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as well as a higher-dimensional conic extension of the known causality cone
in relativity. The nonconvex second-order cone can be used to reformulate
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also find that the magma of this nonconvex cone is rankly independent of its
dimension; this is also remarkable because it is not the case for algebras of
arbitrary convex cones. Even more remarkably, we prove that the nonconvex
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generalized to the framework of the nonconvex second-order cone.
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1 Introduction

This paper studies an attractive family of nonconvex cones algebraically. This
family can be viewed as a conic nonconvex extension of the (convex) second-
order cone (SOC for short), which is well-known and studied in mathematics
and widely used in operations research. This family of nonconvex cones is also
a higher-dimensional conic extension of the Einstein-Minkowski causality cone,
which is well-known and studied in special and general relativity.

More specifically, we define and establish some notions and concepts asso-
ciated with this cone, such as its spectral factorization, eigenvalues, eigenvec-
tors, determinant, trace, multiplication operation, positive powers, quadratic
representation, and the logarithmic barrier function. We also adopt general-
ized concepts such as the identity-like element, generalized inverse, and the
crane-shaped matrix. We deal with the notion of magma, which generalizes
the concept of algebra. A magma consists of a set equipped with a binary
operation that must be closed by definition. An algebra is a magma whose
binary operation is bilinear. We define a commutative (but rejects being bilin-
ear) binary operation in the underlying vector space of our cone to generate
a commutative magma. Although we lose the bilinearity, we will be able to
prove that this commutative magma is power-associative. We will also see that
the elements of this magma always have real eigenvalues; this is not the case
for commutative power-associative algebras or even arbitrary Jordan algebras.
We will also see that the magma of this nonconvex cone is rankly independent
of its ambient dimension; this is not the case for algebras of arbitrary convex
cones or even arbitrary convex symmetric cones. This is a key feature because
the time complexity of interior-point algorithms for the conic optimization
problems is given in terms of the rank of the underlying cone rather than the
ambient dimension.

The magma that we propose is novel enough to characterize the nonconvex
SOCs. More specifically, our work finds that the cone of squares of our magma
is the nonconvex SOC itself. Amazingly, we are able to provide a rigorous but
very simple proof of this central fact in the absence of the bilinearity of the
binary operation. This finding is very interesting since it is not found in any
non-Euclidean Jordan algebra. By using the introduced notions and tools, we
also extend several algebraic properties that already exist in the framework
of the convex SOC to the framework of the nonconvex SOC. We will see that
the magma of the nonconvex SOC is able to preserve many key properties
and features of the algebra of the convex SOC, especially when it comes to
differentiation.

The paper is organized as follows. Section 2 formally introduces the non-
convex SOC and motivates the study of this cone. In Section 3, we develop
algebraic notions and concepts associated with the cone. In Section 4, we prove
some fundamental properties of the cone and its ambient space. In Section 5,
we present with proofs some spectral properties and further important char-
acteristics of the quadratic operators associated with the cone. Section 6 is
devoted to introducing the logarithmic barrier function associated with the
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cone, computing its derivatives, and connecting this to a class of optimization
problems over nonconvex SOCs. Finally, a conclusion is drawn in Section 7,
recapitulating our essential results and leaving some open questions for future
research.

2 Motivation

The motivation of this paper stems from its importance in mathematical opti-
mization, but applications in other fields of mathematics and probably in the
theory of relativity and modern physics could also be possible.

In optimization, logarithmic barrier interior-point methods for nonconvex
programming have recently been the subject of significant studies by the opti-
mization community. For example, the authors in [9,13,16,27,31,32] show their
results on standard logarithmic barriers applied to general nonconvex nonlin-
ear programs when the first and second derivatives of the objective and con-
straint functions are available. There are also successful attempts to extend the
concept of self-concordance locally to classes of nonconvex programming [18].

In convex optimization [22], interior-point methods have been extended
to general convex programs by using a convex conic reformulation of con-
vex programming. For example, it is known that convex quadratic programs
and quadratically constrained convex quadratic programs can be reformulated
as optimization problems over the well-known (convex) SOC (also called the
Lorentz cone, quadratic cone, or ice-cream cone) [6, 15]

En+1
+ :=

{
x =

[
x1

x̄

]
∈ R× Rn : x1 ≥ ∥x̄∥

}
, (1)

where ∥·∥ denotes the Euclidean norm.

When passing again to nonconvex extensions, it is then natural to think
about a nonconvex conic reformulation of nonconvex programs. For example,
it is interesting to study a conic formulation that can be applied to classes of
nonconvex programming, such as nonconvex quadratic programs and quadrat-
ically constrained nonconvex quadratic programs, and whose corresponding
first and second barrier derivatives can be calculated.

We give our definition of the proposed nonconvex cone based on the simple
and well-known polarization identity:

⟨y, z⟩ = ∥y + z∥2 − ∥y − z∥2

4
,

where ⟨·, ·⟩ denotes the standard inner product. For example, if G be a sym-
metric matrix, the (generally nonconvex) quadratic constraint ⟨y, Gy⟩ ≤ 0 can
be reformulated as ∥(I −G)y∥ ≥ ∥(I +G)y∥.
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x ∈ M1|2
+ iff |x1| ≥

√
x2
2 + x2

3

x1

x2

x3

x3

x ∈ M2|1
+ iff

√
x2
1 + x2

2 ≥ |x3|

x1

x2

Fig. 1: Graphs of the nonconvex SOCs M1|2
+ and M2|1

+ . Clearly, the comple-

ment of M1|2
+ in R3 is the interior of M2|1

+ if x1 and x3 are interchanged.

We define the (m + n)th-dimensional nonconvex SOC (or the extended
causality cone) as

Mm|n
+ :=

{
x =

[
x̂
x̄

]
∈ Rm × Rn : ∥x̂∥ ≥ ∥x̄∥

}
. (2)

Figure 1 shows the graphs of M1|2
+ and M2|1

+ . Note that Mm|n
+ is not

contained in any closed half-space. The sets bdMm|n
+ := {x ∈ Mm|n : ∥x̂∥ =

∥x̄∥} and intMm|n
+ := {x ∈ Mm|n : ∥x̂∥ > ∥x̄∥} represent the boundary and

interior of the nonconvex SOC, respectively.

The (m + n)th-dimensional nonconvex SOC Mm|n
+ includes the Einstein-

Minkowski causality cone M1|3
+ as a special case (which occurs when m = 1

and n = 3). In a broader definition of the causality cone, any n > 1 is allowed.

In the astrophysics sense, any vector x ∈ intM1|n
+ is called a timelike vector,

any vector x ∈ bdM1|n
+ is called a lightlike vector (also called a null vector),

and any vector x /∈ M1|n
+ is called a spacelike vector. A vector is called a

causal vector if it is not spacelike. Likewise, we call x ∈ Mm|n
+ (resp., x ∈

intMm|n
+ ,x ∈ bdMm|n

+ , and x /∈ Mm|n
+ ) a causal (resp., timelike, lightlike,

and spacelike) vector in Mm|n.

The nonconvex SOC M1|n
+ consists of all causal vectors forming the causal-

ity cone. The sets bdM1|n
+ and intM1|n

+ represent the light cone and time cone,
respectively. The causality cone is easier to visualize with n reduced from three
to two (as we show its boundary in the right-hand side picture in Figure 2),
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but in reality the spatial dimension of the Einstein-Minkowski causality cone
equals three and its time dimension equals one. The light in the causality
(resp., light) cone generates an expanding spherical ball (resp., sphere) in R3

rather than a circular disk (resp., circle) in R2, and hence the light cone is
a 4th-dimensional version of the right-hand side picture in Figure 2. This is
exactly analogous to the cone drawn by the light rays from a lighthouse in
which the rays generate an expanding two-dimensional circular disk in R2 as
shown in the left-hand side picture in Figure 2.

The (n+ 1)st-dimensional nonconvex SOC M1|n
+ is the union of the (n+

1)st-dimensional convex SOC En+1
+ (the future-pointing causality cone) and

the (n + 1)st-dimensional convex SOC −En+1
+ (the past-pointing causality

cone). That is, M1|n
+ := {x = (x1, x̄

T)T ∈ R × Rn : |x1| ≥ ∥x̄∥} = En+1
+ ∪

−En+1
+ , where En+1

+ is defined in (1).

We emphasize that Mm|n
+ generalizes both M1|n

+ and En+1
+ , and that the

nonconvex SOC Mm|n
+ reduces to the convex SOC En+1

+ when both m = 1 and
x1 ≥ 0, or equivalently, when x̂/ ∥x̂∥ is nothing but the number one. Imposing

the linear constraint x1 ≥ 0 on M1|n
+ avoids the construction of a nonconvex

double cone, but this is not the case for Mm|n
+ when m ≥ 2. That is, the cone

Mm≥2|n
+ is generally nonconvex even if the linear inequality x̂ ≥ 0 is imposed.

To visualize this, see, for example the right-hand side picture in Figure 1.

To see the conicity of the body Mm|n
+ , note that θx ∈ Mm|n

+ for every

x ∈ Mm|n
+ and θ ≥ 0, hence Mm|n

+ is a cone. To see the nonconvexity of the

cone Mm|n
+ , note that u = (1, 0, 1, 0)T,v = (0, 1, 1, 0)T ∈ M2|2

+ , but 0.8u +

0.2v = (0.8, 0.2, 1, 0)T /∈ M2|2
+ as ((0.8)2 + (0.2)2)1/2 = 0.68 ≱ 1 = (12 +

02)1/2. This paper underlines that the cone Mm|n
+ is the simplest and most

important nontrivial nonpolyhedral nonconvex cone whose analytical geometry
and algebraic structure can be understood.

-

A lighthouse draw

The light rays from the lighthouse draw the cone M1|2
+ .

spacespace

ti
m
e

Future light cone

Past light cone

Hyperspace of the present

Observer

–The light cone, bdM1|3
+ , is a 4D version of this picture.

Fig. 2: The causality coneM1|n=3
+ is easier to visualize with n reduced from 3 to

2. The picture of the lighthouse on the left is from https://www.everypixel.com.
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Table 1: Comparison of some features between the convex and nonconvex
SOCs.

Features Convex SOC En+1
+ Nonconvex SOC Mm|n

+

Closedness ! !

Solidity ! !

Pointedness ! N/A

Self-duality ! %

Homogeneity ! OQA

Table 11 compares some features between the convex and nonconvex SOCs.

The nonconvex SOCs arise in some real-world applications, such as facility
location problems when some existing facilities are more likely to be closer to
the new facility (or new facilities) than other existing facilities. Mathematically
speaking, if we need to add a new facility, say x ∈ Rn, among r + s existing
facilities, say a1,a2, . . . ,ar, ã1, ã2, . . . , ãs ∈ Rn, in such a way that the Eu-
clidean distance between x and each of a1,a2, . . . ,ar is required to be smaller
than or equal to the Euclidean distance between x and each of ã1, ã2, . . . , ãs.
In this case, we need to add to the optimization model a constraint like this:

(xT − ãT
j ,x

T − aT
i )

T ∈ Mn|n
+ , for i = 1, 2, . . . , r, and j = 1, 2, . . . , s.

We end this section by introducing some notations that will be applied in
the sequel.

2.1 Notations

Scalars will always be denoted by lower case characters such as x, vectors will
always be denoted by lower case boldface characters such as x, and matrices
will always be denoted by upper case characters such as X. We denote by
0 a zero vector of appropriate dimension, and denote by O and I zero and
identity matrices of appropriate sizes, respectively. Dimensions and sizes are
known from the context unless it is necessary to be given. For instance, In
denotes the identity matrix of order n. We use “,” for adjoining vectors and
matrices in a row, and we use “;” for adjoining them in a column. Therefore,
for column vectors x and y, we have (xT,yT)T = (x;y).

