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Abstract Applications for optimization with uncertain data in practice often feature a possibility
to reduce the uncertainty at a given query cost, e.g., by conducting measurements, surveys, or
paying a third party in advance to limit the deviations. To model this type of applications we
introduce the concept of optimization problems under controllable uncertainty (OCU). For an
OCU we assume the uncertain cost parameters to lie in bounded, closed intervals. The optimizer
can shrink each of these intervals around a certain value (hedging point) possibly reducing it to
a single point. Depending on whether the hedging points are known in advance or not, different
types of OCU arise. Moreover, the models may differ with respect to when the narrowing down,
the underlying optimization, and the revelation of true data take place.

We study two different problem settings - one with known and one with unknown hedging
points - in more detail, where we handle the remaining uncertainty by the paradigm of robust op-
timization. For both settings, we provide bounds on the optimal objective value and a single-level
non-linear reformulation. Furthermore, we state assumptions under which the three- respectively
four-level problem can be solved as a single-level mixed-integer linear program. We also show that
in robust OCU an optimizer might query a parameter solely to reduce the uncertainty for other
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parameters (budget deflection). We give sufficient conditions to avoid this phenomenon.

Keywords: Multi-Level Optimization, Controllable Uncertainty, Mixed-Integer Programming,
Robust Optimization, Budgeted Uncertainty Set, Single-Level Reformulation

1 Introduction
1.1 Motivation
Optimization problems in applications often come with uncertainty in the data input. We propose
and study a model for optimization under uncertainty in which one can pay to reduce some of the
uncertainty while dealing with remaining uncertainty in a robust way.

In optimization under controllable uncertainty (OCU), uncertain parameters are initially only
known to lie within bounded, closed intervals that the optimizer can continuously shrink at a cost.
We regard optimization problems with uncertain underlying cost. The optimizer can continuously
shrink each of the initially given intervals for the uncertain parameters at a query cost. This may
eventually but not necessarily reduce an interval to a single point. We call this point the hedging
point, as it is the value we get when fully averting uncertainty. However, shrinking of the interval
to a single point might not be possible. One major modeling choice in OCU is whether the hedging
point is known or unknown. If the hedging point is known, i.e., part of the initial input, this does
not mean that we know in advance which value the adversary will choose. However, we know in
advance to which value we can force the adversary if we buy full information.

OCU has several applications, both with known and unknown hedging points. Management of
currency risks [FWR12] or protection against damage in networks like electric power [BCSW06],
supply chain [CS07] or transportation networks [JLSY15, FHEED22] come at some cost and
reduce uncertainty in the underlying problems cost. The hedging points are known in these
applications. In contrast, revenues are only revealed after some investment is made in research
and development portfolio optimization [SCJB10], production planning [JWW98], pharmaceutical
clinical trial planning [CM10] or offshore gas-field development [GG04].

In robust optimization under controllable uncertainty (ROCU), we use the worst-case approach
of robust optimization to deal with the remaining uncertainty in OCU. The possible scenarios for
the malign adversary to choose from are restricted to a subset of the Cartesian product of intervals.
In the present work, we use the so-called budgeted uncertainty set that is widely used in robust
optimization [BS03]. The rationale underlying this uncertainty set is that it is over-conservative
to protect against a worst case where all uncertain parameters are realized as the maximal value
in their interval. Instead, we assume that the sum over all parameters of all relative deviations is
limited by a budget parameter.

In ROCU, for elementwise query costs, an optimizer might query a parameter solely to control
the uncertainty for other parameters. We call this phenomenon budget deflection. We give an
example where budget deflection occurs in a problem setting with known hedging point and
provide sufficient conditions to avoid it. For another problem setting with unknown hedging
point, we show that budget deflection is not possible.

The concept of OCU can be combined with other approaches to deal with remaining uncertainty,
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e.g., stochastic optimization. In stochastic optimization, the uncertainty realizes according to
a random distribution in stochastic optimization, e.g., [BL11]. Using the paradigm of robust
optimization, we do not need to assume distributional knowledge.

OCU is an extension of existing models that allow to reduce uncertainty in data input before
solving an optimization problem. In explorable uncertainty, the optimizer can buy exact informa-
tion for individual uncertain parameters [Kah91]. Uncertainty for each parameter is either kept or
fully erased until the actual optimization problem can be solved exactly in explorable uncertainty.
Similarly, in decision-dependent information discovery (DDID), either the exact value is revealed
or the full uncertainty for a parameter remains [OP23]. Costs for exact information are not part
of the overall objective. Instead, the optimizer has a fixed budget to get some individual uncer-
tain parameters. The possibility to continuously shrink the intervals of uncertain data in OCU
extends models in which one can either buy full information or keep the uncertainty as initially
given. Furthermore, the query cost for additional information in OCU is an extension of a fixed
budget for the reduction of uncertainty. In applications, it might be difficult or unrealistic to
completely erase uncertainty in underlying cost and to fix a budget for investments.

In OCU, the optimizer solving the underlying problem and the optimizer choosing the queries
is the same entity. In contrast, one could use different objectives for the two decisions of making
the queries and solving the underlying problem. Then, we obtain a similar setting as bilevel
problems with uncertainty in the follower’s data, see [BLS23a] and references therein. Often,
one distinguishes whether the uncertainty realizes between the leader’s and the follower’s decision
(wait-and-see follower) or after the follower’s decision (here-and-now follower). In controllable
uncertainty, it is not possible to distinguish beforehand which parts of the underlying problem’s
data uncertainties realize before and which after the problem is solved as this can be dependent
on the queries made. A here-and-now follower who decides before the uncertainty realizes might
be turned into a wait-and-see follower if the remaining uncertainty is completely removed.

Structure of the paper Our paper is structured as follows: In the remaining of this section we
describe related work. Then, in Section 2, we explain the general concept of optimization with
controllable uncertainty for uncertain cost. We describe how one can modify the scenario set at a
query cost by reducing the uncertain intervals around the so-called hedging points. In Section 3,
we assume that the hedging points are known in advance and part of the input data. For binary
queries, we show how one can reformulate the problem to a single-level one, if the underlying
optimization problem is given by a linear program (LP). In Section 4, we assume that the hedging
points are not initially known and model them as a variable that is chosen in a worst-case fashion.
We model this setting in a four-level problem. Further, we investigate a robust optimization
approach, and present an equivalent nonlinear single-level formulation.

1.2 Related work
Optimization under controllable uncertainty is closely related to other concepts like bilevel op-
timization, robust optimization, explorable uncertainty, and decision-dependent information dis-
covery. In this paper we investigate optimization problems with a multilevel structure. Problems
with two levels are considered in bilevel optimization. In robust optimization, the uncertainty
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realizes after the decision has been made. In contrast, in the model of explorable uncertainty, the
uncertainty is first handled before the underlying problem is solved exactly. In decision-dependent
information discovery these opposite concepts are combined. First some parts of the uncertainty
are handled before taking decisions, after which the remaining uncertainty realizes.

In the following, we give a brief overview of the aforementioned concepts. The literature review
is far from exhaustive. Recent surveys for further reading are given where available.

Bilevel optimization In a bilevel optimization problem, two optimization problems are nested
in a hierarchical order. Two players usually called leader and follower control disjoint sets of
variables, who optimize their own objectives with constraints that both can depend on the other’s
decisions. Foundations on bilevel programming are explained in the textbook [Dem02] and further
advances in bilevel optimization can be found in [DZ21] which includes an extensive bibliography in
the last chapter. For mixed-integer bilevel programs, see also the survey [KLLS21] and references
therein.

Connections between robust and bilevel optimization, in particular possible reformulations of
problems in one setting to the other one and vice versa, are discussed in [GKST23].

