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Abstract One of the chief attractions of stochastic mixed-integer second-order cone programming is its
diverse applications, especially in engineering (Alzalg and Alioui, IEEE Access, 10:3522-3547, 2022). The
linear and nonlinear versions of this class of optimization problems are still unsolved yet. In this paper,
we develop a hybrid optimization algorithm coupling branch-and-bound and primal-dual interior-point
methods for solving two-stage stochastic mixed-integer nonlinear second-order cone programming. The
adopted approach uses a branch-and-bound technique to handle the integer variables and an infeasible
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1 Introduction

The purpose of this paper is to study and solve two-stage stochastic mixed-integer nonlinear second-order
cone programming (SMINLSOCP for short), in which conicity, uncertainty, integrality and nonlinearity all
need to be faced and handled. See Figure 1 which shows conceptual relationships between SMINLSOCP and
some special cases. An important special case of SMINLSOCP is stochastic mixed-integer (linear) second-
order cone programming (SMISOCP for short). Both SMISOCP and SMINLSOCP are still algorithmically
unsolved yet. Alzalg and Alioui [6] described some application models leading to two-stage SMISOCP. The
applications of SMISOCP, which were the focus of [6], include random discrete facility location, portfolio
optimization with CVaR and diversification constraints, stochastic joint uncapacitated location-inventory
problems, optimal infrastructure problems for electric vehicles with battery swap technology, and optimal
random berth allocation problems with uncertain handling time.

If we pull out the integrality from SMISOCP, we get stochastic second-order cone programming (SSOCP).
SSOCPs are convex optimization problems and can be solved in three different approaches or methods:
Benders’ decomposition, deterministic equivalence, and Lagrangian dual. In the Benders’ decomposition
method, we divide the stochastic program into stages in which variables from earlier stages are used as
constraints to solve the current subproblem. The work of Alzalg in [1,3] (see also Alzalg and Ariyawansa [7])
is based on this approach. In the deterministic equivalence method, we use the extended form of the
stochastic program to create a huge one-stage problem with all constraints and all possible scenarios. The
work of Alzalg in [2] and that of Alzalg et al. in [8] are based on this approach. In the Lagrangian dual
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method, we relax the so-called nonancipativity constraints and use the barrier function method to improve
the dual objective function’s smoothness so that Newton search direction can be used. The work of Zhao [34]
is based on this approach.

If we pull out the conicity from SMISOCP, we get stochastic mixed-integer linear programming (SMILP).
SMILPs have also been studied widely; see for example [21, 26, 27]. Some solution methods for solving
SMILP can be found in [17, 22, 25,28, 29, 33]. Most of these methods are, in general, based on a combination
of Benders decomposition and cutting-plane techniques and their modifications.

If we remove the uncertainty from SMISOCP, we get (deterministic) mixed-integer second-order cone
programming (MISOCP). One very straightforward way to develop a method for solving MISOCPs is to
use a branch-and-bound approach with an interior-point method designed especially for second-order cone
programs. To be competitive in large-scale MISOCPs, it is important to reduce the number of nodes in the
tree by using relaxation and cutting techniques designed for MISOCPs and to reduce the runtime at each
node by using a second-order cone solver that can detect infeasibility and warmstart; see [10–13,15]. Çezik
and Iyengar [18] discussed cut generation for mixed-integer conic programming problems by extending
some well-known strategies for mixed-integer linear programs to mixed-integer conic programs, including
second-order cones. Atamtürk and Narayanan [9] introduced rounding cuts for MISOCPs by decomposing
each second-order constraint into 2-dimensional polyhedral set (see Vielma et al. [31]). Drewes [19] proposed
a hybrid branch-and-bound and branch-and-cut method for MISOCPs.

MISOCP is a subset of mixed-integer nonlinear programming (MINLP). For MINLPs, Benson and
Shanno [10] present an exact primal-dual penalty method for this class of optimization problems by using
an infeasible interior-point method to solve the resulting nonlinear subproblems and a branch-and-bound
framework to handle the integer variables. See also the work of Benson and Vanderbei [15] which explains
how to rewrite second-order cone and semidefinite problems so that they can be solved with a general-
purpose interior-point method for nonlinear programming.
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MINLP: (Deterministic) mixed-integer nonlinear programming
MISOCP: (Deterministic) mixed-integer second-order cone programming
SSOCP: Stochastic second-order cone programming
SMILP: Stochastic mixed-integer linear programming
SMISOCP: Stochastic mixed-integer second-order cone programming
SMINLSOCP: Stochastic mixed-integer nonlinear second-order cone programming

Figure 1: Conceptual relationships between SMISOCP and SMINLSOCP problems and other relevant
optimization problems.
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In this paper, we develop a combined branch-and-bound and interior-point algorithm for SMINLSOCPs,
which uses a polynomial-time infeasible interior-point method for the inner-level second-order cone sub-
problems and a branch-and-bound technique for outer-level improvements. Our approach is suitable for
the outer approximation framework, where each second-order cone subproblem in a sequence may differ
from the others in a variety of ways due to its ability to handle any change to the problem. In addition, if the
problem is binary stochastic second-order cone programming, the mathematical program with equilibrium
constraints (MPEC) formulation is utilized. The MPEC reformulation could be solved before the start of the
branch-and-bound code in order to prevent interrupting the algorithm’s flow. Nevertheless, the solution of
the continuous relaxation can serve as a “good warmstart” for solving the MPEC reformulation and may
aid in locating a local optimum with a lower objective function value.

Warmstarting is the use of information obtained during the process of solving a problem to solve
subsequent problems that are closely related. In the case of mixed-integer nonlinear programming problems,
warmstarting means setting the initial solution (which has primal, dual, and slack variables) to the optimal
solution of its parent. The major perceived difficulties of an interior-point method are the infeasibility
detection, the lack of warmstarting, and the handling of fixed variables. Also, using the branch-and-bound
approach may cause subproblems to become infeasible, so it is important to detect these instances early
and reliably. During the branch-and-bound method, a problem’s lower and upper bounds may become the
same. Since these are fixed variables, the optimal set of Lagrange multipliers being unbounded.

This paper is organized as follows. In Section 2.2, we introduce some notations and definitions related
to the second order cone. We also introduce our problem formulation in Section 2.2. Section 3 presents an
overview of the resulting algorithm, including a brief description of both the branch-and-bound method
and the infeasible interior-point method. In Section 4, we show how the cone constraint can be rewritten
in a different way to make it smooth and convex. The inner- and outer-levels algorithmic improvements
are discussed in detail in Sections 5 and 6. In Section 7, some numerical results on randomly generated
SMISOCP problems are provided in order to assess the performance of the proposed algorithm.

2 Problem formulation

In this section, we present some notations and definitions that will be used and needed throughout the
paper. Then we describe the SMINLSOCP problem formulation and its deterministic equivalence.

2.1 The second-order cone: Notations and related definitions

We use ”, ” and ”; ” to adjoin matrices and vectors in a row and column, respectively. To illustrate this, let x
and y be vectors, then [

x
y

]
=

(
xT, yT

)T
= (x; y).

We use En to denote the Euclidean space R × Rn−1 whose vectors indexed from 0. For any vector x ∈ En

indexed from 0, we write x̄ for the sub-vector composed of entries 1 through n − 1, so x ≜ (x0; x̄).
The nth-dimensional second-order cone (also known as the Lorentz or quadratic cone) is defined as

E
n
+ ≜ {x = (x0; x̄) ∈ En : x0 ≥ ∥x̄∥},

where ∥ · ∥ represent the Euclidean norm. Figure 2 shows the 3rd-dimensional second-order cone E3
+.
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Figure 2: The 3rd-dimentional second-order cone E3
+ ≜

{
(x0; x1; x2) ∈ E3 : x0 ≥

√
x2

1 + x̆2
}
.

The interior of this cone is the set

int En
+ ≜ {x = (x0; x̄) ∈ En : x0 > ∥x̄∥}.

The coneEn
+ is pointed, closed, convex, and self dual (i.e., it equals its dual cone). In fact, En

+ is considered
one of the most important three symmetric cones (see [20]). If n is known from the context and x ∈ En, we
use x ⪰ 0 (respectively, x ≻ 0) to indicate that x ∈ En

+ (respectively, x ∈ int En
+).

As an important tool for our upcoming development, we associate with each x ∈ En the arrow-shaped
matrix, which is defined as

Arw(x) ≜
[

x0 x̄T

x̄ x0I

]
.

Note that x ⪰ 0 (respectively, x ≻ 0) if and only if Arw(x) is positive semidefinite (respectively, Arw(x)
is positive definite). We use en ≜ (1; 0) for the identity vector in En

+. As another important tool for our
development, we will use the Jordan multiplication ◦ : En

+ −→ E
n
+, which is defined as

x ◦ y ≜
[

xTy
x0 ȳ + y0x̄

]
= Arw(x)y = Arw(x)Arw(y)en.

It is known that (En
+, ◦) is a Jordan algebra, and that it is a Euclidean Jordan algebra under the standard

inner product (see [20] for definitions).
The spectral decomposition of x ∈ En is a decomposition of x into its eigenvectors (also called idempo-

tents), denoted as c1(x) and c2(x), together with its eigenvalues, denoted as λ1(x) and λ2(x). This decompo-
sition is obtained as follows:

x = (x0 + ∥x̄∥)︸     ︷︷     ︸
λ1(x)

(
1
2

)(
1;

x̄
∥x̄∥

)
︸       ︷︷       ︸

c1(x)

+ (x0 − ∥x̄∥)︸     ︷︷     ︸
λ2(x)

(
1
2

)(
1;−

x̄
∥x̄∥

)
︸          ︷︷          ︸

c2(x)

.

The values trace(x) ≜ λ1(x) + λ1(x) = 2x0 and det(x) ≜ λ1(x)λ1(x) = x2
0 − ∥x̄∥

2 are called the trace and
determinant of x, respectively. We call x ∈ En invertible (or nonsingular) if det(x) , 0 and call x−1 the inverse
of x, which is defined as x−1 ≜ λ−1

1 (x)c1(x) + λ−1
2 (x)c2(x) = Rx

det(x) , where R ≜ [(1, 0T); (0,−I)] is the reflection
matrix in En. Note that every positive definite vector in En is invertible and its inverse is also positive
definite.

The logarithmic barrier function f : intEn
+ −→ R is defined as f (x) ≜ −ln det(x). This function will play

an essential role in our algorithmic development.
The above notions and concepts are also used in the block sense as follows: Let x ≜ (x1; x2; . . . ; xr),

y ≜ (y1; y2; . . . , yr), where xi, yi ∈ E
ni for each i = 1, 2, . . . , r. Then

(i) Er ≜ El
× E

n2 × · · · × E
nr , Er+ ≜ E

n1
+ × E

n2
+ × · · · × E

nr
+ , and intEr+ ≜ intEn1

+ × intEn2
+ × · · · × intEnr

+ ;

(ii) Arw(x) ≜ Arw(x1) ⊕Arw(x2) ⊕ · · · ⊕Arw(xr) is the arrow-shaped in x ∈ Er; 1

1The direct sum of two square matrices X and Y is the block matrix X ⊕ Y ≜
[

X O
O Y

]
.
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(iii) x ◦ y ≜ (x1 ◦ y1; x2 ◦ y2; · · · ; xr ◦ yr) is the Jordan product in Er;

(iv) xTy ≜ xT
1 y1 + xT

2 y2 + · · · + xT
r yr is the inner product in Er;

(v) e ≜ (en1 ; en2 ; . . . ; enr ) is the identity of Er (its dimension will be clear from the context);

(vi) x1 ≜ (x−1
1 , x

−1
2 , . . . , x

−1
r ) is the inverse of x in Er provided that det(xi) , 0 for i = 1, 2, . . . , r.

(vii) det(x) ≜
∏r

i=1 det(xi) is the determinant of x ∈ Er;

(viii) f (x) ≜ −ln det(x) = −
∑r

i=1 ln det(xi) is the logarithmic barrier function of x ∈ int Er+.

If the block setting is known from the context and x ∈ Er, we use x ⪰r 0 to indicate that x ∈ Er+. This
occurs if x is partitioned conformally as x = (x1, x2, . . . , xr) and each xi ∈ E

ni satisfies xi ⪰ 0 for i = 1, 2, . . . , r.
Similarly, we use x ≻r 0 to indicate that x ∈ int Er+.

We use O and I for zero and identity matrices respectively. We also write 1 for a vector with all entries
equal to one. The dimensions of O, I and 1 will be clear from the context. For any mixed-integer vector
x ∈ Zp

×Rn−p indexed from 1, we write ẍ for the integer sub-vector composed of entries 1 through p, and write
x̆ for the real sub-vector composed of entries p+1 through n, so x ≜ (ẍ; x̆) ∈ Zp

×Rn−p. Finally, for any strictly
positive vector x ∈ Rn, we define ln x ≜

∑n
i=1 ln xi, x−1 ≜ (x−1

1 ; x−1
2 ; . . . ; x−1

n ), and X ≜ Diag (x1, x2, . . . , xn). That
is, X denotes the n × n diagonal matrix whose diagonal entries are x1, x2, . . . , xn.

