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Abstract. This paper studies the existence of a (Lipschitz) continuous (single-valued) solution function of parametric
variational inequalities under functional and constraint perturbations. At the most elementary level, this issue can be explained
from classical parametric linear programming and its resolution by the parametric simplex method, which computes a solution
trajectory of the problem when the objective coefficients and the right-hand sides of the constraints are parameterized by a
single scalar parameter. The computed optimal solution vector (and not the optimal objective value) is a continuous piecewise
affine function in the parameter when the objective coefficients are kept constant, whereas the computed solution vector can
be discontinuous when the right-hand constraint coefficients are kept fixed and there is a basis change at a critical value of the
parameter in the objective. We investigate this issue more broadly first in the context of an affine variational inequality (AVI) and
obtain results that go beyond those pertaining to the lower semicontinuity of the solution map with joint vector perturbations;
the latter property is closely tied to a stability theory of a parametric AVI and in particular to Robinson’s seminal concept of
strong regularity. Extensions to nonlinear variational inequalities are also investigated without requiring solution uniqueness (and
therefore applicable to non-strongly regular problems). The role of solution uniqueness in this issue of continuous single-valued
solution selection is further clarified.

1. Introduction. This paper is motivated by a novel (ongoing) study on the existence of an appropriately
defined equilibrium solution of a multi-leader multi-follower game [34] (there are many more references, but
since this topic is not the focus of the paper, we provide just one reference of this game problem that leads to the
present work). Such a game consists of a group of dominant players (the leaders) and a group of subordinate
players (the followers) wherein each group of players is playing a noncooperative game among those in the
same group. The studied approach is to convert this hierarchical game to a single-level noncooperative game
by substituting out the followers’ Nash equilibrium responses via a single-valued response function. For the
resulting one-level game of the leaders to be tractable, it is essential that the followers’ single-valued response
function be continuous. Since in general, the followers’ game can be formulated as a variational inequality
(VI) [15], the question of when the solution set of a VI has a continuous selection of elements as a function
of parameters (the leaders’ strategy tuple in the hierarchical game context) needs to be answered. As noted
by a referee, answers to this question are relevant to the study of extensions of the deterministic VI, such
as the dynamic VI [8, 35], two-stage [7] and multi-stage stochastic VIs [39], and dynamic stochastic VIs [6].
These potential broad applications inspire us to undertake an independent investigation of the selection issue;
nevertheless, their details, which easily involve technical issues of a stochastic nature for two-stage problems,
are regrettably beyond the scope of this work.

Selection of a continuous single-valued function from a set-valued map is a fundamental problem in classical
mathematics. The most celebrated result of this kind is due to Ernest Michael [29, Theorem 3.2] which states
that “a lower semicontinuous multivalued map with nonempty convex closed values from a paracompact
space into a Banach space has a continuous selection”. There is actually a (less-known but much simpler to
prove) converse to this result (see Proposition 2.2 in the cited reference) which asserts that if there exists a
continuous selection at every pair in the graph of the set-valued map, then the map is lower semicontinuous. A
related result in a finite-dimensional Euclidean space by Dommisch [12] states that a “Lipschtiz continuous set-
valued map” (in the set-theoretic Hausdorff metric) into nonempty, convex, compact subsets has a Lipschitz
continuous selection. In the context of the solution map of a finite-dimensional VI, the (global) Lipschitz
continuity postulate of this (multivalued) solution map tends to be restrictive and abstract, except for special
classes of problems. Indeed, there exist results for such problems that yield continuous solution functions (see
the next section for a brief review). Furthermore, for the VI, there are two sets of studies that connect the
lower semicontinuity of the map to solution single-valuedness. In this context, the three properties: lower
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semicontinuity, continuous selection, and solution uniqueness are therefore closely related. This paper has
two major objectives: to clarify these properties for a parametric (monotone) variational inequality on a
polyhedron with varying right-hand side and, more interestingly, to identify classes of such VIs for which
the existence of a (Lipschitz) continuous single-valued solution selection does not require solution uniqueness.
In this vein, the monograph [13] contains a wealth of results on continuity properties of solution mappings;
our results supplement the results therein by focusing on the continuous selection of solutions to variational
inequalities.

2. A Summary of the Literature. In order to more clearly explain the problem and summarize the
existing results in the literature, we review some basic elements of a set-valued map Γ : Rn ⇒ Rm [2,3,13,38].
The domain of Γ, denoted dom Γ, the range of Φ, denoted ran Φ, and the graph of Φ, denoted gph Φ, are
respectively, the sets:

dom Γ ≜ { ξ ∈ Rn : Γ(ξ) ̸= ∅ },

ran Γ ≜
⋃

ξ∈dom Γ

Γ(ξ),

gph Γ ≜ { ( ξ, η ) ∈ Rn × Rm : η ∈ Γ(ξ) }.

Definition 2.1. A set-valued map Γ : Rn ⇒ Rm with gph Γ is said to

• be lower semicontinuous at ξ̄ ∈ dom Γ if for every open set V such that V ∩ Γ(ξ̄) ̸= ∅, there exists a
neighborhood U of ξ̄ such that V ∩ Γ(ξ) ̸= ∅ for all ξ ∈ U ;

• be lower semicontinuous at the pair (ξ̄, η̄) ∈ gph Γ if for every sequence {ξ ν} converging to ξ̄, there exists a
sequence {η ν} converging to η̄ such that η ν ∈ Γ(ξ ν) for all ν;

• be lower semicontinuous around the pair (ξ̄, η̄) ∈ gph Γ if there exists a neighborhood W of this pair such
that Γ is lower semicontinuous at every (ξ, η) ∈ W ∩ gph Γ;

• be upper Lipschitz continuous at ξ̄ ∈ dom Γ if there exist a scalar Lip↑ > 0 and a neighborhood N of ξ̄ such
that

Γ(ξ) ⊆ Γ(ξ̄) + Lip↑ ∥ ξ − ξ̄∥B, ∀ ξ ∈ N ∩ dom Γ,

where B is the unit ball in Rm (while the term “upper” is classical, the term “outer” is adopted in [13,
Section 3D] from the perspective of modern variational analysis);

• be lower Lipschitz continuous at ξ̄ ∈ dom Γ if there exist a scalar Lip↓ > 0 and a neighborhood N of ξ̄ such
that

Γ(ξ̄) ⊆ Γ(ξ) + Lip↓ ∥ ξ − ξ̄∥B, ∀ ξ ∈ N ∩ dom Γ,

• be Lipschitz continuous on a domain D if there exist a scalar Lip > 0 such that

Γ(ξ ′) ⊆ Γ(ξ) + Lip ∥ ξ ′ − ξ∥B, ∀ ξ ′, ξ ∈ D;

• have a continuous (single-valued) selection on a domain Ξ ⊆ dom Γ if there exists a function γ : Ξ → Rm

such that (i) γ(ξ) ∈ Γ(ξ) for all ξ ∈ Ξ and (ii) γ is continuous on Ξ; i.e., for all ξ̄ ∈ Ξ, i.e., lim
ξ(∈Ξ)→ξ̄

γ(ξ) = γ(ξ̄)

(continuity is restricted to the domain of the function γ);

• have a continuous (single-valued) selection at the pair (ξ̄, η̄) ∈ gph Γ if there exist an open neighborhood U
of ξ̄ and a function γ : U → Rm such that (i) γ(ξ) ∈ Γ(ξ) for all ξ ∈ U , (ii) γ(ξ̄) = η̄, and (iii) γ is continuous
at ξ̄ (the continuity requirement is restricted to the reference point ξ̄ only);

• be a polyhedral multifunction if gph Γ is the union of finitely many polyhedra;

• be a polyhedral convex multifunction if gph Γ is a polyhedron (thus convex). □

A classical result of Robinson [36] asserts that a polyhedral multifunction is everywhere pointwise upper
Lipschitz continuous on its domain; i.e., it is upper Lipschitz continuous at every point in its domain. It is
also known that a polyhedral convex multifunction is Lipschitz continuous on its domain [13, Theorem 3C.3];
thus combining this result with Michael’s selection theorem, it follows that a polyhedral convex multifunction
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must have a continuous selection. Nevertheless, this argument does not shed light on a constructive expression
of such a selection function.

We summarize some fundamentals of finite-dimensional variational inequalities and the linear complementarity
problems for which the reader can consult [11,17], respectively, for details. Given a closed convex set K in Rn

and a continuous mapping F from Rn into itself, the VI defined by the pair (F,K) is to find a vector x̄ ∈ K
such that

(x− x̄ )⊤F (x̄) ≥ 0, ∀x ∈ K.

The solution set of this VI is denoted by SOL(F,K).

Definition 2.2. The mapping F : K → Rn is

• monotone on K if
(x− y )⊤(F (x)− F (y) ) ≥ 0, ∀x, y ∈ K;

• strongly monotone on K if there exists a scalar α > 0 such that

(x− y )⊤(F (x)− F (y) ) ≥ α ∥x− y ∥2, ∀x, y ∈ K;

• co-coercive on K if there exists a scalar β > 0 such that

(x− y )⊤(F (x)− F (y) ) ≥ β ∥F (x)− F (y) ∥2, ∀x, y ∈ K;

• monotone-plus on K if it is monotone on K and

[ (x− y )⊤(F (x)− F (y) ) = 0 ⇒ F (x) = F (y) ], ∀x, y ∈ K;

• strongly monotone-composite if a strongly monotone mapping Ĝ : Rℓ → Rℓ, a matrix Ê ∈ Rℓ×n, and vectors
a ∈ Rn and e ∈ Rℓ exist such that

(2.1) F (x) = Ê⊤Ĝ(Êx+ e) + a, ∀x ∈ K.

