
A COMPUTATIONAL STUDY FOR PIECEWISE LINEAR
RELAXATIONS OF MIXED-INTEGER NONLINEAR

PROGRAMS

KRISTIN BRAUN1,2,∗, ROBERT BURLACU1

1Fraunhofer Institute for Integrated Circuits IIS, Nordostpark 93, D-90411
Nürnberg, Germany

2Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Discrete
Optimization, Cauerstr. 11, D-91058 Erlangen, Germany
∗Corresponding author, kristin.braun@fau.de

Abstract. Solving mixed-integer nonlinear problems by means of piece-
wise linear relaxations can be a reasonable alternative to the commonly
used spatial branch-and-bound. These relaxations have been modeled by
various mixed-integer models in recent decades. The idea is to exploit
the availability of mature solvers for mixed-integer problems. In this
work, we compare different reformulations in terms of behavior and
runtime to determine which method to apply in practice. To this end,
we implement eight different mixed-integer representations for piece-
wise linear relaxations and evaluate them on a benchmark set from the
MINLPLIB consisting of over 300 instances. We utilize existing expression
trees to reformulate all nonlinearities to one-dimensional functions and
afterwards compute a set of interpolation breakpoints for each function
based on a given maximum error per segment. Our analysis includes
a comprehensive comparison of the number of problems solved, run-
times, and optimality gaps. Overall, the classical incremental method
of Markowitz and Manne 1957 has the best performance, leading to a
general recommendation of this method for solving nonlinear problems
by piecewise linear relaxations.

Area of Review: Optimization
Keywords: Piecewise linear relaxations, mixed-integer nonlinear program-
ming, mixed-integer programming, discrete optimization

1. Introduction

To this day, general MINLPs remain very difficult to solve. Spatial branch-
and-bound is still at the heart of most state-of-the-art solvers. However, over
the last two decades, several methods have been presented that treat non-
convex MINLPs by piecewise convex relaxations without direct branching
of continuous variables, see for example Martin et al. 2006; Geißler et al.
2012; Morsi 2013; Lundell et al. 2013; Gugat et al. 2018; Burlacu et al.
2019; Aigner et al. 2023; Link and Volkwein 2023; Beach et al. 2022. While
these approaches are sometimes quite different, they all need to tackle the
following two problems: The construction of tight relaxations of the nonlinear

1

kristin.braun@fau.de

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 2

functions and the incorporation of these relaxations into a mixed-integer
linear program (MIP) or convex nonlinear program (NLP).

One approach to obtain such relaxations is to compute an optimal lin-
earization of a nonlinear function in terms of the number of breakpoints and
an a priori given accuracy as in Rebennack and Kallrath 2015b; Rebennack
and Kallrath 2015a and Rebennack and Krasko 2020. This is supplemented
by the construction of optimal polynomial relaxations of one-dimensional
functions in Morsi 2013. Specific approximation techniques for general non-
linear functions with dimensions smaller than three are proposed in Misener
and Floudas 2010. The major problem with all these methods is the curse of
dimensionality, since the number of simplices in the approximation grows
exponentially with the function’s dimension. In this regard, we refer to the
method of Rovatti et al. 2014, which avoids this problem on the basis that
the piecewise linear approximation does not have to interpolate the original
function at the vertices of the triangulation.

In the literature, a variety of different approaches exists for modeling
PWL functions as a MIP. This article covers all major formulations: the
disaggregated (as in Croxton et al. 2003; Sherali 2001) and aggregated convex
combination models (as in Lee and Wilson 2001; Padberg 2000) as well as
their logarithmic variants presented by Vielma et al. 2010, the classical
incremental method of Markowitz and Manne 1957, and the multiple choice
model as in Balakrishnan and Graves 1989 and again Croxton et al. 2003,
all of which have been known for some time. Moreover, we also consider the
very recently introduced binary and integer Zig-Zag formulations, which are
also logarithmic versions of the convex combination models; see Huchette
and Vielma 2022. For more details on the theoretical foundations of MIP
models for PWL functions and general mixed-integer formulation techniques,
we refer to the extensive survey by Vielma 2015.

To the best of our knowledge, no comprehensive study has yet been
conducted that demonstrates the performance of these MIP models on a wide
range of MINLP problems. In most cases, some parts of the mentioned MIP
models are compared only on some instances of very specific problems; see for
instance the works by Correa-Posada and Sánchez-Martín 2014 and Hasan
and Karimi 2010. Therefore, it becomes difficult to decide in general, which
MIP modeling is preferable, or if there is such a best modeling at all.
This paper aims at filling exactly this remaining gap. To this end, we
perform an extensive computational study on over 300 instances from the
MINLPLIB. Using expression trees and the results from Bärmann et al. 2022,
we reformulate all MINLP instances to equivalent models that consist of
only one-dimensional nonlinear functions. Based on these reformulations,
we compare various MIP relaxations corresponding to the different PWL
models. Overall, our study shows that the incremental method, although
the oldest approach of all, generally performs best when MINLPs are solved
by PWL relaxations that are modeled as MIPs, while the very recently
introduced logarithmic integer Zig-Zag model by Huchette and Vielma 2022
is a reasonable alternative for very high-accuracy PWL relaxations.

This article is structured as follows. We introduce all necessary definitions
and basic ideas on how to solve MINLPs by PWL relaxations in Section 2.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 3

Section 3 provides a detailed overview of the various MIP models for PWL
relaxations. After describing our framework in Section 4, we present our
comprehensive computational study in Section 5 that illustrate the practi-
cability of the various MIP models for PWL relaxations. We discuss the
numerical results in Section 6 and conclude this work in Section 7.

2. Preliminaries

We define a MINLP as an optimization problem of the following type:
min
x

c>x

s.t. Ax ≤ b,
fi(x) ≤ 0 for all i ∈ {1, . . . , k},
l ≤ x ≤ u,
x ∈ Rq × Zp,

(P)

where k, q, p ∈ N. Initially, Ax ≤ b denotes the linear constraints, while
the continuous nonlinear real-valued functions fi : Rq+p → R for i = 1, . . . , k
describe the nonlinear constraints. The variables x are bounded from below
and above by l, u ∈ Rq+p. Additionally, we denote by F the set of all nonlinear
functions fi(x) and by Df ⊂ Rq+p the domain of a nonlinear function f ∈ F .
Equality constraints, i.e., constraints of type fi(x) = 0, are inherently
contained in the description (P) by simply adding fi(x) ≤ 0 and −fi(x) ≤ 0.
Please note that we are not restricted to a linear objective function c>x,
since we can include any nonlinear objective function f : Rq+p → R by
substituting f(x) with a variable y ∈ R and adding f(x) ≤ y as a constraint
to the MINLP problem. As max c>x = −min −c>x, any maximization
problem can be transformed to a minimization problem. Therefore, (P)
serves as a comprehensive formal representation of a MINLP problem.

Since each variable in (P) has lower and upper bounds, the domain Df is
a d-dimensional box with d ≤ q + p and its edges parallel to the coordinate
axes. Thus, it is a compact set. For low dimensions d, the literature
shows that using a piecewise linear (PWL) relaxation for f ∈ F can be
a viable alternative to spatial branching. The most common approach is
to first compute a PWL approximation of f by interpolating the function
on a d-dimensional simplex, and subsequently adding the corresponding
approximation error to the interpolation. To this end, a triangulation of Df

has to be constructed first. Since the triangulation of a d-dimensional box
grows exponentially with the dimension d, it follows directly why this method
is only useful for low dimensions d.

For a wide range of practically interesting MINLPs, however, the non-
linear functions are factorable, i.e., they can be represented by a recursive
combination of elementary operators contained in the set

E = {+,×, /, ,̂ sin, cos, exp, log, |·|}; (1)
as described by Belotti et al. 2010. The excessive use of this leads to an
equivalent formulation of the MINLP problem that contains only univariate
nonlinearities derived from E and, if necessary, the coupling bivariate function
f(x1, x2) = x1x2.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 4

Following the results of Bärmann et al. 2022, we can further reformulate
f(x1, x2) to an one-dimensional representation via

f(x1, x2) = 1
2
(
p2 − x2

1 − x2
2

)
(2)

and
p = x1 + x2 (3)

using a new variable p. The authors show that in practice it is more favorable
to use (2) and (3) instead of a bivariate product when dealing with PWL
approximations. This reformulation can be further strengthened by adapting
the famous McCormick relaxations from McCormick 1976:

1
2
(
p2 − x2

1 − x2
2

)
≥ x−1 · x2 + x1 · x−2 − x

−
1 · x

−
2 , (4a)

1
2
(
p2 − x2

1 − x2
2

)
≥ x+

1 · x2 + x1 · x+
2 − x

+
1 · x

+
2 , (4b)

1
2
(
p2 − x2

1 − x2
2

)
≤ x+

1 · x2 + x1 · x−2 − x
+
1 · x

−
2 , (4c)

1
2
(
p2 − x2

1 − x2
2

)
≤ x−1 · x2 + x1 · x+

2 − x
−
1 · x

+
2 , (4d)

where x−1 , x
+
1 , x

−
2 , and x+

2 are the lower and upper bounds of x1 and x2,
respectively. This facilitates an equivalent reformulation of the MINLP that
consists solely of one-dimensional nonlinearities. Hence, in the following, we
consider only one-dimensional MIP models for PWL relaxations of nonlinear
functions.

Please note that for tackling a MINLP by PWL relaxations an adaptive
refinement of the PWL relaxations is usually crucial for the performance of
the approach. In this article, we omit this algorithmic overhead since we are
primarily interested in comparing various MIP models for PWL relaxations
with different approximation errors.

3. One-dimensional MIP models for piecewise linear relaxations

In this chapter, we describe in more detail the MIP representations of the
piecewise linear models that we use in this work. For all representations, we
show the MIP formulation as well as a visual representation.

3.1. Disaggregated convex combination model. The first model that
we discuss is the disaggregated convex combination model. Here, each feasible
point (x, f̄(x)) is represented as a convex combination of its two neighboring
breakpoints. Assuming that x lies in the i-th segment, i.e., x̄i ≤ x ≤ x̄i+1
holds, then x can be represented by the equality

x = λ1
i x̄i + λ2

i x̄i+1 (5)
with λ1

i + λ2
i = 1 and λ1

i , λ
2
i ≥ 0. Analogously, f̄(x) is then given by

f̄(x) = λ1
i f(x̄i) + λ2

i f(x̄i+1) (6)
using the same two variables λ1

i , λ
2
i .

Since a piecewise linear representation consists of multiple segments, we
introduce a binary variable yi ∈ {0, 1} for each segment i ∈ [n]. Exactly one
of these variables must be nonzero, indicating that x lies in segment i. The

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 5

resulting model consists of n binary and 2n continuous variables. We describe
all constraints in (Disag). Further, Figure 1 depicts a visual representation.

Model 1. Disaggregated convex combination model
n∑
i=1

(
λ1
i x̄i−1 + λ2

i x̄i
)

= x,

n∑
i=1

(
λ1
i f(x̄i−1) + λ2

i f(x̄i)
)

= z,

λ1
i + λ2

i = yi, i ∈ {1, . . . , n},
n∑
i=1

yi = 1,

λ1
i , λ

2
i ≥ 0, i ∈ {1, . . . , n},
yi ∈ {0, 1}, i ∈ {1, . . . , n}.

(Disag)

x̄i−1 x̄i x̄i+1

x
f(x̄i−1)

f(x̄i)

f(x̄i+1)

f(x)

x =
n∑
i=1
λ1
i x̄i−1 + λ2

i x̄i

f̄(x) =
n∑
i=1
λ1
i f(x̄i−1) + λ2

i f(x̄i)

yi−1 = 0

λ1
i λ2

i

yi = 1yi−2 = 0 yi+1 = 0

Figure 1. Representation of (Disag).

Given that it is possible to encode an n-digit number using dlog2 ne binary
variables, the idea to create a binary representation of the segments 1 to n is
obvious. To this end, we introduce binary variables yl with l ∈ {1, ..., dlog2 ne}
and a binary encoding B : [n] → {0, 1}dlog2 ne. The binary encoding is not
fixed; in our case, we simply use the usual conversion from decimal to binary
system. Using this encoding, we define a branching scheme

P0(B, l) := {i ∈ [n] | B(i)l = 0} (7)
and

P+(B, l) := {i ∈ [n] | B(i)l = 1}. (8)
Now, as an arbitrary number of binary variables can be nonzero, the

representation has to be changed to ensure that λ1
i +λ2

i = 1 holds for exactly
one i ∈ [n] and λ1

j +λ2
j = 0 holds for all j ∈ [n] with i 6= j. These adjustments

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 6

result in (LogDisag) that uses the same number of continuous variables as
in (Disag), but now only dlog2 ne binary variables.

Model 2. Logarithmic disaggregated convex combination model
n∑
i=1

(
λ1
i x̄i−1 + λ2

i x̄i
)

= x,

n∑
i=1

(
λ1
i f(x̄i−1) + λ2

i f(x̄i)
)

= z,

n∑
i=1

λ1
i + λ2

i = 1,∑
i∈P+(B,l)

λ1
i + λ2

i ≤ yl, l ∈ {1, . . . , dlog2 ne},

∑
i∈P0(B,l)

λ1
i + λ2

i ≤ 1− yl, l ∈ {1, . . . , dlog2 ne},

λ1
i , λ

2
i ≥ 0, i ∈ {1, . . . , n},
yl ∈ {0, 1}, l ∈ {1, . . . , dlog2 ne}.

(LogDisag)

3.2. Aggregated convex combination model. For introducing the ag-
gregated convex combination model, we just need to adjust the previous
model slightly.