2.2 The SMINLSOCP problem formulation

Let m,n, p, q, l and d be positive integers. Let also ℓ1, ℓ2, . . . , ℓr, d1, d2, . . . , ds be positive integers with ℓ =
∑r

i=1 ℓi
and d =

∑s
j=1 d j. Let h : Rn

→ Rℓ and g : Rm
→ Rd be twice continuously differentiable functions,

representing the constraint vectors of the first and second stages, respectively. Let also f1 : Rn
→ R and

f2 : Rm
→ R be twice continuously differentiable functions, representing the first and second stage nonlinear

objectives, respectively. Our problem is defined with deterministic data f1(·) and h(·) and with random data
f2(·, ω) and g(·, ω) whose the realizations depend underlying outcome ω in an event space Ω with a known
probability function P. Given this data, the two-stage SMINLSOCP problem has the form:

min f1(x) + E [φ(x, ω)]
s.t. h(x) ⪰r 0,

x ∈ Zp
×Rn−p,

(1)

where x = (ẍ; x̆) ∈ Zp
×Rn−p is the first-stage decision variable, E [φ(x, ω)] ≜

∫
Ω
φ(x, ω)P(dω), and φ(x, ω) is

the minimum value of the problem
min f2(y, ω)
s.t. g(x, y, ω) ⪰s 0,

y ∈ Zq
×Rm−q.

(2)

Here y = (ÿ; y̆) ∈ Zq
× Rm−q is the second-stage decision variable. When p = q = 0 we have the two-stage

SSOCP problem, and when n = p and m = q we have a two-stage stochastic integer programming problem.
We examine Problems (1) and (2) when the event space Ω is discrete and finite.
Let { f (k)

2 (y(k)), g(k)(x, y(k)) : k = 1, . . . ,K}be the set of the possible data of the random data ( f2(y, ω), g(x, y, ω))
and let πk ≜ P(( f (k)

2 (y(k)), g(k)(x, y(k))) = ( f2(y, ω), g(x, y, ω))) be the associated probability for k = 1, 2, . . . ,K.
Given this, Problems (1) and (2) can be written as

min f1(x) +
∑K

k=1 πkφ(k)(x)
s.t. h(x) ⪰r 0,

x ∈ Zp
×Rn−p,

(3)

where φ(k)(x), for k = 1, 2, . . . ,K, is the minimum value of the problem

min f (k)
2 (y(k))

s.t. g(k)(x, y(k)) ⪰s 0,
y(k)
∈ Zq

×Rm−q.
(4)
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For more convenience, we redefine the function of Problem (4) as f (k)
2 (y(k)) ≜ πk f (k)

2 (y(k)) for k = 1, 2, . . . ,K.
We write the SMINLSOCP problem (3, 4) as a large-scale mixed-intger nonlinear second-order cone pro-
gramming problem with finite event space in primal standard form to get

min f1(x) + f (1)
2 (y(1)) + f (2)

2 (y(2)) + · · · + f (K)
2 (y(K))

s.t. h(x) ⪰r 0,
g(1)(x, y(1)) ⪰s 0,

g(1)(x, y(2)) ⪰s 0,
. . .

...
g(K)(x, y(K)) ⪰s 0,

x ∈ Zp
×Rn−p,

y(1), y(2), . . . , y(K)
∈ Zq

×Rm−q.

(5)

We can also define

f
(
x, y(1), y(2), . . . , y(K)

)
≜ f1(x) +

K∑
k=1

f (k)
2

(
y(k)

)
,

and rewrite Problem (5) compactly as

min f (x, y(1), y(2), . . . , y(K))
s.t. h(x) ⪰r 0,

g(k)(x, y(k)) ⪰s 0, k = 1, 2, . . . ,K,
x ∈ Zp

×Rn−p,
y(k)
∈ Zq

×Rm−q, k = 1, 2, . . . ,K.

(6)

Problem (6) (or Problem (5)) is an SMINLSOCP problem in the primal form with a block diagonal
structure. We will show that by exploiting the special structure of Problem (6), the computational work can
be significantly reduced, especially when K is very large.

3 An overview of the proposed algorithm

In this section, we outline the proposed algorithm for solving Problem (6). We discuss two levels of
iterations for our algorithm: Inner-level iterations and outer-level iterations. In inner-level iterations, we
solve a continuous relaxation of the bound-modified problem. Here, we utilize the infeasible interior-point
method developed by Alzalg et al. [8] for SSOCP and that developed by Venderbei and Shanno in [30]
for nonlinear programming. In outer-level iterations, we apply a branch-and-bound technique based on
Nemhauser and Wolsey [32] to handle the integrality of decision variables. We have chosen to include
this section in order to define the framework and notations for the algorithmic improvements discussed in
Sections 5 and 6.

3.1 Outer-level iterations: A branch-and-bound technique

In order to handle the integrality of the integer sub-vectors ẍ, ÿ(1), ÿ(2), . . . , ÿ(K), we apply the branch-and-
bound algorithm based on [32]. This algorithm builds a tree in which each node is associated with a
relaxation of (6). Instead of integrality requirements, each node provides a set of lower and upper bounds
for each 1 ≤ i ≤ p, 1 ≤ j ≤ q, and 1 ≤ k ≤ K. In other words, the root node has the property that the
constraints

ẍi ∈ Z or ÿ(k)
j ∈ Z, for 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ K,

are replaced by the bounds

li ≤ ẍi ≤ ui or l̃(k)
j ≤ ÿ(k)

j ≤ ũ(k)
j , for 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ K,
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respectively, where li,ui ∈ R are (possibly infinite) lower and upper bounds of ẍi for each i = 1, 2, . . . , p, and
l̃(k)
j , ũ

(k)
j ∈ R are (possibly infinite) lower and upper bounds of ÿ(k)

j for each j = 1, 2, . . . , q and k = 1, 2, . . . ,K. In
the branch-and-bound algorithm, the user can specify three algorithmic elements to fine-tune the algorithm’s
behavior. These elements are:

• The search strategy: This is the sequence in which the subproblems of the tree are examined. Generally,
three basic search strategies are considered to determine the next node to branch from. ”The best first”
search strategy selects the node with the least lower bound value among the available nodes. ”The
depth-first” search strategy selects the active node with the lowest level in the tree, breaking ties either
arbitrarily or by finding the node with the least lower bound value.”The breadth first” selects the active
node with the greatest level in the search tree by breaking ties arbitrarily or by finding the node with
the least lower bound value.

• The branching strategy: An important question is how to branch or how to split a subproblem into
smaller subproblems. The simplest scheme to branch the feasible set is to pick an integer variable with
a fractional value in the bound-modified problem that can be solved in a recursive way at a node in
the tree that cannot be explored.

• The bounding strategy (pruning rules): These rules use pruned regions of the search space that are
provably suboptimal. Solving the continuous relaxation problem of any subproblem gives an upper
bound on its objective function. On very large models, an interior point approach may be best for
solving the first problem.

The search and verification phases are two important phases for each branch-and-bound technique. In
the search phase, the algorithm has not yet determined the optimum solution. During the verification phase,
the optimal solution has already been found, but there are still unexplored subproblems in the tree that can
be pruned. Now, we define f⋆ as the lowest value of the objective function among all feasible solutions to
(6), but if there is a feasible solution to our problem, we put f⋆ = ∞, so we have three possible outcomes:

(i) The problem (6) has an optimal solution (x⋆, y(1)⋆ , y(2)⋆ , . . . , y(K)⋆ ) with ẍ⋆ ∈ Zp and ÿ(k)⋆
∈ Zq for

k = 1, 2, . . . ,K. So, there is a feasible solution of our problem. Therefore, we do not pursue this node
further (i.e., fathoming by integrality). In this case, we update f⋆ by letting it equal to f (x⋆, y(1)⋆ , . . . , y(K)⋆ )
if f (x⋆, y(1)⋆ , . . . , y(K)⋆ ) < f⋆.

(ii) The problem has an optimal solution (x⋆, y(1)⋆ , y(2)⋆ , . . . , y(K)⋆ ) but ẍ⋆i < Z for some i ∈ {1, 2, . . . , p},
or ÿ(k)⋆

j < Z for some j ∈ {1, 2, . . . , q} and some k = 1, 2, . . . ,K. If f (x⋆, y(1)⋆ , . . . , y(K)⋆ ) ≥ f⋆, each
feasible solution its descendant may yield to (6) will have an optimal value that is at least as large
as f (x⋆, y(1)⋆ , . . . , y(K)⋆ ). Therefore, we do not pursue this node further (i.e., fathoming by bounds). If
f (x⋆, y(1)⋆ , . . . , y(K)⋆ ) < f⋆, we produce two new children for this node. One child has the bounds

li ≤ ẍi ≤
⌊
ẍ⋆i

⌋
or l̃(k)

j ≤ ÿ(k)⋆

j ≤

⌊
ÿ(k)⋆

j

⌋
,

and the other has the bounds ⌈
ẍ⋆i

⌉
≤ ẍi ≤ ui or

⌈
ÿ(k)⋆

j

⌉
≤ ÿ(k)⋆

j ≤ ũ(k)
j .

(iii) The problem at the generic node is infeasible, so the relaxation problem cannot produce feasible
solutions to (6) because it has infeasible solutions. Therefore, we do not pursue this node further (i.e.,
fathoming by infeasibility).

Consequently, the branch-and-bound technique partitions the feasible region systematically while
searching for feasible solutions to (6). If each node in the tree has been fathomed, Problem (6) has been
resolved. Moreover, the optimal solution is the feasible solution with the lowest objective function value
for Problem (6). So, the lowest objective function does not improve because the branch-and-bound tree is
descended. On the other side, when solving the SMINLSOCP with nonconvex relaxation, a node’s solution
may be worse than that of its children. This occurs because an interior-point technique approaches only a
local optimal solution, and these solutions may be in different neighborhoods. In this paper, we restrict our
discussion and numerical testing to SMINLSOCPs with convex relaxations (i.e., the objective function f is
convex and the constraint functions hi and g(k)

j , for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ d, and 1 ≤ k ≤ K, are concave functions).

7



3.2 Inner-level iterations: An infeasible interior-point method

The described outer-level is based on repeatedly solving nonlinear second-order cone relaxations of Problem
(6) with the addition of the bound constraints on discrete variables. We will use an infeasible interior-point
method to solve a bound-modified problem at each step of the branch-and-bound algorithm. We rewrite
Problem (6) as follows:

min f (x, y(1), y(2), . . . , y(K))
s.t. h(x) ⪰r 0,

g(k)(x, y(k)) ⪰s 0, k = 1, 2, . . . ,K,
l ≤ ẍ ≤ u,
l̃(k)
≤ ÿ(k)

≤ ũ(k), k = 1, 2, . . . ,K.

(7)

We start by adding the slack variables s to the first second-order cone constraint and z(1), z(2), . . . , z(K) to the
second set of second-order cone constraints. We also add the nonnegative slack vectors w ∈ Rp and v(k)

∈ Rq

to the lower bounds on ẍ and ÿ(k), respectively, and add the nonnegative slack vectors t ∈ Rp, r(k)
∈ Rq to the

upper bounds on ẍ and ÿ(k), respectively, for k = 1, 2, . . . ,K. This yields:

min f (x, y(1), y(2), . . . , y(K))
s.t. h(x) − s = 0,

g(k)(x, y(k)) − z(k) = 0, k = 1, 2, . . . ,K,
ẍ −w = l,
ẍ + t = u,
ÿ(k)
− v(k) = l̃(k), k = 1, 2, . . . ,K,

ÿ(k) + r(k) = ũ(k), k = 1, 2, . . . ,K,
s ⪰r 0, z(k)

⪰s 0, k = 1, 2, . . . ,K,
w, t,v(k), r(k)

≥ 0, k = 1, 2, . . . ,K.

(8)

It is worth noting that one or both of the bounds on ẍ and ÿ(k) may be infinite, for each k = 1, 2, . . . ,K,
respectively. If any of the bounds is infinite, the relevant constraint can be just omitted. We incorporate the
slack variables in the objective function of Problem (8) by adding logarithmic barrier terms and get:

min f (x, y(1), . . . , y(K)) − µ(ln det(s) + ln(w) + ln(t) +
∑K

k=1(ln det(z(k)) + ln(v(k)) + ln(r(k))))
s.t. h(x) − s = 0,

g(k)(x, y(k)) − z(k) = 0, k = 1, 2, . . . ,K,
ẍ −w = l,
ẍ + t = u,
ÿ(k)
− v(k) = l̃(k), k = 1, 2, . . . ,K,

ÿ(k) + r(k) = ũ(k), k = 1, 2, . . . ,K,

(9)

where µ > 0 is a barrier parameter.
Let ν,γ,ψ,ϑ(k),λ(k), and υ(k), k = 1, 2, . . . ,K, be the Lagrange multipliers (or dual variables) for Problem

(9). Following our notations in Subsection 2.1, the matrices W,Γ,T,Ψ,V(k),Λ(k),R(k) and Υ(k) stand for the
diagonal matrices whose diagonal entries are the components of the vectors w,γ, t,ψ,v(k),λ(k), r(k) and υ(k),
respectively, for k = 1, 2, . . . ,K. Let Aẍ(x) and Ax̆(x) be the transpose of the Jacobians of the constraint function
h(x) with respect to ẍ and x̆, respectively. Let also Bẍ(x, y(k)), Bx̆(x, y(k)), Bÿ(k) (x, y(k)) and By̆(k) (x, y(k)) be the
transpose of the Jacobians of the constraint function g(k)(x, y(k)) with respect to ẍ, x̆, ÿ(k) and y̆(k), respectively,
for each k = 1, 2, . . . ,K (for ease of display, we will sometimes omit the use of function arguments).
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The first-order optimality conditions of (9) are

∇ẍ f (x, y(1), . . . , y(K)) − Aẍ(x)Tν −
∑K

k=1 Bẍ(x, y(k))Tϑ(k)
− γ −ψ = 0,

∇x̆ f (x, y(1), . . . , y(K)) − Ax̆(x)Tν −
∑K

k=1 Bx̆(x, y(k))Tν(k) = 0,
∇ÿ(k) f (x, y(1), . . . , y(K)) − Bÿ(k) (x, y(k))Tν(k)

− λ(k)
− υ(k) = 0, k = 1, 2, . . . ,K,

∇y̆(k) f (x, y(1), . . . , y(K)) − By̆(k) (x, y(k))Tν(k) = 0, k = 1, 2, . . . ,K,
s ◦ ν − 2µe = 0,

Wγ − µ1 = 0,
Tψ − µ1 = 0,

z(k)
◦ ϑ(k)

− 2µe = 0, k = 1, 2, . . . ,K,
V(k)λ(k)

− µ1 = 0, k = 1, 2, . . . ,K,
R(k)υ(k)

− µ1 = 0, k = 1, 2, . . . ,K,
h(x) − s = 0,

g(k)(x, y(k)) − z(k) = 0, k = 1, 2, . . . ,K,
ẍ −w − l = 0,
ẍ + t − u = 0,

ÿ(k)
− v(k)

− l̃(k) = 0, k = 1, 2, . . . ,K,
ÿ(k) + r(k)

− ũ(k) = 0, k = 1, 2, . . . ,K.

