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Abstract. Decomposition methods can be used to create efficient solution algorithms for a wide range of

optimization problems. For example, Benders Decomposition can be used to solve scenario-expanded two-

stage stochastic optimization problems effectively. Benders Decomposition iteratively generates Benders

cuts by solving a simplified version of an optimization problem, the so-called subproblem. The choice of

the generated cuts can impact the performance of this approach. Several approaches to making this choice

are known.

The Magnanti-Wong method focuses on generating Pareto-optimal cuts. Cuts based on minimal infea-

sible subsystems of a modified version of the subproblem have been proven to be effective. Additionally,

methods that use facets of the subproblem’s value function’s epigraph have been developed recently.

We have made a contribution to the field of cut selection strategies for Benders Decomposition by intro-

ducing a novel concept of Pareto-optimality, which leads to an efficient cut selection strategy. This strategy

aims for cuts that exclude a large set of points from being optimal. Furthermore, we have established the

algorithmic framework to fully leverage the potential of our cut selection strategy.

We have compared our cut selection strategy with several others on various instances, including instances

from the MIPLib, network design problems, and randomly generated mixed-integer linear programs. The

computational results indicate that our method solves problems faster than the benchmark approaches,

particularly when combined as a hybrid selection strategy with the minimal infeasible subsystem cut selec-

tion. Moreover, the method clearly outperforms the other cut selection strategies in terms of the number

of cuts required to solve a problem optimally. Therefore, this method is particularly effective in situations

with limited memory or in cases where the subproblem is challenging to solve.
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1. Introduction and Literature Review

Initially published in Benders (1962) and developed for mixed-integer linear programs (MILP orMIP),

the approach named Benders Decomposition (BD) works on a meta-level, as follows. It separates the

set of variables of the MIP into two classes: the so-called master variables and the subvariables. The

approach alternately solves two optimization problems, the master problem and the subproblem. It

obtains a solution to the master problem in each iteration. It determines a solution to the subproblem

by fixing the variables from the master problem to the obtained values. It derives a new valid constraint

from the dual solution of the subproblem. It adds this constraint to the master problem.

BD is the backbone of various solution methodologies for various optimization problems. It works

exceptionally well, if the subproblem has a separable structure. This means that the subproblem represents
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a collection of smaller optimization problems that can be solved separately (but are coupled if the master

variables are not fixed).

1.1. Literature on BD applications. A large number of articles document the high practical rele-

vance of the approach. BD has been applied to solve a large number of often stochastic optimization

problems with the property that fixing the first stage variable decomposes the problem into independent

subproblems, but BD has also successfully solved optimization problems without block structure.

In Baringo and Conejo (2011) the approach was applied to maximize profits from wind power in-

vestments. This problem is highly affected by uncertainty, and hence, the emerging scenario-expanded

optimization model is decomposed into algorithmically tractable parts. BD can solve the otherwise in-

tractable problem quickly. In Adulyasak et al. (2015), the approach is applied to solve a variant of the

production routing problem under uncertainty. The scenario-expanded model, which is, in practice, diffi-

cult to solve due to its size, could be decomposed into smaller pieces, and the authors report the successful

solution of instances of realistic size and considerable speedups of BD in comparison to standard meth-

ods. The authors also report on several algorithmic improvements like lower-bound lifting inequalities,

Pareto-optimal cuts (in the sense of Magnanti and Wong (1981)), and cut aggregation. They report that

Pareto-optimal cuts have the most significant effect on CPU time (factor 2 to 4 on their instance set). In

Maheo et al. (2019), BD is applied to solve a variant of the network design problem to create a public

transit system for Canberra. The problem structure allows for splitting the problem into multiple inde-

pendent subproblems after fixing only a few variables. The authors used Pareto-optimal cuts in the sense

of Magnanti and Wong (1981) and reported significant speedups compared to standard solution methods.

Bärmann et al. (2015) could solve huge network design problems using an iterative aggregation procedure

that dynamically expands subnetworks. It is shown that the expansion routines are closely related to

Benders feasibility cuts. The method outperforms standard approaches by far when applied to railway

network design problems. Abdolmohammadi and Kazemi (2013) applied BD to optimize the utilization

of combined heat and power systems and showed that the approach is superior to several benchmark

methods. In Nasri et al. (2015), the approach has been applied to solve a network-constrained AC unit

commitment problem with uncertain wind power production. It is used to decompose the emerging in-

tractable scenario-expanded optimization problems into tractable parts that can be solved independently.

In Contreras et al. (2011), BD has been successfully applied to solve large-scale uncapacitated hub location

problems. The problem as well decomposes into several subproblems if a small proportion of the vari-

ables is fixed. In Mansouri et al. (2020), the operational planning of energy hubs with demand response

under uncertainty is optimized using BD, splitting the intractable scenario-expanded optimization model

into tractable parts. The authors report considerable speedups in comparison to to standard methods.

Grimm et al. (2019) have developed a generalized decomposition algorithm for a three-stage energy market

problem that computes optimum electricity market price zones. They could show that welfare-maximum

solutions can be computed within a reasonable time, although the problem is complex. In Ambrosius

et al. (2020) the approach is specified for the German electricity market, considering network expansion

and renewable energy. In Bayram and Yaman (2018), generalized BD has been applied to optimize the

location of shelters and evacuation routes under uncertainty, allowing the intractable scenario-expanded

model to be split into tractable parts. The authors applied several acceleration strategies, including

Pareto-optimal cuts, and reported significant CPU time savings. You and Grossmann (2013) apply a

multi-cut version of the approach to solve a supply chain planning problem under uncertainty. The au-

thors report considerable CPU time savings compared to the single-cut version. Botton et al. (2013)
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applied it to efficiently handle extended formulations of the hop-constrained survivable network design

problem. The authors report a considerable speedup compared to standard methods. Qian et al. (2013)

have successfully used it to optimize communication networks. Azad et al. (2013) applied it to optimize

supply chain networks suffering from facility and transportation disruptions. Compared to standard solu-

tion methods, the authors report considerable CPU time savings, using the covering-cut-bundle method

as presented in Saharidis et al. (2010) and maximum density cuts. In Fischetti et al. (2016), it is tuned

to be applicable to capacitated facility location problems, while in Fischetti et al. (2017), it is applied to

the uncapacitated version of this problem. The authors use several acceleration strategies and achieve

considerable CPU time savings compared to alternative solution approaches for both problem versions.

In Glomb et al. (2023a), a logic-based variant of BD has been applied to solve an integrated tail assign-

ment and turnaround planning problem. The authors report considerable speedups compared to classical

solution approaches. In Glomb et al. (2023b), it has been applied to solve the tail assignment problem

suffering from part failure scenarios. Solving the huge scenario-expanded model with the decomposition

led to significant CPU time savings compared to standard approaches.

1.2. Known approaches to accelerate BD. Several approaches and techniques to accelerate BD are

known. Many have been used in Rahmaniani et al. (2018), where the approach has been applied to

solve large-scale stochastic network design problems. For this reason, this article is a good starting

point to acquire knowledge about acceleration techniques. The authors of Geoffrion and Graves (1974)

proposed a strategy that avoids solving the master problem to optimality in each iteration to attain

performance benefits. In Cote and Laughton (1984), it has been shown that heuristic solutions to the

master problems generate valid cuts. This has been specified, e.g., in Poojari and Beasley (2009), where

a genetic algorithm is applied to create solutions to the master problem. McDaniel and Devine (1977)

show that valid cuts can also be calculated if relaxations of the master problems are used. Based on that,

approaches to solve MIPs, often referred to as the two-phase-algorithm, have been proposed, which solve

the linear programming relaxation of the master problem in the first phase and reestablish the integrality

constraints of the master problem in the second phase. The authors of Costa et al. (2012) proposed

several strategies that aim to determine of points in a superset of the master problem domain, for which

it is beneficial to generate cuts. Several authors have observed that stabilizing the solution process of the

master problem leads to performance gains. A concrete implementation of a stabilization procedure is Rei

et al. (2009), where local branching has been used to limit the distance of subsequent master solutions.

An alternative implementation of a stabilization approach has been set up by Santoso et al. (2005) by

limiting the Hamming distance to a specified stabilization point. Our algorithmic framework uses modern

MIP solvers being capable of inserting additional constraints to an optimization problem on the fly during

a single Branch-and-Cut run. The approach is called Branch-and-Benders-Cut and is described e.g. in

Rahmaniani et al. (2017), and applied e.g. in Gendron et al. (2016). The authors of Saharidis et al.

(2011) point out that for several optimization problems, it is beneficial to initialize the master problem

with several valid inequalities that can either be added upfront or treated as cutting planes that are added

to the master problem during the solution process whenever it seems to be suitable. This strategy has also

been applied in Fischetti et al. (2016). In Bonami et al. (2020), several crucial numerical aspects regarding

BD have been addressed. The authors provide a precise guideline on how to implement the approach.

The focus lies on an in-out procedure to derive cuts that tighten the LP-relaxation of the problem, on

perceiving constraints in the subproblem that contain only one subvariable as variable bounds rather than

as constraints, and on normalization of feasibility cuts. The authors provide an extensive benchmark of
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their implementation and report considerable speedups. Some authors have demonstrated the potential

of making the approach more efficient by implementing problem-specific techniques to strengthen the cuts

such as Van Roy (1986) or Wentges (1996) for some variants of the well-known facility location problem.

In Wu and Shahidehpour (2010), the approach is accelerated using several acceleration strategies, like

Pareto-optimal cuts or cuts with increased density, for network-constrained unit commitment problems.

The authors report significant speedups compared to a standard implementation of the approach.

A vital element to improve the performance of BD is the cut selection strategy. Magnanti and Wong

(1981) propose to generate so-called non-dominated Benders cuts. Whenever the dual of the subproblem

has multiple solutions, each generated cut is readjusted by solving an auxiliary version of the subproblem

that depends on a so-called core point. Adaptations to these methods have been proposed: In Papadakos

(2008), it is shown that clever updates of the core point accelerate the procedure further, and Sherali and

Lunday (2013) show that the solution of a perturbed version of the subproblem automatically provides a

non-dominated cut, making the solution of a second optimization problem in each iteration unnecessary.

For specific optimization problems, it seems to be beneficial to generate multiple cuts per master problem

solution. Saharidis et al. (2010) propose generating a so-called covering cut bundle, i.e., a set of Benders

cuts that have as many master variables as possible in the union of their supports. Fischetti et al. (2010)

and Stursberg (2019) propose cut selection strategies based on slightly adapted subproblems. We will

present their contribution in Section 2 more precisely.

1.3. Contribution and Structure of this Article. We develop a novel and original cut selection

strategy in the sense of Magnanti and Wong (1981), who presented Pareto-optimal Benders cuts. To

implement this, we first develop a novel notion of Pareto-optimality. In contrast to Magnanti and Wong

(1981), our notion of Pareto-optimality is based on the sets of points in the domain of the master problem

that has a chance to be the optimal solution of the overall problem after a Benders cut is inserted into

the master problem. Based on this, we develop a novel cut selection strategy, i.e., it generates, under

mild assumptions, Pareto-optimal cuts according to our notion. The strategy only requires the solution

of one linear program per generated cut. This program is not considerably more difficult than the original

subproblem. Further, we develop an algorithmic framework to apply this cut selection strategy. The

framework specifies some details relevant to the proposed strategy’s performance. We further conduct a

computational study to demonstrate the good performance of our algorithmic framework in comparison

to several other cut selection strategies: the Magnanti-Wong method, as presented in Magnanti and Wong

(1981), cuts based on minimal infeasible subsystems (MIS) as given in Fischetti et al. (2010), and facet

defining cuts as presented in Stursberg (2019). We consider this contribution relevant because BD is

applied frequently, as shown in Section 1.1, and because many acceleration strategies and especially cut

selection strategies have recently been developed, as demonstrated in Section 1.2. We want to acknowledge

that the method we propose uses an idea of Conforti and Wolsey (2019) to generate cuts for BD, following

a suggestion made in the final remarks of Conforti and Wolsey (2019). This article extends the main result

of Conforti and Wolsey (2019) that applies only to polyhedra for which the outer description is explicitly

known. We describe how the idea of Conforti and Wolsey (2019) can be used to generate Benders cuts.

In Section 2, we introduce BD and known cut selection strategies. In Section 3, we propose our novel

notion of Pareto-optimality and our cut selection strategy and prove several vital statements about it. In

Section 4, we present the algorithmic framework that enables the application of the cut selection strategy.

