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Abstract

In this paper we analyze and solve eigenvalue programs, which consist of the task of minimizing
a function subject to constraints on the “eigenvalues” of the decision variable. Here, by making
use of the FTvN systems framework introduced by Gowda, we interpret “eigenvalues” in a broad
fashion going beyond the usual eigenvalues of matrices. This allows us to shed new light on classical
problems such as inverse eigenvalues problems and also leads to new applications. In particular,
after analyzing and developing a simple projected gradient algorithm for general eigenvalue pro-
grams, we show that eigenvalue programs can be used to express what we call vanishing quadratic
constraints. A vanishing quadratic constraint requires that a given system of convex quadratic
inequalities be satisfied and at least a certain number of those inequalities must be tight. As a
particular case, this includes the problem of finding a point x in the intersection of m ellipsoids in
such a way that x is also in the boundary of at least ` of the ellipsoids, for some fixed ` > 0. At
the end, we also present some numerical experiments.

Keywords: Eigenvalue programming, eigenvalue optimization, FTvN systems, vanishing quadratic
constraints

1 Introduction

In this paper, we consider problems of the following form.

min
x∈E

f(x) (Eig-Prog)

subject to λ(x) ∈ C,

where f : E → R is a smooth function, E is a finite dimensional Euclidean space, C ⊆ Rr and (E ,Rr, λ)
is a so-called FTvN system, which was originally introduced by Gowda [17]. Informally, λ : E → Rr
has the role of “eigenvalue map” and (Eig-Prog) corresponds to the task of minimizing f subject to
the constraint that the “eigenvalues” of x must belong to a certain set C. Because of this, we will call
(Eig-Prog) an eigenvalue program and this will be the main subject matter of this work.

The motivation for this work is to provide a broad, yet simple framework, for solving optimization
problems which requires constraints on the eigenvalues of x. In particular, we will cover the case
where E is Sn (the space of n× n real symmetric matrices) and λ is the usual matrix eigenvalue map,
where the eigenvalues are ordered from largest to smallest. This problem, of course, has a long history.
However, it may be fair to say that many of the previous works seem to be focused on controlling the
the largest or the smallest eigenvalues (or singular values). This includes the particular case of rank
constraints, since we may force a n × n symmetric positive semidefinite matrix to have rank less or
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equal than r by requiring that the n− r smallest eigenvalues vanish. And, slightly more generally, we
may constraint the rank of a general matrix by forcing the smaller singular values to vanish. But, if we
would like to control the range of the whole eigenvalue map, this leads to constraints that, relatively
speaking, have been less studied in the literature.

In addition, as we will discuss in Section 5, there are also other interesting problems that can be
modelled as an eigenvalue program beyond matrix problems. For example, suppose that we have m
ellipsoids and we would like to find an intersection point that is at the boundary of at least ` of those
ellipsoids, for some ` ≤ m. Surprisingly, such a problem can also be cast as an eigenvalue program in
an appropriate setting without making use of the usual matrix eigenvalues. More generally, given m
quadratic inequalities, the problem of finding points that satisfy at least ` of those inequalities exactly,
can also be cast as an eigenvalue program, as we will discuss in Section 5.

The problem in (Eig-Prog) at first glance seems highly nonconvex, because, as exemplified previ-
ously, we may use it to express rank constraints. For the sake of concreteness, let P be a polyhedral
set in Rr, let E = Sr be the space of real r× r symmetric matrices and λ the usual eigenvalue map. If
we set C = (Rs+ × {0}r−s) ∩ P , the feasible set of (Eig-Prog) consists of positive semidefinite matrices
with rank less or equal than s such that their eigenvalues are in P . Clearly, λ−1(C) (i.e., the feasible
set of (Eig-Prog)) will be nonconvex in general and, from an optimization point of view, it seems to
be quite hard to handle directly.

However, in [17], Gowda made several fundamental contributions and he showed that linear op-
timization over “λ−1(C)” can be essentially converted to a linear optimization problem over C and,
similarly, in order to project onto “λ−1(C)”, it is enough to know how to project a vector v ∈ Rr
onto C. This is notable, because in the example discussed just now, linear optimization over C would
correspond to a linear program, in stark contrast to linear optimization over λ−1(C).

With these points in mind, our motivation for this work is to leverage the theoretical findings of
[17] into a simple yet practical algorithm and showcase some novel modelling applications of eigenvalue
programs. Our contributions are as follows.

� We use the FTvN system framework to analyze and implement a simple projected gradient
algorithm for solving (Eig-Prog), see Section 4.

� We discuss some of the modelling capabilities of (Eig-Prog), see Section 5. We start by revisiting
inverse eigenvalue problem but with general eigenvalue constraints. Next, we show that when E
corresponds to the Jordan algebra associated to a direct product of second-order cones, we can
solve feasibility problems with the so-called vanishing quadratic constraints, which require that
a certain number of convex quadratic inequalities be satisfied with equality. In particular, given
m ellipsoids, we can model and solve the problem of finding an intersection point that is in the
boundary of at least ` of those ellipsoids using vanishing quadratic constraints, see Section 5.2.1.

This work is divided as follows. In Section 2, we set up the notation and review notions from variational
analysis. In Section 3, we present a self-contained account of the theory of FTvN systems and discuss
some fundamental examples. In Section 4 we discuss and analyze a projected gradient algorithm
for solving (Eig-Prog). In Section 5 we present some modelling examples together with numerical
experiments. Finally, in Section 6 we conclude this paper.

2 Preliminaries

Let E be a finite dimensional real vector space equipped with an inner product 〈·, ·〉. We denote by

‖ · ‖ =
√
〈·, ·〉 the induced norm on E . We also write ‖w‖2 =

√
wTw for w ∈ Rr. For a set S ⊂ E , we

define
dist(x, S) := inf

z∈S
‖x− z‖, projS(x) := {z ∈ S | ‖z − x‖ = dist(x, S)}.
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We denote the indicator function of S by δS . For a vector x ∈ Rr, we denote by x↓ ∈ Rr the vector
that corresponds to ordering the elements of x from largest to smallest, so that x↓1 ≥ · · · ≥ x↓n. We
also write S↓ = {x↓ | x ∈ S} for a set S ⊆ Rr.

Some variational analysis Before we move forward we recall some notions from variational anal-
ysis, for more details see [30, 28]. Let f : E → R ∪ {+∞} be a function. We say that d is a regular
subgradient of f at x if

lim inf
v→0
v 6=0

f(x+ v)− f(x)− 〈d, v〉
‖v‖

≥ 0. (2.1)

The set of regular subgradient of f at x is called the regular subdifferential of f at x and is denoted
by ∂̂f(x).

We say that d is an approximate subgradient (also called limiting subgradient) of f at x if there are

sequences {xk}, {dk} ⊂ E such that dk ∈ ∂̂f(xk) holds for every k and the following limits hold:

xk → x, f(xk)→ f(x), dk → d.