(10)

We use Newton’s method to solve System (10). Let

σẍ ≜ ∇ẍ f (x, y(1), . . . , y(K)) − Aẍ(x)Tν −
∑K

k=1 Bẍ(x, y(k))Tϑ(k)
− γ −ψ,

σx̆ ≜ ∇x̆ f (x, y(1), . . . , y(K)) − Ax̆(x)Tν −
∑K

k=1 Bx̆(x, y(k))Tν(k),
σÿ(k) ≜ ∇ÿ(k) f (x, y(1), . . . , y(K)) − Bÿ(k) (x, y(k))Tν(k)

− λ(k)
− υ(k),

σy̆(k) ≜ ∇y̆(k) f (x, y(1), . . . , y(K)) − By̆(K) (x, y(k))Tν(k),

and
βs ≜ 2µe − s ◦ ν, βγ ≜ µw−1

− γ, βψ ≜ µt−1
−ψ,

βz(k) ≜ 2µe − z(k)
◦ ϑ(k), βλ(k) ≜ µv(k)−1

− λ(k), βυ(k) ≜ µr(k)−1
− υ(k),

ρ ≜ s − h(x), ϱ ≜ l − ẍ +w, τ ≜ u − t − ẍ,
η(k) ≜ z(k)

− g(x, y(k)), ζ(k) ≜ l̃(k)
− ÿ(k) + v(k), κ(k) ≜ ũ(k)

− r(k)
− ÿ(k).

Let also

C ≜



−I
I
−I
−I

I
−I

. . .
−I

I
−I



, H ≜



I
I

Arw(s)
I

I
Arw(z(1))

. . .
I

I
Arw(z(K))


,

D ≜



W−1Γ
T−1Ψ

Arw(ν)
V(1)−1

Λ(1)

R(1)−1
Υ(1)

Arw(ϑ(1))
. . .

V(K)−1Λ(K)

R(K)−1Υ(K)

Arw(ϑ(K))


,
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J ≜



I O O O · · · O O
I O O O · · · O O
Aẍ Ax̆ O O · · · O O
O O I O · · · O O
O O I O · · · O O
Bẍ Bx̆ Bÿ(1) By̆(1) · · · O O
...

...
...

...
. . .

...
...

O O O O · · · I O
O O O O · · · I O
Bẍ Bx̆ O O · · · Bÿ(K) By̆(K)



, and G ≜



Gẍẍ Gẍx̆ Gẍÿ(1) Gẍy̆(1) . . . Gẍÿ(K) Gẍy̆(K)

Gẍx̆ Gx̆x̆ Gx̆ÿ(1) Gx̆ÿ(2) . . . Gx̆ÿ(K) Gx̆y̆(K)

Gẍÿ(1) Gx̆ÿ(1) Gÿ(1) ÿ(1) Gÿ(1) y̆(1) . . . Gÿ(1) ÿ(K) Gÿ(1) y̆(K)

Gẍy̆(1) Gx̆y̆(1) Gÿ(1) y̆(1) Gy̆(1) ÿ(2) . . . Gÿ(K) y̆(1) Gy̆(1) y̆(K)

...
...

...
...

. . .
...

...
Gẍÿ(K) Gx̆ÿ(K) Gÿ(1) ÿ(K) Gy̆(1) y̆(K) . . . Gÿ(K) ÿ(K) Gÿ(K) y̆(K)

Gẍy̆(K) Gx̆y̆(K) Gÿ(1) y̆(K) Gy̆(1) ÿ(K) . . . Gÿ(K) y̆(K) Gy̆(K) y̆(K)


,

where the entries of the Hessian matrix G is obtained as follows for k = 1, . . . ,K:

Gẍẍ(x, y(k)) = ∇
2
ẍẍ f (x, y(1), . . . , y(K)) −

ℓ∑
i=1

νi∇
2
ẍẍhi(x) −

K∑
k=1

d∑
j=1

ϑ(k)
j ∇

2
ẍẍg(k)

j (x, y(k)),

Gẍx̆(x, y(k)) = ∇
2
ẍx̆ f (x, y(1), . . . , y(K)) −

ℓ∑
i=1

νi∇
2
ẍx̆hi(x) −

K∑
k=1

d∑
j=1

ϑ(k)
j ∇

2
ẍx̆g(k)

j (x, y(k)),

Gẍÿ(k) (x, y(k)) = ∇
2
ẍÿ(k) f (x, y(1), . . . , y(K)) −

d∑
j=1

ϑ(k)
j ∇

2
ẍÿ(k) g

(k)
j (x, y(k)),

Gẍy̆(k) (x, y(k)) = ∇
2
ẍy̆(k) f (x, y(1), . . . , y(K)) −

d∑
j=1

ϑ(k)
j ∇

2
ẍy̆(k) g

(k)
j (x, y(k)),

Gx̆x̆(x, y(k)) = ∇
2
x̆x̆ f (x, y(1), . . . , y(K)) −

ℓ∑
i=1

νi∇
2
x̆x̆hi(x) −

K∑
k=1

d∑
j=1

ϑ(k)
j ∇

2
x̆x̆g(k)

j (x, y(k)),

Gx̆ÿ(k) (x, y(k)) = ∇
2
x̆ÿ(k) f (x, y(1), . . . , y(K)) −

d∑
j=1

ϑ(k)
j ∇

2
x̆ÿ(k) g

(k)
j (x, y(k)),

Gx̆y̆(k) (x, y(k)) = ∇
2
x̆y̆(k) f (x, y(1), . . . , y(K)) −

d∑
j=1

ϑ(k)
j ∇

2
x̆y̆(k) g

(k)
j (x, y(k)),

Gÿ(k) ÿ(k) (x, y(k)) = ∇
2
ÿ(k) ÿ(k) f (x, y(1), . . . , y(K)) −

d∑
i=1

ϑ(k)
j ∇

2
ÿ(k) ÿ(k) g

(k)
j (x, y(k)),

Gÿ(k) y̆(k) (x, y(k)) = ∇
2
ÿ(k) y̆(k) f (x, y(1), . . . , y(K)) −

d∑
j=1

ϑ(k)
j ∇

2
ÿ(k) y(k)

2

g(k)
j (x, y(k)),

Gy̆(k) y̆(k) (x, y(k)) = ∇
2
y̆(k) y̆(k) f (x, y(1), . . . , y(K)) −

d∑
j=1

ϑ(k)
j ∇

2
y̆(k) y̆(k) g

(k)
j (x, y(k)).

We also define

∆p ≜



∆w
∆t
∆s
∆v(1)

∆r(1)

∆z(1)

...
∆v(K)

∆r(K)

∆z(K)



, ∆d ≜



∆γ
∆ψ
∆ν
∆λ(1)

∆υ(1)

∆ϑ(1)

...
∆λ(K)

∆υ(K)

∆ϑ(K)



, ∆xy ≜



∆ẍ
∆x̆
∆ÿ(1)

∆y̆(1)

...
∆ÿ(K)

∆y̆(K)


, rp ≜



βγ
βψ
βs
βλ(1)

βυ(1)

βz(1)

...
βλ(K)

βυ(K)

βz(K)



, rd ≜



ϱ
τ
ρ
ζ(1)

κ(1)

η(1)

...
ζ(K)

κ(K)

η(K)



, and rxy ≜



σẍ
σx̆
σÿ(1)

σy̆(1)

...
σÿ(K)

σy̆(K)


.
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Note that the vectors ∆p,∆d,∆xy, rd, rp and rxy are defined so that

D∆p +H∆d = rp,
−G∆xy + JT∆d = rxy,

C∆p + J∆xy = rd,
or equivalently,

 D O H
O −G JT

C J O


 ∆p
∆xy
∆d

 =
 rp

rxy
rd

 . (11)

System (11) is the KKT conditions and can be resolved clearly without producing any additional fill-in.
Thus, we omit ∆s, ∆w, ∆t, ∆z(k), ∆v(k), ∆r(k), ∆γ, ∆ψ, ∆λ(k), ∆υ(k), for k = 1, 2, . . . ,K, and obtain the reduced
KKT system given in (12).

                                                        −
(G

ẍẍ
−

D
w
+

D
t)

−
G

ẍx̆
−

G
ẍÿ

(1
)

−
G

ẍy̆
(1

)
..
.

−
G

ẍÿ
(K

)
−

G
ẍy̆

(K
)

A
T ẍ

BT ẍ
..
.

BT ẍ
−

G
ẍx̆

−
G

x̆x̆
−

G
x̆ÿ

(1
)

−
G

x̆y̆
(1

)
..
.

−
G

x̆ÿ
(K

)
−

G
x̆y̆

(K
)

A
T x̆

BT x̆
..
.

BT x̆
−

G
ẍÿ

(1
)

−
G

x̆ÿ
(1

)
−

(G
ÿ(1

) ÿ
(1

)
−

D
v(1

)
+

D
r(1

))
−

G
ÿ(1

) y̆
(1

)
..
.

−
G

ÿ(1
) ÿ

(K
)

−
G

x̆y̆
(K

)
BT ÿ(1

)

−
G

ẍy̆
(1

)
−

G
x̆y̆

(1
)

−
G

ÿ(1
) y̆

(1
)

−
G

y̆(1
) y̆

(1
)
..
.

−
G

ÿ(K
) y̆

(1
)

−
G

y̆(K
) ÿ

(1
)

BT y̆(1
)

. . .
. . .

. . .
. . .

. .
.

. . .
. . .

. .
.

−
G

ẍÿ
(K

)
−

G
x̆ÿ

(K
)

−
G

ÿ(1
) ÿ

(K
)

−
G

y̆(1
) ÿ

(K
)
..
.
−

(G
ÿ(K

) ÿ
(K

)
−

D
v(k

)
+

D
r(k

))
−

G
y̆(K

) ÿ
(K

)
B

ÿ(K
)

−
G

ẍy̆
(K

)
−

G
x̆y̆

(K
)

−
G

ÿ(1
) y̆

(K
)

−
G

y̆(1
) y̆

(K
)
..
.

−
G

ÿ(K
) y̆

(K
)

−
G

y̆(K
) y̆

(K
)

B
y̆(K

)

A
ẍ

A
x̆

A
rw
−

1 (ν
)A

rw
(s

)
B ẍ

B x̆
B

ÿ(1
)

B
y̆(1

)
A

rw
−

1 (ϑ
(1

) )A
rw

(z
(1

) )
. . .

. . .
. .
.

. .
.

B ẍ
B x̆

B
ÿ(K

)
B

y̆(K
)

A
rw
−

1 (ϑ
(K

) )A
rw

(z
(K

) )

                                                                                                                ∆
ẍ
∆

x̆
∆

ÿ(1
)

∆
y̆(1

)

. . .
∆

ÿ(K
)

∆
y̆(K

)

∆
ν

∆
ϑ

(1
)

. . .

∆
ϑ

(K
)                                                        =

                                                        

σ
ẍ
+

D
w
ϱ̂
−

D
tτ̂

σ
x̆

σ
ÿ(1

)
+

D
v(1

)ζ̂
(1

)
−

D
r(1

)κ̂
(1

)

σ
y̆(1

)

. . .

σ
ÿ(K

)
+

D
(k

)
v
ζ̂(

K
)
−

D
r(k

)κ̂
(K

)

σ
y̆(K

)

ρ
+

A
rw
−

1 (ν
)β

s

η(
1)
+

A
rw
−

1 (ϑ
(1

) )β
z(1

)

. . .

