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Abstract. Regularization by the Shannon entropy enables us to efficiently and approximately solve optimal
transport problems on a finite set. This paper is concerned with regularized optimal transport problems
via Bregman divergence. We introduce the required properties for Bregman divergences, provide a non-
asymptotic error estimate for the regularized problem, and show that the error estimate becomes faster than
exponentially.

1. Introduction

An optimal transport theory allows for measuring the difference between two probability measures. In-
numerable applications of optimal transport theory include mathematics, physics, economics, statistics,
computer science, and machine learning. This work focuses on the optimal transport theory on a finite set.

For K ∈ N, define

PK :=

{
z = (zk) ∈ RK

∣∣∣∣ zk ≥ 0 for any k,
∑
k

zk = 1

}
.

Here and hereafter, k runs over 1, 2, . . . ,K. Fix I, J ∈ N. Unless we indicate otherwise, i and j run over
1, 2, . . . , I and 1, 2, . . . , J , respectively. For x ∈ PI and y ∈ PJ , define x⊗ y ∈ PI×J by

(x⊗ y)ij := xiyj ,

and set

Π(x, y) :=

{
Π = (πij) ∈ PI×J

∣∣∣∣∣
J∑

l=1

πil = xi,

I∑
l=1

πlj = yj for any i, j

}
,

where we identify PI×J with a subset of RI×J . An element in Π(x, y) is called a transport plan between
x and y. Note that Π(x, y) is a compact set, in particular, a convex polytope, and contains x ⊗ y. Fix
C = (cij) ∈ RI×J and define a map ⟨C, ·⟩ : PI×J → R by

⟨C,Π⟩ :=
∑
i,j

cijπij .

Consider linear programs of the form

inf
Π∈Π(x,y)

⟨C,Π⟩,(1.1)

which is a so-called optimal transport problem. Since the function ⟨C, ·⟩ is linear, in particular continuous
on a compact set Π(x, y), the problem (1.1) always admits a minimizer, but a minimizer is not necessarily
unique. A minimizer of the problem (1.1) is called an optimal transport plan between x and y.

In the context of the success of the regularized optimal transport problem by the Kullback–Leibler di-
vergence, this paper considers a regularized optimal transport problem via Bregman divergence, which is a
generalization of the Kullback–Leibler divergence through a strictly convex function.

Definition 1.1. Let U be a continuous, strictly convex function on [0, 1] with U ∈ C1((0, 1]). For z, w ∈ PK ,
the Bregman divergence associated with U of z with respect to w is given by

DU (z, w) :=
∑
k

dU (zk, wk),

where dU : [0, 1]× (0, 1] → R is defined for r ∈ [0, 1] and r0 ∈ (0, 1] by

dU (r, r0) := U(r)− U(r0)− (r − r0)U
′(r0)

1
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and is naturally extended as a function on [0, 1]× [0, 1] valued in [0,∞] (see Lemma 2.1).

For example, the Bregman divergence associated with U(r) = r log r reduces to the Kullback–Leibler
divergence.

Let us consider a regularized problem of the form

inf
Π∈Π(x,y)

(⟨C,Π⟩+ εDU (Π, x⊗ y)) for ε > 0.(1.2)

By the continuity and strict convexity of U , DU (·, x⊗ y) is continuous and strictly convex on a convex poly-
tope Π(x, y). Consequently, the problem (1.2) always admits a unique minimizer, denoted by ΠU (C, x, y, ε).
Then,

lim
ε↓0

⟨C,ΠU (C, x, y, ε)⟩ = inf
Π∈Π(x,y)

⟨C,Π⟩(1.3)

holds (see Subsection 2.4). To give a quantitative error estimate of (1.3), we require the following two
assumptions. See Subsections 2.1 and 2.3 to verify that the assumptions are reasonable.

Assumption 1.2. Π(x, y) ̸= argminΠ∈Π(x,y)⟨C,Π⟩.

Assumption 1.3. Let U ∈ C([0, 1])∩C1((0, 1])∩C2((0, 1)) satisfy U ′′ > 0 on (0, 1) and limh↓0 U
′(h) = −∞.

In addition, r 7→ rU ′′(r) is non-decreasing in (0, 1).

We introduce notions to describe our quantitative error estimate of (1.3).

Definition 1.4. Let U be a continuous, strictly convex function on [0, 1] with U ∈ C1((0, 1]). Define
DU (x, y) for x ∈ PI and y ∈ PJ by

DU (x, y) := sup
Π∈Π(x,y)

DU (Π, x⊗ y).

Definition 1.5. The suboptimality gap of x ∈ PI and y ∈ PJ with respect to C ∈ RI×J is defined by

∆C(x, y) := inf
V ′∈V (x,y)\argminV ∈V (x,y)⟨C,V ⟩

⟨C, V ′⟩ − inf
V ∈V (x,y)

⟨C, V ⟩,

where V (x, y) is the set of vertices of Π(x, y) and set inf ∅ := ∞.

In Subsection 2.1, we verify DU (x, y),∆C(x, y) ∈ (0,∞) under Assumption 1.2. We also confirm in
Subsection 2.2 that Definition 1.6 below is well-defined.

Definition 1.6. Under Assumption 1.3, we denote by eU the inverse function of U ′ : (0, 1] → U ′((0, 1]). For
x ∈ PI and y ∈ PJ , let RU (x, y) ∈ [1/2, 1) satisfy

U ′(RU (x, y))− U ′(1−RU (x, y)) = DU (x, y),

which is uniquely determined. Define νU (x, y) ∈ R by

νU (x, y) := sup
r∈(0,RU (x,y)]

(U ′(1− r) + rU ′′(r)) .

Our main result is as follows.

Theorem 1.7. Under Assumptions 1.2 and 1.3, the intervalÅ
0,

∆C(x, y)RU (x, y)

DU (x, y)

ò
∩
Å
0,

∆C(x, y)

DU (x, y) + νU (x, y)− U ′(1)

ò
is well-defined and nonempty. In addition,

⟨C,ΠU (C, x, y, ε)⟩ − inf
Π∈Π(x,y)

⟨C,Π⟩ ≤ ∆C(x, y) · eU
Å
−∆C(x, y)

ε
+DU (x, y) + νU (x, y)

ã
holds for ε in the above interval.

Let us review related results. Computing an exact solution of a large-scale optimal transport problem
becomes problematic when, say, N := max{I, J} > 104. The best-known practical complexity ‹O(N3) is
attained by an interior point algorithm in [16, Section 5], where ‹O omits polylogarithmic factors. Though
Chen et al. [2, Informal Theorem I.3] improve this complexity to (N2)1+o(1) and Jambulapati et al. [11,
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Theorem 2.4] provide an algorithm that finds an ϵ-approximation in ‹O(N2/ϵ), their practical implementations
have not been developed.

The tractability of the problem (1.1) is improved by introducing entropic regularization to its objective
function, that is,

inf
Π∈Π(x,y)

(⟨C,Π⟩ − εS(Π)) ,

where
S(z) := −

∑
k

zk log zk, z ∈ PK

is the Shannon entropy. Here, we put 0 log 0 := 0 due to the continuity

lim
r↓0

r log r = 0.

Fang [7] introduces the Shannon entropy to regularize generic linear programs. By the continuity and the
strict convexity of the Shannon entropy, the entropic regularized problem always has a unique minimizer
for each value of the regularization parameter. Cominetti and SanMartín [3, Theorem 5.8] prove that the
minimizer of the regularized problem converges exponentially to a certain minimizer of the given problem
as the regularization parameter goes to zero. Weed [20, Theorem 5] provides a quantitative error estimate
of the regularized problem, whose convergence rate is exponential. Note that the entropic regularization
allows us to develop approximation algorithms for the problem (1.1). We refer to [17] and references therein.
Different types of regularizers are introduced in recent studies. For example, Muzellec et al. [13] use the
Tsallis entropy for ecological inference. Dessein et al. [5] and Daniels et al. [4] introduce the Bregman and
f -divergences to regularize optimal transport problems, respectively. Apart from entropy and divergence,
Klatt et al. [12] use convex functions of Legendre type for regularization.

