Figures 10 - 12.

As before, the hybrid strategy and MIS are competitive regarding time (Figure 10) and OLS and hybrid

selection are competitive regarding cuts (Figure 11). For all instances from Fischetti et al. (2010) that

have been tested, the classical, the state-of-the-art MIP solver is outperformed drastically as demonstrated

in Figure 12.

4.4. Results for randomly generated MIPs. We present our computational results for randomly gen-

erated MIPs. The problems are generated randomly of all combinations of 50, 100 or 150 integer variables,

200 or 400 continuous variables, 50 or 100 inequality constraints containing only integer variables, 100
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or 200 inequality constraints containing integer and continuous variables, and 200 or 400 inequality con-

straints containing only continuous variables. Additionally, each instance contains 5 equality constraints

containing integer and continuous variables.

Integer variables have an objective function coefficient between 0.5 and 5. Continuous variables have

an objective function coefficient between 0 and 10 times the ratio of the number of integer variables and

the number of continuous variables. The objective function coefficients are drawn from these intervals

following a uniform distribution. Each integer variable has a nonzero coefficient in constraints that contain

integer variables with a probability that equals the ratio of 10 and the number of integer variables. Each

continuous variable has a nonzero coefficient in constraints that contain continuous variables with a

probability that equals the ratio of 20 and the number of integer variables.

The results can be taken from Figures 13 - 15.̧

Figure 13. Fraction of Random
MIP instances that could be solved
within a multiple of fastest running
time.

Figure 14. Fraction of Random
MIP instances that could be solved
using a multiple of the cuts needed
by the algorithm with the fewest
cuts.

Figure 15. Fraction of Random
MIP instances that could be solved
within a multiple of fastest running
time, including the state-of-the-art
MIP solver.
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MIS Facet OLS
Adv.

• Practical performance is ex-
cellent
• Easy to implement
• No update of normalization
constraint necessary
• Works without knowledge of
feasible solution

• Practical performance is high
• Independent on constraint
scaling and redundant con-
straints

• Practical performance is ex-
cellent
• Immediate recognition of im-
provements
• Independent on constraint
scaling and redundant con-
straints
• Always cuts off iterate point

Dis-
adv. • Depends on constraint scal-

ing
• Affected by redundant con-
straints
• Difficult to interpret
• Does not recognize improve-
ments immediately
• Needs sign-restricted dual
variables
• Does not necessarily cut off
iterate

• Knowledge of feasible solu-
tion is necessary
• Does not recognize improve-
ments immediately
• Update of normalization con-
straint in each iteration neces-
sary
• Does not necessarily cut off
iterate

• Knowledge of feasible solu-
tion is necessary
• In case of an improvement,
two sub problems have to be
solved
• Update of normalization con-
straint in each iteration neces-
sary

Table 2. Properties of MIS, OLS and Facet selection strategies.

Figure 13 implies that OLS, MIS and hybrid cut selection are competitive in terms of calculation time

on this instance set. OLS is the fastest selection strategy for over 70% of all instances, and solves all

instances in not more than 150% more time than the fastest algorithm.

Figure 14 shows that OLS cut selection is the only competitive when comparing the number of needed

cuts. For over 80% of all instances, OLS needs the fewest cuts to solve the instance, and for no instance it

needs more than twice as many cuts than the method needing the fewest cuts. Hence, OLS outperforms

all other cut selection strategies.

Figure 15 demonstrates that for the random MIPs we generated, using a state-of-the-art MIP solver is

superior to choosing BD as solution approach.

Since it has turned out that MIS, Facet and OLS cuts are the competitive ones, we conclude with a

summary of what we consider to be the advantages and disadvantages of the three selection strategies in

Table 2.

5. Summary and Outlook

In this article, first an innovative notion of Pareto-optimality for Benders cuts has been developed. This

notion is based on so-called solution-candidate sets, that describe the set of points feasible for the master

problem, that are potentially an optimal solution of the original optimization problem. We showed that

cuts, that are non-dominated in our sense are also non-dominated in the sense of Magnanti and Wong

(1981), but the opposite is not necessarily true.

Based on our notion of Pareto-optimality, we developed a novel cut selection strategy for BD, that is

capable of calculating Pareto-optimal cuts if some mild conditions hold.
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Further, we developed the algorithmic framework necessary to optimally exploit the potential of the

cut selection strategy. The algorithm has been benchmarked against other known cut selection strate-

gies (Magnanti-Wong, MIS, Facet) on various instance classes. For all instance classes (MIPLib, multi-

commodity flow network design problems, randomly generated mixed-integer linear programming prob-

lems) the computational results show, that the developed method is competitive measured in CPU seconds

needed to solve a problem to optimality, and the results showed that the developed method needs to gen-

erate a smaller number of cuts than the benchmark approaches to solve instances. The method is hence

especially effective in situations with scarce memory or with a difficult to solve sub problem.

Possible future research directions are the transfer of the method to more general versions of the

approach, like Generalized BD as published in Geoffrion (1972). The approach (as well as the MIS

selection strategy as published in Fischetti et al. (2010) and Facet cuts as published in Stursberg (2019))

can be exploited to speed-up various algorithms based on BD that have been applied to solve real-world

optimization problems, of which many are mentioned in Section 1, since in many of these articles, the

approach is either applied without considering a cut selection strategy at all, or using the Magnanti-Wong

method. Considering the high performance of MIS, Facet and OLS cuts for the optimization problems

investigated in this article, this could lead to significant speedups for real-world applications as well.
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zones and investment incentives in electricity markets: An application of multilevel optimization with

graph partitioning. Energy Economics, 92:104879.

Azad, N., Saharidis, G. K., Davoudpour, H., Malekly, H., and Yektamaram, S. A. (2013). Strategies for

protecting supply chain networks against facility and transportation disruptions: an improved benders

decomposition approach. Annals of Operations Research, 210:125–163.

Baringo, L. and Conejo, A. J. (2011). Wind power investment: A benders decomposition approach. IEEE

Transactions on Power Systems, 27(1):433–441.
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markets: A mixed-integer multilevel model and global solution approaches. Optimization Methods and

Software.

https://faubox.rrze.uni-erlangen.de/getlink/fi4cRCDxNtD7E5mwtS4m6R/
https://faubox.rrze.uni-erlangen.de/getlink/fi4cRCDxNtD7E5mwtS4m6R/


32 GLOMB, LIERS, RÖSEL
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