η(
K

)
+

A
rw
−

1 (ϑ
(K

) )β
z(K

)

                                                        

(12)

11



The matrices Dw,Dt,Dv(k) ,Dr(k) , k = 1, 2, . . . ,K, that appeared in (12) are defined as

Dw ≜ ΓW−1, Dt ≜ ΨT−1,
Dv(k) ≜ V(k)−1

Λ(k), Dr(k) ≜ R(k)−1
Υ(k),

and the vectors ϱ̂, τ̂, ζ̂(k) and κ̂(k), k = 1, 2, . . . ,K, that appeared in (12) are defined as

ϱ̂ ≜ ϱ +D−1
w βγ, τ̂ ≜ τ −D−1

t βψ,
ζ̂(k) ≜ ζ(k) +D−1

v(k)βυ(k) , κ̂(k) ≜ κ(k)
−D−1

r(k)βλ.

Once we get the search directions ∆ẍ, ∆x̆, ∆ÿ(k), ∆y̆(k), ∆ν, and ∆ϑ(k) from (12) by applying block Gauss-
Jordan elimination, we can get the step directions ∆γ, ∆ψ, ∆λ(k), ∆υ(k), ∆s, ∆w, ∆t, ∆z(k), ∆v(k), and ∆r(k), for
k = 1, 2, . . . ,K, by using the following formulas:

∆s = Arw−1(ν)
(
βs − s ◦ ∆ν

)
, ∆z(k) = Arw−1(ϑ(k))

(
β(k)

z − z(k)
◦ ∆ϑ(k)

)
,

∆w = ∆ẍ − ϱ, ∆v(k) = ∆ÿ(k)
− ζ(k),

∆t = τ − ∆ẍ, ∆r(k) = κ(k)
− ∆ÿ(k),

∆γ = Dw

(
ϱ̂ − ∆ẍ

)
, ∆λ(k) = Dv(k)

(
ζ̂λ(k) − ∆ÿ(k)

)
,

∆ψ = Dt

(
τ + ∆ẍ

)
, ∆r(k) = Dr(k)

(
κ̂(k) + ∆ÿ(k)

)
,

The algorithm is initialized with initial vectors x⟨0⟩, s⟨0⟩, y(k)⟨0⟩ , w⟨0⟩, t⟨0⟩, v(k)⟨0⟩ , and r(k)⟨0⟩ , for k = 1, 2, . . . ,K,
and the solution is approached iteratively through a sequence of points obtained from the reduced KKT
system (12) according to:

ẍ⟨ ȷ+1⟩ = ẍ⟨ ȷ⟩ + α⟨ ȷ⟩p ∆ẍ⟨ ȷ⟩, x̆⟨ ȷ+1⟩ = x̆⟨ ȷ⟩ + α⟨ ȷ⟩p ∆x̆⟨ ȷ⟩,
ÿ(k)⟨ ȷ+1⟩

= ÿ(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆ÿ(k)⟨ ȷ⟩ , y̆(k)⟨ ȷ+1⟩
= y̆(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆y̆(k)⟨ ȷ⟩ ,

ν⟨ ȷ+1⟩ = ν⟨ ȷ⟩ + α⟨ ȷ⟩d ∆ν
⟨ ȷ⟩, ϑ(k)⟨ ȷ+1⟩

= ϑ(k)⟨ ȷ⟩ + α⟨ ȷ⟩d ∆ϑ
(k)⟨ ȷ⟩ ,

γ⟨ ȷ+1⟩ = γ⟨ ȷ⟩ + α⟨ ȷ⟩d ∆γ
⟨ ȷ⟩, λ(k)⟨ ȷ+1⟩

= λ(k)⟨ ȷ⟩ + α⟨ ȷ⟩d ∆λ
(k)⟨ ȷ⟩ ,

ψ⟨ ȷ+1⟩ = ψ⟨ ȷ⟩ + α⟨ ȷ⟩d ∆ψ
⟨ ȷ⟩, υ(k)⟨ ȷ+1⟩

= υ(k)⟨ ȷ⟩ + α⟨ ȷ⟩d ∆υ
(k)⟨ ȷ⟩ ,

s⟨ ȷ+1⟩ = s⟨ ȷ⟩ + α⟨ ȷ⟩p ∆s⟨ ȷ⟩, w⟨ ȷ+1⟩ = w⟨ ȷ⟩ + α⟨ ȷ⟩p ∆w⟨ ȷ⟩,
t⟨ ȷ+1⟩ = t⟨ ȷ⟩ + α⟨ ȷ⟩p ∆t⟨ ȷ⟩, z(k)⟨ ȷ+1⟩

= z(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆z(k)⟨ ȷ⟩ ,

v(k)⟨ ȷ+1⟩
= v(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆v(k)⟨ ȷ⟩ , r(k)⟨ ȷ+1⟩

= r(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆r(k)⟨ ȷ⟩ ,

where the superscripts indicate the number of iterations. Here 0 < α⟨ ȷ⟩p ≤ 1 is the primal steplength selected

to assure that s⟨ ȷ+1⟩
≻r 0, z(k)⟨ ȷ+1⟩

≻s 0, and that w⟨ ȷ+1⟩, t⟨ ȷ+1⟩, v(k)⟨ ȷ+1⟩
, r(k)⟨ ȷ+1⟩

> 0. Also, 0 < α⟨ ȷ⟩d ≤ 1 is the dual
steplength selected to assure that ν⟨ ȷ+1⟩

≻r 0,ϑ(k)⟨ ȷ+1⟩
≻s 0, and thatγ⟨ ȷ+1⟩,ψ⟨ ȷ+1⟩, λ(k)⟨ ȷ+1⟩

, υ(k)⟨ ȷ+1⟩
> 0. A technique

for controlling the steplength is discussed in more details in [16] (see also [4, 5]). Additionally, at each
iteration, the value of the barrier parameter µmay be updated as a function of (s◦ν,W⟨ ȷ+1⟩γ⟨ ȷ+1⟩,T⟨ ȷ+1⟩ψ⟨ ȷ+1⟩)
and (z(k)⟨ ȷ⟩

◦ ϑ(k),V(k)⟨ ȷ+1⟩λ(k)⟨ ȷ+1⟩,R(k)l+1υ(k)⟨ ȷ+1⟩).
When primal infeasibility, dual infeasibility, and average complementarity are all less than a certain

tolerance level, the algorithm determines that an optimal solution has been obtained. For Problem (7), the
primal infeasibility, dual infeasibility, and average complementary are as follow:

Primal infeasibility ≜ max
1≤k≤K

{
∥ρ∥∞, ∥ϱ∥∞, ∥τ∥∞, ∥η(k)

∥∞, ∥ζ(k)
∥∞, ∥κ(k)

∥∞

}
,

Dual infeasibility ≜ max
1≤k≤K

{
∥σẍ∥∞, ∥σx̆∥∞, ∥σÿ(k)∥∞, ∥σy̆(k)∥∞

}
,

Average complementary ≜
sTν +wTγ + tTψ

ℓ + 2p
+

∑K
k=1 z(k)Tϑ(k)

Kd
+

∑K
k=1 v(k)Tλ(k)

Kq
+

∑K
k=1 r(k)Tυ(k)

Kq
.

In the next section, we present different alternative formulations of the second-order cone constraints.
These formulations yield convex and smooth problems.
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4 Nondifferentiability at optimality

The form of the second-order cone constraints given in Problem (6) does fit the nonlinear paradigm. In this
paper, we are using an interior point method where the constraints need to be twice continuously differen-
tiable but the Euclidean norm fails that criterion. The inability of h(x) and g(k)(x, y(k)) to be differentiated may
pose a problem for any solver attempting to calculate the derivatives of constraint functions. In practice, if
h̄(x) = 0 and ḡ(k)(x, y(k)) = 0 for k = 1, 2, . . . ,K, then the second-order cone constraints will be nonsmooth.

The nonsmoothness that characterizes the second-order cone constraints can cause problems in two
cases: There exists an intermediate solution at a nondifferentiable point, or a nondifferentiable point is
where an optimal solution exists. It is easy to handle the first case in an interior-point algorithm by
randomly generating the initial solution. Hence, the possibility of encountering a problematic intermediate
solution is eliminated, but avoiding nondifferentiability in optimal solutions is more difficult. We discuss
different ways to modify the second-order cone constraints in such a way that the problem can be written
as a smooth and convex one.

Consider any constraint of the form
∥x̄∥ ≤ x0, (13)

where x ≜ (x0; x̄) ∈ En. Benson and Venderbei [15] (see also [24]) describe different alternate formulations of
this second-order cone constraint. Now, we investigate many different formulations for second-order cone
constraints to produce a convex and smooth problem. The first alternative is the perturbation procedure,
where the resulting second-order cone constraints are smooth, but they may not be equivalent to the original
constraints. The other are ways to rewrite the problem so that the new formulation is equivalent to the
original problem. In what follows, we first present the mathematical setup of these treatments.

4.1 Smoothing by perturbation

Smoothing by perturbation is one way to ovoid the nondifferentiability problem by introducing a positive
constant into the Euclidean norm. In other words, we modify the basic constraint in (13) with√

ϵ2 + ∥x̄∥2 ≤ x0,

where ϵ is a very small constant (typically around 10−6). The perturbation provides a second-order cone
constraint and the resulting problem is smooth and convex. Even if ϵ might be small enough for the
perturbation to be absorbed by the algorithm’s numerical precision, this reformulation is not exactly the
same as the original constraint. For this reason, we want to make the perturbation as small as possible. This
may necessitate experimenting with various choices until we find the smallest value for which the algorithm
can find the optimal solution to the problem. But it may take a long time to solve the same problem more
than once, especially if the problem is large.

Nevertheless, resolving the same problem several times could be time-consuming. As a result, we can
remove the constant ϵ from the second-order cone constraint and replace it with a variable, say v. Thus, the
second-order cone constraint can be replaced with√

v2 + ∥x̄∥2 ≤ x0,

where v > 0. The restriction on positivity of v lets us solve the problem without losing any generality, and
the strict inequality does not make much of a difference for the interior-point method.

4.2 Smoothing by reformulation

In spite of the fact that the perturbation technique works quite well in reality, one could say that it is
advantageous to have a smooth problem as the original constraint. Obviously, it would also be desirable
to preserve the favorable property of convexity in the problem. We present three different reformulation
alternatives.
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(i) Smoothing by squaring: The goal of this reformulation is to replace (13) with an equivalent constraint.
The simplest reformulation is

∥x̄∥2 − x2
0 ≤ 0,

x0 ≥ 0.

The function that is incorporated into the nonlinear program is

γ(x) ≜ ∥x̄∥2 − x2
0, (14)

where γ(x) represents a smooth function everywhere. However, it is not convex. To see this note that
its Hessian matrix is not positive definite:

∇γ(x) = 2
[

x̄
−x0

]
, ∇2γ(x) = 2

[
I 0
0 −1

]
.

As shown in [30], although the feasible region is convex, representing it as the intersection of nonconvex
inequalities can result in a slow convergence to dual feasibility. Therefore, one would assume that this
transform will not operate well.

(ii) Convexification by exponentiation: Using γ(·) defined in (14), we were able to obtain a second-order
cone constraint in a smooth manner. The nonconvexity of γ can be solved by composing it with a
smooth convex function that maps the negative halfline back onto itself. The exponential function is
an example of a convex smooth function. So, let us use

Φ(x) ≜ eγ(x)
− 1.

To verify the convexity of Φ(x), note that

∇Φ(x) = eγ(x)/2

[
x̄
−x0

]
,

∇
2Φ(x) = eγ(x)/2

[
I + x̄xT

−x0x̄
−x0x̄T 1 + x2

0

]
= eγ(x)/2

(
I +

[
x̄
−x0

] [
x̄T
−x0

])
.

From the last expression of Hessian matrix, we find that ∇2Φ is positive definite.

Even though the exponential function provides a smooth and convex reformulation, it does not behave
well in practice because of scaling troubles. For example, when ∥x̄∥ is with order 10, e∥x̄∥

2
is very huge.

So, this treatment is rarely effective in practice.

(iii) Convexification by ratios: Another strategy for avoiding the problem of nonconvexity during smoothing
is to use

δ(x) ≜
∥x̄∥
x0
− x0.

To check a convexity of δ(x), note that

∇δ(x) =

[
2x−1

0 x̄
−x−2

0 ∥x̄∥
2
− 1

]
,

∇
2δ(x) = 2x−1

0

[
I −x−1

0 x̄
−x̄Tx−1

0 x−2
0 ∥x̄∥

2

]
= 2x−1

0

[
I

−x−1
0 x̄T

] [
I −x−1

0 x̄
]
.

The Hessian here is a positive definite matrix. When an interior-point algorithm is used, the strict
inequality constraint on x0 does not apply. In fact, for many second-order cone programming problems,
the affine formulation of x0 has only a constant term, and the only nonsmooth region of δ is at x0 = 0.
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5 Inner-level algorithmic improvements

In [10], Benson introduces the exact primal-dual penalty method to mixed-integer nonlinear programming
problems, which incorporate the works of Benson and Shanno [12] for linear programming and of that Ben-
son and Shanno [13] for nonlinear programming. This method improves the efficiency of the interior-point
algorithm by permitting them to identify infeasible problems and warmstart. The latter is the utilization
of information obtained during the solution of a problem to solve subsequent problems that are closely
related.