The set of approximate subgradients of f at x is denoted by ∂f(x) and is called the limiting subdiffer-
ential of f at x. We also define dom ∂f(x) = {x ∈ E | ∂f(x) 6= ∅}. If x is such that 0 ∈ ∂f(x), then f
is said to be a critical point.

Considering different subdifferentials of the indicator function of a given subset S ⊆ E leads to
different notions of normal cones. In particular, the regular and the limiting normal cones of a set
S ⊆ E at some x ∈ S are given by N̂S(x) := ∂̂δS(x) and NS(x) := ∂δS(x), respectively. For more
details, see [30, Chapters 6, 8 and Exercise 8.14].

3 FTvN systems

The notion of Fan-Theobald-von Neumann system introduced by Gowda is a broad generalization of
several notions developed throughout the literature to handle objects that behave similarly to the
usual matrix eigenvalue map [17, 18].

Definition 3.1. For a map λ : E → Rr, we say that (E ,Rr, λ) is a Fan-Theobald-von Neumann (FTvN)
system if

(i) ‖λ(x)‖2 = ‖x‖, ∀x ∈ E

(ii) 〈x, y〉 ≤ 〈λ(x), λ(y)〉, ∀x, y ∈ E

(iii) For any c ∈ E and µ ∈ λ(E), the following set is nonempty:

U(c, µ) := {z ∈ E | λ(z) = µ, 〈c, z〉 = 〈λ(c), λ(z)〉}. (3.1)

Remark 3.2. The definition given in [17, 18] is more general than Definition 3.1, because it is considered
over arbitrary real inner product spaces, while here we restrict ourselves to the finite dimensional case
where one of the spaces is Rr. Also, item (iii) is stated in a slightly different manner.

The first two items in Definition 3.1 are relatively natural: they require that the eigenvalue map λ
be compatible with the norm used in E and that the inner product satisfy an inequality analogous to
a classical inequality over symmetric matrices (e.g., [22, Theorem 2.2]). The third item is somewhat
more technical, but can be seen as complementing item (ii) as follows: if c, y ∈ E are fixed, item (ii)
implies that 〈c, y〉 ≤ 〈λ(c), λ(y)〉. However, applying item (iii) to c and λ(y), we get that this inequality
becomes tight for at least one z ∈ E that has the same eigenvalues as y.

For FTvN systems, the projected gradient algorithm discussed in this paper relies on evaluating
the map λ(·) and being able to obtain an element of the set U(c, µ). For many cases, this is done by
“spectral decompositions” as we will see later.
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We define the rank of x ∈ E by

rank(x) := number of nonzero elements in λ(x). (3.2)

For a FTvN system (E ,Rr, λ), a spectral set in E is a subset S of E of the form

S = λ−1(Q) for some Q ⊆ Rr.

Observe that any spectral set S = λ−1(Q) satisfies

λ(S) = λ(E) ∩Q, S = λ−1(λ(S)). (3.3)

A very useful property of FTvN systems is that some optimization problems over E can be equiv-
alently reformulated over Rr which may lead to significant simplifications.

Proposition 3.3 (Gowda [17]). Let (E ,Rr, λ) be a FTvN system and S be a spectral set in E. For
any real-valued function ϕ : Rr → R and c ∈ E, we have

sup
x∈S
{〈c, x〉+ ϕ(λ(x))} = sup

w∈λ(S)

{〈λ(c), w〉+ ϕ(w)}. (3.4)

Morevoer, x∗ ∈ S attains the supremum of the left-hand side if and only if 〈c, x∗〉 = 〈λ(c), λ(x∗)〉 and
λ(x∗) attains the supremum of the right-hand side. In other words, this is if and only if x∗ ∈ U(c, w∗)
for some w∗ ∈ λ(S) that attains the supremum of the right hand side.

Proof. The assertion is essentially [17, Corollary 3.3] which follows from more general results therein.
Here, we give a direct proof for the sake of self-containment. Let L and R denote the left and the right
hand sides of (3.4), respectively.

Let x ∈ S. By item (ii) of Definition 3.1, w := λ(x) is a feasible solution to right-hand side of (3.4)
satisfying 〈c, x〉 ≤ 〈λ(c), w〉. Therefore, L ≤ R.

Conversely, for any w ∈ λ(S), the set U(c, w) is nonempty, by item (iii) of Definition 3.1. With that
we pick any x ∈ U(c, w) and, by definition, we have λ(x) = w and 〈c, x〉 = 〈λ(c), λ(x)〉 = 〈λ(c), w〉.
These equalities imply that

〈c, x〉+ ϕ(λ(x)) = 〈λ(c), w〉+ ϕ(w).

We also have x ∈ S, since x ∈ λ−1(w) ⊆ λ−1(λ(S)) = S (see (3.3)). In conclusion, for the two
maximization problems associated to L and R, we can recover a feasible solution of the former from
a feasible solution of the latter, without changing the objective value. This indicates L ≥ R which
shows that (3.4) holds.

The development done so far implies that if x∗ ∈ S is an optimal solution to the left-hand side of
(3.4), then w := λ(x∗) must be an optimal solution to the right-hand side. In view of L = R, we have
〈c, x∗〉+ϕ(λ(x∗)) = 〈λ(c), λ(x∗)〉+ϕ(λ(x∗)), which leads to 〈c, x∗〉 = 〈λ(c), λ(x∗)〉. Conversely, suppose
that x∗ ∈ S is such that 〈c, x∗〉 = 〈λ(c), λ(x∗)〉 and λ(x∗) attains the supremum of the right-hand side
of (3.4). Again, in view of L = R, x∗ must be optimal to the left-hand side of (3.4).

For instance, when ϕ(·) ≡ 0, this assertion says that linear optimization supx∈S〈c, x〉 for a spectral
set S can be reduced to supw∈λ(S)〈λ(c), w〉 whose solution w∗ can be used to recover a solution to
supx∈S〈c, x〉 through the computation of an element x∗ ∈ U(c, w∗).

Taking ϕ(x) = −‖x‖2/2, we obtain the following useful fact regarding projections, see also [17,
Corollary 3.8].

Corollary 3.4. Let (E ,Rr, λ) be a FTvN system and S be a spectral set in E. For any z ∈ E, we have

projS(z) =
⋃

w∗∈projλ(S)(λ(z))

U(z, w∗).
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Proof. Since ‖x− z‖2/2 = ‖x‖2/2−〈z, x〉+‖z‖2/2 holds, projS(z) is the set of solutions of the problem
of maximizing

〈z, x〉 − 1

2
‖x‖2 = 〈z, x〉 − 1

2
‖λ(x)‖22,

over x ∈ S, where the equality follows from item (i) of Definition 3.1. Therefore, the result follows by
taking ϕ(x) := −‖x‖2/2 in Proposition 3.3.

We mention in passing that in the context of spectral sets over symmetric matrices there is a related
earlier result by Lewis and Malick [23, Theorem A.1].