Throughout this paper, unless otherwise stated, we letm and n be arbitrary
positive integers. For each vector x ∈ Rm+n, we denote by x̂ the sub-vector
starting from the first entry to the mth entry, and denote by x̄ the sub-vector
of x starting from the (m + 1)st entry to the (m + n)th entry; therefore,
x = (x̂; x̄) ∈ Rm × Rn.

1 In Table 1, N/A means Not Applicable, H/E means However, and OQA means Open
Question Argument.
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Table 2: Notations in spaces under consideration.

Space En+1 Mm|n

Vector x = (x1; x̄) x = (x̂; x̄)
First sub-vector x1 ∈ R x̂ ∈ Rm

Second sub-vector x̄ ∈ Rn x̄ ∈ Rn

Normalized first sub-vector sgn(x1) x̂/ ∥x̂∥
Normalized second sub-vector x̄/ ∥x̄∥ x̄/ ∥x̄∥

By Mm|n, we mean the (m+ n)th-dimensional real vector space Rm ×Rn

equipped with a standard inner product. That is,

Mm|n := {x = (x̂; x̄) : x̂ ∈ Rm, x̄ ∈ Rn} .

For basic literature review purposes, we will also deal with the following space

En+1 := {x = (x1; x̄) : x1 ∈ R, x̄ ∈ Rn} = M1|n.

We define the reflection matrix Rm|n as

Rm|n :=

[
Im O
O −In

]
, (3)

to be a generalization of the traditional reflection matrix:

R1|n :=

[
1 0T

0 −In

]
. (4)

Let x ∈ Mm|n. If x̂ = 0, the vector x̂/ ∥x̂∥ is considered to be any vector in
Rm of Euclidean norm one. Similarly, if x̄ = 0, the vector x̄/ ∥x̄∥ is considered
to be any vector in Rn of Euclidean norm one.

Table 2 shows some notations in spaces under consideration. In this table,
sgn(·) is the sign function that extracts the sign of a real number. If x ∈ R,
we assume that sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0.

3 The Algebraic Structure of the Ambient Space

In this section, we extend the notions, concepts, and results that exist in
[1, Section 4] in the framework of the convex SOC to the framework of the
nonconvex SOC. We also present several fundamental results to form and
completely understand the algebraic structure of the nonconvex SOC.

Before starting this section, it must be noted that the algebraic structure
of the convex cone En+1

+ is strong enough to be extremely rigid because it is
linked to solid mathematical abstractions such as Euclidean Jordan algebras.

While such linkage is not claimed for the algebraic structure of Mm|n
+ , which

is the reason why we have not reviewed those algebras in this part, we will see

that the algebraic structure of the nonconvex cone Mm|n
+ is still rigid because
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it preserves many key properties of that of En+1
+ , especially when it comes to

differentiation.

The nonconvex SOC (2) can be redefined as

Mm|n
+ :=

{
x ∈ Mm|n : xTRm|nx ≥ 0

}
,

where Rm|n is the reflection matrix defined in (3).

The characteristic polynomial of x ∈ Mm|n is given by the quadratic
equation

pm|n(λ,x) :=

 (λ− ∥x̂∥) x̂

∥x̂∥
−x̄

T

Rm|n

 (λ− ∥x̂∥) x̂

∥x̂∥
−x̄


=λ2 − 2 ∥x̂∥λ+

(
∥x̂∥2 − ∥x̄∥2

)
.

The two solutions of the equation pm|n(λ,x) = 0 (see also (9)), which
are λ1,2(x) := ∥x̂∥ ± ∥x̄∥, are called the eigenvalues of x. It is obvious that

x ∈ Mm|n
+ (x ∈ int Mm|n

+ ) if and only if λ1,2(x) ≥ 0 (λ1,2(x) > 0). We call x

positive semidefinite (positive definite) if x ∈ Mm|n
+ (x ∈ int Mm|n

+ ).

For x ∈ Mm|n, we call the values

trace(x) := λ1(x) + λ2(x) = 2 ∥x̂∥ ,
det(x) := λ1(x)λ2(x) = ∥x̂∥2 − ∥x̄∥2 ,

the trace and determinant of x, respectively.

Let x ∈ Mm|n. We denote an identity-like element in the space Mm|n by
e(x), and define this element as

e(x) := c1(x) + c1(x) =
1

2


x̂

∥x̂∥
x̄

∥x̄∥

+
1

2


x̂

∥x̂∥
− x̄

∥x̄∥

 ,

where c1,2(x) are the eigenvectors of x. Thus, we have

e(x) :=

 x̂

∥x̂∥
0

 .

Note that e(x) depends on the choice of x ∈ Mm|n, and hence it is not
unique in Mm|n. We emphasize that the space Mm|n has multiple identity-
like elements because it will be seen that e(x) is neutral with the powers of
x ∈ Mm|n only. Note also that trace(e(x)) = 2 and det(e(x)) = 1 (since all
the eigenvalues of e(x) are equal to one) for any x ∈ Mm|n.
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⋆ ⋆ ⋆ ⋆ ⋆ ⋆



Fig. 3: We have found the matrix in Mm|n that generalizes the arrow-shaped
matrix in En+1 looks like a flying crane. Therefore, we believe that it is ap-
propriate to name this matrix ‘the crane-shaped matrix’, denoted as Crn(·).
The matrix Crn(⋆) shown on the left is associated with vectors in M5|5. The
picture on the right is from https://www.freepik.com.

Associated with each vector x ∈ Mm|n/bdMm|n
+ , we define the element

xg := 1
λ1(x)λ2(x)

(λ2(x)c1(x) + λ1(x)c2(x)) =
1

∥x̂∥2−∥x̄∥2

[
x̂
−x̄

]
=

Rm|n

det(x)
x.

(5)

Note that the vector xg is not defined when x ∈ bdMm|n
+ (i.e., det(x) = 0),

and it acts as a generalized inverse for each x ∈ intMm|n
+ as it will be seen

shortly. In the astrophysics sense, all timelike vectors have generalized inverses
and all lightlike vectors are singular.

Associated with each vector x ∈ Mm|n, we define a crane-shaped matrix,
Crn(x) (see Figure 3), so that Crn(x)xg = e(x). Let x ∈ Mm|n, the crane-
shaped matrix is defined as

Crn(x) ≜ x eT(x) + e(x) xT − trace(x)

2

(
2e(x)eT(x)− Im+n

)
=


x̂

∥x̂∥
x̂T O

x̄

(
x̂

∥x̂∥

)T

O

+


x̂

∥x̂∥
x̂T x̂

∥x̂∥
x̄T

O O

− ∥x̂∥

2
x̂

∥x̂∥

(
x̂

∥x̂∥

)T

− Im O

O −In

 .

As a result, we have

Crn(x) :=

 ∥x̂∥ Im
x̂

∥x̂∥
x̄T

x̄

(
x̂

∥x̂∥

)T

∥x̂∥ In

.
Note that the matrix Crn(x) is symmetric, and that Crn(e(x)) = Im+n and

Crn(x) e(x) = x.
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The quadratic representation Px of each vector x ∈ Mm|n is defined so
that Pxx

g = x. This quadratic representation is defined as

Px := 2xxT − det(x)Rm|n

= 2

[
x̂
x̄

][
x̂T x̄T

]
− det(x)Rm|n

=

[
2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T

]
−
[
det(x)Im O

O −det(x)In

]
=

[
2x̂x̂T − det(x)Im 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

]

=

2x̂x̂T −
(
∥x̂∥2 − ∥x̄∥2

)
Im 2x̂x̄T

2x̄x̂T 2x̄x̄T +
(
∥x̂∥2 − ∥x̄∥2

)
In

.
Note that the matrix Px is symmetric. The map P· : Mm|n −→ Mm|n is ex-
tended to another map P·,· : Mm|n×Mm|n −→ Mm|n that is also symmetric,
meets the requirement Px,x = Px, and is defined as

Px,y :=
1

2
(Px+y − Px − Py) , for x,y ∈ Mm|n. (6)

Note that

Px+y

=
2 (x̂x̂T + x̂ŷT + ŷx̂T + ŷŷT

)
+
(
∥x̄+ ȳ∥2 − ∥x̂+ ŷ∥2

)
Im 2

(
x̂x̄T + x̂ȳT + ŷx̄T + ŷȳT

)
2
(
x̄x̂T + x̄ŷT + ȳx̂T + ȳŷT

)
2
(
x̄x̄T + x̄ȳT + ȳx̄T + ȳȳT

)
+
(
∥x̂+ ŷ∥2 − ∥x̄+ ȳ∥2

)
In

,

Px =

−(∥x̂∥2 − ∥x̄∥2
)
Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T
(
∥x̂∥2 − ∥x̄∥2

)
In + 2x̄x̄T

,
Py =

−(∥ŷ∥2 − ∥ȳ∥2
)
Im + 2ŷŷT 2ŷȳT

2ȳŷT
(
∥ŷ∥2 − ∥ȳ∥2

)
In + 2ȳȳT

.
From (6), it follows that

Px,y :=

[
x̂ŷT + ŷx̂T −

(
x̂Tŷ − x̄Tȳ

)
Im x̂ȳT + ŷx̄T

x̄ŷT + ȳx̂T x̄ȳT + ȳx̄T +
(
x̂Tŷ − x̄Tȳ

)
In

]
.

We define the square of x ∈ Mm|n as

x2 := Crn(x)x =

 ∥x̂∥ Im
1

∥x̂∥
x̂x̄T

1

∥x̂∥
x̄x̂T ∥x̂∥ In

[x̂x̄
]
=

∥x̂∥ x̂+
∥x̄∥2

∥x̂∥
x̂

2 ∥x̂∥ x̄

.
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As a result, we have

x2 :=

(∥x̂∥2 + ∥x̄∥2
) x̂

∥x̂∥
2 ∥x̂∥ x̄

 =

xTx
x̂

∥x̂∥
2 ∥x̂∥ x̄

. (7)

It can be seen that Pxe(x) = x2 (see Theorem 5.2). The cone of squares
of the set Mm|n is denoted by S(Mm|n) and is defined as

S(Mm|n) :=
{
x2 : x ∈ Mm|n

}
.

Similarly, S(En+1) :=
{
x2 : x ∈ En+1

}
is the cone of squares of En+1. The

result in the following lemma connects the convex SOC with the algebra
(En+1, ◦). The proof of this lemma can be found in [1, Section 4].

Lemma 3.1 S(En+1) = En+1
+ .

It is now natural and important to ask whether S(Mm|n) = Mm|n
+ or not.

This is a central question and it is very important to emphasize, because if
we can answer in the affirmative, we add a feature to the vector space Mm|n

that does not exist in all non-Euclidean Jordan algebras. In fact, it does not

seem easy to prove that Mm|n
+ = S(Mm|n) by generalizing the proof idea for

Lemma 3.1. Apparently, to prove the desired result differently, there would be
a need to introduce more tools for the proof.