We refer the reader to [17, Section 2.3] for the relationships between the above classes of functions and their
roles in the VI.

Definition 2.3. A set-valued map Φ : Rn ⇒ Rn is

• monotone on K if

(x− y )⊤(u− v ) ≥ 0, for all pairs (x, u) and (y, v) in gph Φ,

• strongly monotone on K if there exists a scalar α > 0 such that

(x− y )⊤(u− v ) ≥ α ∥x− y ∥2, for all pairs (x, u) and (y, v) in gph Φ.

Given a closed convex set K, if F is a monotone mapping on K, then SOL(F,K) is a convex set (possibly
empty); thus in this case, if the VI (F,K) has a locally unique solution, then this solution is the unique element
of SOL(F,K). If F is a continuous and strongly monotone mapping on K, then SOL(c+ F,K) is a singleton
for every c ∈ Rn; moreover, if x(c) denotes the single element of SOL(c+F,K), then x(c) is a co-coercive, thus
globally Lipschitz continuous, function of c [17, Proposition 2.3.11]. In particular, if F : Rn → Rn is strongly
monotone on Rn, then its inverse F−1 exists and is a globally Lipschitz continuous mapping on Rn. If F is
(single-valued, continuous, and) monotone-plus on K and if S ≜ SOL(F,K) ̸= ∅, then F (S) is a singleton.

When K is the Cartesian product of finitely many sets of lower dimensions, say K =

I∏
i=1

K i for some positive

integer I, where K i ⊆ Rni is closed and convex, and F = (F i)Ii=1, where each F i : Rn → Rni , is (continuous
and) uniformly P on K, i.e., for some constant γ > 0, it holds that max

1≤i≤I
(xi−yi)⊤(F i(x)−F i(y)) ≥ γ ∥x−y∥2

for all x and y in K, then SOL(c + F,K) is a singleton for every c ∈ Rn; moreover, this solution function is
also co-coercive.
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A solution x̄ ∈ SOL(F,K) can be characterized by a “generalized equation” [37], which is the following
inclusion:

0 ∈ F (x̄) +N (K; x̄), where

N (K; x̄) ≜
{
v ∈ Rn | v⊤(x− x̄ ) ≤ 0, ∀x ∈ K

}
is the normal cone ofK at x̄. For a large part of our study, the VI is of the affine kind where F (x) = q+Qx is an
affine function with q ∈ Rn andQ ∈ Rn×n being given andK is the polyhedron P (b, A) ≜ {x ∈ Rn | Ax ≤ b }
with A ∈ Rm×n and b ∈ Rm. We denote the solution set of the affine variational inequality (AVI) defined by
the tuple (q,Q, b, A) by SOL(q,Q, P (b, A)). The AVI encompasses many important special cases; we mention
two of them. When Q is symmetric, the AVI constitutes the stationarity conditions of the (indefinite) quadratic
program:

(2.2) minimize
x∈P (b,A)

q⊤x+ 1
2x

⊤Qx.

The AVI also generalizes the mixed linear complementarity problem (LCP), which is the problem:

0 ≤ u ⊥ r +Ru+ V v ≥ 0

0 = s+ Uu+ Sv

where ⊥ is the perpendicularity notation which in this context denotes the complementary slackness be-
tween two vectors, R and S are square matrices, and all vectors and matrices are of appropriate dimen-
sions. Polyhedral multifunctions are particularly relevant to the AVI. In particular, the set-valued map
(q, b) 7→ SOL(q,Q, P (b, A)) is a polyhedral multifunction. It is a useful fact that a single-valued polyhe-
dral multifunction is a piecewise affine function; moreover if its domain is convex, then it must be Lipschitz
continuous; for a sketch of a proof, see [17, Exercises 5.6.14] and also [38, Exercise 2.48] and [13, Corol-
lary 3D.5]. Specializing the earlier-mentioned result for a strongly monotone VI, we see that if Q is positive
definite (not necessarily symmetric), then for every fixed pair (b, A), the solution map q 7→ SOL(q,Q, P (b, A))
of an AVI is single-valued and Lipschitz continuous on Rn. When P (b, A) = Rn

+, an analogous result holds for
the LCP: 0 ≤ z ⊥ q +Mz ≥ 0 with a P-matrix M (i.e., when all principle minors of M are positive). In [9],
the P-matrix hypothesis was relaxed to the P0-condition (i.e., when all principle minors of M are nonnegative)
but an additional Z-property (i.e., all off-diagonal entries of M are nonpositive) and a feasibility assumption
were needed. In the latter case, the LCP does not necessarily have a unique solution but its least-element so-
lution [5,33] yields a Lipschitz solution selection as a function of the vector q in the domain of feasibility of the
problem. This result can be extended to an “upper-bounded” LCP (i.e., the AVI with a rectangular defining
set) via a least-element theory [32]. Inspired by the analysis in [9], we will subsequently extend the continuous
least-element selection result to the LCP with M being a “hidden Z-matrix” [30,31]; see Proposition 4.1.

With results for the linear complementarity problem in the background [19] that are subsequently extended
to the Lipschitz properties of polyhedral multifunctions [21], the reference [14] unifies many past results and
focuses on a locally Lipschitz property of a set-valued map called the Aubin property [1]. Specialized to the
(generally multi-valued) solution map q 7→ SOL(q,Q, P (b̄, A)) near a pair (q̄, x̄) with the triple (b̄, A,Q) being
fixed (in particular the polyhedron P (b̄, A) and the solution x̄ ∈ SOL(q̄, Q, P (b̄, A)) are fixed), it is shown
that the Aubin property is equivalent to the lower semicontinuity of the said solution map around (q̄, x̄), and
is further equivalent to the local single-valuedness of this map around (q̄, x̄) as well as the strong regularity
of the solution x̄ of the AVI defined by the tuple (q̄, b̄, A,Q). The latter is a renowned concept introduced
by Robinson [22] in the theory of generalized equation. Another equivalent critical face condition in [14] is
given a more detailed study in [24] from the perspective of polyhedral geometry and metric regularity. The
later part of the reference [14] extends the equivalences for the AVI to the VI (q + F (•, c),K) with the pair
(q, c) being the parameter, the set K being fixed, and F (•, c) satisfying a certain continuous differentiability
condition with respect to the first argument.

In contrast to the above references where the lower semicontinuity is around a given pair (q̄, x̄), the monograph
[25] provides an extensive study of the lower semicontinuity of the AVI solution map (q, b) 7→ SOL(q,Q, P (b, A))
at a give pair of vectors (q̄, b̄) (so the defining polyhedron of the AVI is allowed to move parallel to the reference
polyhedron P (b̄, A)). The case of a symmetric matrix Q, i.e., for the QP (2.2), is studied in great details in
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several chapters, including properties of the solution map of the associated Karush-Kuhn-Tucker conditions:

(2.3)
0 = q +Qx+A⊤λ

0 ≤ λ ⊥ b−Ax ≥ 0.

The last Section 18.2 in the cited monograph is devoted to the lower semicontinuity of the solution map of
the AVI at a given pair (q̄, b̄). In particular, combining Theorems 18.5 and 18.7 therein, we can prove the
following result for a monotone AVI. For a generic (finite) set S, the notation |S| denotes the cardinality of S.

Theorem 2.4. Let Q be positive semidefinite. For a given pair (q̄, b̄), a necessary and sufficient condition
for SOL(•, Q, P (•, A)) to be lower semicontinuous at (q̄, b̄) is that there exists x̂ such that Ax̂ < b̄ and
|SOL(q̄, Q, P (b̄, A)) | = 1 □

The proof of the sufficiency of the result is a consequence of a stability theory of parametric variational
inequalities; see [20] and [17, Section 5.5]. Part of this proof is to show the nonemptiness of SOL(q,Q, P (b, A))
for (q, b) near (q̄, b̄). With the existence of nearby solutions guaranteed and the solution uniqueness of the
reference problem, the lower semicontinuity of the solution map follows readily from the classical Lipschitz
property [40] of polyhedra as a function of the right-hand side; the latter property is closely related to the
renowned Hoffman error bounds for systems of linear inequalities [23].

In summary, while there has been extensive research on the lower semicontinuity of the solution map of
an (A)VI, the role of this property in the existence of a continuous selection of this map (according to
Definition 2.1) has not been directly addressed. Although one could resort to Michael’s seminal work [29] for
the connections between these two properties, such a direct reference may be too restrictive and omits a lot
of important details such as the role and/or necessity of solution uniqueness.