5.1 The penalty technique within the interior-point method framework

In this paper, we extend the primal-dual penalty method for the two-stage SMINLSOCP problems. In
these problems, warmstarting will directly correspond to the initial solution setting (which has primal,
dual, and slack variables) of an SMINLSOCP problem of the form (7) to the optimal solution within the
branch-and-bound approach. Since there are complementary conditions at the optimal solution, some of
the dual and slack variables vanish. In this case, the initialization variables are arbitrary and may adversely
affect the algorithm’s performance at the current node. Note that just reinitializing some variables may
result in negative step directions for slack and dual variables. Because the interior-point algorithm shortens
the steplengths αp and αd to keep such variables strictly positive, the algorithm may still become stuck.

Traditional penalty methods, which only offer primal relaxations, may still get stuck when used with a
primal-dual interior-point method where the steplength αd is based on the dual iterates. However, they also
have other desired properties, such as the ability to detect infeasibility and regularizations that automatically
meet constraints. The primal-dual penalty method introduced in [12] for linear programming and in [13]
for nonlinear programming is a remedy that has been shown to work for warmstarts. This approach
relaxes the second-order cone and the nonnegative constraints on the slack and dual variables and provides
regularization for the matrix in the reduced KKT system (12). Thus, the optimal solution of one problem
may be utilized to provide a warmstart for another, the regularization assures that the variables that need
to move actually do make progress, and the algorithm does not become stuck due to the constraints.

The corresponding penalized problem to (7) has the form

min f (x, y(1), . . . , y(K)) + cT
s ξs + cT

wξw + cT
t ξt +

∑K
k=1(cT

z(k)ξz(k) + cT
v(k)ξv(k) + cT

r(k)ξr(k) )
s.t. h(x) − s = 0,

g(k)(x, y(k)) − z(k) = 0, k = 1, 2, . . . ,K,
ẍ −w = l,
ẍ + t = u,
ÿ(k)
− v(k) = l̃(k), k = 1, 2, . . . ,K,

ÿ(k) + r(k) = ũ(k), k = 1, 2, . . . ,K,
s + ξs ⪰r 0,
bν − s ⪰r 0,
z(k) + ξz(k) ⪰s 0, k = 1, 2, . . . ,K,
bϑ(k) − z(k)

⪰s 0, k = 1, 2, . . . ,K,
−ξw ≤ w ≤ bγ,
−ξt ≤ t ≤ bψ,
−ξv(k) ≤ v(k)

≤ bλ(k) , k = 1, 2, . . . ,K
−ξr(k) ≤ r(k)

≤ bυ(k) , k = 1, 2 . . . ,K,
ξw, ξt, ξv(k) , ξr(k) ≥ 0, k = 1, 2 . . . ,K,
ξs ⪰r 0, ξz(k) ⪰s 0, k = 1, 2 . . . ,K,

(15)

where, for k = 1, 2, . . . ,K, ξs, ξw, ξt, ξv(k) , ξr(k) are the primal relaxation variables corresponding to the poly-
hedral cones, ξs, ξz(k) are the primal relaxation variables corresponding to the second-order cones, cs, cw, ct
cz(k) , cv(k) , cr(k) are the primal penalty parameters, and bν, bγ, bψ bϑ(k) , bλ(k) , bυ(k) are the primal penalty parame-
ters, respectively.

In this new form of the primal-dual penalty problem, all slack variables rather than the constraint
functions and the bounds themselves are relaxed, as well as all upper bounds are added to the slack
variables.
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Following the development of Section 2.2, we propose an algorithm to solve Problem (15). The logarith-
mic barrier problem associated with (15) is

min f (x, y(1), . . . , y(K)) + cT
s ξs + cT

wξw + cT
t ξt +

∑K
k=1(cT

z(k)ξz(k) + cT
v(k)ξv(k) + cT

r(k)ξr(k) )
−µln det(ξs) − µln det(ξs + s) − µln det(bν − s) − µln(ξw) − µln(ξw +w) − µln (bγ −w) − µln (ξt)
−µln (ξt + t) − µln(bψ − t) − µ

∑K
k=1(ln det(ξz(k) ) + ln det(ξz(k) + z(k)) + ln det(bϑ(k) − z(k)))

−µ
∑K

k=1(ln (ξv(k) ) + ln(ξv(k) + v(k)) + ln (bλ(k) − v(k))) − µ
∑K

k=1(ln (ξr(k) ) + ln(ξr(k) + r(k)) − µln (bυ(k) − r(k)))
s.t. h(x) − s = 0,

g(k)(x, y(k)) − z(k) = 0, k = 1, . . . ,K,
ẍ −w = l,
ẍ + t = u,
ÿ(k)
− v(k) = l̃(k), k = 1, . . . ,K,

ÿ(k) + r(k) = ũ(k), k = 1, . . . ,K,
(16)

where µ is the barrier parameter, ν, γ, ψ, ϑ(k), λ(k), υ(k), for k = 1, 2, . . . ,K, are dual variables associated with
the relevant constraints

Following our notations in Subsection 2.1, the matricesΞs,Ξw,Ξt,Ξz(k) ,Ξv(k) ,Ξr(k) , Bν,Bγ,Bψ,Bϑ(k) ,Bλ(k) ,Bυ(k) ,
Φγ,Φψ,Φλ(k) and Φυ(k) stand for the diagonal matrices whose diagonal entries are the components of the
vectors ξs, ξw, ξt, ξz(k) , ξv(k) , ξr(k) , bν, bγ, bψ, bϑ(k) , bλ(k) , bυ(k) , ϕγ,ϕψ,ϕλ(k) and ϕυ(k) , respectively, k = 1, 2, . . . ,K,
where

ϕν ≜ 2µ(ξs + s)−1, ϕϑ(k) ≜ 2µ(ξz(k) + z(k))−1,
ϕγ ≜ µ(bγ −w)−1, ϕλ(k) ≜ µ(bλ(k) − v(k))−1,
ϕψ ≜ µ(bψ − t)−1, ϕυ(k) ≜ µ(bυ(k) − r(k))−1.

The first-order necessary conditions for the lagrangian function of (16) are written as:

∇ẍ f (x, y(1), . . . , y(K)) − Aẍ(x)Tν −
∑K

k=1 Bẍ(x, y(k))Tϑ(k)
− γ −ψ = 0,

∇x̆ f (x, y(1), . . . , y(K)) − Ax̆(x)Tν −
∑K

k=1 Bx̆(x, y(k))Tϑ(k) = 0,
∇ÿ(k) f (x, y(1), . . . , y(K)) − Bÿ(k) (x, y(k))Tϑ(k)

− λ(k)
− υ(k) = 0, k = 1, . . . ,K,

∇y̆(k) f (x, y(1), . . . , y(K)) − By̆(k) (x, y(k))Tν(k) = 0, k = 1, . . . ,K,
(ϕν + ν) ◦ (ξs + s) − 2µe = 0,

ξs ◦ (cs −ϕν) − 2µe = 0,
(ϕϑ(k) + ϑ(k)) ◦ (ξz(k) + z(k)) − 2µe = 0, k = 1, . . . ,K,

ξz(k) ◦ (cz(k) −ϕϑ(k) ) − µe = 0, k = 1, . . . ,K,
(W + Ξw)(γ +ϕγ) − µ1 = 0,
(T + Ξt)(ψ +ϕψ) − µ1 = 0,

(V(k) + Ξv(k) )(λ(k) +ϕλ(k) ) − µ1 = 0, k = 1, . . . ,K
(R(k) + Ξr(k) )(υ(k) +ϕυ(k) ) − µ1 = 0, k = 1, . . . ,K,

Ξw(cw − γ −ϕγ) − µ1 = 0,
Ξt(ct −ψ −ϕψ) − µ1 = 0,

Ξv(k) (cv(k) − λ(k)
−ϕλ(k) ) − µ1 = 0, k = 1, . . . ,K,

Ξr(k) (cr(k) − υ(k)
−ϕυ(k) ) − µ1 = 1, k = 1, . . . ,K,

ϕν ◦ (ξs + s) − 2µe = 0,
ϕϑ(k) ◦ (ξz(k) + z(k)) − 2µe = 0, k = 1, . . . ,K,

Φγ(bγ −w) − µ1 = 0,
Φψ(bψ − t) − µ1 = 0,

Φλ(k) (bλ(k) − v(k)) − µ1 = 0, k = 1, . . . ,K,
Φυ(k) (bυ(k) − r(k)) − µ1 = 0, k = 1, . . . ,K,

h(x) − s = 0,
g(k)(x, y(k)) − z(k) = 0, k = 1, . . . ,K,

ẍ + t − u = 0,
ẍ −w − l = 0,

ÿ(k) + r(k)
− ũ(k) = 0, k = 1, . . . ,K,

ÿ(k)
− v(k)

− l̃(k) = 0, k = 1, . . . ,K.

(17)
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By applying Newton’s method and eliminating the search directions ∆w, ∆t, ∆γ, ∆ψ, ∆ξs, ∆ξw, ∆ξt,
∆ϕν, ∆ϕγ, ∆ϕψ,∆v(k), ∆r(k), ∆λ(k), ∆υ(k), ∆ξz(k) , ∆ξv(k) , ∆ξr(k) , ∆ϕϑ(k) , ∆ϕλ(k) , and ∆ϕυ(k) for k = 1, 2, . . . ,K, we get
the following reduced KKT system which arises in the solution of the penalty problem (15):
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BT ẍ
BT ẍ
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The matrices Dw,Dt,Dv(k) ,Dr(k) ,E,F(k),Hs and Hz(k) , k = 1, 2, . . . ,K, that appeared in (18) are defined as

Dw =
((

(Γ + Φγ)−1(W + Ξw) + Ξw(Cw − Γ −Φγ)−1
)−1
+ Φγ(Bγ −W)−1

)−1
,

Dt =
((

(Ψ+Φψ)−1(T + Ξt) + Ξt(Ct −Ψ −Φψ)−1
)−1
+ Φψ(Bψ − T)−1

)−1
,

Dv(k) =
((

(Λ(k) + Φλ(k) )−1(V(k) + Ξv(k) ) + Ξv(k) (Cv(k) −Λ(k)
−Φλ(k) )−1

)−1
+ Φλ(k) (Bλ(k) − V(k))−1

)−1
,

Dr(k) =
((

(Υ(k) + Φυ(k) )−1(R(k) + Ξr(k) ) + Ξr(k) (Cr(k) − Υ(k)
−Φυ(k) )−1)−1 + Φυ(k) (Bυ(k) − R(k))−1

)−1
,

E ≜
(
Arw(ϕν + ν)

(
Arw(cs −ϕν) +Arw(ξs)Arw−1(ξs + s)Arw(ϕs)

)−1(
Arw(ξs)Arw−1(ξs + s)Arw(ϕν)

)
+Arw(ξs + s)

(
−Arw(ξs + s)Arw(ϕν)

)
+Arw(ξs + s)

(
Arw(ϕν)Arw(cs −ϕν) +Arw(ξs)Arw−1(ξs + s)

Arw(ϕν) +Arw−1(ϕν + ν) +
(
Arw(ξs)Arw−1(ξs + s)Arw(ϕν

)−1
)−1

Arw(ξs + s),

F(k) ≜
(
Arw(ϕϑ(k) + ϑ(k))

(
Arw(cz(k) −ϕϑ(k) ) +Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕz(k) )

)−1(
Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕ(k) )

)
+Arw(ξz(k) + z(k))

(
−Arw(ξz(k) + z(k))Arw(ϕϑ(k) )

)
+Arw(ξz(k) + z(k))

(
Arw(ϕϑ(k) )Arw(cz(k) −ϕϑ(k) ) +Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕϑ(k) )

+Arw−1(ϕϑ(k) + ϑ(k)) +
(
Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕϑ(k)

)−1
)−1

Arw(ξz(k) + z(k)),

Hs ≜
(
Arw(ϕν + ν)

(
Arw(cs −ϕν) +Arw(ξs)Arw−1(ξs + s)Arw(ϕs)

)−1(
Arw(ξs)Arw−1(ξs + s)Arw(ϕν)

)
+Arw(ξs + s)

(
−Arw(ξs + s)Arw(ϕν)

)
+Arw(ξs + s)

(
Arw(ϕν)Arw(cs −ϕν) +Arw(ξs)Arw−1(ξs + s)

Arw(ϕν) +
(
Arw(ξs)Arw−1(ξs + s)Arw(ϕν

)−1
)−1

,

Hz(k) ≜
(
Arw(ϕϑ(k) + ϑ(k))

(
Arw(cz(k) −ϕϑ(k) ) +Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕz(k) )

)−1(
Arw(ξz(k) )

Arw−1(ξz(k) + z(k))Arw(ϕ(k) )
)
+Arw(ξz(k) + z(k))

(
−Arw(ξz(k) + z(k))Arw(ϕϑ(k) )

)
+Arw(ξz(k) + z(k))(

Arw(ϕϑ(k) )Arw(cz(k) −ϕϑ(k) ) +Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕϑ(k) )

+
(
Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕϑ(k)

)−1
)−1

Arw(ξz(k) + z(k)) +Arw−1(ϕϑ(k) + ϑ(k)),

and the vectors βs,βγ,βψ,βz(k) ,βλ(k) , and βυ(k) , k = 1, 2, . . . ,K, that appeared in (18) are defined as

βs = 2µe − (ϕs + ν) ◦ (ξs + s) −
(
Arw−1(ϕν + ν)

(
Arw(cs −ϕν) +Arw(ξs)Arw−1(ξs + s)Arw(ϕν)

)−1

+Arw(ξs + s)
(
Arw(ϕν)