The multiplication in (7) can be extended to a product ⊚ : Mm|n ×
Mm|n → Mm|n defined as

x⊚ y :=
1

2
(Crn(x)y + Crn(y)x)

=
1

2


∥x̂∥ ŷ +

1

∥x̂∥
x̂x̄Tȳ

1

∥x̂∥
x̄x̂Tŷ + ∥x̂∥ ȳ

+

∥ŷ∥ x̂+
1

∥ŷ∥
ŷȳTx̄

1

∥ŷ∥
ȳŷTx̂+ ∥ŷ∥ x̄


 ,

for any x,y ∈ Mm|n. As a result, we have

x⊚ y :=
1

2


(
∥x̂∥ ∥ŷ∥+ x̄Tȳ

)( x̂

∥x̂∥
+

ŷ

∥ŷ∥

)
(
∥x̂∥+ x̂T ŷ

∥ŷ∥

)
ȳ +

(
∥ŷ∥+ ŷT x̂

∥x̂∥

)
x̄

. (8)

The map trace(x ⊚ y) is a positive definite, symmetric, but it is not an in-
ner product in the usual sense because it is not bilinear; the formula in (8)
involves square roots. Consequently, the product “⊚” is not bilinear, and there-
fore it does not constitute an algebra with Mm|n. A magma generalizes the
notion of algebra; it consists of a set equipped with a single binary operation
that must be closed by definition (so, the bilinearity or any other properties
are not imposed). This term was introduced in 1970 by Bourbaki (see the last
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edition, [10]), who defined a magma as a set having a composition law. Our re-
sults confirm that the structure (Mm|n,⊚) is a commutative power-associative
magma whose elements always have real eigenvalues; this is not the case for
arbitrary commutative power-associative algebras or even arbitrary Jordan
algebras.

Let x,y ∈ Mm|n. One can verify that the product “⊚” satisfies the fol-
lowing properties

x2 = x⊚ x,
x⊚ e(x) = e(x)⊚ x = x (unitary-like of the submagma generated by x),
x⊚ xg = xg ⊚ x = e(x) provided that det(x) > 0 (generalized invertibility in

the submagma generated byx ∈ int Mm|n
+ ),

x⊚ (xg ⊚ x) = (x⊚ xg)⊚ x = x provided that det(x) > 0 (generalized invert-

ibility in int Mm|n
+ ),

xg ⊚ (x⊚ xg) = xg, provided that det(x) > 0,
x⊚ y = y ⊚ x (commutativity).

We also define the positive power xp recursively as xp := x⊚ xp−1 for p ≥ 2.

We can easily verify that every vector x ∈ (Mm|n,⊚) satisfies the quadratic
equation

x2 − 2 ∥x̂∥x+
(
∥x̂∥2 − ∥x̄∥2

)
e(x) = 0. (9)

As a result, rk(Mm|n) = 2 is called the rank of the magma (Mm|n,⊚). It is
important to note that the value rk(Mm|n) is independent of any of m and

n, i.e., the nonconvex SOC Mm|n
+ is rankly independent (or rankly free) of its

ambient dimension; this is not the case for algebras of arbitrary convex cones
or even arbitrary convex symmetric (i.e., self-dual and homogeneous) cones
(see Table 5).

The spectral decomposition (or spectral factorization) of x ∈ Mm|n is a
decomposition of x into eigenvectors (say c1(x) and c2(x)) together with its
eigenvalues so that x = λ1(x)c1(x) + λ2(x)c2(x). From (5), we have x =
Rm|n(λ2(x)c1(x) + λ1(x)c2(x)). This can be expanded as

x = (∥x̂∥+ ∥x̄∥)︸ ︷︷ ︸
λ1(x)

(
1

2

)
x̂

∥x̂∥
x̄

∥x̄∥


︸ ︷︷ ︸

c1(x)

+(∥x̂∥ − ∥x̄∥)︸ ︷︷ ︸
λ2(x)

(
1

2

)
x̂

∥x̂∥
−x̄

∥x̄∥


︸ ︷︷ ︸

c2(x)

. (10)

The decomposition in (10) is defined to be the spectral decomposition of
x ∈ Mm|n. We point out that the above decomposition is different from the
singular value decomposition in Minkowski space studied in [25]. The pair
of eigenvectors {c1(x), c2(x)} in the spectral factorization (10) satisfies the
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properties

c1(x), c2(x) ∈ bdMm|n
+ ,

c1(x)⊚ c2(x) = 0, and ⟨c1(x), c2(x)⟩ = 0,
c1(x)⊚ c1(x) = c1(x) and c2(x)⊚ c2(x) = c2(x),
Rm|nc1(x) = c2(x), R

m|nc2(x) = c1(x), ĉ1(x) = ĉ2(x), and c1(x) = −c2(x),
λ1(c1(x)) = λ1(c2(x)) = 1 and λ2(c1(x)) = λ2(c2(x)) = 0,
∥ĉ1(x)∥ = ∥ĉ2(x)∥ = ∥c1(x)∥ = ∥c2(x)∥ = 1

2 .
(11)

All the above identities can be rigorously checked algebraically.
Table 3 summarizes our computational findings in this subsection for the

magma of the nonconvex SOC and compares them with those of the algebra
of the convex SOC.

4 Fundamental Properties of the Cone

In this section, we present with proofs some fundamental properties of the

cone Mm|n
+ and its ambient space (Mm|n,⊚).

We start by going back now to our central question that we asked earlier:
Does the nonconvex SOC equal the cone of squares of its ambient space? A
first, but not deep, look at this question tells us that the mere asking of this
question answers it negatively. One of the reasons for that is that a surface
answer could be based on a fundamental fact we already know: A set is the
cone of squares of a formally real Jordan algebra if and only if it is a symmetric
cone [26, Theorem 2]. Being not symmetric implies that the nonconvex SOC is
not the cone of squares of its underlying magma. However, this does not apply
to (Mm|n,⊚) because it is not even an algebra. Another reason is that a surface
answer could be also based on another fundamental fact we already know: The
cone of squares is self-dual with respect to the inner product trace(x·y). Being
not self-dual implies that the nonconvex SOC is not the cone of squares of its
underlying magma. This does not also apply to (Mm|n,⊚) because in our case,
the map trace(x ⊚ y) is not an inner product. The absence of the bilinearity
of the product “⊚” does not cause any problematic effect on the proof of the
following theorem.
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ȳ
T
+

ŷ
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Theorem 4.1 S(Mm|n) = Mm|n
+ .

Proof Let x ∈ S(Mm|n), then there exists y ∈ Mm|n such that

x = y2 =

(∥ŷ∥2 + ∥ȳ∥2
) ŷ

∥ŷ∥
2 ∥ŷ∥ ȳ

 =

∥y∥2 ŷ

∥ŷ∥
2 ∥ŷ∥ ȳ

.
It follows that

∥x̂∥ =

∥∥∥∥∥y∥2 ŷ

∥ŷ∥

∥∥∥∥ = ∥y∥2 = ∥ŷ∥2 + ∥ȳ∥2 ≥ 2 ∥ŷ∥ ∥ȳ∥ = ∥(2 ∥ŷ∥) ȳ∥ = ∥x̄∥ ,

which means that x ∈ Mm|n
+ . Thus, S(Mm|n) ⊆ Mm|n

+ .

To complete the proof, we need to show that Mm|n
+ ⊆ S(Mm|n). Let x ∈

Mm|n
+ . We want to prove that there is a vector y ∈ Mm|n such that x = y2.

From the spectral factorization, we have x = λ1(x)c1(x) + λ2(x)c2(x). Note

that λ1,2(x) ≥ 0 because x ∈ Mm|n
+ . Define y := λ

1/2
1 (x)c1(x)+λ

1/2
2 (x)c2(x).

Then, by using (7) and (11), we have

y2 =
(√

λ1(x)c1(x) +
√
λ2(x)c2(x)

)2
=

(√
λ1(x)

[
ĉ1(x)
c1(x)

]
+
√

λ2(x)

[
ĉ1(x)
−c1(x)

])2

=

(√λ1(x) +
√

λ2(x)
)
ĉ1(x)(√

λ1(x)−
√

λ2(x)
)
c1(x)

2

=



(√λ1(x) +
√
λ2(x)

2

)2

+

(√
λ1(x)−

√
λ2(x)

2

)2
( 2√

λ1(x) +
√
λ2(x)

)(√
λ1(x) +

√
λ2(x)

)
ĉ1(x)

2

(√
λ1(x) +

√
λ2(x)

2

)(√
λ1(x)−

√
λ2(x)

)
c1(x)



=


(
λ1(x) + 2

√
λ1(x)λ2(x) + λ2(x)

2
+

λ1(x)− 2
√

λ1(x)λ2(x) + λ2(x)

2

)
ĉ1(x)

(λ1(x)− λ2(x)) c1(x)


=

[
(λ1(x) + λ2(x)) ĉ1(x)
(λ1(x)− λ2(x)) c1(x)

]
= λ1(x)

[
ĉ1(x)
c1(x)

]
+ λ2(x)

[
ĉ1(x)
−c1(x)

]
= λ1(x)c1(x) + λ2(x)c2(x) = x.

The result is established. ⊓⊔

The above proof is intuitive but rigorous. In this proof it is important to
notice that, if the operation “⊚” is bilinear (which is not the case), then using
the orthogonality and idempotency properties of the eigenvectors c1(x) and
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c2(x) stated in (11), it would be immediate that

y2 =
(√

λ1(x)c1(x) +
√

λ2(x)c2(x)
)
⊚
(√

λ1(x)c1(x) +
√
λ2(x)c2(x)

)
=λ1(x)c1(x) + λ2(x)c2(x) = x.

Therefore, unlike the bilinear product “◦” of the algebra of the convex SOC,
we have to be cautious in dealing with the non-bilinear product “⊚” of the
magma of the nonconvex SOC, even if the eigenvectors c1(x) and c2(x) are
both orthogonal and idempotent.

In the proof of Theorem 4.1, we showed that y2 = x. Thus x1/2 = y, i.e.,

x1/2 = (λ1(x)c1(x) + λ2(x)c2(x))
1/2

= λ
1/2
1 (x)c1(x) + λ

1/2
2 (x)c2(x).

Thus, if x ∈ Mm|n
+ , then there exists a unique vector in Mm|n

+ , which we

denote by x1/2 such that (x1/2)2 = x. For any x ∈ Mm|n, we have x2 ∈ Mm|n
+ .

Consequently, there is a unique vector (x2)1/2 ∈ Mm|n
+ , which is indicated by

|x|. It is clear that we have x2 = |x|2. One can also show that

λ−1
1 (x)c1(x) + λ−1

2 (x)c2(x) = (1/ det(x))Rm|nx = xg, provided that det(x)
̸= 0 (i.e., λ1,2(x) ̸= 0),

λ2
1(x)c1(x) + λ2

2(x)c2(x) = (∥x∥2 (x̂/ ∥x̂∥); 2 ∥x̂∥ x̄) = x2.

Items of the following corollary will be utilized in the proof of Lemma 4.1.

Corollary 4.1 Let x = (x̂; x̄) and y = (ŷ; ȳ) ∈ (Mm|n,⊚) have spectral
values λ1(x), λ2(x) and λ1(y), λ2(y), respectively. Then we have

(i) |λ1(x)− λ2(x)| = 2 ∥x̄∥ = λ1(x)− λ2(x).
(ii) |λ1(x) + λ2(x)| = 2 ∥x̂∥ = λ1(x) + λ2(x).

Proof The properties given in the corollary can be proved as follows.

(i) Note that |λ1(x)− λ2(x)| = |∥x̂∥+ ∥x̄∥ − ∥x̂∥+ ∥x̄∥| = 2 ∥x̄∥ = λ1(x)−
λ2(x), as desired.