In Section 5, we describe our computational study and its results. Section (6) summarizes our results and

provides an outlook on future research directions.
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2. Benders Decomposition and known Cut Selection Strategies

In this section, we want to present a new approach to selecting valid cutting planes for BD. First, BD,

as initially presented in Benders (1962), is introduced. Afterward, we will present and discuss known

cut selection strategies. Some of these are variants of the method initially presented in Magnanti and

Wong (1981). Furthermore, we present a framework called MIS-cuts, initially presented by Fischetti et al.

(2010). We also present an innovative cut selection strategy proposed by Stursberg (2019), capable of

generating so-called facet-generating cuts under mild assumptions. For a more detailed overview, we refer

to Rahmaniani et al. (2017), an excellent survey of recent developments in this field.

2.1. Benders Decomposition. Initially presented in Benders (1962), the approach has been developed

for optimization problems containing a set of “complicating” variables, typically of the form

min fTx+ cT y(1a)

s.t. Hx+Ay ≥ b(1b)

x ∈ X, y ≥ 0,(1c)

where X ⊂ Rn (the n-dimensional Euclidean space), b ∈ Rm, f ∈ Rn, H ∈ Rm×n, c ∈ Rp and A ∈ Rm×p.

The approach works straight-forwardly under the mild assumption that minx∈X fTx exists and a lower

bound η̂ ∈ R for

η̃ := min
x∈X

S(x),

where

S(x) :=min
y≥0

cT y

s.t. Ay ≥ b−Hx,

exists and is easily obtainable for all x ∈ conv(X). This is, e.g. the case, if c is non-negative. Then, the

inner product cT y is also certainly non-negative, and the choice η̂ := 0 is hence valid.

An artificial variable η, along with the lower bound η̂ is introduced, and afterward the so-called master

problem is solved repeatedly, which is defined as

min fTx+ η(2a)

s.t. 0 ≥ ω(x) for all ω ∈ Ωfeas(2b)

η ≥ ω(x) for all ω ∈ Ωopt(2c)

η ≥ η̂, x ∈ X.(2d)

Constraints (2b) and (2c) are the so-called Benders cuts and are frequently updated, as described in the

following. The set Ω := Ωfeas ∪ Ωopt is initialized as ∅. Hence, in the first iteration, the solution (x̄, η̄) of

Problem (2) is generally x̄ = minx∈X fTx, η̄ = η̂.

After an optimal solution (x̄, η̄) of (2) is obtained, one solves the so-called dual subproblem, which is

the linear programming dual of the primal subproblem,

max πT (b−Hx̄)(3a)

s.t. πTA ≤ cT(3b)

π ≥ 0.(3c)
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We note that (3) is a linear program that is defined, independently on x̄, on the polyhedron

P := {π | πTA ≤ cT , π ≥ 0}.

The polyhedron P is non-empty, implied by the assumption that S(x) is bounded from below.

If Problem (3) is unbounded, we insert a so-called feasibility cut to Ωfeas, which reads as

π̄T (b−Hx) ≤ 0,

where π̄ is an extreme ray of P with a positive objective function value, i.e.,

π̄TA ≤ 0, π̄T (b−Hx̄) > 0.

Otherwise, we insert a so-called optimality cut to Ωopt, which reads as

π̄T (b−Hx) ≤ η,

where π̄ is an optimal solution of (3).

The procedure is repeated until the optimal value of (3) coincides with η̄. If extreme rays and optimal

solutions of (3) are chosen out of a (necessarily finite) inner representation of P , this happens after a finite

number of steps. We refer the interested reader to Benders (1962) for a detailed proof of convergence.

2.2. Known Cut Selection Strategies. If (3) has multiple optimal solutions in some iterations, the

approach can be accelerated by choosing an appropriate one. In some cases, the appropriate solution

implying an efficient cut does not have to be implied by an optimal solution of Problem (3). The following

describes some approaches defining which cuts should be used.

2.2.1. The Magnanti-Wong Method. A well-known cut selection strategy has been proposed by Magnanti

and Wong (1981). The idea is to generate a non-dominated cut. A cut implied by a solution π̄ of

Problem (3) dominates another cut implied by π̃, if and only if for all feasible master points x ∈ X

π̄T (b−Hx) ≥ π̃T (b−Hx),

with strict inequality for at least one x ∈ X. We call a cut non-dominated if no other cut dominates it.

According to Magnanti and Wong (1981), a non-dominated cut can be obtained if a so-called core point

that is contained in the relative interior of the convex hull of the feasible master solutions is known, i.e., a

point x̃ ∈ relint(conv(X)). In this case, in each cut-generating step, Problem (3) is solved first, providing

a solution π̂. Then the constraint

πT (b−Hx̄) ≥ π̂T (b−Hx̄)

is inserted, while the objective function is changed to

πT (b−Hx̃).

Then, Problem (3) is solved again to get a possibly new solution π̄, which is guaranteed to define a non-

dominated cut. We refer to Magnanti and Wong (1981) for details regarding the proof of the statement.

The procedure accelerates the approach for various applications, e.g., Froyland et al. (2014). A drawback

is the necessity to determine an appropriate core point, which is difficult for some problems. The authors

of Papadakos (2008) suggest a strategy to determine an approximate core point on the fly with the help

of an iterative procedure to overcome this drawback.
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2.2.2. Cuts defined by Minimal Infeasible Subsystems. Fischetti et al. (2010) proposed a method to deter-

mine cuts using MIS of the slightly adapted variant of the subproblem, which is the feasibility problem

Find y ≥ 0

s.t. cT y ≤ η̄

Ay ≥ b−Hx̄.

Their computational study implies significant speedups. The approach is implemented by adding a vari-

able and a constraint to Problem (3). The modified dual subproblem then reads

max πT (b−Hx̄)− π0η̄(4a)

s.t. πTA ≤ π0c
T(4b)

πTw + π0w0 = 1(4c)

π ≥ 0.(4d)

The program uses an appropriately dimensioned positive-valued weight vector w, which can be arbitrarily

chosen. The authors of Fischetti et al. (2010) suggest choosing wi to be 1 for i = 0 and for indices i for

which the corresponding row of H is not the zero row, and 0 otherwise. The cut that is generated by a

solution (π̄, π̄0) of the modified dual subproblem (4) would read

π̄T (b−Hx) ≤ π̄0η.

An advantage of the proposed framework is that the feasibility and optimality cuts can be derived in

the same way as dual solutions instead of extreme rays. If π̄0 is 0, we get a cut that does not depend on

the variable η. Hence, in this case, it is a feasibility cut.

The authors of Fischetti et al. (2010) report considerable computational benefits compared to alterna-

tive cut selection strategies. Even though the MIS approach is performing extraordinarily well in practice,

it has several drawbacks. It might generate cuts that do not support the epigraph of the subproblem’s

value function, as defined later in (5), at any point. As a result, multiple cuts might have to be generated

to cut off a single assignment of master variables. Furthermore, the scaling of the constraints influences

the behavior of the MIS approach and the existence of unnecessary constraints in the sense that they are

implied by other constraints. These statements are substantiated by Example A.1, which can be found

in Appendix A.

Furthermore, the strategy cannot be applied straightforwardly to solve problems with equality con-

straints, leading to dual variables that are not restricted in sign. If the dual variables are sign-restricted,

Fischetti et al. (2010)’s choice of w is substantiated by the following Lemma.

Lemma 2.1. Let Hi denote the i-th row of H, and let

wi :=

0 if Hi = 0

1 otherwise,
for all i = 1, ...,m.

Then, it holds that if Problem (4) is unbounded, then Problem (1) is infeasible.

Proof. If Problem (4) is unbounded, there is an extreme ray π̄ of Problem (4) with a positive value. As

π̄ ≥ 0 and wT π̄ = 0 holds, we know that π̄i = 0 for all i with Hi ̸= 0. Furthermore, π̄0 = 0 holds. Hence,
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we get that

0 < π̄T (b−Hx̄)− π̄0η̄ =
∑

i:Hi=0

π̄ibi

and as π̄TA ≤ 0 we can obtain the valid Benders cut∑
i:Hi=0

π̄ibi ≤ 0.

As the LHS is a positive real, Problem (1) must be infeasible. □

Lemma 2.1 no longer holds if πi is not sign-restricted for an index i with Hi ̸= 0. This is a side result

of Example A.2, found in the appendix. In this case, choosing w as proposed by Fischetti et al. (2010)

can lead to incorrect results, as demonstrated in Example A.2. Optimizing directly over the alternative

polyhedron proposed in Fischetti et al. (2010) does not solve the problem either, as shown in Example A.3.

Hence, to choose the weight vector gets non-trivial in this case.

2.2.3. Facet-Generating Cuts. Stursberg (2019) recently proposed a cut selection framework that parallels

MIS cut selection. A selection of the dissertation results has also been published in the journal article

Brandenberg and Stursberg (2021). The idea is to aim for cuts that represent facets of the polyhedral

epigraph of the subproblem’s value function,

(5) E := {(x, η) | η ≥ min cT y : Ay ≥ b−Hx, y ≥ 0}.

The theory developed by Stursberg (2019) is based on reverse polar sets of the epigraph. Since im-

mediate representations of reverse polar sets are in general intractable, the author solves instead linear

optimization problems with objective function vector (w,w0) ∈ Rm+1 over the so-called Relaxed Alter-

native Polyhedron

(6) P≤(x, η) := {π, π0 ≥ 0 | πTA+ π0c
T = 0, πT (b−Hx) + π0η ≥ 1}.

These are under mild assumptions equivalent to the optimization problems over the reverse polar set.

According to Theorem 3.32 of Stursberg (2019), there is an optimal extremal point of the Relaxed Al-

ternative Polyhedron inducing a cut that supports the epigraph in one of its facets under mild assumptions

on (w,w0).

In the empirical study, it turns out that setting (w,w0) to (H(x̃− x̄), η̃− η̄) is quite efficient. The core

point (x̃, η̃) is a possibly frequently updated, feasible solution of the master problem and the corresponding

subproblem objective function value. The vector (x̄, η̄) is the current iterate. The author calls this

strategy “adaptive cuts”. Since this seems to be an efficient choice of (w,w0), we will use this strategy in

our benchmarks, calling the cuts “facet generating” or simply “facet”.

Furthermore, the author proposes several equivalent variants of subproblems that can be chosen when

the “facet” cut selection is applied. One is the following, slightly adapted from Stursberg (2019).

max πT (b−Hx̄)− π0η̄(7a)

s.t. πTA ≤ π0c
T(7b)

πTH(x̃− x̄) + π0(η̃ − η̄) = 1(7c)

π ≥ 0.(7d)
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We note that the difference between the MIS subproblem and the facet-generating subproblem reduces

to an adapted normalization constraint: While (4c) is the normalization constraint of Problem (4), Con-

straint (7c) is the normalization constraint of Problem (7). Apart from the normalization constraint, the

two problems are identical.

Remark. While MIS cut selection relies on sign-restricted dual variables, the facet approach can also

be applied when the dual variables are free. Furthermore, as discussed before, MIS cut selection depends,

e.g., on the scaling of certain constraints. In contrast to that, the author of Stursberg (2019) claims that a

cut that is generated using Problem (7) supports the epigraph of the subproblem value function at a point

on the connection line of the iterate (x̄, η̄) and the core point (x̃, η̃). This implies that facet-generating

cuts are independent of algebraic transformations of the optimization problems under consideration that

leave the epigraph of the subproblem unaffected.

3. β-Dominance and our Cut Selection Strategy.

In the following, we propose a new cut selection strategy that incorporates knowledge about the master

problem and solutions obtained in previous iterations of the algorithm. The observation is that it is

beneficial to determine a solution of the dual subproblem (3) that leads to a cut that excludes as many

points as possible from having a chance to be an optimal solution to Problem (1). This idea is illustrated

with the help of an example in Section 3.1. The set of points excluded to be optimal by a Benders cut

implies a partial order on the set of valid Benders cuts. In Section 3.2, it is demonstrated that based on

this partial order, Pareto-optimal Benders cuts can be obtained. It is further shown that Pareto-optimal

cuts are automatically non-dominated in the sense of Magnanti and Wong (1981). Section 3.3 introduces

so-called optimal line-shifting cuts and shows that they are Pareto-optimal. In Section 3.4 it is described

how optimal line-shifting cuts can be calculated.