Two types of uncertainty that have been considered for bilevel problems are data uncertainty
and decision uncertainty, see [BLS23a] and references therein. In data uncertainty, there is an un-
certainty about the follower’s data that is either realized after the leader’s but before the follower’s
decisions (wait-and-see follower) or after the follower’s decision is fixed (here-and-now follower).
In decision uncertainty, one or both levels hedge against the other level’s decision that for example
might not be optimal but only near-optimal due to limited resources. In contrast to controllable
uncertainty, neither of the two players can influence the uncertainty in these approaches.

A special type of bilevel optimization problems are min-max problems, i.e., problems in which
the two players share the same objective function though optimize in opposite directions. A
prominent example are interdiction games. In interdiction games, the upper-level problem inter-
dicts some lower-level elements such that the follower is inhibited as much as possible in pursuing
their goal [SS20]. Interdiction games with a monotone Γ-robust follower have been considered in
[BLS23b, BLS23c].

An extension of interdiction games are fortification games where a third level is added. In forti-
fication games, some items can be defended before the opponent interdicts some of the remaining
items. Binary fortification games can be solved with a decomposition approach [BCSW06]. A
generalized solution method is to use a branch-and-cut algorithm with fortification cuts [LLM+23].

Robust optimization In robust optimization, optimization problems with uncertain cost are
considered where the scenario is chosen adversarially after the decision of the optimization problem
has been fixed, see e.g., the textbook [BEN09].

A widely used scenario set is the so-called budgeted uncertainty set introduced in [BS03, BS04]
that is restricted in two ways. For each decision variable the uncertain cost is restricted to an
interval. Furthermore, there is a budget Γ for the sum of actual increases normalized by the interval
sizes. This budgeted uncertainty set is a polytope whose number of vertices grows exponentially
with Γ. Robust counterparts of discrete optimization problems with polynomial runtime are still
solvable in polynomial time [BS03].
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Explorable uncertainty In explorable uncertainty, firstly, the uncertainty is resolved by revealing
precise data values at some cost such that, secondly, the underlying problem is solved with cer-
tainty to optimality. The seminal work was introduced in [Kah91]. Revealing precise data values
at some investment or effort is referred to as a query. The goal is to minimize query cost while
the underlying problem can still be solved exactly.

Studies investigate the concept of explorable uncertainty on basic combinatorial problems like
Selection [GSS11] as well as classical discrete problems like Shortest Path [FMO+03], Minimum
Spanning Tree [EHK+08, FMM17], knapsack [GGI+15], and matroids [Mei18, MS19]. The binary
query selection revealing an exact value is extended to returning a refined uncertainty interval in
[GSS11]. We refer to the survey [EH15] for a good research overview on explorable uncertainty.

The query selection is realized in an online or offline approach. The online query selection is
an adaptive model where queries are selected sequentially and for each decision one can use the
outcome of all previous value determinations [BHKR05, FMM17]. The offline query model requests
a non-adaptive selection simultaneously choosing and revealing as many queries as required to
ensure the existence of an exact solution of the underlying optimization problem [MS19, FMO+03].

Decision-Dependent information discovery Decision-dependent revelation of uncertain param-
eters has mainly been considered in stochastic optimization, see [VGY22] and references therein.
Recently, this idea has been combined with robust optimization instead resulting in the problem
of decision-dependent information discovery (DDID) [VGY22, PGDT22, OP23]. In DDID, the
optimizer has a binary choice in the first step to reveal some exact values, i.e., uncertain values
are only either revealed completely or kept uncertain. The chosen values realize in a worst-case
manner. Afterwards, the nominal problem is solved in a robust approach for the remaining uncer-
tainties. Thus, DDID can be formulated as a four-level min-max-min-max problem. For general
polyhedral uncertainty sets, both exact algorithms and approximations have been proposed. Fur-
thermore, due to a budget instead of a cost for made queries, it can only be beneficial to make
additional queries and to exhaust the query budget. As a natural consequence, they assume that
it is not possible to make all queries, e.g., [OP23, Assumption 1].

2 Controllable uncertainty for uncertain cost
In general, the concept of controllable uncertainty can be used for both uncertain cost and un-
certainty feasible regions. In this paper we solely discuss the case of uncertain cost. For this
case we now formalize the concept of controllable uncertainty and point variations in modeling
with this concept. In Section 2.3 we summarize additional assumptions to which we restrict the
analysis in the rest of this paper. Finally, in Section 2.4 we discuss a peculiar effect of controllable
uncertainty with uncertain cost, namely, budget deflection.

2.1 Formalization of the concept
In the following, we introduce the concept of controllable uncertainty. First, we state the optimiza-
tion problems for which we consider controllable uncertainty. Then, we describe the used model
of uncertainty. Afterwards, we introduce queries and explain how they reduce uncertainty. In
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particular, this includes the definition of the controllable uncertainty set. Finally, we describe the
overall objective function of the resulting problem. For a summary of the notation, see Table 1.

Controllable uncertainty is a possibility to model how one can deal with uncertainty in some
underlying (optimization) problem

min
y∈Y

f(y).

We assume that the underlying problem has non-negative decision variables y chosen from a
feasible set Y ⊆ Rn

≥0. We refer to the indices of vectors like y as elements and denote them with
e. We assume that the objective function f of the underlying problem is parameterized by non-
negative uncertain coefficients c̃ = (c̃1, . . . , c̃n). These uncertain coefficients c̃ lie within bounded,
closed intervals, i.e.,

c̃e ∈ [ce, ce + de] for all e ∈ [n] := {1, . . . ,n} with d ∈ Rn
≥0.

Each realization of an uncertain parameter c̃e is associated with the corresponding normalized
value ue ∈ [0, 1] such that c̃e = ce + uede.

A possible choice of ue as well as the whole vector u is a realization of the uncertainty or scenario.
We assume that the uncertainty set is given as some polyhedron U ⊆ [0, 1]n. To explicitly denote
the dependency on the scenario, we also write f(u, y) for the objective of the underlying problem.

The interval for the choice of ue is narrowed, from [0, 1] to at most a single point be ∈ [0, 1]. This
point be is the e-th hedging point. The set of possible hedging points b is denoted by B ⊆ [0, 1]n.

The continuous variable xe expresses how much the size of the interval for ue is narrowed. We
call xe as well as the vector x as a whole a query. The set of possible queries is given by X ⊆ Rn

≥0.
We assume that 0 ∈ X and will refer to x = 0 as "making no query". Mostly, we think of X as
Rn

≥0. However, it can include constraints on the query selection. For example, a query for element
e might only be allowed if also element e′ is queried to at least the same amount, i.e., xe ≤ xe′ .

The lower and upper query outcome ϕℓ
e(xe) respectively ϕu

e (xe) shift the lower respectively
upper boundary of the interval for the realization of the uncertainty ue. We require the functions
ϕℓ

e : R≥0 → [0, 1] and ϕu
e : R≥0 → [0, 1] to be monotone and to fulfill ϕℓ

e(0) = ϕu
e (0) = 0. The lower

bound for the realization of the uncertainty ue raises within the interval [0, be] by the fraction
of the lower query outcome ϕℓ

e(xe). Similarly, the upper query outcome ϕu
e (xe) is the fraction

by which the upper bound on the realization of the uncertainty ue is reduced within the interval
[be, 1]. For a visualization, see Figure 1. More precisely, the query xe narrows the interval [0, 1]
for ue to the interval [

beϕ
ℓ
e(xe), 1 − (1 − be)ϕ

u
e (xe)

]
.

If ϕℓ
e and ϕu

e are strictly less than one for all queries xe, a reduction of the interval for the choice
of ue to a singleton is not possible, see the example of asymptotic behavior below.