3.1 Examples of FTvN systems

We give some examples of FTvN systems. In these examples, we will always check that the eigenvalue
mapping λ is semialgebraic, which will significantly simplify the analysis of our projected gradient
method. We recall that a semialgebraic set in Rn a finite union of sets of the form

{x ∈ Rm | pi(x) = 0, i = 1, . . . , k and qj(x) < 0, j = 1, . . . , `},

where pi and qj are polynomials of real coefficients. A semialgebraic function is a map f : Rn → Rm
whose graph {(x, y) | y = f(x)} is a semialgebraic set in Rn+m. Basic facts on semialgebraic sets and
functions can be seen in [19], although we only make use of the most elementary properties.

We now start with what is perhaps the most basic example of FTvN system.

Example 3.5 (The symmetric matrices). The vector space Sn of n by n real symmetric matrices can
be seen as a FTvN system (Sn,Rn, λ) with the eigenvalue map λ : Sn → Rn↓ defined as follows:

λ(X) := (λ1(X), . . . , λn(X)),

where λi(X) is the i-th largest eigenvalue of X. Here, we assume that Sn is equipped with the trace
inner product, so that ‖X‖ = ‖λ(X)‖2 holds for all X ∈ Sn. Item (ii) of Definition 3.1 follows from
a classical inequality (e.g., [22, Theorem 2.2]). Finally, we take a look at item (iii) of Definition 3.1.
For C ∈ Sn and µ ∈ Rr↓, an element of U(C, µ) for C ∈ Sn and µ ∈ λ(Rn) = Rn↓ can be computed as

follows. Letting C = UT Diag(λ(C))U an eigenvalue decomposition of C with an orthogonal matrix
U ∈ Rn×n, we obtain

UT Diag(µ)U ∈ U(C, µ).

An entirely analogous analysis can also be carried out for complex Hermitian matrices. That λ is a
semialgebraic map is well-known, but it also follows from a more general result on Jordan algebras,
see Proposition 3.6.

3.1.1 Jordan algebras

We discuss an important subclass of FTvN systems, the Euclidean Jordan algebras. For more details
see [11, 12]. A finite-dimensional real inner product space (E , 〈·, ·〉) is called a Euclidean Jordan algebra
if it admits an operation ◦ : E × E → E (called a Jordan product) which has an identity element e ∈ E
(i.e., x ◦ e = x for all x ∈ E) and satisfies

x ◦ y = y ◦ x, x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), 〈z ◦ x, y〉 = 〈z, x ◦ y〉,

for all x, y, z ∈ E , where x2 = x ◦ x.
The cone of squares associated to E is given by K = {x ◦ x | x ∈ E} and it is known to be

a symmetric cone, i.e., a self-dual homogeneous cone. Conversely, every symmetric cone in finite
dimensions is known to arise as the cone of squares of some Euclidean Jordan algebra.

An element v ∈ E is called an idempotent if v ◦ v = v. Two idempotents u, v ∈ E are orthogonal if
u ◦ v = 0. Note that 〈u, v〉 = 〈u2, v〉 = 〈u, u ◦ v〉 = 0 for orthogonal idempotents u and v.

5



The maximal number of nonzero idempotents which are pairwise orthogonal is well-defined and
called the rank of E . A remarkable fact about Euclidean Jordan algebras E is that they admit a form
of spectral decomposition very similar to the matrix case. Namely if E has rank r, then any x ∈ E can
be expressed as

x = λ1v1 + · · ·+ λrvr,

for some (λ1, . . . , λr) ∈ Rr↓ and the v1, . . . , vr ∈ E are nonzero such that v2
i = vi, vi ◦ vj = 0 (i 6=

j),
∑r
i=1 vi = e. Here, λ1, . . . , λr are called the eigenvalues of x and {v1, . . . , vr} is called a Jordan

frame of x. The eigenvalues of x are unique up to permutation.
The trace map tr(x) := λ1 + · · · + λr yields an inner product (x, y) 7→ tr(x ◦ y) on E . With that,

we can define the map λ : E → Rr↓ that maps an element to its eigenvalues ordered from largest to
smallest.

Equipped with the trace inner product on E , the tuple (E ,Rr, λ) forms a FTvN system, see [17,
Section 4]. For the sake of completeness, we check the details. First, item (i) of Definition 3.1
follows by definition of the inner product. Then, item (ii) follows from [2, Theorem 23] which states
that 〈x, y〉 ≤ 〈λ(x), λ(y)〉. Moreover, given c ∈ E and µ ∈ λ(E) = Rr↓, considering the spectral
decomposition c = λ1(c)v1 + · · ·+ λr(c)vr, we construct the following element of U(c, µ):

µ1v1 + · · ·+ µrvr ∈ U(c, µ). (3.5)

We also observe that the rank of x ∈ E as defined in (3.2) corresponds to the number of nonzero
eigenvalues that x has.

Finally, let us check that the map λ is semialgebraic, which may be obvious for those familiar with
Jordan algebras. However, since this fact is not clearly stated in the classical references, we provide a
proof.

Proposition 3.6. In a finite-dimensional Euclidean Jordan Algebra E of rank r, the map λ : E → Rr↓
is semialgebraic.

Proof. Consider the function det : E → R such that det(x) =
∏r
i=1 λi(x) holds. It is known that

the composition of an elementary symmetric polynomial with λ leads to a polynomial in x, see [11,
Theorem III.1.2]. In particular, since det is the composition of λ with the elementary symmetric
polynomial

∏r
i=1 ti, we conclude that det is a polynomial function. Furthermore, since λi(x − te) =

λi(x)− t holds for all x and i = 1, . . . , r, the eigenvalues of a given x ∈ E are exactly the roots of the
polynomial t 7→ det(x− te). With this, the graph of λ can be written as the semialgebraic set

{(x, u) ∈ E × Rr↓ | ∀t ∈ R, det(x− te) = (t− u1) · · · (t− ur)},

so λ is indeed a semialgebraic function1.

It is well-known that the n× n real symmetric matrices as in Example 3.5 form a Jordan algebra
with the Jordan product being X ◦ Y = (XY + Y X)/2 and corresponding symmetric cone being the
positive semidefinite matrices. Next, we recall another well-known example.

Example 3.7 (The algebra of second-order cones). Consider the vector space E := Rn × R with the
Jordan product ◦ such that for (x, t), (y, u) ∈ Rn × R we have

(x, t) ◦ (y, u) :=

√
2

2
(ux+ ty, 〈x, y〉+ tu), (3.6)

where 〈·, ·〉 is the usual dot product. By convention we write Rn+1 instead of Rn × R and for (x, t) ∈
Rn+1, we assume that x ∈ Rn and t ∈ R. With that, Rn+1 can be seen as a Euclidean Jordan algebra,
e.g., see [11, Chapter II, Section 1], [15, Section 2] or [31, page 141]. Depending on the reference, the

1Here we used the fact that the solution set of a first-order formula quantified over semialgebraic sets and functions
must be semialgebraic as well, e.g., [19, Proposition 2.2.4].
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√
2

2 factor may be omitted in (3.6). In any case, the corresponding cone of squares is the second-order

cone Ln+1
2 := {(x, t) ∈ Rn × R | ‖x‖2 ≤ t}, where ‖·‖2 is the usual Euclidean norm.