3.1. An Introductory Example. The fact that an optimal dual solution does not necessarily lead to

a cut that excludes as many master solutions as possible from being optimal is demonstrated with the

following example.

Example 3.1. Consider the following optimization problem, which is defined on the Euclidean plane:

min− 1

10
x+ y(8a)

s.t. y ≥ 1

4
x(8b)

y ≥ −x(8c)

y ≥ −1− 2x(8d)

x ∈ [−2, 2].(8e)

We consider x as the master variable and y as the subvariable.

We obtain x̄(1) = 2 by optimizing −1
10 x on the interval [−2, 2] with a value of −1

5 . The dual subproblem

reads

maxπ1 ·
1

4
x̄+ π2 · (−x̄) + π3 · (−1− 2x̄)(9a)

π1 + π2 + π3 = 1(9b)

π ≥ 0.(9c)
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x

η

1

1 x̄(1)

ω1

x̄(2)

ω2

(a) Classical BD.

x

η

1

1 x̄(1)

ω1

x̄(2)

ω̃2

(b) Minimizing Cω.

Value function of sub-
problem

Benders cuts{
(x, η) | − x

10 + η = 3
10

}{
x | − x

10 + ω2(x) >
3
10

}{
x | − x

10 + ω̃2(x) >
3
10

}

Figure 1. Two different courses of BD.

Inserting x̄(1), we obtain the solution π̄ = (1, 0, 0)T with value 1
2 and derive the Benders cut that reads

ω1(x) =
1
4x. We note that we get 3

10 as an upper bound for Problem (8). The master problem gets

min− 1

10
x+ η

s.t. η ≥ 1

4
x.

Its unique solution is x̄(2) = −2, η̄(2) = −1
2 , with a value of − 3

10 . The classical version of BD obtains

the solution π̄ = (0, 0, 1) to Problem (9), implying the cut ω2(x) = −1 − 2x as shown in Figure 1a. An

observation we make is that the solution of the next master problem is, in any case, in the set Cω̃2 with

Cω :=

{
x | − 1

10
x+ ω(x) ≤ 3

10

}
for all valid Benders cuts ω,

as each solution that is not in this set would have a worse objective than 3
10 , and the point (x̃, η̃) = (2, 12)

is feasible and has an objective of exactly 3
10 . The complement of this set is shown as solid blue line in

Figure 1a. The right border of the interval coincides with the x-coordinate of the intersection point of

the dashed red line corresponding to the graph of ω2 and the dashed blue line corresponding to the set{
(x, η) | − x

10 + η = 3
10

}
.

The central idea of this article is now to aim for a Benders cut ω̃2 that has the property that Cω is

minimized over all valid cuts ω with regards to set inclusion. The Benders cut that minimizes this set

is ω̃2(x) = −x, as shown in Figure 1b. The complement of Cω̃2 is shown as the solid green line in

Figure 1b. The right border of the interval coincides with the x-coordinate of the intersection point of

the dashed red line corresponding to the graph of ω̃2 and the dashed blue line corresponding to the set{
(x, η) | − x

10 + η = 3
10

}
.

We want to note that ω̃2 is the better choice, as it lets the master problem terminate immediately. In

contrast, the algorithm needs another iteration if ω2 is chosen. We also want to note that the inferior

cut ω2 is Pareto-optimal in the sense of Magnanti and Wong (1981), it is an MIS cut, and it is also

facet-defining.

The example demonstrates that the existing cut selection strategies might fail to choose the clearly

superior cut. Hence, we next present a new technique for generating Benders cuts, following the idea to

minimize the set of potential solutions to the next master problem.

3.2. Cut Selection Paradigm. The cuts in the example aimed to minimize the size of the set of points

in the master problem domain that are potentially better than an already obtained solution. This is
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the paradigm our cut selection strategy follows. Hence, we formally define a solution candidate set

that contains all master solutions better than a threshold β ∈ R if the master problem contains either

one or a set of Benders cuts. The value of β is often set to the incumbent value of Problem (1), i.e.,

β = fTx∗ + S(x∗) for a solution (x∗, S(x∗)) of the master problem (2).

Definition 3.2 (Solution Candidate Set.). Given the master problem (2) with feasibility and optimality

cuts Ω = Ωfeas ∪ Ωopt, and β ∈ R, we define the solution candidate set (SC-set) as

CΩ,β :=
{
x ∈ X | ∃η : fTx+ η ≤ β, 0 ≥ ω(x) for ω ∈ Ωfeas, η ≥ ω(x) for ω ∈ Ωopt

}
.

We furthermore define Cω,β := C{ω},β. For a feasible solution x̃ of Problem (2) with η̃ denoting the

corresponding subproblem optimal value, we define the SC-set analogously as CΩ,x̃,η̃ := CΩ,fT x̃+η̃.

We first observe that the SC-set of a system of cuts and for a threshold, the value of the best solution

found so far, is precisely the set where a potential optimal solution of (1) can be.

Observation 3.3. Given Problem (1) and a system of valid cuts Ω, it holds that the set of points in X

that can be completed to an optimal solution of (1) is a subset of CΩ,β for all thresholds β that are not

lower than the optimal value of (1).

We can state a criterion that excludes a certain point in X from the SC-set for a certain threshold.

Observation 3.4. Given a feasible master solution x̄ ∈ X and a threshold β ∈ R. Given an optimality

cut ω induced by a feasible solution π̄ of (3), it holds that

x̄ ∈ Cω,β ⇔ fT x̄+ π̄T (b−Hx̄) ≤ β.

The observation implies that a version of the approach that generates a cut with a value greater than

the current threshold at the point where it is generated has the property that the algorithm never visits

a point in X twice before it terminates.

Next, we propose a dominance criterion similar to that of Magnanti and Wong (1981) based on SC-

sets. One important advantage is that it also includes feasibility cuts, in contrast to Magnanti and Wong

(1981)’s dominance notion.

Definition 3.5 (β-Dominance). Given the master problem (2) with valid cuts ω1 and ω2, cut ω1 β-

dominates cut ω2 for a threshold β ∈ R, if

Cω1,β ⊊ Cω2,β.

In the following we want to point out the connection between β-dominance and Magnanti and Wong

(1981)’s dominance notion.

Theorem 3.6. Given the master problem (2) with a convex feasible set X and two optimality cuts ω1

and ω2 with

ω1(x) ≥ ω2(x) for all x ∈ X and ω1(x) > ω2(x) for at least one x ∈ X.

Then, ω1 β-dominates ω2 for all thresholds β in the interval

B :=
(
inf

{
β̃ ∈ R | Cω2,β̃

∩X ̸= ∅
}
, sup

{
β̃ ∈ R | Cω1,β̃

∩X ̸= X
})

.
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Proof. Let x′ ∈ Cω1,β for an arbitrary β. Then, there is an η ∈ R such that

fTx′ + η ≤ β and η ≥ ω1(x
′).

Since ω1(x
′) ≥ ω2(x

′), this implies that for this choice of η

fTx′ + η ≤ β and η ≥ ω2(x
′)

also applies, and hence x′ ∈ Cω2,β. Assume that there is a threshold β in B such that Cω1,β = Cω2,β. Let

x′ be a point for which ω1(x
′) > ω2(x

′). If x′ ∈ Cω1,β, we choose x′′ /∈ Cω1,β, if x
′ /∈ Cω1,β, we choose

x′′ ∈ Cω1,β. The properties of B justify both choices.

We consider the case with x′ ∈ Cω1,β first. This implies that

fTx′ + ω2(x
′) < fTx′ + ω1(x

′) ≤ β.

On the other hand, we have

fTx′′ + ω1(x
′′) ≥ fTx′′ + ω2(x

′′) > β.

We consider for i ∈ {1, 2} the functions

(10) gi : λ 7→ fT (x′ + λ(x′′ − x′)) + ωi(x
′ + λ(x′′ − x′)).

Since ωi are affine functions, gi is also an affine function and, therefore, continuous and either constant

or strictly increasing or decreasing. We note that g2(λ) < g1(λ) for all λ ∈ [0, 1). We further note that

g2(0) < β and g2(1) > β. Since g2 is continuous, there exists λ̄ ∈ [0, 1) with g2(λ̄) = β. Since g1 is

strictly larger than g2 on [0, 1), we have that g1(λ̄) > β. Hence, x′ + λ̄(x′′ − x′) is contained in Cω2,β,

but not in Cω1,β. This is a contradiction to our assumption. The second case is analog. This proves the

statement. □

We note that B contains the thresholds, for which at least one of the cuts ω1, ω2 has a candidate

set that is neither X nor the empty set. Theorem 3.6 has the consequence that if a cut is generated

that is not β-dominated for reasonable thresholds, it is also non-dominated in the sense of Magnanti and

Wong (1981) under mild assumptions. The opposite direction is not valid, i.e., it is possible that a cut is

non-dominated in the sense of Magnanti and Wong (1981) but is β-dominated, as already demonstrated

in Example 3.1.

The following theorem states that a valid cut that β-dominates another cut does this for smaller

thresholds under certain conditions. This further justifies choosing the dominating cut over the dominated

one if these conditions apply to a pair of cuts. In this case, the dominating cut has smaller candidate

sets over the whole remaining course of an algorithmic implementation of BD, for that β attains the best

solution value found so far, which is non-increasing.

Theorem 3.7. Given the master problem (2) with a convex feasible set X, a point x̄ ∈ X, a threshold β̄

and two optimality cuts ω1 and ω2 with

Cω1,β̄
⊆ Cω2,β̄

and ω2(x̄) > ω1(x̄) ≥ β̄ − fT x̄.

Then it holds that

Cω1,β ⊊ Cω2,β

for all β ∈ B, where the interval B is defined as

B :=
(
inf

{
β̃ ∈ R | Cω1,β̃

̸= ∅
}
, β̄

)
.
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Proof. Assume there is a β ∈ B for which

Cω1,β ⊈ Cω2,β, i.e., ∃x′ ∈ X with ω1(x
′) + fTx′ ≤ β, ω2(x

′) + fTx′ > β.

We first note that ω1(x̄) + fT x̄ > β̄, since otherwise x̄ ∈ Cω1,β̄
and x̄ /∈ Cω2,β̄

, which is a contradiction

to our assumption. This implies that x′ ̸= x̄. We further note that ω2(x
′) + fTx′ ≤ β̄ since otherwise

x′ ∈ Cω1,β̄
and x′ /∈ Cω2,β̄

, which is a contradiction to our assumption. This implies that

β̄ < fT x̄+ ω1(x̄) < fT x̄+ ω2(x̄) and fTx′ + ω1(x
′) < fTx′ + ω2(x

′) ≤ β̄.

We consider for i ∈ {1, 2} the affine functions gi as defined in Equation (10). We note that g2(λ) > g1(λ)

for all λ ∈ [0, 1]. We further note that g1(0) > β̄ and g1(1) < β̄. Since g1 is continuous, there exists

λ̄ ∈ [0, 1] with g1(λ̄) = β̄. Since g2 is strictly larger than g1 on [0, 1], we have that g2(λ̄) > β̄. Hence,

x̄+ λ̄(x′ − x̄) is contained in Cω1,β̄
, but not in Cω2,β̄

. This is a contradiction to our assumption, and we

can conclude that Cω1,β ⊆ Cω2,β.

Assume there is a β ∈ B for which

Cω1,β = Cω2,β.

Then there exists x′ ∈ X such that

ω1(x
′) + fTx′ = β.

This holds because ω2(x̄) + fT x̄ ≥ β̄ and Cω1,β̄
⊆ Cω2,β̄

imply that x̄ ∈ Cω1,β, and this implies that

∅ ≠ X \ Cω1,β. Furthermore, β ∈ B implies directly that ∅ ≠ Cω1,β. It further holds that

ω2(x
′) + fTx′ = β

as well, since ω2(x
′) + fTx′ > β would imply that the candidate sets are not equal. If ω2(x

′) + fTx′ < β

would hold, we could define gi as in Equation (10) for i = 1, 2 and could observe that there is λ̄ close to

1 such that g1(λ̄) > β, but g2(λ̄) < β. This would also imply that the candidate sets are not equal.