3. Our Contributions. A natural question (beyond the special least-element theory) raised by the cited
results in the last section is whether a continuous selection of the solution map of an (A)VI can exist without
the uniqueness requirement. A trivial situation that suggests this possibility is when q and Q are both zero;
in this case the AVI reduces to just the feasibility of the polyhedron P (b, A) and the existence of a continuous
selection of feasible solutions (with A fixed) is immediate. When Q is positive definite, we have mentioned
that SOL(q,Q, P (b, A)) is a singleton if nonempty; moreover, this unique solution is a Lipschitz continuous,
piecewise affine function of (q, b) on Rn×dom P (•, A). As a unification of these two extreme cases, we are led
to consider an AVI (q, b, A,Q) with Q being a positive semidefinite-plus (psd+) matrix for which we aim to
establish the existence of a continuous solution function; we also want to gain a deeper understanding about
the role of the unique solvability of the nonlinear problem. By definition, a matrix Q ∈ Rn×n is psd+ if
v⊤Qv ≥ 0 for all v ∈ Rn (positive semidefiniteness) and the implication holds: v⊤Qv = 0 ⇒ Qv = 0 (the
plus-property). Symmetric positive semidefinite matrices are psd+; so is a positive definite matrix; moreover,
the class of psd+ matrices is closed under addition. A result of Luo-Tseng [27] shows that a matrix Q ∈ Rn×n

is psd+ if and only if there exist a nonsingular matrix E ∈ Rn×n and a positive definite matrix R ∈ Rℓ×ℓ for
some positive integer ℓ ∈ {1, · · · , n} such that

(3.1) Q = E⊤

[
R 0

0 0

]
E.

Thus with a psd+ matrix Q, the affine mapping z 7→ Qz + q is strongly monotone-composite. The four main
contributions of our work are as follows:

• Lipschizt selection for a special class of LCPs: These LCPs are not necessarily monotone; yet they
possess special solutions that can be shown to be continuous, thus Lipschitz continuous. This part of our work
addresses comments from a referee about connections with results in the references [8, 9]; in particular, the
main result herein, Proposition 4.1, is inspired by the reference [9] that pertains to LCPs with Z-matrices.

• Lipschitz selection without uniqueness for AVIs: We show that when Q is a psd+ matrix and
q is fixed, a continuous single-valued selection x(b) ∈ SOL(q,Q, P (b, A)) always exists for all b for which
SOL(q,Q, P (b, A)) is nonempty. It then follows that the derived solution function is Lipschitz continuous
and piecewise affine on its domain. We also broaden the results for a fixed q to the family q0 + Range Q
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where q belongs with q0 being fixed but arbitrary. We remark that with Q being positive semidefinite,
SOL(q,Q, P (b, A)) is nonempty if and only if (see [17, Theorem 2.4.7]):(

0

0

)
∈

(
q

b

)
+

[
Q A⊤

−A 0

](
Rn

Rm
+

)
+

(
0

Rm
−

)
.

• Nonlinear VI: Extension without uniqueness: We extend the affine analysis to a nonlinear parametric
VI (F, P (b, A)) with a strongly monotone-composite mapping F given by (2.1) with a restriction on the
vector a but no restriction on e. While the final selection result is similar to the AVI, a key difference
is the absence of the piecewise affine property of the solution function, due to the nonlinearity of F ; so a
different proof is needed. Parallel to the AVI, with F being monotone, SOL(F, P (b, A)) is nonempty if and
only if the set {x ∈ P (b, A) | F (x)⊤(x − xref) < 0 } is bounded (possibly empty) for some xref ∈ P (b, A);
see [17, Theorem 2.3.4].

• Role of uniqueness: For a given pair (b̄, c̄) for which SOL(F (•, c̄), P (b̄, A)) ̸= ∅, where F : Rn+k →
Rn is a bivariate function satisfying certain locally Lipschitz properties, and F (•, c̄) is monotone, we show
that |SOL(F (•, c̄), P (b̄, A))| = 1 is a necessary condition for the existence of a continuous selection x(b, c) ∈
SOL(F (•, c), P (b, A)) at (b̄, c̄) . Together with the converse, we obtain the equivalence of three properties: the
existence of the continuous selection of solutions, the solution uniqueness of the base problem, and the pointwise
lower semicontinuous of the solution map of a monotone VI under constraint and functional perturbations.
These equivalences for the internally parameterized VI readily specialize to an externally parameterized VI,
with the former referring to a bivariate function F (•, c) where the parameter c is embedded within it, and the

latter referring to the special case where F (x, c) = F̂ (x) + c for some univariate mapping F̂ : Rn → Rn with

the parameter c appearing independently of the primary function F̂ .

4. A Special Class of LCPs. In [28], Mangasarian introduced a class of matrices for which the LCP
can be solved as a linear program (LP). Subsequently coined a hidden Z-matrix in [30,31], a matrix M ∈ Rn×n

belongs to this class if there exist Z-matrices X and Y and positive vectors r̄ and s̄ such that (a) MX = Y
and (b) r̄⊤X + s̄⊤Y > 0. [Much is known about such matrices [11, Section 3.11]; in particular, for a recent
work on LCPs with hidden Z-matrices and their computational complexity, see [22].] An important property
of such a matrix M is that the matrix X must be nonsingular; more importantly, the LCP (q,M), if feasible,
must have a solution given by x̄(q) = Xv̄(q), where v̄(q) is the unique optimal solution of the linear program:

(4.1) minimize
v∈Rn

p⊤v subject to q + Y v ≥ 0 and Xv ≥ 0,

for any positive vector p ∈ Rn. This solution v̄(q) is the least element of the feasible set of the above LP.
Elements of this set are in one-to-one-correspondence (via the nonsingular relation x = Xv) with those of
the feasible set of the LCP (q,M), which we denote FEA(M) ≜ { q | ∃x ≥ 0 satisfying q +Mx ≥ 0 }; the
least-element property means that v̄(q) ≤ v for all v feasible to (4.1). Proved in [10], these facts allow us to
show that the solution function x̄(q) is Lipschitz continuous on FEA(M).

Proposition 4.1. Let M be a hidden Z-matrix. Then there exists a solution function x̄(q) of the LCP (q,M)
defined for every q ∈ FEA(M) such that x̄(•) is Lipschitz continuous on FEA(M).

Proof. It suffices to show that the least-element solution function v̄(•) is continuous on the relative interior
of the domain of feasibility of the LP (4.1). By the least-element property of v̄(q), it can be shown that each
component of the vector function v̄(•) is convex on the feasible set of the LP (4.1), which itself is a polyhedron.
Indeed, for any feasible vectors q 1 and q 2 and for any scalar τ ∈ (0, 1), the vector τ v̄(q 1)+(1−τ)v̄(q 2) is feasible
to the LP (4.1) for τq 1 + (1− τ)q 2. Hence, v̄(τq 1 + (1− τ)q 2) ≤ τ v̄(q 1) + (1− τ)v̄(q 2), proving the claimed
componentwise convexity of the solution function v̄(•). (This convexity result was proved in [9, Theorem 2.1]
for the case of the LCP with an “M-matrix”.) This is enough to yield the desired continuity of v̄(•) on the
relative domain of FEA(M), and thus that of x̄(•) = Xv̄(•). [Remark: Unlike the case of a Z-matrix, the
components of x̄(•) needs not be convex.] To argue the Lipschitz continuity on the entire domain FEA(M), we
use the fact that v̄(q) is the unique optimal solution of (4.1), and also the fact that a single-valued polyhedral
multifunction on a convex domain is piecewise affine and Lipschitz continuous.

5. Lipschitz Selection Without Uniqueness for AVI. The cornerstone of our new AVI results is
an equivalent formulation of the problem using the decomposition (3.1). By definition, a solution of the AVI
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(q,Q, P (b;A)) is a vector z̄ satisfying Az̄ ≤ b such that

( z − z̄ )⊤(q +Qz̄) ≥ 0, ∀ z ∈ P (b, A).

Letting ζ ≜ Ez , q̄ ≜ (E⊤)−1q, and Ā ≜ AE−1, we see that the above inequality is equivalent to:

(5.1) ( ζ − ζ̄)⊤

(
q̄ +

[
R 0

0 0

]
ζ̄

)
≥ 0, ∀ ζ satisfying Āζ ≤ b,

for ζ̄ ≜ Ez̄. We partition the vectors ζ, q̄ and matrix Ā in accordance with

[
R 0

0 0

]
:

ζ ≜

(
u ∈ Rℓ

w ∈ Rn−ℓ

)
, q̄ ≜

(
r

c

)
, and Ā ≜

[
G H

]
so that (5.1) becomes

(5.2) (u− ū )⊤( r +Rū ) + c⊤(w − w̄ ) ≥ 0, ∀ (u,w) satisfying Gu+Hw ≤ b.

5.1. The case of fixed q. The construction of the desired continuous selection in this case consists of
two intermediate steps that are combined by a composition.

Step 1 (The LP component): We consider the linear program (LP) parameterized by the pair (b, u) with
c fixed:

(5.3) vc(b, u) ≜ minimum
w∈Rn−ℓ

c⊤w subject to Hw ≤ b−Gu.