Example 2.1 (Query functions). The query outcome function ϕe can be

(a) ϕe(xe) = min {xe, 1} for proportional outcome on [0, 1] and constant else or

(b) ϕe(xe) =
xe

xe+1 for an asymptotic behavior or

(c) ϕe(xe) = 0 for xe < 1 and ϕe(xe) = 1 for xe ≥ 1 for a binary query outcome. The same
outcome is obtained for ϕe being the identity and restricting X such that xe ∈ {0, 1}.
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0 be 1
ϕℓ

e(xe)be 1 − ϕu
e (xe)(1 − be)

Figure 1: Reduced interval for the choice of ue

For the sake of convenience, we use the following conventions for the query outcome functions.
Whenever ϕℓ

e and ϕu
e are equal, we refer to them with one function ϕe : R≥0 → [0, 1]. Also, we

drop the index and only write ϕℓ,ϕu or ϕ if the respective query outcome functions ϕℓ
e,ϕu

e ,ϕe are
equal for all elements e ∈ [n].

Next, we define the controllable uncertainty set U(x, b) to capture the reduction of the uncer-
tainty set U . We call elements of U(x, b) the remaining uncertainty. Adversarial feasibility is the
requirement that the controllable uncertainty set U(x, b) is non-empty.

Definition 2.2 (Controllable uncertainty set). For a polyhedral uncertainty set U , the controllable
uncertainty set with respect to query x and hedging point b is the set

U(x, b) =
{
u ∈ U

∣∣∣ ϕℓ
e(xe)be ≤ ue ≤ 1 − ϕu

e (xe)(1 − be) ∀e ∈ [n]
}

.

Observation 2.3. For no or, respectively, complete reduction of the uncertainty, we have:

(a) If ϕℓ
e(xe) = ϕu

e (xe) = 0 for all e ∈ [n], then U(x, b) = U .

(b) U(0, b) = U .

(c) Let x ∈ X be a query with ϕℓ
e(xe) = ϕu

e (xe) = 1 for all e ∈ [n]. Then U(x, b) = {b} ∩ U .

Proof. The statements follow from the definition of the controllable uncertainty set U(x, b) and
the assumption that ϕℓ

e(0) = ϕu
e (0) = 0.

If we make a query to narrow an uncertainty interval in our model, a query cost q(x) are
generated. We assume that the query cost function q : X → R≥0 is monotone and that there is
no query cost if no query is made, i.e., q(0) = 0.

Observation 2.4. There are the following relations between the query cost q and the query out-
come function ϕ, if X = Rn

≥0:

(a) If q is strongly monotone, it is equivalent to use either q, ϕℓ
e and ϕu

e or the identity Id, q−1ϕℓ
e

and q−1ϕu
e as query cost and query function respectively.

(b) If ϕ = ϕℓ
e = ϕu

e is strongly monotone, it is equivalent to use either q and ϕ or ϕ−1q and Id
as query cost and query function respectively.

Proof. If there is a bijection g : R≥0 → R≥0 with g(0) = 0, we can get another instance of
our problem if we apply g and replace x with x̃ = g(x) in all occurrences. If q or respectively
ϕ is strictly monotone, the inverse q−1 or ϕ−1 exist. If g = q−1, then ϕℓ

e(x̃) = ϕℓ
e(q

−1(x)),
ϕu

e (x̃) = ϕu
e (q

−1(x)) and q(x̃) = x. The same argument applies if g = ϕ−1.
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miny∈Y f(y) underlying problem
c̃e = ce + uede uncertain coefficients in f(y)

u ∈ U ⊆ [0, 1]n realization of the uncertainty
x ∈ X ⊆ Rn

≥0 query
q : X → R≥0 query cost

ϕℓ
e,ϕu

e : R≥0 → [0, 1] lower, upper query outcome
b ∈ B ⊆ [0, 1]n hedging point

U(x, b) ⊆ U controllable uncertainty set
F : X × U × Y → R overall objective function

Table 1: Summary of notation

In optimization under controllable uncertainty, a single optimizer allocates resources to both un-
certainty mitigation and the core optimization problem. The overall objective function F (x,u, y)
is the sum of the query cost q(x) and the objective function f(u, y) of the underlying problem,
i.e.,

F (x,u, y) = q(x) + f(u, y).

2.2 Variations in modeling with controllable uncertainty
In the following, we outline possibilities to use controllable uncertainty. One can vary when the
hedging point is chosen, how and when the remaining uncertainty is dealt with or whether all
queries are made at once or successively.

In the following, we assume that all queries are chosen in a single, first step. This is the
analogue to offline queries in explorable uncertainty. Successive queries like online queries in
explorable uncertainty are not considered here.

For the remaining uncertainty, we use a robust approach, i.e., we consider a worst-case scenario.
Thus, we obtain min-max settings. Other approaches for dealing with the remaining uncertainty
like stochastic optimization are possible though will not be considered here.

In the two possible problem settings with known hedging points, the uncertainty either realizes
before or after the underlying problem is solved. If the underlying problem is solved before the
remaining uncertainty realizes, the decisions for both the queries and the underlying problem can
be made in the same step. Hence, we obtain a robust optimization problem with a dependent
uncertainty set. This setting is not further considered. We consider the other setting in which the
remaining uncertainty realizes before the underlying problem is solved in Section 3.

Afterwards, in Section 4, we consider a setting with uncertain hedging points. We will deal with
the uncertainty in the hedging points before and with the remaining uncertainty after solving the
underlying problem.

2.3 Additional assumptions
For all findings in the remaining of this paper, we add the following two assumptions.
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Assumption 2.5. We assume that the underlying problem has a linear objective function, i.e.,

f(y) = f(u, y) = c̃⊤y = (c+ d · u)⊤y.

For example, the underlying problem can be a linear problem (LP) like the diet problem or a
discrete problem like shortest path, min cut or TSP. In later sections, we derive some results that
only hold for binary problems or problems that can be formulated as an LP.

As uncertainty set, we will only consider the budgeted uncertainty set. This uncertainty set has
been introduced in [BS03] and is widely used in robust optimization.

Assumption 2.6. We assume that U is the budgeted uncertainty set

U =

u ∈ [0, 1]n
∣∣∣∣∣∣

∑
e∈[n]

ue ≤ Γ

 .

In order to have adversarial feasibility, i.e., U(x, b) ̸= ∅, we derive a necessary condition for the
choice of a hedging point.

Observation 2.7 (Necessary condition for adversarial feasibility). U(x, b) = ∅ if

Γ −
∑

e∈[n]
ϕℓ

e(xe)be < 0.

Proof. The statement follows when we combine the lower bounds ϕℓ
e(xe)be ≤ ue for all e ∈ [n]

from Definition 2.2 and the budget constraint
∑

e∈[n] ue ≤ Γ from Assumption 2.6.

Thus, we assume in the following that

B ⊆

b ∈ [0, 1]n
∣∣∣∣∣∣ Γ −

∑
e∈[n]

ϕℓ
e(xe)be ≥ 0

 .

2.4 Budget deflection for elementwise query cost
In the following, we define the phenomenon of budget deflection for elementwise query cost.

Definition 2.8 (Elementwise query cost). The query cost q(x) is elementwise, if there are func-
tions qe : R≥0 → R≥0 such that

q(x) =
∑

e∈[n]
qe(xe).

In controllable uncertainty, a query serves the purpose to gain information or to protect against
very unwelcome realizations of the uncertainty at a certain cost. If the query cost is elementwise,
one could assume that the query of an element e directly corresponds to controlling the uncertainty
ue. However, in an optimal solution, an element e might be queried though never used in any
optimal solution of the underlying problem to control the uncertainty of cost for another element
e′. The query for element e decreases the uncertainty budget at a relatively cheap price. Due to
the reduced uncertainty budget, the cost for element e′ is decreased. We call this phenomenon
budget deflection and give a more formal definition.
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Definition 2.9 (Budget deflection). Let x∗ ∈ X = Rn
≥0 be an optimal query for an optimization

problem with controllable uncertainty and elementwise query cost. Furthermore, let Y ∗(x∗) denote
the feasible solutions for the underlying problem that can be optimal when x∗ has been fixed.