In (Disag), variables λ2
i−1 and λ1

i represent the same tuple (x̄i, f(x̄i)) and,
thus, we can aggregate them. To this end, we introduce new continuous
variables λ0, . . . , λn. The new variable λ0 replaces λ1

1, λn replaces λ2
n, and, for

i = 1, . . . , n− 1, λi replaces λ2
i−1 and λ1

i . Finally, we only need n+ 1 instead
of 2n continuous variables. Now, a variable λi is allowed to be nonzero if
either segment i or segment i+ 1 is used, i.e., λi ≤ yi + yi+1. The constraints
are given in (Ag), and, again, Figure 2 provides a visual representation.

Model 3. Convex combination model
n∑
i=0

λix̄i = x,

n∑
i=0

λif(x̄i) = z,

n∑
i=0

λi = 1,

λ0 ≤ y1,

λi ≤ yi + yi+1, i ∈ {1, . . . , n− 1},
λn ≤ yn,

n∑
i=1

yi = 1,

λi ≥ 0, i ∈ {0, . . . , n},
yi ∈ {0, 1}, i ∈ {1, . . . , n}.

(Ag)

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 7

x̄i−1 x̄i x̄i+1

x
f(x̄i−1)

f(x̄i)

f(x̄i+1)

f(x)

x =
n∑
i=0
λix̄i

f̄(x) =
n∑
i=0
λif(x̄i)

yi−2 = 0 yi+1 = 0yi−1 = 0

λi λi+1

yi = 1

Figure 2. Representation of (Ag).

As before, we want to reduce the number of binary variables in our
model. To this end, we introduce different approaches: On the one hand, a
formulation using a binary branching scheme, and, on the other hand, two
new formulations introduced by Huchette and Vielma 2022.

In (Disag) and (LogDisag), each continuous variable λi belongs to two
different segments. The binary branching scheme of (Disag) fixes all variables
λ1
i , λ

2
i to zero if segment i is not used. If we use the same branching scheme

here in the aggregated version, this would result in fixing all continuous
variables to zero and then no segment is usable anymore. Thus, we need to
define a branching scheme Ls and Rs such that for all i ∈ {1, . . . , n} there
exists a series T i =

[
T 1

1 , . . . , T
i
S

]
with

{x̄i−1, x̄i} =
S⋂
s=1

X̄n \ T is , (9)

where T is ∈ {Ls, Rs} and X̄n abbreviates the set {x̄0, . . . , x̄n}.
We describe a branching scheme Ls, Rs for s ∈ [S] with S := dlog2 ne in

the following. For n ≤ 2, i.e., S = 1, we set
L1 := {x̄0} ∩ {x̄0, . . . , x̄n}, R1 := {x̄2} ∩ {x̄0, . . . , x̄n}. (10)

For any n > 2, the sets L1, . . . , LS and R1, . . . , RS are defined recur-
sively by expansion based on mirroring: We assume that L̄1, . . . , L̄S−1 and
R̄1, . . . , R̄S−1 are given for n̄ = 2S−1 and define

LS :=
{
x̄0, . . . , x̄2S−1−1

}
,

RS :=
{
x̄2S−1+1, . . . , x̄n

}
,

(11)

and
Ls :=

(
L̄s ∪

{
x̄2S−j : x̄j ∈ L̄s

})
∩ {x̄0, . . . , x̄n},

Rs :=
(
R̄s ∪

{
x̄2S−j : x̄j ∈ R̄s

})
∩ {x̄0, . . . , x̄n}

(12)

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 8

for all s ∈ {1, . . . , S− 1}. Lemma 4 shows that these sets fulfill the necessary
conditions.

Lemma 4. Let a partition of [x̄0, x̄n] into n segments with n + 1 break-
points x̄0, . . . , x̄n be given. Further, let Ls, Rs be defined as above for
s ∈ {1, . . . , dlog2(n)e}. Then, for all segments [x̄i−1, x̄i] with 1 ≤ i ≤ n,
there exists a series of sets T i :=

[
T i1, . . . , T

i
dlog2(n)e−1

]
with T is ∈ {Ls, Rs}

such that

X̄n \ {x̄i−1, x̄i} =
dlog2(n)e⋃
s=1

T is , (13)

i.e., we can represent the vertices x̄i−1 and x̄i of each segment by a disjunction
of dlog2(n)e pre-defined sets.

Proof. We can assume w.l.o.g. that n is a power of two, i.e., there is some
S ∈ N+ with S = log2 n and proof the lemma via induction in the following.

For n = 2, i.e., S = 1, let T 1
1 := R1 and T 2

1 := L1. Then, we have
S⋃
s=1

T is =
{
R1 = {x̄2} = X̄2 \ {x̄0, x̄1} if i = 1,
L1 = {x̄0} = X̄2 \ {x̄1, x̄2} if i = 2.

(14)

Now, let n > 2, i.e., S > 1: We assume that for any i ∈ {1, . . . , 2S−1}, there
is a series T̄ i :=

[
T̄ i1, . . . , T̄

i
S−1

]
with T̄ is ∈ {L̄s, R̄s} such that

X̄2S−1 \ {x̄i−1, x̄i} =
S−1⋃
s=1

T̄ is . (15)

It further holds that for any i ∈ {1, . . . , 2S−1},
S−1⋃
s=1

T is =
S−1⋃
s=1

(
T̄ is ∪

{
x̄2S−j : x̄j ∈ T̄ is

})

=
S−1⋃
s=1

T̄ is ∪
S−1⋃
s=1

{
x̄2S−j : x̄j ∈ T̄ is

}

=
S−1⋃
s=1

T̄ is ∪
{
x̄2S−j : x̄j ∈

S−1⋃
s=1

T̄ is

}
.

(16)

Using (15), we can reformulate this to
S−1⋃
s=1

T is =
(
X̄2S−1 \ {x̄i−1, x̄i}

)
∪
({
x̄2S−j : x̄j ∈ X̄2S−1 \ {x̄i−1, x̄i}

})
=
(
X̄2S−1 \ {x̄i−1, x̄i}

)
∪
(
{x̄2S−1 , . . . , x̄2S} \

{
x̄2S−i, x̄2S−(i−1)

})
= X̄2S \

{
x̄i−1, x̄i, x̄2S−i, x̄2S−(i−1)

}
= X̄n \

{
x̄i−1, x̄i, x̄2S−i, x̄2S−(i−1)

}
.

(17)
Now, we need to prove that, using the new sets LS and RS , we can find a
series of sets T i :=

[
T i1, . . . , T

i
S

]
such that (13) holds for all i ∈ {1, . . . , n}.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 9

If i ≤ 2S−1, we choose T is = T̄ is for s ∈ {1, . . . , S − 1} and T iS = RS . Then,
S⋃
s=1

T is = T iS ∪
S−1⋃
s=1

T is = RS ∪
(
X̄n \

{
x̄i−1, x̄i, x̄2S−i, x̄2S−(i−1)

})
=
{
x̄2S−1+1, . . . , x̄n

}
∪
(
X̄n \

{
x̄i−1, x̄i, x̄2S−i, x̄2S−(i−1)

})
= X̄n \ {x̄i−1, x̄i} .

(18)

For i > 2S−1, the proof works similarly with T is = LS :
S⋃
s=1

T is = T iS ∪
S−1⋃
s=1

T is = LS ∪
(
X̄n \

{
x̄i−1, x̄i, x̄2S−i, x̄2S−(i−1)

})
=
{
x̄0, . . . x̄2S−1−1

}
∪
(
X̄n \

{
x̄i−1, x̄i, x̄2S−i, x̄2S−(i−1)

})
= X̄n \

{
x̄2S−i, x̄2S−(i−1)

}
. �

Using this branching scheme, (LogAg) gives the first logarithmic version
of (Ag).

Model 5. Logarithmic branching convex combination model
n∑
i=0

λix̄i = x,

n∑
i=0

λif(x̄i) = z,

n∑
i=0

λi = 1,∑
i∈Ls

λi ≤ ys, s ∈ S,

∑
i∈Rs

λi ≤ 1− ys, s ∈ S,

λi ≥ 0, i ∈ {0, . . . , n},
ys ∈ {0, 1}, s ∈ S.

(LogAg)

Additionally, two new reformulations are provided by Huchette and Vielma
2022. Therein, a new encoding Cr is used. It is defined recursively as

C1 =
(

0
1

)
,

Ck+1 =
(

Ck 0d
Ck + 1d × Ckd 1d

)
for k = 1, . . . , r − 1,

(19)

where d = 2k. Further, for the sake of simplicity, they set Ck0 = Ck1 and
Ckd+1 = Ckd . This encoding helps to provide the following equations:

n∑
v=0

Crv,kλv ≤ yk +
r∑

l=k+1
2l−k−1yl ≤

n∑
v=0

Crv+1,kλv, (20)

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 10

n∑
v=0

Crv,kλv ≤ yk ≤
n∑
v=0

Crv+1,kλv. (21)

Using each of these two equations, one can then define two new models, a
binary formulation in (BinZigZag) and an integer one in (IntZigZag). They
are called Zig-Zag formulations as that describes the behavior of the single
vectors. A proof for the correctness of these equations is given by Huchette
and Vielma 2022.

Model 6. Binary Zig-Zag Formulation
n∑
i=0

λix̄i = x,

n∑
i=0

λif(x̄i) = z,

n∑
i=0

λi = 1,

n∑
v=0

Crv,kλv ≤ yk +
r∑

l=k+1
2l−k−1yl, k ∈ {1, . . . , r}

yk +
r∑

l=k+1
2l−k−1yl ≤

n∑
v=0

Crv+1,kλv, k ∈ {1, . . . , r}

λi ≥ 0, i ∈ {0, . . . , n},
yk ∈ {0, 1}, k ∈ {1, . . . , r},

(BinZigZag)

with r = dlog2 (n− 1)e.

Model 7. General Integer Zig-Zag Formulation
n∑
i=0

λix̄i = x,

n∑
i=0

λif(x̄i) = z,

n∑
i=0

λi = 1,

n∑
v=0

Crv,kλv ≤ yk, k ∈ {1, . . . , r},

yk ≤
n∑
v=0

Crv+1,kλv, k ∈ {1, . . . , r},

λi ≥ 0, i ∈ {0, . . . , n},
yk ∈ Z, k ∈ {1, . . . , r},

(IntZigZag)

with r = dlog2 (n− 1)e.

The big difference between (LogAg) and the Zig-Zag methods (BinZigZag)
and (IntZigZag) is their branching behavior. For an efficient solving of MIPs,
it is important to quickly find tight dual bounds that are obtained by solving

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 11

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

(3a) Initial segments

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 = 0:
λ0 + λ4 + λ8 = 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y2 = 0:
λ0 + λ1 + λ7 + λ8 = 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y3 = 0:
λ0 + λ1 + λ2 + λ3 = 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 = 1:
λ2 + λ6 = 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y2 = 1:
λ3 + λ4 + λ5 = 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y3 = 1:
λ4 + λ5 + λ6 + λ7 = 0

(3b) Branching for (LogAg)

LP relaxations. Each of these LP relaxation contains all feasible points,
or, better said, the convex hull of all feasible points. If the LP relaxations
are tight, we can find better dual bounds. In Huchette and Vielma 2022,
the authors mention different metrics to evaluate the branching behavior.
Besides that, we exemplarily investigate this using an example with n = 8
uniformly sized segments in the following.

In Figure 3a, one can see the breakpoints x̄0, x̄1, . . . , x̄8. These breakpoints
create eight segments that are, initially, all feasible, as there was no branching
up to now. Feasible segments are displayed in light blue. Further, the convex
hull of the feasible set is outlined by a thick rectangle. Here, the convex hull
is equivalent to the full domain.

In Figure 3b, all possible branchings for (LogAg) are shown. As we have
eight segments, there are 3 binary variables y1, y2 and y3 that can be either
zero or one, resulting in six different branches. All possibilities are displayed
where the red parts mean that segments are excluded due to the chosen
branch, blue segments are still feasible. There are three cases, where the
convex hull also contains infeasible regions as they lie between feasible ones.
Thus, a solution of the LP relaxation can also lie inside these infeasible
regions. The ZigZag reformulations try to overcome this problem.

We visualize the branching for (IntZigZag) in Figure 3c, but the behavior
of (BinZigZag) is similar. In theory, there are more possible branching steps
than the displayed ones, because in this reformulation the variables y1, y2
and y3 are integral instead of binary. However, all other branchings would
result in a combination of one infeasible branch and one branch that still
contains the full domain, and, therefore, no progress at all. As one can see,
all branchings lead to subdomains that are connected what means that their

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 12

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≤ 0:
λ2 + λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 4λ8 ≤ 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≤ 1:
λ2 + λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 4λ8 ≤ 1

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≤ 2:
λ2 + λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 4λ8 ≤ 2

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≤ 3:
λ2 + λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 4λ8 ≤ 3

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y2 ≤ 0:
λ3 + λ4 + λ5 + λ6 + 2λ7 + 2λ8 ≤ 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y2 ≤ 1:
λ3 + λ4 + λ5 + λ6 + 2λ7 + 2λ8 ≤ 1

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y3 ≤ 0:
λ5 + λ6 + λ7 + λ8 ≤ 0

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≥ 1:
λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8 ≥ 1

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≥ 2:
λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8 ≥ 2

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≥ 3:
λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8 ≥ 3

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y1 ≥ 4:
λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8 ≥ 4

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y2 ≥ 1:
λ2 + λ3 + λ4 + λ5 + 2λ6 + 2λ7 + 2λ8 ≥ 1

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y2 ≥ 2:
λ2 + λ3 + λ4 + λ5 + 2λ6 + 2λ7 + 2λ8 ≥ 2

x
x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8

y3 ≥ 1:
λ4 + λ5 + λ6 + λ7 + λ8 ≥ 1

(3c) Branching for (IntZigZag)

Figure 3. All possible branching steps for n = 8 segments.
Branching results in segments being feasible or infeasible,
what is represented by shading: The light blue areas represent
feasible regions, while the red areas represent the infeasible
segments. The bold rectangle outlines the convex hull.

convex hulls are exactly the feasible set. Thus, it is not possible to have
LP solutions that lie outside the feasible regions what should increase their
quality and, thus, the dual bounds.