The following result summarizes some important properties of the value function vc; the key property for
our purpose is the existence of a continuous selection of optimal solutions of the problem on its domain of
finiteness, which we denote Dc; i.e., (b, u) belongs to Dc if vc(b, u) is finite; also let Sc(b, u) denote the optimal
solution set of (5.3) for (b, u) ∈ Dc

Proposition 5.1. Let c ∈ Rn−ℓ be such that the (constant) polyhedron

Λc =
{
λ ∈ Rm

+ : c+H⊤λ = 0
}

is nonempty. The following statements hold for the parametric LP (5.3):

(a) The domain Dc is a polyhedron in Rm+ℓ, consisting of pairs (b, u) for which there exists w satisfying
Hw ≤ b−Gu ; moreover, the value function vc is convex and piecewise affine on Dc.

(b) A piecewise affine, thus Lipschitz continuous, function wopt
c : Dc → Rn−ℓ exists such that wopt

c (b, u) belongs
to Sc(b, u) for all (b, u) ∈ Dc.

Proof. Note that Λc is the feasible set of the dual of (5.3); thus statement (a) is an immediate consequence
of LP duality. It therefore suffices to prove statement (b). Let E(Λc) be the (finite) set of extreme points of
Λc. We then have

Sc(b, u) =

{
w ∈ Rn−ℓ | Hw ≤ b−Gu and c⊤w ≤ max

λ∈E(Λc)

[
−( b−Gu )⊤λ

]}
.

Since E(Λc) is a finite set, the function χc : (b, u) 7→ χc(b, u) ≜ max
λ∈E(Λc)

[
−( b−Gu )⊤λ

]
is a convex, piecewise

affine function on Rm+ℓ. For every scalar α for which the polyhedron

Wc(b, u;α) ≜
{
w ∈ Rn−ℓ | Hw ≤ b−Gu and c⊤w ≤ α

}
is nonempty, it has a minimum-norm vector, denoted w̃c(b, u;α), that is a piecewise affine, thus Lipschitz
continuous function of the triplet (b, u;α) ∈ Rm+ℓ+1; equivalently, w̃c(b, u;α) is the unique element of the
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polyhedron Wc(b, u;α) that is closest to the origin in the Euclidean norm. Note that for (b, u) ∈ Dc, we have
Wc(b, u; vc(b, u)) = Sc(b, u) ̸= ∅. The desired solution function wopt

c (b, u) is the composition of w̃c(b, u; •) with
χc(b, u), both of which are piecewise affine. Since wopt

c (•, •) is a piecewise affine function with the polyhedral
domain Dc, it is Lipschitz continuity there. □

Remark. The existence of the continuous solution function wopt
c (b, u) can be proved by the Lipschitz conti-

nuity of the solution mapping Sc [13, Exercise 3C.5] with the aid of Michael’s selection theorem. The above
proof offers a constructive expression of the claimed solution function via many possible choices of the vector
w̃c(b, u;α) as a composition of the optimal solutions of strongly convex quadratic programs with a piecewise
affine function. □

Step 2 (The generalized variational inequality component): For a given b ∈ dom P (•, A), let U b be
the set of vectors u ∈ Rℓ such that the pair (b, u) ∈ Dc and let ∂uvc(b, •) denote the subdifferential of the
convex function vc(b, •) when this subdifferential is well defined. Since by duality,

(5.4) vc(b, u) = maximum
λ∈E(Λc)

[
−( b−Gu )⊤λ

]
,

we deduce that when ∂uvc(b, u) exists, we have

∂uvc(b, u) = G⊤Êc(b, u)︸ ︷︷ ︸
denoted ∂̂uvc(b, u)

⊆ G⊤[convex hull of E(Λc)],

where, with H[E(Λc)] denoting the convex hull of E(Λc),

Êc(b, u) ≜ convex hull of argmax
λ∈E(Λc)

[
−( b−Gu )⊤λ

]
= argmax

λ∈H[E(Λc)]

[
−( b−Gu )⊤λ

]
⊆ argmax

λ∈Λc

[
−( b−Gu )⊤λ

]
, with equality not necessarily holding.

Unlike ∂uvc(b, u), which may fail to be well defined for certain b ∈ dom P (•, A), ∂̂uvc(b, u) is well defined for

all pairs (b, u) ∈ Rm+ℓ. The result below shows that ∂̂uvc(b, u) has all the properties of the subdifferential
∂uvc(b, u).

Proposition 5.2. The set-valued map ∂̂uvc : Rm+ℓ ⇒ Rℓ has the following properties:

• it is nonempty-valued, convex-valued, and compact-valued;
⋃

(b,u)∈Rm+ℓ

∂̂uvc(b, u) is bounded;

• ∂̂uvc is a polyhedral multifunction; thus it is everywhere pointwise upper Lipschitz continuous; moreover,
∂̂uvc(b, •) is monotone for all b ∈ Rm;

• for all u and ū in Ub and all η ∈ ∂̂uvc(b, ū),

vc(b, u) ≥ vc(b, ū) + η⊤(u− ū).

Proof. Only the monotonicity of ∂̂uvc(b, •) requires proof. But this is obvious too because ∂̂uvc(b, •) is the
subdifferential of the everywhere finite-valued convex function v̂c(b, •), where

v̂c(b, u) ≜ maximum
λ∈H[E(Λc)]

[
−( b−Gu )⊤λ

]
.

In turn, the everywhere finite-valuedness of v̂c is guaranteed by the compactness of H[E(Λc)]. □

Define the set-valued map:

(5.5) Φc(b, u) ≜ r +Ru+ ∂̂uvc(b, u), (b, u) ∈ Dc.

8



For a given vector b ∈ Rm for which U b ̸= ∅, we may consider the generalized variational inequality (GVI)

defined by the pair (Φc(b, •),U b) [4]; this problem is to find a pair (ū, η̄) with ū ∈ U b and η̄ ∈ ∂̂uvc(b, ū) such
that

(5.6) (u− ū)⊤( r +Rū+ η̄ ) ≥ 0 ∀u ∈ U b.

Since R is a positive definite matrix and ∂̂uv(b, •) is monotone, it follows that Φc(b, •) is strongly monotone
on U b. Hence the GVI (Φc(b, •),U b) has a unique solution, which we denote ūc(b). The proof of existence can
be found in [4]; the proof of uniqueness of the solution is standard as in the case of a point-valued strongly
monotone VI; see e.g. [17, Theorem 2.3.3]. The derivation below aims to show that ∥ūc(b)∥2 is bounded by a
multiplicative factor of ∥b∥2.

Note that the set of vectors b for which U b ̸= ∅ is equal to the set of vectors b for which P (b, A) ̸= ∅. It follows
from applying Hoffman’s error bound for linear inequalities [23] to the origin that there exists a constant β > 0
only depending on A such that for all b for which U b ̸= ∅, there exists ũ ∈ U b ̸= ∅ together with a certain
x̃ = (ũ, w̃) ∈ P (b, A) such that

∥ ũ ∥2 ≤ ∥x̃− 0∥2 ≤ β∥[A0− b]+∥2 ≤ β ∥ b ∥2,

where the notation [y]+ ≜ max{y, 0} stands for the nonnegative part of y. Let η̃ ∈ ∂̂uvc(b, ũ). Substituting

this vector ũ into the inequality in (5.6), we deduce that, by the monotonicity of ∂̂uvc(b, •),

0 ≤ ( ũ− ūc(b) )
⊤( r +Rūc(b) + η̄ )

≤ ( ũ− ūc(b) )
⊤ [ r +R(ūc(b)− ũ) +Rũ+ η̃ ] .

Letting λmin(R) > 0 be the smallest eigenvalue of the positive definite matrix R, we deduce

∥ ūc(b)− ũ ∥2 ≤ λmin(R)−1 ∥ r +Rũ+ η̃ ∥2 ,

which implies
∥ ūc(b) ∥2 ≤ β ∥ b ∥2 + λmin(R)−1 [ ∥ r + η̃ ∥2 + β ∥ b ∥2 ∥R∥2 ]

Since ∂̂uvc(b, •) is uniformly bounded, we deduce the existence of a constant β ′ > 0 such that

(5.7) ∥ ūc(b) ∥2 ≤ β ′ [ 1 + ∥ b ∥2 ] , ∀ b ∈ dom P (•, A).

Armed with this boundedness inequality, which implies in particular that ūc(b) is bounded on compact subsets
of dom P (•, A), the next result shows that this solution map ūc is continuous on its domain.

Proposition 5.3. Let {bk} be a set of vectors converging to b∞ such that U bk ̸= ∅ for all k. Then U b∞ ̸= ∅
and {ūc(b

k)} converges to ūc(b
∞).

Proof. Since the set of vectors b for which U b ̸= ∅ is equal to the domain of P (•, A), the nonemptiness of
U b∞ follows readily. By (5.7), the sequence {ūc(b

k)} is bounded. Let û be any one of its accumulation points.

To show that û = ūc(b
∞), we need to show that û ∈ U b∞ and there exists η̂ ∈ ∂̂uvc(b

∞, û) such that

(u− û)⊤( r +Rû+ η̂ ) ≥ 0, ∀u ∈ U b∞ .