So, to conclude our argument, we take gi as defined in Equation (10) for i = 1, 2. We note that

g2(λ) > g1(λ) for λ ∈ [0, 1). Since g1 is continuous, this interval contains a point λ̄ for which g1(λ̄) = β̄,

and this implies that g2(λ̄) > β̄. This implies that x̄ + λ̄(x′ − x̄) ∈ Cω1,β̄
, but not in Cω2,β̄

. This is a

contradiction to our assumption and concludes the proof. □

Remark. For points x̄ with S(x̄) = ∞ and certain thresholds β, the only non-dominated cuts may

be optimality cuts. Example A.4 in Appendix A shows a situation where this happens. Nevertheless,

it may also happen that only feasibility cuts are not β-dominated, as demonstrated in Example A.5 in

Appendix A.

In the following section, we describe how cuts can be obtained that are not β-dominated.

3.3. Line-Shifting Cuts. We introduce an approach to generate Benders cuts that are, under certain

conditions, non-dominated in the sense of Definition 3.5. The idea is to exclude as many points on a line

from the current master solution x̄ ∈ X to a core point x̃ ∈ conv(X) from further consideration. We call

each valid Benders cut that excludes at least x̄ from further consideration a “line-shifting cut”. Formally,

line-shifting cuts are given by Definition 3.8.

Remark. Even though it is formally not necessary, we think that it could simplify to understand the

following contents if one interprets (x̄, η̄) as the current master solution or “iterate”, x̃ as core point, x∗
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as the incumbent solution. It might also be helpful to interpret the value of β as the incumbent value,

i.e., β = fTx∗ + S(x∗). We note that the incumbent can always serve as a core point.

Definition 3.8 (Line-shifting cut). Given the master problem (2) with a feasible set X, and points

x̃ ∈ conv(X), x̄ ∈ X, and β ∈ R with the property that

fT x̃+ S(x̃) ≤ β and fT x̄+ S(x̄) ≥ β,

we define a line-shifting cut induced by (x̄, x̃, β) as an optimality cut ω̄, for which a parameter µ ∈ [0, 1]

exists, such that

fT (x̄+ µ(x̃− x̄)) + ω̄(x̄+ µ(x̃− x̄)) = β,

fT x̄+ ω̄(x̄) ≥ β,

fT (x̄+ µ̃(x̃− x̄)) + ω̄(x̄+ µ̃(x̃− x̄)) < β for all µ̃ ∈ (µ, 1),

or a feasibility cut, ω̄, for which a parameter µ ∈ [0, 1] exists, such that

ω̄(x̄+ µ(x̃− x̄)) = 0,

ω̄(x̄) > 0,

ω̄(x̄+ µ̃(x̃− x̄)) < 0 for all µ̃ ∈ (µ, 1).

In both cases, we call µ the depth of the line-shifting cut.

We observe that for all points x̄ ∈ X, arbitrary feasibility cuts or optimality cuts ω̄ with fT x̄+ω̄(x̄) ≥ β

are line-shifting cuts with a certain depth.

We call a line-shifting cut with maximum depth optimal line-shifting (OLS) cut.

Definition 3.9 (OLS cut). Under the conditions of Definition 3.8, we define an OLS cut induced by

(x̄, x̃, β) as an optimal solution to the optimization problem

max{µ(ω) | ω is a line-shifting cut induced by (x̄, x̃, β)},

where µ maps line-shifting cuts to their depth.

The concepts of the depth of a line-shifting cut and OLS cuts are illustrated in Figure 2, showing the

two cuts generated in Example 3.1 for classical BD.

Continuance of Example 3.1. We recall that the classical version of BD obtained the cut ω2 = −1−2x,
and the improved version of BD obtained the cut ω̃2 = −x. After one iteration, the incumbent and core

point of Problem (8) is x̄(1) = 2 with a value of 3
10 := β. The iterate of iteration 2 is x̄(2) = −2. Both, ω2

and ω̃2 are line-shifting cuts induced by (x̄(2), x̄(1), β), as

fT x̄(2) + ω2(x̄
(2)) =

2

10
+ 3 >

3

10
= β and fT x̄(2) + ω̃2(x̄

(2)) =
2

10
+ 2 >

3

10
= β.

The depth of ω2 is µ = 29
84 , as

fT (x̄(2)+µ(x̄(1)−x̄(2)))+ω2(x̄
(2)+µ(x̄(1)−x̄(2))) = −1

10
(−2+29

84
(2−(−2)))−1−2(−2+29

84
(2−(−2))) = 3

10
= β.

The depth of ω̃2 is µ̃ = 19
44 , as

fT (x̄(2)+µ̃(x̄(1)−x̄(2)))+ω̃2(x̄
(2)+µ̃(x̄(1)−x̄(2))) = −1

10
(−2+19

44
(2−(−2)))−(−2+19

44
(2−(−2))) = 3

10
= β.
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There is no line-shifting cut induced by (x̄(2), x̄(1), β) with a higher depth. Hence, ω̃2 is an OLS cut.

x

η

1

1 x̄(1)

ω1

x̄(2)

ω2

(a) Benders cut ω2 with a depth of
µ = 29

84 , illustrated by the thick blue
line that covers a proportion of µ of
the distance between x̄(2) and x̄(1).

x

η

1

1 x̄(1)

ω1

x̄(2)

ω̃2

(b) Benders cut ω̃2 with a depth of
µ̃ = 19

44 , illustrated by the thick green
line that covers a proportion of µ̃ of
the distance between x̄(2) and x̄(1).

Value function of sub-
problem

Benders cuts{
(x, η) | − x

10 + η = 3
10

}{
x | − x

10 + ω2(x) >
3
10

}{
x | − x

10 + ω̃2(x) >
3
10

}

Figure 2. Comparison of cut depth for two different line-shifting cuts.

The following theorem establishes a connection between OLS cuts and β-dominance. It states that

OLS cuts are not β-dominated under certain conditions.

Theorem 3.10. Given the master problem (2) with a convex feasible set X, and points x̃ ∈ X, x̄ ∈ X,

and β ∈ R. An OLS cut ω̄ induced by (x̄, x̃, β) with depth µ̄ < 1 is not β-dominated, if

x′ := x̄+ µ̄(x̃− x̄) ∈ relint(X).

Proof. We prove statement that a line-shifting cut that is an optimality cut is not β-dominated by another

optimality cut. This proof can be easily adapted for feasibility cuts. For this reason, we omit analog

reasoning.

Assume there is a valid Benders cut ω̃ that β-dominates ω̄, i.e.,

Cω̃,β ⊊ Cω̄,β.

We first note that µ̄ < 1 implies that fT x̄+ ω̄(x̄) > β. This in turn implies that fT x̄+ ω̃(x̄) > β holds,

since otherwise x̄ ∈ Cω̃,β, but x̄ /∈ Cω̄,β. This implies that ω̃ is a line-shifting cut. Hence, it has a depth.

The depth of ω̃ is µ̄ as well: As ω̄ has been a line-shifting cut with maximum depth, µ̃ ≤ µ̄ has to hold

for the depth µ̃ of ω̃. If µ̃ < µ̄ would hold, then x′ ∈ Cω̃,β, but x
′ /∈ Cω̄,β.

As we assumed that ω̃ β-dominates ω̄, there exists a point x′′ ∈ X with fTx′′ + ω̃(x′′) > β, but

fTx′′ + ω̄(x′′) ≤ β. Since x′ ∈ relint(X), there exists a parameter θ > 1, such that x′′ + θ(x′ − x′′) ∈ X.

This in turn implies that fTx′′ + ω̄(x′′) = β, as well as fT (x′′ + θ(x′ − x′′)) + ω̄(x′′ + θ(x′ − x′′)) = β.

We note that fTx+ ω̃(x) > β has to hold for all x in a relatively open neighborhood of x′′+x′

2 . Using

the same argument as before, on this open neighborhood, it holds that fT (x) + ω̄(x) = β, i.e., the affine

function fT (x)+ ω̄(x) is constant on this relatively open neighborhood. As X is convex, we can infer that

fTx + ω̄(x) is constant on X. This implies that ω̄ is a line-shifting cut with depth 1, which contradicts

the assumptions made upfront. □

Remark. If X is non-convex, it is possible to calculate OLS cuts, but they might be β-dominated.

Nevertheless, OLS cuts are helpful for solution methods that work with convex supersets of X rather

than with X itself, e.g., Branch-and-Benders-Cut, as they are non-dominated on these convex supersets.
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3.4. Computing OLS Cuts. This section describes how OLS cuts can be obtained. The most important

results are the following: Lemma 3.12 gives a linear program whose solution implies an optimality cut

that is line-shifting with maximum depth. Lemma 3.14 gives a linear program whose solution implies a

line-shifting feasibility cut with maximum depth. Theorem 3.16 combines the results of the two lemmas

and gives a linear program whose solution is an OLS cut, i.e., a valid line-shifting Benders cut with

maximum depth. The two lemmas and the theorem have as conditions that the current iterate does not

improve the incumbent’s value. We recall that the idea of generating non-dominated Benders cuts is to

get the value of as many points as possible in X over the old incumbent value in the next iteration. This

goal is desirable if the current iterate does not improve the incumbent value. If it improves the incumbent

value, a standard Benders cut would be preferable, as it admits to calculating the new incumbent value

and gives a cut that excludes the current iterate from being chosen in subsequent iterations. From an

algorithmic point of view, it is desirable not to have the obligation to check if the current iterate generates

a better incumbent value. Hence, we proved Lemma 3.17, which states that the linear program given in

Theorem 3.16 attains a non-positive value or is infeasible if the conditions of Theorem 3.16 are violated.

3.4.1. Computation of optimality cuts. The following proposition states that an optimality cut that is a

line-shifting cut with maximum depth is the solution of a fractional linear program.

Proposition 3.11. Consider Problem (1) and the corresponding master problem (2) with feasible set

X, a threshold β ∈ R and points x̃ ∈ conv(X), x̄ ∈ X, with fT x̄ + S(x̄) ≥ β, fT x̃ + S(x̃) ≤ β. If

no optimality cut ω̄ exists for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, then a solution (π̄, µ̄) of the

following optimization problem defines an optimality cut that is a line-shifting cut induced by (x̄, x̃, β) with

depth µ̄ ≤ 1, and no optimality cut that is a line-shifting cut induced by this triple has a higher depth.

max µ(11a)

s.t. πT (b−H(x̄+ µ(x̃− x̄))) + fT (x̄+ µ(x̃− x̄)) = β(11b)

πTA ≤ cT(11c)

πT (b−Hx̄) + fT x̄ ≥ β(11d)

π ≥ 0, µ ≥ 0.(11e)

The optimization problem is not unbounded and has at least one feasible solution.

Containing products of variables, Problem (11) is no longer a linear program, since it contains the

bilinear constraint (11b). Nevertheless, Problem (11) can be reformulated to a fractional linear program.

Under some mild assumptions the fractional linear program can be reformulated to an equivalent linear

program with one variable that is restricted to be strictly positive, applying the method presented in

Charnes and Cooper (1962). This is the statement of Lemma 3.12.

Lemma 3.12. Consider Problem (1) and the corresponding master problem (2) with feasible set X, a

threshold β ∈ R and points x̃ ∈ conv(X), x̄ ∈ X, with fT x̄+ S(x̄) ≥ β ≥ fT x̃+ S(x̃).
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i) If no optimality cut ω̄ exists for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, then each optimal

solution (ρ̄, ᾱ) of

max ρT (b−Hx̄) + α(fT x̄− β)(12a)

ρTH(x̃− x̄)− αfT (x̃− x̄) = 1(12b)

ρTA ≤ αcT(12c)

α ≥ 0, ρ ≥ 0.(12d)

has the property that π̄ := ρ̄
ᾱ , µ̄ := ρ̄T (b−Hx̄)+ᾱ(fT x̄−β) is an optimal solution of Problem (11),

if ᾱ > 0.

ii) If S(x̄) <∞, then ᾱ > 0.

Remark. As a consequence of Lemma 3.14 and Theorem 3.16, presented later in this paper, it follows

that the condition S(x̄) <∞ is not restrictive. Even if it does not hold, Problem (12) can be a surrogate

for the dual subproblem.

Proof. For i), it is easy to check that Constraint (11b) is equivalent to

µ =
πT (b−Hx̄) + fT x̄− β

πTH(x̃− x̄)− fT (x̃− x̄)

if we can prove that the denominator is nonzero over the feasible set of Problem (11). Hence, µ can be

replaced in the objective function of Problem (11). The result is an optimization problem with linear

constraints and a fractional objective function. We use the approach of Charnes and Cooper (1962) to

reformulate this optimization problem to obtain an equivalent linear program.