Regularization by the Shannon entropy is equivalent to that by the Kullback–Libeler divergence. Here,
the Kullback–Leibler divergence of z ∈ PK with respect to w ∈ PK is given by

DKL(z, w) :=

K∑
k

zk (log zk − logwk) ,

where we put r log 0 := ∞ for r > 0. Note that the Kullback–Leibler divergence and its dual are the unique
members that belong to both the Bregman and f -divergence classes (see [1] for instance). Let us define
Uo ∈ C([0,∞)) ∩ C∞((0,∞)) by

Uo(r) :=

®
r log r for r ∈ (0,∞),

0 for r = 0.

Then, DUo
= DKL holds on PK × PK . There are other strictly convex functions U such that DU = DKL

holds (see Subsection 4.1).
Our main result Theorem 1.7 with the case U = Uo recovers Weed’s work [20, Theorem 5]. Theorem 1.7

with the relation (2.1) guarantees that the regularized optimal value approaches the true optimal value faster
than exponentially (see Subsection 2.3). Numerical experiments demonstrate that a Bregman divergence
gives smaller errors than the Kullback–Leibler divergence.

This paper is organized as follows. In Section 2, we verify that Assumptions 1.2 and 1.3 are reasonable.
Section 3 proves Theorem 1.7. In Section 4, we show that the normalization of U does not affect the error
estimate in Theorem 1.7. We then consider the effect of scaling of data and the domain of U on the error
estimate. Section 5 provides examples of U satisfying Assumption 1.3. In Section 6, we give numerical
experiments and show, in particular, that faster convergence is achieved when regularizations other than the
Kullback–Leibler divergence are considered. Finally, in Section 7, we summarize the contents of this paper
and give directions for future research.

2. Preliminaries

In this section, we verify that Assumptions 1.2, 1.3 are reasonable and Definition 1.6 is well-defined. We
also show that DU (x, y),∆C(x, y) ∈ (0,∞) under Assumption 1.2. Throughout, as in the introduction, we
fix I, J ∈ N and take C ∈ RI×J , x ∈ PI , and y ∈ PJ . Let

Ω := RI×J × PI × PJ × (0,∞)
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and U denote a continuous, strictly convex function on [0, 1] with U ∈ C1((0, 1]), unless otherwise stated.
By the strict convexity of U on [0, 1],

dU (r, r0) := U(r)− U(r0)− (r − r0)U
′(r0) ≥ 0

holds for r ∈ [0, 1] and r0 ∈ (0, 1]. In addition, for r, r0 ∈ (0, 1], dU (r, r0) = 0 if and only if r = r0. Recall
the limiting behavior of U .

Lemma 2.1. The limit
U ′(0) := lim

h↓0
U ′(h)

exists in [−∞,∞) and limh↓0 hU
′(h) = 0 holds.

Proof. By the strict convexity of U on [0, 1], U ′ is strictly increasing on (0, 1] and limh↓0 U
′(h) ∈ [−∞,∞)

holds. Thus, the first assertion follows.
If U ′(0) ∈ R, then limh↓0 hU

′(h) = 0 holds. Assume U ′(0) = −∞. The Taylor expansion yields

U(r)− U(h) ≥ (r − h)U ′(h)

for all r, h ∈ (0, 1]. By the continuity of U , taking the limit as r ↓ 0 gives

U(0)− U(h) ≥ −hU ′(h)

for h ∈ (0, 1]. If h is small enough, then U ′(h) < 0 by the monotonicity of U ′ on (0, 1] together with
U ′(0) = −∞. Thus, we conclude

0 = lim
h↓0

(U(h)− U(0)) ≤ lim inf
h↓0

hU ′(h) ≤ lim sup
h↓0

hU ′(h) ≤ 0,

which leads to limh↓0 hU
′(h) = 0. This completes the proof of the lemma. □

By Lemma 2.1, the limit
dU (r, 0) := lim

r0↓0
dU (r, r0) ∈ [0,∞]

exists. In the above relation and throughout, we adhere to the following natural convention:

u± (−∞) = ∓∞, λ · (−∞) = −∞, −∞ ≤ −∞ < u < ∞ ≤ ∞

and so on for u ∈ R and λ > 0. Thus, we can regard dU (resp.DU ) as a function on [0, 1] × [0, 1] (resp.
PK ×PK) valued in [0,∞]. For r ∈ [0, 1], dU (r, 0) = 0 if and only if r = 0. Moreover, dU (r, 0) = ∞ for some
r ∈ (0, 1] is equivalent to U ′(0) = −∞.

To consider the finiteness of DU (x, y), we define the support of z ∈ PK by

spt(z) := {k | zk > 0}.

Lemma 2.2. For Π ∈ Π(x, y), spt(Π) ⊂ spt(x)×spt(y) holds. Moreover, spt(x)×spt(y) = spt(x⊗y) follows.

Proof. For (i, j) ∈ spt(Π), we have

xi =

J∑
l=1

πil ≥ πij > 0, yj =

I∑
l=1

πlj ≥ πij > 0,

which ensure that i ∈ spt(x) and j ∈ spt(y), that is, (i, j) ∈ spt(x)× spt(y). For (i, j), it turns out that

(i, j) ∈ spt(x)× spt(y) ⇐⇒ xi > 0 and yj > 0 ⇐⇒ xiyj > 0 ⇐⇒ (i, j) ∈ spt(x⊗ y).

This completes the proof of the lemma. □

By Lemma 2.2, we find that DU (·, x⊗ y) is continuous on a compact set Π(x, y) so that DU (x, y) < ∞.

2.1. On Assumption 1.2 and Definitions 1.4, 1.5. There is nothing to prove on the optimal transport
problem (1.1) in the case of Π(x, y) = argminΠ(x,y)⟨C,Π⟩. Thus, we suppose Assumption 1.2, in which
Π(x, y) contains an element other than x ⊗ y and hence DU (x, y) > 0 holds. Let V (x, y) be the set of the
vertices of Π(x, y), that is, V (x, y) is the set with the smallest cardinality among the sets whose convex hull
coincides with Π(x, y). Note that argminV ∈V (x,y)⟨C, V ⟩ = V (x, y) yields argminΠ∈Π(x,y)⟨C,Π⟩ = Π(x, y).
Thus, under Assumption 1.2, V (x, y) \ argminV ∈V (x,y)⟨C, V ⟩ is not empty and ∆C(x, y) ∈ (0,∞) holds.
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2.2. On Definition 1.6. Let U satisfy Assumption 1.3. By the strict convexity of U on [0, 1] together with
U ′(0) = −∞, the function U ′ on (0, 1] has the inverse function eU : (−∞, U ′(1)] → (0, 1]. We observe from
U ′′ > 0 on (0, 1) that the function r 7→ U ′(r) − U ′(1 − r) is strictly increasing on (0, 1). This with the
properties

U ′
Å
1

2

ã
− U ′

Å
1− 1

2

ã
= 0, lim

r↑1
(U ′(r)− U ′(1− r)) = ∞

guarantees the unique existence of RU (x, y). Moreover, since r 7→ rU ′′(r) is non-decreasing in (0, 1), we find

sup
r∈(0,RU (x,y)]

(U ′(1− r) + rU ′′(r)) ≤ U ′(1) +RU (x, y)U
′′(RU (x, y)) < ∞.

Thus, all the notion in Definition 1.6 is well-defined under Assumption 1.3.

2.3. On Assumption 1.3. Due to Aleksandrov’s theorem (e.g., [6, Theorem 6.9]), U is twice differentiable
almost everywhere on [0, 1]. In the case of U ∈ C2((0, 1)), the strict convexity leads to U ′′ > 0 almost
everywhere on (0, 1). Thus, the requirement U ∈ C2((0, 1)) together with U ′′ > 0 on (0, 1) is mild.

Let U ∈ C([0, 1]) ∩ C1((0, 1]) ∩ C2((0, 1)) such that U ′′ > 0 on (0, 1). To apply some algorithms, such as
gradient descent algorithms [17, Sections 4.4, 4.5, 9.3], we require that ΠU (ω) belongs to the interior of the
convex polytope Π(x, y) for any ω = (C, x, y, ε) ∈ Ω. It follows from [18, Lemma 3.7 and Remark 3.9] that
ΠU (ω) belongs to the interior of Π(x, y) for any ω = (C, x, y, ε) ∈ Ω if and only if U ′(0) = −∞.