Without loss of generality, we may assume that û is the limit of the sequence {ūc(b
k)}. For each k, there

exists wk such that Hwk ≤ bk −Gūc(b
k). Since the right-hand vector converges to b∞ −Gû, it follows from

Lipschitz property of P (•, H) that there exists ŵ (which does not need to be a limit point of {wk}) satisfying
Hŵ ≤ b∞ − Gû; thus û ∈ U b∞ . Next, for any u ∈ U b∞ , it follows from Hoffman’s error bound for linear
inequalities that there exists a sequence {uk} such that uk ∈ U bk for all k and

∥uk − u∥2 ≤ β∥[Auk − b∞]+∥2 ≤ β∥[Auk −Au]+∥2,

where β is a certain constant depending only on A and the last inequality is due to Au ≤ b∞. This implies
uk converges to u. For each k, there exists ηk ∈ ∂̂uvc(b

k, ūc(b
k)) such that

(uk − ūc(b
k))⊤( r +Rūc(b

k) + ηk ) ≥ 0.
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With the sequence {ηk} being bounded, let η̂ be an accumulation point of {ηk}. Since ∂̂uvc is a closed map,

it follows that η̂ ∈ ∂̂uvc(b
∞, û). □

Final step (The composition): Define the composite function w̄c(b) ≜ wopt
c (b, •) ◦ ūc(b), where wopt

c (•, •)
is the bivariate function identified in Proposition 5.1(b). Define the function

(5.8) ζ̄c : dom P (•, A) → Rn, with ζ̄c(b) ≜

(
ūc(b)

w̄c(b)

)
for b ∈ dom P (•, A).

Proposition 5.4. For every b for which P (b, A) ̸= ∅, the vector ζ̄c(b) defined by (5.8) is a solution of the AVI
(5.1).

Proof. We prove the assertion via the transformed inequality (5.2). For feasibility, we clearly have Gūc(b) +

Hw̄c(b) ≤ b. By (5.6), for some η̄ ∈ ∂̂uvc(b, ūc(b)), we have, for all u ∈ U b,

0 ≤ (u− ūc(b))
⊤( r +Rūc(b) + η̄ )

≤ (u− ūc(b))
⊤( r +Rūc(b) ) + vc(b, u)− vc(b, ūc(b))

Let (u,w) be arbitrary satisfying Gu + Hw ≤ b. Since vc(b, ūc(b)) = c⊤w̄c(b), the second inequality in the
above display yields

0 ≤ (u− ūc(b))
⊤( r +Rūc(b) ) + c⊤(w − w̄c(b)),

which is the desired inequality (5.2). □

Summarizing the above derivations, we have therefore proved the existence of a continuous selection of solutions
to the AVI (q,Q, P (b, A)) with q fixed. Indeed, this solution is given by z̄q(b) ≜ E−1ζ̄c(b), where E is the
nonsingular matrix that induces the decomposition (3.1). We claim that this solution function is piecewise
affine in b; this is accomplished by the next lemma which shows the same property for ūc(b).

Lemma 5.5. Let Φ : Rm+ℓ ⇒ Rℓ be a polyhedral multifunction and P a polyhedron in Rm+ℓ. Then with
U(b) ≜

{
u ∈ Rℓ | (b, u) ∈ P

}
, the solution map S : b 7→ SOL(Φ(b, •),U(b)) is a polyhedral multifunction.

Moreover, if S has a convex domain and is single-valued there, then it is Lipschitz continuous piecewise affine
on dom S.
Proof. It suffices to show that

gph S =
{
(b, u) ∈ Rm+ℓ | u ∈ SOL(Φ(b, •),U(b))

}
is a union of finitely many polyhedra. We may write

P ≜ { (b, u) | Bb+ Uu ≤ a }

for some matrices B and U and vector a of appropriate dimensions. In terms of the normal cone N (U(b);u)
of U(b) at its element u ∈ U(b), we have

(5.9) u ∈ SOL(Φ(b, •),U(b)) ⇔ 0 ∈ Φ(b, u) +N (U(b);u).

We claim that the set-valued map Υ : (b, u) 7→ N (U(b), u) is a polyhedral multifunction. Indeed, a vector
ξ ∈ Υ(b, u) if and only if 0 ∈ −ξ +N (U(b), u), or equivalently,

u ∈ argmin
u ′

− ξ⊤u′ subject to Uu′ ≤ a−Bb

⇐⇒ ∃λ such that

{
ξ = U⊤λ

0 ≤ λ ⊥ a−Bb− Uu ≥ 0.

Hence ξ ∈ Υ(b, u) if and only if there exists λ such that the right-hand mixed complementarity conditions in
the above display holds. This is enough to show that Υ is a polyhedral multifunction. Thus so are Φ+Υ and
its inverse (Φ+Υ)−1. By the equivalence (5.9), it follows that gph S = (Φ+Υ)−1(0) with the right-hand set
being the union of finitely many polyhedra; thus S is a polyhedral multifunction. The second conclusion of
the lemma therefore follows from the fact that a single-valued polyhedral multifunction on a convex domain
must be a Lipschitz continuous piecewise affine function; see Proposition 4.2.2 in [17]. □

Combining Lemma 5.5 with the previous analysis, the following theorem does not require a proof.
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Theorem 5.6. Let Q be psd+. For every fixed q such that the set Λc ̸= ∅, there exists a piecewise affine, thus
Lipschitz continuous, function z̄q : dom P (•, A) → Rn such that for every b for which P (b, A) is nonempty,
the vector z̄q(b) is a solution of the AVI (q,Q, P (b, A)). □

Remarks. The condition Λc ̸= ∅ plays a hidden role ensuring in particular the solvability of the AVI
(q,Q, P (b, A)). The piecewise affine property of both functions ūc and wopt

c is very much responsible for the
Lipschitz continuity of the resulting solution function z̄q. In the subsequent generalization to a nonlinear VI,
the piecewise affine property of ūc, and thus of the solution function, is lost, □

5.2. A special family of q. Theorem 5.6 can be used to allow a varying q, based on the observation
that the vector r does not need to be fixed in the above derivation. Indeed, instead of (5.5), we may define

Φc(r, b, u) ≜ r +Ru+ ∂̂uvc(b, u), (b, u) ∈ Dc,

to signify the dependence of this function on r as well, and let ūc(r, b) be the unique solution of the GVI

(Φc(r, b, •),U b). Defining z̄c(r, b) ≜ E−1

(
ūc(r, b)

w̄c(r, b)

)
, where w̄c(r, b) ≜ wopt

c (b, •) ◦ ūc(r, b), we can show that

the conclusion of Theorem 5.6 holds for this solution function. [Note, we write z̄c(r, b) here instead of z̄q(b)
to emphasize that only the vector c is fixed that defines a family of vectors q that correspond to the same c.]
Next, we apply a simple linear-algebraic maneuver to convert the pair (r, c) back in terms of the given vector

q. We partition the matrix E ≜

[
C

D

]
in accordance with

[
R 0

0 0

]
: thus C ∈ Rℓ×n and D ∈ R(n−ℓ)×n so

that Q = C⊤RC. Notice that the matrix D can be chosen fairly arbitrarily. So we choose D so that its rows
are linearly independent and each of these rows is perpendicular to all the rows of C, resulting in DC⊤ = 0.
We then have

(5.10) q = E⊤q̄ = C⊤r +D⊤c.

Let Q be the null space of Q and Q⊥ be the orthogonal complement of Q. Due to the plus-property of Q, one
can deduce that z ∈ Q iff z⊤Qz = (Cz)⊤R(Cz) = 0, which amounts to Cz = 0 by the positive definiteness
of R. What is more, because C and D have linearly independent rows and DC⊤ = 0, it can be seen that
span(D⊤) is the orthogonal complement of span(C⊤), where span(•) stands for the linear subspace spanned
by the columns of the nominal matrix. Hence, Cz = 0 is further equivalent to z ∈ span(D⊤). It follows that

Q = span(D⊤) and Q⊥ = span(C⊤). As a result, ΠQ(q) = D⊤ (DD⊤)−1
Dq and ΠQ⊥(q) = C⊤ (CC⊤)−1

Cq,
where Π•(•) denotes the Euclidean projection of a vector onto a closed convex set. Therefore, in view of (5.10)
and the projection formulae, r and c are uniquely given by

r = (CC⊤)−1Cq and c = (DD⊤)−1Dq.

We have the following corollary of Theorem 5.6 for the AVI (q,Q, P (b, A)) in which the vector q varies in an
affine subspace.

Corollary 5.7. Let Q be psd+. For every q0 such that the set Λc0 ̸= ∅, where c0 ≜ (DD⊤)−1Dq0, a
piecewise affine, thus Lipschitz continuous, function z̄c0 : Z ≜ (q0 + Range Q) × dom P (•, A) → Rn exists
such that for every (q, b) ∈ Z, the image z̄c0(q, b) ∈ SOL(q,Q, P (b, A)).