We say an instances allows for budget deflection, if there is an element e ∈ [n] with positive
query cost, i.e., qe(x∗

e) > 0, that is not used in any optimal solution y∗ ∈ Y ∗(x∗) of the underlying
problem, i.e., y∗

e = 0 for all y∗ ∈ Y ∗(x∗).

We will show that budget deflection can occur in the setting with known hedging points de-
scribed in Section 3. After we provide a small example, we will show how to prevent budget
deflection and the impact of this adaption, see Section 3.3. In contrast, in Section 4.3, we will
show that there is no budget deflection in the setting with unknown hedging points considered in
Section 4.

3 Optimization with known hedging points
We consider the problem with known hedging points (KHP) to determine an optimal query x such
that the underlying problem is minimized for the worst-case outcome of the uncertainty u. The
values of the hedging point b are input parameters of the problem

min
x∈X

max
u∈U(x)

min
y∈Y

F (x,u, y). (KHP)

We use the min-max form to indicate the objective sense for each level. This does not imply
that an optimal solution is attained. In fact, an optimal query x might not exist. For example,
consider ϕ to be the asymptotic query function suggested in Example 2.1 in combination with
zero query cost, i.e., q = 0. If there are no restrictions on the possible queries, i.e., X = R≥0, for
every query x there exists another query x′ that results in a smaller objective value. However, as
usually done in bilevel optimization, we use “min” in the sense of “minimize” instead of “inf”.

Since the hedging points b are input parameters of KHP, we write the uncertainty set only in
dependence of the query x, i.e., U(x) = U(x, b).

First, we derive bounds on the optimal objective value of KHP in Section 3.1. Afterwards,
in Section 3.2, we provide an equivalent single-level reformulation for KHP if the underlying
problem is given as a linear program (LP). In Section 3.3, we describe budget deflection, which
is a phenomenon that in order to reduce the adversary weight modification for an element e, a
different element e′ is queried. Finally, after we add additional assumptions on the query cost
and query outcome functions, we show how KHP can be formulated as single-level mixed-integer
program.

Comparison of KHP with interdiction and fortification games In the following, we compare
KHP with interdiction and fortification problems. For a fixed query x, KHP becomes a continuous
interdiction problem where interdiction only affects the objective. The uncertainty u is chosen
from intervals within a budget of Γ to maximize the minimal outcome of the underlying problem.

Next, we argue how the choice of a query x in KHP resembles the uppermost level of fortification
games. In fortification, the uppermost level decides which elements to protect such that they
cannot be interdicted. A fortification can be used on the uppermost level to prevent interdiction
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that realizes in a worst-case manner. In KHP, a query x indicates the reduction of the interval
sizes for the weight modification caused by the uncertainty u. For binary query outcome functions,
see Example 2.1, KHP is a fortification game with binary fortification and continuous interdiction.

3.1 Bounds for KHP
In the following, we show upper and lower bounds on the optimal objective value of KHP. We fix
some particular query and then solve the underlying optimization problem. In general, even when
a query is fixed, the resulting bilevel problem cannot be easily solved.

For the first upper bound, we consider that no query is made, i.e., x = 0. Recall that if no
query is made, there is no query cost. We relax the budget constraint for the uncertainty and use
that the upper bounds for the uncertainty are at most one. Then, only the underlying problem
with objective c+ d remains. Thus, we obtain the following upper bound.

Observation 3.1. The optimal objective value F (x∗,u∗, y∗) of KHP has the upper bound

F (x∗,u∗, y∗) ≤ min
y∈Y

(c+ d)⊤y.

Proof. We use the query 0 ∈ X, the definition of F (x,u, y), the assumptions that q(0) = 0,
U(x) ⊆ [0, 1]n and that c, d, y are non-negative, see Section 2, to obtain

F (x∗,u∗, y∗) = min
x∈X

max
u∈U(x)

min
y∈Y

F (x,u, y)

≤ max
u∈U(0)

min
y∈Y

F (0,u, y) = max
u∈U(0)

min
y∈Y

(c+ d · u)⊤y

≤ max
u∈[0,1]n

min
y∈Y

(c+ d · u)⊤y

= min
y∈Y

(c+ d · 1)⊤y = min
y∈Y

(c+ d)⊤y.

For the second upper bound and a lower bound on the optimal objective value of KHP, let x
denote a query for which the uncertainty set reduces to a singleton. The existence of such a query
depends on the allowed queries X and the query outcome functions ϕℓ

e and ϕu
e . If such a query

x exists and we plug this in, only the underlying problem remains. Depending on whether we
consider the query cost for x or not, we obtain an upper respectively lower bound.

Observation 3.2. Let x ∈ X be a query such that no uncertainty is left for this query, i.e.,
ϕℓ

e(xe) = ϕu
e (xe) = 1 for all e ∈ [n]. Then, for the optimal objective value F (x∗,u∗, y∗) of KHP,

the following lower and upper bounds hold:

min
y∈Y

f(b, y) ≤ F (x∗,u∗, y∗) ≤ q(x) + min
y∈Y

f(b, y).

Proof. We choose x ∈ X and use U(x) = {b}, see Observation 2.3, to obtain the upper bound:

F (x∗,u∗, y∗) = min
x∈X

max
u∈U(x)

min
y∈Y

q(x) + f(u, y)

≤ q(x) + max
u∈U(x)

min
y∈Y

f(u, y) = q(x) + min
y∈Y

f(b, y).
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For the lower bound, we use that query cost q(x) is non-negative and that U(x) = {b}. If there
is no query cost, x is optimal for the outer minimization. We have

F (x∗,u∗, y∗) = min
x∈X

max
u∈U(x)

min
y∈Y

f(u, y) + q(x)

≥ min
x∈X

max
u∈U(x)

min
y∈Y

f(u, y) = max
u∈U(x)

min
y∈Y

f(u, y) = min
y∈Y

f(b, y).

3.2 Single-level reformulation for KHP
The main result of this section is that KHP can be reformulated as an equivalent single-level
non-linear problem (NLP) if the underlying problem is an LP. We call two optimization problems
equivalent, if they depend on the same parameters and always have the same optimal objective
value. In the single-level reformulation, variables u for the realization of the uncertainty are
replaced by dual variables for the constraints on the realization of the uncertainty within U(x).
Afterwards, we state conditions on the values of variables in the single-level reformulation that
hold for optimal solutions.

Assumption 3.3. For the remaining of Section 3, we assume that the underlying problem can be
solved via a nonempty compact, convex feasible set Y ⊆ Rn

≥0.

The underlying problem is for example an LP or a discrete problem given by a totally dual
integral (TDI) system. Recall, that the objective of the underlying problem is linear by Assump-
tion 2.5. Discrete problems given by a TDI system can be solved as LPs. TDI systems are known
for several optimization problems like Shortest Path, Minimum Spanning Tree, Maximum Flow,
and Minimum Cut, e.g., [KV18].

Theorem 3.4 (Single-level NLP). An optimization problem under controllable uncertainty with
known hedging points (KHP)

min
x∈X

max
u∈U(x)

min
y∈Y

q(x) + c⊤y+ (d · u)⊤y (1)

is equivalent to the following single-level non-linear problem (NLP)

min
x∈X,
y∈Y ,
β,θ

Γθ+ q(x) +
∑

e∈[n]
βe + ceye − ϕℓ

e(xe)be (θ+ βe − deye) − ϕu
e (xe)βe(1 − be) (2)

s.t. θ+ βe − deye ≥ 0 ∀e ∈ [n]

β, θ ≥ 0.

