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Abstract. The convex-concave minimax problem, also known as the saddle-point problem, has5

been extensively studied from various aspects including the algorithm design, convergence condi-6

tion and complexity. In this paper, we propose a generalized asymmetric forward-backward-adjoint7

algorithm (G-AFBA) to solve such a problem by utilizing both the proximal techniques and the8

extrapolation of primal-dual updates. Besides applying proximal primal-dual updates, G-AFBA9

enjoys a more relaxed convergence condition, namely, more flexible and possibly larger proximal10

stepsizes, which could result in significant improvements in numerical performance. We study the11

global convergence of G-AFBA as well as its sublinear convergence rate on both ergodic iterates and12

non-ergodic optimality error. The linear convergence rate of G-AFBA is also established under a13

calmness condition. By different ways of parameter and problem setting, we show that G-AFBA has14

close relationships with a few well-established or new algorithms. We further propose a stochastic15

(inexact) version of G-AFBA, called SG-AFBA, for solving the convex-concave saddle-point problem16

from machine learning. Numerical experiments on solving the robust principal component analysis17

and the 3D CT reconstruction problems show the efficiency of both G-AFBA and SG-AFBA.18
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1. Introduction. Consider the following generic convex-concave saddle-point22

problem23

min
x∈X

max
y∈Y
L(x, y) := f(x) + 〈Kx, y〉 − g(y), (1.1)

where f : X → (−∞,∞] and g : Y → (−∞,∞] are proper lower semicontinuous24

convex (not necessarily smooth) functions , X and Y are finite-dimensional real Eu-25

clidean spaces, K : X → Y is a bounded linear operator. Let K> denote the adjoint26

operator (or matrix transpose) of K, f∗ and g∗ denote the Fenchel conjugate [35] of f27

and g, respectively. Then, (1.1) amounts to the following primal and dual problems:28

min
x∈X

f(x) + g∗(Kx) and min
y∈Y

f∗(−K>y) + g(y).

Due to these intrinsic relationships, the problem (1.1) has covered a wide range of29

applications, including machine learning, signal and image processing, economics,30

statistics, see e.g. [9, 12, 20, 22, 25, 37, 45, 48] and the references therein. In this31

paper, we will study a generalized asymmetric forward-backward-adjoint algorithm32

(G-AFBA) for solving (1.1) whose solution set is assumed to be nonempty.33
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1.1. Notation. Let Rn be the set of n-dimensional Euclidean space equipped34

with an inner product 〈·, ·〉 and Euclidean norm ‖ · ‖ =
√
〈·, ·〉. Let I be the identity35

matrix and 0 be the zero matrix/vector. Given a positive definite self-adjoint linear36

operator or symmetric matrix H, we denote ‖x‖H =
√
〈x,Hx〉 =

√
x>Hx with the37

superscript > representing transpose. Denote the Euclidean distance from x ∈ C to38

the closed convex set C by dist(x, C) = miny∈C ‖x− y‖, and the G-weighted distance39

by distG(x, C) = miny∈C ‖x−y‖G where G is a self-adjoint and positive definite linear40

operator. The notation ρ(G) denotes the spectral radius of G, while λmin(G) and41

λmax(G) denote the minimum and maximum eigenvalues of G, respectively.42

1.2. Related work. Due to the separable structure of f and g in (1.1), many43

effective algorithms are designed to treat them individually so as to make full use44

of the properties of each component objective function. A very earlier yet simpler45

approach for solving (1.1) is the Arrow-Hurwicz method [1]:46

(PDHG)

 xk+1 = arg min
x∈X
L(x, yk) + 1

2τ

∥∥x− xk∥∥2
,

yk+1 = arg max
y∈Y
L(xk+1, y)− 1

2σ

∥∥y − yk∥∥2
,

(1.2)

where the positive parameters τ and σ are often regarded as the proximal primal47

and dual stepsizes. This Arrow-Hurwicz method was also called a primal-dual hybrid48

gradient method (PDHG) due to the earlier work [48], and it was described [47]49

as a proximal version of the traditional augmented Lagrangian method (ALM) for50

some canonical convex programming problems. O’Connor and Vandenberghe [33]51

showed that PDHG can be viewed as a special case of the Douglas-Rachford splitting52

algorithm [32] from the perspective of solving a monotone inclusion problem. Another53

related well-known algorithm based on (1.2) is proposed by Chambolle-Pock [9] (see54

e.g. [34]) by employing an extrapolation technique:55  xk+1 = arg min
x∈X
L(x, yk) + 1

2τ

∥∥x− xk∥∥2
,

yk+1 = arg max
y∈Y
L(xk+1 + α(xk+1 − xk), y)− 1

2σ

∥∥y − yk∥∥2
.

(1.3)

Here, α ∈ [0, 1] is an extrapolation stepsize. Clearly, (1.3) reduces to (1.2) when56

α = 0. It was shown in [9] that (1.3) is closely related to the existing extrapolational57

gradient method [29] and a preconditioned version of the alternating direction method58

of multipliers (ADMM) [18]. The connection between (1.3) and the forward-backward59

splitting method [32] can be found in [39]. Although the scheme (1.3) applies a60

proximal technique, some counter-examples provided in [23] showed that when α =61

0, i.e. the PDHG method, it is not necessarily convergent. Moreover, the global62

convergence of (1.3) with α ∈ (0, 1) remains not fully known1, although its global63

convergence with α = 0 had been established [21] by assuming strong convexity on64

one of the objective functions. So far, the widely used scheme of (1.3) is the case with65

α = 1:66

(CP-PPA)

 xk+1 = arg min
x∈X
L(x, yk) + 1

2τ

∥∥x− xk∥∥2
,

yk+1 = arg max
y∈Y
L(2xk+1 − xk, y)− 1

2σ

∥∥y − yk∥∥2
,

(1.4)

1Recently, its weak convergence was established in [2] when α > 1/2 and τσL < 4/(1 + 2α).



3

where the stepsize parameters τ and σ need to satisfy67

1

τσ
> L with L = ρ(K>K) (1.5)

for ensuring global convergence of CP-PPA. More recently, He et al. [22] extended68

CP-PPA (1.4) to the following generalized version:69

(GCP-PPA)


xk+1 = arg min

x∈X
L(x, yk) + 1

2τ

∥∥x− xk∥∥2
,

yk+1 = arg max
y∈Y
L(xk+1 + α(xk+1 − xk), y)− 1

2σ

∥∥y − yk∥∥2
,

yk+1 = yk+1 − (1− α)σK(xk+1 − xk),

(1.6)

where α ∈ [0, 1] is a parameter. GCP-PPA has global convergence when70

1

τσ
> (1− α+ α2)L. (1.7)

Obviously, when α = 1 the above GCP-PPA reduces to CP-PPA, while for α ∈71

[0, 1) an extrapolation step on the dual variable is used to ensure global convergence.72

Moreover, the stepsize requirement (1.7) is more relaxed than the condition (1.5). For73

example, when α = 0.5, (1.7) only requires 1
τσ > 0.75L. In addition, some stochastic74

and accelerated first-order methods have been also proposed for solving (1.1) when its75

objective function has certain structures or satisfies further smoothness conditions.76

For a much incomplete reference list, please see e.g. [11, 12, 25, 30, 41, 44, 49].77

As a generation of (1.3), the Condat-Vũ scheme proposed independently in [14, 39]78

has attracted much attention in recent years and its convergence can be proved by79

casting the scheme into a forward-backward splitting method. However, the condition80

of involved parameters seems to be more restrictive than that of PDHG. Another81

interesting and closely related method is the asymmetric forward-backward-adjoint82

algorithm (AFBA) [30] for solving structured monotone inclusion problems, which was83

also studied and extended to solve the saddle-point problem (1.1) [43]. An inexact84

AFBA with absolute error criteria was further proposed in [27] to alleviate both85

theoretical and numerical difficulties of solving subproblems exactly. But, to our86

understanding, both the original AFBA and its inexact version have an even more87

conservative stepsize rule than that of the Condat-Vũ scheme. For a comprehensive88

survey on proximal splitting algorithms, we refer to [15] for more details.89

1.3. The algorithm and contribution. Notice that the convergence condition90

of CP-PPA has been significantly improved by He et al. [22] through performing an91

extrapolation step on the y-variable along the iterative difference of the x-variable.92

That is, the correction step of y-iterates uses the interactive information from x-93

iterates, which is different from the traditional way of performing correction steps94

along its own iterates. A natural and yet interesting question to investigate is whether95

the convergence condition (1.7) can be further improved by applying extrapolation96

steps on both the primal and dual updates. By this motivation, in the paper we97

propose the following generalized asymmetric forward-backward-adjoint algorithm:98