Given (x, t) ∈ Rn+1, we have the spectral decomposition

(x, t) = λ+e+ + λ−e−, λ± =

√
2

2
(t± ‖x‖2), e± =

√
2

2
(±wx, 1), (3.7)

where wx = x/‖x‖2 if x 6= 0, otherwise wx can be taken to be any vector of unit norm.
The inner product in Rn+1 satisfies tr((x, t) ◦ (y, u)) = 〈x, y〉+ tu, which coincides with the usual

Euclidean inner product on Rn+1 and explains the
√

2
2 factor in (3.6). With the eigenvalue map

λ(x, t) := (λ+, λ−), the tuple (Rn+1,R2, λ) forms a FTvN system, where the inner products in Rn+1,R2

are the usual Euclidean one.
Following (3.5), given c = (u, t) and µ = (µ+, µ−) ∈ R2

↓, the spectral decomposition c = λ+e+ +
λ−e− of c allows us to compute an element of U(c, µ) as follows.

µ+e+ + µ−e− ∈ U(c, µ). (3.8)

3.1.2 Singular values

For positive integers m,n and r = min(m,n), we denote by σ(X) = (σ1(X), . . . , σr(X)) the ordered
vector of singular values of X ∈ Rm×n so that σ1(X) ≥ · · · ≥ σr(X). We use the inner product

〈X,Y 〉 = tr(XTY ),

for matrices X,Y ∈ Rm×n. With that, we check that the tuple (Rm×n,Rr, σ) is a FTvN system.
Item (i) of Definition 3.1 holds by definition, as for item (ii), it follows from [24, Theorem 4.6]. Finally,
to compute an element of U(C, µ) for C ∈ Rm×n and µ ∈ σ(Rm×n) = (Rr+)↓, let C = UT Diag(σ(C))V
be a singular value decomposition of C with square orthogonal matrices U ∈ Rn×n and V ∈ Rm×m.
Then, we have

UT Diag(µ)V ∈ U(C, µ).

Finally, the map σ is semialgebraic because σ(X) correspond to the square-root of the eigenvalues of
XXT .

Complex analogues can also be constructed with the inner product Re(tr(X∗Y )) where X∗ denotes
the adjoint of X ∈ Cm×n.

3.1.3 Direct products

Other FTvN systems can be constructed by taking the direct product of the above examples. Given
m FTvN systems (E(i),Rri , λ(i)), i = 1, 2, . . . ,m, defining

E = E(1) × · · · × E(m), r = r1 + · · ·+ rm, λ = (λ(1), . . . , λ(m)), (3.9)

the tuple (E ,Rr, λ) forms a FTvN system. Here, the inner product is given by

〈(x1, . . . , xm), (y1, . . . , ym)〉 =

m∑
i=1

〈xi, yi〉i,

where 〈·, ·〉i indicates the inner product over each E(i). Note that, given c = (c1, . . . , cm) ∈ E and
µ = (µ1, . . . , µm) ∈ λ(E), we have

U(c, µ) = U(c1, µ1)× · · · × U(cm, µm). (3.10)

In (3.10) the “⊇” inclusion follows from the definition of the U(ci, µi). As for the inclusion “⊆”, it fol-
lows from the fact that if z ∈ U(c, µ), then λ(i)(zi) = µi holds for every i and

∑m
i=1(〈λ(i)(ci), λ

(i)(zi)〉−
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〈ci, zi〉) = 0 holds. However, each term of the summation is nonnegative by item (ii) of Definition 3.1,
so 〈λ(i)(ci), λ

(i)(zi)〉 = 〈ci, zi〉 holds for all i and we have zi ∈ U(ci, µi) for every i.
In the particular case where each Ei is a Euclidean Jordan algebra, there is another way to see E

as a FTvN system employing the eigenvalue map

x 7→ λ↓(x) := (λ(1)(x), . . . , λ(m)(x))↓. (3.11)

In this case, the tuple (E ,Rr, λ↓) also forms a FTvN system, since E is also a Jordan algebra and, in
fact, λ↓ correspond to the same eigenvalue map discussed in Section 3.1.1.

Still, for c = (c1, . . . , cm) ∈ E and µ = (µ1, . . . , µm) ∈ λ↓(E), it makes sense to discuss how to
compute an element in U(c, µ) using the U(ci, µi), since in applications we would typically consider
spectral decompositions according to the block structure of E . In order to obtain an element in

U(c, µ), we sort the r = r1 + · · ·+ rm real values in {λ(i)
j (ci) | i = 1, . . . ,m; j = 1, . . . , ri} (which are

the eigenvalues of c) in descending order so that λ
(ik)
jk

(cik) denotes k-th largest eigenvalue of c. Then,
we have

r∑
k=1

µik ṽ
(ik)
jk
∈ U(c, µ), (3.12)

where ṽ
(i)
j is defined as

ṽ
(i)
j := (0, . . . , 0, v

(i)
j︸︷︷︸

i-th position

, 0, . . . , 0),

and {v(i)
1 , . . . , v

(i)
ri } is a Jordan frame for c(i).

The difference between (E ,Rr, λ↓) and (E ,Rr, λ) boils down to whether it is desirable to order all
eigenvalues or to only order eigenvalues inside each block Ei. We will use both (E ,Rr, λ↓) and (E ,Rr, λ)
in our examples in Section 5.

4 Projected gradient and related topics

For a spectral set λ−1(C) with C ⊆ Rr, it follows from Corollary 3.4 that in order to project x onto
λ−1(C) it is enough to do as follows. First, we let w be such that

w ∈ arg min {‖λ(x)− v‖2 | v ∈ λ(E), v ∈ C}.

Then, we compute an element of U(x,w) in order to obtain the desired projection. In particular, we
have

projλ−1(C)(x) ⊇ U(x,w).

Being able to compute the projection onto λ−1(C), allows us (in theory) to use a simple projected
gradient algorithm for solving (Eig-Prog) by considering iterations that satisfy

xk+1 ∈ projλ−1(C)(xk − αk∇f(xk)), (4.1)

where αk > 0 is a step-size, see Algorithm 1.

Algorithm 1: Projected gradient method for (Eig-Prog)

Input: f : E → R, C ⊂ Rr, x0 ∈ E
1 k ← 0
2 while stopping criteria not satisfied do
3 Select a step-size αk > 0.
4 Set yk = xk − αk∇f(xk).
5 Compute wk ∈ arg minv{‖λ(yk)− v‖2 | v ∈ λ(E), v ∈ C}.
6 Compute xk+1 ∈ U(yk, wk).
7 k ← k + 1

8 end
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First we analyze the convergence properties of Algorithm 1 under the assumption that the problem
data is semialgebraic, which is enough to cover a wide range of applications.

Theorem 4.1 ([1]). Let f : Rn → R be a differentiable semialgebraic function with L-Lipschitz
continuous gradient and S ⊂ Rn be a closed semialgebraic set. Let {xk} be generated by

xk+1 ∈ projS(xk − αk∇f(xk))

with step-size αk ∈ (ε, 1/L− ε) for some ε ∈ (0, 1/(2L)). If {xk} is bounded, then it converges to some
x∗ such that 0 ∈ ∇f(x∗) +NS(x∗). Moreover,

∑
k‖xk+1 − xk‖2 < +∞.