To apply the reformulation method, one has to ensure that the denominator does not change its

sign over the set of feasible points of the program to be reformulated. This requirement is fulfilled for

Problem (11): If we assume that there is a feasible solution π̄ of Problem (11), for which the denominator

is not positive, we can derive

0 ≥ π̄TH(x̃− x̄)− fT (x̃− x̄)

= π̄T (b−Hx̄) + fT x̄− (π̄T (b−Hx̃) + fT x̃)

> β − β = 0.

The last inequality is implied by Constraint (11d) and the condition β ≥ fT x̃+ S(x̃), implying

β ≥ fT x̃+ π̄T (b−Hx̃). It is strict because we assumed that no cuts exist for which ω̄(x̃) + fT x̃ = β and

ω̄(x̄) + fT x̄ = β.

Hence, we can reformulate Problem (11) by introducing a new variable α > 0 and the constraint

α =
1

πTH(x̃− x̄)− fT (x̃− x̄)
⇔ α(πTH(x̃− x̄)− fT (x̃− x̄)) = 1.

The objective function gets

α(πT (b−Hx̄) + fT x̄− β).

Further, we can multiply Constraints (11b) to (11d) with α. We substitute απ = ρ, relax α > 0 to

α ≥ 0, and drop the reformulation of Constraint (11d). This yields

ρT (b−Hx̄) ≥ α(β − fT x̄).



18 GLOMB, LIERS, RÖSEL

This constraint bounds the objective function from below and is, hence, not necessary. Adding everything

together, we get Problem (12).

For ii), it remains to show that an optimal solution (ρ̄, ᾱ) of Problem (12) has the property ᾱ > 0.

Assume, ᾱ = 0. Then, we know that

ρ̄T (b−Hx̄) ≤


maxπT (b−Hx̄)

s.t. πTA ≤ 0

π ≥ 0.

The optimal value is 0 since we assumed S(x̄) < ∞. Nevertheless, there is always a solution π̃ of

Problem (3) implying a cut ω̃ that has the property that ω̃(x̄) = S(x̄). If we define

α̃ :=
1

π̃TH(x̃− x̄)− fT (x̃− x̄)
, ρ̃ := α̃π̃,

This is a feasible solution of Problem (12) with a positive objective function value - a contradiction. □

3.4.2. Computation of feasibility cuts. One can directly obtain results for the line-shifting cut procedure

including only feasibility cuts, which are presented next.

Proposition 3.13. Given Problem (1) and the corresponding master problem (2) with feasible set and

points x̃ ∈ conv(X), x̄ ∈ X, with S(x̃) <∞ and S(x̄) =∞. A solution (π̄, µ̄) of the following optimization

problem is a line-shifting cut with depth µ̄ induced by (x̃, x̄, β) for all β ∈ R, and no feasibility cut induced

by this triple has a higher depth.

max µ(13a)

s.t. πT (b−H(x̄+ µ(x̃− x̄))) = 0(13b)

πTA ≤ 0(13c)

πT (b−Hx̄) = 1(13d)

π ≥ 0, µ ≥ 0.(13e)

The optimization problem is not unbounded and has at least one feasible solution.

The following lemma states that Problem (13) can be reformulated similarly to Problem (11).

Lemma 3.14. Given Problem (1) and the corresponding master problem (2) with feasible set and points

x̃ ∈ conv(X), x̄ ∈ X, with S(x̃) <∞ and S(x̄) =∞. Then, each optimal solution ρ̄ of

max ρT (b−Hx̄)(14a)

ρTH(x̃− x̄) = 1(14b)

ρTA ≤ 0(14c)

ρ ≥ 0(14d)

has the property that π̄ := ρ̄
ρ̄T (b−Hx̄)

, µ̄ := ρ̄T (b−Hx̄) is an optimal solution of Problem (13).

Proof. It is easy to check that Constraint (13b) is equivalent to

µ =
πT (b−Hx̄)

πTH(x̃− x̄)
.
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Hence, µ can be replaced in the objective function of Problem (13). The result is an optimization problem

with linear constraints and a fractional objective function. We use the approach of Charnes and Cooper

(1962) to reformulate this optimization problem to obtain an equivalent linear program.

For the reformulation method to be applicable, it has to be guaranteed that the denominator does

not change its sign over the whole feasible set of the problem to be reformulated. This requirement is

fulfilled for Problem (13): If we assume that there is a feasible solution π̄ of Problem (13), for which the

denominator is not positive, we can derive

0 ≥ π̄TH(x̃− x̄)

= π̄T (b−Hx̄)− π̄T (b−Hx̃)

≥ 1− 0 = 1.

The last inequality can be derived from Constraint (13d) and the conditions of the Lemma.

Hence, we can reformulate Problem (13) by introducing a new variable α > 0 and the constraint

α =
1

πTH(x̃− x̄)
⇔ απTH(x̃− x̄) = 1.

The objective function gets

απT (b−Hx̄) = α.

Furthermore, we can multiply Constraints (13b) to (13d) with α. Substituting απ = ρ and substituting

α by ρT (b−Hx̄) according to Constraint (13d) leads to Problem (14). An optimal solution to Problem (14)

has a positive optimal value. □

3.4.3. Joint computation of optimality and feasibility cuts. We note that Problem (14) is Problem (12)

with α restricted to be 0. Hence, the following lemma connects the results regarding feasibility cuts and

optimality cuts.

Lemma 3.15. Given Problem (1) and the corresponding master problem (2) with feasible set X, a

threshold β ∈ R and points x̃ ∈ conv(X), x̄ ∈ X, with fT x̄ + S(x̄) ≥ β, fT x̃ + S(x̃) ≤ β. If there is no

optimality cut ω̄ with ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β and if ᾱ = 0 holds for an optimal solution

(ρ̄, ᾱ) to Problem (12), then the optimal value of Problem (11) is not greater than the optimal value of

Problem (13).

Proof. Assume the optimal value of Problem (11) is µ̄, attained at π̄, and the optimal value of Problem (13)

is µ̃ with µ̄ > µ̃. Then, the constraint

πT (b−Hx̄) ≤ π̄T (b−Hx̄)

can be added to Problem (11) without changing the optimal value. This corresponds to an alternative

dual subproblem that has no unbounded rays. Lemma 3.12 ascertains that in this case, for an optimal

solution (ρ̃, α̃) of the modified subproblem (12), it holds that α̃ > 0, with an optimal value of µ̄. Since

(ρ̄, ᾱ) is an optimal solution to the original Problem (12), its value is hence at least µ̄. Since ρ̄ is feasible

for Problem (14) and the optimal values of Problem (13) and Problem (14) coincide, we obtain

µ̃ ≥ µ̄ > µ̃,

a contradiction. □

We get the following result by merging Lemmas 3.12, 3.14, and 3.15.
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Theorem 3.16. Given Problem (1) and the corresponding master problem (2) with feasible set X, a

threshold β ∈ R and points x̃ ∈ conv(X), x̄ ∈ X, with fT x̄ + S(x̄) ≥ β, fT x̃ + S(x̃) ≤ β. If no

optimality cut ω̄ exists for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, then each optimal solution (ρ̄, ᾱ)

of Problem (12) defines a line-shifting cut with maximal depth. The depth equals the optimal value of the

problem, and the cut added to Problem (2) reads

ρ̄T (b−Hx) ≤ ᾱη.

Proof. A line-shifting cut with maximal depth is either a feasibility cut, captured by Problem (13), or

an optimality cut, captured by Problem (11), depending on which problem has the higher optimal value.

If we consider a solution (ρ̄, ᾱ) of Problem (12) with ᾱ = 0, Lemma 3.15 guarantees that the optimal

value of Problem (13) is not lower than the optimal value of Problem (11). Furthermore, ρ̄ is feasible for

Problem (14), and we can apply Lemma 3.14 to transform this solution into a feasibility cut that reads

ρ̄T (b−Hx) ≤ 0.

If ᾱ > 0, the solution is also a solution to Problem (12) with α restricted to be positive. We further

know that the optimal value of this problem is not lower than the solution of Problem (14), since it is a

relaxation of the latter. The solution (ρ̄, ᾱ) can be transformed by applying Lemma 3.12 to a solution of

Problem (11) with the same objective function value, and this can be transformed into a valid optimality

cut that reads

ρ̄T (b−Hx) ≤ ᾱη.

Taking everything together, we get the desired result. □

The following lemma states that Problem (12) is infeasible or has a non-positive value if the requirements

of Lemma 3.12 are not met, i.e., if fTx∗ + S(x∗) > fT x̄ + S(x̄) for the current iterate x̄ and incumbent

x∗.

Lemma 3.17. Given Problem (1) and the corresponding master problem (2) with feasible set X, a

threshold β ∈ R and points x̃ ∈ conv(X), x̄ ∈ X, with fT x̄ + S(x̄) < β, fT x̃ + S(x̃) ≤ β. Then,

Problem (12) is infeasible or has a non-positive optimal value.

Proof. Assume that Problem (12) has an optimal value that is positive, or is unbounded. Then, it has a

feasible solution (ρ̄, ᾱ) with a positive value. If ᾱ = 0, we can derive that ρ̄TA ≤ 0 and ρ̄T (b−Hx̄) > 0.

This translates into a valid feasibility cut that cuts off x̄, a contradiction. If ᾱ > 0, we can derive that
1
ᾱ ρ̄

TA ≤ cT , and 1
ᾱ ρ̄

T (b − Hx̄) + fT x̄ > β. This translates into a valid optimality cut that guarantees

that fT x̄+ S(x̄) > β, which is also a contradiction. □

The construction of OLS cuts relies on knowing good feasible solutions to the original problem (1).

We observed that it is beneficial if the feasible solution the approach relies on is varied in every iteration.

This is the motivation of the following lemma, stating how a new core point in the convex hull of the

master problem’s feasible space can be constructed after an OLS cut is generated.

Lemma 3.18. Given Problem (1) and the corresponding master problem (2) with feasible set X, a

threshold β ∈ R and points x̃ ∈ conv(X), x̄ ∈ X, with fT x̄+ S(x̄) ≥ β, fT x̃+ S(x̃) ≤ β. Let furthermore

µ̄ < 1 denote the optimal value of Problem (12) corresponding to this setting, and let x′ := x̄+ µ̄(x̃− x̄).
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If no optimality cut ω̄ exists for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, then it holds that

fTx′ + S(x′) ≤ β,

fTx+ S(x) < β for all x ∈ {x′ + λ(x̃− x′), λ ∈ (0, 1)}.

Proof. First, we show fTx′ + S(x′) ≤ β. To do this, assume first that S(x′) = ∞. Then, there exists a

valid feasibility cut ω̃, such that ω̃(x′) > 0. Since the cut is valid, it holds that ω̃(x̃) ≤ 0. Hence, there is

µ̂ ∈ (0, 1) for which ω̃(x̄ + µ̂(x̃ − x̄)) = 0 and ω̃(x̄ + µ(x̃ − x̄)) > 0 for all µ ∈ (0, µ̂). Hence, ω̃ implies a

solution of Problem (12) with value µ̂ > µ̄, and this is a contradiction to our assumption.

Assume that ∞ > fTx′ + S(x′) > β. Then, there exists a valid optimality cut ω̃ such that fTx′ +

ω̃(x′) > β. Since the cut is valid, it holds that fT x̃ + ω̃(x̃) ≤ β. Hence, there is µ̂ ∈ (0, 1), such that

fT (x̄+ µ̂(x̃− x̄)) + ω̃(x̄+ µ̂(x̃− x̄)) = β and fT (x̄+ µ(x̃− x̄)) + ω̃(x̄+ µ(x̃− x̄)) > β for all µ ∈ (0, µ̂).

Hence, ω̃ implies a solution of Problem (12) with value µ̂ > µ̄, and this is a contradiction.