(G-AFBA)


xk+1 = arg min

x∈X
f(x) + 1

2τ

∥∥x− xk + τK>yk
∥∥2
,

yk+1 = arg min
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK[xk+1 + α(xk+1 − xk)]
∥∥2
,

xk+1 = xk+1 − (1− α)µ τK>(yk+1 − yk),
yk+1 = yk+1 + (1− α)(1− µ) σK(xk+1 − xk),

(1.8)
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where α, µ ∈ [0, 1], τ > 0 and σ > 0 are algorithm parameters. To ensure the global99

convergence of G-AFBA, we require the primal-dual stepsize parameters (σ, τ) to100

satisfy101

1

τσ
>
α+ (1− µ+ µ2)(1− α)2 +

√
[(1− µ+ µ2)(1− α)2 + α]2 + 4α(1− α)2

2
L.

(1.9)
We now have the following comments on G-AFBA:102

(I) Flexibility of the algorithm. Table 1.1 shows that G-AFBA is quite gener-103

al and includes many well-established algorithms we have previously discussed104

as special cases. We refer to Sections 4-5 for more detailed discussions on the105

connections between G-AFBA and other related methods including the ap-106

plication of G-AFBA to multi-block convex programming and a stochastic107

G-AFBA for solving structured saddle-point problem from machine learning.108

The major difference between G-AFBA (1.8) and other existing PDHG-type109

methods is the two crossing extrapolation steps performed on the primal-110

dual variables, which can be also viewed as a correction step from our later111

analysis in a prediction-correction framework (see (3.2)). In fact, these two112

extrapolation steps can be also treated as backward and forward steps on the113

primal-dual variables.114

Cases Algorithms Region of (τ, σ)

α = 1
CP-PPA [9] &
Reduced ALM

(1.5)

(α, µ) = (0, 1)
Exact version of
Algorithm 2 [27]

(1.5)

α ∈ [0, 1], µ = 0 GCP-PPA [22] (1.7)
α, µ ∈ [0, 1] G-AFBA(ours) (1.9)

α = 0, µ ∈ [0, 1] G1-AFBA(ours) (4.4)

Table 1.1: Relationship between G-AFBA (1.8) and several methods.

Figure 1.1: Visualization on the lower bound of 1
τσL in (1.7) and (1.9).

(II) Larger stepsize parameters. Figure 1.1 visualizes the lower bound of 1
τσL115

in (1.7) and (1.9) for ensuring global convergence, where Figure 1.1(a) is the116

same as Figure 1.1(b) but at different azimuth and elevation angles. As shown117

in Figure 1.1, the lower bound 0.75 of 1
τσL with α = 0.5 in (1.7) can be further118

improved by the lower bound given in (1.9). Hence, the current lower bound119
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0.75 on 1
τσL for PDHG-type methods e.g. given in [22, 28, 31] is not tight,120

and possible larger stepsizes on σ and τ can be applied in G-AFBA without121

losing global convergence. For example, by setting (α, µ) = (1/3, 1/2), the122

condition (1.9) reduces to 1
τσ > 3+2

√
3

9 L ≈ 0.7182L. Moreover, note that123

when µ = 0, the condition (1.9) will reduce to (1.7) exactly matching the124

convergence condition of GCP-PPA.125

(III) Global convergence and various convergence rates. As mentioned126

previously, for convenience of convergence analysis, we would reformulate the127

saddle-point problem (1.1) as a variational inequality and analyze the conver-128

gence of G-AFBA (1.8) in a prediction-correction framework. We establish129

the global convergence of G-AFBA (1.8) with a sublinear ergodic conver-130

gence rate. We will also study the sublinear convergence of the optimality131

error measured by the difference of two consecutive iterates. In addition, we132

show the linear convergence of G-AFBA under proper regulation (calmness)133

condition. We further propose a stochastic G-AFBA (SG-AFBA) for solving134

a structured (1.1) with large sample sizes from machine learning. In fact,135

by considering the sample size as one, SG-AFBA will reduce to an inexact136

deterministic G-AFBA which allows to solve one proximal mapping subprob-137

lem to an adaptive accuracy (see the discussion in Section 5). Our numerical138

experiments on solving two kinds of image processing problems indicate that139

by allowing flexible choices of stepsizes σ and τ , G-AFBA and its variants140

can have better performance compared with some well-established methods.141

1.4. Organization of the paper. In Section 2, we prepare some preliminaries142

that are used to analyze the convergence of G-AFBA. Section 3 is dedicated to ana-143

lyzing the global convergence and sublinear/linear convergence rate of G-AFBA based144

on a prediction-correction framework. Section 4 shows the relationship of G-AFBA145

with some existing and new related methods. Section 5 proposes a stochastic version146

of G-AFBA (SG-AFBA) and briefly discusses its convergence for a machine learning147

problem. We finally present numerical comparisons of G-AFBA and SG-AFBA with148

some other methods for solving two classes of image processing problems in Section 6.149

2. Preliminaries. In this section, we first provide a variational formulation for150

the saddle-point problem (1.1). Then, we show some nice properties of certain block151

structured matrices which will play key roles in the theoretical analysis of G-AFBA.152

2.1. Reformulation of the saddle-point. Let Ω := X × Y. We call a point153

(x∗, y∗) ∈ Ω the saddle-point of (1.1) if it satisfies154

Ly∈Y(x∗, y) ≤ L(x∗, y∗) ≤ Lx∈X (x, y∗),

that is,155 {
f(x)− f(x∗) +

〈
x− x∗,K>y∗

〉
≥ 0, ∀x ∈ X ,

g(y)− g(y∗) +
〈
y − y∗,−Kx∗

〉
≥ 0, ∀y ∈ Y. (2.1)

These inequalities can be expressed as the following variational form156

VI(θ,J ,Ω) : θ(u)− θ(u∗) +
〈
u− u∗,J (u∗)

〉
≥ 0, ∀u ∈ Ω, (2.2)

where157

u =

(
x
y

)
, θ(u) = f(x) + g(y), J (u) =

(
K>y
−Kx

)
. (2.3)
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Notice that the above operator J (u) satisfies158 〈
u− v,J (u)− J (v)

〉
≡ 0, ∀u, v ∈ Ω.

In the convex optimization, u∗ satisfies (2.2) if and only if u∗ is a primal-dual solution159

of the problem (1.1). Because of the nonempty assumption on the solution set of160

(1.1), the solution set of VI(θ,J ,Ω), denoted by Ω∗, is also nonempty.161

2.2. Some matrices and properties. In order to simplify and conveniently162

analyze the convergence of G-AFBA, we introduce the following matrices163

Q =

[
1
τ I −K>
−αK 1

σ I

]
, M =

[
I −(1− α)µτK>

(1− α)(1− µ)σK I

]
. (2.4)

Note that the matrix M is nonsingular for any µ ∈ [0, 1] and τ, σ > 0. With these164

matrices, we define165

H = QM−1 and G = Q> +Q−M>HM. (2.5)

For the matrices H and G, the following properties hold.166

Proposition 2.1. For any parameters (τ, σ) satisfying (1.9), the matrices H167

and G defined in (2.5) are symmetric positive definite.168

Proof. First, notice that169

1
(τσ)2 +

[
(−1 + µ− µ2)(1− α)2 − α

]
L
τσ − (1− α)2(1− µ)µαL2 > 0

⇐⇒
[

1
τσ + (1− α)2(1− µ)µL

][
1
τσ − αL

]
> (1− α)2 L

τσ .

Hence, for all (τ, σ) satisfying (1.9), we have 1/(τσ) > αL, which implies Q defined170

in (2.4) is nonsingular. Now, let us define D = Q>M . Then, D is nonsingular since171

M is nonsingular. In addition, the H and G defined in (2.5) can be written as172

H = QD−1Q> and G = Q> +Q−D. (2.6)

By direct calculation, we can derive from (2.4) and (2.6) that173

D =

[
1
τ I− α(1− α)(1− µ)σK>K −

[
α+ (1− α)µ

]
K>

−
[
α+ (1− α)µ

]
K 1

σ I + (1− α)µτKK>

]
(2.7)

and174

G =

[
1
τ I + α(1− α)(1− µ)σK>K

[
(1− α)µ− 1

]
K>[

(1− α)µ− 1
]
K 1

σ I− (1− α)µτKK>

]
. (2.8)

Due to the symmetric property of D and the relationship H = QD−1Q>, we175

have H is also symmetric. Hence, to show the positive definiteness of H, we only176

need to show D is positive definite. Without loss of generality, suppose K is an177

m×n(m ≤ n) dimensional operator matrix and let K = V ΣU> be the singular value178

decomposition of K, where both V ∈ Rm×m and U ∈ Rn×n are orthogonal matrices179

and Σ = (Σm,0) is a diagonal matrix with Σm = diag(s1, s2, · · · , sm) ∈ Rm×m and180

si ≥ 0(i = 1, 2, . . . ,m) being the singular values of K. Then, we have181

K>K = U

[
Σ2
m 0
0 0

]
U> and KK> = V Σ2

mV
>.
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Then, it follows from (2.7) that182

D =

[
U 0
0 V

] 1
τ I− α(1− α)(1− µ)σΣ2

m 0 −
[
α+ (1− α)µ

]
Σm

0 1
τ I 0

−
[
α+ (1− α)µ

]
Σm 0 1

σ I + (1− α)µτΣ2
m


︸ ︷︷ ︸

P

[
U 0
0 V

]>
.