(
Arw(cs −ϕν) +Arw(ξs)Arw−1(ξs + s)Arw(ϕν)

)−1
)
(ξs ◦ (cs −ϕν)),

βγ = ((Γ + Φγ)−1(T + Ξw) + Ξw(Cw − Γ −Φw)−1
)−1(

µ(Γ + Φγ)−1e − µ(Cw − Γ −Φγ)−1)e −w
)
−

(
µ(Bγ −W)−1e −ϕγ

)
,

βψ =
(
(Ψ+Φψ)−1(T + Ξt) + Ξt(Ct −Ψ −Φt)−1

)−1(
µ(Ψ+Φψ)−1e − µ(Ct −Ψ −Φψ)−1)e − t

)
−

(
µ(Bψ − T)−1e −ϕψ

)
,

βz(k) = 2µe − (ϕϑ(k) + ϑ(k)) ◦ (ξz(k) + z(k)) −
(
Arw−1(ϕϑ(k) + ϑ(k))

(
Arw(cz(k) −ϕϑ(k) ) +Arw(ξz(k) )

Arw−1(ξz(k) + z(k))Arw(ϕϑ(k) )
)−1
+Arw(ξz(k) + z(k))

(
Arw(ϕϑ(k) )

(
Arw(cz(k) −ϕϑ(k) )

Arw(ξz(k) )Arw−1(ξz(k) + z(k))Arw(ϕϑ(k) )
)−1

)
(ξs ◦ (cs −ϕν)),

βλ(k) =
(
(Λ(k) + Φλ(k) )−1(V(k) + Ξv(k) ) + Ξv(k) (Cv(k) −Λ(k)

−Φλ(k) )−1
)−1(

µ(Λ(k) + Φλ(k)

)−1
e − µ(Cv(k) −Λ(k)

−Φλ(k) )−1)e − v(k)) −
(
µ(Bλ(k) − V(k))−1e −ϕλ(k)

)
,

βυ(k) =
(
(Υ(k) + Φυ(k) )−1(R(k) + Ξr(k) ) + Ξr(k) (Cr(k) − Υ(k)

−Φυ(k) )−1
)−1(

µ
(
Υ + Φυ(k)

)−1
e − µ(Cr(k) − Υ(k)

−Φυ(k) )−1)e − r(k)) −
(
µ(B(k) − R(k))−1e −ϕυ(k)

)
.
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At each step α⟨ ȷ⟩p , the steplength is chosen to ensure that all the primal relaxation variables are positive
variables and also ensure that

s⟨ ȷ+1⟩ + ξ⟨ ȷ+1⟩
s ≻r 0, w⟨ ȷ+1⟩ + ξ⟨ ȷ+1⟩

w > 0, t⟨ ȷ+1⟩ + ξ⟨ ȷ+1⟩
t > 0,

z(k)
(l+1) + ξ

⟨ ȷ+1⟩
z(k) ≻s 0, v⟨ ȷ+1⟩ + ξ⟨ ȷ+1⟩

v > 0, r⟨ ȷ+1⟩ + ξ⟨ ȷ+1⟩
r > 0,

bν − s⟨ ȷ+1⟩
≻ 0, bγ −w⟨ ȷ+1⟩ > 0, bψ − t⟨ ȷ+1⟩ > 0,

bϑ(k) − z(k)
(l+1) ≻ 0, bλ(k) − v⟨ ȷ+1⟩ > 0, bυ(k) − r⟨ ȷ+1⟩ > 0.

(19)

Similarly, at each step α⟨ ȷ⟩d , the steplengh is chosen to assure that all the dual relaxation variables are positive
and ensure that

ν⟨ ȷ+1⟩ +ϕ⟨ ȷ+1⟩
ν ≻r 0, γ⟨ ȷ+1⟩ +ϕ⟨ ȷ+1⟩

γ > 0, ψ⟨ ȷ+1⟩ +ϕ⟨ ȷ+1⟩
ψ > 0,

ϑ(k)
(l+1) +ϕ

⟨ ȷ+1⟩
ϑ(k) ≻s 0, λ(k)

(l+1) +ϕ
⟨ ȷ+1⟩
λ(k) > 0, υ(k)

(l+1) +ϕ
⟨ ȷ+1⟩
υ(k) > 0,

cs −ϕ
⟨ ȷ+1⟩
ν ≻r 0, cw − γ⟨ ȷ+1⟩

−ϕ⟨ ȷ+1⟩
γ > 0, ct −ψ⟨ ȷ+1⟩

−ϕ⟨ ȷ+1⟩
ψ > 0,

cz(k) −ϕ⟨ ȷ+1⟩
ϑ ≻s 0, cv(k) − λ(k)

(l+1) −ϕ
⟨ ȷ+1⟩
λ(k) > 0, cr(k) − υ(k)

(l+1) −ϕ
⟨ ȷ+1⟩
υ(k) > 0.

(20)

Newton’s method is used to solve the first-order conditions (17), while a line search is used to ensure
progress toward optimality and to update the value of µ at each iteration (see [13, 14]). We also need to
look at the penalty parameters to make sure that we have obtained a solution to the original SMINLSOCP
problem or we can show a certificate of infeasibility. We point out that the sparcity structure of the reduced
KKT system (18) resulting from the penalty problem (15) is similar that of (12).

The primal–dual penalty method is the optimal choice for the warmstarting problems of the interior-
point method. On each node, we can use the optimal primal, dual, and slack variables of its parent as the
initial solution and re-initialize the primal and dual relaxation variables to help the original variables move
toward an optimum.

5.2 Dynamic penalty parameters updates and a primal–dual algorithm

The most essential aspect of setting and updating the penalty parameters is to make sure that they are larger
than the components of the current subproblem for which they act as upper bounds. Let (x⋆, y(1)⋆ , . . . , y(K)⋆ )
be the optimal solution of an SMINLSOCP subproblem with the corresponding optimal slack variables
(s⋆,w⋆, t⋆, z(k)⋆ ,v(k)⋆ , r(k)⋆ ) and optimal dual variables (ν⋆,γ⋆,ψ⋆,ϑ(k)⋆ ,υ(k)⋆ ), for k = 1, 2, . . . ,K. The penalty
parameters are obtained as follow:

bν ≜ s⋆ + κs, bγ ≜ w⋆ + κwt, bψ ≜ t⋆ + κwt,
bϑ(k) ≜ z(k)⋆ + κz(k) , bλ(k) ≜ v(k)⋆ + κv(k)r(k) , bυ(k) ≜ r(k)⋆ + κv(k)r(k) ,

cs ≜ ν⋆ +ϕ(0)
ν + ℏν, cw ≜ γ⋆ +ϕ(0)

γ + ℏγψ, ct ≜ ψ⋆ +ϕ(0)
ψ + ℏγψ

cz(k) ≜ ϑ(k)⋆ +ϕ(0)
ϑ(k) + ℏϑ(k) , cv(k) ≜ λ(k)⋆ +ϕ(0)

λ(k) + ℏλυk , cr(k) ≜ υ(k)⋆ +ϕ(0)
υ(k) + ℏλυk ,

(21)

where
κs ≜ max(h(x⋆), s⋆, 1), κwt ≜ max(w⋆, t⋆, 1),
κz(k) ≜ max(g(k)(x⋆, y(k)⋆ ), z(k)⋆ , 1), κv(k)r(k) ≜ max(v(k)⋆ , r(k)⋆ , 1),

and

ℏγψ ≜ max(γ⋆,ψ⋆,∇ẍ f (x⋆, y(1)⋆, . . . , y(K)⋆),Aẍ(x⋆, y⋆)Tν⋆, 1), ℏν ≜ max(ν⋆, 1),
ℏλ(k)υ(k) ≜ max(λ(k)⋆ ,υ(k)⋆ ,∇ÿ(k) f (x⋆, y(1)⋆, . . . , y(K)⋆),Bÿ(k) (x⋆, y(k)⋆ )Tϑ(k)⋆ , 1), ℏϑ(k) ≜ max(ϑ(k)⋆ , 1).

The initial relaxation variables are chosen as follow:

ξ⟨0⟩s ≜ 10−4max(κs, κwt), ϕ⟨0⟩ν ≜ 10−4max(ℏν,ℏγψ),
ξ⟨0⟩w ≜ max(l − ẍ⋆, 0) + 10−4max(κs, κwt), ϕ⟨0⟩γ ≜ 10−4max(ℏν,ℏγψ),
ξ⟨0⟩t ≜ max(ẍ⋆ − u, 0) + 10−4max(κs, κwt), ϕ⟨0⟩ψ ≜ 10−4max(ℏν,ℏγψ),

ξ⟨0⟩
z(k) ≜ 10−4max(κz(k) , κv(k)r(k) ), ϕ⟨0⟩

ϑ(k) ≜ 10−4max(ℏϑ(k) ,ℏλ(k)υ(k) ),
ξv(k) ≜ max(l̃ − ÿ(k)⋆ , 0) + 10−4max(κz(k) , κv(k)r(k) ), ϕ⟨0⟩

λ(k) ≜ 10−4max(ℏϑ(k) ,ℏλ(k)υ(k) ),
ξr(k)⋆ ≜ max(ÿ(k)⋆

− ũ(k), 0) + 10−4max(κz(k) , κv(k)r(k) ), ϕ⟨0⟩˜υ(k)
≜ 10−4max(ℏϑ(k) ,ℏλ(k)υ(k) ).

(22)
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These settings are sufficient after warmstart to start the penalty approach without moving the iterates
too far from the current node. The relaxation is performed using a variable, so if a larger relaxation is
needed, the relaxation variables will move accordingly.

Since the initial values of all penalty parameters might not be large enough to admit the optimal solution,
we also need a way to update them. Given the relaxation, there is always an optimal solution for (15), and
one way to update it in a static way is to find the optimal solution and then increase the penalty parameters
if the relaxation variables are not close enough to zero. Even though this may require a lot of solutions, it
greatly increases the number of iterations needed to find the optimal solution. Instead, we can use a dynamic
updating strategy in which the penalty parameters are checked and updated at the end of each iteration
as shown in Algorithm 5.1, which provides the details of the primal–dual penalty method with a dynamic
update for two-stage SMINLSOCP problem. Concerning the time complexity of Algorithm 5.1, Section 5
in [8] discuses the polynomial convergence of this class of algorithms.

In the remaining part of this section we describe a termination criterion for infeasibility. In the pre-
ceding discussion, we determined what can go wrong when warmstarting an interior-point technique and
presented the exact primal–dual penalty method as an alternative. Another issue for developing the inner-
level algorithm within our framework was the efficient identification of infeasible nonlinear second-order
cone programming subproblems. The primal-dual penalty method, which is provided as a solution for
warmstarting, is also useful for detecting infeasibility. In addition, the upper bounds on the slack variables
ensure that there is always an optimal solution to (15). Consequently, a provably convergent nonlinear
second-order cone algorithm is guaranteed to find an optimal solution to Problem (15). If such a solution
satisfies that ξsi → a, ξw j → a, or ξt j → a, for at least i = 1, 2, . . . , r and j = 1, 2, . . . , p, or that ξz(k)

i
→ a, ξv(k)

j
→ a,

or ξr(k)
j
→ a for at least i = 1, 2, . . . , s and j = 1, 2, . . . , q for a scalar a as csi → ∞, cw j → ∞, or ct j → ∞, for

at least i = 1, 2, . . . , r and j = 1, 2, . . . , p, or cz(k)
i
→ ∞, cv(k)

j
→ ∞, or cr(k)

j
→ ∞, for at least i = 1, 2, . . . , s and

j = 1, 2, . . . , q, then the original problem is infeasible.
Allowing a penalty parameter to be infinite is impractical. Still, a practical implementation is easy to

make if the original objective function is removed and the penalty term is the only one that is minimized.
This is the same as letting all penalty parameters become infinite. So, a feasibility restoration phase that can
be used is the same one as Phase I of SNOPT2 [23], and the resulting problem is

min cT
s ξs + cT

wξw + cT
t ξt +

∑K
k=1(cT

z(k)ξz(k) + cT
v(k)ξv(k) + cT

r(k)ξr(k) )
s.t. h(x) − s = 0,

g(x, y(k)) − z(k) = 0, k = 1, . . . ,K,
ẍ −w = l,
ÿ − v(k) = l̃(k), k = 1, . . . ,K,
ẍ + t = u,
ÿ(k) + r(k) = ũ(k), k = 1, . . . ,K,
s + ξs ⪰r 0,
bν − s ⪰r 0,
z(k) + ξz(k) ⪰s 0, k = 1, . . . ,K,
bϑ(k) − z(k)

⪰s 0, k = 1, . . . ,K,
−ξw ≤ w ≤ bγ,
−ξt ≤ t ≤ bψ,
−ξv ≤ v ≤ bλ,
−ξr ≤ r ≤ bυ,
ξs, ξz(k) ⪰ 0, k = 1, . . . ,K,
ξw, ξt, ξv, ξr ≥ 0.

(23)

The purpose of solving Problem (23) is to minimize infeasibility. It differs from SNOPT in the sense that
the slack variables continue to be bounded above by the dual penalty parameters. As these parameters are
updated regularly, we can always find a feasible solution to (23). If the optimal objective function value is
greater than the infeasibility tolerance, a certificate of infeasibility can be returned.