(ii) Note that |λ1(x) + λ2(x)| = |∥x̂∥+ ∥x̄∥+ ∥x̂∥ − ∥x̄∥| = 2 ∥x̂∥ = λ1(x)+
λ2(x), as desired.

⊓⊔
Recall that, by its recursive definition, we have xp = x⊚xp−1. The follow-

ing lemma presents a more general result than the statement written before
about x2. Again, it is fortunate that losing the bilinearity of the operation
“⊚” does not corrupt the induction proof of the following lemma.

Lemma 4.1 For any nonnegative integer p, we have that

xp = λp
1(x)c1(x) + λp

2(x)c2(x). (12)
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Proof The equality in (12) trivially holds when p = 0, 1. Assume that p ≥ 2.
We write x(p) to mean the right hand side of (12). That is,

x(p) := λp
1(x)c1(x) + λp

2(x)c2(x) =

[
(λp

1(x) + λp
2(x)) ĉ1(x)

(λp
1(x)− λp

2(x)) c1(x)

]
.

In particular,

x = x(1) =

[
(λ1(x) + λ2(x)) ĉ1(x)
(λ1(x)− λ2(x)) c1(x)

]
.

Notice that, from Corollary 4.1, we have

λ1(x) + λ2(x) = 2 ∥x̂∥ ≥ 0, and λ1(x)− λ2(x) = 2 ∥x̄∥ ≥ 0. (13)

More generally, using the binomial theorem, we also notice that

λp
1(x)± λp

2(x) = (∥x̂∥+ ∥x̄∥)p ± (∥x̂∥ − ∥x̄∥)p

=

p∑
n=0

((
p
n

)
∥x̂∥p−n ∥x̄∥n

)
±

p∑
n=0

((
p
n

)
∥x̂∥p−n

(−∥x̄∥)n
)

=

p∑
n=0

((
p
n

)
∥x̂∥p−n ∥x̄∥n (1± (−1)n)

)
≥ 0,

(14)
for any nonnegative integer p.

Now, we are ready to prove that xp = x(p) by induction on p. For p = 2,
it is easy to check that

x(2) = (λ1(x))
2c1(x) + (λ2(x))

2c2(x) =

∥x∥2 x̂

∥x̂∥
2 ∥x̂∥ x̄

 = x⊚ x = x2.

Assume that xk = x(k) for some k > 2. Then, by using (8), (11), (13), and
(14), we have

xk+1 = x⊚ xk

= x⊚ x(k)

= (λ1(x)c1(x) + λ2(x)c2(x))⊚
(
λk
1(x)c1(x) + λk

2(x)c2(x)
)

=

[
(λ1(x) + λ2(x)) ĉ1(x)
(λ1(x)− λ2(x)) c1(x)

]
⊚

[(
λk
1(x) + λk

2(x)
)
ĉ1(x)(

λk
1(x)− λk

2(x)
)
c1(x)

]

=
1

2



(
1
4 (λ1(x) + λ2(x))

(
λk
1(x) + λk

2(x)
)
+ (λ1(x)− λ2(x))

(
λk
1(x)− λk

2(x)
)
∥c1(x)∥2

)
(2ĉ1(x) + 2ĉ1(x))(

1
2 (λ1(x) + λ2(x)) + 2 (λ1(x) + λ2(x)) ∥ĉ1(x)∥2

) (
λk
1(x)− λk

2(x)
)
c1(x)

+
(

1
2

(
λk
1(x) + λk

2(x)
)
+ 2

(
λk
1(x) + λk

2(x)
)
∥ĉ1(x)∥2

)
(λ1(x)− λ2(x)) c1(x)


=

1

2

[(
(λ1(x) + λ2(x))

(
λk
1(x) + λk

2(x)
)
+ (λ1(x)− λ2(x))

(
λk
1(x)− λk

2(x)
))

ĉ1(x)(
(λ1(x) + λ2(x))

(
λk
1(x)− λk

2(x)
)
+
(
λk
1(x) + λk

2(x)
)
(λ1(x)− λ2(x))

)
c1(x)

]
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=
1

2

[(
λk+1
1 (x) + λ1(x)λ

k
2(x) + λ2(x)λ

k
1(x) + λk+1

2 (x) + λk+1
1 (x)− λ1(x)λ

k
2(x)− λ2(x)λ

k
1(x) + λk+1

2 (x)
)
ĉ1(x)(

λk+1
1 (x)− λ1(x)λ

k
2(x) + λ2(x)λ

k
1(x)− λk+1

2 (x) + λk+1
1 (x)− λk

1(x)λ2(x) + λk
2(x)λ1(x)− λk+1

2 (x)
)
c1(x)

]
=

[(
λk+1
1 (x) + λk+1

2 (x)
)
ĉ1(x)(

λk+1
1 (x)− λk+1

2 (x)
)
c1(x)

]
= λk+1

1 (x)c1(x) + λk+1
2 (x)c2(x) = x(k+1).

Thus, the equality in (12) holds for any integer p ≥ 0. ⊓⊔
The following theorem is fundamental and its proof relies on Lemma 4.1.

Theorem 4.2 The magma (Mm|n,⊚) is power-associative. That is, xp ⊚
xq = xp+q for any positive integers p and q.

Proof Using (8), (11), (12), and (14), we have

xp ⊚ xq = x(p) ⊚ x(q)

= (λp
1(x)c1(x) + λp

2(x)c2(x))⊚ (λq
1(x)c1(x) + λq

2(x)c2(x))

=

[
(λp

1(x) + λp
2(x)) ĉ1(x)

(λp
1(x)− λp

2(x)) c1(x)

]
⊚

[
(λq

1(x) + λq
2(x)) ĉ1(x)

(λq
1(x)− λq

2(x)) c1(x)

]
=

1

2

[
((λp

1(x) + λp
2(x)) (λ

q
1(x) + λq

2(x)) + (λp
1(x)− λp

2(x)) (λ
q
1(x)− λq

2(x))) ĉ1(x)
((λp

1(x) + λp
2(x)) (λ

q
1(x)− λq

2(x)) + (λq
1(x) + λq

2(x)) (λ
p
1(x)− λp

2(x))) c1(x)

]
=

1

2

[(
λp+q
1 (x) + λp

1(x)λ
q
2(x) + λp

2(x)λ
q
1(x) + λp+q

2 (x) + λp+q
1 (x)− λp

1(x)λ
q
2(x)− λp

2(x)λ
q
1(x) + λp+q

2 (x)
)
ĉ1(x)(

λp+q
1 (x)− λp

1(x)λ
q
2(x) + λp

2(x)λ
q
1(x)− λp+q

2 (x) + λp+q
1 (x)− λq

1(x)λ
p
2(x) + λq

2(x)λ
p
1(x)− λp+q

2 (x)
)
c1(x)

]

=

[(
λp+q
1 (x) + λp+q

2 (x)
)
ĉ1(x)(

λp+q
1 (x)− λp+q

2 (x)
)
c1(x)

]
= λp+q

1 (x)c1(x) + λp+q
2 (x)c2(x)

= x(p+q) = xp+q.

The proof is complete. ⊓⊔
It is known [15] that Jordan identity holds in the algebra (En+1, ◦). That

is, for any x,y ∈ En+1, we have

(x ◦ y) ◦ x2 = x ◦ (y ◦ x2) (Jordan identity). (15)

Due to the commutativity of the algebra, Jordan identity for (En+1, ◦) can be
written as

x2 ◦ (x◦y) = x◦ (x2 ◦y), or equivalently, Arw(x2)Arw(x) = Arw(x)Arw(x2),

because x ◦ y = Arw(x)y. In other words, Jordan identity is satisfied in
(En+1, ◦) due to a known fact about the arrow-shaped matrix: Arw(x) and
Arw(x2) commute.

Regardless of the fact that (Mm|n,⊚) is not an algebra, it is interesting to
know whether the Jordan identity holds for (Mm|n,⊚). We have seen that the
magma (Mm|n,⊚) is also commutative, so the Jordan identity for (Mm|n,⊚)
is

(x⊚y)⊚x2 = x⊚(y⊚x2), or equivalently, x2⊚(x⊚y) = x⊚(x2⊚y). (16)
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The following lemma demonstrates (16) for (M1|n,⊚).

Lemma 4.2 The Jordan identity holds for (M1|n,⊚).

Proof For x,y ∈ (M1|n,⊚), it can be shown that

x⊚ y =

x ◦ y, if x1, y1 ≥ 0;
−(x ◦ y), if x1, y1 < 0;
0, if x1y1 < 0.

The desired result follows from (15). ⊓⊔
It does not seem easy to prove the statement in Lemma 4.2 for (Mm≥2|n,⊚).

Theorem 4.3 proves an interesting fact about the crane-shaped matrix: Crn(x)
and Crn(x2) commute. This generalizes the fact that Arw(x) and Arw(x2)
commute, which was the evidence for the satisfaction of the Jordan identity
for (En+1, ◦). However, we should be aware that the result in Theorem 4.3 is
not an evidence for the satisfaction of the Jordan identity for (Mm|n,⊚). In
other words, the identity in (16) has not yet been ascertained for the magma
(Mm≥2|n,⊚) (see Table 4) because it is not generally true that x⊚y = Crn(x)y
due to losing the bilinearity in “⊚” (remember x⊚y = (Crn(x)y+Crn(y)x)/2).
Nevertheless, we believe that the result of the following theorem provides sup-
portive evidence for the powerful of the magma (Mm|n,⊚).

Theorem 4.3 For any x ∈ (Mm|n,⊚), the matrices Crn(x) and Crn(x2)
commute.

Proof Using a direct calculation, we have

Crn
(
x2
)
=



∥∥∥∥∥∥x∥2∥x̂∥
x̂

∥∥∥∥∥ Im
2 ∥x∥2 ∥x̂∥

∥x̂∥∥∥∥∥∥∥x∥2∥x̂∥
x̂

∥∥∥∥∥
x̂x̄T

2 ∥x∥2 ∥x̂∥
∥x̂∥∥∥∥∥∥∥x∥2∥x̂∥

x̂

∥∥∥∥∥
x̄x̂T

∥∥∥∥∥∥x∥2∥x̂∥
x̂

∥∥∥∥∥ In


=

[
∥x∥2 Im 2x̂x̄T

2x̄x̂T ∥x∥2 In

]
.

It follows that

Crn(x)Crn
(
x2
)
=

 ∥x̂∥ Im
1

∥x̂∥
x̂x̄T

1

∥x̂∥
x̄x̂T ∥x̂∥ In


(∥x̂∥2 + ∥x̄∥2

)
Im 2x̂x̄T

2x̄x̂T
(
∥x̂∥2 + ∥x̄∥2

)
In


=

(∥x̂∥
3
+ ∥x̂∥ ∥x̄∥2)Im +

2 ∥x̄∥2

∥x̂∥
x̂x̂T 3 ∥x̂∥ x̂x̄T +

∥x̄∥2

∥x̂∥
x̂x̄T

3 ∥x̂∥ x̄x̂T +
∥x̄∥2

∥x̂∥
x̄x̂T

(
∥x̂∥3 + ∥x̂∥ ∥x̄∥2

)
In + 2 ∥x̂∥ x̄x̄T

,
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Table 4: A comparison of some properties between (En+1, ◦) and (Mm|n,⊚).

Properties Algebra (En+1, ◦) Magma (Mm|n,⊚)

Commutativity ! !

Power-associativity ! !

Associativity % %

Jordan identity ! OQA. H/E Crn(x) and Crn(x2) commute (see Theorem 4.3)

Unitary ! % H/E the submagma generated by any element is unitary-like

Invertibility ! % H/E generalized invertibility holds in int Mm|n
+

Reality of eigenvalues ! !