Proof. This is a special case of Theorem 5.3 in [1] for semialgebraic functions. See also the observation
following Theorem 5.3.

Theorem 4.2. Let C be a closed subset of Rr and f : E → R be a C1 function with L-Lipschitz
continuous gradient. Suppose that f , λ and C are semialgebraic. Let {xk} be generated by Algorithm 1
with step-size αk ∈ (ε, 1/L − ε) for some ε ∈ (0, 1/(2L)). If {xk} is bounded then it converges to a
critical point x∗ of f + δλ−1(C), i.e., 0 ∈ ∇f(x∗) + Nλ−1(C)(x

∗). Moreover,
∑
k‖xk+1 − xk‖2 < +∞

holds.

Proof. Algorithm 1 is the projected gradient method (4.1) for the constraint set λ−1(C). Since C is
semialgebraic, the spectral set λ−1(C) is also semialgebraic, see [19, Proposition 2.2.7]. Hence, the
assertion follows by Theorem 4.1. We also remark that since f is C1, we have ∂(f + δλ−1(C))(x

∗) =
∇f(x∗) +Nλ−1(C)(x

∗), by [30, Exercise 8.8].

Next, we briefly comment on local convergence rates for Algorithm 1, which, in general, requires
further assumptions. In what follows, let F : E → R ∪ {+∞} be a proper closed function. Then, F
is said to be a Kurdyka- Lojasiewicz (KL) function with exponent α (e.g., see [25, Definition 2.2]) at
x̄ ∈ dom ∂F if there exists c, ε > 0 and ν ∈ (0,∞] so that

dist(0, ∂F (x)) ≥ c(F (x)− F (x̄))α (4.2)

holds whenever ‖x− x̄‖ ≤ ε and F (x̄) < F (x) < F (x̄) + ν. We also call (4.2) the KL property of F at
x̄.

Next, let F be defined by F (x) := f(x) + δλ−1(C)(x), where we recall that δλ−1(C) denotes the
indicator function of λ−1(C). If F is a KL function with exponent α, then a local convergence rate
for Algorithm 1 can be obtained through [13, Theorem 3.4]. In particular, if α = 1/2, the method has
local linear convergence, see also the discussion in [25, Section 5.3]. We note this as a proposition.

Proposition 4.3. Let F := f(·) + δλ−1(C)(·) and let {xk} be generated by Algorithm 1 with step-size
αk ∈ (ε, 1/L − ε) for some ε ∈ (0, 1/(2L)). If {xk} converges to x̄ and F has the KL property with
exponent 1/2 at x̄, then {xk} converges linearly to x∗.

Proof. As remarked previously, this result follows from [13, Theorem 3.4], but here we discuss some
of the details. In reality, in order to invoke [13, Theorem 3.4], it is necessary to check that xk satisfy
certain conditions which were labeled H1, H2 and H3 therein. This is indeed the case, because xk
is a particular case of the iteration discussed at the beginning of [13, Section 4], see Equation (12)
therein and the subsequent comments. The other assumption that needs to be checked is that {xk}
F -converges to x̄, which means that xk → x̄ and F (xk) → F (x̄). The former holds by assumption
and the latter holds because of the continuity of f and the fact that xk ∈ λ−1(C) for all k. This
takes care of all the assumptions required to invoke case (ii) of [13, Theorem 3.4] which leads to linear
convergence, or in the parlance of [13], exponential convergence.

Let us briefly examine the KL condition for F . Since f is smooth, we have ∂F (x) = ∇f(x) +
∂δλ−1(C)(x), see [30, Exercise 8.8]. We recall, however, that ∂δλ−1(C)(x) is the normal cone of λ−1(C)
at x. So, for x ∈ λ−1(C), (4.2) can be written as

dist(∇f(x),−Nλ−1(C)(x)) ≥ c(f(x)− f(x̄))α (4.3)
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In view of (4.3), it is important to analyze the normal cone Nλ−1(C)(x). In the particular case where
E is a Jordan algebra and C ⊆ Rr is a permutation invariant set2, the computation of the normal cone
Nλ−1(C)(x) can be related to the normal cone of C at λ(x) as follows.

Proposition 4.4. Let E be a Euclidean Jordan algebra of rank r and let C ⊆ Rr be a permutation
invariant closed set. Then

Nλ−1(C)(x) = {s ∈ E | ∃J ∈ J (x, s) with diag(s,J ) ∈ NC(λ(x))},

where J (x, s) is the set of Jordan frames {e1, . . . , er} for which x = λ1(x)e1 + · · ·λr(x)er and s =
a1e1 + · · · arer hold3 and diag(s,J ) is the vector (a1, . . . , ar).

Proof. It follows directly from [27, Theorem 27] applied to δC since δC ◦ λ is the indicator function of
λ−1(C) and NC(u) = ∂δC .

4.1 Application to feasibility problems and convergence rates

In this section, we consider a feasibility problem of the following form:

Find x ∈ C̄ ∩ λ−1(C), (4.4)

where (E ,Rr, λ) is a FTvN system, C ⊂ Rr and C̄ ⊂ E is a convex set for which projC̄(·) is assumed to
be available. This can be reformulated as the following optimization problem.

min
x∈E

f(x) :=
1

2
dist(x, C̄)2

subject to λ(x) ∈ C.
(4.5)

The gradient of f is given by
∇f(x) = x− projC̄(x),

and if C̄ is semialgebraic then f is semialgebraic as well [19, Proposition 2.2.8]. Note that ∇f is 1-
Lipschitz continuous. Therefore, we can use Algorithm 1, where the resulting iterative scheme can be
described as

yk := (1− αk)xk + αk projC̄(xk), xk+1 ∈ projλ−1(C)(yk), k = 0, 1, 2, . . . . (4.6)

In particular, when αk ∈ (ε, 1 − ε) holds for some ε ∈ (0, 1) and f is semialgebraic, we obtain the
convergence guarantee described in Theorem 4.2.

Regarding convergence rates, it seems natural that this must depend on the geometry of the inter-
section between C̄ and λ−1(C). In what follows, we will verify that if the intersection is transversal at
x, then f + δλ−1(C) satisfy the KL property with exponent 1/2 at x. We recall that S1, S2 ⊆ E are said
to be to be transversal at x̄ if

NS1
(x̄) ∩ (−NS2

(x̄)) = {0}. (4.7)

Transversality is related to well-known constraint qualifications used in several contexts. With that
we have the following result. Note that this will not require that λ or C̄ be semialgebraic.

Proposition 4.5. If the iteration (4.6) converges to a critical point x̄ of f = 1
2 dist(·, C̄)2 + δλ−1(C)(·)

and f satisfies the KL property with exponent 1/2 at x̄, then the convergence rate is linear. In partic-
ular, this is true if x̄ ∈ C̄ ∩ λ−1(C) and C̄ and λ−1(C) are transversal at x̄.