By linear algebra calculations (e.g. see similar techniques in [40, Page 16]), we can183

show that the matrix P is positive definite if and only if184 (1

τ
− α(1− α)(1− µ)σs2

i

)( 1

σ
+ (1− α)µτs2

i

)
−
[
α+ (1− α)µ

]2
s2
i > 0

for all i = 1, . . . ,m, which is equivalent to185

1

(τσ)2
+
[
(1− µ)µ(1− α)2 − α

] s2
i

τσ
− (1− α)2(1− µ)µαs4

i > 0

⇐⇒
[ 1

τσ
+ (1− α)2(1− µ)µs2

i

][ 1

τσ
− αs2

i

]
> 0. (2.9)

Since L = ρ(K>K) = ρ(KK>) = max
i∈{1,...,m}

s2
i > 0, α, µ ∈ [0, 1] and σ, τ > 0, we have186

from (2.9) that the matrix P is positive definite if 1/(τσ) > αL, which is ensured187

by the previous condition (1.9). So, from the above analysis, we have H is positive188

definite if (τ, σ) satisfies (1.9).189

By the similar analysis and the representation of G in (2.8), we can show G is190

also positive definite if the condition (1.9) holds. The proof is completed.191

3. Convergence analysis. In this section, we first analyze the global conver-192

gence of G-AFBA and its sublinear convergence rate in the ergodic sense. We then193

study the sublinear convergence of the optimality error measured by the difference194

of two consecutive iterations. We further discuss the linear convergence of G-AFBA195

under a certain calmness condition. Now, observe that G-AFBA (1.8) can be equiva-196

lently written as the following prediction-correction framework, where M is given by197

(2.4), uk and ũk are defined as198

uk =

(
xk

yk

)
and ũk =

(
x̃k

ỹk

)
,

and the proximal operator of a function h with parameter τ > 0 is defined as199

proxτh(y) := arg min
x∈X

{
h(x) +

1

2τ
‖x− y‖2

}
.

A prediction-correction reformulation of G-AFBA.200

Prediction Step:

x̃k = proxτf
(
xk − τK>yk

)
; (3.1a)

ỹk = proxσg
(
yk + σK[x̃k + α(x̃k − xk)]

)
; (3.1b)

Correction Step:201

uk+1 = uk −M(uk − ũk). (3.2)
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3.1. Global convergence. The global convergence of G-AFBA will be analyzed202

based on the above prediction-correction reformulation.203

Lemma 3.1. Let {ũk = (x̃k; ỹk)} be the predictor sequence generated by (3.1a)-204

(3.1b) and {uk+1 = (xk+1; yk+1)} be the corrector sequence generated by (3.2). Then,205

for any u ∈ Ω, the following inequality206

L(x, ỹk)− L(x̃k, y) ≥ (u− ũk)>Q(uk − ũk) (3.3)

holds2, where Q is given by (2.4).207

Proof. We can derive from the first-order optimality condition of (3.1a) that208

f(x)− f(x̃k) +
〈
x− x̃k,K>yk +

1

τ
(x̃k − xk)

〉
≥ 0, ∀x ∈ X .

Rearranging the above inequality to obtain209

f(x)− f(x̃k) +
〈
x− x̃k,K>ỹk

〉
≥
〈
x− x̃k, 1

τ
(xk − x̃k)−K>(yk − ỹk)

〉
(3.4)

for any x ∈ X . Similarly, we have from (3.1b) that210

g(y)− g(ỹk) +
〈
y − ỹk,−K[x̃k + α(x̃k − xk)] +

1

σ
(ỹk − yk)

〉
≥ 0, ∀y ∈ Y,

which can be equivalently rewritten as211

g(y)− g(ỹk) +
〈
y − ỹk,−Kx̃k

〉
≥
〈
y − ỹk,−αK(xk − x̃k) +

1

σ
(yk − ỹk)

〉
(3.5)

for any y ∈ Y. Combining (3.4) and (3.5) completes the proof of (3.3).212

The following lemma shows that the sequence {‖u∗−uk‖H} is strictly decreasing213

under the weighted norm ‖u‖H =
√
u>Hu.214

Lemma 3.2. Under the condition (1.9), the sequences {ũk} and {uk+1} generated215

by G-AFBA satisfy216

L(x, ỹk)− L(x̃k, y) ≥ 1

2

(∥∥u− uk+1
∥∥2

H
−
∥∥u− uk∥∥2

H

)
+

1

2

∥∥uk − ũk∥∥2

G
(3.6)

for any u ∈ Ω, where H and G are defined in (2.5). Moreover, we have217 ∥∥u∗ − uk∥∥2

H
≥
∥∥u∗ − uk+1

∥∥2

H
+
∥∥uk − ũk∥∥2

G
, ∀u∗ ∈ Ω∗. (3.7)

218

Proof. According to (3.2) and the definition of H in (2.5), we have219

(u− ũk)>Q(uk − ũk) = (u− ũk)>H(uk − uk+1). (3.8)

Then, applying the identity220

(a− b)>H(c− d) =
1

2

{
‖a− d‖2H − ‖a− c‖2H

}
+

1

2

{
‖c− b‖2H − ‖d− b‖2H

}
2Note that (3.3) is equivalent to θ(u)− θ(ũk) +

〈
u− ũk,J (ũk)

〉
≥ (u− ũk)>Q(uk − ũk).
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with a = u, b = ũk, c = uk and d = uk+1 to the right-hand side of (3.8) gives221

(u− ũk)>H(uk − uk+1)− 1
2

{∥∥u− uk+1
∥∥2

H
−
∥∥u− uk∥∥2

H

}
= 1

2

{∥∥uk − ũk∥∥2

H
−
∥∥uk+1 − ũk

∥∥2

H

}
= 1

2

{∥∥uk − ũk∥∥2

H
−
∥∥uk+1 − uk + (uk − ũk)

∥∥2

H

}
(3.2)
= 1

2

{∥∥uk − ũk∥∥2

H
−
∥∥(uk − ũk)−M(uk − ũk)

∥∥2

H

}
= 1

2

{
(uk − ũk)>(Q> +Q−M>HM)(uk − ũk)

}
(2.5)
= 1

2

∥∥uk − ũk∥∥2

G
,

(3.9)

where the fourth equality exploits the relation Q = HM and its symmetric property.222

Then, substituting (3.8) and (3.9) into (3.3) confirms the assertion (3.6).223

Set u = u∗ in (3.6) and use (2.1) with (x, y) = (x̃k, ỹk) to obtain224 ∥∥u∗ − uk∥∥2

H
−
∥∥u∗ − uk+1

∥∥2

H
−
∥∥uk − ũk∥∥2

G
≥ 2
[
L(x̃k, y∗)− L(x∗, ỹk)

]
≥ 0.

Then, (3.7) follows directly. The proof is complete.225

In what follows, based on Lemma 3.2, we are ready to prove the global convergence226

of G-AFBA.227

Theorem 3.3. Under the condition (1.9), the sequence {uk+1} generated by228

G-AFBA converges to a solution point of (1.1).229

Proof. First, it follows from (3.7) in Lemma 3.2 and the positive definiteness of230

G and H that the sequence {uk} is bounded and231

lim
k→∞

∥∥uk − ũk∥∥ = 0. (3.10)

As a result, the sequence {ũk} is also bounded and has at least one limit point u∞.232

Let {ũkj} be a subsequence converging to u∞. Then, it follows from (3.3) that233

θ(u)− θ(ũkj ) +
〈
u− ũkj ,J (ũkj )

〉
≥ (u− ũkj )>Q(ukj − ũkj ), ∀u ∈ Ω,

which, together with (3.10), the lower semicontinuity of θ(u) and the continuity of234

J (u), implies235

θ(u)− θ(u∞) +
〈
u− u∞,J (u∞)

〉
≥ 0, ∀u ∈ Ω.

That is to say, u∞ is a solution point of (2.2) and hence is a solution point of (1.1).236

Now, by (3.10) and limj→∞ ukj = u∞, the sequence ukj also converges to u∞.237

For any k > kj , we can deduce from (3.7) that
∥∥u∞ − ukj∥∥

H
≥
∥∥u∞ − uk∥∥

H
. So, the238

whole sequence {uk} converges to u∞. The proof is complete.239

3.2. Sublinear rate of convergence. In this section, we aim at analyzing240

the worst-case O(1/T ) convergence rate of G-AFBA in both the ergodic sense and241

the optimality error measured by the difference of two consecutive iterates, where T242

denotes the iteration number. First, it is obvious that (2.1) can be also expressed as243

L(x, y∗)− L(x∗, y) ≥ 0, ∀(x, y) ∈ Ω.