Rankly independence ! !

Cone of squares = SOC ! !

and

Crn
(
x2
)
Crn(x) =

(∥x̂∥2 + ∥x̄∥2
)
Im 2x̂x̄T

2x̄x̂T
(
∥x̂∥2 + ∥x̄∥2

)
In


 ∥x̂∥ Im

1

∥x̂∥
x̂x̄T

1

∥x̂∥
x̄x̂T ∥x̂∥ In


=


(
∥x̂∥3 + ∥x̂∥ ∥x̄∥2

)
Im +

2 ∥x̄∥2

∥x̂∥
x̂x̂T 3 ∥x̂∥ x̂x̄T +

∥x̄∥2

∥x̂∥
x̂x̄T

3 ∥x̂∥ x̄x̂T +
∥x̄∥2

∥x̂∥
x̄x̂T 2 ∥x̂∥ x̄x̄T +

(
∥x̂∥3 + ∥x̂∥ ∥x̄∥2

)
In

.

Thus, Crn(x)Crn(x2) = Crn(x2)Crn(x). The proof is complete. ⊓⊔
We summarize key properties and features of the magma (Mm|n,⊚) in

Table 42 which also compares them with those of the algebra (En+1, ◦).

5 Further Algebraic and Spectral Properties

This section generalizes further important properties of the algebra (En+1, ◦)
associated with the convex SOC to the magma (Mm|n,⊚) associated with
the nonconvex SOC by using the definitions, notions, and results obtained in
Section 3. The following lemma is due to [11] and will be used in the proof of
Theorem 5.1.

Lemma 5.1 For any nonzero vector x ∈ Rd, the matrix xxT is positive
semidefinite with only one nonzero eigenvalue, namely ∥x∥2.

In Theorem 4.3, we stated one of the fundamental properties of Crn(x)
matrix. The following theorem presents two more fundamental properties of
Crn(x). This theorem can be viewed as a generalization of items (1) and (2)
in [1, Theorem 3].

Theorem 5.1 Let x ∈ (Mm|n,⊚). Then

(i) Crn(x) and Px commute and thus share a system of eigenvectors.
(ii) λ1(x) = ∥x̂∥ + ∥x̄∥ and λ2(x) = ∥x̂∥ − ∥x̄∥ are eigenvalues of Crn(x).

Moreover, if λ1(x) ̸= λ2(x) then each one has multiplicity one; the cor-
responding eigenvectors are c1(x) and c2(x). Furthermore, ∥x̂∥ is an
eigenvalue of Crn(x) and has a multiplicity m+ n− 2 when x ̸= 0.

2 In Table 4, H/E means However and OQA means Open Question Argument.
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Proof We prove the theorem by a direct calculation.

(i) We have that

Crn(x)Px =

 ∥x̂∥ Im
1

∥x̂∥
x̂x̄T

1

∥x̂∥
x̄x̂T ∥x̂∥ In

[−det(x)Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

]

=

−det(x) ∥x̂∥ Im + 2 ∥x̂∥ x̂x̂T +
2 ∥x̄∥2

∥x̂∥
x̂x̂T 2 ∥x̂∥ x̂x̄T +

2 ∥x̄∥2

∥x̂∥
x̂x̄T +

det(x)

∥x̂∥
x̂x̄T

−det(x)

∥x̂∥
x̄x̂T + 4 ∥x̂∥ x̄x̂T 4 ∥x̂∥ x̄x̄T + det(x) ∥x̂∥ In



=

−det(x) ∥x̂∥ Im + 2 ∥x̂∥ x̂x̂T +
2 ∥x̄∥2

∥x̂∥
x̂x̂T ∥x̄∥2

∥x̂∥
x̂x̄T + 3 ∥x̂∥ x̂x̄T

3 ∥x̂∥ x̄x̂T +
∥x̄∥2

∥x̂∥
x̄x̂T 4 ∥x̂∥ x̄x̄T + det(x) ∥x̂∥ In

,
and that

PxCrn(x) =

[
−det(x)Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

] ∥x̂∥ Im
1

∥x̂∥
x̂x̄T

1

∥x̂∥
x̄x̂T ∥x̂∥ In


=

−det(x) ∥x̂∥ Im + 2 ∥x̂∥ x̂x̂T +
2 ∥x̄∥2

∥x̂∥
x̂x̂T −det(x)

∥x̂∥
x̂x̄T + 4 ∥x̂∥ x̂x̄T

2 ∥x̂∥ x̄x̂T +
2 ∥x̄∥2

∥x̂∥
x̄x̂T +

det(x)

∥x̂∥
x̄x̂T 4 ∥x̂∥ x̄x̄T + det(x) ∥x̂∥ In



=

−det(x) ∥x̂∥ Im + 2 ∥x̂∥ x̂x̂T +
2 ∥x̄∥2

∥x̂∥
x̂x̂T ∥x̄∥2

∥x̂∥
x̂x̄T + 3 ∥x̂∥ x̂x̄T

3 ∥x̂∥ x̄x̂T +
∥x̄∥2

∥x̂∥
x̄x̂T 4 ∥x̂∥ x̄x̄T + det(x) ∥x̂∥ In

.
Thus, Crn(x)Px = PxCrn(x). In matrix algebra, two matrices commute
if and only if they share a common system of eigenvectors. The result is
obtained.

(ii) Note that

det (λIm+n − Crn(x)) =

∣∣∣∣∣∣∣∣
(λ− ∥x̂∥) Im − x̂

∥x̂∥
x̄T

−x̄

(
x̂

∥x̂∥

)T

(λ− ∥x̂∥) In

∣∣∣∣∣∣∣∣ .
If det((λ− ∥x̂∥) Im) ̸= 0, then the matrix

S := (λ− ∥x̂∥) In −
(

x̂

∥x̂∥
x̄T

)T

((λ− ∥x̂∥) Im)
−1

(
x̂

∥x̂∥
x̄T

)
is the Schur complement of (λ − ∥x̂∥)Im in λIm+n − Crn(x). We then
have

det (λIm+n − Crn(x)) = det((λ− ∥x̂∥)Im) det(S) = (λ− ∥x̂∥)m det(S).
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Using Lemma 5.1, we also have

det(S) = det

(
(λ− ∥x̂∥) In −

(
x̂

∥x̂∥
x̄T

)T(
1

λ− ∥x̂∥
Im

)(
x̂

∥x̂∥
x̄T

))
= det

(
(λ− ∥x̂∥) In − 1

λ− ∥x̂∥
x̄x̄T

)
= det

(
(λ− ∥x̂∥) In

(
In − 1

(λ− ∥x̂∥)2
x̄x̄T

))

= det ((λ− ∥x̂∥) In) det

(
In − 1

(λ− ∥x̂∥)2
x̄x̄T

)

= (λ− ∥x̂∥)n
(

n∏
i=1

(
1− λi

(
1

(λ− ∥x̂∥)2
x̄x̄T

)))

= (λ− ∥x̂∥)n
(
1− ∥x̄∥2

(λ− ∥x̂∥)2

)
.

It follows that

det (λIm+n − Crn(x)) = (λ− ∥x̂∥)m
(
(λ− ∥x̂∥)n

(
1− ∥x̄∥2

(λ− ∥x̂∥)2

))
= (λ− ∥x̂∥)m+n − ∥x̄∥2 (λ− ∥x̂∥)m+n−2

= (λ− ∥x̂∥)m+n−2
(
(λ− ∥x̂∥)2 − ∥x̄∥2

)
.

Consequently, ∥x̂∥ is an eigenvalue of Crn(x) with multiplicity m+n−2.

In addition, (λ− ∥x̂∥)2 − ∥x̄∥2 = 0 implies that (λ− ∥x̂∥)2 = ∥x̄∥2 or
λ− ∥x̂∥ = ±∥x̄∥, hence λ = ∥x̂∥ ± ∥x̄∥ are two eigenvalues of Crn(x).
Finally, it is clear that c1(x) and c2(x) are the corresponding eigenvectors
of ∥x̂∥+ ∥x̄∥ and ∥x̂∥ − ∥x̄∥, respectively. The proof is complete. ⊓⊔

Item (ii) in Theorem 5.1 gives a certificate that the might be termed the
“nonconvex second-order cone programming” is a special case of the nonlinear
semidefinite programming [12,17,24,28,29,33].

The operator P· is of significant importance because it is being used to ex-
press the Hessian of the logarithmic barrier function associated with the cone
(see Section 6). The following theorem establishes numerous fundamental prop-
erties of P· operator and generalizes the corresponding items in [1, Theorem
8].

Theorem 5.2 Let x,y ∈ (Mm|n,⊚). Assume also that xg exists (i.e., det(x) ̸=
0) wherever it is necessary. Then

(i) Pxg = P−1
x .

(ii) Crn(x)Pxg = PxgCrn(x) =
Pe(x),xg .

(iii) Pxgx = P−1
x x = xg.

(iv) Pαx = α2Px, for α ∈ R.

(v) Pxe(x) = x2.
(vi) Px,xgPx = PxPx,xg = Crn(x2).

(vii)
1

(det(x))2
Rm|nPxR

m|n = Pxg .

(viii) det(Pxy) = (det(x))2 det(y).
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Proof Most statements are shown by direct calculations. We prove the theorem
item by item.

(i) Let

M(x) :=
1

(det(x))2

[
−det(x)Im + 2x̂x̂T −2x̂x̄T

−2x̄x̂T 2x̄x̄T + det(x)In

]
.

Then

M(x)Px

=
1

(det(x))2

[
−det(x)Im + 2x̂x̂T −2x̂x̄T

−2x̄x̂T 2x̄x̄T + det(x)In

][
−det(x)Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

]

=

Im − 4

det(x)
x̂x̂T +

4 ∥x̂∥2

(det(x))2
x̂x̂T − 4 ∥x̄∥2

(det(x))2
x̂x̂T − 4

det(x)
x̂x̄T +

4 ∥x̂∥2

(det(x))2
x̂x̄T − 4 ∥x̄∥2

(det(x))2
x̂x̄T

4

det(x)
x̄x̂T − 4 ∥x̂∥2

(det(x))2
x̄x̂T +

4 ∥x̄∥2

(det(x))2
x̄x̂T − 4 ∥x̂∥2

(det(x))2
x̄x̄T +

4 ∥x̄∥2

(det(x))2
x̄x̄T +

4

det(x)
x̄x̄T + In



=


Im − 4

det(x)
x̂x̂T +

4
(
∥x̂∥2 − ∥x̄∥2

)
(det(x))2

x̂x̂T − 4

det(x)
x̂x̄T +

4
(
∥x̂∥2 − ∥x̄∥2

)
(det(x))2

x̂x̄T

4

det(x)
x̄x̂T −

4
(
∥x̂∥2 − ∥x̄∥2

)
(det(x))2

x̄x̂T −
4
(
∥x̂∥2 − ∥x̄∥2

)
(det(x))2

x̄x̄T +
4x̄x̄T

det(x)
+ In



=

Im − 4

det(x)
x̂x̂T +

4

det(x)
x̂x̂T − 4

det(x)
x̂x̄T +

4

det(x)
x̂x̄T

4

det(x)
x̄x̂T − 4

det(x)
x̄x̂T − 4

det(x)
x̄x̄T +

4

det(x)
x̄x̄T + In


=

[
Im O
O In

]
= Im+n.