Let U ∈ C2((0, 1)) satisfy U ′′ > 0 on (0, 1). Define qU : (0, 1) → [−∞,∞] by

qU (r) := rU ′′(r) · lim sup
h↓0

1

h

Å
1

U ′′(r + h)
− 1

U ′′(r)

ã
, QU := sup

r∈(0,1)

qU (r).

If QU < ∞, then U ′(0) = −∞ yields QU ≥ 1 by [9, Corollaries 2.6, 2.7]. Note that if U ∈ C3((0, 1)), then

qU (r) = −rU ′′′(r)

U ′′(r)
for r ∈ (0, 1).

In [9], the notion of qU is introduced to determine the hierarchy of U in terms of concavity associated
with U ′. See also [15], where qU is used to classify convex functions into displacement convex classes. For
the definition of the displacement convex classes, see [19, Chapter 17]. It follows from [9, Theorem 2.4] that,
for W ∈ C2((0, 1)) satisfying W ′′ > 0 on (0, 1), if qU < ∞, qW > −∞ hold almost everywhere on (0, 1)
and qU ≤ qW holds on (0, 1), then there exist λ > 0 and µ1 ∈ R such that U ′ ≥ λW ′ + µ1 holds on (0, 1],
consequently,

eU (τ) ≤ eW (λ−1(τ − µ1)) on τ ∈ (U ′(0), λW ′(1) + µ1].

Thus, under the assumption U ∈ C([0, 1])∩C1((0, 1])∩C2((0, 1)) such that U ′′ > 0 on (0, 1) and U ′(0) = −∞,
if QU < ∞, then the choice QU = 1 is the best possible for the estimate in Theorem 1.7. Moreover, for
U ∈ C2((0, 1)) satisfying U ′′ > 0 on (0, 1), QU = 1 is equivalent to that r 7→ rU ′′(r) is non-decreasing
on (0, 1) by [9, Corollary 2.6]. Thus, we confirm that Assumption 1.3 is reasonable.

Furthermore, if we choose W = Uo, then qW ≡ 1 holds on (0, 1), and hence QU = 1 implies the existence
of λ > 0 and µ1 ∈ R such that

(2.1) eU (τ) ≤ exp
(
λ−1(τ − µ1)

)
for τ ∈ U ′((0, 1)).

Thus, the error estimate in Theorem 1.7 is faster than the exponential decay.

2.4. Asymptotic behavior of the error. Fix ω = (C, x, y, ε) ∈ Ω. Let Π∗ ∈ Π(x, y) be an optimal
transport plan. We observe from the definition of ΠU (ω) that

⟨C,ΠU (ω)⟩+ εDU (Π
U (ω), x⊗ y) = inf

Π∈Π(x,y)
(⟨C,Π⟩+ εDU (Π, x⊗ y)) ≤ ⟨C,Π∗⟩+ εDU (Π

∗, x⊗ y).(2.2)

This with the nonnegativity of DU yields

⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩ ≤ εDU (Π
∗, x⊗ y),

proving (1.3). Moreover, the limit

ΠU (C, x, y, 0) := lim
ε↓0

ΠU (C, x, y, ε)
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exists and satisfies
argmin

Π′∈argminΠ∈Π(x,y)⟨C,Π⟩
DU (Π

′, x⊗ y) = {ΠU (C, x, y, 0)}

(see [18, Theorem 3.11] for instance).

3. Proof of Theorem 1.7

Before proving Theorem 1.7, we consider the normalization of U since the correspondence U 7→ DU is not
injective.

Lemma 3.1. For λ > 0 and µ0, µ1 ∈ R, define Uλ,µ0,µ1 : [0, 1] → R by

Uλ,µ0,µ1
(r) := λU(r) + µ1r + µ0.

Then, dUλ,µ0,µ1
= λdU holds on [0, 1] × [0, 1], consequently, DUλ,µ0,µ1

= λDU on PK × PK . If U satisfies
Assumption 1.3, then so does Uλ,µ0,µ1

and qUλ,µ0,µ1
= qU holds on (0, 1).

Since the proof is straightforward, we omit it. Let U satisfy Assumption 1.3. For µ0, µ1 ∈ R and
ω = (C, x, y, ε) ∈ Ω, we have

ΠU1,µ0,µ1 (ω) = ΠU (ω), DU1,µ0,µ1
(x, y) = DU (x, y),

RU1,µ0,µ1
(x, y) = RU (x, y), νU1,µ0,µ1

(x, y) = νU (x, y) + µ1,

and eU1,µ0,µ1
(τ) = eU (τ − µ1) for τ ∈ U ′

1,µ0,µ1
((0, 1]) together with U ′

1,µ0,µ1
(1) = U ′(1) + µ1. Thus, in

Theorem 1.7, we can normalize U to U(0) = U(1) = 0 as well as the case of U = Uo without loss of
generality. For the reason and the effect of choice of λ > 0, see Section 4.1.

Throughout the rest of this section, we suppose Assumptions 1.2 and 1.3 together with U(0) = U(1) = 0.
We prepare two lemmas to prove Theorem 1.7. The following proof strategy is aligned with the argument
of [20, Lemmas 6–8].

Lemma 3.2. For r, s, t ∈ [0, 1] and r0 ∈ (0, 1],

U ((1− t)r + ts) ≥ (1− t)U(r) + tU(s) + rU(1− t) + sU(t),

dU ((1− t)r + ts, r0) ≥ (1− t)dU (r, r0) + tdU (s, r0) + rU(1− t) + sU(t).

Proof. For r, s, t ∈ [0, 1] and r0 ∈ (0, 1], if the first inequality holds true, then it holds that

dU ((1− t)r + ts, r0) = U ((1− t)r + ts)− U(r0)− {(1− t)r + ts− r0}U ′(r0)

≥ (1− t)U(r) + tU(s) + rU(1− t) + sU(t)− U(r0)− {(1− t)r + ts− r0}U ′(r0)

= (1− t)dU (r, r0) + tdU (s, r0) + rU(1− t) + sU(t),

which is the second inequality.
To show the first inequality, set

G(r, s, t) := (1− t)U(r) + tU(s) + rU(1− t) + sU(t)− U ((1− t)r + ts)

for r, s, t ∈ [0, 1]. By the continuity of G, it is enough to show

(3.1) max
r∈[0,1]

G(r, s, t) ≤ 0 for s, t ∈ (0, 1).

Note that
∂

∂r
G(r, s, t) = U(1− t) + (1− t) (U ′(r)− U ′ ((1− t)r + ts)) ,

∂2

∂r2
G(r, s, t) = (1− t) [U ′′(r)− (1− t)U ′′((1− t)r + st))]

for r, s, t ∈ (0, 1).
Let us now show

max
r∈[0,1]

G(r, s, t) = max {G(0, s, t), G(1, s, t)} for s, t ∈ (0, 1).(3.2)
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Let s, t ∈ (0, 1). On one hand, for r ∈ (0, 1) with r ≤ s, since U ′ is strictly increasing on (0, 1), we have
U ′(r) − U ′((1 − t)r + ts) ≤ 0 and hence ∂rG(r, s, t) ≤ U(1 − t). Note that U(1 − t) < 0 follows from the
strict convexity of U with the condition U(0) = U(1) = 0. This implies that ∂rG(r, s, t) < 0 if r ≤ s and

max
r∈[0,s]

G(r, s, t) = G(0, s, t), in particular, G(s, s, t) < G(0, s, t).(3.3)

On the other hand, for r ∈ (0, 1) with r > s, we have (1− t)r + ts < r and

(1− t)rU ′′((1− t)r + ts) < [(1− t)r + ts]U ′′((1− t)r + ts) ≤ rU ′′(r)

by U ′′ > 0 and the monotonicity of r 7→ rU ′′(r) on (0, 1). This yields ∂2
rG(r, s, t) > 0. If ∂rG(r0, s, t) = 0

holds for some r0 ∈ [s, 1], then

max
r∈[s,1]

G(r, s, t) = max{G(s, s, t), G(1, s, t)}.(3.4)

In contrast, if ∂rG(r, s, t) < 0 always holds, then

max
r∈[s,1]

G(r, s, t) = G(s, s, t).(3.5)

Summarizing the above relations (3.3), (3.4), and (3.5), we have (3.2).
Since U(0) = U(1) = 0, a direct computation gives

∂2

∂s2
G(0, s, t) =

∂2

∂s2
(tU(s) + sU(t)− U (ts)) = tU ′′(s)− t2U ′′(ts) =

t

s
(sU ′′(s)− tsU ′′(ts)) ≥ 0

for s, t ∈ (0, 1), where the inequality follows from the monotonicity of r 7→ rU ′′(r) on (0, 1). Thus, for
t ∈ (0, 1), G(0, ·, t) is convex on [0, 1] and

(3.6) max
s∈[0,1]

G(0, s, t) = max{G(0, 0, t), G(0, 1, t)} = 0.