Proof. First, we argue that we can interchange the innermost minimization and maximization
step. The objective function F is linear in both variables u and y if all respective other variables
are fixed. Furthermore, the feasible sets for u and y are polytopes by assumption and independent
of y,u respectively. Thus, we can apply von Neumann’s minimax theorem, see [vN28] or in english
e.g., [Sim09, Theorem 2], to obtain

min
x∈X

max
u∈U(x)

min
y∈Y

F (x,u, y) = min
x∈X, y∈Y

max
u∈U(x)

F (x,u, y). (3)
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If the underlying problem is an LP, we can also obtain this equality using strong duality twice.
Next, we use strong duality to replace the inner maximization problem by a minimization

problem. The inner maximization problem is the LP

max
u

(d · y)⊤u (4)

s.t. ue ≥ ϕℓ
e(xe)be ∀e ∈ [n]

ue ≤ 1 − ϕu
e (xe)(1 − be) ∀e ∈ [n]

u⊤1 ≤ Γ

with dual problem

min
α,β,θ

Γθ+
∑

e∈[n]
ϕℓ

e(xe)beαe + (1 − ϕu
e (xe)(1 − be))βe (5)

s.t. αe + βe + θ = deye ∀e ∈ [n]

α ≤ 0
β, θ ≥ 0.

We substitute αe = deye − βe − θ ≤ 0 which simplifies Problem (5) to

min
β,θ

Γθ+
∑

e∈[n]
ϕℓ

e(xe)be(deye − βe − θ) + (1 − ϕu
e (xe)(1 − be))βe (6)

s.t. θ+ βe − deye ≥ 0 ∀e ∈ [n]

β, θ ≥ 0.

Due to strong duality, Problems (4), (5) and (6) have the same optimal objective value. Thus,
we can replace the inner maximization problem in (3) by Problem (6). We obtain the single-level
reformulation (2) that is equivalent to KHP.

For optimal solutions of this equivalent single-level NLP, we make the following observations.
The variables y in (1) and (2) are not the same, for example if the underlying problem is given
by an TDI system, the values of the variables y in (2) are not necessarily integral in an optimal
solution.

Next, we consider elements e that are not used in the underlying problem’s optimal solution.

Lemma 3.5. In an optimal solution (x∗, y∗,β∗, θ∗) of Problem (2), if y∗
e = 0 then

β∗
e

(
1 − ϕu

e (x
∗
e)(1 − be) − ϕℓ

e(x
∗
e)be

)
= 0.

Proof. If y∗
e = 0, the constraint deye ≤ θ+ βe simplifies to 0 ≤ βe + θ. This is always fulfilled as

β and θ are required to be nonnegative. There are no further constraints on β.
For the objective of Problem (2), we have

Γθ+ q(x) +
∑

e∈[n]
βe + ceye + ϕℓ

e(xe)be (deye − βe − θ) − ϕu
e (xe)βe(1 − be)

=

Γ −
∑

e∈[n]
ϕℓ

e(xe)be

 θ+ q(x)

+
∑

e∈[n]
ceye + ϕℓ

e(xe)bedeye + βe

(
1 − ϕu

e (xe)(1 − be) − ϕℓ
e(xe)be

)
.



14

Variable βe is included with the factor
(
1 − ϕu

e (xe)(1 − be) − ϕℓ
e(xe)be

)
. This non-negative factor

is the size of the remaining interval the adversary chooses ue from, see Section 2. Thus, in an
optimal solution, at least one of the two factors β∗

e and 1 − ϕu
e (x

∗
e)(1 − be) − ϕℓ

e(x
∗
e)be is zero.

In the following lemma, we provide upper bounds for the variables β and θ in an optimal
solution of Problem (2) if the underlying problem’s decisions y are within the unit cube [0, 1]n.
For example, let the underlying problem be binary.

Lemma 3.6. Let Y ⊆ [0, 1]n. If (x∗, y∗,β∗, θ∗) is an optimal solution for the single-level refor-
mulation (2), then

θ∗ ≤ max
e∈[n]

de =: D and β∗
e ≤ de ∀e ∈ [n].

Proof. Consider the constraints deye − βe ≤ θ for all e ∈ [n]. Since βe and θ are required to be
nonnegative and are included with nonnegative factors in the objective that is minimized, we have
θ∗ ≤ maxe de =: D and β∗

e ≤ de.

Next, we show upper bounds on elementwise query cost in an optimal solution. The upper
bounds depend on whether the corresponding decision variable ye of the underlying problem has
a non-zero value or not. We describe some intuition before we state the lemma and give a proof.

First, consider an element e where the corresponding decision variable ye is zero in an optimal
solution. Then, the cost for the query of e is at most the potential harm the adversary can
add when they use their budget elsewhere. A query xe reduces the adversary’s budget by the
lower bound for the corresponding realization ue. This lower bound is ϕℓ

e(xe)be by definition of
the controllable uncertainty set, see Definition 2.2. Recall that ue is multiplied with de in the
objective and D denotes the maximal value of de′ for all e′ ∈ [n]. Thus, ϕℓ

e(xe)beD is an upper
bound on the query cost qe(xe) for element e in an optimal solution.

For an element with non-zero value for the decision variable in the optimal underlying solution,
additional cost has to be added to the possible query cost. This cost results from the reduction
of the worst remaining realization. More formally, we have the following bounds.

Proposition 3.7. Let the query cost be elementwise defined, i.e., assume that q(x) =
∑

e∈[n] qe(xe)

with functions qe : R≥0 → R≥0. Let (x∗,u∗, y∗) be an optimal solution of KHP.

i) If y∗
e = 0, then there is an optimal solution with

qe(x
∗
e) ≤ ϕℓ

e(x
∗
e)beD.

If in addition 1 − ϕu
e (x

∗
e)(1 − be) − ϕℓ

e(x
∗
e) > 0, i.e., the interval for ue is not a singleton,

the upper bound on qe(x∗
e) holds for every optimal solution.

ii) If y∗
e = 1 and y ∈ [0, 1]n, then

qe(x
∗
e) ≤ ϕℓ

e(x
∗
e)beD+ ϕu

e (x
∗
e)de(1 − be).

Proof. The objective of the single level reformulation derived in Theorem 3.4 is

Γθ+
∑

e∈[n]
ceye + qe(xe) + βe − ϕℓ

e(xe)be(θ+ βe − deye) − ϕu
e (xe)βe(1 − be).
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Figure 2: Example for budget deflection: Digraphs G and H with “[ce, ce + de] / be / qe” along arc.

For xe = 0, the parts of the objective that depend on e simplify to ceye + βe. As there are no
constraints on xe and the goal is to minimize, we obtain that in an optimal solution this part is
no larger than ceye + βe. Thus, we use the upper bound θ∗ ≤ D from Lemma 3.6 and get

qe(x
∗
e) ≤ ϕℓ

e(x
∗
e)be (D+ β∗

e − dey
∗
e ) + ϕu

e (x
∗
e)β

∗
e (1 − be) .

If y∗
e = 0, we plug in y∗

e = 0 and can set β∗
e = 0 according to Lemma 3.5 to derive the given

upper bound on qe(x∗
e). If in addition 1 − ϕu

e (x
∗
e)(1 − be) − ϕℓ

e(x
∗
e) > 0, Lemma 3.5 states that

β∗
e = 0 in every optimal solution. Thus, in this case, the upper bound holds in every optimal

solution.
If y∗

e = 1, we use the upper bound β∗
e ≤ de from Lemma 3.6 and plug in y∗

e = 1 to derive the
upper bound on the element’s query cost.