Similarly, a simple computation can also show that PxM(x) = Im+n. It
follows that M(x) = P−1

x .
To prove the result, it is enough to show that Pxg = M(x). Recall that

xg =
Rm|n

det(x)
x =

1

det(x)

[
x̂
−x̄

]
, hence x̂g =

1

det(x)
x̂ and xg =

−1

det(x)
x̄.

Recall also that

λ1,2(x
g) =

1

λ1,2(x)
,

and hence

det(xg) = λ1(x
g)λ2(x

g) =
1

λ1(x)λ2(x)
=

1

det(x)
.

It follows that

Pxg =

[
2x̂gx̂g

T − det(xg)Im 2x̂gxgT

2xgx̂g
T

2xg xgT + det(xg)In

]

=
1

(det(x))2

[
2x̂x̂T − det(x)Im −2x̂x̄T

−2x̄x̂T 2x̄x̄T + det(x)In

]
= M(x).
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(ii) From item (i) in Theorem 5.1, we have Crn(x)Px = PxCrn(x). Mul-
tiplying both sides from right by P−1

x we get Crn(x) = PxCrn(x)P
−1
x .

Multiplying both sides from left by P−1
x we get P−1

x Crn(x) = Crn(x)P−1
x ,

or using item (i), PxgCrn(x) = Crn(x)Pxg . The last equality in item (ii)
is proven by noting that

Crn(x)Pxg

=

 ∥x̂∥ Im
1

∥x̂∥
x̂x̄T

1

∥x̂∥
x̄x̂T ∥x̂∥ In

 1

(det(x))2

[
− det(x)Im + 2x̂x̂T −2x̂x̄T

−2x̄x̂T 2x̄x̄T + det(x)In

]

=
1

(det(x))2

−∥x̂∥ det(x)Im + 2 ∥x̂∥ x̂x̂T − 2 ∥x̄∥2

∥x̂∥
x̂x̂T −2 ∥x̂∥ x̂x̄T +

2 ∥x̄∥2

∥x̂∥
x̂x̄T +

det(x)

∥x̂∥
x̂x̄T

−det(x)

∥x̂∥
x̄x̂T + 2 ∥x̂∥ x̄x̂T − 2 ∥x̂∥ x̄x̂T −2 ∥x̂∥ x̄x̄T + 2 ∥x̂∥ x̄x̄T + ∥x̂∥ det(x)In



=
1

(det(x))2

−∥x̂∥ det(x)Im +
2
(
∥x̂∥2 − ∥x̄∥2

)
∥x̂∥

x̂x̂T −
2
(
∥x̂∥2 − ∥x̄∥2

)
∥x̂∥

x̂x̄T +
det(x)

∥x̂∥
x̂x̄T

−det(x)

∥x̂∥
x̄x̂T ∥x̂∥ det(x)In



=
1

(det(x))2

−∥x̂∥ det(x)Im +
2det(x)

∥x̂∥
x̂x̂T −2 det(x)

∥x̂∥
x̂x̄T +

det(x)

∥x̂∥
x̂x̄T

−det(x)

∥x̂∥
x̄x̂T ∥x̂∥ det(x)In



=
1

det(x)

−∥x̂∥ Im +
2

∥x̂∥
x̂x̂T − 1

∥x̂∥
x̂x̄T

− 1

∥x̂∥
x̄x̂T ∥x̂∥ In

 = Pe(x),xg .

(iii) In light of item (i), it suffices to show that Pxx
g = x. A straightforward

computation finds that

Pxx
g =

[
2x̂x̂T − det(x)Im 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

]
1

det(x)

[
x̂
−x̄

]

=

(−∥x̂∥2 + ∥x̄∥2
)
Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T +
(
∥x̂∥2 − ∥x̄∥2

)
In




1

∥x̂∥2 − ∥x̄∥2
x̂

− 1

∥x̂∥2 − ∥x̄∥2
x̄



=


2 ∥x̂∥2

∥x̂∥2 − ∥x̄∥2
x̂− ∥x̂∥2

∥x̂∥2 − ∥x̄∥2
x̂+

∥x̄∥2

∥x̂∥2 − ∥x̄∥2
x̂− 2 ∥x̄∥2

∥x̂∥2 − ∥x̄∥2
x̂

2 ∥x̂∥2

∥x̂∥2 − ∥x̄∥2
x̄− 2 ∥x̄∥2

∥x̂∥2 − ∥x̄∥2
x̄− ∥x̂∥2

∥x̂∥2 − ∥x̄∥2
x̄+

∥x̄∥2

∥x̂∥2 − ∥x̄∥2
x̄



=


2
(
∥x̂∥2 − ∥x̄∥2

)
∥x̂∥2 − ∥x̄∥2

x̂− ∥x̂∥2 − ∥x̄∥2

∥x̂∥2 − ∥x̄∥2
x̂

2
(
∥x̂∥2 − ∥x̄∥2

)
∥x̂∥2 − ∥x̄∥2

x̄− ∥x̂∥2 − ∥x̄∥2

∥x̂∥2 − ∥x̄∥2
x̄


=

[
2x̂− x̂
2x̄− x̄

]
= x.
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(iv) If α ∈ R, then

Pαx =

−(∥αx̂∥2 − ∥αx̄∥2
)
Im + 2αx̂αx̂T 2αx̂αx̄T

2αx̄αx̂T 2αx̄αx̄T +
(
∥αx̂∥2 − ∥αx̄∥2

)
In


=

−(|α|2 ∥x̂∥2 − |α|2 ∥x̄∥2
)
Im + 2α2x̂x̂T 2α2x̂x̄T

2α2x̄x̂T 2α2x̄x̄T +
(
|α|2 ∥x̂∥2 − |α|2 ∥x̄∥2

)
In


=

−α2
(
∥x̂∥2 − ∥x̄∥2

)
Im + 2α2x̂x̂T 2α2x̂x̄T

2α2x̄x̂T 2α2x̄x̄T + α2
(
∥x̂∥2 − ∥x̄∥2

)
In


=

[
−α2 det(x)Im + 2α2x̂x̂T 2α2x̂x̄T

2α2x̄x̂T 2α2x̄x̄T + α2 det(x)In

]
= α2Px.

(v) A straightforward computation finds that

Pxe(x)

=

(−∥x̂∥2 + ∥x̄∥2
)
Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T +
(
∥x̂∥2 − ∥x̄∥2

)
In

 x̂

∥x̂∥
0



=

−
∥x̂∥2

∥x̂∥
x̂+

∥x̄∥2

∥x̂∥
x̂+

2

∥x̂∥
x̂x̂Tx̂

2

∥x̂∥
x̄x̂Tx̂

 =

∥x̂∥2∥x̂∥
x̂+

∥x̄∥2

∥x̂∥
x̂

2 ∥x̂∥ x̄

 = x2.

(vi) Note that

Px,xg =
1

det(x)

[
−∥x̄∥2 Im + 2x̂x̂T − ∥x̂∥2 Im O

O
(
∥x̂∥2 + ∥x̄∥2

)
In − 2x̄x̄T

]

=
1

det(x)

[
−∥x∥2 Im + 2x̂x̂T O

O ∥x∥2 In − 2x̄x̄T

]
.

It follows that

Px,xgPx

=
1

det(x)

[
−∥x∥2 Im + 2x̂x̂T O

O ∥x∥2 In − 2x̄x̄T

][
2x̂x̂T − det(x)Im 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

]
=

1

det(x)

(−2 ∥x∥2 + 4 ∥x̂∥2 − 2 det(x)
)
x̂x̂T + ∥x∥2 det(x)Im −2 ∥x∥2 x̂x̄T + 4 ∥x̂∥2 x̂x̄T

2 ∥x∥2 x̄x̂T − 4 ∥x̄∥2 x̄x̂T
(
2 ∥x∥2 − 4 ∥x̄∥2 − 2 det(x)

)
x̄x̄T + ∥x∥2 det(x)Im



=


2
(
∥x̂∥2 − ∥x̄∥2

)
det(x)

x̂x̂T + ∥x∥2 Im − 2x̂x̂T
2
(
∥x̂∥2 − ∥x̄∥2

)
det(x)

x̂x̄T

2
(
∥x̂∥2 − ∥x̄∥2

)
det(x)

x̄x̂T
2
(
∥x̂∥2 − ∥x̄∥2

)
det(x)

x̄x̄T + ∥x∥2 In − 2x̄x̄T


=

[
2x̂x̂T + ∥x∥2 Im − 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T + ∥x∥2 In − 2x̄x̄T

]
=

[
∥x∥2 Im 2x̂x̄T

2x̄x̂T ∥x∥2 In

]
= Crn(x2).
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Similarly, a straightforward computation can show that PxPx,xg = Crn(x2).
(vii) With a little computation, we have

1

(det(x))2
Rm|nPxR

m|n

=
1

(det(x))2
[
Im O
O −In

] [
− det(x)Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

] [
Im O
O −In

]
=

1

(det(x))2

[
− det(x)Im + 2x̂x̂T 2x̂x̄T

−2x̄x̂T −(2x̄x̄T + det(x)In)

][
Im O
O −In

]
=

1

(det(x))2

[
−det(x)Im + 2x̂x̂T −2x̂x̄T

−2x̄x̂T 2x̄x̄T + det(x)In

]
= Pxg

as desired.
(viii) From the definition of P·, we have Pxy = 2(xTy)x − det(x)Rm|ny. On

the other hand, we also have

Pxy =

[
−det(x)Im + 2x̂x̂T 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

][
ŷ
ȳ

]
=

[
2x̂Tŷx̂+ 2x̄Tȳx̂− det(x)ŷ
2x̂Tŷx̄+ 2x̄Tȳx̄+ det(x)ȳ

]
.

Letting z = Pxy, α = xTy and γ = det(x), we get z = 2αx− γRm|ny.
Note that

∥ẑ∥2 = ∥2αx̂− γŷ∥2 = 4α2 ∥x̂∥2 − 4αγx̂Tŷ + γ2 ∥ŷ∥2 ,
∥z̄∥2 = ∥2αx̄+ γȳ∥2 = 4α2 ∥x̄∥2 + 4αγx̄Tȳ + γ2 ∥ȳ∥2 .

It follows that

det(Pxy) = det(z)

= ∥ẑ∥2 − ∥z̄∥2

= 4α2 ∥x̂∥2 − 4αγx̂Tŷ + γ2 ∥ŷ∥2 −
(
4α2 ∥x̄∥2 + 4αγx̄Tȳ + γ2 ∥ȳ∥2

)
= 4α2

(
∥x̂∥2 − ∥x̄∥2

)
− 4αγ

(
x̂Tŷ + x̄Tȳ

)
+ γ2

(
∥ŷ∥2 − ∥ȳ∥2

)
= 4α2γ − 4α2γ + γ2

(
∥ŷ∥2 − ∥ȳ∥2

)
= γ2

(
∥ŷ∥2 − ∥ȳ∥2

)
= (det(x))2 det(y).

This completes the proof. ⊓⊔

We mentioned that the P· operator is important because it is used to
express the Hessian of the cone’s barrier. Likewise, the operator P·,· is also of
fundamental importance because it is being used to express the third derivative
of the logarithmic barrier function associated with the cone (see Section 6).
The following theorem presents some fundamental properties of P·,· operator.
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Theorem 5.3 Let x ∈ (Mm|n,⊚). Assume also that xg exists (i.e., det(x) ̸=
0) wherever it is necessary. Then

(i) Pe(x),xx
g = Px,xge(x) = e(x).

(ii) Pe(x),xe(x) = Px,xgx = x.
(iii) Px,xgxg = xg.
(iv) Pe(x),xx = x2.