Next, we find

∂

∂s
G(1, s, t) =

∂

∂s
(tU(s) + U(1− t) + sU(t)− U(1− t+ ts)) = tU ′(s) + U(t)− tU ′ (1− t+ ts) < U(t) < 0

for s, t ∈ (0, 1), where the first inequality follows from the monotonicity of U ′ on (0, 1). This leads to

(3.7) max
s∈[0,1]

G(1, s, t) = G(1, 0, t) = 0

for t ∈ (0, 1). Thus, we deduce (3.1) from (3.2) together with (3.6) and (3.7). This proves the lemma. □

Recall that for any D > 0, there exists R ∈ (1/2, 1) uniquely such that U ′(R)− U ′(1−R) = D (see Sub-
section 2.2).

Lemma 3.3. For D > 0 and R ∈ (1/2, 1) with U ′(R)− U ′(1−R) = D,

r 7→ Dr − U(r)− U(1− r)

is strictly increasing on [0, R]. Moreover, it holds that

−U(r)− U(1− r) ≤ −rU ′(r) + r sup
ρ∈(0,R]

(U ′(1− ρ) + ρU ′′(ρ))

for r ∈ (0, R].

Proof. We calculate
d2

dr2
(Dr − U(r)− U(1− r)) = −U ′′(r)− U ′′(1− r) < 0

for r ∈ (0, 1), consequently,

d

dr
(Dr − U(r)− U(1− r)) >

d

dr
(Dr − U(r)− U(1− r))

∣∣∣∣∣
r=R

= D − U ′(R) + U ′(1−R) = 0

for r ∈ (0, R). This proves the first assertion.
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We also find
d

dr

Ç
U(r) + U(1− r)− rU ′(r) + r sup

ρ∈(0,R]

(U ′(1− ρ) + ρU ′′(ρ))

å
= −U ′(1− r)− rU ′′(r) + sup

ρ∈(0,R]

(U ′(1− ρ) + ρU ′′(ρ))

≥ 0

for r ∈ (0, R]. This together with Lemma 2.1 and the assumption U(0) = U(1) = 0 yield

U(r) + U(1− r)− rU ′(r) + r sup
ρ∈(0,R]

(U ′(1− ρ)

≥ lim
r↓0

Ç
U(r) + U(1− r)− rU ′(r) + r sup

ρ∈(0,R]

(U ′(1− ρ) + ρU ′′(ρ))

å
= 0

for r ∈ (0, R]. This proves the second assertion of the lemma. □

Proof of Theorem 1.7. Let ω = (C, x, y, ε) ∈ Ω. Then, ∆C(x, y),DU (x, y) ∈ (0,∞) hold as mentioned in
Subsection 2.1. We also have

U ′(1) ≤ U ′(1) + lim
r↓0

rU ′′(r) ≤ νU (x, y) < ∞

and DU (x, y) + νU (x, y)− U ′(1) ∈ (0,∞). Thus, the intervalÅ
0,

∆C(x, y)RU (x, y)

DU (x, y)

ò
∩
Å
0,

∆C(x, y)

DU (x, y) + νU (x, y)− U ′(1)

ò
is well-defined and nonempty. Let us choose ε from the interval. Note that

ε ∈
Å
0,

∆C(x, y)

DU (x, y) + νU (x, y)− U ′(1)

ò
is equivalent to

−∆C(x, y)

ε
+DU (x, y) + νU (x, y) ∈ U ′((0, 1]).

Recall that V (x, y) is the vertex set of Π(x, y). There exists a family {tV }V ∈V (x,y) ⊂ [0, 1] uniquely such
that ∑

V ∈V (x,y)

tV = 1, ΠU (ω) =
∑

V ∈V (x,y)

tV V.

Set
V0(x, y) := argmin

V ∈V (x,y)

⟨C, V ⟩, t := 1−
∑

V ∈V0(x,y)

tV .

By Assumption 1.2, V0(x, y) ̸= V (x, y) holds. Since ΠU (ω) belongs to the interior of the convex poly-
tope Π(x, y), we find that tV ∈ (0, 1) for V ∈ V (x, y), consequently, t ∈ (0, 1). We also set

Π∗ :=
∑

V ∈V0(x,y)

tV
1− t

V, Π′ :=
∑

V ′∈V (x,y)\V0(x,y)

tV ′

t
V ′.

It turns out that Π∗,Π′ ∈ Π(x, y) and

ΠU (ω) = (1− t)Π∗ + tΠ′.

We find that

⟨C, V ⟩ = inf
Π∈Π(x,y)

⟨C,Π⟩ for V ∈ V0(x, y), in particular ⟨C,Π∗⟩ = inf
Π∈Π(x,y)

⟨C,Π⟩.

Setting

r :=
⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩

∆C(x, y)
,

we observe from (2.2) with the definition of DU (x, y) that

⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩ ≤ ε
(
DU (Π

∗, x⊗ y)−DU (Π
U (ω), x⊗ y)

)
≤ εDU (x, y).(3.8)
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We also find

⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩ = t⟨C,Π′ −Π∗⟩ ≥ t

Å
inf

V ′∈V (x,y)\V0(x,y)
⟨C, V ′⟩ − inf

V ∈V0(x,y)
⟨C, V ⟩

ã
= t∆C(x, y).

These with the condition ε ∈ (0,∆C(x, y)RU (x, y)/DU (x, y)] yield

t ≤ r =
⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩

∆C(x, y)
≤ εDU (x, y)

∆C(x, y)
≤ RU (x, y).

It follows from Lemma 2.2 with the second inequality in Lemma 3.2 that

DU (Π
U (ω), x⊗ y) = DU ((1− t)Π∗ + tΠ′, x⊗ y)

=
∑

(i,j)∈spt(x⊗y)

dU ((1− t)π∗
ij + tπ′

ij , xiyj)

≥
∑

(i,j)∈spt(x⊗y)

{
(1− t)dU (π

∗
ij , xiyj) + tdU (π

′
ij , xiyj) + π∗

ijU(1− t) + π′
ijU(t)

}
= (1− t)DU (Π

∗, x⊗ y) + tDU (Π
′, x⊗ y) + U(1− t) + U(t).

This and Lemma 3.3 together with t ≤ r ≤ RU (x, y) yield

DU (Π
∗, x⊗ y)−DU (Π

U (ω), x⊗ y) ≤ tDU (Π
∗, x⊗ y)− tDU (Π

′, x⊗ y)− U(t)− U(1− t)

≤ tDU (x, y)− U(t)− U(1− t)

≤ rDU (x, y)− U(r)− U(1− r)

≤ rDU (x, y)− rU ′(r) + rνU (x, y)

= r(DU (x, y)− U ′(r) + νU (x, y)).

Combining this with (3.8), we find

⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩
ε

≤ DU (Π
∗, x⊗ y)−DU (Π

U (ω), x⊗ y) ≤ r(DU (x, y)− U ′(r) + νU (x, y)),

which leads to

U ′(r) ≤ −⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩
εr

+DU (x, y) + νU (x, y) = −∆C(x, y)

ε
+DU (x, y) + νU (x, y).

It follows from the monotonicity of U ′ on (0, 1] that

⟨C,ΠU (ω)⟩ − ⟨C,Π∗⟩
∆C(x, y)

= r = eU (U
′(r)) ≤ eU

Å
−∆C(x, y)

ε
+DU (x, y) + νU (x, y)

ã
,

that is,

⟨C,ΠU (ω)⟩ − inf
Π∈Π(x,y)

⟨C,Π⟩ ≤ ∆C(x, y) · eU
Å
−∆C(x, y)

ε
+DU (x, y) + νU (x, y)

ã
as desired. □

4. Normalization and scaling

In this section, we first show that the normalization of a strictly convex function does not affect the error
estimate in Theorem 1.7. We then consider the effect of scaling of data and the domain of a strictly convex
function on the error estimate.