Proof. With q = q0 +Qu for some u ∈ Rn, we have Qu ∈ Q⊥ because if x ∈ Q, then Qx = 0, which implies
Q⊤x = 0 by the psd+ property of Q; hence x⊤Qu = 0, proving Qu ∈ Q⊥. Therefore, ΠQ(Qu) = 0. Hence

q = ΠQ(q
0) +

[
ΠQ⊥(q0) + ΠQ⊥(Qu)

]
= D⊤c0 + C⊤r(q),

where r(q) ≜ (CC⊤)−1Cq0 + (CC⊤)−1C(q − q0). By defining z̄c0(q, b) ≜ E−1

(
ūc0(r(q), b)

w̄c0(r(q), b)

)
, the stated

properties of this function readily hold. □

6. Nonlinear VI: Extension without Uniqueness. Consider the VI (F,K), where F is given by (2.1)

with a = a0 + Ê⊤g (this is motivated by the form of the vector q in Corollary 5.7) and K = P (b, A). Thus,

F (x) = Ê⊤
[
g + Ĝ(Êx+ e)

]
+ a0.
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With F as given, the VI is equivalent to finding a pair (x̄, ȳ) ∈ Z such that

(6.1) ( y − ȳ)⊤[ g + Ĝ(y) ] + (x− x̄ )⊤a0 ≥ 0, ∀ (x, y ) ∈ Z,

where Z ≜
{
(x, y) ∈ Rn+ℓ | Ax ≤ b and y − Êx = e

}
. The form (6.1) is analogous to (5.2), with the pair

(x, y) in (6.1) playing the role of (w, u) in (5.2) and the strongly monotone mapping Ĝ in (6.1) replacing the
positive definite matrix R in (5.2). Thus, we may follow the same three steps as before: first define an LP,
followed by a GVI, and then the composition of the former two steps. Although the steps are the same, there
are important differences in proving the desired property of the solution function due to the nonlinearity of
the map Ĝ.

The LP: Similar to the value function vc(b, u) and the feasible region Λc of the dual linear program of this
function, define, for a given vector a0 ∈ Rn:

(6.2)

va0(b, e, y) ≜ minimum
x∈Rn

(a0)⊤x subject to Ax ≤ b and Êx = y − e

= maximum
(λ,µ)∈ Λ̂a0

− b⊤λ+ ( y − e )⊤µ,

where
Λ̂a0 ≜

{
(λ, µ) ∈ Rm

+ × Rℓ | a0 +A⊤λ− Ê⊤µ = 0
}
,

assumed nonempty, depends only on the vector a0 and the matrices A and Ê. Let Y : Rm+ℓ ⇒ Rℓ be the
set-valued map with Y(b, e) ≜ ÊP (b, A)+ e for all pairs (b, e) ∈ Rm+ℓ. Note that dom Y = dom P (•, A)×Rℓ.
As in Proposition 5.1, it can be shown that there exists a Lipschitz continuous, piecewise affine function
xopt
a0 : gph Y → Rn such that xopt

a0 (b, e, y) is an optimal solution of the LP in (6.2) for all y ∈ Y(b, e).

Suppose that Ê has linearly independent rows. Then the set E(Λ̂a0) of extreme points of the polyhedron Λ̂a

is nonempty. Define

Êa0(b, e, y) ≜ argmax
(λ,µ)∈H[E(Λ̂a0 )]

− b⊤λ+ ( y − e )⊤µ, and

∂̂yva0(b, e, y) ≜
{
µ ∈ Rℓ | ∃ λ such that (λ, µ) ∈ Êa0(b, e, y)

}
.

These two sets play the same roles as Êc(b, u) and ∂̂uvc(b, u) in the affine case, respectively. In particular,

the set-valued map ∂̂yva0 : Rm+ℓ+ℓ ⇒ Rℓ satisfies a set of analogous properties as ∂̂uvc(b, u) described in
Proposition 5.2.

The GVI: This is defined by the pair (Φa0(g, b, e, •),Y(b, e)), where

Φa0(g, b, e, y) ≜ g + Ĝ(y) + ∂̂yva0(b, e, y).

Since Φa0(b, e, g, •) is a strongly monotone multifunction, the GVI (Φa0(g, b, e, •),Y(b, e)) has a unique solution,
which we denote ȳa0(g, b, e), whenever Y(b, e) ̸= ∅. We next show that this solution is locally Lipschitz
continuous on its domain, which is Rℓ × dom P (•, A) × Rℓ. This claim is the analog of Lemma 5.5 for a
strongly monotone GVI with a non-polyhedral multifunction and with a changing defining set. The proof
turns out to be a little involved. For this purpose, we summarize the properties of the set-valued mapping
Γa0 : (b, e, y) 7→ ∂̂yva0(b, e, y) +N (Y(b, e); y) ⊆ Rℓ:

• dom Γa0 =
{
(b, e, y) ∈ Rm+2ℓ | y − e ∈ ÊP (b, A)

}
;

• Γa0 is a polyhedral multifunction on its domain;

• for each pair (b, e) ∈ dom P (•, A)×Rℓ, Γa0(b, e, •) is monotone on Y(b, e); this is because ∂̂yva0(b, e, •) is so
and N (Y(b, e); •) is the subdifferential of the (convex) indicator function of Y(b, e).

Combining the pair (b, e) into the vector h ∈ Rm̄, where m̄ ≜ m+ ℓ, the GVI (Φa0(g, h, •),Y(h)) is equivalent
to the inclusion:

(6.3) 0 ∈ g + Ĝ(y) + Γa0(h, y),
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whose unique solution, for a given pair (g, h), is the vector ȳa0(g, h).

Lemma 6.1. Let Ĝ : Rℓ → Rℓ be a Lipschitz continuous, strongly monotone mapping and Ê ∈ Rℓ×n have
full row rank. Let a0 ∈ A⊤Rm

− + Range Ê⊤ be arbitrary but fixed. The solution function ȳa0 is Lipschitz
continuous on Rℓ × dom P (•, A)× Rℓ.

Proof. Throughout the proof, which is divided into 3 steps, we will drop the subscript a0 in both ȳa0 and
Γa0 .

Step 1 (Continuity): By using the strong monotonicity of the mapping Ĝ instead of the positive definiteness
of the matrix R, and following the same argument as in the proof of Proposition 5.3, we can show that ȳ is
continuous at every (ḡ, h̄) with Y(h̄) ̸= ∅ i.e.,

lim
(g,h)→(ḡ,h̄)

h ∈ domY

y(g, h) = y(ḡ, h̄).

Step 2 (Pointwise upper Lipschitz continuity): Next we show the upper Lipschitz continuity of ȳ at
(ḡ, h̄) for which Y(h̄) ̸= ∅. For every pair (g, h) with Y(h) ̸= ∅, there exists a pair (y(g, h), η(g, h)) with
η(g, h) ∈ Γ(h, y(g, h)) such that

0 = g + Ĝ(y(g, h)) + η(g, h).

Hence,
lim

(g,h)→(ḡ,h̄)

h ∈ domY

η(g, h) = η(ḡ, h̄).

Since Γ is a polyhedral multifunction, we can write

gph Γ =
⋃
i∈I

G i, where G i ≜
{
(h, y, η) | Hih+ Y iy +Σ iη ≤ αi

}
for a finite index set I and a family of matrices {Hi, Y i,Σ i}i∈I and vectors {αi}i∈I of appropriate orders. By

the Lipschitz property of P (•, Σ̂ i), where Σ̂ i ≜ [Y i Σ i ], there exists a scalar Li > 0 such that for α̂ and α̂ ′

in dom P (•, Σ̂ i), we have

P (α̂ ′, Σ̂ i) ⊆ P (α̂, Σ̂ i) + Li ∥ α̂− α̂ ′ ∥2 B,

where B is the Euclidean ball in the (y, η)-space.

Writing (ȳ, η̄) ≜ (y(ḡ, h̄), η(ḡ, h̄)), we let Ī be the set of indices i ∈ I such that (h̄, ȳ, η̄) ∈ G i. For every pair
(g, h) sufficiently close to (ḡ, h̄) and with h ∈ dom Y, there exists an index i ∈ Ī such that (h, y(g, h), η(g, h)) ∈
G i. Let (ŷ(g, h), η̂(g, h)) be the Euclidean projection of the pair (y(g, h), η(g, h)) onto the polyhedron P (αi −
H ih̄, Σ̂ i). We then have

(6.4) ∥ (y(g, h), η(g, h))− (ŷ(g, h), η̂(g, h)) ∥2 ≤ L ′
i ∥h− h̄ ∥2, where L ′

i ≜ Li ∥Hi ∥2.

Thus, the triplet (h̄, ŷ(g, h), η̂(g, h)) ∈ G i, which implies η̂(g, h) ∈ Γ(h̄, ŷ(g, h)). By the monotonicity of Γ(h̄, •),
we have

(6.5) ( η̄ − η̂(g, h))⊤( ȳ − ŷ(g, h)) ≥ 0.

Moreover, (6.4) implies
lim

(g,h)→(ḡ,h̄)

h ∈ domY

(ŷ(g, h), η̂(g, h)) = (ȳ, η̄).

We have
0 = g + Ĝ(y(g, h)) + η(g, h) = g + Ĝ(y(g, h)) + η̂(g, h) + [ η(g, h)− η̂(g, h) ]

0 = ḡ + Ĝ(ȳ) + η̄.

Thus, subtracting, we obtain

Ĝ(ȳ)− Ĝ(y(g, h)) = g − ḡ + η̂(g, h)− η̄ + [ η(g, h)− η̂(g, h) ],
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which yields, by (6.5),

( ȳ − ŷ(g, h) )⊤( Ĝ(ȳ)− Ĝ(y(g, h)) ) ≤ ( ȳ − ŷ(g, h) )⊤( g − ḡ ) + ( ȳ − ŷ(g, h) )⊤[ η(g, h)− η̂(g, h) ].