2SNOPT is for Sparse Nonlinear OPTimizer; a software package for solving large-scale nonlinear optimization problem.
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Algorithm 5.1 A primal–dual penalty algorithm with a dynamic update for two-stage SMINLSOCP problem

begin
Initialize: x = x⟨0⟩, s = s⟨0⟩,w = w⟨0⟩, t = t⟨0⟩, y = y(k)⟨0⟩ ,z(k) = z(k)⟨0⟩ , v(k) = v(k)⟨0⟩ , r(k) = r(k)⟨0⟩ , for k = 1, . . . ,K;
Require: Penalty parameters as in (21), and relaxation variables as in (22);
Ensure: The tolerance τ = 10−8, the barrier paremeter µ = 0.3;
Result: Primal and dual optimal solutions of Problem (15);

Step 1. Compute the search directions by solving System (18);

Step 2. Choose primal and dual steplenghs α⟨ ȷ⟩p and α⟨ ȷ⟩d that ensure (19) and (20);

Step 3. Update the penalty parameters, for i = 1, . . . , r and j = 1, . . . , p: ▷ Dynamic updating

If s⟨ ȷ+1⟩
i − 0.9b⟨ ȷ⟩νi

≻ 0, then b⟨ ȷ+1⟩
νi
← 10b⟨ ȷ⟩νi

;
If w⟨ ȷ+1⟩

j − 0.9b⟨ ȷ⟩γ j
> 0, then b⟨ ȷ+1⟩

γ j
← 10b⟨ ȷ⟩γ j

;

If t⟨ ȷ+1⟩
j − 0.9b⟨ ȷ⟩ψ j

> 0, then b⟨ ȷ+1⟩
ψ j
← 10b⟨ ȷ⟩ψ j

;

If ν⟨ ȷ+1⟩
i + ϕ⟨ ȷ⟩νi

− 0.9c⟨ ȷ⟩si
⪰ 0, then c⟨ ȷ+1⟩

si
← 10c⟨ ȷ⟩νi

;
If γ⟨ ȷ+1⟩

j + ϕ⟨ ȷ⟩γ j
> 0.9c⟨ ȷ⟩w j

, then c⟨ ȷ+1⟩
w j
← 10c⟨ ȷ⟩w j

;

If ψ⟨ ȷ+1⟩
j + ϕ⟨ ȷ⟩ψ j

> 0.9c⟨ ȷ⟩t j
, then c⟨ ȷ+1⟩

t j
← 10c⟨ ȷ⟩t j

,

and for i = 1, . . . , s and j = 1, . . . , q: ▷ Dynamic updating

If z(k)⟨ ȷ+1⟩

i − 0.9b⟨ ȷ⟩ϑi
≻ 0, then b⟨ ȷ+1⟩

ϑi
← 10b⟨ ȷ⟩ϑi

;

If v(k)⟨ ȷ+1⟩

j − 0.9b⟨ ȷ⟩
λ(k)

j

> 0, then b⟨ ȷ+1⟩

λ(k)
j

← 10b⟨ ȷ⟩
λ(k)

j

;

If r⟨ ȷ+1⟩
j − 0.9b⟨ ȷ⟩

υ(k)
j

> 0, then b⟨ ȷ+1⟩
υ j
← 10b⟨ ȷ⟩

υ(k)
j

;

If ϑ(k)⟨ ȷ+1⟩

i + ϕ⟨ ȷ⟩
ϑi (k) − 0.9cz(k)

i
≻ 0, then c⟨ ȷ+1⟩

z(k)
i

← 10c⟨ ȷ⟩
z(k)

i

;

If λ(k)⟨ ȷ+1⟩

j + ϕ⟨ ȷ⟩
λ(k)

j

> 0.9c⟨ ȷ⟩
v(k)

j

, then c⟨ ȷ+1⟩

v(k)
j

← 10c⟨ ȷ⟩
v(k)

j

;

If υ(k)⟨ ȷ+1⟩

j + ϕ⟨ ȷ⟩
υ(k)

j

> 0.9c(k) j
r j
, then c⟨ ȷ+1⟩

r(k)
j

← 10c⟨ ȷ⟩
r(k)

j

;

Step 5. Obtain a new step from the previous step:

ẍ⟨ ȷ+1⟩
← ẍ⟨ ȷ⟩ + α⟨ ȷ⟩p ∆ẍ⟨ ȷ⟩; x̆⟨ ȷ+1⟩

← x̆⟨ ȷ⟩ + α⟨ ȷ⟩p ∆x̆⟨ ȷ⟩;
ÿ⟨ ȷ+1⟩

← ÿ⟨ ȷ⟩ + α⟨ ȷ⟩p ∆ÿ⟨ ȷ⟩; y̆⟨ ȷ+1⟩
← y̆⟨ ȷ⟩ + α⟨ ȷ⟩p ∆y̆⟨ ȷ⟩;

ν⟨ ȷ+1⟩
← ν⟨ ȷ⟩ + α⟨ ȷ⟩d ∆ν

⟨ ȷ⟩; ϑ(k)⟨ ȷ+1⟩
← ϑ(k)⟨ ȷ⟩ + α⟨ ȷ⟩d ∆ϑ

(k)⟨ ȷ⟩ ;
γ⟨ ȷ+1⟩

← γ⟨ ȷ⟩ + α⟨ ȷ⟩d ∆γ
⟨ ȷ⟩; λ(k)⟨ ȷ⟩

← λ + α⟨ ȷ⟩d ∆λ
(k)⟨ ȷ⟩ ;

ψ⟨ ȷ+1⟩
← ψ⟨ ȷ⟩ + α⟨ ȷ⟩d ∆ψ

⟨ ȷ⟩; υ(k)⟨ ȷ+1⟩
← υ⟨ ȷ⟩ + α⟨ ȷ⟩d ∆υ

(k)⟨ ȷ⟩ ;
s⟨ ȷ+1⟩

← s⟨ ȷ⟩ + α⟨ ȷ⟩p ∆s⟨ ȷ⟩; w⟨ ȷ+1⟩
← w⟨ ȷ⟩ + α⟨ ȷ⟩p ∆w⟨ ȷ⟩;

t⟨ ȷ+1⟩
← t⟨ ȷ⟩ + α⟨ ȷ⟩p ∆t⟨ ȷ⟩; z(k)⟨ ȷ+1⟩

← z(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆z(k)⟨ ȷ⟩ ;
v(k)⟨ ȷ+1⟩

← v(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆v(k)⟨ ȷ⟩ ; r(k)⟨ ȷ+1⟩
← r(k)⟨ ȷ⟩ + α⟨ ȷ⟩p ∆r⟨ ȷ⟩;

ξ⟨ ȷ+1⟩
s ← ξ⟨ ȷ⟩s + α

⟨ ȷ⟩
p ∆ξ

⟨ ȷ⟩
s ; ξ⟨ ȷ+1⟩

w ← ξ⟨ ȷ⟩ + α⟨ ȷ⟩p ∆ξ
⟨ ȷ⟩
w ;

ξ⟨ ȷ+1⟩
t ← ξ⟨ ȷ⟩t + α

⟨ ȷ⟩
p ∆ξ

⟨ ȷ⟩
t ; ξ⟨ ȷ+1⟩

z(k) ← ξ⟨ ȷ⟩
z(k) + α

⟨ ȷ⟩
p ∆ξ

⟨ ȷ⟩

z(k) ;
ξ⟨ ȷ+1⟩

v(k) ← ξ⟨ ȷ⟩
v(k) + α

⟨ ȷ⟩
p ∆ξ

⟨ ȷ⟩

v(k) ; ξ⟨ ȷ+1⟩
r(k) ← ξ⟨ ȷ⟩

r(k) + α
⟨ ȷ⟩
p ∆ξ

⟨ ȷ⟩

r(k) ;

Step 6. If (17) is satisfied within the tolerance τ, then STOP;
Return (x⟨ ȷ⟩, y(k)⟨ ȷ⟩ , s⟨ ȷ⟩,w⟨ ȷ⟩, t⟨ ȷ⟩, z(k)⟨ ȷ⟩ ,v(k)⟨ ȷ⟩ , r(k)⟨ ȷ⟩ ) as the primal optimal solution;
Return (ν⟨ ȷ⟩,ϑ(k)⟨ ȷ⟩ ,γ⟨ ȷ⟩,ψ⟨ ȷ⟩,λ(k)⟨ ȷ⟩ ,υ(k)⟨ ȷ⟩ ) as the dual optimal solution;

Else Set l← l + 1 and go to Step 1;
end

21



6 Outer-level algorithmic improvements

As discussed in Subsection 3.1 the concept of fathoming by bounds is one of pruning the branch-and-bound
tree. If any optimal objective function value is not better than that of a feasible solution to Problem (6),
then each node in the tree can be fathomed. As a result, it is important to find feasible solutions to Problem
(6) quickly using one of the search techniques described in Subsection 3.1, as well as solutions with low
objective function values, in order to obtain a significant reduction in the size of the branch-and-bound tree.
Still, it is hard to find a balance between these goals, and the performance of the algorithm can vary greatly
from one problem to the next.

In this part, we suggest the following approach based on the use of equilibrium constraints to find a
feasible solution for binary SMINLSOCPs. The binary constraints are

ẍi ∈ {0, 1}, and ÿ(k)
j ∈ {0, 1}, for 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ K, (24)

which can also be rewritten as

ẍi(1 − ẍi) = 0, and ÿ(k)
j (1 − ÿ(k)

j ) = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ K, (25)

In general, converting (24) into (25) is not recommended because the resulting problem is nonconvex,
with each feasible solution leading to a local optimum of Problem (6). Consequently, if a general-purpose
nonlinear programming algorithm gives a local optimum for the new problem, it can only claim to have
established a feasible solution for the original problem, not necessarily the optimal solution. Moreover,
the goal here is to find a solution that is feasible, using (25), which in turn may help prune the tree. The
constraints in (25) can be expressed with equivalent constraints, specifically

−ẍi(1 − ẍi) ≥ 0, ẍi ≥ 0, and (1 − ẍi) ≥ 0, for 1 ≤ i ≤ p, (26)

and
ÿ(k)

j (1 − ÿ(k)
j ) ≥ 0, ÿ(k)

j ≥ 0, and (1 − ÿ(k)
j ) ≥ 0, for ≤ j ≤ q. (27)

When all the discrete variables are forced to be binary, Problem (7) can be viewed as an MPEC:

min f (x, y(1), . . . , y(K))
s.t. hi(x) ⪰ 0, i = 1, . . . , r,

g(k)
j (x, y(k)) ⪰ 0, j = 1, . . . , s, k = 1, . . . ,K,
−ẍi(1 − ẍi) ≥ 0, i = 1, . . . , p,
−ÿ(k)

j (1 − ÿ(k)
j ) ≥ 0, j = 1, . . . , q, k = 1, 2, . . . ,K,

0 ≤ ẍi ≤ 1, i = 1, . . . , p,
0 ≤ ÿ(k)

j ≤ 1, j = 1, . . . , q, k = 1, 2, . . . ,K,

(28)

where Problem (28) differs from the SMINLSOCP problem (6) in only adding the constraints in (26) and (27).
To obtain the reduced KKT system, we will use the same method described in the preceding development.

We denote the Lagrange multipliers of the constraints in (26) and (27) by π and θ(k) and their slack
variables by s̃ and z̃(k). Following our notations in Subsection 2.1, the matrices Ẍ, Ÿ(k), S̃, Π, Z̃(k), and Θ(k)

stand for the diagonal matrices whose diagonal entries are the components of the vectors ẍ, ÿ(k), s̃, π, z̃(k),
and θ(k), respectively, for k = 1, 2, . . . ,K.

Define the vectors ρ̃, βs̃, η̃(k), βz̃(k) as

ρ̃ ≜ Ẍ(1 − ẍ) + s̃, η̃(k) ≜ Ÿ(k)(1 − ÿ(k)) + z̃(k),
βs̃ ≜ µs̃−1

− π, βz̃(k) ≜ µz̃(k)−1
− θ(k).

The reduced KKT system to be resolved at each iteration is shown in System (29).
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Ÿ

(K
)
−

I)
(θ

(K
)
+
Θ

(K
) Z̃

(K
)−

1
η̃(

K
)
+
β
η̃(

K
))

σ
y̆(K

)

ρ
+

A
rw
−

1 (ν
)β

s

η(
1)
+

A
rw
−

1 (ϑ
(1

) )β
z(1

)

. . .

η(
K

)
+

A
rw
−

1 (ϑ
(K

) )β
z(K

)

                                                         

(29)

23



The matrices D̃, H̃(1), H̃(2), . . . , H̃(K) that appeared in System (29) are defined as

D̃ ≜ Dw −Dt − 2Π+ (2Ẍ − I)ΠS̃−1(2Ẍ − I);
H̃(k) ≜ Dv(k) −Dr(k) − 2Θ(k) + (2Ÿ(k)

− I)Θ(k)Z̃(k)−1
(2Ÿ(k)

− I), k = 1, 2, . . . ,K.

We point out that (29) has a similar sparsity structure to (18). This confirms that the computational efforts
to solve (28) and (7) are similar, and more importantly, that the two problems can be seamlessly swapped.
For large problems, an effort equivalent to solving just one more nonlinear second-order cone relaxation
can be well worth the massive reduction in the number of nodes in the branch-and-bound tree.