Proof Note that, from the definition of P·,·, we have

Pe(x),x =

2
x̂

∥x̂∥
x̂T − ∥x̂∥ Im

x̂

∥x̂∥
x̄T

x̄

(
x̂

∥x̂∥

)T

∥x̂∥ In

, and

Px,xg =
1

det(x)

[
2x̂x̂T − ∥x∥2 Im O

O −2x̄x̄T + ∥x∥2 In

]
.

We are ready to prove the theorem item by item.

(i) If det(x) ̸= 0, we have

Pe(x),xx
g =

2
x̂

∥x̂∥
x̂T − ∥x̂∥ Im

x̂

∥x̂∥
x̄T

x̄

(
x̂

∥x̂∥

)T

∥x̂∥ In

 1

det(x)

[
x̂
−x̄

]

=
1

det(x)


2 ∥x̂∥2

∥x̂∥
x̂− ∥x̂∥ x̂− ∥x̄∥2

∥x̂∥
x̂

∥x̂∥2

∥x̂∥
x̄− ∥x̂∥ x̄

 =

 x̂

∥x̂∥
0

 = e(x).

Similarly, a straightforward computation can show that Px,xge(x) =
e(x).

(ii) Note that

Pe(x),xe(x) =

2
x̂

∥x̂∥
x̂T − ∥x̂∥ Im

x̂

∥x̂∥
x̄T

x̄

(
x̂

∥x̂∥

)T

∥x̂∥ In


 x̂

∥x̂∥
0



=


2 ∥x̂∥2

∥x̂∥2
x̂− x̂

∥x̂∥2

∥x̂∥2
x̄

 =

[
x̂
x̄

]
= x.

Similarly, a straightforward computation can show that Px,xgx = x pro-
vided that det(x) ̸= 0.
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(iii) If det(x) ̸= 0, we get

Px,xgxg =
1

(det(x))2

[
2x̂x̂T − ∥x∥2 Im O

O −2x̄x̄T + ∥x∥2 In

][
x̂
−x̄

]
=

1

(det(x))2

[
2 ∥x̂∥2 x̂− ∥x∥2 x̂
2 ∥x̄∥2 x̄− ∥x∥2 x̄

]
=

1

det(x)

[
x̂
−x̄

]
= xg.

(iv) With a little computation, we have

Pe(x),xx =

2
x̂

∥x̂∥
x̂T − ∥x̂∥ Im

x̂

∥x̂∥
x̄T

x̄

(
x̂

∥x̂∥

)T

∥x̂∥ In

[x̂x̄
]

=


2 ∥x̂∥2

∥x̂∥
x̂− ∥x̂∥ x̂+

∥x̄∥2

∥x̂∥
x̂

∥x̂∥2

∥x̂∥
x̄+ ∥x̂∥ x̄


=

∥x̂∥2 + ∥x̄∥2

∥x̂∥
x̂

2 ∥x̂∥ x̄

 = x2

as desired. The proof is complete.
⊓⊔

In the following theorem, we explore some characterizations of spectral

values, determinant, and trace of x ∈ Mm|n
+ . The inequalities and identities

stated in the following theorem are parallel results analogous to those asso-
ciated with the cone of positive semidefinite matrices [20]. These results are
also applied to the convex cone En+1

+ (see also [3]).

Theorem 5.4 Let x,y ∈ (Mm|n,⊚), and α, β ∈ R. Then

(i) trace(αx) = |α| trace(x).
(ii) trace(x+y) ≤ trace(x)+trace(y) with equality holds if and only if m = 1

and x1, y1 ≥ 0.
(iii) det(αx) = α2 det(x).

(iv) det(x + y) ≤ ((trace(x))2 + (trace(y))2)/2. Moreover, if x,y ∈ Mm|n
+ ,

|det(x+ y)| ≤ ((trace(x))2 + (trace(y))2)/2.
(v) det (αx+ βy) ≤ (α2(trace(x))2 + β2(trace(y))2)/2. Moreover,

|det (αx+ βy) | ≤ (α2(trace(x))2+β2(trace(y))2)/2 provided that x,y ∈
Mm|n

+ and α, β ≥ 0.

(vi) det (e(x) + x) ≥ (1 + det(x1/2))2, provided that x1/2 is defined (i.e.,

x ∈ Mm|n
+ ).

(vii) det(e(x) + x+ e(y) + y) ≤ 2((1 + ∥x̂∥)2 + (1 + ∥ŷ∥)2).
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Proof We prove the theorem item by item. For any x,y ∈ (Mm|n,⊚), and
α, β ∈ R, we have

(i) trace(αx) = 2∥α̂x∥ = 2∥αx̂∥ = 2|α| ∥x̂∥ = |α| trace(x).
(ii) trace(x + y) = 2∥x̂+ y∥ = 2∥x̂ + ŷ∥ ≤ 2(∥x̂∥ + ∥ŷ∥) = trace(x) +

trace(y). Clearly, the inequality becomes an identity if and only if x̂ =
x1 ≥ 0 and ŷ = y1 ≥ 0. In this case, trace(x + y) = 2(x1 + y1) =
trace(x) + trace(y).

(iii) det(αx) = ∥α̂x∥2 − ∥αx∥2 = ∥αx̂∥2 − ∥αx̄∥2 = α2(∥x̂∥2 − ∥x̄∥2) =
α2 det(x).

(iv) We have that

det(x+ y)

=
∥∥∥x̂+ y

∥∥∥2 − ∥x+ y∥2

= ∥x̂+ ŷ∥2 − ∥x̄+ ȳ∥2

= ∥x̂∥2 + 2⟨x̂, ŷ⟩+ ∥ŷ∥2 −
(
∥x̄∥2 + 2⟨x̄, ȳ⟩+ ∥ȳ∥2

)
=
(
∥x̂∥2 − ∥x̄∥2

)
+
(
∥ŷ∥2 − ∥ȳ∥2

)
+ 2⟨x̂, ŷ⟩+ 2⟨−x̄, ȳ⟩

≤
(
∥x̂∥2 − ∥x̄∥2

)
+
(
∥ŷ∥2 − ∥ȳ∥2

)
+ 2 ∥x̂∥ ∥ŷ∥+ 2 ∥x̄∥ ∥ȳ∥

≤
(
∥x̂∥2 − ∥x̄∥2

)
+
(
∥ŷ∥2 − ∥ȳ∥2

)
+ ∥x̂∥2 + ∥ŷ∥2 + ∥x̄∥2 + ∥ȳ∥2

= 2 ∥x̂∥2 + 2 ∥ŷ∥2 =
1

2

(
(trace(x))2 + (trace(y))2

)
.

In addition, if x,y ∈ Mm|n
+ , we also have that

det(x+ y)

=
(
∥x̂∥2 − ∥x̄∥2

)
+
(
∥ŷ∥2 − ∥ȳ∥2

)
+ 2⟨x̂, ŷ⟩+ 2⟨−x̄, ȳ⟩

≥
(
∥x̂∥2 − ∥x̄∥2

)
+
(
∥ŷ∥2 − ∥ȳ∥2

)
− 2 ∥x̂∥ ∥ŷ∥ − 2 ∥x̄∥ ∥ȳ∥

≥
(
∥x̂∥2 − ∥x̄∥2

)
+
(
∥ŷ∥2 − ∥ȳ∥2

)
−
(
∥x̂∥2 + ∥ŷ∥2

)
−
(
∥x̄∥2 + ∥ȳ∥2

)
= −2 ∥x̄∥2 − 2 ∥ȳ∥2

≥ −2 ∥x̂∥2 − 2 ∥ŷ∥2 = −1

2

(
(trace(x))2 + (trace(y))2

)
,

where the last inequality follows from the fact that x,y ∈ Mm|n
+ . Thus,

|det(x+ y)| ≤ 1

2

(
(trace(x))2 + (trace(y))2

)
.

(v) The result immediately follows from items (i) and (iv).
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(vi) Note that

e(x) + x =

 x̂

∥x̂∥
+ x̂

x̄

 =

(∥x̂∥+ 1)
x̂

∥x̂∥
x̄

.
If x ∈ Mm|n

+ is defined (i.e., λ1,2(x) ≥ 0), then

det (e(x) + x) =

∥∥∥∥(∥x̂∥+ 1)
x̂

∥x̂∥

∥∥∥∥2 − ∥x̄∥2

= (∥x̂∥+ 1)
2 − ∥x̄∥2

= 1 + 2 ∥x̂∥+
(
∥x̂∥2 − ∥x̄∥2

)
= 1 + λ1(x) + λ2(x) + λ1(x)λ2(x)

≥ 1 + 2
√
λ1(x)λ2(x) + λ1(x)λ2(x)

=
(
1 +

√
λ1(x)λ2(x)

)2
=
(
1 + det

(
x

1
2

))2
.

(vii) Note that trace(e(x) + x) = 2(1 + ∥x̂∥). The inequality in this item
immediately follows from item (iv). The proof of the theorem is now
complete.

⊓⊔
Items (i) and (ii) in Theorem 5.4 proves the convexity of the function

trace(·) on any convex subset of the space Mm|n.

6 The Barrier Function Associated With the Cone

In optimization, particularly conic programming, self-concordant functions
[22] are useful in the analysis of Newton’s method. More specifically, self-
concordant barriers satisfy certain smoothness conditions, allowing potential
efficient interior-point algorithms to solve the underlying optimization prob-
lem. Such conditions are given in terms of the Hessian and the third deriva-
tives of the cone’s barrier. In this section, we introduce the logarithmic barrier
function associated with the nonconvex SOC, compute its derivatives, and
introduce a class of optimization problems over nonconvex SOCs.

Following the standard way of defining the logarithmic barriers in conic
programming, we define the logarithmic barrier associated with the nonconvex

SOC ℓ : intMm|n
+ −→ R as

ℓ(x) := − ln det(x) = − ln
(
∥x̂∥2 − ∥x̄∥2

)
. (17)

The barrier function proposed in this section is the counterpart of very
well-known barriers in the interior-point theory of conic programming; see
Table 5.
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Table 5: The barriers, dimensions, and ranks of the most well-known cones.

Cone Constraint Log Barrier Ambient dimension Rank
The nonnegative orthant cone x ∈ Rn

+ −
∑n

i=1 lnxi O(n) O(n)

The convex SOC x ∈ En+1
+ − ln

(
x2
1 − ∥x̄∥2

)
O(n) O(1)

The cone of positive semidefinite matrices X ∈ Pn
+ − ln det(X) O(n2) O(n)

The nonconvex SOC x ∈ Mm|n
+ − ln

(
∥x̂∥2 − ∥x̄∥2

)
O(n+m) O(1)

Items (i) and (ii) in Theorem 6.1 generalize the corresponding ones in [1,
Theorem 8 (item 6)] for convex SOC (see also [4]).

Theorem 6.1 Let x ∈ intMm|n
+ and v ∈ Mm|n. Then

(i) The gradient ∇xℓ(x) = −2xg.
(ii) The Hessian ∇2

xxℓ(x) = 2Pxg .
(iii) The Jacobian JxPxv = 2Px,v.
(iv) The third derivative ∇3

xxxℓ(x)[v] = −4PPxgv,xg .

Proof The logarithmic barrier function is defined as

ℓ(x) = − log
(
∥x̂∥2 − ∥x̄∥2

)
= − log

(
x̂Tx̂− x̄Tx̄

)
.

Since det(x) = ∥x̂∥2 − ∥x̄∥2 > 0, we have

∇xℓ(x) =


−2x̂

∥x̂∥2 − ∥x̄∥2
2x̄

∥x̂∥2 − ∥x̄∥2

 =
−1

det(x)

[
2x̂
−2x̄

]
=

−2

det(x)
Rm|nx = −2xg.