So, given any ε > 0, we define u = (x; y) as an ε-approximate solution to (1.1) if244

L(x, y)− L(x, y) ≤ ε, ∀u ∈ Bu = {u ∈ Ω | ‖u− u‖ ≤ 1}.
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In the following, we will demonstrate that, after T iterations, G-AFBA is able to find245

a point u such that246

sup
u∈Bu

{
L(x, y)− L(x, y)

}
≤ O(1/T ). (3.11)

Theorem 3.4. Let {ũk} be the predictor sequence generated by (3.1a)-(3.1b) and247

{uk} be the corrector sequence generated by (3.2). For any integers T > 0 and κ ≥ 0,248

let249

xT =
1

T

T+κ∑
k=κ

x̃k and yT =
1

T

T+κ∑
k=κ

ỹk. (3.12)

Then, under the condition (1.9) we have250

L(xT , y)− L(x, yT ) ≤ 1

2(T + 1)

∥∥u− uκ∥∥2

H
, ∀u ∈ Ω, (3.13)

where H is defined in (2.5).251

Proof. The inequality (3.6) together with the positive definiteness of G implies252

L(x̃k, y)− L(x, ỹk) ≤ 1

2

{∥∥u− uk∥∥2

H
−
∥∥u− uk+1

∥∥2

H

}
for any u ∈ Ω. Sum the last inequality over k = κ, κ+ 1, · · · , T + κ to obtain253

T+κ∑
k=κ

[
L(x̃k, y)− L(x, ỹk)

]
≤ 1

2

∥∥u− uκ∥∥2

H
,

which, by the convexity of f, g, the definitions of xT and yT in (3.12), gives254

(T + 1)
[
L(xT , y)− L(x, yT )

]
≤ 1

2

∥∥u− uκ∥∥2

H
.

Hence, (3.13) holds. The proof is complete.255

Theorem 3.4 implies that under a more flexible condition (1.9), we have (3.11)256

holds, i.e., the primal-dual function value gap in the ergodic sense converges to zero257

with the worst-case O(1/T ) rate. A similar result to (3.13) in the sense of expectation258

can be found in [4]. We next show that {‖uk − uk+1‖2H}, which measures the opti-259

mality error in certain sense, monotonically goes to zero with the worst-case O(1/T )260

convergence rate. The following lemma confirms that the sequence {‖uk − uk+1‖2H}261

decreases monotonically.262

Lemma 3.5. Under the condition (1.9), the sequence {uk} generated by (3.2)263

satisfies264 ∥∥uk − uk+1
∥∥2

H
≥
∥∥uk+1 − uk+2

∥∥2

H
. (3.14)

265

Proof. It follows from (3.3) with u = ũk+1 that266

L(x̃k+1, ỹk)− L(x̃k, ỹk+1) ≥ (ũk+1 − ũk)>Q(uk − ũk). (3.15)

Similarly, (3.3) holds at the (k + 1)-th iteration, that is,267

L(x, ỹk+1)− L(x̃k+1, y) ≥ (u− ũk+1)>Q(uk+1 − ũk+1), ∀u ∈ Ω,
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which, by setting u = ũk, results in268

L(x̃k, ỹk+1)− L(x̃k+1, ỹk) ≥ (ũk − ũk+1)>Q(uk+1 − ũk+1). (3.16)

Combining (3.15) and (3.16), we have269

(ũk − ũk+1)>Q
{

(uk − ũk)− (uk+1 − ũk+1)
}
≥ 0. (3.17)

Then, adding the equality270 {
(uk − ũk)− (uk+1 − ũk+1)

}>
Q
{

(uk − ũk)− (uk+1 − ũk+1)
}

=
1

2

∥∥uk − ũk − (uk+1 − ũk+1)
∥∥2

(Q>+Q)

(3.18)

to both sides of (3.17) leads to271

1
2

∥∥uk − ũk − (uk+1 − ũk+1)
∥∥2

(Q>+Q)

≤ (uk − uk+1)>Q
{

(uk − ũk)− (uk+1 − ũk+1)
}

(3.2)
= (uk − ũk)>M>Q

{
(uk − ũk)− (uk+1 − ũk+1)

}
(2.4)
= (uk − ũk)>M>HM

{
(uk − ũk)− (uk+1 − ũk+1)

}
.

Using this relationship, the identity ‖a‖2H − ‖b‖2H = 2a>H(a − b) − ‖a − b‖2H with272

a = M(uk − ũk) and b = M(uk+1 − ũk+1) and uk − uk+1 = M(uk − ũk), we have273 ∥∥uk − uk+1
∥∥2

H
−
∥∥uk+1 − uk+2

∥∥2

H

=
∥∥M(uk − ũk)

∥∥2

H
−
∥∥M(uk+1 − ũk+1)

∥∥2

H

= 2(uk − ũk)>M>HM
{

(uk − ũk)− (uk+1 − ũk+1)
}
−
∥∥M{(uk − ũk)− (uk+1 − ũk+1)}

∥∥2

H

≥
∥∥uk − ũk − (uk+1 − ũk+1)

∥∥2

(Q>+Q)
−
∥∥M{(uk − ũk)− (uk+1 − ũk+1)}

∥∥2

H
(2.5)
=
∥∥uk − ũk − (uk+1 − ũk+1)

∥∥2

G
≥ 0,

where the last inequality follows from the positive definiteness of G. We complete the274

proof.275

Theorem 3.6. Suppose the condition (1.9) holds. Then, for any integers T > 0276

and κ ≥ 0, there exists a constant c0 > 0 such that the sequence {uk+1} generated by277

G-AFBA satisfies278 ∥∥uT+κ − uT+κ+1
∥∥2

H
≤ 1

(T + 1)c0

∥∥uκ − u∗∥∥2

H
, ∀u∗ ∈ Ω∗. (3.19)

279

Proof. First, by the positive definiteness of G and M>HM , there exists a constant280

c0 such that G− c0M>HM is positive definite. Hence, we have281 ∥∥uk − ũk∥∥2

G
≥ c0

∥∥M(uk − ũk)
∥∥2

H
= c0

∥∥uk − uk+1
∥∥2

H
.

Then, it follows from inequality (3.7) that282 ∥∥uk+1 − u∗
∥∥2

H
≤
∥∥uk − u∗∥∥2

H
− c0

∥∥uk − uk+1
∥∥2

H
, ∀u∗ ∈ Ω∗. (3.20)

Summing (3.20) over k = κ, κ + 1, · · · , T + κ, it follows from the monotonicity of283

{‖uk − uk+1‖2H} given in (3.14) that284

∥∥uκ − u∗∥∥2

H
≥
T+κ∑
k=κ

c0
∥∥uk − uk+1

∥∥2

H
≥ (1 + T )c0

∥∥uT+κ − uT+κ+1
∥∥2

H
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for any u∗ ∈ Ω∗, which leads to (3.19) immediately.285

For any given ε > 0, Theorem 3.6 shows that the proposed G-AFBA (1.8) needs286

at most [c/ε] iterations to ensure ‖uk − uk+1‖2H ≤ ε, where c = inf
u∗∈Ω∗

‖u0 − u∗‖2H/c0.287

Recall that uk+1 is a solution point of VI(θ,J ,Ω) if and only if ‖uk − uk+1‖ = 0.288

Hence, ‖uk − uk+1‖H measures the first-order optimality error and goes to zero in289

a sublinear rate. Theorem 3.6 also indicates that ‖uk − uk+1‖H can be used as a290

stopping condition of G-AFBA (1.8).291

3.3. Linear rate of convergence. For any u = (x; y) ∈ Ω, we define the KKT292

mapping as293

R(u) :=

(
x− proxf

(
x−K>y

)
y − proxg(y +Kx)

)
(3.21)

which is Lipschitz continuous on Ω because the proximal operator of a proper convex294

function is Lipschitz continuous with unit Lipschitz constant. Furthermore, given any295

u ∈ Ω, we have u ∈ Ω∗ if and only if R(u) = 0. Hence, Ω∗ = {u ∈ Ω | R(u) = 0}.296

In this subsection, under a calmness condition (see (3.22)), we establish the Q-297

linear convergence of {distH(uk,Ω∗)} to zero, where distH(uk,Ω∗) = minu∈Ω∗ ‖u −298

uk‖H , and the R-linear convergence of {uk} to a u∞ ∈ Ω∗. Similar conditions had299

been used for the linear convergence of ADMM and the inexact primal-dual algorithm,300

cf. [3, 26] to list a few.301

Theorem 3.7. Let {ũk} be the predictor sequence generated by (3.1a)-(3.1b) and302

{uk} be the corrector sequence generated by (3.2). Suppose the condition (1.9) holds.303

Then, we have the following properties:304

(i) There exists a saddle-point u∞ = (x∞; y∞) ∈ Ω∗ such that305

lim
k→∞

ũk = lim
k→∞

uk+1 = u∞.