3.3 Budget deflection for KHP
In the following, we consider budget deflection for KHP. Recall that budget deflection is the
phenomenon that one coordinate is queried to control the uncertainty for other coordinates, see
Section 2.4.

In this section, we show that budget deflection can occur and give sufficient conditions under
which it cannot occur. Further, we show in Theorem 3.10 that under these conditions the optimal
objective value does not decrease.

It depends on the application whether budget deflection makes sense or not. We illustrate this
by the example of shortest path.

Example 3.8 (Budget deflection for KHP). Let G be the digraph on the left in Figure 2 and H be
the digraph on the right. The two graphs G and H only differ in the existence of an arc between
nodes v and t.

Let the query outcome functions be binary, see Example 2.1. Furthermore, let the query cost be
linear, i.e., qe(xe) = qexe for all arcs e. Let the adversary have a budget of Γ = 1.

If no query is made, the controllable budgeted uncertainty set U(x) is equal to the budgeted
uncertainty set U . In graph G, the adversary can spend its entire budget on arc (s, t) that has
to be taken such that total cost is three. In graph H, the optimal solution for the adversary is to
evenly distribute its budget on both arcs (s, v) and (s, t), resulting in total cost of 1.5.
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For both graphs, if at least one of xsv,xst is one, the controllable budgeted uncertainty set is
reduced to only contain the hedging point, i.e., U(x) = {b}. Then, for both graphs G,H, the cost
for arc (s, t) is zero and arc (s, t) is the shortest s-t-path. Thus, the total cost is equal to the
according query cost.

In both graphs G and H, the minimal total cost over the queries is one. They are obtained for
xsv = 1 and xst = 0. In both cases, then there is no shortest s-t-path including arc (s, v). Thus,
budget deflection occurs.

In graph G, arc (s, v) is never part of an s-t-path. The arc (s, v) could have been removed in
some pre-processing for the shortest path problem in graph G. Thus, spending budget on reducing
the uncertainty for arc (s, v) as it happens in the optimal solution seems unintended.

In graph H there is an s-t-path that includes arc (s, v). In this case, budget deflection can be a
desired aspect of modeling.

If the adversary in KHP represents uncertainty in the worst-case scenario rather than an actual
adversarial agent, budget deflection seems unwanted. We can prevent budget deflection if we set
the lower query function to zero:

Theorem 3.9. Let X = Rn
≥0 and assume that the query cost is elementwise. Let x∗ be an optimal

solution of KHP with query cost qe(x∗
e) > 0 for some e ∈ [n] where ϕℓ

e = 0. Then there exists
u ∈ U(x∗) such that there is an optimal solution y∗ to the underlying problem with y∗

e > 0.

Proof. Let x∗ be an optimal query. Fix some e ∈ [n] with positive query cost, i.e., q(x∗
e) > 0.

Assume for contradiction that for all u∗ ∈ U(x∗) we have y∗
e = 0 for all optimal choices y∗ ∈ Y .

First, we argue that without loss of generality, u∗
e = 0: Due to ϕℓ

e = 0, the remaining constraints
in U are upper bounds on u such that u∗

e = 0 is feasible. The set Y does not depend on u. Thus, it
suffices to consider the objective for optimality. The value ue only occurs in the summand deueye.
Due to y∗

e = 0 by assumption, we have deueye = 0 regardless of the value for ue. Thus, we can
set u∗

e = 0 without loss of generality.
Let u∗

e = 0 and let x′ be an alternative query that is equal to x∗ in all elements except e
where x′

e = 0. The query x′ is feasible because X = Rn
≥0. Due to qe(x∗

e) > 0, we obtain
F (x′,u∗, y∗) < F (x∗,u∗, y∗) which contradicts the optimality of x∗.

If we set ϕℓ
e = 0, we disable budget deflection. As a corollary of the following theorem, we obtain

that the optimal objective value does not decrease if in an instance of KHP budget deflection is
disabled while we keep the remaining fixed. More generally, the optimal objective value might
increase if query outcome functions are replaced by smaller ones. Formally, we have:

Theorem 3.10. Let ϕ̃ℓ
e ≤ ϕℓ

e and ϕ̃u
e ≤ ϕu

e for all e ∈ [n]. Assume that the optimal objective value
F ∗ of an instance of KHP with query outcome functions ϕℓ

e and ϕu
e exists. Further assume that

the optimal objective value F̃ ∗ of the same instance except ϕ̃ℓ
e instead of ϕℓ

e and ϕ̃u
e instead of ϕu

e

exists. Then, F ∗ ≤ F̃ ∗.

Proof. Let ψ(x,u) := miny∈Y F (x,u, y). Let U(x) denote the uncertainty set with ϕu
e and ϕℓ

e and
let Ũ(x) denote the uncertainty set with ϕ̃u

e and ϕ̃ℓ
e. Then, for all queries x we have U(x) ⊆ Ũ(x).

Let x̃∗ be an optimal query for the instance with query outcome functions ϕ̃u
e and ϕ̃ℓ

e. The query
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x̃∗ is feasible for the instance with ϕu
e and ϕℓ

e. Combining, we obtain

F ∗ = min
x∈X

max
u∈U(x)

ψ(x,u) ≤ max
u∈U(x̃∗)

ψ(x̃∗,u) ≤ max
u∈Ũ(x∗

0)
ψ(x̃∗,u) = F̃ ∗.

Corollary 3.11. Let F ∗ be the optimal objective value of an instance of KHP. Let F ∗
0 be the

optimal objective value of the same instance except that ϕℓ ≡ 0. Then, F ∗ ≤ F ∗
0 .

3.4 Single-level MIP for binary problems
KHP can be formulated as a single-level mixed-integer problem for linear query cost q, binary
queries and binary underlying optimization problem. We apply McCormick envelopes [McC76] on
the single-level problem derived in Theorem 3.4.

Binary query functions are restrictive compared to our original approach. However, precisely
this case is studied in decision-dependent information discovery, e.g., [OP23, PGDT22, VGY22].

Theorem 3.12. Let the query cost be linear, i.e., q(x) = q⊤x and let the query outcome be binary,
see Example 2.1. Furthermore, let the convex hull of the feasible set of the underlying problem
be a subset of the unit cube, given by a linear number of linear inequalities. Then, an optimal
query exists and KHP can be formulated as an equivalent mixed-integer linear problem with O(n)

variables and constraints.

Proof. As there are finitely many feasible solutions for a query x, an optimal query x∗ exists.
Let conv(Y ) =

{
y ≥ 0

∣∣∣ A⊤y = a
}

. Based on Theorem 3.4, in our setting KHP is equivalent
to the single-level problem

min
x,y,β,θ

Γθ+
∑

e∈[n]
qexe + ceye + βe + xe (bedeye − beθ− βe)

s.t. θ+ βe − deye ≥ 0 ∀e ∈ [n]

Ay = a

y,β, θ ≥ 0
x ∈ {0, 1}n .

The only non-linear part are the bilinear summands xe (bedeye − beθ− βe) in the objective.
In the following, we obtain an exact reformulation for these bilinear terms by the McCormick
envelopes, since x is binary. First, we deduce upper and lower bounds for the latter factor: Recall
that b and d are non-negative, see Section 2. Furthermore, in an optimal solution we have θ ≤ D

and βe ≤ de, see Lemma 3.6. Together with y,β and θ being non-negative, in an optimal solution
we have

bedeye − beθ− βe ∈ [−beD− de, bede].

Next, we introduce new variables ze for the bilinear summands. The lower bound

ze ≥ max {−(beD+ de)xe, bede(xe + ye − 1) − beθ− βe}
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suffices as we minimize. In total, we obtain the following mixed-integer linear problem:

min
x,y,z,β,θ

Γθ+
∑

e∈[n]
qexe + ceye + βe + ze

s.t. ze − bedexe − bedeye + beθ+ βe ≥ − bede ∀e ∈ [n]

ze + (beD+ de)xe ≥ 0 ∀e ∈ [n]

θ+ βe − deye ≥ 0 ∀e ∈ [n]

Ay = a

y,β, θ ≥ 0
x ∈ {0, 1}n .