7 Numerical results

In order to see how the proposed algorithm in this paper operates, we have implemented it on a randomly
generated mixed-integer stochastic programs over second-order cones. In fact, we have not found well-
defined test problems for SMINLSOCP in the literature. However, we have constructed and solved particular
problems in which the nonlinear is involved. Due to the fact that the number of SMINLSOCPs we have
solved is limited, the results do not give the desired tendency. Therefore, to avoid any incautious actions, we
have decided to exclude them in this numerical study. As mentioned in the introduction, both SMINLSOCP
and its special case, SMISOCP, are still unsolved algorithmically. So, as an alternative, we have constructed
and solved particular problems in which the objective function is linear and all constraints are also linear.
Because the obtained results on SMISOCPs show the desired tendency, we have recorded them. In this
section, we summarize these preliminary numerical experiments.

We obtained our numerical results using MATLAB version R2022a on Windows 11th operating system,
which was carried out on a PC with Intel (R) Core (TM) i7-1165G7 at 2.80 GHz and 8 GB physical memory.
As presented in Section 3, our approach is principally a branch-and-bound code that writes a continuous
relaxation of the bound modified problem of the form (7) at any node in the branch-and-bound tree.

In our implementation, the random generated problem is an SMISOCP problem, in which some coeffi-
cients are randomly generated with discrete distribution. More precisely, we consider

min cTx + E [φ(x, ω)] where φ(x, ω) is min d(ω)Ty
s.t. Ax ⪰ 0, the minimum value s.t. T(w)x +W(ω)y ⪰ 0,

x ∈ Zp
×Rn−p, of the problem y ∈ Zq

×Rm−q,
(30)

and E[φ(x, ω)] =
∫
Ω
φ(x, ω)P(dω). If πk = P(T(ω),W(ω),d(ω)) = (T(k),W(k), d(k)) is the associated probability,

for k = 1, 2, . . . ,K, the equivalent deterministic formulation of Problem (30) is the problem:

min cTx + π1d(1)Ty(1) + π2d(2)Ty(2) + · · · + πKd(K)Ty(K)

s.t. Ax ⪰ 0,
T(1)x + W(1)y(1)

⪰ 0,
T(2)x + W(2)y(2)

⪰ 0,
...

. . .
...

T(K)x + W(K)y(K)
⪰ 0,

x ∈ Zp
×Rn−p, y(1)

∈ Zq
×Rm−q, y(2)

∈ Zq
×Rm−q, . . . y(K)

∈ Zq
×Rm−q.

(31)

We assume that the probability value πk is absorbed by d(k)Ty(k) (i.e., d(k)Ty(k)
← πkd(k)Ty(k)) for k = 1, 2, . . . ,K.

The modified continuous problem corresponding to (31) is the problem:

min cTx + d(1)Ty(1) + d(2)Ty(2) + · · · + d(K)Ty(K)

s.t. Ax ⪰ 0,
T(1)x + W(1)y(1)

⪰ 0,
T(2)x + W(2)y(2)

⪰ 0,
...

. . .
...

T(K)x + W(K)y(K)
⪰ 0,

l ≤ x ≤ u, l̃(1)
≤ y(1)

≤ ũ(1), l̃(2)
≤ y(2)

≤ ũ(2), . . . l̃(K)
≤ y(K)

≤ ũ(u).

(32)
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Table 1: Some input data for the SMISOCP problem (32) when K = 5.

A T(1) T(2) T(3) T(4) T(5) 1 0 0
0 1 0
0 0 1


 1 0 0

0 1 0
0 0 1


 1 0 0

0 1 0
0 0 1


 1 0 0

0 1 0
0 0 1


 1 0 0

0 1 0
0 0 1


 1 0 0

0 1 0
0 0 1


W(1) W(2) W(3) W(4) W(5) 1 0 0

0 1 0
0 0 0


 1 0 0

0 1 0
0 0 0


 1 0 0

0 1 0
0 0 0


 1 0 0

0 1 0
0 0 0


 1 0 0

0 1 0
0 0 0


c d(1) d(2) d(3) d(4) d(5) 0.374

−0.586
0.902


 −0.670

0.175
−0.250


 0.855

0.732
0.584


 0.078

0.892
−0.002


 −0.960
−0.397
0.856


 −0.523
−0.482
0.203


Firstly, we generate a list of numbers uniformly distributed between−1 and 1 to obtain an initialization of

x⟨0⟩, y(k)⟨0⟩ , s⟨0⟩, z(k)⟨0⟩ ,ν⟨0⟩,ϑ(k)⟨0⟩ , k = 1, 2, . . . ,K. All the slack variables and multipliers w⟨0⟩, t⟨0⟩,v(k)⟨0⟩ , r(k)⟨0⟩ ,γ⟨0⟩,
ψ⟨0⟩,λ(k)⟨0⟩ ,υ(k)⟨0⟩ , k = 1, 2, . . . ,K, are initialized with a default vector of 1. For simplicity, we consider the
sample case of K = 5 scenarios for the SMISOCP problem (32). We consider π1 = π2 = · · · = π5 =

1
5 as the

associated probabilities, and take the matrices A,T(k), and W(k), and the vectors c and d(k) for k = 1, 2, . . . , 5,
to be as in Table 1.

After running the generic primal-dual penalty approach, it converts (7) to (15) and solves any relaxation
until all nodes are fathomed. For Problem (32) in the branch-and-bound tree, the root solution is reached
after 40 iterations with CPU = 0.3125(s) and the value of the objective function is 21.920. Table 2 presents the
optimal solution for (32). After obtaining this solution at the root node in the tree, we start by pruning the
branch-and-bound tree using a fathoming-by-bounds algorithm, which is explained in Subsection 3.1. Any
node in the tree can be fathomed if its optimal objective function value is not better than that of a feasible
solution to (32). Figure 3 shows a schematic generation of a branch-and-bound tree.

While using the penalty primal-dual method, we examine the performance of our approach on warm-
starting after variable bound perturbations. The importance of the primal-dual interior point method is the
ability to warmstart using the solution of the initial problem (32) shown in Table 2 in order to solve a closely
related (possibly perturbed) problem.

As shown in Table 3, the branch-and-bound code can solve Problem (31) in a reasonable time. We found
that CPU = 1.5312(s) with the optimal objective function value 10.654.

Table 2: The optimal solution after applying the primal-dual penalty method when K = 5.

x y(1) y(2) y(3) y(4) y(5) 0.990
−0.508
0.637


 0.597
−0.468
−0.052


 0.721

0.405
−0.213


 0.928

0.050
0.021


 0.874

0.210
0.587


 0.746
−0.465
−0.036


ν ϑ(1) ϑ(2) ϑ(3) ϑ(4) ϑ(5) 0.751

0.177
0.670


 0.941
−0.240
0.589


 −0.467
−0.301
−0.318


 0.955
−0.360
−0.805


 0.8431
−0.360
0.562


 0.891
−0.613
0.191
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Figure 3: A schematic creation of a branch-and-bound tree while solving underlying subproblems (K = 5).

Table 3: The optimal solution after applying the branch-and-bound method when K = 5.

x y(1) y(2) y(3) y(4) y(5) 1.000
1.000
0.037


 1.000
−1.000
0.020


 1.000

0.000
0.808


 1.000

1.000
0.089


 1.000

0.000
0.946


 1.000

1.000
−0.003


ν ϑ(1) ϑ(2) ϑ(3) ϑ(4) ϑ(5) 0.997

0.554
−0.822


 0.531
−0.055
0.311


 −0.573
−0.072
−0.173


 0.866
−0.304
−0.344


 0.8734
−0.149
−0.227


 0.467
−0.286
−0.263


We also consider K scenarios of SMISOCPs, with K = 5, 10, 15, 20, andπk =

1
K is the associated probability

for k = 1, 2, . . . ,K. We take A = Iℓ×n, T(k) = Id×n, W(k) = Id×m, while vectors c ∈ Rn and d(k)
∈ Rm are chosen ran-

domly for k = 1, 2, . . . ,K. The variables x⟨0⟩, y(k)⟨0⟩ , s⟨0⟩, z(k)⟨0⟩ ,ν⟨0⟩,ϑ(k)⟨0⟩ , k = 1, 2, . . . ,K, are initialized with iden-
tity vectors e = (1; 0) of appropriate dimensions, and variables w⟨0⟩, t⟨0⟩,v(k)⟨0⟩ , r(k)⟨0⟩ ,γ⟨0⟩,ψ⟨0⟩,λ(k)⟨0⟩ ,υ(k)⟨0⟩ , k =
1, 2, . . . ,K, are initialized with default vectors of ones, i.e., 1 with appropriate dimensions.
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Table 4: Numerical results after applying the proposed algorithm on randomly-generated problems.

Problem size and number of realizations Inner-level performance Outer-level performance
n m p q K n + Km p + Kq Iter CPU(s) Iter CPU(s)
5 10 3 6 5 55 33 8.6 1.4187 4.0 1.4937
8 14 5 9 5 78 50 9.4 2.5281 6.6 1.9652

11 18 7 12 5 101 67 12.2 2.6765 9.6 2.8531
14 22 9 15 5 124 84 9.8 3.3639 8.4 4.1844
17 26 11 18 5 147 101 14.2 10.2531 12.4 12.9693
20 30 13 21 5 170 118 18.6 12.3181 15.8 16.7695

5 10 3 6 10 105 63 25.8 5.6625 41.2 6.0914
8 14 5 9 10 148 95 33.8 7.9156 46.2 16.3870

11 18 7 12 10 191 127 34.2 13.0086 48.6 19.3718
14 22 9 15 10 234 159 54.2 7.2135 62.8 22.0031
17 26 11 18 10 277 191 52.4 15.3152 45.8 35.0062
20 30 13 21 10 320 223 60.8 20.4367 56.6 43.8759

5 10 3 6 15 155 93 47.0 12.6090 69.4 18.9134
8 14 5 9 15 218 140 61.2 19.0422 73.4 30.4730

11 18 7 12 15 281 187 68.4 14.4531 60.8 21.9968
14 22 9 15 15 344 234 84.2 17.8499 100.2 35.1898
17 26 11 18 15 407 281 68.4 19.7344 91.0 40.2656
20 30 13 21 15 470 328 81.6 28.5601 100.2 56.8956

5 10 3 6 20 205 123 93.0 19.725 91.4 36.4468
8 14 5 9 20 288 185 70.8 21.2656 90.6 19.3454

11 18 7 12 20 371 247 100.0 26.9387 98.8 28.9565
14 22 9 15 20 454 309 132.2 25.5687 123.4 36.4937
17 26 11 18 20 537 371 130.4 46.6125 133.6 90.6613
20 30 13 21 20 620 344 180.2 65.9354 140.8 105.6543

The solutions are reached and the numerical results of branch-and-bound-code are recorded in Table 4.
In our test problems, “CPU(s)” denotes the average CPU time (in seconds) of 5 runs recorded, and “Iter”
denotes the average number of iterations of 5 runs recorded while obtaining approximate optimal solutions
of the underlying problem. Figures 4 and 5 visualize the numerical results in Table 4 for K = 5, 10, 15, 20.

Computationally, it is not possible to update penalty parameters an infinite number of times. So, in
the code, we updated the penalty parameter a certain number of times before discarding the original
objective function and minimizing the infeasibility. If the penalty objective function is close to zero, the
problem continues with the current solution with the largest value of the penalty parameter encountered.
Otherwise, a certificate of infeasibility can be returned. We have excluded a small number of problems that
are unbounded or infeasible.

For nondifferentiability in the user-supplied at the optimal solution, our results show also that a general-
purpose solution works well for problems with second-order cone constraints, especially when a perturba-
tion or reformulation method is used to deal with problems that are not smooth. The perturbation variable
seems to work well for problems with small blocks, but the ratio reformulation gives a much sparser Hessian
for problems with larger blocks and makes it clear how to solve them. So, we used the ratio reformulation
technique described in Section 4 to smooth out the second-order cone constraints.

To sum up, the computational results in Table 4 and Figures 4 and 5 show that a hybrid algorithm
coupling branch-and-bound and primal-dual interior-point methods is efficient overall. In all instances
under study, we found that the number of iterations never exceeds 190, and the CPU time never exceeds
110 seconds. Also, from our results, it is clear that the average CPU time and number of iterations increase
when the number of scenarios K increases.
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Figure 4: A representation of the average number of iterations for the inner- and outer-levels using line
graphs.
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8 Concluding remarks

Two-stage stochastic mixed-integer nonlinear second-order cone programming has many practical applica-
tions [6]. In this paper, we have developed a hybrid optimization algorithm coupling branch-and-bound
and infeasible primal-dual interior-point methods for solving this class of optimization problems. To cut
down on the size of the branch-and-bound tree, we have used a method based on constraints and equi-
librium. We have addressed some challenging issues such as setting and updating penalty parameters
as well as detecting infeasibility. To overcome nondifferentiability at optimality, we have also described a
reformulation of the problem with second-order cone constraints in order to solve it using a general-purpose
interior-point algorithm for nonlinear programming. The proposed algorithm has also been implemented
to data and has proven its efficiency. Although this framework is attractive from the decomposition and
sparsity point of views (especially for large problems), it should be incorporated within further work to
develop and enhance a deeper level of implementations. This includes introducing heuristics for generating
feasible solutions and developing a truly meaningful test suite for warmstarting problems. We commend
the interested researchers for continuing the work on this important class of mixed-integer optimization
problems to address such practical implementation issues in the proposed algorithm and to look into other
algorithms to solve them.
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