4.1. Normalization. Let U ∈ C([0, 1])∩C1((0, 1])∩C2((0, 1)) satisfy U ′′ > 0 on (0, 1). For µ0, µ1 ∈ R and
λ > 0, define Uλ,µ0,µ1 ∈ C([0, 1]) ∩ C1((0, 1]) ∩ C2((0, 1)) by

Uλ,µ0,µ1
(r) := λU(r) + µ1r + µ0.

By the normalization of U , we mean the choice of µ0, µ1 ∈ R and λ > 0 such that

Uλ,µ0,µ1
(0) = u0, Uλ,µ0,µ1

(1) = u1, U ′
λ,µ0,µ1

(1) = u′
1 for u0, u1, u

′
1 ∈ R with u1 − u0 < u′

1,
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where the inequality on u0, u1, u
′
1 is required for Uλ,µ0,µ1 to be strictly convex. Let (C, x, y, ε) ∈ Ω. Then,

we find ΠUλ,µ0,µ1 (C, x, y, ε) = ΠU (C, x, y, λε) and that the intervalÇ
0,

∆C(x, y)RUλ,µ0,µ1
(x, y)

DUλ,µ0,µ1
(x, y)

ô
∩
Ç
0,

∆C(x, y)

DUλ,µ0,µ1
(x, y) + νUλ,µ0,µ1

(x, y)− U ′
λ,µ0,µ1

(1)

ô
is well-defined (resp. contains ε) if and only if the intervalÅ

0,
∆C(x, y)RU (x, y)

DU (x, y)

ò
∩
Å
0,

∆C(x, y)

DU (x, y) + νU (x, y)− U ′(1)

ò
is well-defined (resp. contains λε), in which the equality

eUλ,µ0,µ1

Å
−∆C(x, y)

ε
+DUλ,µ0,µ1

(x, y) + νUλ,µ0,µ1
(x, y)

ã
= eU

Å
−∆C(x, y)

λε
+DU (x, y) + νU (x, y)

ã
holds. Thus, in Theorem 1.7, we can normalize U as

U(0) = u0, U(1) = u1, U ′(1) = u′
1 for u0, u1, u

′
1 ∈ R with u1 − u0 < u′

1

without loss of generality.
Let W ∈ C([0, 1]) ∩ C1((0, 1]) ∩ C2((0, 1)) also satisfy W ′′ > 0 on (0, 1). Then, the following three

conditions are equivalent to each other.
(C0) There exist µ0, µ1 ∈ R and λ > 0 such that W = Uλ,µ0,µ1 on (0, 1).
(C1) There exist µ1 ∈ R and λ > 0 such that W ′ = λU ′ + µ1 on (0, 1).
(C2) There exists λ > 0 such that W ′′ = λU ′′ on (0, 1).

Thus, under the normalization U(0) = u0 and U(1) = u1 for u0, u1 ∈ R, we can use either U ′ or U ′′ instead
of U itself. Note that each of (C0)–(C2) is equivalent to the following condition.

(D) There exists λ > 0 such that DW = λDU on PK × PK for K ≥ 3.
The implication from (C0) to (D) is straightforward. Assume (D). For K ≥ 3 and r ∈ [0, 1], define zr ∈ PK

by

zrk :=


r for k = 1,

1− r for k = 2,

0 otherwise.

We also define z∗ ∈ PK by z∗k = K−1 for all k. For r ∈ (0, 1), we calculate

W ′(r)−W ′(1− r) =
d

dr
DW (zr, z∗) = λ

d

dr
DU (z

r, z∗) = λ (U ′(r)− U ′(1− r)) .

Differentiating this with respect to r implies that

W ′′(r)− λU ′′(r) = − (W ′′(1− r)− λU ′′(1− r)) , in particular W ′′(1/2) = λU ′′(1/2).(4.1)

For r, s ∈ (0, 1) with r + s < 1, we define zr,s ∈ PK by

zr,sk :=


1− (r + s) for k = 1,

r for k = 2,

(K − 2)−1s otherwise.

It turns out that

(r + s)W ′′(1− (r + s)) + rW ′′(r) =
∂

∂r
DW (z1, zr,s)

= λ
∂

∂r
DU (z

1, zr,s) = λ [(r + s)U ′′(1− (r + s)) + rU ′′(r)] ,

implying

W ′′(r)− λU ′′(r) = −r + s

r
(W ′′(1− (r + s))− λU ′′(1− (r + s))) .

This with (4.1) provides
r + s

r
(W ′′(1− (r + s))− λU ′′(1− (r + s))) = W ′′(1− r)− λU ′′(1− r),
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in particular, the choice of r = 1/2 leads to

W ′′
Å
1

2
− s

ã
= λU ′′

Å
1

2
− s

ã
for s ∈

Å
0,

1

2

ã
.

This together with (4.1) gives W ′′ = λU ′′ on (0, 1), which is nothing but (C2). Note that, under Assump-
tion 1.2, we have I, J ̸= 1 hence IJ ≥ 4. Thus, the condition K ≥ 3 in (D) is reasonable.

We also notice that (C2) leads to the following condition.
(C) qU = qW on (0, 1).

By [9, Theorem 2.4], if qU , qW are finite almost everywhere on (0, 1), then (C) leads to (C2). Thus, all
conditions (C0)–(C2), (D), and (C) are equivalent to each other.

To use U ′ instead of U , let us consider the following assumption.

Assumption 4.1. Let L ∈ C((0, 1]) ∩ C1((0, 1)) satisfy that L′ > 0 on (0, 1), limt↓0 L(t) = −∞, and
t 7→ tL′(t) is non-decreasing on (0, 1).

Suppose Assumption 4.1. Then, there exists t0 ∈ (0, 1] such that L < 0 on (0, t0]. By the monotonicity of
t 7→ tL′(t), we have

L(t0)− L(t) =

∫ t0

t

L′(s)ds ≤ t0L
′(t0)

∫ t0

t

1

s
ds = t0L

′(t0) (log t0 − log t)

for t ∈ (0, t0]. Since L is monotone on (0, t0] and

(L(t0)− t0L
′(t0) log t0) (t0 − h) + t0L

′(t0)

∫ t0

h

log tdt ≤
∫ t0

h

L(t)dt < 0

holds h ∈ (0, t0], the improper integral

UL(r) :=

∫ r

0

L(t)dt

is well-defined for r ∈ [0, 1]. It is easy to see that UL satisfies Assumption 1.3. Note that

dUL
(r, r0) =

∫ r

r0

(L(t)− L(r0))dt =

∫ r

r0

∫ t

r0

L′(s)dsdt for r ∈ [0, 1], r0 ∈ (0, 1].

Conversely, if U satisfies Assumption 1.3, then L = U ′ satisfies Assumption 4.1. Thus, we can use L satisfying
Assumption 4.1 instead of U satisfying Assumption 1.3 for our regularization.

Remark 4.2. In Theorem 1.7, the range of the regularization parameter ε is given by the intersection of the
two intervals. One interval Å

0,
∆C(x, y)

DU (x, y) + νU (x, y)− U ′(1)

ò
is needed to make

−∆C(x, y)

ε
+DU (x, y) + νU (x, y) ∈ U ′((0, 1])

as seen in the proof of Theorem 1.7. Hence, this interval is not needed if U is extended to a continuous,
strictly convex function on [0,∞) and U ∈ C1((0,∞)) with limr↑∞ U ′(r) = ∞. For example, under the
normalization

(4.2) U(0) = U(1) = 0, U ′(1) = 1,

which is valid for the case U = Uo, we can extend U by setting

U(r) := r log r for r > 1.

For L satisfying Assumption 4.1, if we set

ℓ(t) :=

Ç
L(1)−

∫ 1

0

L(s)ds

å−1Ç
L(t)−

∫ 1

0

L(s)ds

å
for t ∈ [0, 1], then ℓ satisfies Assumption 4.1 and Uℓ satisfies the normalization (4.2).
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4.2. Scaling. In the regularized problem (1.2), scaling can have two meanings: scaling of data and scaling
of the domain of a strictly convex function. Let us show that they play an equivalent role.