2That is, P (C) = C holds for any r × r permutation matrix P .
3Because the eigenvalues are unique, the ai’s must be the eigenvalues of s. Overall, {e1, . . . , er} is a Jordan frame

that “diagonalizes” both x and s, but only the eigenvalues of x are required to be in nonincreasing order.
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Proof. If C̄ and λ−1(C) intersect transversally at x̄, then f is a KL function with exponent 1/2 by [5,
Theorem 5]4. In any case, the result follows from Proposition 4.3.

It is interesting to note that the limiting case where αk is taken to be 1 in (4.6) corresponds to
the alternating projections algorithm, where each iteration consists of successively projecting onto C̄
and λ−1(C). Although the alternating projections algorithm falls outside of the scope of Theorem 4.2,
it is known that it locally converges with a linear rate under a weaker assumption called intrinsical
transversality, see [10, Theorem 6.1] and [29] for a related work. On the other hand, it is not clear if the
global guarantee in Theorem 4.2 also holds for alternating projections under semialgebraic assumptions.

The convex case In the special case where C̄ and λ−1(C) are convex the situation is far more
favourable. First of all, the iteration (4.6) always converges to a point in the intersection C̄ ∩ λ−1(C),
provided that the problem is feasible. This is a consequence of classical convergence results of the
proximal gradient method for convex functions, but it can also be obtained by observing that the
iteration in (4.6) falls under the scope of several frameworks for analyzing convex feasibility problems
and beyond. These frameworks are also able to take care of the limiting case αk = 1, e.g., [3, pg. 2],
[4].

In the convex case, the interesting question is not whether (4.6) converges but how fast does it
converge. Under convexity, it is known that the convergence rate of many algorithms is related to
the underlying error bound that holds between sets. In particular, when a so-called Lipschitz error
bound (also called bounded linear regularity in some papers, e.g., [3]) holds, several algorithm are
known to converge at linear rate. What is somewhat less known is that under even weaker error bound
assumptions concrete5 convergence rates are still obtainable. For example, see [4, Section 3] for the
case of Hölderian error bounds in the setting of fixed point problems or [26, Sections 4 and 5] for the
case of general error bounds for convex feasibility problems.

Given that the convex case is easier to handle, a related question is to understand when does λ−1(C)
becomes a convex set. In the case of Jordan Algebras this is very well-understood. In particular, if
C is permutation invariant, then λ−1(C) is convex if and only if C is convex [20, Theorem 3], see also
[2, Theorem 27]. In the general case of FTvN systems, the situation is more subtle and additional
conditions seem necessary in order to obtain similar results, see [21].

5 Eigenvalue programming examples

In this section, we discuss two examples of the eigenvalue programming problem (Eig-Prog) and show
numerical experiments for the projected gradient method described in Algorithm 1. In all examples,
the problem data is semialgebraic so we are under the scope of Theorem 4.2. All experiments are
implemented in Julia and conducted on a 3.0GHz Intel Xeon E5-1680v2 processor with 64GB of
RAM.6

5.1 Inverse eigenvalue problems

Given a FTvN system (E ,Rr, λ), λ∗ ∈ λ(E) and ai ∈ E (i = 0, 1, . . . , d), we consider the inverse
eigenvalue problem:

Find c ∈ Rd such that λ(a0 + c1a1 + · · ·+ cdad) = λ∗. (5.1)

For the special case E = Sn, this problem has been extensively researched [14, 6, 8, 9, 7]. However,
beyond Sn, we are not aware of a systematic study of inverse eigenvalue problems.

4The correspondence between the notation in [5, Theorem 5] and our case is as follows. A is the identity map, D is
C̄ and C is δλ−1(C).

5By concrete we mean that the convergence rate is upper bounded in terms of a function of the iteration number k
(e.g., see [4, Theorem 3.1]).

6The implementation is available in https://github.com/ito-masaru/pgm-eig-prog
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The problem (5.1) is equivalent to the feasibility problem (4.4) with

C̄ := a0 + span{a1, . . . , ad}, C := {λ∗}.

In this case, the iterative scheme (4.6) reduces to

yk = (1− αk)xk + αk projC̄(xk), xk+1 ∈ U(yk, λ
∗), (5.2)

since projλ−1(C)(y) = U(y, λ∗) holds by Corollary 3.4.

5.1.1 Numerical experiment

Here we show some numerical results of the method (5.2) applied to the inverse eigenvalue problem
(5.1) in the case

E = Rn+1 × · · · × Rn+1︸ ︷︷ ︸
m times

×Sn, (5.3)

where we regard Rn+1 and Sn as the Jordan algebras in Examples 3.7 and 3.5, respectively. We
examine both the block-wise eigenvalue maps λ and the ordered one λ↓ described in (3.9) and (3.11),
respectively. The goal of this experiment is to check the behavior of Algorithm 1 and see how far an
initial point must be in order to ensure convergence to a solution point.

Given (n,m, d), we examine 10 random instances of the problem (5.3) under the FTvN system
(5.3) by setting λ∗ := λ(a0 + c1a1 + · · · + cdad) ∈ E , where ci ∈ R and components of ai ∈ E are
generated from the uniform distribution over [0, 1]. We run the method (5.2) with step-size αk = 0.99
until it finds an iterate xk satisfying the termination criterion

dist(xk, C̄) ≤ 10−3

(note that we have λ(xk) = λ∗ for k ≥ 1 by construction). If this condition fails to be satisfied after
10000 iterations, we restart the method and change the initial point. The initial point x0 is chosen as
follows:

x0 := x∗ + 100‖x∗‖u/2`,

where x∗ := a0 + c1a1 + · · · + cmam is an optimal solution, u ∈ E is generated from the uniform
distribution on the unit sphere of E and ` ≥ 0 is the number of restarts of the method. Note that `
controls the relative distance from x0 to the optimal solution since ‖x0 − x∗‖/‖x∗‖ = 100/2` holds.

Tables 1 and 2 show numerical results for some problem instances under the eigenvalue maps λ and
λ↓, respectively. For each (m,n), the dimension d is chosen as d = bdim(E)/ρc for ρ ∈ {0.2, 0.4, 0.6, 0.8}.
We see that the proposed method successfully converges to an optimal solution (i.e., a feasible solution
to (5.1)) in many cases, while some instances require several restarts. Also employing the block-wise
eigenvalue map λ is relatively better than the ordered one λ↓ in average. Regarding the performance,
we can see that the number of iterations is decreasing with respect to the parameter d. This is
somewhat puzzling and at this point we can only speculate on the reasons for that. A possibility is
that as d increases, the dimension of C̄ increases as well. Given the random nature of the instances,
C̄ ∩ λ−1({λ∗}) might get be “better-conditioned” as d increases. For example, it could be case that
the region corresponding to linear convergence as in Propositions 4.3 and 4.5 gets larger.