(ii) If R−1 is calm at the origin for u∞ with modulus θ > 0, that is,306

dist(u,Ω∗) ≤ θ‖R(u)‖, ∀u ∈
{
u ∈ Ω

∣∣‖u− u∞‖ ≤ r}, (3.22)

for some r > 0, then there exist a ξ ∈ (0, 1) such that307

distH(uk+1,Ω∗) ≤ ξdistH(uk,Ω∗) (3.23)

for all k ≥ 0. Moreover, the sequence {‖uk − u∞‖} converges to zero R-308

linearly.309

Proof. First, property (i) directly follows from Theorem 3.3. So, there exists an310

integer k > 0 such that311

‖uk − u∞‖ ≤ r, ∀k ≥ k. (3.24)

From the optimality conditions of (3.1a)-(3.1b), we can derive312  x̃k = proxf

[
x̃k −

(
1
τ

(
x̃k − xk

)
+K>yk

)]
,

ỹk = proxg

[
ỹk −

(
1
σ (ỹk − yk)−K(x̃k + α(x̃k − xk))

)]
.

(3.25)

Combine (3.25) and the definition of R(·) in (3.21) to obtain313

‖R(ũk)‖2 =
∥∥x̃k − proxf (x̃k −K>ỹk)

∥∥2
+
∥∥ỹk − proxg(ỹ

k +Kx̃k)
∥∥2

≤
∥∥− 1

τ (x̃k − xk) +K>(ỹk − yk)
∥∥2

+
∥∥αK(x̃k − xk)− 1

σ (ỹk − yk)
∥∥2

≤ 2
(
α2L+ 1

τ2

)
‖xk − x̃k‖2 + 2

(
L+ 1

σ2

)
‖yk − ỹk‖2

≤ κ1‖uk − ũk‖2,
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where first inequality uses the nonexpansive property of proxf (·) and proxg(·), and314

κ1 = 2 max

{
α2L+

1

τ2
, L+

1

σ2

}
. (3.26)

So, it follows from the last inequality and (3.22) that for all k ≥ k,315

dist(ũk,Ω∗) ≤ θ
√
κ1‖uk − ũk‖. (3.27)

Then, by triangle inequality and (3.27), for all k ≥ k, we have316

1√
λmax(H)

distH(uk,Ω∗) ≤ dist(uk,Ω∗) ≤ dist(ũk,Ω∗) + ‖uk − ũk‖

≤ (1 + θ
√
κ1)‖uk − ũk‖ ≤ 1 + θ

√
κ1√

λmin(G)
‖uk − ũk‖G (3.28)

Since (3.7) holds for any u∗ ∈ Ω∗, for all k ≥ 0 we have317

dist2
H(uk+1,Ω∗) ≤ dist2

H(uk,Ω∗)− ‖uk − ũk‖2G, (3.29)

which together with (3.28) gives318

distH(uk+1,Ω∗) ≤

√
1− 1

(1 + θ
√
κ1)2

λmin(G)

λmax(H)
distH(uk,Ω∗) (3.30)

for all k ≥ k. Finally, (3.29) and (3.30) implies there exists a ξ ∈ (0, 1) such that319

(3.23) holds, that is, the sequence {distH(uk,Ω∗)} converges to zero Q-linearly.320

Now, let dk = uk+1 − uk. We have from (3.29) and triangle inequality that321 ∥∥dk∥∥
H

=
∥∥uk+1 − uk

∥∥
H
≤ distH(uk,Ω∗) + distH((uk+1,Ω∗)

≤ 2distH(uk,Ω∗)
(3.23)

≤ 2ξkdistH(u0,Ω∗)

Hence, we have from u∞ = uk +
∑∞
j=k d

j that322 ∥∥uk − u∞∥∥
H
≤
∑∞
j=k

∥∥dj∥∥
H
≤ 2distH(u0,Ω∗)

∑∞
j=k ξ

j

= 2distH(u0,Ω∗)ξk
∑∞
j=0 ξ

j = ξk
(

2distH(u0,Ω∗) 1
1−ξ

)
,

which implies the sequence {‖uk − u∞} converges to zero R-linearly.323

Theorem 3.7 shows linear convergence of G-AFBA under the calmness condition.324

In practice, it is not easy to check whether the calmness condition (3.22) holds or325

not. However, when the mapping R defined by (3.21) is piecewise polyhedral, or326

equivalently, R−1 is piecewise polyhedral, we know (e.g. see [36]) there exist two327

constants β, η > 0 such that328

dist(u,Ω∗) ≤ β‖R(u)‖, ∀u ∈
{
u ∈ Ω

∣∣‖R(u)‖ ≤ η
}
. (3.31)

When R(u) > η, for all ‖u− u∞‖ ≤ r with some r > 0, we have329

dist(u,Ω∗) ≤ ‖u− u∞‖ ≤ r < r

η
‖R(u)‖. (3.32)
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So, given any r > 0, we have from (3.31) and (3.32) that the calmness condition (3.22)330

holds with θ = max{β, r/η}. Moreover, by Theorem 3.3, there exists a r > 0 such that331

‖uk−u∞‖ ≤ r for all k ≥ 0. Hence, when the mapping R defined by (3.21) is piecewise332

polyhedral, for {uk} generated by G-AFBA, we have dist(uk,Ω∗) ≤ θ‖R(uk)‖ for some333

θ > 0. Furthermore, by Theorem 3.7, we have {distH(uk,Ω∗)} converges to zero Q-334

linearly and {‖uk − u∞} converges to zero R-linearly. Here, we want to mention that335

linear convergence has been also discussed when assuming certain strongly convexity336

on the objective function (see e.g. [10, 11]).337

4. Connections between (1.8) and other related methods. In this section,338

we discuss in a bit more detail on the connections between G-AFBA (1.8) and some339

existing and new related algorithms.340

• Case 1 (CP-PPA in [9] and a reduced ALM). When α = 1, G-AFBA341

(1.8) will reduce to342  xk+1 = arg min
x∈X

f(x) + 1
2τ

∥∥x− xk + τK>yk
∥∥2
,

yk+1 = arg min
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK(2x̃k − xk)
∥∥2
,

which is CP-PPA proposed in [9]. When α = 1 and g = 0, the problem (1.1)343

is equivalent to344

min f(x) s.t. Kx = 0, x ∈ X (4.1)

and G-AFBA (1.8) recovers a ALM-type method345 {
xk+1 = arg min

x∈X
f(x) + 1

2τ

∥∥x− xk + τK>λk
∥∥2
,

λk+1 = λk + σK(2xk+1 − xk).

Note that two different parameters τ and σ are exploited here, which is dif-346

ferent from the standard augmented Lagrangian method for solving (4.1).347

• Case 2 (Exact version of [27, Algorithm 2]). When (α, µ) = (0, 1),348

G-AFBA reduces to349 
xk+1 = arg min

x∈X
f(x) + 1

2τ

∥∥x− xk + τK>yk
∥∥2
,

yk+1 = arg min
y∈Y

g(y) + 1
2σ

∥∥y − yk − σKxk+1
∥∥2
,

xk+1 = xk+1 − τK>(yk+1 − yk),

(4.2)

which is the exact version of [27, Algorithm 2] by setting the iterative relative350

error to zero. For this case, the condition (1.9) reduces to 1/(στ) > L, which351

matches the condition given in [27].352

• Case 3 (A subclass of G-AFBA). By setting α = 0, G-AFBA reduces to353

(G1-AFBA)


xk+1 = arg min

x∈X
f(x) + 1

2τ

∥∥x− xk + τK>yk
∥∥2
,

yk+1 = arg min
y∈Y

g(y) + 1
2σ

∥∥y − yk − σKxk+1
∥∥2
,

xk+1 = xk+1 − µτK>(yk+1 − yk),
yk+1 = yk+1 + (1− µ)σK(xk+1 − xk).