Second, we show fTx + S(x) < β for all x ∈ {x′ + λ(x̃ − x′), λ ∈ (0, 1)}. Assume that there exists

x′′ ∈ {x′+λ(x̃−x′), λ ∈ (0, 1)}, i.e., x′′ = x′+λ̆(x̃−x′) for a λ̆ ∈ (0, 1), with fTx′′+S(x′′) ≥ β. Then there

is a valid optimality cut ω̃ with fTx′′ + ω̃(x′′) ≥ β. Since this cut is valid, it holds that fTx′ + ω̃(x′) ≤ β

and fT x̃ + ω̃(x̃) ≤ β. Since one condition of the lemma was that no optimality cut ω̄ exists for which

ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, we can derive that

β > λ̆(fTx′ + ω̃(x′)) + (1− λ̆)(fT x̃+ ω̃(x̃)) = fTx′′ + S(x′′) ≥ β,

and this is a contradiction. □

3.5. Concluding Remarks.

3.5.1. On the conditions of Theorem 3.16. As already stated at the beginning of Section 3.4, none of the

conditions of Theorem 3.16 has to be checked before Problem (12) is set up and solved. Lemma 3.17

ascertains that whenever fT x̄ + S(x̄) < β, i.e., x̄ improves the currently best-known objective function

value of Problem (1), Problem (12) has a non-positive optimal value or is infeasible. In the rare case that

a valid optimality cut ω̄ exists, for which ω̄(x̃) + fT x̃ = β and ω̄(x̄) + fT x̄ = β, Problem (12) can be set

up and solved as well. If it has a positive optimal value, it implies a cut that the iterate violates and can

be used. If not, a standard Benders cut can be calculated. We will provide a more detailed explanation

in Section 4.

3.5.2. Connection of facet cuts and optimal line-shifting cuts. The optimal line-shifting strategy can also

be considered as a facet-generating strategy, with the difference that instead of the current iterate (x̄, η̄)

the point (x̄, β−fT x̄) is separated from the epigraph. We recall that the facet strategy solves Problem (7)

to generate a cut violated by (x̄, η̄). If we want to generate a cut that is violated by (x̄, β− fT x̄) instead,

we replace η̄ with β − fT x̄ in Problem (7) and get

max πT (b−Hx̄)− π0(β − fT x̄)(15a)

s.t. πTH(x̃− x̄) + π0(η̃ − β + fT x̄) = 1(15b)

πTA ≤ π0c
T(15c)

π0, π ≥ 0.(15d)

As η̃ = β − fT x̃, we can reformulate the left-hand side of Constraint (15b) into

πTH(x̃− x̄) + π0(β − fT x̃− β + fT x̄) = πTH(x̃− x̄) + π0f
T (x̄− x̃).



22 GLOMB, LIERS, RÖSEL

We observe that Problem (15) and Problem (12) are identical.

3.5.3. Subproblems with block-diagonal structure. BD works exceptionally well if the subproblem (3) de-

composes into K independent optimization problems. This is the case if the subproblem has a so-called

block-diagonal structure. The independent subproblem parts, or “blocks”, can then be solved separately,

which leads to a considerably reduced computational effort. In this case, the master problem (2) contains

not only one variable η to estimate the value function of the subproblem but one variable ηk for each

block k = 1, ...,K to estimate the value function of each subproblem part.

We note that Problem (12) does not decompose into blocks, even if Problem (3) decomposes into blocks,

as Constraint (12b) has one non-zero coefficient for at least one variable in each block for all reasonably

stated optimization problems.

Nevertheless, block-diagonal structure can be exploited within the OLS approach. The last remark

states that the OLS approach separates a point (x̄, η̂) with η̂ > η̄ from the epigraph of S in the sense

of Stursberg (2019), instead of the iterate (x̄, η̄). This principle can be directly transferred to the block-

diagonal case, i.e., we aim to separate a point (x̄, η̂k) with η̂k > η̄k from the epigraph of the k-th block’s

value function Sk instead of separating the iterate (x̄, η̄k) from it. We expect that an algorithm based on

this principle will perform well.

The following chapter specifies the algorithmic framework we propose to solve optimization problems

with the approach provided in this chapter.

4. The algorithmic framework.

In this section, we discuss how the OLS procedure is implemented. We note that Theorem 3.16 can

only be applied if the current master solution (x̄) has a value that is not below the value of the currently

best-known solution (x∗), i.e., if fT x̄ + S(x̄) ≥ β = fTx∗ + S(x∗). Furthermore, the theorem has as the

prerequisite that no valid optimality cut ω̄ exists that has the property that fT x̄+ ω̄(x̄) = fT x̃+ ω̄(x̃) = β

for a core point x̃ ∈ conv(X). The latter is automatically fulfilled if fT x̃+ S(x̃) < β. Otherwise, we can

check if the optimal value of Problem (3) with the additional constraint

(16) πT (b−Hx̃) = β − fT x̃

is lower than β − fT x̄.

The first prerequisite can be checked by solving Problem (12). Lemma 3.17 guarantees that if the

prerequisite is violated, the problem has a non-positive value or is infeasible. We can now state an

algorithm that calculates OLS cuts.

Since we test BD on mixed-integer linear programs, with the integer variables in the master problem and

the continuous variables in the subproblem, we implemented a Branch-and-Benders-Cut procedure that

starts a single Branch-and-Cut framework and generates valid cuts whenever a new integer solution of the

master problem is generated. The Branch-and-Cut framework maintains values for x∗ ∈ X (incumbent),

x̃ ∈ conv(X) (core point), β ∈ R (incumbent value), and a lower bound l ∈ R on the value of Problem (1).

Algorithm 1 is called whenever the Branch-and-Cut framework detects a new integral solution (x̄, η̄) with

a value lower than the incumbent value.

Algorithm 1 gets all the parameters described in the last paragraph as input and a parameter γ ∈ (0, 1)

that coordinates the update of the core point. Algorithm 1 checks first if the incumbent value is sufficiently

close to the lower bound provided by the Branch-and-Cut framework. If it is close, it returns optimal.
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Otherwise, if the last Benders cut has not been obtained from a solution of Problem (12), it solves

Problem (3) + (16) and terminates with the implied Benders cut if the value of the problem is greater

or equal to β, leaving threshold, core point and incumbent unchanged. Otherwise, it solves Problem (12)

and determines its optimal value µ̄, if possible. An OLS cut is desirable if the iterate does not improve the

incumbent value. The algorithm exploits Lemma 3.17: If the iterate improves the incumbent, Problem (12)

is infeasible, or µ̄ is non-positive. The algorithm solves Problem (3) and determines its optimal value S(x̄).

A Benders cut ω is derived from the solution of Problem (3), β is set to fT x̄+ S(x̄), and the core point

and the incumbent are set to the iterate. If Problem (12) has a positive optimal value, a Benders cut ω

is derived from the solution of Problem (12). Theorem 3.16 ascertains that the derived cut is an OLS

cut. The core point x̃ is updated to x̄+ (µ̄+ γ(1− µ̄))(x̃− x̄). This step is justified by Lemma 3.18. The

lemma also guarantees that the value of the new core point is lower than the incumbent value. Afterward,

the Benders cut, the new core, the new incumbent, and the new incumbent value are returned. The

Branch-and-Cut framework inserts the returned cut ω and updates the values of x̃, x∗, and β afterward.

It terminates as soon as “optimal” is returned by Algorithm 1, with a solution x∗ that is part of a solution

of Problem (1), at most tol ∈ R worse than an optimal one.

Remark. It is possible to check the condition fT x̄ + S(x̄) ≥ β by solving either Problem (12) as in

Algorithm 1 or by solving Problem (3). If the condition holds, Problem (12) has to be solved to generate

the OLS cut. Otherwise, Problem (3) has to be solved to evaluate S(x̄) and to generate the Benders cut.

Hence, solving Problem (12) first is more efficient if one expects that the condition holds for most iterates.

In some situations, solving Problem (3) first is more efficient. One situation is if the condition does not

hold for more than 50% of the iterates. Another situation is if Problem (3) is easier to solve, e.g., due

to the presence of many so-called “Generalized Bound Constraints”, as used in Bonami et al. (2020). If

Problem (3) is supposed to be solved first, Lines 9 to 17 must be changed accordingly. Empirical tests

showed that the variant presented in Algorithm 1 is the more efficient for the instance set we used for our

computational experiments.

Remark. OLS cuts can be incorporated into the framework presented by Bonami et al. (2020). We

suggest using OLS cuts whenever Problem (3) is unbounded, i.e., instead of a subproblem with “L1-

normalization” or “CW-normalization”. Preliminary computational tests suggest that this has a positive

influence on running times.

In the following section, the results of our computational study are presented.

5. Computational Results

In this section, we present our computational results. This includes a description of our computational

setup and the presentation of results for different classes of instances: instances taken from the MIPLib,

multicommodity-flow network design instances, and instances of randomly generated MIPs. All instances

and our code are publicly available; see Glomb et al. (2024). We benchmarked our cut selection strategy

against several existing solution approaches.

5.1. Computational Setup. In this section, the results of our computational study are presented. All

programs have been written using the programming language Python, version 3.10. Optimization prob-

lems have been solved in single-thread mode using the Gurobi optimizer, version 10.0.2, see Gurobi Op-

timization (2020). The programs have been executed on nodes of a high-performance computing cluster

using a Xeon E3-1240 v6 CPU with four cores at a 3.7GHz base frequency and a total memory of 32

GB. We solved four instances on one node at a time. All calculations are terminated after one hour,
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Algorithm 1 OLS cut generation

Input x̄, x∗ ∈ X, η̄ ∈ R, x̃ ∈ conv(X) with ∞ ≠ β := fTx∗ + S(x∗) ≥ fT x̃+ S(x̃), (x̄, η̄) feasible
solution of (2) with fT x̄+ η̄ < β, a lower bound l on (2), and ´γ ∈ (0, 1).
Output Message that (1) is solved, or a valid cut and updated x̃, x∗, β.

1: if l ≤ β − tol then
2: if x̃ = x∗ then
3: Solve (3) + (16). Let α denote its optimal value.
4: if fT x̄+ α ≥ β then
5: ω ← Benders cut implied by (3) + (16).
6: return x̃, x∗, β, ω.
7: end if
8: end if
9: Solve (12). Let µ̄ denote its optimal value.

10: if Problem (12) is infeasible or µ̄ ≤ 0 then
11: Solve Problem (3) to determine S(x̄).
12: ω ← Benders cut implied by (3).
13: β ← fT x̄+ S(x̄).
14: x̃, x∗ ← x̄.
15: else
16: ω ← Benders cut implied by (12).
17: x̃← x̄+ (µ̄+ γ(1− µ̄))(x̃− x̄).
18: end if
19: return x̃, x∗, β, ω.
20: else
21: return optimal.
22: end if

leaving the processes 180 seconds for non-optimization tasks like setting up the problems or writing out

the solution files. The duration of these tasks has not been included in the reported solution times.

Whenever a relative optimality gap of 10−4 has been reached, the calculation has been terminated as

well. Since we only consider minimization problems with a positive optimal value, the optimality gap

is defined depending on a known upper bound u > 0 on the optimal value and a known lower bound

u ≥ l ≥ 0 on the optimal value as u−l
u ∈ [0, 1]. All instances have been solved directly with Gurobi

without a decomposition approach (van). Furthermore, we tried BD using five different cut selection

approaches: the Magnanti-Wong strategy (mwb), the MIS strategy (mis), the Facet strategy (fcb), the

OLS strategy (ols), and a hybrid strategy (hyb) combining MIS and OLS. The hybrid strategy uses MIS

selection for at least 100 cuts and at least until the optimality gap reaches 10%. Then, it uses the OLS

selection. The hybrid strategy has the additional advantage that it can be started without knowing a

feasible solution.

For the cut selection methods that require a feasible solution of the optimization problem to get started,

i.e., facet and OLS, a feasible solution calculated using the Gurobi optimizer, see Gurobi Optimization

(2020), terminating as soon as an optimality gap of 25% is reached. The time required to execute this

heuristic is negligible, i.e., far below 1 s for all instances except 24 instances of the MIPLib instance set

and far below the running times of the solution algorithms we tested for these. Hence, we do not consider

the running time of the heuristic as a part of the solution time of the methods.

All instances are mixed-integer linear programs, and all integer variables have been retained in the

master problem, while all continuous variables have been put into the subproblem. Hence, we embedded
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Instance set Facet Magnanti-Wong MIS OLS MIP-Solver Hybrid Benders Total
MIPLib 17 17 17 17 42 17 17 44
MCF-NWD 24 16 26 26 35 26 27 50
Fischetti et al. (2010) 18 16 18 19 9 19 19 20
Random MIP 45 45 46 47 48 46 47 48

Table 1. Instances per instance set that could be solved to optimality by different solution
approaches within the time limit. The right column denotes the size of the instance set.

all cut selection strategies into a Branch-and-Cut framework, analogous to the framework described in

Algorithm 1.