This problem has both O(n) variables and constraints.

4 Robustness against uncertain hedging points
We now consider optimization under controllable uncertainty with unknown hedging points (UHP).
After we introduce the problem, we compare it to the problem of the previous section and a sim-
ilar problem from the literature. Then, we provide some bounds on the optimal objective value.
Afterwards, we develop an equivalent single-level reformulation of the four-level problem. Finally,
we consider whether budget deflection can occur.

In UHP, the hedging points b are chosen adversarially after queries x are made and before the
underlying problem’s decisions y are fixed. The remaining uncertainty u realizes in a worst-case
manner afterwards. In total, we have the following four-level optimization problem

min
x∈X

max
b∈B

min
y∈Y

max
u∈U(x,b)

F (x,u, y). (UHP)

Comparison of UHP with KHP and DDID There are two main differences between UHP,
considered in this section, and KHP from the previous section. First, in UHP, hedging points b
are variables that can change. In contrast, hedging points are fixed values in KHP. Furthermore,
in KHP, the uncertainty realizes in-between making queries and solving the underlying problem.
However, in UHP, the uncertainty realizes after the decision of the underlying problem is fixed.

UHP is a generalization of decision-dependent information discovery (DDID), e.g., [PGDT22,
OP23]. In DDID, there are only binary queries and the objective function does not depend on the
query. Binary queries can be modeled in UHP with appropriate query outcome functions ϕℓ

e, ϕu
e ,

see Example 2.1. Furthermore, if a query cost is set to zero in UHP, the objective function does
not depend on the query anymore. The remaining settings in UHP and DDID are the same.

4.1 Bounds for UHP
In the following, we show upper and lower bounds on the optimal objective value of UHP. They
are based on the boundaries of the intervals [ce, ce + de] for the uncertain cost coefficients in the
underlying problem’s objective.
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Observation 4.1. For the optimal objective value F (x∗,u∗, y∗) of UHP holds

min
y∈Y

c⊤y ≤ F (x∗,u∗, y∗) ≤ min
y∈Y

max
u∈U

f(u, y) ≤ min
y∈Y

(c+ d)⊤y.

Proof. Recall that F (x,u, y) = q(x)+ (c+ d ·u)⊤y, that q(x), c, d are non-negative, U , B ⊆ [0, 1]n,
0 ∈ X and U(0, b) = U , see Section 2. Furthermore, the controllable uncertainty set always
contains the hedging point b.

If there is no query cost in UHP, an optimal query reduces the upper bounds in the controllable
uncertainty set U(x, b) to a maximal amount. Thus, we have

F (x∗,u∗, y∗) = min
x∈X

max
b∈B

min
y∈Y

max
u∈U(x,b)

f(u, y) + q(x) ≥ min
x∈X

max
b∈B

min
y∈Y

max
u∈U(x,b)

f(u, y)

≥ max
b∈B∩U

min
y∈Y

f(b, y)

≥ min
y∈Y

f(0, y) = min
y∈Y

c⊤y.

For the upper bounds, fix x = 0 to obtain

F (x∗,u∗, y∗) ≤ max
b∈B

min
y∈Y

max
u∈U(0,b)

F (0,u, y) = max
b∈B

min
y∈Y

max
u∈U

f(u, y) = min
y∈Y

max
u∈U

f(u, y)

≤ min
y∈Y

max
u∈[0,1]n

(c+ d · u)⊤y = min
y∈Y

(c+ d)⊤y.

The robust problem for the underlying problem provides a tighter upper bound. Recall that
the uncertainty set U is the budgeted uncertainty set, see Assumption 2.6. For binary underlying
problems, the robust problem can thus be solved by n+ 1 underlying problems [BS03].

4.2 Single-level reformulation for UHP
The main result of this section is an equivalent single-level reformulation for UHP. First, we
define some terms to simplify notation and consider the bilevel problem for fixed query and fixed
hedging points. Then, we reformulate the inner robust problem as n+ 1 nominal problems for
binary underlying problems. Afterwards in Theorem 4.7, for binary underlying problems that can
be solved as LP, we obtain a single-level NLP that is equivalent to UHP.

Definition 4.2. Let

Γ̃(x, b) := Γ −
∑

e∈[n]
ϕℓ

e(xe)be,

c̃e(xe, be) := ce + ϕℓ
e(xe)debe,

he(xe, be) := 1 − ϕu
e (xe) +

(
ϕu

e (xe) − ϕℓ
e(xe)

)
be,

hn+1(xn+1, bn+1) := 0,
Ge(xe, k) := ce + 1e<k(de − dk) (1 − ϕu

e (xe)) , and

ge(xe, k) := ce + 1e<k(de − dk)
(
ϕu

e (xe) − ϕℓ
e(xe)

)
+ ϕℓ

e(xe)de

where 1e<k denotes the indicator whether e < k.
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By the assumptions on b, c, d, Γ and ϕℓ
e(xe), see Section 2, the modified budget Γ̃(x, b) and the

modified cost c̃e(xe, be) is non-negative.

Lemma 4.3. Let x ∈ X be a fixed query and fix a hedging point b ∈ B. Then, the bilevel problem

min
y∈Y

max
u∈U(x,b)

f(u, y) (7)

is equivalent to the following LP:

min
β,θ,y

Γ̃(x, b)θ+
∑

e∈[n]
c̃e(xe, be)ye + he(xe, be)βe (8)

s.t. θ+ βe − deye ≥ 0 ∀e ∈ [n]

β, θ ≥ 0
y ∈ Y .

Proof. In the following, we explicitly formulate the constraints of U(x, b), see Definition 2.2 and
Assumption 2.6, and the objective function f(u, y), see Assumption 2.5. The lower level of Problem
(7) is the LP

max
u

∑
e∈[n]

ceye + deueye (9)

s.t. ue ≥ ϕℓ
e(xe)be ∀e ∈ [n]

ue ≤ 1 − ϕu
e (xe)(1 − be) ∀e ∈ [n]∑

e∈[n]
ue ≤ Γ.

The dual problem of Problem (9) is:

min
α,β,θ

Γθ+
∑

e∈[n]
ceye − ϕℓ

e(xe)beαe + (1 − ϕu
e (xe)(1 − be)) βe (10)

s.t. −αe + θ+ βe − deye = 0 ∀e ∈ [n]

α,β, θ ≥ 0.

Due to strong duality, Problems (9) and (10) have the same optimal objective value. Thus, we
can replace Problem (9) by Problem (10). Furthermore, we substitute αe = θ+ βe − deye ≥ 0, use
Definition 4.2 and combine with the minimization of y in Problem (7) to obtain Problem (8).

The robust counterpart of a binary optimization problem can be effectively optimized via n + 1
appropriate nominal optimization problems [BS03, Theorem 3]. These nominal optimization prob-
lems only differ in the cost vector. For Problem (7), we obtain the following adaption.

Assumption 4.4. For the remaining, we assume that the elements are ordered such that entries
of the vector d are non-increasing for increasing index and add dn+1 = 0, i.e.,

d1 ≥ d2 ≥ · · · ≥ dn ≥ dn+1 = 0.
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Theorem 4.5 (Adaption of [BS03]). Let the underlying optimization problem be binary, i.e.,
Y ⊆ {0, 1}n. Then, Problem (7) is equivalent to

min
k∈[n+1]

Γ̃(x, b)dk + min
y∈Y

∑
e∈[n]

c̃e(xe, be)ye +
∑

j∈[k]
(dj − dk)hj(xj , bj)yj . (11)

Proof. The single-level reformulation (8) only differs in the coefficient he(xe, be) of the dual vari-
ables βe in the objective function to the problem considered in [BS03, Theorem 3]. The statement
follows from the proof given in [BS03].