(4.3)

One may consider (4.3) as an extension of (4.2), since (4.3) applies an addi-354

tional extrapolation step on the y-iterate, while the xk+1-iterate in (4.3) can355

be written as356

xk+1 = xk+1 − τK>(yk+1 − yk) + (1− µ)τK>(yk+1 − yk).
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Interestingly, with α = 0, the condition (1.9) for convergence reduces to357

1

τσ
> (1− µ+ µ2)L. (4.4)

Clearly, (1 − µ + µ2) ≤ 1 for any µ ∈ [0, 1] and when µ = 0.5, it becomes358

1
τσ > 0.75L. The condition (4.4) seems similar to the condition (1.7) for359

ensuring convergence of GCP-PPA [22]. However, we can see from (4.3) that360

G1-AFBA is completely a different method from GCP-PPA (1.6).361

• Case 4 (GCP-PPA [22]). When µ = 0, G-AFBA reduces to362 
xk+1 = arg min

x∈X
f(x) + 1

2τ

∥∥x− xk + τK>yk
∥∥2
,

yk+1 = arg min
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK[xk+1 + α(xk+1 − xk)]
∥∥2
,

yk+1 = yk+1 + (1− α)σK(xk+1 − xk),

(4.5)

which is the method (1.6) proposed in [22]. As mentioned in the introduc-363

tion, in this case the condition (1.9) will reduce to (1.7), which is exactly364

the condition derived in [22] for the convergence of GCP-PPA. Moreover, as365

pointed in [22], GCP-PPA is equivalent to CP-PPA for solving the the convex366

programming min{f(x) | Kx = b, x ∈ X}.367

• Case 5 (G-AFBA for multi-block problem). Consider the following368

saddle-point problem with multi-block structure:369

min
x∈Rn

max
λ∈Rm

L(x, λ) :=

q∑
i=1

fi(xi) + 〈Kx, λ〉 − 〈b, λ〉, (4.6)

where each fi, i = 1, . . . , q, is a proper lower semicontinuous convex function,370

x = (x1, · · · , xq)> with xi ∈ Rni , K = (A1, · · · , Aq) is given with Ai ∈ Rm×ni
371

and n =
∑q
i=1 ni. Clearly, the problem (4.6) is a special case of (1.1) and is372

the dual problem of the following multi-block separable convex optimization373

problem374

min

{
q∑
i=1

fi(xi)
∣∣∣ q∑
i=1

Aixi = b, xi ∈ Rni

}
. (4.7)

Applying G-AFBA (1.8) to (4.6) results in the following operator splitting375

method:376 

xk+1
i = arg min

xi∈Rni
fi(xi) + 1

2τ

∥∥xi − xki + τAi
>λk

∥∥2
, i = 1, · · · , q,

λ
k+1

= λk + σ
q∑
i=1

Ai
[
xk+1
i + α(xk+1

i − xki )
]
− b,

xk+1
i = xk+1

i − (1− α)µ τAi
>(λ

k+1 − λk), i = 1, · · · , q,

λk+1 = λ
k+1

+ (1− α)(1− µ) σ
q∑
i=1

Ai(x
k+1
i − xki ).

(4.8)

Note that the above scheme (4.8) updates the primal variable xi in parallel377

and is different from the proximal ADMM proposed [16] for solving (4.7).378

However, by our previous analysis, the scheme (4.8) will enjoy all the conver-379

gent properties we discussed before.380
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5. Extension to stochastic G-AFBA. Consider the following case of special381

structured (1.1):382

min
x∈X

max
y∈Y

f(x) + 〈Kx, y〉 − g(y), where f(x) =
1

N

N∑
j=1

fj(x) (5.1)

is an average of N Lipschitz continuously differentiable real-valued convex functions383

fj , j = 1, . . . , N , i.e., there exists a ν > 0 such that384

‖∇fj(x1)−∇fj(x2)‖ ≤ ν‖x1 − x2‖, ∀x1, x2 ∈ X .

Problem (5.1) often arises from machine learning applications, e.g. [4, 6], where N385

denotes the sample size and fj(x) corresponds to the empirical loss on the j-th sample386

data. A major difficulty for solving (5.1) in machine learning applications is that the387

sample size N can be huge so that it is computationally prohibitive to evaluate either388

the function value f or its gradient at each iteration. Hence, in this subsection,389

by extending the previous analysis of deterministic G-AFBA, we aim to develop a390

stochastic version of G-AFBA (SG-AFBA), see Alg. 5.1, for solving the structured391

problem (5.1). In the following, we briefly discuss the convergence properties of SG-392

AFBA following a similar approach proposed in [4].393

Initialization: choose (τ, σ) satisfying (1.9), α, µ ∈ [0, 1] and

initialize (x0, y0) ∈ X × Y, x̆0 = x0.
For k = 0, 1, · · ·
1. Choose mk > 0, ϑk > 0, and compute hk = xk − τK>yk;
2. (x̃k, x̆k+1) = xsub(xk, x̆k, ϑk,mk, h

k);

3. ỹk = arg min
y∈Y

g(y) + 1
2σ

∥∥y − yk − σK[x̃k + α(x̃k − xk)]
∥∥2
;

4. xk+1 = x̃k − (1− α)µ τK>(ỹk − yk);
5. yk+1 = ỹk + (1− α)(1− µ) σK(x̃k − xk);
end
Return (xk+1, yk+1).

(x+, x̆+) = xsub(x1, x̆1, ϑk,mk, h
k)

For t = 1, 2, . . . ,mk

1. Randomly select ξt ∈ {1, 2, . . . , N} with uniform probability;

2. βt = 2/(t+ 1), γt = 2/(tϑk), x̂t = βtx̆t + (1− βt)xt;
3. dt = ĝt + et, where ĝt = ∇fξt(x̂t) and et is a random vector

satisfying E
[
et
]

= 0;

4. x̆t+1 = arg min
x∈X

〈
dt, x

〉
+ γt

2

∥∥x− x̆t∥∥2
+ 1

2τ

∥∥x− hk∥∥2
;

5. xt+1 = βtx̆t+1 + (1− βt)xt;
end
Return (x+, x̆+) = (xmk+1, x̆mk+1).

Algorithm 5.1: A stochastic G-AFBA (SG-AFBA)

We first need to obtain a variational inequality analogous to (3.3) for establishing394

the convergence of SG-AFBA. Note that the x̆t+1-subproblem in step 4 of subroutine395



17

xsub amounts to396

x̆t+1 = arg min
x∈X

〈
dt +K>yk, x

〉
+
γt
2

∥∥x− x̆t∥∥2
+

1

2τ

∥∥x− xk∥∥2
.

Hence, almost same to the proof of [4, Lemma 3.1], we have the following lemma.397

Lemma 5.1. Let us define Γt = 2/(t(t+ 1)) and398

φk(x) = f(x) + ψk(x), where ψk(x) =
1

2τ

∥∥x− xk∥∥2
+ 〈K>yk, x〉. (5.2)

Then, for any x ∈ X and k with ϑk ∈ (0, 1/ν), we have399

1

Γt
[φk(xt+1)− φk(x)] ≤

{
θ1, t = 1,

1
Γt−1

[
φk(xt)− φk(x)

]
+ θt, t ≥ 2,

(5.3)

where for all t ≥ 1,400

θt =
1

ϑk

[
‖x− x̆t‖2 − ‖x− x̆t+1‖2

]
− t

2τ
‖x− x̆t+1‖2 + t〈δt, x̆t−x〉+

ϑkt
2

4

‖δt‖2

(1− ϑkν)
,

(5.4)
and δt = ∇f(x̂t)− dt.401

Based on Lemma 5.1, we further establish the following result.402

Lemma 5.2. Let δt be defined in Lemma 5.1, and suppose ϑk ∈ (0, 1/ν). Then403

the iterates generated by SG-AFBA satisfy404

f(x)− f(x̃k)−
〈
x− x̃k,K>yk +

1

τ
(x̃k − xk)

〉
≥ ζk, (5.5)

for all x ∈ X , where405

ζk =
2

mk(mk + 1)

[
1

ϑk

(∥∥x− x̆k+1
∥∥2 −

∥∥x− x̆k∥∥2
)

−
mk∑
t=1

t〈δt, x̆t − x〉 −
ϑk

4(1− ϑkν)

mk∑
t=1

t2 ‖δt‖2
]
. (5.6)

406

Proof. Let T = mk. Summing (5.3) over 1 ≤ t ≤ T and recalling that x̆k = x̆1,407

x̃k = xT+1, and x̆k+1 = x̆T+1, we obtain408

1

ΓT

[
φk(x̃k)− φk(x)

]
≤

T∑
t=1

θt =
1

ϑk

[∥∥x− x̆k∥∥2 −
∥∥x− x̆k+1

∥∥2
]

− 1

2τ

T∑
t=1

t ‖x− x̆t+1‖2 +

T∑
t=1

t〈δt, x̆t − x〉+
ϑk

4(1− ϑkν)

T∑
t=1

t2 ‖δt‖2 (5.7)

for any x ∈ X , where θt is defined in (5.4). Dividing xt+1 = βtx̆t+1 + (1 − βt)xt by409

Γt and exploiting the identity βt/Γt = t yields (1/Γt)xt+1 = (1/Γt−1)xt + tx̆t+1. Sum410

this equality over 2 ≤ t ≤ T and recall Γ1 = β1 = 1 to obtain411

x̃k = xT+1 = ΓT

{
1

Γ1
x2 +

T∑
t=2

tx̆t+1

}
= ΓT

{
x2 − x̆2 +

T∑
t=1

tx̆t+1

}

= ΓT

{[
β1x̆2 + (1− β1)x1

]
− x̆2 +

T∑
t=1

tx̆t+1

}
=

T∑
t=1

(tΓT )x̆t+1. (5.8)
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Since ΓT
∑T
t=1 t = 1 and ‖z − x‖2 is convex in z, it follows from (5.8) that412

∥∥x̃k − x∥∥2 ≤
T∑
t=1

(tΓT ) ‖x̆t+1 − x‖2 , ∀x ∈ X .

