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ABSTRACT

In this paper we introduce a new algorithm for the k-Shortest Simple Paths (k-SSP) problem with an
asymptotic running time matching the state of the art from the literature. It is based on a black-box
algorithm due to Roditty and Zwick [2012] that solves at most 2k instances of the Second Shortest
Simple Path (2-SSP) problem without specifying how this is done. We fill this gap using a novel
approach: we turn the scalar 2-SSP into instances of the Biobjective Shortest Path problem. Our
experiments on grid graphs and on road networks show that the new algorithm is very efficient in
practice.
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1 Introduction

Given a directed graph D = (V,A) and a scalar arc cost function c : A → R≥0, we assume paths to be tuples of arcs
and define a path’s cost as the sum of the cost of its arcs. Then, the optimization problem treated in this paper, the
k-Shortest Simple Path problem is defined as follows.

Definition 1. Given a directed graph D = (V,A), two nodes s, t ∈ V , an arc cost function c : A → R≥0, and an
integer k ≥ 2, let Pst be the set of simple s-t-paths in D. Assume Pst contains at least k paths. The k-Shortest Simple
Path (k-SSP) problem is to find a sequence P = (p1, p2, . . . , pk) of pairwise distinct s-t-paths with c(pi) ≤ c(pi+1)
for any i ∈ {1, . . . , k− 1}, s.t. there is no path p ∈ Pst \P with c(p) < c(pk). We refer to the tuple I := (D, s, t, c, k)
as a k-SSP instance and call P a solution sequence.

1.1 Literature Overview

The oldest reference on the k-SSP we could find in the literature is the work by Clarke et al. [1963]. A detailed and
highly recommendable literature survey on this topic is given by Eppstein [2016]. Figure 1 gives a visual overview of
publications that are relevant for our paper. The figure serves also as an outline for this section. We assume the reader is
familiar with basic concepts in Multicriteria Optimization; necessary background can be read in e.g., [Ehrgott, 2005].

To solve the k-SSP problem efficiently, algorithms need to keep track of the s-t-paths found so far and be able to
avoid the generation of duplicates without the need to pairwise compare a new path with every existing path. All
relevant k-SSP algorithms do so using an optimality structure called deviation tree first devised by Lawler [1972], to be
discussed in Section 2. It is based on the consideration of subpaths.
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Figure 1: Relevant literature for this paper. The green node represents the optimality structure used by all algorithms to
keep track of the solution paths as they are found and to avoid duplicates (see Section 2). Red nodes symbolize solution
approaches. Blue nodes refer to k-SSP algorithms. If a blue node has solid background, the corresponding algorithm
has a state of the art asymptotic running time.

Definition 2. Given a digraph D = (V,A) and a simple u-w-path p in D between distinct nodes u,w ∈ V , we denote
a subpath of p between nodes v, v′ ∈ p by pv→v′

. Thereby, if v = s we call pv→v′
= ps→v′

a prefix of p and if v′ = t

we call pv→v′
= pv→t a suffix of p. For a node v along p, we write v ∈ p.

Undoubtedly the classical k-SSP algorithm is due to Yen [1972]. It performs k iterations and starts with a solution
sequence P = (p1) containing only a shortest s-t-path p1. In the ith iteration, i ∈ {1, . . . , k}, an ith shortest s-t-path pi
is considered and the following set of s-t-paths is computed.

{
q
∣∣ q = ps→v

i ◦ qv→t, qv→t shortest v-t-path in D \ {δ+(v) ∩ pi}, v ∈ pi
}
. (1)

The set is a solution to the so called Replacement Path (RP) problem. The paths from this set and from all such sets
computed in previous iterations are stored in a priority queue of s-t-paths from which, at the beginning of the (i+ 1)th

iteration, a (i+ 1)th shortest path is extracted and stored in the solution sequence P . The simple s-t-path pi has at most
n nodes and thus, (1) contains at most n− 1 elements, each of them requiring a shortest path computation to obtain the
suffix qv→t. Yen’s algorithm solves the RP instances in a straightforward way iterating over the nodes in pi and solving
the corresponding shortest path instances. Using Dijkstra’s algorithm [Dijkstra, 1959] with a Fibnoacci Heap [Fredman
and Tarjan, 1987] for these queries, we obtain a running time for the solution of the RP problem of

TRP := O (n(n log n+m)) . (2)