The following two equations show the inequalities we used to create the
visualizations in Figures 3b and 3c. The continuous variables in (LogAg) are
constrained by

λ0 + λ1 + λ2 + λ3 ≤ y3, (22a)

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 13

λ5 + λ6 + λ7 + λ8 ≤ 1− y3, (22b)
λ0 + λ1 + λ7 + λ8 ≤ y2, (22c)

λ3 + λ4 + λ5 ≤ 1− y2, (22d)
λ0 + λ4 + λ8 ≤ y1, (22e)

λ2 + λ6 ≤ 1− y1. (22f)
When a binary variable is fixed, there is a subset of continuous variables
that also need to be zero then. For example, when setting y1 = 0, we
obtain λ0 + λ4 + λ8 = 0, i.e., λ0 = λ4 = λ8 = 0 from (22e) and, thus, the
feasible regions shown in the left upper plot of Figure 3b. For y1 = 1, we,
complementary, obtain λ2 = λ6 = 0 from (22f) what is visualized in the right
upper plot.

In contrast, the inequalities in (IntZigZag) and (BinZigZag) have the form

λ2 + λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 4λ8

≤ y1 + y2 + 2y3

≤ λ1 + λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8, (23a)
λ3 + λ4 + λ5 + λ6 + 2λ7 + 2λ8

≤ y2 + y3

≤ λ2 + λ3 + λ4 + λ5 + 2λ6 + 2λ7 + 2λ8, (23b)
λ5 + λ6 + λ7 + λ8

≤ y3

≤ λ4 + λ5 + λ6 + λ7 + λ8, (23c)
whereas the blue parts are the addends that are only present in (BinZigZag).
It directly stands out that all inequalities only use adjacent variables.

Let us exemplarily assume that we branch on y1, using the branches y1 ≤ 2
and y1 ≥ 3, given in the third line of Figure 3c. From (23a), we obtain

λ1 + λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8 ≤ 2 (24)
for the left branch with y1 ≤ 2. Using one of the variables λ6, λ7 or λ8 would
result in a sum greater than two, as the sum of exactly two neighboring
variables λi and λi+1 has to be one. Thus, we cannot use the three rightmost
segments. In contrast,

3 ≤ λ2 + λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 4λ8 (25)
emerges for y1 ≥ 3. Here, using any variable of λ0, λ1, . . . , λ5 would yield a
sum less than three with the same argument as before. Thus, we can use
exactly the three rightmost segments that were cut off in the other branch.

3.3. Incremental model. The incremental method was introduced
by Markowitz and Manne 1957. It uses a linear number of binary variables,
but a different behavior compared to the convex combination formulations.
There are n − 1 binary variables y1, . . . , yn−1 and a value yj = 1 enforces
that any segment i with i ≥ j is used. The other way around, we can say
that if segment i is used, we have yj = 1 for all j < i and yj = 0 for all
j > i. Further, we have yi = 1. The idea behind setting all leftmost binary

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 14

x̄i−1 x̄i x̄i+1

x
f(x̄i−1)

f(x̄i)

f(x̄i+1)

f(x)

x = x̄0 +
n∑
i=1
δi(x̄i − x̄i−1)

f̄(x) = f(x̄0) +
n∑
i=1
δi(f(x̄i)− f(x̄i−1))

yi−2 = 1 yi+1 = 0yi−1 = 1

δi−1 = 1 δi = 1 δi+1

yi = 1

Figure 4. Representation of (Inc)

variables to 1 is again to solve the branching issues described for (LogAg).
In this formulation, there are n continuous variables δi, . . . , δn. They are
used similarly to the binary ones, i.e., δj = 1 for all j < i and δj = 0 for all
j > i. Moreover, the variable δi determines the exact position of x that is
calculated by

x = x̄0 +
n∑
i=1

δi(x̄i − x̄i−1). (26)

The calculation of f(x) works equivalently. The following constraint is
introduced to ensure that the continuous variables behave as expected:

1 ≥ δ1 ≥ y1 ≥ · · · ≥ δn−1 ≥ yn−1 ≥ δn ≥ 0. (27)
Due to the variable names, the incremental method is also known as the
δ-method. The convex combination formulations, on the other hand, are
frequently referred to as the λ-methods. Again, one can find the model
in (Inc) and a visual representation in Figure 4.

Model 8. Classical Incremental Method

x̄0 +
n∑
i=1

δi(x̄i − x̄i−1) = x,

f(x̄0) +
n∑
i=1

δi(f(x̄i)− f(x̄i−1)) = z,

δ1 ≤ 1,
δi+1 ≤ yi, i ∈ {1, . . . , n− 1},
yi ≤ δi, i ∈ {1, . . . , n− 1},
δn ≥ 0,
yi ∈ {0, 1}, i ∈ {1, . . . , n− 1}.

(Inc)

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 15

3.4. Multiple choice model. Another reformulation that employs a linear
number of binary variables is the multiple choice model. As in the convex
combination models, each variable yi represents one segment i, and the
variables are one-hot encoded. The main idea here is that there is also
exactly one nonzero continuous variable. So, for each segment i, there is a
variable xi that represents the exact value on the x-axis. For each variable xi,
we have one constraint of the form

yix̄i−1 ≤ xi ≤ yix̄i. (28)
If we use segment i, we have x̄i−1 ≤ xi ≤ x̄i, and, thus, xi is forced to
lie exactly in the segment; otherwise, xi is fixed to zero. Given the values
of all variables xi, we can calculate the approximation value using the
parameters mi and ti and linear equations

n∑
i=1

mixi + tiyi. (29)

Putting everything together, we obtain (MC) and the visual representation
in Figure 5.

Model 9. Multiple Choice Model
n∑
i=1

xi = x,

n∑
i=1

(mixi + tiyi) = z,

yix̄i−1 ≤ xi, i ∈ {1, . . . , n},
xi ≤ yix̄i, i ∈ {1, . . . , n},

n∑
i=1

yi = 1,

yi ∈ {0, 1}, i ∈ {1, . . . , n}.

(MC)

Finally, we provide an overview of the number of variables that are needed
to model the MIP representations of this section in Table 1. For relaxations,
we need another variable for each segment, i.e., n additional variables. This
is the same for each representation

4. Implementation

After introducing the different possibilities to represent MIP relaxations
of MINLPs, we go more into detail about how we implemented our compu-
tational study. For that, we firstly describe how the input instances look like
before heading over to the reformulation and solving process.

4.1. Input. All of our input problems are in the Optimization Services In-
stance Language, or OSIL, format. This format employs an XML vocabulary,
which provides several advantages, the most notable of which is that nonlin-
earities are stored in a tree-based structure. In an OSIL file, each variable,
constraint, etc. is saved along with various attributes such as coefficients, a

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 16

x̄i−1 x̄i x̄i+1

x
f(x̄i−1)

f(x̄i)

f(x̄i+1)

f(x)

x =
n∑
i=1
xi

f̄(x) =
n∑
i=1
mixi + tiyi

yi−2 = 0 yi+1 = 0yi−1 = 0

xi

yi = 1

Figure 5. Visual representation of (MC)

Table 1. Sizes of all one-dimensional representations assum-
ing that we have n segments and n+ 1 breakpoints

Model Constraints Variables
continuous binary integer

(Disag) n+ 3 2n n 0
(LogDisag) 2dlog2 ne+ 3 2n dlog2 ne 0
(Ag) n+ 5 n+ 1 n 0
(LogAg) 2dlog2 ne+ 3 n+ 1 dlog2 ne 0
(Inc) 2n+ 1 n n− 1 0
(MC) 2n+ 3 n n 0
(BinZigZag) 2dlog2(n− 1)e+ 3 n+ 1 dlog2(n− 1)e 0
(IntZigZag) 2dlog2(n− 1)e+ 3 n+ 1 0 dlog2(n− 1)e

name, or an index. These indices are then used as a reference, for instance
to determine where a nonlinearity is used.

A nonlinearity is stored as an expression tree that includes tags for func-
tions like power, products, and sums. An example for the nested expres-
sion −106·i1·i2

i3·i4 is given in Figure 6a, the corresponding expression tree is given
in Figure 6b. For variable i1 with index 0, there is an additional parameter,
its coefficient of 106. The nonlinear term is used in the constraint with
index 0, what is stated in line 7. In line 2, one can see how properties of
the variables are stored: In the provided example, variable i1 is an integer
variable with 12 ≤ i1 ≤ 60. The index of 0 is implicitly given by the order in
which the variables are defined. In line 11, variable i1 is then used in the
nonlinear expression. It would have also been possible to store parts of this
nonlinearity as quadratic equations: Therin, only two variable indices are
stored together with a coefficient. More information about the OSIL format
is provided by Fourer et al. 2010.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 17

1 <variables numberOfVariables=" 6 ">
2 <var name=" i 1 " type=" I " lb=" 12 " ub=" 60 " />
3 [. . .]
4 </variables>
5 [. . .]
6 <nonlinearExpressions numberOfNonl inearExpress ions=" 1 ">
7 <nl idx=" 0 ">
8 <negate>
9 <divide>

10 <product>
11 <variable idx=" 0 " co e f=" 1e6 " />
12 <variable idx=" 1 " />
13 </product>
14 <product>
15 <variable idx=" 2 " />
16 <variable idx=" 3 " />
17 </product>
18 </divide>
19 </negate>
20 </nl>
21 </nonlinearExpressions>

(6a) Parts of the OSIL code from instance gear4.osil.

negate

divide

product

106 · i1 i2

product

i3 i4

(6b) Expression tree for the nonlinear term

Figure 6. Representations for the expression −106·i1·i2
i3·i4 . This

expression is a part of an instance from the MINLPLib.

Our benchmark set consists of 306 instances. We use a subset of the
problems provided in the MINLPLIB (Bussieck et al. 2003), depending on
different selection criteria. On the one hand, all variables need to have a lower
and upper bound, as, otherwise, we are not able to establish a piecewise linear
approximation or relaxation. On the other hand, as mentioned in Section 2,
a large subset of the instances from the MINLPLIB can be represented by a
recursive combination of elementary operators from (1). Based on this, we
only consider the following nonlinear functions:

f(x1, . . . , xn) =
n∏
i=1

xi, f(x) = ex, f(x) = ln x,

f(x) = log10 x, f(x) = x2, f(x) =
√
x, f(x) = sin x,

f(x) = cosx, f(x) = tanh x, f(x1, x2) = x1
x2
, f(x) = x−1.

(30)

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 18

Furthermore, we include only problems where the optimal solution is known.
In our numerical study in Section 5, we provide additional statistics about
our benchmark instances.

4.2. Reformulation. Each input problem is now reformulated using a self-
defined data format, first to a MINLP containing only one-dimensional
nonlinearities and nonlinearities of the form z = x1x2. Subsequently, the uni-
variate transformation of bivariate products from Section 2 is performed. The
resulting MINLP then serves as the basis for the various MIP relaxations.

Our data format is called OSILData and contains data structures for vari-
ables, objective(s), constraints, linear, quadratic, and nonlinear expressions.
Each object of OSILData can later be solved in the same way, indepen-
dently of the type of nonlinearities, what makes the results easily comparable.
All nonlinear expressions are stored in a tree structure that can be easily
modified. This structure is based on the expression trees of the original
OSIL format. At the start of each solving process, an object of OSILData
containing all given information is created from the initial MINLP.

4.2.1. Creating one-dimensional nonlinearities. The first reformulation step
is to remove all more-dimensional nonlinearities. To this end, we in-
vestigate all nonlinearities recursively and reformulate each type one
by one. We initially use two-dimensional multiplications, which we re-
formulate at the end. The first more-dimensional nonlinearities that
we want to remove are products with more than two multiplicands,
i.e., expressions of the form product(x1, x2, . . . , xn−1, xn). This is re-
formulated such that each product has two multiplicands, resulting in
the form product(x1,product(x2,product(. . . ,product(xn−1, xn)))).
Next, each division of the form z = x1

x2
is reformulated by z = x1 · 1

x2
,

which is again a product of one-dimensional nonlinearities.
After dealing with these special cases, we need to consider nested nonlinear

equations with multiple variables. The OSIL expression tree format is
useful in this regard: We go through the tree recursively, replacing each
nonlinearity nli(x) with a newly introduced variable zi. In addition, we insert
a new constraint zi = nli(x), which creates a new expression tree. As we
begin to replace the leafs, each newly created tree has a depth of at most
one.

4.2.2. Reformulation from one-dimensional MINLPs to MIP relaxations.
We now relax the MINLP based on the one-dimensional formulation using the
MIP representations described in Section 3. Our implementation allows one
to choose between relaxations and approximations, but for this study we only
consider piecewise linear relaxations. The following approach is essentially
the same for each PWL model. Since we reformulated all nonlinearities to
one-dimensional nonlinear functions, each expression has the form z = f(x)
with a bounded variable x, i.e., x− ≤ x ≤ x+. Therefore, we can create a
piecewise linear approximation function f̄ : [x−, x+]→ R for each nonlinear
expression and extend it to a relaxation afterwards. We use an adjustable
value ε that bounds the maximum error in each segment, i.e., we enforce∣∣∣f̄(x)− f(x)

∣∣∣ ≤ ε (31)

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 19

for all x with x− ≤ x ≤ x+. The size of ε controls the number of breakpoints
and, thus, segments we use. A smaller error bound leads to an increasing
number of breakpoints and vice versa. The set of breakpoints x0, x1, . . . , xn
is created as follows: Beginning with the lower bound x−, we set x0 = x−

and calculate the next point x1 that fulfills (31) for x0 ≤ x ≤ x1 when
setting f̄(x) = m0x+ t0 where m0 and t0 describe the linear function that
connects (x0, f(x0)) and (x1, f(x1)). This procedure uses binary search and
it is repeated until we reach a breakpoint xn with xn ≥ x+. The value of this
point is then set to x+. Finally, using all linear approximations, we obtain
the PWL approximation

f̄(x) = mix+ ti, (32)
where mi and ti are chosen depending on x, i.e., such that x̄i−1 ≤ x ≤ x̄i.
We enforce continuous piecewise linear approximations by interpolation, i.e.,
we have mix̄i−1 + ti = f(x̄i−1) and mix̄i + ti = f(x̄i) for i = 1, . . . , n. To
create relaxations, we just add another variable, bounded by −ε ≤ e ≤ ε that
controls the maximum error and add it to the piecewise linear function f̄(x),
i.e., we replace each nonlinearity by f̄(x) + e.