5.2 Vanishing Quadratic Constraints

In this section we take a look at the following problem. Given m convex quadratic inequalities and an
integer ` ∈ {0, 1, . . . ,m}, we would like to find a common solution x ∈ Rn that satisfies at least ` with
equality as follows. { ‖Aix+ bi‖2 ≤ 〈ci, x〉+ di, i = 1, . . . ,m, (5.4a)

At least ` of these inequalities are tight. (5.4b)
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m n d
Iterations Restarts

mean max min std mean max min std

0 10 11 1836.4 4136 574 1205.8 0.8 5 0 1.8
0 10 22 107.0 312 34 78.6 0.0 0 0 0.0
0 10 33 31.6 58 20 11.5 0.0 0 0 0.0
0 10 44 19.2 45 10 10.7 0.0 0 0 0.0
1 10 13 2255.9 4110 336 1135.0 3.1 7 0 3.4
1 10 26 82.4 152 47 37.6 0.0 0 0 0.0
1 10 39 47.1 63 29 10.8 0.0 0 0 0.0
1 10 52 32.0 56 15 12.2 0.0 0 0 0.0
5 10 22 3049.5 9666 564 2983.9 2.3 7 0 3.1
5 10 44 102.6 189 52 37.6 0.0 0 0 0.0
5 10 66 59.2 95 28 18.6 0.0 0 0 0.0
5 10 88 26.4 42 16 7.2 0.0 0 0 0.0

Table 1: Numerical results for problem (5.1) under the block-wise eigenvalue map λ. The column
“Iterations” collects the summary of the number of iterations at the final run of the proposed method,
showing the mean, the maximum, the minimum and the sample standard deviation. The summary of
the number of restarts is given in the column “Restarts”.

m n d
Iterations Restarts

mean max min std mean max min std

0 10 11 1836.4 4136 574 1205.8 0.8 5 0 1.8
0 10 22 107.0 312 34 78.6 0.0 0 0 0.0
0 10 33 31.6 58 20 11.5 0.0 0 0 0.0
0 10 44 19.2 45 10 10.7 0.0 0 0 0.0
1 10 13 2255.9 4110 336 1135.0 3.1 7 0 3.4
1 10 26 82.4 152 47 37.6 0.0 0 0 0.0
1 10 39 56.8 160 29 37.4 0.0 0 0 0.0
1 10 52 39.8 64 24 12.6 0.0 0 0 0.0
5 10 22 2049.6 4340 494 1477.4 3.0 10 0 3.9
5 10 44 1937.7 8993 74 2856.9 1.5 6 0 2.5
5 10 66 78.8 127 46 30.5 0.0 0 0 0.0
5 10 88 24.6 36 15 6.3 0.0 0 0 0.0

Table 2: Numerical results for problem (5.1) under the ordered eigenvalue map λ↓
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Here, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R and ` ∈ {0, 1, . . . ,m} are given. We refer to a constraint
in format of the (5.4a) and (5.4b) as quadratic inequality with a vanishing constraint or a vanishing
quadratic constraint for short. In this subsection, we will discuss how to reformulate a vanishing
quadratic constraint in the form of a feasibility problem as in (4.4).

Let E := Rn1+1 × · · · × Rnm+1 and K := Ln1+1
2 × · · · × Lnm+1

2 be a direct product of second-
order cones. We consider that each Rni+1 is a Euclidean Jordan algebra as in Example 3.7 and the
corresponding cone is Lni+1

2 . With that, (E ,R2m, λ↓) is a FTvN system where λ↓ is as in (3.11).
Next, we define

b := (b1, d1, . . . , bm, dm) ∈ E , A : Rn → E , Ax := (A1x, 〈c1, x〉, . . . , Amx, 〈cm, x〉).

We have the following result.

Theorem 5.1 (Vanishing quadratic constraints as a rank constraint). Suppose that x ∈ Rn satisfies
(5.4a) and (5.4b), then

Ax+ b ∈ K and rank (Ax+ b) ≤ 2m− `. (5.5)

Conversely, if x ∈ Rn satisfies (5.5) and (Aix + bi, 〈ci, x〉 + di) 6= 0 holds for all i, then x satisfies
(5.4a) and (5.4b).

Proof. First, suppose that x ∈ Rn satisfies (5.4a) and (5.4b). From, (5.4a) we obtain Ax + b ∈ K.
Next, let z := Ax+ b, so that z = (z1, t1 . . . , zm, tm) can be divided in m blocks so that

(zi, ti) = (Aix+ bi, 〈ci, x〉+ di)

holds for i ∈ {1, . . . ,m}. We have that ‖Aix+ bi‖2 = 〈ci, x〉 + di if and only if (zi, ti) belongs to the
boundary of Lni+1

2 .
Equivalently, the block (zi, ti) ∈ Lni+1

2 belongs to the boundary of Lni+1
2 if and only if the smallest

eigenvalue (i.e., λ− in (3.7)) of (zi, ti) vanishes. Therefore, the rank of (zi, ti) in the algebra Rni+1

must be 0 or 1. Since the rank of z is the sum of ranks of the individual blocks, (5.4b) implies that
rank(z) ≤ `+ 2(m− `) = 2m− ` holds.

Conversely, suppose that x satisfies (5.5). Then, in particular, Ax+b ∈ K holds, which, by definition
implies that that (5.4a) is satisfied. Under the assumption that Ax+b ∈ K and (Aix+bi, 〈ci, x〉+di) is
never zero, we have that the rank of (Aix+bi, 〈ci, x〉+di) is either 1 or 2 and the former happens if and
only if ‖Aix+ bi‖2 = 〈ci, x〉+di. Therefore, if rank(Ax+b) ≤ 2m−`, then at least ` of the inequalities
are tight, since otherwise we would have rank(Ax+ b) ≥ 2(m− (`+ 1)) + (`+ 1) > 2m− `.

If ` ≥ 1, we have equivalently that x satisfies (5.5) if and only if

λ↓2m(Ax+ b) = · · · = λ↓2m−`+1(Ax+ b) = 0.

The final step to reformulate the problem in the format described in Section 4.1 is to perform the
variable transformation y = Ax+ b. This leads ot the the following feasibility problem

find y ∈ (range (A) + b) ∩ (K ∩ {y | rank(y) ≤ 2m− `}). (5.6)

Finally, if we let C̄ := range (A) + b, C := {u ∈ R2m
+ | u2m = · · · = u2m−`+1 = 0}, we get the following

equivalent problem
find y ∈ C̄ and λ↓(y) ∈ C, (5.7)

which can be solved as described in Section 4.1.
We remark that the projection of v ∈ Rr↓ onto C is easily computable as

projC(v) = (max(v1, 0), . . . ,max(v2m−`, 0), 0, . . . , 0), ∀v ∈ Rr↓.

Therefore, using Corollary 3.4, the iterative scheme (4.6) reduces to

zk = (1− αk)yk + αk projC̄(yk), yk+1 ∈ U(zk,projC(λ
↓(zk))).
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By its turn, an element of U(zk,projC(λ
↓(zk))) can be obtained explicitly through (3.12) and the

spectral decomposition in the algebra of second-order cones as described in Example 3.7.
A final observation is that in order to obtain a “if and only if” correspondence between (5.6) and

the pair (5.4a) and (5.4b), Theorem 5.1 requires the assumption that (Aix+ bi, 〈ci, x〉+ di) 6= 0 holds
for all i whenever x satisfies (5.4a) and (5.4b). An important case where this assumption is satisfied
is when all the ci’s are zero and the di’s are nonzero as in the next subsection.