In the optimal transport problem (1.1), although two given data x and y are normalized to be 1 with
respect to the ℓ1-norm, their ℓ1-norms can be chosen arbitrarily if both are the same. For a subset Z of
Euclidean space and a > 0, set

aZ := {az
∣∣ z ∈ Z}.

For x ∈ PI and y ∈ PJ , we shall, by abuse of notation, define

Π(ax, ay) :=

{
Π̃ = (π̃ij) ∈ aPI×J

∣∣∣∣ J∑
l=1

π̃il = axi and
I∑

l=1

π̃lj = ayj for any i, j

}
.

Then, we have Π(ax, ay) = aΠ(x, y) and hence ax ⊗ y ∈ Π(ax, ay). We denote by V (ax, ay) the set of the
vertices of Π(ax, ay). Then, V (ax, ay) = aV (x, y) follows. For U ∈ C([0, 1])∩C1((0, 1]) being strictly convex
on [0, 1] and a ∈ (0, 1], we can define DU : aPK × aPK → [0,∞] by

DU (az, aw) :=
∑
k

dU (azk, awk) for z, w ∈ PK

and consider the regularized problem

(4.3) inf‹Π∈Π(ax,ay)

Ä
⟨C, Π̃⟩+ εDU (Π̃, ax⊗ y)

ä
for ω = (C, x, y, ε) ∈ Ω.

More generally, for a, b > 0 with a ≤ b and W ∈ C([0, b])∩C1((0, b]) being strictly convex on [0, b], we define
dW : [0, b]× [0, b] → [0,∞] by

dW (r, r0) := W (r)−W (r0)− (r − r0)W
′(r0) for r ∈ [0, b], r0 ∈ (0, b]

and
dW (r, 0) := lim

h↓0
dW (r, h) for r ∈ [0, b].

We also define DW : aPK × aPK → [0,∞] by

DW (az, aw) :=
∑
k

dW (azk, awk) for z, w ∈ PK .

This enables us to consider the regularized problem on aPI × aPJ as similar as (4.3) by using a strictly
convex function W ∈ C([0, b]) ∩ C1((0, b]) with a ≤ b.

Next, let us scale the domain of U ∈ C([0, 1]) ∩ C1((0, 1]) being strictly convex on [0, 1] by setting

U b(r) := bU(b−1r) : [0, b] → R

for b > 0. Following the notation in (4.4) below, U b coincides with U b
1 . If U satisfies Assumption 1.3, then

so does U b if b > 1. We observe from

dUb(r, r0) = b · dU (b−1r, b−1r0) for r, r0 ∈ [0, b]

that

inf
Π∈Π(x,y)

(⟨C,Π⟩+ εDUb(Π, x⊗ y)) = b · inf
Π∈Π(x,y)

(
⟨C, b−1Π⟩+ εDU (b

−1Π, b−1x⊗ y)
)
,

argmin
Π∈Π(x,y)

(⟨C,Π⟩+ εDUb(Π, x⊗ y)) = argmin
Π∈Π(x,y)

(
⟨C, b−1Π⟩+ εDU (b

−1Π, b−1x⊗ y)
)

= b · argmin‹Π∈Π(b−1x,b−1y)

Ä
⟨C, Π̃⟩+ εDU (Π̃, b−1x⊗ y)

ä
,

for ω = (C, x, y, ε) ∈ Ω. This means that the two scalings play an equivalent role.
More generally, for b > 0, let W ∈ C([0, b]) ∩ C1((0, b]) ∩ C2((0, b)) satisfy that W ′′ > 0 on (0, b),

limh↓0 W
′(h) = −∞, and r 7→ rW ′′(r) is non-decreasing on (0, b). For a > 0, we define the function

W a
b ∈ C([0, a]) ∩ C1((0, a]) ∩ C2((0, a)) by

(4.4) W a
b (r) := ab−1W (a−1br).

Then, we see that W a
b
′′ > 0 on (0, a), limh↓0 W

a
b
′(h) = −∞ hold and r 7→ rW a

b
′′(r) is non-decreasing on (0, a).

The normalization W (0) = W (b) = 0 with W ′(b) = 1 is equivalent to the normalization W a
b (0) = W a

b (a) = 0
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with W a
b
′(a) = 1. In particular, U := W 1

b satisfies Assumption 1.3. Furthermore, for ω = (C, x, y, ε) ∈ Ω,
we have

argmin‹Π∈Π(ax,ay)

Ä
⟨C, Π̃⟩+ εDWa

b
(Π̃, ax⊗ y)

ä
= a · argmin

Π∈Π(x,y)

(⟨C,Π⟩+ εDU (Π, x⊗ y)) .

This means that the left-hand side is a singleton. We denote by ΠWa
b (C, ax, ay, ε) the unique element. Then,

ΠWa
b (C, ax, ay, ε) = aΠU (ω) holds. Let us define all notions provided to state Theorem 1.7 as follows:

DWa
b
(ax, ay) := sup‹Π∈Π(ax,ay)

DWa
b
(Π̃, ax⊗ y),

∆C(ax, ay) := inf‹V ′∈V (ax,ay)\argmin
Ṽ ∈V (ax,ay)

⟨C,‹V ′⟩
⟨C,‹V ′⟩ − inf‹V ∈V (ax,ay)

⟨C,‹V ⟩,

RWa
b
(ax, ay) ∈ [a/2, a] such that W a

b
′(RWa

b
(ax, ay))−W a

b
′(a−RWa

b
(ax, ay)) = a−1DWa

b
(ax, ay),

νWa
b
(ax, ay) := sup

r∈(0,RWa
b
(ax,ay)]

(W a
b
′(a− r) + rW a

b
′′(r)) .

(4.5)

We also denote by eWa
b
: W a

b
′((0, a]) → (0, a] the inverse function of W a

b
′ : (0, a] → W a

b
′((0, a]). It follows

from

W a
b (ar) = aU(r), W a

b
′(ar) = U ′(r), W a

b
′′(ar) = a−1U ′′(r), dWa

b
(ar, ar0) = adU (r, r0)

for r, r0 ∈ [0, 1] that

DWa
b
(ax, ay) = aDU (x, y), RWa

b
(ax, ay) = aRU (x, y), νWa

b
(ax, ay) = νU (x, y),

and eWa
b
= aeU on W a

b
′((0, a]) = U ′((0, 1]). We also find ∆C(ax, ay) = a∆C(x, y). Thus, under Assump-

tion 1.2, it holds thatÇ
0,

∆C(ax, ay)RWa
b
(ax, ay)

aDWa
b
(ax, ay)

ô
∩
Ç
0,

a−1∆C(ax, ay)

a−1DWa
b
(ax, ay) + νWa

b
(ax, ay)−W a

b
′(a)

ô
=

Å
0,

∆C(x, y)RU (x, y)

DU (x, y)

ò
∩
Å
0,

∆C(x, y)

DU (x, y) + νU (x, y)− U ′(1)

ò
and

⟨C,ΠWa
b (C, ax, ay, ε)⟩ − inf‹Π∈Π(ax,ay)

⟨C, Π̃⟩

= ⟨C, aΠU (ω)⟩ − inf
Π∈Π(x,y)

⟨C, aΠ⟩

= a

Å
⟨C,ΠU (ω)⟩ − inf

Π∈Π(x,y)
⟨C,Π⟩

ã
≤ a

Å
∆C(x, y)eU

Å
−∆C(x, y)

ε
+DU (x, y) + νU (x, y)

ãã
= ∆C(x, y)eWa

b

Å
−∆C(x, y)

ε
+DU (x, y) + νU (x, y)

ã
=

∆C(ax, ay)

a
eWa

b

Å
−∆C(ax, ay)

aε
+

1

a
DWa

b
(ax, ay) + νWa

b
(ax, ay)

ã
for ε in the interval above. This estimate can be derived directly in a similar way to the proof of Theorem 1.7.

Thus, in the problem (1.2), if we simultaneously scale the data and the domain of a strictly convex function,
we obtain essentially the same error estimate in Theorem 1.7, where the domain of a strictly convex function
has no effect on the estimate.