In our implementation, we can choose which representation from Section 3
to use for the relaxation. Then, the respective constraints replace the
occurring nonlinearities in the input problem.

4.3. Solving. Finally, we have a MIP model for each different representa-
tion that can be solved using state-of-the-art MIP solution methods. To
accomplish this, we first convert the MIPs from our own data structure to
Pyomo models, cf. Bynum et al. 2021; Hart et al. 2011. We use Pyomo
because it allows us to easily switch between different solvers. Gurobi cannot
be used for general MINLPs, but we want to use it later to solve the MIPs
and compare the results with the original solution. We use Gurobi Optimizer
version 9.1.2 (Gurobi Optimization, LLC 2023) to solve the MIPs using
a time limit of four hours. Each problem is optimized on the NHR@FAU
clusters using Intel Xeon Gold 6326 CPUs with four cores, a total of 32 GB
RAM, and a base frequency of 2.9 GHz.

We store different information in each run. On the one hand, we examine
the optimization result, which tells us whether a problem was solved to
optimality, reached its time limit, or ran into an error. Infeasibility can only
occur when we use approximations instead of relaxations.

On the other hand, we are interested to understand more about how
problems are solved: We store the primal and dual bounds on a regular basis
and therefore can monitor the gap over time. Furthermore, we store the time
it took until the first feasible solution was found. In the following section 5,
we present the numerical results and discuss it afterwards in Section 6.

5. Numerical results

In this section, we first present the benchmark set from the MINLPLIB and
then numerically analyze how the different MIP models for PWL relaxations
from Section 3 perform in practice.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 20

5.1. Benchmark instances. As mentioned previously, our benchmark set
is a subset of the MINLPLIB that consists of 306 different instances. In
Figure 7, one can see the numbers of constraints and variables for each
instance. Figure 7a shows the entire benchmark set, whereas Figure 7b
describes all instances with less than 1000 constraints and variables. In
both plots, each blue square represents the total number of constraints and
variables in one benchmark instance. We have around 169 variables and 225
constraints on average per instance. The median numbers are 42.5 and 30.5,
respectively.

On the left hand side, we further plotted red circles that consider only
the nonlinear constraints. Similarly, on the right hand side, the green circles
show only the number of binary and integer variables. There are, on average,
around 91 binary/integer variables, as well as 56 nonlinear constraints per
instance. The median number of binary/integer variables is 4.5.

Table 2 contains statistics about the benchmark instances. To make a
conclusive comparison, we consider the set of instances for which a model
could be created for all error bounds. The number of segments per instance
and nonlinearity, as well as the segment length per nonlinearity, are calculated
for each error bound. The mean and median number and length of segments
per nonlinearity are calculated for the entire set of nonlinearities instead of
averaging over each instance separately.

A full list of the benchmark set and the exact numbers of variables and
constraints per instance is provided in Appendix B.

5.2. Comparison of the MIP models for PWL relaxations. We now
present the computational results where we test all PWL MIP models
from Section 3 on the previously explained benchmark set. First, we evaluate
how many problems can be solved to optimality, and how long the solving
process takes before moving on to evaluate the solution quality over time.

For many results, we use the so-called shifted geometric mean (SGM). The
SGM of n numbers t1, . . . , tn is determined using the formula

n

√√√√ n∏
i=1

(ti + s)− s. (33)

Here, s represents an arbitrary shift applied to each term. This shift factor
introduces a level of flexibility into the calculation, allowing us to adjust the
significance of each term in the dataset. In our case, we want to decrease
the impact of small runtimes. To improve the numerical stability of the
computation, we employ an alternative formulation, namely

n

√√√√exp
(

n∑
i=1

ln (ti + s)
)
− s = exp

(∑n
i=1 ln (ti + s)

n

)
− s. (34)

In each MIP relaxation, we fix a maximal error bound ε. The break
points are created depending on this error bound. To allow the model to use
the maximal error bound, we add the variables ε+, ε− ∈ [0, ε] every time, a
non-linearity is replaced.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 21

Table 2. Sizes of the MIP reformulations. The instances
have between 2 and 12540 nonlinearities with a mean of 482.85
and a median of 48.

Error bound ε = 102

min max mean median
Segments per instance 3 25079 1005.52 192
Segments per NL 1 173 1.08 1
Segment length per NL 0.0066 109669.00 7.97 1.00

Error bound ε = 100

min max mean median
Segments per instance 3 25079 1534.06 669
Segments per NL 1 1729 2.18 1
Segment length per NL 0.0066 8436.08 1.94 1.00

Error bound ε = 10−2

min max mean median
Segments per instance 13 45343 9366.03 4589
Segments per NL 1 17281 18.40 5
Segment length per NL 0.0066 3456.00 0.34 0.20

Error bound ε = 10−4

min max mean median
Segments per instance 121 407098 88924.89 41414
Segments per NL 1 172801 183.17 50
Segment length per NL 0.0022 493.71 0.039 0.02

Error bound ε = 10−6

min max mean median
Segments per instance 1077 4029797 885031.81 413119.0
Segments per NL 4 1728349 1831.94 501
Segment length per NL 0.00022 51.58 0.0040 0.002

5.2.1. Number of solved problems and runtimes. First, we consider how many
problems the various methods can solve. Figure 8 depicts the number of prob-
lems solved by each PWL model over time. We plot the number of optimally
solved problems for each point in time between 0 and 14400 seconds (the
time limit of 4 hours) and each method. The time is plotted on a logarithmic
scale for better visibility. Each subfigure represents a different error bound
(From now on, we will consider error bounds ε ∈ {102, 100, 10−2, 10−4, 10−6}
in all cases). All eight methods are plotted, and a legend is provided in
Figure 8b. The bottom plots show more differences as the problems become
larger and thus more difficult with increasing error bounds.

In Table 3, we compare the runtimes until an optimal solution is found.
If an instance is not solved during the time limit, the time limit is used as

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 22

0 2000 4000 6000

0

500

1000

1500

2000

2500

3000

3500

N
um

be
ro

fv
ar

ia
bl

es
All constraints
Only nonlinear constraints

0 2000 4000 6000

0

500

1000

1500

2000

2500

3000

3500

All variables
Only binary/integer variables

0 250 500 750
Number of constraints

0

100

200

300

400

500

600

700

N
um

be
ro

fv
ar

ia
bl

es

0 250 500 750
Number of constraints

0

100

200

300

400

500

600

700(7a) Full benchmark set
0 2000 4000 6000

0

500

1000

1500

2000

2500

3000

3500

N
um

be
ro

fv
ar

ia
bl

es

All constraints
Only nonlinear constraints

0 2000 4000 6000

0

500

1000

1500

2000

2500

3000

3500

All variables
Only binary/integer variables

0 250 500 750
Number of constraints

0

100

200

300

400

500

600

700

N
um

be
ro

fv
ar

ia
bl

es

0 250 500 750
Number of constraints

0

100

200

300

400

500

600

700

(7b) Instances with less than 1000 variables and constraints

Figure 7. Total amount of variables and constraints for our
selected benchmark instances. The blue squares represent the
total number of constraints and variables, whereas the red and
green circles represent nonlinear constraint and binary/integer
variable subsets, respectively.

a runtime. Additional to the mean and median values, we use the shifted
geometric mean (SGM) with s = 10, as proposed in (33).

Table 4 distinguishes the instances according to whether they were solved
within the time limit or not. As expected, the number of problems solved
to optimality decreases as the error bounds become smaller. In some cases,

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 23

100 101 102 103 104

Time [s]

0

50

100

150

200

250
N

um
be

ro
fs

ol
ve

d
pr

ob
le

m
s

Number of solved problems for: Full instance set (fixed).

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(8a) ε = 100

100 101 102 103 104

Time [s]

0

50

100

150

200

250

N
um

be
ro

fs
ol

ve
d

pr
ob

le
m

s
Number of solved problems for: Instances that finished without error for all MIP reformulations.

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(8b) Legend

100 101 102 103 104

Time [s]

0

50

100

150

200

N
um

be
ro

fs
ol

ve
d

pr
ob

le
m

s

Number of solved problems for: Full instance set (fixed).

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(8c) ε = 10−2

we do not have information about the solution process for every method
because of errors that occur during the steps of our framework as described
in Section 4: On the one hand, the model creation time may be too long,
and the solution process may not begin at all; on the other hand, when
models become too large, some out-of-memory errors occur. These cases are
omitted from our statistics. Figure 9 displays how many instances of each
MIP model progressed how far in the solution process. For every model, we
plot a bar for each of the five error bounds. The different shades of blue
represent the stages of the solution process, where the different checkpoints
are the following: The whole process has started (STARTED), the MIP
reformulation has been created (MIP CREATED), the MIP reformulation
solution process has ended without errors (MIP SOLVED), and a primal
or optimal solution of the relaxation has been found (PRIMAL/OPTIMAL
SOLUTION FOUND), respectively.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 24

Table 3. Mean, median, and shifted geometric mean of the
runtimes, depending on the error bound ε.

Error bound ε = 102 ε = 100

Runtime [s] mean median SGM mean median SGM
(Disag) 781.88 0.05 12.74 1933.86 3.33 56.06
(LogDisag) 593.31 0.07 11.34 1596.81 5.90 46.98
(Ag) 732.12 0.06 11.59 2327.03 3.38 62.05
(LogAg) 577.94 0.05 10.05 1409.95 2.81 37.23
(Inc) 478.16 0.04 9.46 1197.74 2.07 34.34
(MC) 751.85 0.06 11.73 1760.72 3.11 47.99
(BinZigZag) 594.41 0.05 10.01 1335.04 2.96 33.49
(IntZigZag) 607.02 0.04 10.19 1251.36 2.93 32.52
Error bound ε = 10−2 ε = 10−4

Runtime [s] mean median SGM mean median SGM
(Disag) 6523.66 924.23 620.00 7703.17 14400.00 1004.48
(LogDisag) 5091.59 222.42 402.49 6258.89 1238.93 761.39
(Ag) 6444.64 1209.32 604.09 7533.72 9718.85 1170.59
(LogAg) 4623.80 93.69 281.33 4758.82 556.63 462.13
(Inc) 3778.40 98.03 235.87 4640.37 383.14 331.88
(MC) 5611.26 193.02 393.24 5249.12 104.08 361.25
(BinZigZag) 4494.56 136.44 277.48 5038.51 824.10 482.58
(IntZigZag) 4408.71 118.55 270.26 4950.96 427.57 416.71
Error bound ε = 10−6

Runtime [s] mean median SGM
(Disag) 7914.52 14400.00 1672.63
(LogDisag) 7403.85 9675.72 1227.49
(Ag) 7866.40 14400.00 1941.72
(LogAg) 5839.51 500.07 569.06
(Inc) 3783.14 59.33 227.57
(MC) 3467.61 152.07 306.00
(BinZigZag) 5995.32 453.34 574.04
(IntZigZag) 5842.74 250.83 507.88

Table 4. Solver results for the full benchmark set.

Error bound ε = 102 ε = 100 ε = 10−2 ε = 10−4 ε = 10−6

Solver result opt. tl. opt. tl. opt. tl. opt. tl. opt. tl.
(Disag) 263 13 239 32 146 107 97 101 59 63
(LogDisag) 267 9 246 25 172 81 117 81 61 61
(Ag) 263 13 231 40 147 106 103 95 60 62
(LogAg) 266 10 251 20 181 72 141 57 74 48
(Inc) 269 7 254 17 201 52 145 53 95 27
(MC) 263 13 242 29 169 84 132 66 96 26
(BinZigZag) 266 10 250 21 183 70 137 61 74 48
(IntZigZag) 266 10 252 19 185 68 138 60 74 48

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 25

100 101 102 103 104

Time [s]

0

20

40

60

80

100
N

um
be

ro
fs

ol
ve

d
pr

ob
le

m
s

Number of solved problems for: Full instance set (fixed).

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(8d) ε = 10−6

Figure 8. Number of solved problems over time. The re-
maining error bounds are given in Figure 11.

Ag BinZigZag Disag Inc IntZigZag LogAg LogDisag MC
0

50

100

150

200

250

300

STARTED
MIP CREATED
MIP SOLVED
PRIMAL SOLUTION FOUND
OPTIMAL SOLUTION FOUND

Ag BinZigZag Disag Inc IntZigZag LogAg LogDisag MC
0

50

100

150

200

250

300

STARTED
MIP CREATED
MIP SOLVED
PRIMAL SOLUTION FOUND
OPTIMAL SOLUTION FOUND

(9) Solving progress of the different MIP methods. For
each method, the bars represent the error bounds of
102, 100, 10−2, 10−4, and 10−6, from left to right.

More benchmarks for smaller subsets, i.e., on the one hand, all problems
for which a feasible solution was found, and on the other hand, all problems
that are solved to optimality by all PWL models are given in Appendix C.
Additionally, we present performance profiles in Appendix C.4.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 26

Table 5. Solution qualities of MIP relaxations, depending
on the error bound ε, calculated by (35).