We have

L.H.S. = ( ȳ − y(g, h) )⊤( Ĝ(ȳ)− Ĝ(y(g, h)) ) + ( y(g, h)− ŷ(g, h) )⊤( Ĝ(ȳ)− Ĝ(y(g, h)) )

≥ σĜ ∥ ȳ − y(g, h) ∥22 −
[
max
1≤i≤I

L ′
i

]
∥h− h̄ ∥2 LipĜ ∥ ȳ − y(g, h) ∥2,

where σĜ > 0 and LipĜ > 0 are the strong monotonicity and Lipschitz constants of Ĝ, respectively. Moreover,

R.H.S. ≤ ( ȳ − y(g, h) )⊤[ η(g, h)− η̂(g, h) ] + ( y(g, h)− ŷ(g, h) )⊤[ η(g, h)− η̂(g, h) ]+

( ȳ − y(g, h) )⊤( g − ḡ ) + ( y(g, h)− ŷ(g, h) )⊤( g − ḡ )

≤
([

max
1≤i≤I

L ′
i

]
∥h− h̄ ∥2 ∥+ ∥ g − ḡ ∥2

)
∥ ȳ − y(g, h) ∥2 +

[
max
1≤i≤I

L ′
i

]
∥h− h̄ ∥2 ∥ g − ḡ ∥2 +

([
max
1≤i≤I

L ′
i

]
∥h− h̄ ∥2

)2

.

Hence, with L̂ ≜

[
max
1≤i≤I

L ′
i

]
max

(
1, LipĜ

)
, we deduce,

σĜ ∥ ȳ − y(g, h) ∥22 − 2
(
L̂ ∥h− h̄ ∥2 + ∥ g − ḡ ∥2

)
∥ ȳ − y(g, h) ∥2 ≤

(
L̂ ∥h− h̄ ∥2 + ∥ g − ḡ ∥2

)2
,

which yields(
∥ ȳ − y(g, h) ∥2 −

1

σĜ

(
L̂ ∥h− h̄ ∥2 + ∥ g − ḡ ∥2

))2

≤

(
1

σĜ

+
1

σ 2
Ĝ

) (
L̂ ∥h− h̄ ∥2 + ∥ g − ḡ ∥2

)2
Consequently,

∥ y(g, h)− y(ḡ, h̄) ∥2 ≤

 1

σĜ

+

(
1

σĜ

+
1

σ 2
Ĝ

)1/2
 ( L̂ ∥h− h̄ ∥2 + ∥ g − ḡ ∥2

)
.

In summary, we have shown that there exists a constant κ > 0 such that for every (ḡ, h̄) with Y(h̄) ̸= ∅, a
neighborhood N of (ḡ, h̄) exists such that for every (g, h) ∈ N with Y(h) ̸= ∅, it holds that

∥ y(g, h)− y(ḡ, h̄) ∥2 ≤ κ
(
∥h− h̄ ∥2 + ∥ g − ḡ ∥2

)
.

Step 3 (Lipschitz continuity): This follows from the following more general result: a single-valued, every-
where pointwise upper Lipschitz continuous mapping on a convex domain with a common Lipschitz constant
κ > 0 is Lipschitz continuous on the domain. The proof is actually very standard; see e.g. that of Proposi-
tion 4.2.2 in [17] showing the Lipschitz continuity of a piecewise affine mapping. For completeness, we provide
the details. Let f : dom f ⊆ Rn → Rm be such a (single-valued) mapping dom f being convex. Let κ > 0 be
a scalar such that for every vector x ∈ dom f , there exists an open neighborhood N (x) such that

(6.6) ∥ f(y)− f(x)∥ ≤ κ ∥ y − x ∥, ∀ y ∈ N (x) ∩ dom f.

Let x̄ and ȳ two arbitrary vectors in dom f and consider the line segment

[ x̄, ȳ ] ≜ { τ x̄+ (1− τ)ȳ | τ ∈ [ 0, 1 ] },
14



joining x̄ and ȳ. Since dom f is convex, this segment is a subset of dom f . The family of open neighborhoods
N (z), for all z ∈ [ x̄, ȳ ], is an open covering of this compact segment. Thus, there exists a finite family of
these neighborhoods that covers the segment. This implies that there exists a partition of the interval [0, 1]:

0 = τ0 < τ1 < · · · < τp = 1

for some positive integer p such that for all r = 0, 1, · · · , p−1, N (xr) ∩N (xr+1) ̸= ∅, where xr ≜ x̄+τr(ȳ−x̄).
Letting yr ∈ [xr, xr+1 ] be a common element of N (xr) and N (xr+1), we can write

f(x̄)− f(ȳ) =

p−1∑
r=0

[ (f(xr)− f(yr)) + (f(yr)− f(xr+1)) ].

The inequality (6.6) easily yields ∥f(x̄)− f(ȳ)∥ ≤ τ∥x̄− ȳ∥. □

Theorem 6.2. Let Ĝ : Rℓ → Rℓ be a Lipschitz continuous, strongly monotone mapping and Ê ∈ Rℓ×n have
full row rank. Let a0 ∈ A⊤Rm

− + Range Ê⊤ be arbitrary but fixed. There exists a Lipschitz continuous

function x̄a0 : Z ≜ (a0 + Range Ê⊤) × dom P (•, A) × Rℓ → Rn such that for every (q, b, e) ∈ Z, the image

x̄a0(q, b, e) ∈ SOL(q + Ê⊤Ĝ(Ê •+e), P (b, A)).

Proof. With q ≜ a0 + Ê⊤g, it suffices to define x̄a0(q, b, e) ≜ xopt
a0 (b, e, •) ◦ ȳa0(g, b, e). □.

Remarks. As both vectors g and e are allowed to change, with a ≜ a0 + Ê⊤g, the function F given by
(2.1) is parameterized both internally and externally. Another noteworthy remark is that while b is allowed
to change, the polyhedrality of the defining set P (b, A) in the VI is heavily responsible for the additional
Lipschitz property of the solution function. It may be possible to relax this polyhedrality requirement to a
finitely representable set defined by differentiable inequalities satisfying certain constraint qualifications, we
choose to omit such a generalization in this work to avoid non-trivial technical complications. □

7. The Role of Solution Uniqueness. Theorem 5.6, Corollary 5.7, and Theorem 6.2 are selection
results on the domain of solvability of the respective problems. Two key restrictions are imposed: the plus-
property of the (monotone) mapping and the restriction of the parameter in the defining functions; furthermore
the last theorem pertains to an internal parameterization of a nonlinear VI without any differentiability
requirement. In this section, we remove the two functional restrictions while retaining the monotonicity of the
function and the right-hand perturbation of the defining polyhedron. The main result is a succinct equivalence
of three pointwise properties—lower semicontinuity, continuous selection, and solution uniqueness—for this
class of nonlinear VIs. For the proof of the local solvability under functional and constraint perturbations, we
employ degree theory in nonlinear analysis for which the reader can consult [18,26]; see also [17, Section 2.1.1]
for a summary of some basic properties of the degree of a continuous mapping; in particular, the index of a
continuous mapping at an isolated zero is the key concept employed. For a generic function f : Rn → Rm, we

denote f ′(x̄, d) ≜ lim
τ↓0

f(x̄+ τd)− f(x̄)

τ
as the directional derivative of f at x̄ ∈ Rn along the direction d ∈ Rn.

In particular, for a bivariate function F : Rn+k → Rm and for a given x ∈ Rn, we write F (x, •) ′(ȳ; dy) for the
directional derivative of the (univariate) function F (x, •) at ȳ ∈ Rk along the direction dy ∈ Rk.

Theorem 7.1. Let F : Rn+k → Rn and A ∈ Rm×n be given. Let (b̄, c̄) be such that (a) there exists x̂
satisfying Ax̂ < b̄ and (b) F (•, c̄) is monotone. Let x̄ ∈ SOL(F (•, c̄), P (b̄, A)) be given. Suppose that

(c) there exist an open neighborhood U of (b̄, c̄) and an open neighborhood V of x̄ and positive constants Lipx
and Lipc such that

sup
x∈P (b,A)∩V

∥F (x, c)− F (x, c̄) ∥ ≤ Lipc ∥ (b, c)− (b̄, c̄) ∥, ∀ (b, c) ∈ U ∩ (dom P (•, A)× Rk)

and ∥F (x, c̄)− F (x ′, c̄) ∥ ≤ Lipx ∥x− x ′ ∥, ∀x, x ′ ∈ V;

(d) lim
x→x̄; τ↓0

x ∈ P (b̄;A)

F (x, c̄+ τd)− F (x, c̄)

τ
= F (x̄, •) ′(c̄, d) exists for all d ∈ Rk; and

(e) F (x̄, •) ′(c̄, •) is surjective on Rk.
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Then the following three statements are equivalent:

(A) the set-valued map (b, c) 7→ SOL(F (•, c), P (b, A)) has a continuous (single-valued) selection at the pair
((b̄, c̄), x̄);

(B) SOL(F (•, c̄), P (b̄, A)) = {x̄};

(C) the set-valued map (b, c) 7→ SOL(F (•, c), P (b, A)) is lower semicontinuous at (b̄, c̄).