4.3. Invariance of the Kullback–Leibler divergence under scaling of data. In contrast to the previ-
ous subsection, let us now consider the case that the scaling of data does not match the domain of a strictly
convex function. For this sake, let W ∈ C([0, b]) ∩ C1((0, b]) ∩ C2((0, b)) satisfy that W ′′ > 0 on (0, b),
limh↓0 W

′(h) = −∞, and r 7→ rW ′′(r) is non-decreasing on (0, b) as in the previous subsection and ã, a > 0
with ã < a.
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First, we find that

argmin‹Π∈Π(ãx,ãy)

Ä
⟨C, Π̃⟩+ εDWa

b
(Π̃, ãx⊗ y)

ä
= argmin‹Π∈Π(ãx,ãy)

Ä
⟨C, a−1Π̃⟩+ εDW 1

b
(a−1Π̃, a−1ãx⊗ y)

ä
= argmin

Π∈Π(x,y)

(
⟨C,Π⟩+ εD

W
a/ã
b

(Π, x⊗ y)
)

for ω = (C, x, y, ε) ∈ Ω. Thus, scaling the data is equivalent to scaling the domain of a strictly convex
function. Then, we can use U satisfying Assumption 1.3 instead of W .

The following proposition suggests that the regularization effect by a Bregman divergence does not vary
under scaling of data unless the Bregman divergence is the Kullback–Leibler divergence.

Proposition 4.3. Let U satisfy Assumption 1.3. Let ã, a > 0 with ã < a ≤ 1. If there exists κ > 0 such
that

(4.6) DU (ãz, ãw) = κDU (az, aw) for z, w ∈ PK for K ≥ 3.

Then, there exist µ0, µ1 ∈ R and λ > 0 such that U = (Uo)λ,µ0,µ1 on (0, a].

Proof. By a similar argument in the implication (D) to (C2), it follows from (4.6) that

ã2U ′′(ãr) = κa2U ′′(ar) for r ∈ (0, 1).

Let θ := ãa−1 < 1. Then, the above relation is equivalent to

θrU ′′(θr) = κθ−1rU ′′(r) for r ∈ (0, a).

The monotonicity of r 7→ rU ′′(r) on (0, a) yields κθ−1 ≤ 1. For N ∈ N, it turns out that

U ′(aθ)− U ′(aθN+1) =

∫ aθ

aθN+1

U ′′(r)dr =

N∑
n=1

∫ aθn

aθn+1

U ′′(r)dr =

N∑
n=1

∫ aθn

aθn+1

rU ′′(r) · 1
r
dr

≤
N∑

n=1

aθnU ′′(aθn) · 1

aθn+1

∫ aθn

aθn+1

1dr =

N∑
n=1

(
κθ−1

)n−1
aθU ′′(aθ)

(
θ−1 − 1

)
= ãU ′′(ã)

(
θ−1 − 1

) N∑
n=1

(
κθ−1

)n−1
.

If κθ−1 < 1, then

lim
N→∞

(U ′(aθ)− U ′(aθN+1)) ≤ ãU ′′(ã)
(
θ−1 − 1

)
· lim
N→∞

N∑
n=1

(
κθ−1

)n−1
= ãU ′′(ã)

(
θ−1 − 1

)
· 1

1− κθ−1
< ∞,

which contradicts the condition limh↓0 U
′(h) = −∞. Hence, κθ−1 = 1 and

rU ′′(r) = θrU ′′(θr) ≤ rU ′′(r) for r ∈ (0, a),

that is, r 7→ rU ′′(r) is constant on (0, a). This is equivalent to that there exist µ0, µ1 ∈ R and λ > 0 such
that U(r) = λr log r + µ1r + µ0 on (0, a]. This completes the proof of the proposition. □

Let U satisfy Assumption 1.3 and a ∈ (0, 1). For the regularized problem of the form

inf‹Π∈Π(ãx,ãy)

Ä
⟨C, Π̃⟩+ εDU (Π̃, ax⊗ y)

ä
for ω = (C, x, y, ε) ∈ Ω,

the choice of a is important to give a similar estimate as in Theorem 1.7, since the quantities such as (4.5)
may be involved in the estimate. Indeed, if we define

DU (ax, ay) := sup‹Π∈Π(ax,ay)

DU (Π̃, ax⊗ y)
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then, for ã > 0, it turns out that

dU (ar, ar0) = adUa−1 (r, r0) = a

∫ r

r0

∫ t

r0

d2

ds2
Ua−1

(s)dsdt = a

∫ r

r0

∫ t

r0

aU ′′(as)dsdt

≥ a

∫ r

r0

∫ t

r0

ãU ′′(ãs)dsdt = aã−1dU (ãr, ãr0),

consequently,

ã−1DU (ãx, ãy) ≤ a−1DU (ax, ay)

holds with equality if and only if U = (Uo)λ,µ0,µ1
holds for some µ0, µ1 ∈ R and λ > 0.

5. Examples and Comparison

We give examples of U satisfying Assumption 1.3.

5.1. Model case. Recall that Uo ∈ C([0,∞)) ∩ C∞((0,∞)) is defined as

Uo(r) :=

®
r log r for r > 0,

0 for r = 0.

Obviously, Uo satisfies Assumption 1.3 and the normalization (4.2). For r, r0 > 0, we see that

dUo
(r, r0) = Uo(r)− Uo(r0)− (r − r0)U

′
o(r0) = r(log r − log r0)− (r − r0),

which yields DUo(z, w) = DKL(z, w) for z, w ∈ PK .
Let us see that Theorem 1.7 for the case U = Uo coincides with the error estimate given in [20, Theorem 5]

interpreted as

⟨C,ΠUo(ω)⟩ − inf
Π∈Π(x,y)

⟨C,Π⟩ ≤ ∆C(x, y) exp

Å
−∆C(x, y)

ε
+DUo

(x, y) + 1

ã
(5.1)

for ε ∈ (0,∆C(x, y)/(1 +DUo
(x, y))], where ω = (C, x, y, ε) ∈ Ω. In our setting, the ℓ1-radius of Π(x, y)

defined in [20, Definition 2] is calculated as

max
Π∈Π(x,y)

∑
i,j

πij = 1.

The entropic radius defined in [20, Definition 3] is calculated as

sup
Π,Π′∈Π(x,y)

(S(Π)− S(Π′)) = sup
Π,Π′∈Π(x,y)

(−DUo(Π, x⊗ y) +DUo(Π
′, x⊗ y))

= sup
Π∈Π(x,y)

DUo(Π, x⊗ y)− inf
Π∈Π(x,y)

DUo(Π, x⊗ y)

= DUo
(x, y),

thanks to the relation DUo
(Π, x⊗ y) = −S(Π) + S(x) + S(y) for Π ∈ Π(x, y). A direct calculation provides

eUo
(τ) = exp(τ − 1) : (−∞, 1] → (0, 1], RUo

(x, y) =
eDUo (x,y)

1 + eDUo (x,y)
, νUo

(x, y) = 2, U ′
o(1) = 1.

Thus, our estimate in Theorem 1.7 coincides with (5.1), where the range of the regularization parameter in
Theorem 1.7 is given byÅ

0,
∆C(x, y)RUo(x, y)

DUo
(x, y)

ò
∩
Å
0,

∆C(x, y)

DUo
(x, y) + νUo

(x, y)− U ′
o(1)

ò
=

Å
0,

∆C(x, y)

1 +DUo
(x, y)

ò
,

which coincides with that in [20, Theorem 5].
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5.2. q-logarithmic function. Let us consider an applicable example other then the model case. From the
equivalent between (C0)–(C2), any of U,U ′, and U ′′ is on the table for consideration. If we regard 1/U ′′

as a deformation function, U ′ is called a deformed logarithmic function and −U corresponds to the density
function of an entropy (see [14, Chapters 10, 11] for details). One typical example of deformed logarithmic
functions is the q-logarithmic function. For q ∈ R, define the q-logarithmic function lnq : (0,∞) → R by

lnq(t) :=

∫ t

1

s−q ds =


t1−q − 1

1− q
if q ̸= 1,

log t if q = 1.