Error bound ε = 102 ε = 100 ε = 10−2 ε = 10−4 ε = 10−6

Solved instances 262 228 131 87 48
Mean 1517.84% 35.14% 7.85% 1.29% 2.25%

Median gap 9.60% 1.35% 0.01% 0.00% 0.00%
SGM 5.13% 1.83% 0.31% 0.03% 0.03%

5.2.2. Solution qualities. We can further evaluate the gap between the op-
timal solution of the MINLP and the MIP relaxations’ solution for the
instances that all PWL models solved to global optimality. Table 5 presents
the corresponding results. Therein, additionally to the number of solved
problems, we provide the mean, median, and shifted geometric mean for the
gaps between the optimal MINLP and MIP solutions x∗ and xrelax, given
by ∣∣∣c>x∗ − c>xrelax

∣∣∣
|c>x∗|+ 10−10 . (35)

Adding 10−10 to the denominator prevents problems with instances that
have an objective value of 0. As one can see, the gap is already very small
for ε = 10−4, which means that using MIP relaxations, one can find fairly
good dual bounds.

Further, in Figure 10, we plot how the MIP solution improves over time.
Therefore, we take the shifted geometric mean of all primal and dual gaps,
i.e., the gaps between the primal/dual bounds and the optimal MIP solution.
The primal gap is calculated using

p :=

1 if z =∞ or z · z∗ < 0,
0 if z = z∗,
|z−z∗|

max{|z|,|z∗|} else,
(36)

and, equivalently, the dual gap is calculated by

d :=

1 if z = −∞ or z · z∗ < 0,
0 if z = z∗,
|z−z∗|

max{|z|,|z∗|} else,
(37)

where z and z are the current primal and dual bounds and z∗ = c>xrelax

is the optimal solution of the MIP relaxation. The upper graphs in each
subplot show how the primal gap shrinks, while the lower graphs show how
the dual gap shrinks.

6. Discussion

We will now investigate the presented results in order to draw some
conclusions from our study. For larger error bounds (Figure 11a), the number
of solved problems is quite similar, while already for ε = 1 (Figure 8a), we
can see some differences. For smaller error bounds, i.e., larger models, the

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 27

100 101 102 103 104

10−3

10−2

10−1

Pr
im

al
G

ap

Full instance set. (fixed

100 101 102 103 104

time [s]

10−2

10−1D
ua

lG
ap

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(10a) ε = 10−2

100 101 102 103 104

10−2

10−1

Pr
im

al
G

ap

Full instance set. (fixed

100 101 102 103 104

time [s]

10−2

10−1

D
ua

lG
ap

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(10b) ε = 10−4

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 28

100 101 102 103 104

10−2

10−1

100
Pr

im
al

G
ap

Full instance set. (fixed

100 101 102 103 104

time [s]

10−2

10−1

100

D
ua

lG
ap

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(10c) ε = 10−6

Figure 10. SGM of primal and dual gap to optimal MIP
solution over time. The remaining error bounds are given in
Figure 12

differences become more visible: For ε = 10−2 (Figure 8c), we see that (Inc),
(BinZigZag), (IntZigZag), and (LogAg) show similar performances during
the first 1000 seconds, but with more runtime, (Inc) solves significantly more
problems. For ε = 10−6 (Figure 8d) it stands further out that (MC) also
yields a good performance, catching up to (Inc) after around 1000 seconds
and solving nearly the same number of problems after a time limit of 4 hours.

As a first result, we can say that the incremental method shows, overall,
the best performance regarding the number of solved problems while, as we
can see in all graphs of Figure 8 and in Table 4, the non-logarithmic convex
combinations, (Ag) and (Disag), solve the fewest instances. In general, the
logarithmic methods outperform their non-logarithmic counterparts, while
the (IntZigZag) model is slightly superior to the other logarithmic models.
The runtimes in Table 3 also strengthen our conclusions.

As mentioned in the previous section, we also considered two smaller
subsets of instances: All problems for which a feasible solution was found by
all methods and all instances that are solved to optimality by all models. For
the first subset (Tables 8 and 9), we see similar results as before: (Inc) solves
the most instances, followed by the logarithmic models. For error bounds
ε ≥ 10−4, (Inc) again shows superior runtimes. This changes with ε = 10−6,
as now, (LogAg), (BinZigZag), and (IntZigZag) have shorter runtimes, while
(IntZigZag) again performs best among the logarithmic methods. We can

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 29

see the same results for the optimality subset, presented in Table 10, where
(Inc) is also superior only up to ε = 10−4.

One reason for this seems to be that logarithmic methods are much less
suitable for some of the more difficult instances (with very high accuracies),
while for other problems they provide the best models overall. Therefore,
depending on the specific instance, the logarithmic models can be a very
valuable alternative to the incremental method for very small error bounds.

In Tables 11 to 13, smaller time limits are investigated, but the results
coincide with our previous findings. As before, (Inc) solves the instances
fastest, while the other methods catch up only for the easier subsets and
very small error bounds.

Complementary to the runtimes, we also analyzed the solution process
itself, i.e., how the optimality gaps decrease over time. However, before doing
so, we investigated the extent to which our solution framework as described
in Section 4 worked (Figure 9), where it stands out that (MC) is able to find
primal solutions, i.e., solve feasibility problems quite fast. For larger error
bounds (Figures 12a and 12b), the gaps evolve quite similar for all methods,
while, for smaller error bounds (Figures 10a to 10c) the differences become
greater. Only the non-logarithmic convex combinations again show worse
results than the remaining methods. For all error bounds, the logarithmic
versions of the aggregated convex combination, i.e., (LogAg), (BinZigZag),
and (IntZigZag) show a similar behavior. This is not surprising, as these
methods only differ in how the branching scheme is defined, see Section 3.2.
Besides the fact, that (Inc) is again superior, we can further see that (MC)
has also a good behavior for the very small bound ε = 10−6. Overall, our
results lead to a recommendation to favor (Inc) as a general PWL method
in practice over the other models that we considered in this paper.

Finally, to emphasize the relevance of PWL relaxations in the context
of solving MINLPs, we discuss how good the MIP relaxation’s solutions
are in general. Since we know the optimal solution for each MINLP as we
restricted ourselves to these instances, we can calculate the gap between the
optimal MIP and MINLP solutions, as described in (35). Please note that
the optimal solution of a MIP relaxation is in fact a valid dual bound for
the corresponding MINLP. Thus, the results in Table 5, which shows the
mean and median values of all gaps as well as the shifted geometric mean
using a shift value of s = 10−3, can be considered as relative optimality
gaps for the MINLP problems. As we can see, the median gap is negligible
already for ε = 10−2, which means that more than half of the MIP relaxation’
solutions are similar to the corresponding optimal MINLP solution in terms
of objective values. For ε ≤ 10−4, also the mean and SGM values are fairly
small. Obtaining such small gaps is a promising result, which suggests that
tackling MINLPs by MIP relaxations can be a reasonable alternative to
spatial branch-and-bound in practice. This becomes even more impressive if
we consider that we have an expression tree structure with separate equations
for each nonlinearity, which means that each nonlinearity can have errors up
to ε that propagate further.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 30

7. Conclusion

In this paper, we compared various MIP models for PWL relaxations of
nonlinear functions that are known in the literature. Using over 300 instances
of the MINLPLIB data set, we conducted a comprehensive computational
study to determine a general performance of these models. Our results demon-
strate the advantages of the incremental method as presented by Markowitz
and Manne 1957 and are accompanied by a general recommendation of this
method for practical applications.

Since our primary focus in this study was to evaluate different PWL models
rather than assessing the overall performance of the solver, there are some
points where our implementation could have been improved. For instance, a
more sophisticated method for determining breakpoints or avoiding duplicates
in variables and constraints would be desirable. It is important to note,
however, that the inefficiencies in our framework remain consistent across all
MIP models and do not affect the conclusions drawn from our research.

Future work may focus on different topics. First, this research only
considers the maximum error for each segment, while overlooking factors such
as the number of breakpoints and the specific characteristics of nonlinearities.
Moreover, approaches that use PWL relaxations to solve MINLPs can
benefit significantly from adaptivity by refining the PWL relaxations only
locally in an iterative manner. Depending on the stages of the solution process,
in this setting, PWL relaxations must thus be solved with both small and
large numbers of segments. Consequently, the combination of different PWL
models might be the best starting point for adaptive approaches, which is
also supported by our results. One promising idea is to combine methods
that are capable of finding primal solutions quickly, like the multiple choice
method, with methods that are better suited for closing the optimality gap
with high-accuracy PWL relaxations, like the incremental method or the
integer Zig-Zag formulation by Huchette and Vielma 2022. Furthermore,
when multiple kernels are available, the most suitable MIP model for a
specific problem can be chosen during runtime.

Appendix A. Branching scheme for the logarithmic branching
convex combination model

The following Table 6 gives a visualization of our branching scheme from
Section 3.2.

Table 6. Example for the iterative creation of Ls, Rs for n = 16.

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7 x̄8 x̄9 x̄10 x̄11 x̄12 x̄13 x̄14 x̄15 x̄16

T4 L4 L4 L4 L4 L4 L4 L4 L4 - R4 R4 R4 R4 R4 R4 R4 R4
T3 L3 L3 L3 L3 - R3 R3 R3 R3 R3 R3 R3 - L3 L3 L3 L3
T2 L2 L2 - R2 R2 R2 - L2 L2 L2 - R2 R2 R2 - L2 L2
T1 L1 - R1 - L1 - R1 - L1 - R1 - L1 - R1 - L1

Appendix B. Benchmark set
In the following, our benchmark set from the MINLPLIB is presented.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 31

Number of Number of variables
Instance objective constraints nonlinear equations continuous binary integer

alkyl -1.765 7 7 14 0 0
arki0005 372.6047 5152 2353 2370 0 0
batch 285506.5082 73 2 22 24 0

batch0812 2687026.784 217 2 40 60 0
batchdes 167427.6571 19 2 10 9 0
blend029 13.3594 213 12 66 36 0
blend146 45.2966 624 24 135 87 0
blend480 9.2266 884 32 188 124 0
blend531 20.039 736 32 168 104 0
blend718 7.3936 606 24 135 87 0
blend721 13.5268 627 24 135 87 0
blend852 53.9627 860 32 184 120 0

cardqp_inlp 3760.7151 1 1 0 50 0
cardqp_iqp 3760.7151 1 1 0 50 0
celar6-sub0 159.0 16 1 0 640 0

chimera_k64ising-01 24.3 0 1 0 1192 0
chimera_k64ising-02 24.3 0 1 0 1225 0
chimera_k64maxcut-01 23.6 0 1 0 1101 0
chimera_k64maxcut-02 23.6 0 1 0 1145 0

chimera_lga-01 143.5 0 1 0 1120 0
chimera_mgw-c8-439-onc8-001 405.0 0 1 0 440 0
chimera_mgw-c8-439-onc8-002 397.0 0 1 0 440 0

chimera_mis-01 389.4 0 1 0 2032 0
chimera_mis-02 398.6 0 1 0 2032 0

chp_shorttermplan2a 245800.4121 3896 768 1344 240 0
crossdock_15x7 14409.0 44 1 0 210 0
crossdock_15x8 15595.0 46 1 0 240 0

cvxnonsep_normcon20 -21.7491 1 1 10 0 10
cvxnonsep_normcon30 -34.244 1 1 15 0 15
cvxnonsep_normcon40 -32.6297 1 1 20 0 20

du-opt 3.5563 9 1 7 0 13
ex1222 1.0765 3 2 2 1 0
ex1223 4.5796 13 5 7 4 0
ex1223a 4.5796 9 5 3 4 0
ex1223b 4.5796 9 5 3 4 0
ex1224 -0.9435 7 4 3 8 0
ex1263 19.6 55 4 20 72 0
ex1263a 19.6 35 4 0 4 20
ex1264 8.6 55 4 20 68 0
ex1264a 8.6 35 4 0 4 20
ex1265 10.3 74 5 30 100 0
ex1265a 10.3 44 5 0 5 30
ex1266 16.3 95 6 42 138 0
ex1266a 16.3 53 6 0 6 42
ex2_1_1 -17.0 1 1 5 0 0
ex2_1_5 -268.0146 11 1 10 0 0
ex2_1_6 -39.0 5 1 10 0 0
ex2_1_8 15639.0 10 1 24 0 0
ex3_1_1 7049.248 6 3 8 0 0
ex3_1_2 -30665.5387 6 7 5 0 0

ex5_2_2_case1 -400.0 6 3 9 0 0
ex5_2_2_case2 -600.0 6 3 9 0 0
ex5_2_2_case3 -750.0 6 3 9 0 0

ex5_2_4 -450.0 6 4 7 0 0
ex5_3_2 1.8642 16 9 22 0 0
ex5_4_2 7512.2301 6 3 8 0 0
ex6_2_14 -0.6954 2 1 4 0 0
ex7_2_1 1227.2261 14 13 7 0 0
ex8_1_1 -2.0218 0 1 2 0 0
ex8_4_1 0.6186 10 11 22 0 0
fac3 31982309.85 33 1 54 12 0

flay02m 37.9473 11 2 10 4 0
flay03m 48.9898 24 3 14 12 0
flay04m 54.4059 42 4 18 24 0
flay05m 64.4981 65 5 22 40 0
gabriel01 45.2444 467 48 143 72 0
gabriel04 9.2266 943 128 260 101 0