Plug the last inequality into (5.7) to obtain413

1

ΓT

[
φk(x̃k)− φk(x) +

1

2τ

∥∥x̃k − x∥∥2
]
≤ 1

ϑk

[∥∥x− x̆k∥∥2 −
∥∥x− x̆k+1

∥∥2
]

+

T∑
t=1

t〈δt, x̆t − x〉+
ϑk

4(1− ϑkν)

T∑
t=1

t2 ‖δt‖2 . (5.9)

Now, by the definitions of φk and ψk in (5.2), we have414 {
φk(x̃k)− φk(x) = f(x̃k)− f(x) + ψk(x̃k)− ψk(x),

ψk(x̃k)− ψk(x) =
〈
K>yk, x̃k − x

〉
+ 1

2τ

[
‖x̃k − xk‖2 − ‖x− xk‖2

]
.

The identity (a − b)>(a − c) = 1
2

{
‖a− c‖2 − ‖c− b‖2 + ‖a− b‖2

}
with a = x̃k,415

b = xk, and c = x implies that416

1

2

[
‖x̃k − xk‖2 − ‖x− xk‖2 + ‖x̃k − x‖2

]
=
(
x̃k − xk

)>(x̃k − x).
Insert all these relations in (5.9) and make the substitutions T = mk and ΓT =417

2/(T (T + 1)) with simple transformation to obtain (5.5).418

Now, replacing the inequality (3.4) by (5.5), under the condition (1.9), we will419

have from the same proofs of Lemmas 3.1-3.2 that420

θ(u)−θ(ũk)+
〈
u−ũk,J (u)

〉
≥ 1

2

(∥∥u−uk+1
∥∥2

H
−
∥∥u−uk∥∥2

H

)
+

1

2

∥∥uk−ũk∥∥2

G
+ζk, (5.10)

where H and G are positive definite matrices defined in (2.5). With the help of (5.10),421

we have the following theorem.422

Theorem 5.3. Let uT = (xT , yT ) be defined in (3.12). If for some integers T > 0423

and κ ≥ 0, the following conditions hold for all k ∈ [κ, κ+T ]: (I) ϑk ∈ (0, 1/(2ν)] and424

the sequence {ϑkmk(mk + 1)} is nondecreasing; (II) E(‖δt‖2) ≤ ς2 for some ς > 0,425

where δt is defined in Lemma 5.1. Then, under condition (1.9), for any u ∈ Ω it has426

E
[
θ(uT )− θ(u) +

〈
uT − u,J (u)

〉]
(5.11)

≤ 1

2(1 + T )

{
ς2
κ+T∑
k=κ

ϑkmk +
4

mκ(mκ + 1)ϑκ
‖x− x̆κ‖2 + ‖u− uκ‖2H

}
.

427

Proof. Summing the inequality (5.10) over k between κ and κ + T , using the428

convexity of θ and the definition of uT , we can obtain429

θ(uT )− θ(u) +
〈
uT − u,J (u)

〉
≤ 1

1 + T

{
1

2
‖u− uκ‖2H −

κ+T∑
k=κ

ζk

}
. (5.12)

By assumption (I), the sequence {ϑkmk(mk + 1)} is nondecreasing for k ∈ [κ, κ+ T ],430

which implies431

κ+T∑
k=κ

1

mk(mk + 1)ϑk

(
‖x− x̆k‖2 − ‖x− x̆k+1‖2

)
≤ ‖x− x̆κ‖2

mκ(mκ + 1)ϑκ
. (5.13)
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The definition of δt in Lemma 5.1 gives432

δt = ∇f(x̂t)− dt = ∇f(x̂t)−∇fξt(x̂t)− et.

Then, because the random variable ξt ∈ {1, 2, . . . , N} is chosen with uniform proba-433

bility and E[et] = 0, it holds that E[δt] = 0. Thus, since δt only depends on the index434

ξt while x̆t depends on ξt−1, ξt−2, . . ., we have E [〈δt, x̆t − x〉] = 0. Then, it follows435

from E(‖δt‖2) ≤ ς2 from assumption (II) and mk ≥ 1 that436

E

[
mk∑
t=1

t2‖δt‖2
]
≤ ς2mk(mk + 1)(2mk + 1)

6
≤ m2

k(mk + 1)

(
ς2

2

)
.

So, by ζk defined in (5.6) and the condition ϑk ≤ 1/(2ν), we have437

−E

[
κ+T∑
k=κ

ζk

]
≤ 2‖x− x̆κ‖2

mκ(mκ + 1)ϑκ
+
ς2

2

κ+T∑
k=κ

ϑkmk.

Applying the expectation operator to (5.12) together with this bound completes the438

proof.439

Theorem 5.4. Suppose the conditions in Theorem 5.3 hold. Let440

ϑk = min

{
c1

mk(mk + 1)
, c2

}
and mk = max {dc3k%e,m} ,

where c1, c2, c3 > 0, % ≥ 1 are constants and m > 0 is a given integer. Then, for441

every u∗ = (x∗, y∗) ∈ Ω∗ and uT = (xT , yT ) being defined in (3.12), we have442 ∣∣E[L(xT , y
∗)− L(x∗, yT )

]∣∣ =
∣∣E[θ(uT )− θ(u∗)

]∣∣ = E%(T ), (5.14)

where E%(T ) = O(1/T ) for % > 1 and E%(T ) = O(T−1 log T ) for % = 1.443

Proof. The proof is same as that of [4, Theorem 4.2] and thus is omitted here.444

Notice that, when considering the sample size N = 1 and setting et = 0, SG-445

AFBA will reduce to a deterministic algorithm to solve (1.1), while applying the446

subroutine xsub to solve the prediction step (3.1a) inexactly. This inexact G-AFBA447

will be particularly useful when the function f is not simple so that it is expensive or448

there is no closed-form solution for calculating the prediction step (3.1a) exactly.449

6. Numerical experiments.450

6.1. Robust principal component analysis. The robust principal component451

analysis problem, which arises from video surveillance and face recognition [5, 8, 28,452

38, 46] etc., aims at recovering the low-rank and sparse components of a given matrix.453

Such a problem can be often modeled [13] as454

min
X,Y ∈Rm×n

{
‖X‖∗ + λ‖Y ‖1 | X + Y = C

}
, (6.1)

where C is the given data, ‖ · ‖∗ and ‖ · ‖1 denote the nuclear norm (the sum of all455

singular values) and the l1-norm (the sum of absolute values of all entries) of a matrix,456

respectively, and λ > 0 is a weight parameter. Clearly, (6.1) can be reformulated as457

the following saddle-point problem458

min
X,Y ∈Rm×n

max
Z∈Rm×n

‖X‖∗ + λ‖Y ‖1 + 〈X + Y, Z〉 − 〈C,Z〉. (6.2)
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We will test G-AFBA and G1-AFBA with other comparison algorithms by solving459

(6.2) with λ = 1/
√

max(m,n) as suggested in [8] and four real data sets: Hall airport460

video containing 300 144× 176 frames, ShoppingMall video containing 350 256× 320461

frames, Bootstrap video containing 200 120×160 frames, and Lobby video containing462

200 128× 160 frames. We would use default values (α, µ) = (1/3, 1/2) for G-AFBA,463

(α, µ) = (0, 1/2) for G1-AFBA and choose (τ, σ) = (c1/
√
ι, c2/

√
ι) to satisfy the464

condition (1.9), where c1, c2 > 0 are some constants satisfying c1c2 < 1 and465

ι =
α+ (1− µ+ µ2)(1− α)2 +

√
[(1− µ+ µ2)(1− α)2 + α]2 + 4α(1− α)2

2
L

with L = 2. After tuning the parameters, we set (c1, c2) = (12.9123, 0.0758) and466

(c1, c2) = (11.4820, 0.0808) for G-AFBA and G1-AFBA, respectively, for this set of467

testing problems. The following are our comparison algorithms where the parameters468

are also tuned and chosen to obtain the best possible performance:469

• Dual-Primal Balanced ALM (DP-BALM) with parameters (β1, β2, α, δ) =470

(10, 10, 1, 10−3), which is suggested in [42, Section 5.2.2];471

• Generalized PDHG (G-PDHG) with (τ, σ) = (c1/
√

0.75L, c2/
√

0.75L) and472

(c1, c2) = (9.1626, 0.0808) to satisfy the condition 1
τσ > 0.75L, which gives473

much better performance than the original setting given in [28, Section 5.4];474

• PDHG (1.2) with (τ, σ) = (c1/
√
L, c2/

√
L) and (c1, c2) = (7.0711, 0.1245);475

• GCP-PPA (1.6) [22] with (α, µ) = (1/2, 0) and (c1, c2) = (11.4820, 0.0808),476

the same as those for G1-AFBA, to satisfy the convergence condition (1.7).477

• Extended G-AFBA (eG-AFBA) [43] with parameters (c1, c2) = (0.9899, 0.1768)478

to satisfy the involved condition 1
τσ > L/4.479

All experiments are implemented in MATLAB R2019b and performed on a PC with480

Windows 10 operating system, with an Intel i7-8565U CPU and 16GB RAM. All481

algorithms start with initial iteration (X,Y, Z) = (0,0,0) and are terminated when482

the following criterion483

RelChg(k) :=

∥∥Xk+1 −Xk
∥∥
F

+
∥∥Y k+1 − Y k

∥∥
F∥∥Xk

∥∥
F

+
∥∥Y k∥∥

F
+ 1

< 10−4

is satisfied. Similar stopping criterion can be also found in e.g. [28, 38, 46].484