Proof. (A) ⇒ (B). Suppose that the set-valued map (b, c) 7→ SOL(F (•, c), P (b, A)) has a continuous (single-
valued) selection at (b̄, c̄, x̄) but S̄ ≜ SOL(F (•, c̄), P (b̄, A)) contains a vector distinct from x̄. Letting x(b, c)
be such a selection function for (b, c) sufficiently close to (b̄, c̄), we have lim

(b,c)→(b̄,c̄)
x(b, c) = x̄. Since S̄ has at

least two distinct elements, there exists a vector v ∈ Rn such that ∞ ≥ max
x∈S̄

v⊤x > min
x∈S̄

v⊤x ≥ −∞. By the

assumption (e), there exists a vector d ∈ Rk such that F (x̄, •) ′(c̄, d) = v. For τ > 0 sufficiently small, write
xτ ≜ x(b̄, c̄+ τd). We then have lim

τ↓0
xτ = x̄; moreover, for any x̂ ∈ S̄,

( x̂− xτ )⊤F (xτ , c̄+ τd) ≥ 0 and (xτ − x̂ )⊤F (x̂, c̄) ≥ 0.

Adding the two inequalities, we obtain

0 ≤ ( x̂− xτ )⊤[F (xτ , c̄+ τd)− F (xτ , c̄) ] + ( x̂− xτ )⊤[F (xτ , c̄)− F (x̂, c̄) ]

≤ ( x̂− xτ )⊤[F (xτ , c̄+ τd)− F (xτ , c̄) ],

where the second inequality is by the monotonicity of F (•, c̄). Dividing by τ > 0 and letting τ ↓ 0, we deduce
( x̂ − x̄ )⊤v ≥ 0. Since x̂ ∈ S̄ is arbitrary, it follows that x̄ ∈ argmin

x∈S̄

v⊤x. Similarly, letting d ′ ∈ Rk satisfy

F (x̄, •) ′(c̄, d ′) = −v. we can show that x̄ ∈ argmax
x∈S̄

v⊤x. This is a contradiction.

(B) ⇒ (A) and (C). Suppose SOL(F (•, c̄), P (b̄, A)) = {x̄}. We prove that (A) and (C) hold by proceeding
as follows:

(i) first recall that a vector x̃ is a solution of the VI (F (•, c), P (b, A)) if and only if x̃ is a zero of the “natural
map” of the VI; i.e., the map Ψ(•; b, c) : x 7→ x−ΠP (b,A)(x−F (x, c)), where ΠP (b,A) is the Euclidean projector
onto the polyhedron P (b, A);

(ii) note that the set {x ∈ P (b̄, A) | F (x, c̄)⊤(x− x̄) < 0 } is empty, by the monotonicity of F (•, c̄);

(iii) by the proof of [17, Proposition 2.2.3], it follows that the index of the map Ψ(•; b̄, c̄) at its unique zero x̄
is equal to one; and

(iv) by the existence of the vector x̂ satisfying Ax̂ < b̄, the set-valued map b 7→ P (b, A) is continuous at b̄.

With these steps and assumption (c) in place, all the assumptions of Proposition 5.4.1 in [17] are satisfied; this
proposition then yields the existence of a neighborhood, which we may take to be the same as U in assumption
(c) such that

• SN (b, c) ≜ SOL(F (•, c), P (b, A)) ∩N ̸= ∅ for all (b, c) ∈ U , and

• lim
(b,c)(∈U)→(b̄,c̄)

{ ∥x(b, c)− x̄∥ : x(b, c) ∈ SN (b, c) } = 0.

The conclusions easily produce the desired statements (A) and (C).

(C) ⇒ (B). The proof is similar to that of (C) implying (A). Assume for contradiction that the set-valued map
(b, c) 7→ SOL(F (•, c), P (b, A)) is lower semicontinuous at (b̄, c̄) but S̄ has at least two distinct elements, say x̃ 1

and x̃ 2. Then there exists a vector v ∈ Rn such that v⊤x̃ 1 > v⊤x̃ 2. Let d ∈ Rk be such that F (x̄, •) ′(c̄, d) = v.
Let {εk} be an arbitrary sequence of positive scalars converging to zero. By the lower semicontinuity of the
solution map, there exist a sequence {xk} converging to x̃ 1 such that xk ∈ SOL(F (•, c̄+ εkd), P (b̄, A)) for all
k. By the same argument as before, we may deduce that x̃ 1 ∈ argmin

x∈S̄

v⊤x. Similarly, we can also prove that
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x̃ 2 ∈ argmax
x∈S̄

v⊤x, which is a contradiction. □

We make several remarks about the above theorem. First, the Slater assumption (a) ensures in particular
the nonemptiness of P (b, A) for all b sufficiently close to b̄. Second, the monotonicity of F (•, c) is assumed
only at c̄; in particular, the perturbed VI (F (•, c), P (b, A)) does not need to be of the monotone kind. Third,
assumption (c) imposes certain Lipschitz property of the bivariate function F (x, c). Finally, the limit in (d) is
a directional differentiability of F (x̄; •) at c̄ allowing for variations in the first argument near the base solution
x̄. As a straightforward corollary of Theorem 7.1, we have the following result for the externally perturbed
VI where the requirements (c), (d), and (e) hold trivially.

Corollary 7.2. Let F : Rn → Rn be a monotone and Lipschitz continuous function on P (b̄, A), where
A ∈ Rm×n. Let b̄ ∈ Rm be such that there exists x̂ satisfying Ax̂ < b̄. Then the following four statements are
equivalent:

(A) |SOL(c̄+ F, P (b̄, A)) | = 1;

(B) the set-valued map (b, c) 7→ SOL(c + F, P (b, A)) has a continuous (single-valued) selection at the pair
((b̄, c̄), x̄) for some x̄ ∈ SOL(c̄+ F, P (b̄, A));

(B ′) the set-valued map (b, c) 7→ SOL(c + F, P (b, A)) has a continuous (single-valued) selection at the pair
((b̄, c̄), x) for all x ∈ SOL(c̄+ F, P (b̄, A));

(C) the set-valued map (b, c) 7→ SOL(c+ F, P (b, A)) is lower semicontinuous at (b̄, c̄).

Furthermore, if F is additionally affine, then any one of the above statements is equivalent to

(D) the AVI (c̄ + F, P (b̄, A)) has a stable solution with respect to perturbations of the pair (b̄, c̄) ; i.e., a
solution x̄ ∈ SOL(c̄ + F, P (b̄, A)) exists with the property that for any open neighborhood N of x̄ satisfying
SOL(c̄+F, P (b̄, A))∩cl N = {x̄}, there exist two positive scalars ε and γ such that for all pairs (b, c) satisfying
∥(b, c)− (b̄, c̄)∥ ≤ ε, the set SN (b, c) ≜ SOL(c+ F, P (b, A)) ∩N ̸= ∅ and

sup { ∥x− x̄ ∥ : x ∈ SN (b, c) } ≤ γ ∥ (b, c)− (b̄, c̄) ∥.

Proof. Statement (D) implies (B) in general. Thus, it remains to show that statement (A) implies (D)
if F is additionally affine. But this follows readily by the fact that the set-valued solution map (b, c) 7→
SOL(c+ F, P (b, A)) is a polyhedral multifunction, thus everywhere pointwise upper Lipschitz continuous, for
an affine F . □

8. Conclusion. In this paper, we have studied the (single-valued) continuous selection of solutions of a
monotone variational inequality under functional and constraint perturbations in three settings: (a) for the
AVI solution map b 7→ SOL(q,Q, P (b, A)) with only perturbations in the constraint; (b) the AVI solution
map (b, u) 7→ SOL(c0 +Qu,Q, P (b, A)), and (c) the VI solution map (b, c) 7→ SOL(F (•, c), P (b, A)). With Q
being a psd+ matrix, the first case sets the groundwork of the analysis that is extended to the second case; in
these two cases, the existence of a Lipschitz continuous (single-valued) solution function is established on the
domain of the problems. In the nonlinear case, the uniqueness of a solution of the problem corresponding to a
base pair (b̄, c̄) is shown to be equivalent to several pointwise properties the solution map of the parametric VI,
with both internal and external parameterization. To conclude this paper, we note that throughout the study
of the AVI, the matrices Q and A have been fixed. In general, the analysis of a varying pair (Q,A) belongs
to the subject of “total sensitivity analysis” of variational inequalities that was studied in an unpublished
manuscript [16] with limited results. In particular, with a varying psd (but not pd) matrix Q, we expect that
the solution selection problem would be quite difficult to analyze, even when A is fixed. The difficulty would
be compounded with a varying A. Nevertheless, with particular structural variations, it might be possible to
obtain some extended results with varying (Q,A) for a singular Q. The investigation of such extensions is
best left for a future study.

REFERENCES

[1] J.P. Aubin. Lipschitz behavior of solutions of convex minimization problems. Mathematics of Operations Research 9:
87–111 (1984).

17



[2] J.P. Aubin and H. Frankowska. Set-Valued Analysis. Modern Birkhäuser Classics (2009). [Originally published 1990.]
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