gbd 2.2 4 1 1 3 0
gear 0.0 0 1 0 0 4
gear2 0.0 4 1 4 24 0
gear3 0.0 4 1 4 0 4

genpooling_lee1 -4640.0824 82 20 40 9 0
genpooling_lee2 -3849.2654 92 30 44 9 0

genpooling_meyer04 1086187.137 141 15 63 55 0

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 32

graphpart_2g-0044-1601 -954077.0 16 1 0 48 0
graphpart_2g-0055-0062 -1484348.0 25 1 0 75 0
graphpart_2g-0066-0066 -2865560.0 36 1 0 108 0
graphpart_2g-0077-0077 -3282435.0 49 1 0 147 0
graphpart_2g-0088-0088 -5935341.0 64 1 0 192 0
graphpart_2g-0099-9211 -5070020.0 81 1 0 243 0
graphpart_2g-1010-0824 -7024864.0 100 1 0 300 0
graphpart_2pm-0044-0044 -13.0 16 1 0 48 0
graphpart_2pm-0055-0055 -20.0 25 1 0 75 0
graphpart_2pm-0066-0066 -29.0 36 1 0 108 0
graphpart_2pm-0077-0777 -40.0 49 1 0 147 0
graphpart_2pm-0088-0888 -55.0 64 1 0 192 0
graphpart_2pm-0099-0999 -64.0 81 1 0 243 0
graphpart_3g-0234-0234 -1952753.0 24 1 0 72 0
graphpart_3g-0244-0244 -2725383.0 32 1 0 96 0
graphpart_3g-0333-0333 -1882389.0 27 1 0 81 0
graphpart_3g-0334-0334 -3410696.0 36 1 0 108 0
graphpart_3g-0344-0344 -5301516.0 48 1 0 144 0
graphpart_3g-0444-0444 -7603756.0 64 1 0 192 0
graphpart_3pm-0234-0234 -20.0 24 1 0 72 0
graphpart_3pm-0244-0244 -28.0 32 1 0 96 0
graphpart_3pm-0333-0333 -26.0 27 1 0 81 0
graphpart_3pm-0334-0334 -36.0 36 1 0 108 0
graphpart_3pm-0344-0344 -48.0 48 1 0 144 0
graphpart_3pm-0444-0444 -65.0 64 1 0 192 0
graphpart_clique-20 147.0 20 1 0 60 0
graphpart_clique-30 495.0 30 1 0 90 0
graphpart_clique-40 1183.0 40 1 0 120 0
graphpart_clique-50 2312.0 50 1 0 150 0
graphpart_clique-60 3990.0 60 1 0 180 0

hmittelman 13.0 7 8 0 16 0
johnall -224.7302 192 191 4 190 0

kall_circles_c6a 2.1117 54 22 18 0 0
kall_circles_c7a 2.6628 69 29 20 0 0

kall_circlespolygons_c1p11 0.1996 48 21 43 0 0
kall_circlesrectangles_c1r11 0.1996 52 23 49 0 0
kall_congruentcircles_c31 0.6438 16 4 10 0 0
kall_congruentcircles_c32 1.3759 16 4 10 0 0
kall_congruentcircles_c42 0.8584 24 7 12 0 0
kall_congruentcircles_c51 1.073 34 11 14 0 0
kall_congruentcircles_c52 1.5371 34 11 14 0 0
kall_congruentcircles_c62 1.2876 46 16 16 0 0
kall_congruentcircles_c63 1.2876 46 16 16 0 0
kall_congruentcircles_c71 1.5022 60 22 18 0 0
kall_congruentcircles_c72 1.9663 60 22 18 0 0

kall_diffcircles_5a 5.1162 24 11 14 0 0
kall_diffcircles_5b 5.1162 24 11 14 0 0
kall_diffcircles_6 7.7879 31 16 16 0 0
kall_diffcircles_7 7.1531 40 22 18 0 0

m6 82.2569 157 12 56 30 0
mathopt5_2 -1.0 0 1 1 0 0
mathopt5_3 -1.6164 0 1 1 0 0
mathopt5_5 -14.838 0 1 1 0 0
mathopt6 -3.3069 0 1 2 0 0

milinfract 2.6339 501 1 500 500 0
nvs01 12.4697 3 3 1 0 2
nvs02 5.9642 3 4 3 0 5
nvs03 16.0 2 2 0 0 2
nvs04 0.72 0 1 0 0 2
nvs07 4.0 2 2 0 0 3
nvs10 -310.8 2 3 0 0 2
nvs11 -431.0 3 4 0 0 3
nvs12 -481.2 4 5 0 0 4
nvs13 -585.2 5 6 0 0 5
nvs14 -40358.1548 3 4 3 0 5
nvs15 1.0 1 1 0 0 3
nvs17 -1100.4 7 8 0 0 7
nvs18 -778.4 6 7 0 0 6
nvs19 -1098.4 8 9 0 0 8
nvs20 230.9222 8 1 11 0 5
nvs23 -1125.2 9 10 0 0 9
nvs24 -1033.2 10 11 0 0 10

p_ball_10b_5p_2d_h 18.7186 219 50 130 50 0
p_ball_10b_5p_2d_m 18.7186 109 50 30 50 0
p_ball_10b_5p_3d_h 44.0042 294 50 195 50 0
p_ball_10b_5p_3d_m 44.0042 129 50 45 50 0
p_ball_10b_5p_4d_h 71.3719 369 50 260 50 0
p_ball_10b_5p_4d_m 71.3719 149 50 60 50 0

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 33

p_ball_10b_7p_3d_h 109.8032 450 70 294 70 0
p_ball_10b_7p_3d_m 109.8032 219 70 84 70 0
p_ball_15b_5p_2d_h 6.5999 299 75 180 75 0
p_ball_15b_5p_2d_m 6.5999 139 75 30 75 0
p_ball_20b_5p_2d_h 2.4372 379 100 230 100 0
p_ball_20b_5p_2d_m 2.4372 169 100 30 100 0
p_ball_20b_5p_3d_h 19.7365 504 100 345 100 0
p_ball_20b_5p_3d_m 19.7365 189 100 45 100 0
p_ball_30b_5p_2d_m 0.2916 229 150 30 150 0
p_ball_30b_5p_3d_m 8.2183 249 150 45 150 0
p_ball_30b_7p_2d_m 13.9338 337 210 56 210 0
p_ball_40b_5p_3d_m 9.7772 309 200 45 200 0
p_ball_40b_5p_4d_h 30.1327 1149 200 860 200 0
p_ball_40b_5p_4d_m 30.1327 329 200 60 200 0
pooling_adhya1pq -549.8031 49 20 33 0 0
pooling_adhya1stp -549.8031 71 40 46 0 0
pooling_adhya1tp -549.8031 49 20 33 0 0
pooling_adhya2pq -549.8031 57 20 33 0 0
pooling_adhya2stp -549.8031 79 40 46 0 0
pooling_adhya2tp -549.8031 57 20 33 0 0
pooling_adhya3pq -561.0447 74 32 52 0 0
pooling_adhya3stp -561.0447 109 64 72 0 0
pooling_adhya3tp -561.0447 74 32 52 0 0
pooling_adhya4pq -877.6457 77 40 58 0 0
pooling_adhya4stp -877.6457 119 80 76 0 0
pooling_adhya4tp -877.6457 77 40 58 0 0
pooling_bental4pq -450.0 16 6 13 0 0
pooling_bental4stp -450.0 23 12 18 0 0
pooling_bental4tp -450.0 16 6 13 0 0
pooling_bental5pq -3500.0 86 60 92 0 0
pooling_bental5stp -3500.0 149 120 119 0 0
pooling_bental5tp -3500.0 86 60 92 0 0
pooling_foulds2pq -1100.0 34 16 36 0 0
pooling_foulds2stp -1100.0 52 32 48 0 0
pooling_foulds2tp -1100.0 34 16 36 0 0
pooling_foulds3pq -8.0 571 512 672 0 0
pooling_foulds3stp -8.0 1091 1024 832 0 0
pooling_foulds3tp -8.0 571 512 672 0 0
pooling_foulds4pq -8.0 571 512 672 0 0
pooling_foulds4stp -8.0 1091 1024 832 0 0
pooling_foulds4tp -8.0 571 512 672 0 0
pooling_foulds5pq -8.0 563 512 608 0 0
pooling_foulds5stp -8.0 1079 1024 704 0 0
pooling_foulds5tp -8.0 563 512 608 0 0
pooling_haverly1pq -400.0 13 4 10 0 0
pooling_haverly1stp -400.0 18 8 14 0 0
pooling_haverly1tp -400.0 13 4 10 0 0
pooling_haverly2pq -600.0 13 4 10 0 0
pooling_haverly2stp -600.0 18 8 14 0 0
pooling_haverly2tp -600.0 13 4 10 0 0
pooling_haverly3pq -750.0 13 4 10 0 0
pooling_haverly3stp -750.0 18 8 14 0 0
pooling_haverly3tp -750.0 13 4 10 0 0

pooling_rt2pq -4391.8259 52 18 34 0 0
pooling_rt2stp -4391.8259 72 36 46 0 0
pooling_rt2tp -4391.8259 52 18 34 0 0
pooling_sppa9tp -21933.994 2407 1992 2399 0 0

prob02 112235.0 8 5 0 0 6
prob03 10.0 1 1 0 0 2
prob06 1.1771 2 2 2 0 0
prob10 3.4455 2 1 1 0 1
process -1161.3366 7 5 10 0 0
qp3 0.0008 52 1 100 0 0

qspp_0_10_0_1_10_1 621.0 100 1 0 180 0
qspp_0_11_0_1_10_1 813.0 121 1 0 220 0
qspp_0_12_0_1_10_1 959.0 144 1 0 264 0

rbrock 0.0 0 1 2 0 0
sep1 -510.081 31 6 27 2 0

sfacloc2_2_80 13.2795 2165 30 154 92 0
sfacloc2_2_90 18.5941 393 30 154 60 0
sfacloc2_2_95 19.5776 239 30 147 39 0
sfacloc2_3_80 11.0585 2268 45 216 107 0
sfacloc2_3_90 15.0945 496 45 216 75 0
sfacloc2_3_95 16.1511 342 45 209 54 0
sfacloc2_4_80 9.9531 2371 60 278 122 0
sfacloc2_4_90 13.4115 599 60 278 90 0
sfacloc2_4_95 14.2992 445 60 271 69 0
sonet17v4 1182604.5 2057 17 0 136 0

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 34

sonet18v6 3389110.0 2466 18 0 153 0
sonet19v5 2528144.0 2926 19 0 171 0
sonet20v6 3311060.0 3440 20 0 190 0
sonet24v2 3312579.0 6096 24 0 276 0
sonetgr17 -9594.0 152 17 0 152 0
st_bpaf1a -45.3797 10 1 10 0 0
st_bpaf1b -42.9626 10 1 10 0 0
st_bpv1 10.0 4 1 4 0 0
st_bpv2 -8.0 5 1 4 0 0
st_bsj3 -86768.55 1 1 6 0 0
st_bsj4 -70262.05 4 1 6 0 0
st_e01 -6.6667 1 1 2 0 0
st_e02 201.1593 3 3 3 0 0
st_e03 -1161.3366 7 5 10 0 0
st_e05 7049.2493 3 2 5 0 0
st_e07 -400.0 7 3 10 0 0
st_e08 0.7418 2 2 2 0 0
st_e09 -0.5 1 2 2 0 0
st_e13 2.0 2 1 1 1 0
st_e14 4.5796 13 5 7 4 0
st_e18 -2.8284 4 2 2 0 0
st_e22 -85.0 5 1 2 0 0
st_e23 -1.0833 2 1 2 0 0
st_e24 3.0 4 1 2 0 0
st_e26 -185.7792 4 1 2 0 0
st_e27 2.0 6 1 2 2 0
st_e29 -0.9435 7 4 3 8 0
st_e30 -1.5811 15 5 14 0 0
st_e33 -400.0 6 3 9 0 0
st_e34 0.0156 4 4 6 0 0
st_ht -1.6 3 1 2 0 0

st_iqpbk1 -621.4878 7 1 8 0 0
st_iqpbk2 -1195.2256 7 1 8 0 0
st_jcbpaf2 -794.8559 13 1 10 0 0
st_miqp1 281.0 1 1 0 0 5
st_miqp2 2.0 3 1 0 0 4
st_miqp3 -6.0 1 1 0 0 2
st_miqp4 -4574.0 4 1 3 0 3
st_miqp5 -333.8889 13 1 5 0 2
st_test2 -9.25 2 1 0 0 6
st_test3 -7.0 10 1 0 0 13
st_test4 -7.0 5 1 0 0 6
st_test5 -110.0 11 1 0 0 10
st_test6 471.0 5 1 0 0 10
st_test8 -29605.0 20 1 0 0 24

st_testgr1 -12.8116 5 1 0 0 10
st_testgr3 -20.59 20 1 0 0 20
st_testph4 -80.5 10 1 0 0 3
supplychain 2260.2566 30 6 24 3 0

supplychainp1_020306 437551.6764 255 1 123 27 0
supplychainp1_030510 860440.9195 835 1 375 70 0

synthes3 68.0097 23 5 9 8 0
telecomsp_pacbell 310340.0 2940 882 42 3528 0

tln2 5.3 12 2 0 2 6
tln4 8.3 24 4 0 4 20
tln5 10.3 30 5 0 5 30
tln6 15.3 36 6 0 6 42
tln7 15.0 42 7 0 7 56
tloss 16.3 53 6 0 6 42
tltr 48.0667 54 3 0 12 36

toroidal2g20_5555 24838942.0 0 1 0 400 0
toroidal3g7_6666 33611981.0 0 1 0 343 0

trig -3.7625 1 2 1 0 0
wastewater02m1 130.7025 14 3 19 0 0
wastewater02m2 130.7025 44 12 41 0 0
wastewater04m1 89.8361 21 6 23 0 0
wastewater04m2 89.8361 65 18 55 0 0
wastewater05m1 229.7008 40 12 46 0 0
wastewater05m2 229.7008 151 48 133 0 0
wastewater11m1 2127.1154 42 8 118 0 0
wastewater12m1 1201.0385 57 11 196 0 0
wastewater13m1 1564.958 83 16 382 0 0
wastewater15m1 2446.4286 40 12 46 0 0
wastewater15m2 2446.4286 151 48 133 0 0
waterund08 164.4898 95 40 90 0 0
waterund11 104.8861 64 28 64 0 0

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 35

100 101 102 103 104

Time [s]

0

50

100

150

200

250
N

um
be

ro
fs

ol
ve

d
pr

ob
le

m
s

Number of solved problems for: Full instance set (fixed).