The result in item (i) is obtained.
To prove item (ii), note that the Jacobian of xg is

Jxx
g = Jx


x̂

∥x̂∥2 − ∥x̄∥2
−x̄

∥x̂∥2 − ∥x̄∥2



=


∥x̂∥2 − ∥x̄∥2(
∥x̂∥2 − ∥x̄∥2

)2 Im − 2(
∥x̂∥2 − ∥x̄∥2

)2 x̂x̂T 2(
∥x̂∥2 − ∥x̄∥2

)2 x̂x̄T

2(
∥x̂∥2 − ∥x̄∥2

)2 x̄x̂T − ∥x̂∥2 − ∥x̄∥2(
∥x̂∥2 − ∥x̄∥2

)2 In − 2(
∥x̂∥2 − ∥x̄∥2

)2 x̄x̄T


=

1(
∥x̂∥2 − ∥x̄∥2

)2 (∥x̂∥2 − ∥x̄∥2
)
Im − 2x̂x̂T 2x̂x̄T

2x̄x̂T −
(
∥x̂∥2 − ∥x̄∥2

)
In − 2x̄x̄T



=
1

(det(x))2

[
−2x̂x̂T + det(x)Im 2x̂x̄T

2x̄x̂T −
(
2x̄x̄T + det(x)In

)] = −Pxg .

As a result, ∇2
xxℓ(x) = −2Jxx

g = 2Pxg . This proves item (ii).
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Moving to item (iii), note that

Pxv =

[
2x̂x̂T − det(x)Im 2x̂x̄T

2x̄x̂T 2x̄x̄T + det(x)In

][
v̂
v̄

]
=

[
2x̂x̂Tv̂ − det(x)v̂ + 2x̂x̄Tv̄
2x̄x̂Tv̂ + 2x̄x̄Tv̄ + det(x)v̄

]
=

[
2x̂x̂Tv̂ − ∥x̂∥2 v̂ + ∥x̄∥2 v̂ + 2x̂x̄Tv̄

2x̄x̂Tv̂ + 2x̄x̄Tv̄ + ∥x̂∥2 v̄ − ∥x̄∥2 v̄

]
.

It follows that

JxPxv

=

[
2x̂v̂T + 2v̂x̂T − 2x̂Tv̂Im + 2x̄Tv̄Im 2v̂x̄T + 2x̂v̄T

2x̄v̂T + 2v̄x̂T 2x̂Tv̂In + 2x̄v̄T + 2v̄x̄T − 2x̄Tv̄In

]
= 2

[
x̂v̂T + v̂x̂T +

(
x̄Tv̄ − x̂Tv̂

)
Im v̂x̄T + x̂v̄T

x̄v̂T + v̄x̂T x̄v̄T + v̄x̄T +
(
x̂Tv̂ − x̄Tv̄

)
In

]
= 2Px,v.

The result in item (iii) is obtained.

Now, we compute the third derivative of ℓ(x). Note that

Pxgv =
1

(det(x))2

[
− det(x)Im + 2x̂x̂T −2x̂x̄T

−2x̄x̂T 2x̄x̄T + det(x)In

][
v̂
v̄

]
=

1

(det(x))2

[
− det(x)v̂ + 2x̂x̂Tv̂ − 2x̂x̄Tv̄
−2x̄x̂Tv̂ + 2x̄x̄Tv̄ + det(x)v̄

]

=


− 1

∥x̂∥2 − ∥x̄∥2
v̂ +

2(
∥x̂∥2 − ∥x̄∥2

)2 x̂x̂Tv̂ − 2(
∥x̂∥2 − ∥x̄∥2

)2 x̂x̄Tv̄

− 2(
∥x̂∥2 − ∥x̄∥2

)2 x̄x̂Tv̂ +
2(

∥x̂∥2 − ∥x̄∥2
)2 x̄x̄Tv̄ +

1

∥x̂∥2 − ∥x̄∥2
v̄

.
Now, by taking some lengthy but not complicated calculations, one can show
that JxPxgv = −2PPxgv,xg . Thus, ∇3

xxxℓ(x) = 2JxPxg [v] = −4PPxgv,xg as
desired. The proof is complete. ⊓⊔

The new vectors, matrices, traces, determinants, and functions introduced
in this paper can also be introduced in a block setting. After the primary ad-
vances that have been made in the preceding sections, what might be termed
“nonconvex second-order cone programming” can now be defined to exclu-
sively deal with nonconvex optimization problems in which a linear objective
function is minimized over the intersection of an affine linear manifold with
the Cartesian product of nonconvex SOCs. See Figure 4 which shows a plane

intersecting the novconvex SOC M1|2
+ .

The construction of the nonconvex second-order cone programming as a
new class of optimization problems is broad enough to include challenging
problems such as nonconvex quadratic programs, quadratically constrained
nonconvex quadratic programs, and reverse convex programs as special cases.
On the other side, the results in Theorem 5.1 give a certificate that the noncon-
vex second-order cone programming is a special case of the nonlinear semidefi-
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nite programming [12,17,24,28,29,33]. In Figure 5 we show a Venn diagram of
seven different classes of optimization problems. However, similar to (and not
less importantly than) the convex second-order cone programming [1, 2, 5, 7]
(which is a special case of the linear semidefinite programming [30]), we believe
that the nonconvex second-order cone programming warrants its own study
and requires special-purpose algorithmic methodologies.

For i = 1, 2, . . . , r, let ni,mi and l be positive integers, b ∈ Rl, ci,xi ∈
Mmi|ni , and Ai ∈ Rl×(mi+ni). A typical nonconvex second-order cone pro-
gramming problem looks like this:

min cT1x1 + cT2x2 + · · ·+ cTrxr

s.t. A1x1 +A2x2 + · · ·+Arxr = b,

xi ∈ Mmi|ni

+ , i = 1, 2, . . . , r.

(18)

Let µ > 0 be a barrier parameter. Using the logarithmic barrier function
ℓ(·) defined in (17), the conicity constraints of Problem (18) are then replaced
with a logarithmic barrier term in the objective function, resulting in the
barrier problem:

min

r∑
i=1

cTi xi + µ

r∑
i=1

ℓ(xi)

s.t.

r∑
i=1

Aixi − b = 0.

(19)

The Lagrangian for Problem (19) is

L(x,y) =

r∑
i=1

cTi xi + µ

r∑
i=1

ℓ(xi)− yT

(
r∑

i=1

Aixi − b

)
. (20)

The first-order optimality conditions for a minimum as well as a weak
version of the second-order sufficient optimality conditions are determined by
computing the derivatives of L(·, ·), which in turn require the derivatives of
the barrier function ℓ(·) that were calculated in Theorem 6.1.

Fig. 4: The nonconvex second-order cone programming manifests in the inter-
section of a nonconvex SOC with an affine linear manifold.
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Linear programs

Convex quadratic programsNonconvex

quadratic programs

Convex second-order cone programs

Nonconvex second-order cone programs

Linear semidefinite programs

Nonlinear semidefinite programs

Fig. 5: Graphical relationships among different classes of optimization prob-
lems.

7 Conclusions and Open Questions

A mathematical foundation of what we termed the “nonconvex second-order
cone” (nonconvex SOC) has been established in this paper. The foundation of
this nonconvex cone enjoys many advantages and algebraic properties incom-
parable with those of other nonconvex cones or even arbitrary convex cones.
Among such advantages and properties, we distinguish four of them:

A1. All the elements in the underlying magma of the cone have real eigenvalues.
This is not the case for arbitrary commutative power-associative algebras
or even arbitrary Jordan algebras.

A2. The rank of the underlying magma of the cone is independent of its di-
mension. This is not the case for algebras of arbitrary convex cones or even
arbitrary symmetric cones.

A3. The nonconvex SOC equals the cone of squares of its underlying magma.
A4. The derivatives of the logarithmic barrier function associated with the cone

have explicit expressions. This is not the case for the barriers of arbitrary
convex nonsymmetric cones.

This foundation, however, has some disadvantages or limitations. We highlight
three of them:



The Algebraic Structure of the Nonconvex Second-Order Cone 35

D1. The underlying magma of the cone with the binary operation “⊚” fails
to be an algebra. However, our results have shown that our structure is
a commutative power-associative magma and the submagma generated by
any element is an associative algebra.

D2. The underlying magma of the cone disregards being unitary. However, the
submagma generated by any element is unitary-like, and more importantly,
we were able to find identity-like elements in the magma that made the
generalized invertibility holds for the interior of the cone.

D3. The map trace(x⊚y) rejects being an inner product in the vector space of
the nonconvex SOC. In contrast, the map trace(x ◦ y) is indeed an inner
product in the vector space of the convex SOC due to the linearity of the
function trace(·) in the space. However, it is noted that trace(x ⊚ y) is a
positive definite, symmetric.

Despite the above limitations, generalizing old concepts such as the deter-
minant, spectral factorization, square power vector, and the quadratic repre-
sentation, plus adopting new concepts such as the identity-like element, gener-
alized inverse, and the crane-shaped matrix, were sufficient for our subsequent
purposes in the paper. More specifically, we succeeded in generalizing many
fundamental algebraic properties that already exist in the framework of the
algebra of the convex SOC to the framework of the magma of the nonconvex
SOC, and we also succeeded in writing explicit expressions for the gradient,
Hessian, and the third derivative of the logarithmic barrier function associated
with the cone.

Our paper puts forth the following open questions:

OQ1. Is the nonconvex SOC homogeneous?
This question is factual and important to emphasize because homogeneous,
but not necessarily convex, cones have proven useful in applications (cf.
[14,19,21]). So, an important open question in our research line is whether
it is possible to prove the homogeneity of the nonconvex SOC.

OQ2. Is the Jordan identity satisfied in the underlying magma of the cone?
This question is also factual as well as normative because the Jordan iden-
tity is a special case of the associative law, which is a property of binary
operations in magmas, not only algebras. Like the algebra of the convex
SOC, the magma of the nonconvex SOC loses the associativity property.
Theorem 4.3 evidences that Crn(x) and Crn(x2) commute. This is great
because it generalizes the fact that Arw(x) and Arw(x2) commute, which
demonstrates the satisfaction of Jordan identity for the algebra of the con-
vex SOC. We indicated in Section 4 that the result in Theorem 4.3 does
not demonstrate the satisfaction of the Jordan identity for the magma of
the nonconvex SOC. In other words, we can say that Theorem 4.3 (as well
as Lemma 4.2) would highly support, but does not replace, the Jordan
identity for our magma. So, an interesting but challenging open question
in this research line is whether it is possible to prove the Jordan identity
in the underlying magma of our cone.
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Because it does not seem easy to answer OQ1 and OQ2 in the affirmative or
in the negative, we leave them for future research. From an optimization point
of view, it is now possible to extend locally the concept of self-concordance to
the nonconvex second-order cone programming problem (18) (see, for exam-
ple, [18, 23]). The entire analysis of future research work would also be based
on this important framework. Over and above, in a companion paper [8], the
vector-valued functions associated with the nonconvex SOC are defined anal-
ogously to those for convex SOC (see [11]) and also used in solutions methods
for nonconvex second-order cone programs and nonconvex second-order cone
complementarity problems.

We believe that the development of this paper reveals an exploration of
relations among algebra, analysis, and optimization. It is also our belief that
this paper has high academic value and will significantly influence researchers
in optimization and other disciplines.
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