The deviation tree by Lawler [1972] (also called pseudo-tree in the literature [cf. Martins and Pascoal, 2003]) is used to
ensure that the solution paths for (1) computed in every iteration of Yen’s algorithm differ from each other without the
need to pairwise compare them. Then, Yen’s algorithm has an asymptotic running time of

O (kTRP ) . (3)

There is a recent alternative k-SSP algorithm running in O (kTRP ) that can also be considered the current state of the
art and is due to Kurz and Mutzel [2016]. We refer to this algorithm as the KM algorithm. Interestingly, the authors
achieve this running time without solving the RP problem as a subroutine. Instead, their algorithm can be seen as a
generalization of Eppstein’s algorithm [Eppstein, 1998] for the k-Shortest Path problem in which the output paths are
allowed to contain nodes multiple times. Instead of solving One-to-One Shortest Path instances as required in (1),
the KM algorithm solves One-to-All Shortest Path instances, hence obtaining a shortest path tree from every search.
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These instances are defined on the reversed input digraph and are rooted at the target node. The main idea of the KM
algorithm, similar to the idea in [Eppstein, 1998], is that O (m) simple s-t-paths can be obtained from such a tree using
non-tree arcs to create alternative s-t-paths. By doing so, a cycle may be constructed in which case the KM algorithm
needs to compute a new shortest path tree. In addition to its state of the art running time bound, the efficiency of the KM
algorithm in practice is immediately apparent: in well behaved networks, only few shortest path trees are needed since
the swapping of tree arcs and non-tree arcs yield enough simple s-t-paths. Indeed, in the computational experiments
conducted in [Kurz and Mutzel, 2016], the KM algorithm clearly outperforms the previous state of the art k-SSP
algorithm by Feng [2014a]. This algorithm resembles Yen’s algorithm but partitions nodes into three classes, being
able to ignore nodes from one of the classes while solving (1). Due to the reduced search space/graph, the One-to-One
Shortest Path computations finish faster than in Yen’s algorithm.

1.1.1 Better Asymptotics and Better Computational Performance

The algorithm by Gotthilf and Lewenstein [2009] (GL algorithm) improves the best known asymptotic running time for
the k-SSP problem. It makes use of the All Pairs Shortest Path (APSP) algorithm introduced in Pettie [2004] to achieve
an asymptotic running time bound of O

(
k(n2 log log n+ nm)

)
. Here, the term (n2 log log n+ nm) corresponds to

the APSP running time bound derived by Pettie, while k APSP instances need to be solved in the GL algorithm. As a
brief digression from the main focus of the paper, we remark that a new APSP algorithm published in Orlin and Végh
[2022] achieves an asymptotic running time bound of O (mn) for instances with nonnegative integer arc costs. Using
this new algorithm as a subroutine in the GL algorithm, the following result is immediate.

Theorem 1 (k-SSP Running Time for Integer Arc Costs). The k-SSP problem from Definition 1 with integer arc costs
can be solved in O (kmn) time.

Despite the unbeaten asypmtotic running time bound, the GL algorithm does not perform well in practice. Solving k
APSP instances requires too much computational effort.

There are k-SSP algorithms whose asymptotic running time bound is worse than (3) and possibly not even pseudo-
polynomial but that perform extremely well in practice. The current state of the art among these algorithms is published
in Sedeño-Noda [2016] and in Feng [2014b], the latter publication being based on the MPS algorithm [Martins et al.,
1999]. Both algorithms are very different from the ones we study here and space limits detain us from discussing them
in more detail.

1.2 Contribution and Outline

Figure 1 shows that there is a third approach to the k-SSP problem. Namely, Roditty and Zwick [2005, 2012] show that
the k-SSP problem can be tackled by solving at most 2k instances of the Second Simple Shortest Path (2-SSP) problem.
In their publications, the authors do not specify how the 2-SSP instances arising as subproblems in their algorithm can
be solved efficiently.

We design, for the first time, a computationally competitive version of the black box algorithm by Roditty and Zwick.
To do so we use a novel algorithm for the 2-SSP problem. This algorithm is based on a One-to-One version of the
recently published Biobjective Dijkstra Algorithm (BDA) [Sedeño Noda and Colebrook, 2019, Maristany de las Casas
et al., 2021a,b].