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(11a) ε = 102

100 101 102 103 104

Time [s]

0

50

100

150

200

250

N
um

be
ro

fs
ol

ve
d

pr
ob

le
m

s
Number of solved problems for: Instances that finished without error for all MIP reformulations.

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(11b) Legend

100 101 102 103 104

Time [s]

0

20

40

60

80

100

120

140

N
um

be
ro

fs
ol

ve
d

pr
ob

le
m

s

Number of solved problems for: Full instance set (fixed).

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(11c) ε = 10−4

Figure 11. Number of solved problems over time for all
considered error bounds.

Appendix C. Full results

In this section, we present the remaining figures and tables that were omit-
ted in Section 5 and further present performance profiles in Appendix C.4.

C.1. Number of solved problems and runtimes. This section contains
the remaining plots from Section 5.2.1. In Figures 11a and 11c the remaining
plots for Figure 8 are given.

Further, we consider instances where any method finds at least one feasible
solution, as this creates a subset of easier instances for each error bound.
The solving results for this subset can be seen in Table 8. Further, in Table 9,
we again provide the runtimes as in Table 3. Finally, we want to consider

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 36

Table 8. Solver result for the subset of benchmark instances,
where all reformulations found a feasible solution.

Error bound ε = 102 ε = 100 ε = 10−2 ε = 10−4 ε = 10−6

Solver result opt. tl. opt. tl. opt. tl. opt. tl. opt. tl.
(Disag) 263 8 238 13 143 21 93 7 51 2
(LogDisag) 265 6 242 9 145 19 98 2 53 0
(Ag) 263 8 229 22 134 30 92 8 49 4
(LogAg) 265 6 246 5 150 14 98 2 53 0
(Inc) 266 5 246 5 152 12 99 1 53 0
(MC) 263 8 240 11 151 13 94 6 53 0
(BinZigZag) 265 6 244 7 148 16 98 2 53 0
(IntZigZag) 265 6 245 6 148 16 98 2 53 0

100 101 102 103 104

10−4

10−3

10−2

Pr
im

al
G

ap

Full instance set. (fixed

100 101 102 103 104

time [s]

10−4

10−3

10−2

D
ua

lG
ap

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(12a) ε = 102

the subset of instances that were solved to optimality by all methods. The
runtimes for this subset are given in Table 10.

C.2. Solution qualities. This section contains the remaining plots of Sec-
tion 5.2.2. In Figures 12a and 12b the remaining plots for Figure 10 are
given.

C.3. Solving time for smaller time limits. If we consider shorter time
limits, we also provide statistics about the runtime. Tables 11 to 13 show the
shifted geometric mean if the runtimes are limited to 100, 1000, and 10000
seconds, respectively. Every runtime that exceeds this time limit is then

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 37

Table 9. Mean, median, and shifted geometric mean of the
runtimes, depending on the error bound ε, for the subset
of benchmark instances, where all reformulations found a
feasible solution.

Error bound ε = 102 ε = 100

Runtime [s] mean median SGM mean median SGM
(Disag) 530.63 0.05 10.19 982.15 2.30 33.23
(LogDisag) 431.57 0.07 9.40 793.57 3.62 28.47
(Ag) 479.94 0.05 9.15 1461.47 2.00 37.94
(LogAg) 375.95 0.05 8.15 651.16 1.99 22.11
(Inc) 351.85 0.03 7.64 460.96 1.40 19.48
(MC) 500.03 0.05 9.28 852.25 1.63 28.01
(BinZigZag) 392.72 0.04 8.11 607.16 2.22 19.61
(IntZigZag) 405.56 0.04 8.28 570.27 1.68 19.08
Error bound ε = 10−2 ε = 10−4

Runtime [s] mean median SGM mean median SGM
(Disag) 2410.16 27.36 108.68 1493.42 19.31 69.30
(LogDisag) 2001.03 32.05 80.60 626.46 17.98 56.60
(Ag) 2927.06 34.08 114.78 1803.96 27.65 107.08
(LogAg) 1648.93 15.32 53.89 425.42 12.72 35.13
(Inc) 1412.24 7.86 42.16 385.24 3.20 17.93
(MC) 1827.02 14.84 60.48 1019.52 6.45 27.62
(BinZigZag) 1733.46 12.30 54.37 581.44 4.21 34.84
(IntZigZag) 1737.36 11.55 54.29 571.71 5.20 31.59
Error bound ε = 10−6

Runtime [s] mean median SGM
(Disag) 1394.11 158.20 156.44
(LogDisag) 180.86 63.86 65.88
(Ag) 1949.63 133.73 232.07
(LogAg) 60.56 9.63 22.83
(Inc) 133.47 24.26 33.19
(MC) 555.43 26.68 77.53
(BinZigZag) 72.50 5.03 22.40
(IntZigZag) 46.12 10.69 20.10

limited to the time limit. Table 11 considers the full instance that, while
Table 12 and Table 13 are limited to our easier subsets.

C.4. Performance profiles. Additionally, we provide performance profile
plots as proposed by Dolan and Moré 2002 to illustrate the scaling of the
runtimes, see Figures 13 and 14. The intention here is to obtain a more
sophisticated picture of how the various methods perform if we allow the run-
time to lie within a given factor of the best overall runtime. The performance
profiles work as follows: Let tp,s be the runtime needed by MIP relaxation s̄
to solve instance p. With the performance ratio rp,s̄ := tp,s̄/mins tp,s, the

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 38

Table 10. Mean, median, and shifted geometric mean of
the runtimes, depending on the error bound ε, for the subset
of benchmark instances, where all reformulations found an
optimal solution.

Error bound ε = 102 ε = 100

Runtime [s] mean median SGM mean median SGM
(Disag) 83.073 0.045 6.156 192.855 1.316 17.978
(LogDisag) 70.015 0.049 5.927 181.314 1.694 15.474
(Ag) 51.969 0.044 5.392 216.877 1.076 17.345
(LogAg) 52.550 0.042 5.095 151.047 1.087 11.760
(Inc) 50.911 0.029 4.661 143.833 0.865 11.596
(MC) 64.007 0.043 5.441 184.090 0.906 14.981
(BinZigZag) 53.929 0.040 4.925 149.091 0.955 10.933
(IntZigZag) 51.300 0.040 4.968 138.258 0.996 10.766
Error bound ε = 10−2 ε = 10−4

Runtime [s] mean median SGM mean median SGM
(Disag) 390.092 4.558 35.233 447.796 14.443 36.856
(LogDisag) 293.017 7.382 28.307 214.715 12.882 34.803
(Ag) 292.547 3.850 29.684 497.514 16.996 52.234
(LogAg) 145.863 3.804 18.455 104.550 5.002 22.205
(Inc) 61.531 1.816 12.808 40.322 1.877 7.845
(MC) 120.356 3.195 15.681 84.181 4.186 11.059
(BinZigZag) 150.772 2.825 18.779 283.115 2.309 22.721
(IntZigZag) 207.481 2.409 18.428 193.467 3.342 19.981
Error bound ε = 10−6

Runtime [s] mean median SGM
(Disag) 889.824 107.748 119.516
(LogDisag) 176.487 61.299 62.140
(Ag) 947.495 109.116 161.965
(LogAg) 61.106 6.942 21.705
(Inc) 124.841 18.438 27.190
(MC) 439.842 23.224 60.710
(BinZigZag) 73.554 3.753 21.333
(IntZigZag) 44.949 6.897 18.321

performance profile function value P (τ) is the percentage of problems solved
by approach s̄ such that the ratios rp,s̄ are within a factor τ ∈ R of the best
possible ratios. Figure 13 considers the time until a first feasible solution
was found while Figure 14 considers the overall runtime until an instance
was solved to optimality. All performance profiles are generated with the
help of perprof-py (Siqueira et al. 2016).

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 39

100 101 102 103 104

10−3

10−2

Pr
im

al
G

ap

Full instance set. (fixed

100 101 102 103 104

time [s]

10−3

10−2D
ua

lG
ap

Disag
LogDisag
Ag
LogAg
Inc
MC
BinZigZag
IntZigZag

(12b) ε = 100

Figure 12. SGM of primal and dual gap to optimal MIP
solution over time.

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(13a) ε = 102

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 40

100 101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(13b) ε = 100

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(13c) ε = 10−2

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 41

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(13d) ε = 10−4

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(13e) ε = 10−6

Figure 13. Performance profiles considering the time until
a primal solution is found.

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 42

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(14a) ε = 100

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(14b) ε = 1

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 43

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(14c) ε = 10−2

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(14d) ε = 10−4

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 44

Table 11. Shifted geometric mean of the runtimes when the
time limit is smaller.

Error bound ε = 102 ε = 100

Time limit 100s 1000s 10000s 100s 1000s 10000s
(Disag) 5.80 9.59 12.35 16.51 35.89 53.28
(LogDisag) 5.50 9.00 11.09 16.20 32.13 45.08
(Ag) 5.32 8.91 11.22 16.57 36.60 58.28
(LogAg) 4.92 8.05 9.78 13.42 25.98 35.87
(Inc) 4.66 7.68 9.28 13.38 25.05 33.34
(MC) 5.18 8.87 11.36 15.45 31.58 45.77
(BinZigZag) 4.80 7.90 9.75 12.84 23.68 32.27
(IntZigZag) 4.92 8.01 9.93 12.75 23.53 31.42
Error bound ε = 10−2 ε = 10−4

Time limit 100s 1000s 10000s 100s 1000s 10000s
(Disag) 43.23 174.32 530.03 52.12 231.03 830.62
(LogDisag) 43.61 147.96 356.86 51.78 227.33 654.58
(Ag) 42.24 171.69 517.11 55.48 272.14 980.37
(LogAg) 37.77 111.15 251.99 46.55 181.88 413.56
(Inc) 34.51 106.69 217.44 35.43 127.19 299.46
(MC) 36.60 127.29 344.90 37.03 124.62 318.77
(BinZigZag) 36.91 113.34 248.81 42.79 178.65 429.61
(IntZigZag) 36.92 112.13 243.39 42.15 157.64 371.29
Error bound ε = 10−6

Time limit 100s 1000s 10000s
(Disag) 70.91 370.48 1382.15
(LogDisag) 66.32 305.45 1021.40
(Ag) 73.83 427.68 1611.82
(LogAg) 51.06 189.23 491.73
(Inc) 39.67 105.94 207.93
(MC) 53.22 154.46 282.39
(BinZigZag) 49.11 179.97 496.05
(IntZigZag) 49.09 166.62 438.72

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 45

Table 12. Shifted geometric mean of the runtimes when the
time limit is smaller, considering the subset of benchmark
instances, where all reformulations found a feasible solution.

Error bound ε = 102 ε = 100

Time limit 100s 1000s 10000s 100s 1000s 10000s
(Disag) 5.24 8.21 9.97 13.67 25.87 32.43
(LogDisag) 4.98 7.83 9.24 13.37 22.93 27.96
(Ag) 4.77 7.57 8.94 13.73 26.47 36.44
(LogAg) 4.43 6.97 8.00 10.71 18.06 21.79
(Inc) 4.13 6.48 7.52 10.67 16.95 19.27
(MC) 4.63 7.53 9.07 12.65 22.25 27.41
(BinZigZag) 4.32 6.81 7.97 10.17 16.24 19.31
(IntZigZag) 4.43 6.92 8.13 10.06 16.01 18.82
Error bound ε = 10−2 ε = 10−4

Time limit 100s 1000s 10000s 100s 1000s 10000s
(Disag) 25.90 63.69 103.27 25.48 49.19 67.16
(LogDisag) 26.31 52.05 76.86 25.10 48.53 56.12
(Ag) 24.88 61.90 106.73 29.38 70.97 103.53
(LogAg) 20.66 36.24 51.78 19.46 32.35 34.80
(Inc) 17.27 29.73 40.72 9.99 15.91 17.83
(MC) 19.50 38.55 58.16 12.77 20.81 26.81
(BinZigZag) 19.86 36.52 51.87 15.71 30.42 34.52
(IntZigZag) 19.80 36.27 51.96 15.91 27.26 31.29
Error bound ε = 10−6

Time limit 100s 1000s 10000s
(Disag) 45.02 114.37 153.65
(LogDisag) 37.43 65.88 65.88
(Ag) 48.86 149.92 225.51
(LogAg) 18.77 22.83 22.83
(Inc) 23.48 32.31 33.19
(MC) 32.27 65.67 77.53
(BinZigZag) 17.63 22.40 22.40
(IntZigZag) 17.90 20.10 20.10

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 46

Table 13. Shifted geometric mean of the runtimes when the
time limit is smaller, considering the subset of benchmark
instances, where all reformulations found an optimal solution.

Error bound ε = 102 ε = 100

Time limit 100s 1000s 10000s 100s 1000s 10000s
(Disag) 4.24 5.87 6.16 10.40 16.95 17.98
(LogDisag) 4.02 5.69 5.93 10.14 14.58 15.47
(Ag) 3.79 5.29 5.39 10.33 16.15 17.35
(LogAg) 3.52 4.97 5.10 7.78 11.09 11.76
(Inc) 3.18 4.54 4.66 7.71 10.95 11.60
(MC) 3.65 5.25 5.44 9.48 14.06 14.98
(BinZigZag) 3.39 4.78 4.93 7.34 10.32 10.93
(IntZigZag) 3.47 4.84 4.97 7.31 10.22 10.77
Error bound ε = 10−2 ε = 10−4

Time limit 100s 1000s 10000s 100s 1000s 10000s
(Disag) 17.39 31.24 35.23 20.75 32.43 36.76
(LogDisag) 17.96 26.00 28.31 20.45 33.05 34.80
(Ag) 16.11 27.18 29.68 23.78 45.53 52.14
(LogAg) 13.22 17.44 18.46 15.03 21.98 22.21
(Inc) 10.27 12.69 12.81 6.24 7.84 7.84
(MC) 11.55 15.06 15.68 8.73 10.68 11.06
(BinZigZag) 12.87 17.90 18.78 11.54 21.12 22.72
(IntZigZag) 12.58 17.23 18.43 11.83 18.81 19.98
Error bound ε = 10−6

Time limit 100s 1000s 10000s
(Disag) 41.19 96.32 119.07
(LogDisag) 35.70 62.14 62.14
(Ag) 45.15 125.78 161.97
(LogAg) 17.57 21.70 21.70
(Inc) 20.02 26.35 27.19
(MC) 28.27 53.41 60.71
(BinZigZag) 16.59 21.33 21.33
(IntZigZag) 16.04 18.32 18.32

A COMPUTATIONAL STUDY FOR PWL RELAXATIONS OF MINLPs 47

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Performance ratio

P
er
ce
nt
ag
e
of

pr
ob

le
m
s
so
lv
ed

Performance Profile

Ag
BinZigZag

Disag
Inc

IntZigZag
LogAg

LogDisag
MC

(14e) ε = 10−6

Figure 14. Performance profiles considering the time until
an optimal solution is found.