The entropy associated to lnq is called the Tsallis entropy (see [14, Chapter 8] for instance). We see that
limh↓0 lnq(h) = −∞ is equivalent to q ≥ 1. Moreover, the function t 7→ t ln′q(t) = t1−q is non-decreasing
on (0, 1) if and only if q ≤ 1 holds. Thus, lnq satisfies Assumption 4.1 if and only if q = 1 holds, where
Uln1

= (Uo)1,0,−1. This means that, if we regard a power function as a deformation function, that is, 1/U ′′,
only the power function of exponent 1 is applicable to Theorem 1.7. To obtain an example that satisfies
Theorem 1.7, we need modify the power function of exponent 1 other than power functions of general
exponent.

5.3. Upper incomplete gamma function. For α ∈ R, define Lα : (0, 1) → R by

Lα(t) := − ln1−α(− log t) =

− (− log t)α − 1

α
if α ̸= 0,

− log(− log t) if α = 0.

It turns out that
1

L′
α(t)

= t · (− log t)1−α > 0 for t ∈ (0, 1),

which can be regarded as a refinement of the power function of exponent 1 since the logarithmic function is
referred to as the power function of exponent 0. We see that limt↑1 Lα(t) is finite if and only if α > 0 holds,
and limh↓0 Lα(h) = −∞ if and only if α ≥ 0 holds. Moreover, the function t 7→ tL′

α(t) = (− log t)α−1 is
non-decreasing on (0, 1) if and only if α ≤ 1 holds. Thus, Lα satisfies Assumption 4.1 if and only if α ∈ (0, 1]
holds, where UL1 = Uo.

In what follows, α ∈ (0, 1] is assumed. We set

Lα(1) := lim
t↑1

Lα(t) =
1

α
.

It follows from the change of variables − log t = τ that∫ 1

0

Lα(t)dt = − 1

α
Γ(α+ 1) +

1

α
,

where Γ(·) is the gamma function. As mentioned in Remark 4.2, if we set

ℓα(t) := − (− log t)α

Γ(α+ 1)
+ 1,

for t ∈ (0, 1], then ℓα satisfies Assumption 4.1 and

(5.2) Uα(r) :=

∫ r

0

ℓα(t)dt = − 1

Γ(α+ 1)
Γ(α+ 1,− log r) + r

satisfies the normalization (4.2), where

Γ(p, τ) =

∫ ∞

τ

tp−1 exp(−t)dt

is the upper incomplete gamma function for p > 0 and τ ≥ 0. Note that Γ(p, 0) = Γ(p). Since the inverse
function eUα

: U ′
α((0, 1]) → (0, 1] of Uα : (0, 1] → U ′

α((0, 1]) = (−∞, 1] is given by

eUα
(τ) = exp

Ä
− [−Γ(α+ 1)(τ − 1)]

1
α

ä
,

the error estimate in Theorem 1.7 for U = Uα is the exponential decay in the case of α = 1, which is the
same as (5.1), and is more tight if α ∈ (0, 1) as we observed in Subsection 2.3.
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The function Lα is introduced to analyze the preservation of concavity by the Dirichlet heat flow in a
convex domain on Euclidean space (see [8, 10]).

5.4. Complementary error function. Let us give an example of a function L satisfying Assumption 4.1
except for the continuity at t = 1. In this case,

W (r) :=

∫ r

0

L(t)dt

satisfies Assumption 1.3 except for the continuity and differentiability at r = 1 but

W a
1 (r) = aW (a−1r) = a

∫ a−1r

0

L(t)dt =

∫ r

0

L(a−1t)dt

satisfies Assumption 1.3 if a > 1. Then, it might be worth to consider the effect of a > 1 on the regularized
solution of the form

argmin
Π∈Π(x,y)

(
⟨C,Π⟩+ εDWa

1
(Π, x⊗ y)

)
,

as we mentioned in Subsection 4.3.
Let us give an example of such L. Define H : (0, 1) → R by the inverse function of

τ 7→ 1√
π

∫ ∞

−τ/2

e−σ2

dσ =
1

2
erfc

(
−τ

2

)
,

where erfc(τ) = 1− erf(τ) is the complementary error function with the error function

erf(τ) =
2√
π

∫ τ

0

e−σ2

dσ for τ ∈ R,

and we used the properties

lim
τ↓−∞

1

2
erfc

(
−τ

2

)
= 0, lim

τ↑∞

1

2
erfc

(
−τ

2

)
= 1.

It is easily seen that H ∈ C∞((0, 1)) and limt↓0 H(t) = −∞. Since we have

1

2
erfc

Å
−H(t)

2

ã
= t for t ∈ (0, 1),

d

dτ

Å
1

2
erfc

(
−τ

2

)ã
=

1√
4π

e−
τ2

4 for τ ∈ R,

we find that

1 =
d

dt

Å
1

2
erfc

Å
−H(t)

2

ãã
=

1√
4π

e−
H(t)2

4 H ′(t),

0 =
d2

dt2

Å
1

2
erfc

Å
−H(t)

2

ãã
=

1√
4π

e−
H(t)2

4

Å
−H(t)

2
H ′(t)2 +H ′′(t)

ã
,

consequently,

d

dt
(tH ′(t)) = H ′(t) + tH ′′(t) = H ′(t)

Å
1 +

tH(t)

2
H ′(t)

ã
,

for t ∈ (0, 1). It was proved in [9, Section 4.3] that

inf
t∈(0,1)

tH(t)

2
H ′(t) = lim

t↓0

tH(t)

2
H ′(t) = −1

in terms of the inverse function of H, and hence t 7→ tH ′(t) is non-decreasing on (0, 1). Thus, H satisfies
Assumption 4.1 except for the continuity at t = 1.

The function H is also introduced to analyze the preservation of concavity by the Dirichlet heat flow in a
convex domain on Euclidean space (see [10]). Although we do not detail here the definition of “F -concavity
is preserved by the Dirichlet heat flow in a convex domain on Euclidean space”, for F ∈ C2((0, 1)), if F -
concavity is preserved by the Dirichlet heat flow in a convex domain on Euclidean space, then F satisfies
Assumption 4.1 except for the continuity at t = 1 by [10, Theorems 1.5 and 1.6] and [9, Theorem 2.4 and
Subsection 4.3].
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Figure 1. Absolute error/∆C(x, y) vs. regularization parameter ε.

6. Numerical experiments

Let ω = (C, x, y, ε) ∈ Ω. Numerical experiments demonstrate that the error ⟨C,ΠU (ω)⟩−infΠ∈Π(x,y)⟨C,Π⟩
follows the estimate in Theorem 1.7. The function U tested is associated with the function Uα for α ∈ (0, 1],
which is defined in (5.2). The test problem used has the values of the entries of a matrix C ∈ R5×5 and test
vectors x, y ∈ P5 generated in MATLAB.

The regularized problem (1.2) is solved by using the gradient descent method presented in [18, Corol-
lary 4.3]. The method terminates when the Frobenius norm of the gradient becomes 10−8. All computations
are performed on a computer with an Intel Core i7-8565U 1.80 GHz central processing unit (CPU), 16 GB of
random-access memory (RAM), and the Microsoft Windows 11 Pro 64 bit Version 22H2 Operating System.
All programs for implementing the method were coded and run in MATLAB R2020b for double precision
floating-point arithmetic with unit roundoff 2−53 ≃ 1.1 · 10−16.

Figure 1 shows the natural logarithm of the ratio of the absolute error ⟨C,ΠUα(ω)⟩ − infΠ∈Π(x,y)⟨C,Π⟩
and ∆C(x, y) versus the value of the regularization parameter ε. Here, ∆C(x, y) ≃ 4.6 · 10−6. We observe
that as ε decreases for each value of α, the error decreases. As the value of α decreases for each value of ε,
the error decreases. As the value of ε decreases, the methods tend to take more iterations. This is because
the regularized problem approaches the given problem as ε approaches zero.

7. Concluding remarks

In this paper, we considered regularization of optimal transport problems via Bregman divergence. We
proved that the optimal value of the regularized problem converges to that of the given problem. More
precisely, our error estimate becomes faster than exponentially. Numerical experiments showed that regu-
larization by a Bregman divergence outperforms that by the Kullback–Leibler divergence.

There are several future directions subsequent to this study. The time complexity of our regularized
problem is left open. It would also be interesting to extend the setting of this paper from a finite set to
Euclidean space.
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