Algorithms that generate (shortest) paths w.r.t. a scalar arc cost function iteratively are known as ranking algorithms.
These algorithms are sometimes used to solve the k-SSP problem [Sedeño-Noda, 2016] or to solve Biobjective Shortest
Path (BOSP) instances hoping that the generated paths are optimal in the given biobjective setting [cf. Martins et al.,
1999]. Ranking approaches to solve BOSP problems seem nowadays outdated given the improved efficiency reached
by recent algorithms [Sedeño Noda and Colebrook, 2019, Ahmadi et al., 2021, Maristany de las Casas et al., 2023].
Our approach of solving 2-SSP instances by defining a BOSP instance and solving it using the BDA turns around the
strategies used so far: the k-SSP problem, suitable for ranking algorithms, is solved solving O (k) BOSP instances as
subroutines.

In Section 2 we describe the deviation tree, the optimality structure used throughout the chapter. In Section 3 we discuss
our main contribution: a new 2-SSP algorithm using a biobjective approach. Even if it might sound counter-intuitive to
define a biobjective subroutine for an optimization problem with scalar costs, its running time matches the running
time bound (2). In Section 4 we describe the k-SSP algorithm by Roditty and Zwick [2012] that solves O (k) 2-SSP
instances. In the final Section 5 we demonstrate the efficiency of our algorithm in practice, benchmarking it against the
KM algorithm [Kurz and Mutzel, 2016].
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Figure 2: Left: Input graph D and arc costs for a k-SSP instance. Right: Pseudo-Tree TP corresponding to the k-SSP
instance defined on the left with k = 4.

2 Optimality Structure – Deviation Tree

Consider a k-SSP instance I := (D, s, t, c, k). A (partial) solution sequence Pℓ = (p1, . . . , pℓ) for ℓ ∈ [1, k] is
represented as a deviation tree TPℓ

[e.g., Lawler, 1972, Martins and Pascoal, 2003, Roditty and Zwick, 2012]. TPℓ
is a

directed graph, represented as a tree in which a node from the original graph D may appear multiple times. The root
node of TPℓ

is a copy of the node s in D and every leaf corresponds to a copy of the node t. There are ℓ leafs and any
path from the root to a leaf is in one-to-one correspondence with an s-t-path in D.
Definition 3 (Deviation Tree.). The deviation tree TPℓ

is built iteratively. Initially, TPℓ
is empty. p1 is added to TPℓ

by
adding all nodes and edges of p1 to the tree. For any j ∈ [2, ℓ], assume that the previous paths pi, i ∈ [1, j) have been
added to TPℓ

already. Assume the longest common prefix of pj with a path pi ∈ Pj−1 is the s-v-subpath ps→v
j for a

v ∈ pj . Then, pj is added to TPℓ
by appending the suffix pv→t

j of pj to the copy of v along pi in TPℓ
.

Parent Path The path p1 has no parent path. For any path pi, i ∈ {2, . . . , ℓ}, the parent path p is the path in Pℓ with
which pi shares the longest (w.r.t. the number of arcs) common prefix ps→v

i . In case p is not uniquely defined,
p is set to be the first path in Pℓ with ps→v = ps→v

i . If p is the parent path of pi, pi is a child path of p.

Deviation Arc, Deviation Node, Source Node The path p1 has no deviation arc, its deviation node is s and it its
source node is also s. For any path pi, i ∈ {2, . . . , ℓ} the deviation arc is the first arc (v, w) along pi after
the common prefix of pi with its parent path. The node v is called the deviation node of pi and the node w is
called the source node of pi. For any path p ∈ Pℓ we write dev(p) and source(p) to refer to these nodes.

Recall that we assume the paths in Pℓ to be sorted non-decreasingly according to their costs. Then, the parent path p of
any path q ∈ Pℓ is stored before q in Pℓ and we have c(p) ≤ c(q). Moreover, the inductive nature of TPℓ

guarantees
that the deviation node of p does not come after the deviation node of q.
Example 1. The left hand side of Figure 2 shows a 4-SSP instance. We set P = (p1, . . . , p4) with p1 = ((s, v), (v, t)),
p2 = ((s, u), (u, t)), p3 = ((s, w), (w, t)), and p4 = ((s, u), (u, v), (v, t)). The right hand side depicts the deviation
tree TP as defined in Definition 3. When building TP iteratively, p1 is added first. Then, the longest common prefix of
p1 and p2 is identified to be just the node s. Thus, p2 is appended to s in TP . The parent path of p2 is p1, the deviation
node is s, and the source node is u. Adding p3 to TP leads to the situation in which two paths, namely p1 and p2, share
the longest common prefix with p3: the node s only. Hence, the parent path of p3 is set by definition to be p1, the first
path in P sharing the longest common prefix with p3. p3’s deviation node is s and its source node is w. Finally, the
path p4 is added to TP . It shares its prefix ps→u

4 of maximum length with p2 and thus its suffix pu→t
4 = ((u, v), (v, t))

is appended in TP to the copy of the node u along p2 in TP . The deviation node of p4 is u and its source node is v.