5.2.1 Intersection of ellipsoids and a numerical experiment

As a special case of (5.4), suppose we are given m ellipsoids and we would like to find an intersection
point that lies in the boundary of at least ` of them. Formally, given positive definite matrices Qi ∈ Sn
and pi ∈ Rn for i = 1, . . . ,m, our problem is to find x ∈ Rn satisfying{

(x− pi)TQi(x− pi) ≤ 1 i = 1, . . . ,m, (5.8a)

At least ` of these inequalities are tight. (5.8b)

The corresponding A and b are given by

b := (−Q1/2
1 p1, 1, . . . ,−Q1/2

m pm, 1), Ax := (Q
1/2
1 x, 0, · · · , Q1/2

m x, 0). (5.9)

We can rewrite (5.8) as 
Ax+ b ∈ K := Ln+1

2 × · · · × Ln+1
2︸ ︷︷ ︸

m times

rank (Ax+ b) ≤ 2m− `
which is equivalent to

find y ∈ C̄ and λ↓(y) ∈ C, (5.10)

where C̄ := range (A) + b and C := {u ∈ R2m
↓ | u2m = · · · = u2m−`+1 = 0}. We observe that in this

case, the “ci’s” and “di’s”in Theorem 5.1 are all 0 and 1, respectively. So, indeed, (5.10) and the pair
(5.8a), (5.8b) are equivalent.

Recovering x from y Here we remark that a solution to (5.8) can be easily recovered from a
solution to (5.10). Let y = (ȳ1, y10, . . . , ȳm, ym0) ∈ C̄. Let us check that there is a unique x satisfying
y = Ax+ b. By (5.9), the relation y = Ax+ b is equivalent to

ȳi = Q
1/2
i (x− pi), yi0 = 1, i = 1, . . . ,m.

The former equation is equivalent to

x = Q
−1/2
1 ȳ1 + p1 = · · · = Q−1/2

m ȳm + pm.

Numerically, we can also average the different expressions to x which leads to the following formula.

x =
1

m

m∑
i=1

(Q
−1/2
i ȳi + pi). (5.11)

Numerical results Here, we show numerical results of applying Algorithm 1 to (4.5) in order
the solve the problem (5.10) in the case (n,m, `) = (2, 3, 1), (2, 3, 2). We generated randomly three
ellipsoids centered at the origin as illustrated in Figure 1. We use constant step-size αk = 0.99. Let
{yk} be the generated sequence and xk be the approximate solution recovered by yk using the formula
(5.11). We terminate the algorithm if

dist(yk, C̄) ≤ 10−3

(Note that dist(λ↓(yk), C) = 0 holds for k ≥ 1 by construction). In Figure 1 we demonstrate the
numerical results.
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� The case ` = 1 in (5.8) corresponds to the problem of finding a boundary point on the intersection
of given m ellipsoids. Figure 1 shows the behavior of {xk} from various initial points. One can
see that the trajectory {xk} successfully converges to a point on the boundary.

� The case ` = 2 in (5.8) corresponds to finding a “degenerate” boundary point of the intersection
of given m ellipsoids. Figure 1 illustrates that {xk} successfully converges to a desired point
except the one starting from the origin. We remark that the origin yields a stationary point for
the corresponding problem (4.5) in this case.

Figure 1: Illustration of the trajectory {xk} from various initial points for the problem (5.8) with
n = 2 and m = 3. The left and right figures correspond to the cases for ` = 1 and ` = 2, respectively.
Each line except the ellipsoid is a trajectory of the proposed method where ‘iters’ shows the number
of iterations.

6 Concluding remarks

In this work, using the FTvN system framework developed by Gowda [17], we discussed eigenvalue
programs beyond the usual matrix setting. We also analyzed and implemented a simple projected
gradient algorithm, see Algorithm 1. Finally, we also showed some applications such as general inverse
eigenvalue problems. In the particular case where the FTvN system comes from the Euclidean Jordan
algebra of second order cones, we showed that it is possible to express the so-called vanishing quadratic
constraints, which is useful to obtain boundary points of the intersection of ellipsoids with certain
degeneracy properties.

The topics we discussed in this paper are still in their infancy and much remains to be done from
both modelling and algorithmic perspectives. One particular direction where many fruitful results may
yet be found is related to rank problems involving second-order cones. As problems over second order
cones are typically more scalable than matrix problems, fitting a particular modelling application that
requires some rank-like constraint into this setting may lead to better performance when compared
with a model that uses matrices.

While the writing of this paper was in the final stages, Garner, Lerman and Zhang [16] released
a preprint that is very close to the spirit of what we propose in this paper. There too they consider
problems with general constraints on eigenvalues and analyze methods based on the idea of solving
subproblems on the space of eigenvalues. That said, one important difference between the work [16]
and our approach is that our discussion uses the FTvN framework while [16] only consider problems
over matrices. In particular, the applications involving the second-order cone discussed here seem to
be out of the scope of [16].

16



Acknowledgements

The first author was supported partly by the JSPS Grant-in-Aid for Early-Career Scientists 21K17711.
The second author was supported partly by the JSPS Grant-in-Aid for Early-Career Scientists 23K16844.

References

[1] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel
methods. Mathematical Programming, 137(1):91–129, Feb 2013.

[2] M. Baes. Convexity and differentiability properties of spectral functions and spectral mappings
on euclidean jordan algebras. Linear Algebra and its Applications, 422:664–700, 2007.

[3] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility prob-
lems. SIAM Review, 38(3):367–426, 1996.

[4] J. M. Borwein, G. Li, and M. K. Tam. Convergence rate analysis for averaged fixed point iterations
in common fixed point problems. SIAM Journal on Optimization, 27(1):1–33, 2017.

[5] C. Chen, T. K. Pong, L. Tan, and L. Zeng. A difference-of-convex approach for split feasibility
with applications to matrix factorizations and outlier detection. Journal of Global Optimization,
78(1):107–136, Mar. 2020.

[6] X. Chen and M. T. Chu. On the least squares solution of inverse eigenvalue problems. SIAM
Journal on Numerical Analysis, 33(6):2417–2430, 1996.

[7] M. Chu and G. Golub. Inverse Eigenvalue Problems, Theory, Algorithms, and Applications.
Oxford University Press, Oxford, 2005.

[8] M. T. Chu. Inverse eigenvalue problems. SIAM Review, 40(1):1–39, 1998.

[9] M. T. Chu and G. H. Golub. Structured inverse eigenvalue problems. Acta Numerica, 11:1–71,
2002.

[10] D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis. Transversality and alternating projections for
nonconvex sets. Foundations of Computational Mathematics, 15(6):1637–1651, Aug. 2015.
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