REFERENCES 48

Acknowledgments

The authors gratefully acknowledge the scientific support and HPC re-
sources provided by the Erlangen National High Performance Computing Cen-
ter (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU). The hardware is funded by the German Research Foundation (DFG).
This work has been done within the joint project "TrinkXtrem" funded by
the Federal Ministry of Education and Research (BMBF) under the project
number 02WEE1625B in the funding "Wasser-Extremereignisse" (WaX) of
the Federal Program "Wasser:N" and as part of the announcement "Artificial
Intelligence in Civil Security Research II" of the BMBF within the program
"Research for Civil Security" of the Federal Government.

References

Aigner, Kevin-Martin, Robert Burlacu, Frauke Liers, and Alexander Martin
(2023). “Solving AC Optimal Power Flow with Discrete Decisions to Global
Optimality”. In: INFORMS Journal on Computing 35.2, pp. 458–474. doi:
10.1287/ijoc.2023.1270.

Balakrishnan, Anantharam and Stephen C. Graves (1989). “A composite
algorithm for a concave-cost network flow problem”. In: Networks 19.2,
pp. 175–202. doi: 10.1002/net.3230190202.

Bärmann, Andreas, Robert Burlacu, Lukas Hager, and Thomas Kleinert
(2022). “On piecewise linear approximations of bilinear terms: structural
comparison of univariate and bivariate mixed-integer programming for-
mulations”. In: Journal of Global Optimization 85.4, pp. 789–819. doi:
10.1007/S10898-022-01243-y.

Beach, Benjamin, Robert Hildebrand, and Joey Huchette (2022). “Compact
mixed-integer programming formulations in quadratic optimization”. In:
Journal of Global Optimization 84.4, pp. 869–912. doi: 10.1007/s10898-
022-01184-6.

Belotti, Pietro, Sonia Cafieri, Jon Lee, and Leo Liberti (2010). “Feasibility-
Based Bounds Tightening via Fixed Points”. In: Combinatorial Optimiza-
tion and Applications. Ed. by Weili Wu and Ovidiu Daescu. Vol. 6508.
Springer Berlin Heidelberg, pp. 65–76. doi: 10.1007/978-3-642-
17458-2_7.

Burlacu, Robert, Björn Geißler, and Lars Schewe (2019). “Solving mixed-
integer nonlinear programmes using adaptively refined mixed-integer linear
programmes”. In: Optimization Methods and Software 35, pp. 37–64. doi:
10.1080/10556788.2018.1556661.

Bussieck, Michael R., Arne Stolbjerg Drud, and Alexander Meeraus (2003).
“MINLPLib—A Collection of Test Models for Mixed-Integer Nonlinear
Programming”. In: INFORMS Journal on Computing 15.1, pp. 114–119.
doi: 10.1287/ijoc.15.1.114.15159.

Bynum, Michael L, Gabriel A Hackebeil, William E Hart, Carl D Laird,
Bethany L Nicholson, John D Siirola, Jean-Paul Watson, David LWoodruff,
et al. (2021). Pyomo-optimization modeling in python. Vol. 67. Springer.
doi: 10.1007/978-3-030-68928-5.

https://doi.org/10.1287/ijoc.2023.1270
https://doi.org/10.1002/net.3230190202
https://doi.org/10.1007/S10898-022-01243-y
https://doi.org/10.1007/s10898-022-01184-6
https://doi.org/10.1007/s10898-022-01184-6
https://doi.org/10.1007/978-3-642-17458-2_7
https://doi.org/10.1007/978-3-642-17458-2_7
https://doi.org/10.1080/10556788.2018.1556661
https://doi.org/10.1287/ijoc.15.1.114.15159
https://doi.org/10.1007/978-3-030-68928-5

REFERENCES 49

Correa-Posada, Carlos M. and Pedro Sánchez-Martín (2014). “Gas Network
Optimization: A comparison of Piecewise Linear Models”. url: http:
//www.optimization-online.org/DB_HTML/2014/10/4580.
html.

Croxton, Keely L., Bernard Gendron, and Thomas L. Magnanti (2003).
“A Comparison of Mixed-Integer Programming Models for Nonconvex
Piecewise Linear Cost Minimization Problems”. In: Management Science
49.9, pp. 1268–1273. doi: 10.1287/mnsc.49.9.1268.16570.

Dolan, Elizabeth D and Jorge J Moré (2002). “Benchmarking optimization
software with performance profiles”. In: Mathematical Programming 91.2,
pp. 201–213. doi: 10.1007/s101070100263.

Fourer, Robert, Jun Ma, and Kipp Martin (2010). “OSiL: An instance lan-
guage for optimization”. In: Computational optimization and applications
45.1, pp. 181–203. doi: 10.1007/s10589-008-9169-6.

Geißler, Björn, Alexander Martin, Antonio Morsi, and Lars Schewe (2012).
“Using Piecewise Linear Functions for Solving MINLPs”. In: Mixed Integer
Nonlinear Programming. Ed. by Jon Lee and Sven Leyffer. Vol. 154. The
IMA Volumes in Mathematics and its Applications. Springer New York,
pp. 287–314. doi: 10.1007/978-1-4614-1927-3_10.

Gugat, Martin, Günter Leugering, Alexander Martin, Martin Schmidt, Math-
ias Sirvent, and David Wintergerst (2018). “Towards simulation based
mixed-integer optimization with differential equations”. In: Networks. doi:
10.1002/net.21812.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual. url:
https://www.gurobi.com.

Hart, William E, Jean-Paul Watson, and David L Woodruff (2011). “Pyomo:
modeling and solving mathematical programs in Python”. In:Mathematical
Programming Computation 3.3, pp. 219–260. doi: 10.1007/s12532-
011-0026-8.

Hasan, M. M. Faruque and I.A. Karimi (2010). “Piecewise linear relaxation
of bilinear programs using bivariate partitioning”. In: AIChE Journal 56.7,
pp. 1880–1893. doi: 10.1002/aic.12109.

Huchette, Joey and Juan Pablo Vielma (2022). “Nonconvex Piecewise Linear
Functions: Advanced Formulations and Simple Modeling Tools”. In: Oper-
ations Research 71.5, pp. 1835–1856. doi: 10.1287/opre.2019.1973.

Lee, Jon and Dan Wilson (2001). “Polyhedral methods for piecewise-linear
functions. I. The lambda method”. In: Discrete Appl. Math. 108.3, pp. 269–
285. doi: 10.1016/S0166-218x(00)00216-x.

Link, Moritz and Stefan Volkwein (2023). “Adaptive piecewise linear relax-
ations for enclosure computations for nonconvex multiobjective mixed-
integer quadratically constrained programs”. In: Journal of Global Opti-
mization 87.1, pp. 97–132. doi: 10.1007/s10898-023-01309-5.

Lundell, Andreas, Anders Skjäl, and Tapio Westerlund (2013). “A reformula-
tion framework for global optimization”. In: Journal of Global Optimization
57.1, pp. 115–141. doi: 10.1007/s10898-012-9877-4.

Markowitz, Harry M and Alan S Manne (1957). “On the Solution of Discrete
Programming Problems”. In: Econometrica 25.1, pp. 84–110. doi: 10.
2307/1907744.

http://www.optimization-online.org/DB_HTML/2014/10/4580.html
http://www.optimization-online.org/DB_HTML/2014/10/4580.html
http://www.optimization-online.org/DB_HTML/2014/10/4580.html
https://doi.org/10.1287/mnsc.49.9.1268.16570
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s10589-008-9169-6
https://doi.org/10.1007/978-1-4614-1927-3_10
https://doi.org/10.1002/net.21812
https://www.gurobi.com
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1002/aic.12109
https://doi.org/10.1287/opre.2019.1973
https://doi.org/10.1016/S0166-218x(00)00216-x
https://doi.org/10.1007/s10898-023-01309-5
https://doi.org/10.1007/s10898-012-9877-4
https://doi.org/10.2307/1907744
https://doi.org/10.2307/1907744

REFERENCES 50

Martin, Alexander, Markus Möller, and Susanne Moritz (2006). “Mixed
Integer Models for the Stationary Case of Gas Network Optimization”. In:
Mathematical Programming 105.2, pp. 563–582. doi: 10.1007/s10107-
005-0665-5.

McCormick, Garth P (1976). “Computability of global solutions to fac-
torable nonconvex programs: Part I—Convex underestimating problems”.
In: Mathematical programming 10.1, pp. 147–175. doi: 10 . 1007 /
bf01580665.

Misener, R. and C. A. Floudas (2010). “Piecewise-Linear Approximations
of Multidimensional Functions”. In: Journal of Optimization Theory and
Applications 145.1, pp. 120–147. doi: 10.1007/s10957-009-9626-0.

Morsi, Antonio (2013). “Solving MINLPs on Loosely-Coupled Networks
with Applications in Water and Gas Network Optimization”. PhD thesis.
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Padberg, Manfred (2000). “Approximating separable nonlinear functions via
mixed zero-one programs”. In: Operations Research Letters 27.1, pp. 1–5.
doi: 10.1016/s0167-6377(00)00028-6.

Rebennack, Steffen and Josef Kallrath (2015a). “Continuous piecewise linear
delta-approximations for bivariate and multivariate functions”. In: Journal
of Optimization Theory and Applications 167.1, pp. 102–117. doi: 10.
1007/s10957-014-0688-2.

– (2015b). “Continuous piecewise linear delta-approximations for univariate
functions: computing minimal breakpoint systems”. In: Journal of Op-
timization Theory and Applications 167.2, pp. 617–643. doi: 10.1007/
s10957-014-0687-3.

Rebennack, Steffen and Vitaliy Krasko (2020). “Piecewise Linear Function
Fitting via Mixed-Integer Linear Programming”. In: INFORMS Journal
on Computing 32.2, pp. 507–530. doi: 10.1287/ijoc.2019.0890.

Rovatti, Ricardo, Claudia D’Ambrosio, Andrea Lodi, and Silvano Martello
(2014). “Optimistic MILP modeling of non-linear optimization problems”.
In: European Journal of Operational Research 239.1, pp. 32–45. doi:
10.1016/j.ejor.2014.03.020.

Sherali, Hanif D. (2001). “On mixed-integer zero-one representations for
separable lower-semicontinuous piecewise-linear functions”. In: Operations
Research Letters 28.4, pp. 155–160. doi: 10.1016/s0167-6377(01)
00063-3.

Siqueira, Abel Soares, Raniere Gaia Costa da Silva, and Luiz-Rafael Santos
(2016). “Perprof-py: A Python Package for Performance Profile of Mathe-
matical Optimization Software”. In: Journal of Open Research Software
4.1, p. 12. doi: 10.5334/jors.81.

Vielma, Juan Pablo (2015). “Mixed Integer Linear Programming Formu-
lation Techniques”. In: SIAM Review 57.1, pp. 3–57. doi: 10.1137/
130915303.

Vielma, Juan Pablo, Shabbir Ahmed, and George L Nemhauser (2010).
“Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization:
Unifying Framework and Extensions”. In: Operations Research 58.2,
pp. 303–315. doi: 10.1287/opre.1090.0721.

https://doi.org/10.1007/s10107-005-0665-5
https://doi.org/10.1007/s10107-005-0665-5
https://doi.org/10.1007/bf01580665
https://doi.org/10.1007/bf01580665
https://doi.org/10.1007/s10957-009-9626-0
https://doi.org/10.1016/s0167-6377(00)00028-6
https://doi.org/10.1007/s10957-014-0688-2
https://doi.org/10.1007/s10957-014-0688-2
https://doi.org/10.1007/s10957-014-0687-3
https://doi.org/10.1007/s10957-014-0687-3
https://doi.org/10.1287/ijoc.2019.0890
https://doi.org/10.1016/j.ejor.2014.03.020
https://doi.org/10.1016/s0167-6377(01)00063-3
https://doi.org/10.1016/s0167-6377(01)00063-3
https://doi.org/10.5334/jors.81
https://doi.org/10.1137/130915303
https://doi.org/10.1137/130915303
https://doi.org/10.1287/opre.1090.0721

	1. Introduction
	2. Preliminaries
	3. One-dimensional MIP models for piecewise linear relaxations
	3.1. Disaggregated convex combination model
	3.2. Aggregated convex combination model
	3.3. Incremental model
	3.4. Multiple choice model

	4. Implementation
	4.1. Input
	4.2. Reformulation
	4.3. Solving

	5. Numerical results
	5.1. Benchmark instances
	5.2. Comparison of the MIP models for PWL relaxations

	6. Discussion
	7. Conclusion
	Appendix A. Branching scheme for the logarithmic branching convex combination model
	Appendix B. Benchmark set
	Appendix C. Full results
	C.1. Number of solved problems and runtimes
	C.2. Solution qualities
	C.3. Solving time for smaller time limits
	C.4. Performance profiles

	Acknowledgments
	References