To establish a proper graphical illustration of the algorithms’ performance, performance plots for the

algorithms’ solution time, number of required cuts and optimality gap after one hour have been generated.

Cut and time performance plots include only instances that could be solved to optimality within the time

limit by at least one algorithm based on BD. This prevents the evaluations from being strongly biased by

assigning the algorithm that produces new cuts at the slowest rate overly high cut performance values.

Table 1 shows how many instances per instance set could be solved to optimality by the different solution

approaches. The second column from the right denotes how many instances could be solved to optimality

by BD for at least one of the proposed cut selection strategies. These instances have been used to generate

the performance plots for the algorithms’ runtime. The runtime has been set to the time limit whenever

an instance has not been solved to optimality. Hence, the performance plots shown might overestimate

the true performance plots by 1− # Instances solved by algorithm
# Instances solved by Benders . The same applies to the cut efficiency plots.

Whenever a significant proportion of instances could not be solved to optimality, we additionally presented

a performance plot for the optimality gap of these instances. For the other instance sets, the gaps for

instances that could not be solved using BD are reported in tables whenever suitable.

The following sections will present our results on MIPLIB instances, network design problems, and

randomly generated MIPs. The results are depicted as so-called performance plots. Performance plots

are the graphs of the monotone functions

ϕa : [1,∞)→ [0, 1], a ∈ A,

ρ 7→ |{i ∈ I : p(a, i) ≤ ρminã∈A p(ã, i)}|
|I|

,

where I is a set of instances, A is a set of algorithms, and p is a performance measure, depending on

the algorithm and the instance, like, as in our case, “time the algorithm needs to solve the instance”,

“cuts the algorithm needs to solve the instance” or “optimality gap after termination”. The graphs of

algorithms with high performance are in the top-left regions of the figures.

5.2. Results for MIPLib Instances. We benchmarked our cut selection strategy against MIS, Facet

and Magnanti-Wong cuts on a selection of decomposable instances from the MIPLib (2017) Collection

set Gleixner et al. (2021). We identified 55 instances with the following properties:
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Figure 3. Fraction of MIPLIB in-
stances that could be solved within
a multiple of fastest running time.

Figure 4. Fraction of MIPLIB in-
stances that could be solved using a
multiple of the cuts needed by the
algorithm with the fewest cuts.

Figure 5. Fraction of MIPLIB in-
stances achieving a multiple of the
gap the algorithm with the lowest
gap achieves after one hour of cal-
culation.

Figure 6. Fraction of MIPLIB in-
stances that could be solved within
a multiple of fastest running time,
including the state-of-the-art MIP
solver.

they contain at least 1 and at most 1000 integer/binary variables, at least one and at most 100000

continuous variables, and at most 10000 constraints. They contain more continuous than integer variables

and have a positive optimal value. We only selected instances labeled as “easy” and not as “numerics”.

Of these 55 instances, we omitted the 11 instances b2c1s1, bienst2, binkar10 1, cost266-UUE, fastxgemm-

n2r6s0t2, n6-3, neos-3072252-nete, neos-3627168-kasai, neos-3665875-lesum, neos-480878, and rentacar

due to numerical problems. The results for the remaining 44 instances are shown in Figures 3 to 6.

19 of 44 MIPLIB instances could be solved to optimality using BD. Figure 3 shows that, measured in

running time, hybrid, MIS, and OLS selection are competitive.

Comparing the number of cuts needed to solve instances to optimality, as shown in Figure 4, OLS

outperforms the other cut selection strategies, needing the fewest cuts for over 50% of all instances. For

no instance, it needs more than 80% more cuts to solve it to optimality, compared to the best selection
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strategy for this instance. We want to note that the hybrid strategy, which has competitive solution

times, is the second-best regarding cut efficiency.

Figure 5 shows that for the remaining 24 instances that could not be solved using BD, OLS achieves

the lowest optimality gap for over 70% of all instances.

We are not very surprised that Figure 6 demonstrates that BD is not competitive against one of the

best state-of-the-art MIP solvers on MIPLIB instances regardless of the cut selection strategy.

5.3. Results for Network Design Problems. We tested the algorithms on 50 newly created instances

and on 20 of the original instances used in Fischetti et al. (2010) (those with positive flow costs, i.e.,

the “optimality” instances). The instances we created ourselves are network design problems, with all

combinations of 20, 40, 60, 80, or 100 commodities, graphs that have either 5 × 4 or 6 × 4 nodes, and

edges that are created either as a grid, as Erdös-Renyi-Graph, as a random 5-regular graph, as a graph

that is initialized as empty and adds random edges until each node has a degree between 2 and 6, and as

a graph that is derived of a random 4-regular graph, removing each edge with a probability of 0.06 and

adding 13 random edges afterward. Setup costs for an arc have been set to 5, while costs for a unit of

flow along an arc have been set to 1. Each commodity has one origin node, one destination node, and a

demand of 1. The algorithmic performance is shown in Figures 7 - 10.

Figure 7. Fraction of network de-
sign instances that could be solved
within a multiple of fastest running
time.

Figure 8. Fraction of network de-
sign instances that could be solved
using a multiple of the cuts needed
by the algorithm with the fewest
cuts.
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Figure 9. Fraction of network de-
sign instances achieving a multiple of
the gap the algorithm with the low-
est gap achieves after one hour of cal-
culation.

Figure 10. Fraction of network de-
sign instances that could be solved
within a multiple of fastest running
time, including the state-of-the-art
MIP solver.

Figure 7 shows that regarding solution time, the hybrid strategy is the best one. The hybrid strategy

has the lowest running time for approximately 40% of the instances and it solves all instances within an

additional 70% of the best algorithm’s running time.

Figure 8 shows that the OLS strategy needs the fewest cuts for the instances that could be solved to

optimality by BD.

Figure 9 shows that for the instances that could not be solved to optimality by one of the cut selection

strategies, OLS selection achieves the best optimality gaps after one hour.

Figure 10 shows that a state-of-the-art MIP solver is the best choice for more than 60% of all network

design instances we created, while the MIS approach is the best for 30% of all instances tested. Pure OLS

selection is the best approach for around 5% of the instances.

Figure 11. Fraction of Fischetti
et al. (2010) instances that could be
solved within a multiple of fastest
running time.

Figure 12. Fraction of Fischetti
et al. (2010) instances that could be
solved using a multiple of the cuts
needed by the algorithm with the
fewest cuts.
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Figure 13. Fraction of Fischetti
et al. (2010) instances that could be
solved within a multiple of fastest
running time, including the state-of-
the-art MIP solver.

The results for the instances from Fischetti et al. (2010) are graphically summarized in Figures 11 - 13.

As before, the hybrid strategy and MIS are competitive regarding time (Figure 11), and OLS and hybrid

selection are competitive regarding cuts (Figure 12). For all instances from Fischetti et al. (2010) that

have been tested, the state-of-the-art MIP solver is outperformed, as demonstrated in Figure 13.

5.4. Results for randomly generated MIPs. We present our computational results for randomly

generated MIPs. The problems are generated randomly of all combinations of 50, 100, or 150 integer vari-

ables, 200 or 400 continuous variables, 50 or 100 inequality constraints containing only integer variables,

100 or 200 inequality constraints containing integer and continuous variables, and 200 or 400 inequal-

ity constraints containing only continuous variables. Additionally, each instance contains five equality

constraints containing integer and continuous variables.

Integer variables have an objective function coefficient between 0.5 and 5. Continuous variables have

an objective function coefficient between 0 and 10 times the ratio of the number of integer variables and

the number of continuous variables. The objective function coefficients are drawn from these intervals

following a uniform distribution. Each integer variable has a nonzero coefficient in constraints that contain

integer variables with a probability that equals the ratio of 10 and the number of integer variables. Each

continuous variable has a nonzero coefficient in constraints that contain continuous variables with a

probability that equals the ratio of 20 and the number of integer variables.

The results can be taken from Figures 14 - 16.
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Figure 14. Fraction of Random
MIP instances that could be solved
within a multiple of fastest running
time.

Figure 15. Fraction of Random
MIP instances that could be solved
using a multiple of the cuts needed
by the algorithm with the fewest
cuts.

Figure 16. Fraction of Random
MIP instances that could be solved
within a multiple of fastest running
time, including the state-of-the-art
MIP solver.

Figure 14 implies that OLS cut selection is competitive in terms of calculation time on this instance

set. OLS is the fastest selection strategy for over 80% of all instances and solves all instances in not more

than 130% more time than the fastest algorithm.

Figure 15 shows that OLS cut selection is competitive when comparing the number of needed cuts. For

over 90% of all instances, OLS needs the fewest cuts to solve the instance. Hence, OLS outperforms all

other cut selection strategies.

Figure 16 demonstrates that for the random MIPs we generated, using a state-of-the-art MIP solver is

superior to choosing BD as a solution approach.

We want to conclude with a summary of what we consider to be the advantages and disadvantages of

the three cut selection strategies MIS, Facet, and OLS. The summary can be found in Table 2.
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MIS Facet OLS
Adv.

• Excellent practical perfor-
mance
• Easy to implement
• No update of normalization
constraint is necessary
• Works without knowledge of
a feasible solution

• High practical performance
• Independent on constraint
scaling and redundant con-
straints

• Excellent practical perfor-
mance
• Immediately recognizes im-
provements
• Independent on constraint
scaling and redundant con-
straints
• Always cuts off the iterate
point

Dis-
adv. • Depends on constraint scal-

ing
• Affected by redundant con-
straints
• Difficult to interpret
• Does not immediately recog-
nize improvements
• Needs sign-restricted dual
variables
• Does not necessarily cut off
the iterate point

• Knowledge of a feasible solu-
tion is necessary
• Does not immediately recog-
nize improvements
• Update of normalization con-
straint is necessary in each iter-
ation
• Does not necessarily cut off
iterate

• Knowledge of feasible solu-
tion is necessary
• Two subproblems have to be
solved if the incumbent im-
proves
• Update of normalization con-
straint in each iteration is nec-
essary

Table 2. Properties of MIS, OLS, and Facet selection strategies.

6. Summary and Outlook

In this article, an innovative notion of Pareto-optimality for Benders cuts has been first developed.

This notion is based on so-called solution-candidate sets, which describe the set of feasible points to the

master problem that are potentially an optimal solution to the original optimization problem. We showed

that cuts that are non-dominated in our sense are also non-dominated in the sense of Magnanti and Wong

(1981), but the opposite is not necessarily true.

Based on our notion of Pareto-optimality, we developed a novel cut selection strategy for BD that is

capable of calculating Pareto-optimal cuts under mild assumptions.

Further, we developed the algorithmic framework necessary to optimally exploit the potential of the

cut selection strategy. The algorithm has been benchmarked against other known cut selection strate-

gies (Magnanti-Wong, MIS, Facet) on various instance classes. For all instance classes (MIPLib, multi-

commodity flow network design problems, randomly generated mixed-integer linear programming prob-

lems), the computational results show that the developed method is competitive, measured in CPU

seconds needed to solve a problem to optimality, and the results showed that the developed method needs

to generate a smaller number of cuts than the benchmark approaches. Hence, the method is effective in

situations with scarce memory or a difficult-to-solve subproblem.

Possible future research directions are the transfer of the method to more general versions of the

approach, such as Generalized BD, as published in Geoffrion (1972). The approach (as well as the MIS

selection strategy as published in Fischetti et al. (2010) and Facet cuts as published in Stursberg (2019))

can be exploited to accelerate various algorithms based on BD that have been applied to solve real-world
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optimization problems, of which many are mentioned in Section 1, since in many of these articles, the

approach is either applied without considering a cut selection strategy at all or using the Magnanti-Wong

method. Considering the high performance of MIS, Facet, and OLS cuts for the optimization problems

investigated in this article, this could also lead to significant speedups for real-world applications.
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Fischetti, M., Ljubić, I., and Sinnl, M. (2016). Benders decomposition without separability: A compu-

tational study for capacitated facility location problems. European Journal of Operational Research,

253(3):557–569.
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Nasri, A., Kazempour, S. J., Conejo, A. J., and Ghandhari, M. (2015). Network-constrained ac unit

commitment under uncertainty: A benders’ decomposition approach. IEEE transactions on power

systems, 31(1):412–422.

Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations Research

Letters, 36(4):444–449.

Poojari, C. A. and Beasley, J. E. (2009). Improving benders decomposition using a genetic algorithm.

European Journal of Operational Research, 199(1):89–97.

Qian, L. P., Zhang, Y. J. A., Wu, Y., and Chen, J. (2013). Joint base station association and power control

via benders’ decomposition. IEEE Transactions on Wireless Communications, 12(4):1651–1665.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The benders decomposition algorithm:

A literature review. European Journal of Operational Research, 259(3):801–817.

Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2018). Accelerating the benders decom-

position method: Application to stochastic network design problems. SIAM Journal on Optimization,

28(1):875–903.

Rei, W., Cordeau, J.-F., Gendreau, M., and Soriano, P. (2009). Accelerating benders decomposition by

local branching. INFORMS Journal on Computing, 21(2):333–345.

Saharidis, G. K., Boile, M., and Theofanis, S. (2011). Initialization of the benders master problem

using valid inequalities applied to fixed-charge network problems. Expert Systems with Applications,

38(6):6627–6636.

Saharidis, G. K., Minoux, M., and Ierapetritou, M. G. (2010). Accelerating benders method using covering

cut bundle generation. International Transactions in Operational Research, 17(2):221–237.

Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005). A stochastic programming approach for

supply chain network design under uncertainty. European Journal of Operational Research, 167(1):96–

115.

Sherali, H. D. and Lunday, B. J. (2013). On generating maximal nondominated benders cuts. Annals of

Operations Research, 210:57–72.

Stursberg, P. M. (2019). On the mathematics of energy system optimization. PhD thesis, Technische

Universität München.

Van Roy, T. J. (1986). A cross decomposition algorithm for capacitated facility location. Operations

Research, 34(1):145–163.

Wentges, P. (1996). Accelerating benders’ decomposition for the capacitated facility location problem.

Mathematical Methods of Operations Research, 44(2):267–290.

Wu, L. and Shahidehpour, M. (2010). Accelerating the benders decomposition for network-constrained

unit commitment problems. Energy Systems, 1(3):339–376.

You, F. and Grossmann, I. E. (2013). Multicut benders decomposition algorithm for process supply chain

planning under uncertainty. Annals of Operations Research, 210:191–211.



PARETO-OPTIMAL CUT SELECTION FOR BENDERS DECOMPOSITION 35

Appendix A. Examples

Example A.1 (MIS cuts are affected by unnecessary constraints, constraint scaling, and might need

more than one cut to cut off a single assignment of master variables). Consider the optimization problem

min
7

10
x+ y(17a)

s.t. y ≥ 3− x(17b)

10y ≥ 20− 5x(17c)

x ∈ [−1, 1], y ≥ 0.(17d)

We note that Constraint (17c) does not influence the feasible set of Problem (17) but strongly influences

the course of BD using MIS cut selection, as we will see.

The first Benders master problem evaluates to

min
7

10
x+ η

s.t. x ∈ [−1, 1], η ≥ 0.

Its solution is x̄(1) = −1, η̄(1) = 0, with a value of − 7
10 . Problem (4) reads

max 4π1 + 25π2

s.t. π1 + 10π2 ≤ π0

π1 + π2 + π0 = 1

π ≥ 0.

Its solution is π̄ = (0, 1
11 ,

10
11)

T , with a value of 25
11 . It generates the cut

10

11
η ≥ 1

11
(20− 5x).

This cut does not support the epigraph of the subproblem’s value function at x̄(1). We further note that

the updated master problem,

min
7

10
x+ η

s.t. η ≥ 2− 0.5x

x ∈ [−1, 1], η ≥ 0,

has the solution x̄(2) = −1, η̄(2) = 5
2 . We note that x̄(1) = x̄(2).

If Constraint (17c) is replaced by the equivalent constraint

y ≥ 2− 1

2
x,
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then Problem (4) gets

max 4π1 +
5

2
π2

s.t. π1 + π2 ≤ π0

π1 + π2 + π0 = 1

π ≥ 0.

This is solved by π̄ = (12 , 0,
1
2)

T . The cut reads

1

2
η ≥ 3

2
− 1

2
x.

We further note that leaving away Constraint (17c) does not change the feasible set of Problem (17). In

this case, Problem (4) gets

max 4π1

s.t. π1 ≤ π0

π1 + π0 = 1

π ≥ 0.

It is solved by π̄ = (12 ,
1
2)

T . The cut reads

1

2
η ≥ 3

2
− 1

2
x

as well. The updated master problem reads

min
7

10
x+ η

s.t. η ≥ 3− x

x ∈ [−1, 1], η ≥ 0

in both cases and is solved by x̄(2) = 1, η̄(2) = 2. As (1, 2)T is the (unique) optimal solution to Prob-

lem (17), the algorithm terminates here.

Example A.2 (MIS cuts for problems with equality constraints). Alternatively, we can investigate what

happens if Constraint (17c) is replaced by

y = 1− 1

4
x.

We note that this makes Problem (17) infeasible. With x̄(1) = −1 and η̄(1) = 0 as before, Problem (4)

gets

max 4π1 +
5

4
π2

s.t. π1 +
1

2
π2 ≤ π0

π1 + π2 + π0 = 1

π2 ∈ R, π1, π0 ≥ 0.

The feasible set of this problem has one vertex, (0, 23 ,
1
3)

T , and two extreme rays, (1, −4
3 , 13)

T and (0,−1, 1)T .
The vertex has a positive objective, and the first extreme ray has a positive objective. Hence, the problem
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is unbounded. The cut generated by the vertex reads

η ≥ 2− 1

2
x.

Inserting this cut into the master problem generates x̄(2) = −1 again and η̄(2) = 5
2 . Problem (4) gets

max 4π1 +
5

4
π2 −

5

2
π0

s.t. π1 +
1

2
π2 ≤ π0

π1 + π2 + π0 = 1

π2 ∈ R, π1, π0 ≥ 0.

We cannot use the cut generated by the vertex again, as this would not lead to progress. The cut generated

by the extreme ray reads

1

3
η ≥ 1(3− x)− 4

3
(1− 1

4
x)⇔ η ≥ 9− 3x− 4 + x⇔ η ≥ 5− 2x.

Inserting this cut into the master problem generates x̄(3) = 1 and η̄(3) = 3. Problem (4) gets

max 2π1 +
3

4
π2 − 3π0

s.t. π1 +
1

2
π2 ≤ π0

π1 + π2 + π0 = 1

π2 ∈ R, π1, π0 ≥ 0.

As the optimal value of this problem is negative, it cannot generate a cut that cuts off (x̄, η̄). The method

terminates with a wrong result.

Example A.3 (MIS cuts for problems with equality constraints, derived from the alternative polyhedron).

Alternatively, we can investigate what happens if Constraint (17c) is replaced by the equation

y = 1− 1

4
x

as before, but we solve a dual subproblem over the alternative problem described in Fischetti et al. (2010),

and with a weight vector of (w1, w2, w0)
T = (1, 1, 1)T . This means that we exchange objective function

and the left-hand side of the normalization constraint in Problem (4). With x̄(1) = −1 and η̄(1) = 0 as

before, modified Problem (4) gets

max π1 + π2 + π0

s.t. π1 +
1

2
π2 ≤ π0

4π1 +
5

4
π2 = 1

π2 ∈ R, π1, π0 ≥ 0.

The feasible set of this problem has two vertices, (0, 45 ,
2
5)

T and (23 ,−
4
3 , 0)

T , and two extreme rays,

(1, −16
5 , 0)T and (0, 0, 1)T . The first vertex has a positive objective, and the second extreme ray has a
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positive objective. Hence, the problem is unbounded. The cut generated by the vertex reads

η ≥ 2− 1

2
x.

Inserting this cut into the master problem generates x̄(2) = −1 again and η̄(2) = 5
2 . Modified Problem (4)

gets

max π1 + π2 + π0

s.t. π1 +
1

2
π2 ≤ π0

4π1 +
5

4
π2 −

5

2
π0 = 1

π2 ∈ R, π1, π0 ≥ 0.

The feasible set of this problem has one vertex (23 ,−
4
3 , 0)

T and two extreme rays (1, −16
5 , 0)T and (0, 2, 1)T .

Only the second ray has a positive objective value and generates the cut

η ≥ 2− 1

2
x.

This is the same cut as before, and the method terminates with a wrong result.

Example A.4 (Optimality cuts can cut off infeasible points). Consider the optimization problem

min
1

2
x+ y(18a)

s.t. y ≥ 3− x(18b)

y ≥ 3 + x(18c)

− y ≥ −4 + x(18d)

x ∈ [−1, 1], y ≥ 0.(18e)

The first Benders master problem evaluates to

min
1

2
x+ η

s.t. x ∈ [−1, 1], η ≥ 0.

Its solution is x̄(1) = −1, η̄(1) = 0, with a value of −1
2 . Problem (3) reads

max 4π1 + 2π2 − 5π3

s.t. π1 + π2 − π3 ≤ 1

π ≥ 0.

Its solution is π̄ = (1, 0, 0)T , with a value of 4. We get 7
2 as an upper bound for the value of Problem (18).

It generates the cut

η ≥ −x =: ω1(x).
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The Benders master problem gets

min
1

2
x+ η

s.t. η ≥ 3− x

x ∈ [−1, 1], η ≥ 0.

Its solution is x̄(2) = 1, η̄(2) = 2, with a value of 5
2 . Problem (3) reads

max 2π1 + 4π2 − 3π3

s.t. π1 + π2 − π3 ≤ 1

π ≥ 0.

This problem is unbounded, with ray π̄ = (0, 1, 1). It generates the cut

0 ≥ 3 + x− 4 + x⇔ 0 ≥ 2x− 1 =: ω2(x).

The SC-set of this cut is Cω2,
7
2
= [−1, 12 ]. We note that π̄ = (0, 1, 0) is a feasible solution of the dual

subproblem as well, and the cut

η ≥ 3 + x =: ω̃2(x)

is also violated by (x̄(2), η̄(2)) = (1, 2). The SC-set of this cut is Cω̃2,
7
2
= [−1, 13 ].

Example A.5 (Feasibility cuts can have minimal SC-sets). Consider the optimization problem

min
1

10
x+ y(19a)

s.t. y ≥ 3− x(19b)

y ≥ 3 + x(19c)

− y ≥ −4 + x(19d)

x ∈ [−1, 1], y ≥ 0.(19e)

The first Benders master problem evaluates to

min
1

10
x+ η

s.t. x ∈ [−1, 1], η ≥ 0.

Its solution is x̄(1) = −1, η̄(1) = 0, with a value of − 1
10 . Problem (3) reads

max 4π1 + 2π2 − 5π3

s.t. π1 + π2 − π3 ≤ 1

π ≥ 0.

Its solution is π̄ = (1, 0, 0)T , with a value of 4. We note that we get 39
10 as an upper bound for the value

of Problem (18). It generates the cut

η ≥ −x =: ω1(x).
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x

η

4

1x̄(1) x̄(2)

ω1

ω2

ω̃2

(a) Value function of Problem (3)
and Benders cuts for Example A.4.

x

η

4

1x̄(1) x̄(2)

ω1

ω2

ω̃2

(b) Value function of Problem (3)
and Benders cuts for Example A.5.

Value function of sub-
problem

Benders cuts{
(x, η) | x2 + η = 7

2

}{
(x, η) | x

10 + η = 39
10

}

Figure 17. Value function of Problem (3), and Benders cuts for Example A.4 and A.5.

The Benders master problem gets

min
1

10
x+ η

s.t. η ≥ 3− x

x ∈ [−1, 1], η ≥ 0.

Its solution is x̄(2) = 1, η̄(2) = 2, with a value of 21
10 . Problem (3) reads

max 2π1 + 4π2 − 3π3

s.t. π1 + π2 − π3 ≤ 1

π ≥ 0.

This problem is unbounded, with ray π̄ = (0, 1, 1). It generates the cut

0 ≥ 3 + x− 4 + x⇔ 0 ≥ 2x− 1 =: ω2(x).

The SC-set of this cut is Cω2,
39
10

= [−1, 12 ]. Each optimality cut ω̃2 has to fulfill ω̃2(
1
2) ≤

7
2 < 77

20 . This

implies that the point 1
2 is in the interior of its SC-set, which is hence not minimal.
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