There are several results that reduce the number of subproblems that have to be solved, e.g.,
[LK14, HRS18, BGK23]. We will not further consider these results.

If the binary underlying problem is furthermore given as an LP, we provide an equivalent single-
level LP for the three innermost levels of UHP in the following lemma.

Lemma 4.6. Let x be a fixed query, assume that the underlying problem be binary, i.e., Y ⊆
{0, 1}n, fulfilling

conv(Y ) =
{
y

∣∣∣ A⊤y = a, y ≥ 0
}

with A ∈ Rm×n, a ∈ Rm.

Let B be given by a polynomial-sized set of linear inequalities. Then, the remaining problem, i.e.,

max
b∈B

min
y∈Y

max
u∈U(x,b)

f(u, y) (12)

is equivalent to the following LP:

max
R,b,z

R (13)

s.t. −ge(xe, k)be +
∑

i∈[m]

Ai,ez
(k)
i ≤ Ge(xe, k) ∀k ∈ [n+ 1], e ∈ [n]

R+
∑

e∈[n]
ϕℓ

e(xe)be −
∑

i∈[m]

aiz
(k)
i ≤ Γ ∀k ∈ [n+ 1]

b ∈ B.

Proof. Based on Theorem 4.5, Problem (12) is equivalent to the problem

max
R∈R, b∈B

R

s.t. R− Γ̃(x, b) ≤ ψ(x, b, k) ∀k ∈ [n+ 1]

with

ψ(x, b, k) := min
y∈Y

∑
e∈[n]

c̃e(xe, be)ye +
∑

j∈[k]
(dj − dk)hj(xj , bj)yj . (14)

The dual of the minimization problem in (14) is given for every k ∈ [n+ 1] by

max
z(k)∈Rm

∑
i∈[m]

aiz
(k)
i

s.t.
∑

i∈[m]

Ai,ez
(k)
i ≤ c̃e(xe, be) + ce + 1e<k(de − dk) he(xe, be) ∀e ∈ [n].

Based on strong duality, we can combine this maximization problem with the evaluation of vari-
ables R and b to obtain the equivalent LP in Problem (13).
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Finally, we obtain a single-level non-linear problem that is equivalent to UHP.

Theorem 4.7. Let the underlying problem be binary and solvable as an LP. Furthermore, let the
set of hedging points B be given by a polynomial number of constraints that are linear in be. Then,
for UHP there exists an equivalent single-level NLP.

Proof. By Lemma 4.6, the inner three levels of UHP are equivalent to the LP (13). Due to
strong duality, we obtain an equivalent single-level problem to UHP, when we combine the dual
of Problem (13) with the minimization over queries x ∈ X.

Corollary 4.8. For some A ∈ Rm×n, a ∈ Rm, let

conv(Y ) =
{
y

∣∣∣ A⊤y = a, y ≥ 0
}

and B =

{
b ∈ [0, 1]n

∣∣∣∣∣ Γ −
∑

e

ϕℓ
e(xe)be ≥ 0

}
.

Then, UHP is equivalent to the following single-level bilinear problem

min
x, y, θ,

θ̃, β

Γ

θ+ ∑
k∈[n+1]

θ̃k

 +
∑

e∈[n]
βe +

∑
k∈[n+1]

Ge(xe, k)y(k)e

s.t. βe + ϕℓ
e(xe)θ+

∑
k∈[n+1]

ϕℓ
e(xe)θ̃k + ge(xe, k)y(k)e ≥ 0 ∀e ∈ [n]

−aeθ̃k +
∑

i∈[m]

Ai,ey
(k)
i = 0 ∀k ∈ [n+ 1], e ∈ [n]

∑
k∈[n+1]

θ̃k = 1

θ, θ̃k, βe, y(k)e ≥ 0 ∀k ∈ [n+ 1], e ∈ [n]

x ∈X.

For binary queries given by a polynomially sized MIP, UHP can be reformulated as a MIP
based on linearizing bilinear terms, similarly as done for KHP in Theorem 3.12. Note that under
comparable assumptions a similar result to Theorem 4.7 can be obtained in the setting of DDID,
see [OP23, Section 4].

4.3 Budget deflection for UHP
In the following, we show that budget deflection does not occur in the setting of UHP. Recall
that budget deflection is the phenomenon that a query is made for an element to control the
uncertainty of other elements, see Section 2.4. In contrast to Theorem 3.9 for KHP, we do not
need any additional assumption on ϕℓ when we consider UHP in the following Theorem.

Theorem 4.9. Let X = R≥0 and let q denote elementwise query cost. For an instance of UHP,
let x∗ be an optimal solution with qe(x∗

e) > 0 for some e ∈ [n]. Then there exists an optimal b∗
e

such that there is an optimal solution y∗ with y∗
e > 0.

Proof. Due to elementwise query cost, the overall objective function has the elementwise structure
F (x,u, y) =

∑
e∈[n] qe(xe) + ceye + deueye.
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We do a proof by contradiction. Let x∗ be a fixed optimal query with qe(x∗
e) > 0 and y∗

e = 0
for some e ∈ [n] for all optimal b∗

e. Then, the only summand including ue in the objective, uebeye

is already zero. Thus, without loss of generality u∗
e = ϕℓ

e(x
∗
e)b

∗
e as there is no other lower bound

on ue. As a consequence, we can have b∗
e = 0 without loss of generality by a similar argument.

We now set xe = 0 to reduce the objective value as qe(x∗
e) > 0. This does not change the latter

decisions for b, y,u and contradicts to the optimality of x∗.

Corollary 4.10. In UHP, there is no budget deflection.

5 Conclusion and outlook
We introduced the concept of controllable uncertainty. OCU models optimization problems with
uncertainty in which one can shrink intervals for uncertain parameters at a certain cost. The
concept is highly flexible. In particular can be applied to a large variety of robust optimization
problems that differ in the number, type and order of levels, the structure of the query function and
the parameters that are subject to uncertainty. We distinguish whether hedging points are given
as part of the input or chosen by an adversary a posteriori. For the first case of known hedging
points, we consider the setting where the uncertainty realizes before the underlying optimization
problem is solved. In the latter case of unknown hedging points, we consider the setting where the
point in time when uncertainty reveals is influenced by the queries. For both cases, we consider an
example problem setting with three and four levels, respectively. In both cases, we were able to
simplify the problems to manageable, though still difficult, problem classes. Thereby, we illustrate
that optimization models that use the concept of controllable uncertainty can still be accessible
to methods which seek global optimality, despite an initially daunting number of levels.

Future research may aim to identify and classify further classes of optimization problems under
controllable uncertainty for which levels can be reduced significantly. Possibly this could also
discover polynomially solvable ones. Moreover, specialized algorithmic techniques could lead to
significant speed-ups to solve problems under controllable uncertainty. An advantage of the OCU
approach in particular in contrast to DDID is that OCU could be used in economic applications for
quantifying the value of benefits achieved by queries. Depending on the setting, leader queries can
serve multiple purposes, namely hedging against highly unwelcome realizations of the uncertainty,
quite similar to what is done in fortification games, but also gain access to uncertain information
earlier – or, in the interpretation of a two-player game, force the adversary’s hand. An important
aspect of ROCU models is budget deflection. A third and sometimes unwanted purpose is just
to exhaust the uncertainty budget. We discuss modeling subtleties in conjunction with this as a
first step to quantitatively differentiate between these purposes. We give fundamental results to
study this and similar intriguing phenomena arising for ROCU models.
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