Table 6.1 reports the number of iterations (Iter), the computing time in seconds485

(Time(s)), the relative constrained error Res := ‖X̂ + Ŷ − C‖F /‖C‖F and the final486

RelChg at the last iterate X̂ and Ŷ of the algorithms. Figure 6.1 also visualizes the487

background and foreground separations of the 10th frames of Hall airport, the 259th488

frames of ShoppingMall, the 194th frames of Bootstrap, and the 80th frames of Lobby,489

respectively. The computing results of Table 6.1 demonstrate that G-AFBA performs490

the best among all the comparison algorithms in terms of iteration number and CPU491

time. G1-AFBA is also very competitive with other comparison algorithms. Although492

there are more relaxed stepsize requirements of eG-AFBA for ensuring convergence,493

eG-AFBA seems to take more iterations and CPU time. We think this may be due to494

the different strategies used by the correction step of eG-AFBA which also requires495

inversion of a matrix.496

6.2. 3D CT reconstruction problem. The 3D CT reconstruction problem is497

a crucial problem in medical imaging and plays a vital role in diagnosis, treatment498

planning, and research [7, 19]. The problem with TV-L1 regularization is formulated499
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Figure 6.1: Background and foreground separations of the 10th frame(rows 1-3) of
Hall airport, the 259th frame(rows 4-6) of ShoppingMall, the 194th frame(rows 7-9)
of Bootstrap, and the 80th frame(rows 10-12) of Lobby. From left to right: G-AFBA,
G1-AFBA, eG-AFBA, GCP-PPA, DP-BALM, PDHG, G-PDHG, respectively.
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Data Methods Iter Time(s) Res RelChg
G-AFBA 66 43.41 4.63e-4 9.66e-5
G1-AFBA 70 45.32 4.30e-4 9.64e-5
eG-AFBA 230 184.97 8.98e-5 9.99e-5

Hall airport GCP-PPA 76 52.60 5.44e-4 9.93e-5
DP-BALM 83 58.82 6.84e-4 9.74e-5
PDHG 104 72.33 2.56e-4 9.63e-5
G-PDHG 80 51.71 5.41e-4 9.77e-5
G-AFBA 84 258.01 1.65e-4 9.57e-5
G1-AFBA 92 267.32 1.50e-4 9.78e-5
eG-AFBA 270 934.33 8.63e-5 9.97e-5

ShoppingMall GCP-PPA 93 271.70 2.07e-4 9.64e-5
DP-BALM 89 273.38 3.20e-4 9.88e-5
PDHG 147 430.25 9.53e-5 9.78e-5
G-PDHG 109 317.09 1.78e-4 9.69e-5
G-AFBA 71 24.00 5.18e-4 9.81e-5
G1-AFBA 73 25.69 5.02e-4 9.80e-5
eG-AFBA 220 88.29 8.74e-5 9.95e-5

Bootstrap GCP-PPA 83 28.72 6.01e-4 9.99e-5
DP-BALM 94 31.17 7.33e-4 9.78e-5
PDHG 94 30.86 3.71e-4 9.67e-5
G-PDHG 81 25.26 6.64e-4 9.84e-5
G-AFBA 93 33.10 4.42e-4 9.91e-5
G1-AFBA 95 35.84 4.32e-4 9.95e-5
eG-AFBA 246 105.64 8.78e-5 9.97e-5

Lobby GCP-PPA 106 39.22 5.37e-4 9.85e-5
DP-BALM 120 43.75 6.70e-4 9.99e-5
PDHG 101 36.55 4.26e-4 9.79e-5
G-PDHG 101 35.18 6.07e-4 9.82e-5

Table 6.1: Numerical results of different algorithms for solving (6.2).

as the following500

min
x,y

1
N

∑N
j=1(Rjx− bj)2 + λ‖y‖1

s.t. ∇x = y,
(6.3)

where λ > 0 is a weight parameter, R is the Radon transform generated by the cone501

beam scanning geometry [19], b is the observed noisy input data, and ∇ is a discrete502

gradient operator. The primal-dual formulation of (6.3), as a special case of (5.1),503

can be written as504

min
x,y

max
z

N∑
j=1

(Rjx− bj)2 + λ‖y‖1 + 〈∇x, z〉 − 〈y, z〉. (6.4)

When N is sufficiently large, e.g. N = 131, 334, 144 in our numerical experiment,
the computation of the prediction step (3.1a) of applying G-AFBA to solve (6.4)
becomes prohibitively expensive. Hence, we would apply the stochastic gradient based
SG-AFBA, that is Alg. 5.1, to solve (6.4) with λ = 0.1. We set (α, µ) = (1/2, 0),
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(τ, σ) = (102, 10−7) and mk = 10 for SG-AFBA. Hence, in this case, SG-AFBA is
in fact a stochastic version of GCP-PPA. The reconstructed image quality is usually
evaluated by the Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 log10

(
dx × dy × dz

MSE

)
with MSE = ‖x− x̃‖2,

where x and x̃ are the original and reconstructed 3D images, respectively. We also505

denote the relative error by Res = ‖x− x̃‖/‖x‖.506

For comparison purpose, we solve the reformulation problem (6.4) by the deter-507

ministic Generalized ADMM (G-ADMM, [17]) and 5 stochastic gradient-based meth-508

ods: stochastic ADMM (sto-ADMM, [24]), stochastic ADMM based on the popular509

SARAH gradient estimator (called SARAH-ADMM, [7]) and the SAGA gradient es-510

timator (called SAGA-ADMM, [7]), PDHG (1.2) and CP-PPA (1.4). All experiments511

are run in MATLAB R2019a on a high-performance computational cluster with a512

Tesla V100 GPU and 192GB memory. For each algorithm, we run 3 times to solve513

(6.4) with 2000 seconds time budget for each run.

Methods PSNR Res
sto-ADMM 24.8068 ± 0.0013 0.4099 ± 6.29e-05
G-ADMM 24.8493 ± 0.0059 0.4079 ± 2.79e-04

SARAH-ADMM 24.9106 ± 0.0041 0.4051 ± 1.93e-04
SAGA-ADMM 24.8810 ± 0.0017 0.4064 ± 7.72e-05

PDHG 25.0356 ± 0.0396 0.3993 ± 1.82e-03
CP-PPA 24.9976 ± 0.0719 0.4010 ± 3.32e-03

SG-AFBA 25.1245 ± 0.1256 0.3952 ± 5.74e-03

Table 6.2: The mean and standard deviation of PSNR and Res from solving (6.3).
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Figure 6.2: Comparison of different algorithms for solving (6.3).

Table 6.2 shows the mean and standard deviation of the final PSNR and Res515

obtained by each algorithm over 3 independent runs. We can see from Table 6.2 that516

SG-AFBA has overall better performance, achieving the highest PSNR and the lowest517
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relative error Res, although it has relatively larger standard deviation on the PSNR518

value. In addition, both PDHG and CP-PPA perform better than other ADMM-type519

methods from the final obtained PSNR. Figure 6.2 shows the average convergence520

curve of PSNR of each algorithm within 2000 seconds. From Figure 6.2 we see that521

although SARAH-ADMM converges faster than other algorithms at the beginning522

iterations (see the left-hand-side of Figure 6.2), SG-AFBA seems to generate the best523

final result. Figures 6.3 and 6.4 visualize the 7th and 58th slices of the reconstructed524

3D CT image, respectively. It shows that the images reconstructed by SG-AFBA525

are closer to the ground truth compared to other algorithms. Taking the 7th slice of526

the reconstructed 3D CT image as an example, many blurry circle contours can be527

observed in the images reconstructed by comparative algorithms sto-ADMM, SAGA-528

ADMM, SARAH-ADMM and G-ADMM. However, these circular contours are not529

clear in the images reconstructed by our SG-AFBA. Similar observations can be also530

seen from the 58th slice.531

(a) Ground truth (b) SAGA-ADMM=31.32 (c) sto-ADMM=30.06 (d) G-ADMM=30.66

(e) SARAH-ADMM=31.95 (f) PDHG=31.96 (g) CP-PPA=31.74 (h) SG-AFBA=32.97

Figure 6.3: Final reconstruction images of different methods for the 7th slice.

(a) Ground truth (b) SAGA-ADMM=30.86 (c) sto-ADMM=29.58 (d) G-ADMM=30.31

(e) SARAH-ADMM=31.6 (f) PDHG=31.71 (g) CP-PPA=30.94 (h) SG-AFBA=33.27

Figure 6.4: Final reconstruction images of different methods for the 58th slice.
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