3 Second Shortest Simple Path Problem

We introduce a new 2-SSP algorithm. Assuming that a shortest path p is known, we define a biobjective arc cost function
γp : A → R2 depending on p that allows us to find a second shortest path as the first or the second (in lexicographic
order w.r.t. γ) efficient solution of a One-to-One Biobjective Shortest Path (BOSP) instance associated with p.
Definition 4. Consider a digraph D = (V,A), nodes s, t ∈ V , and an arc cost function c : A → R≥0. I = (D, s, t, c)
is an instance of the classical One-to-One Shortest Path problem. Let p be a shortest s-t-path in D. For every arc
a ∈ A define two dimensional costs γp(a) ∈ R2

≥0 setting γp,1(a) = c(a) and γp,2(a) = 1 if a ∈ p. Otherwise, set
γp,2(a) = 0. The BOSP instance Ip

BOSP = (D, s, t, γp) is the BOSP instance associated with I and p.
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Figure 3: Ip
BOSP instance for the shortest path p = ((s, v1), (v1, v2), (v2, v3), (v3, t)). The red arcs show a s-v2-path

that is not simple. Its s-v4-subpath is the shortest s-v4-path w.r.t. the original arc costs c = γ1.

Initially, using a biobjective subroutine in an optimization problem with scalar cost sounds counter-intuitive. The
reasons are intractability of the Biobjective Shortest Path problem [cf. Hansen, 1980] and the consequent time and
memory demands.However, the γp function defined in Definition 4 is such that at most n− 1 s-t-paths are optimal (cf.
Lemma 1) making the Ip

BOSP instances tractable. Moreover, the {0,1} second component of γp plays an essential role
to circumvent the issue of second shortest paths not adhering to the subpath-optimality principle as explained in the
following example.
Example 2. Consider the Ip

BOSP instance defined in Figure 3 w.r.t. the shortest s-t-path p in that instance. The shown
graph contains two s-v4-paths:

q = ((s, v1), (v1, v4)) with c(q) = γp,1(q) = 2

r = ((s, v1), (v1, v2), (v2, v3), (v3, v4)) with c(r) = γp,1(r) = 1

A decision made based on these costs favors the path r since c(r) < c(q). However, the extension of r towards v2
produces a cycle, causing any expansion of r to be an invalid candidate for a second shortest simple s-t-path. Thus,
when comparing q and r both paths need to be recognized as promising candidates. Since q shares only one arc with
p before it deviates, we have γp,2(q) = 1. For the same reason, we have γp,2(r) = 3. Thus, γp(q) = (2, 1) and
γp(r) = (1, 3) and both paths are efficient/optimal s-v4-paths in our biobjective setting.

Note that v2 is already visited by r’s subpath rs→v2 with cost γp(rs→v2) = (0, 2). After expanding q and r along the
arc (v4, v2), we have γp(q ◦ (v4, v2)) = (4, 1) and γp(r ◦ (v4, v2)) = (3, 3) and we see that r’s expansion is dominated
by rs→v2 and thus can be discarded. q’s expansion on the other side is not dominated and thus, the bad s-v4-path w.r.t.
the original cost function c is kept to build a simple second shortest s-t-path.

The γ arc cost function not only elevates the status of paths with suboptimal subpaths w.r.t. c to become efficient paths
in the IBOSP instances. We can additionally use a technique called dimensionality reduction that allows dominance tests
in biobjective optimization problems to be done in constant time. Since, as in the last example, paths that are not simple
will turn out to be dominated, we manage to detect cycles without hashing a path’s nodes.

The BOSP algorithm to solve the IBOSP instances must be chosen carefully to obtain a competitive running time bound
for our k-SSP algorithm in Section 4.

3.1 Biobjective Dijkstra Algorithm

The One-to-One Biobjective Dijkstra Algorithm (BDA) [Sedeño Noda and Colebrook, 2019, Maristany de las Casas
et al., 2021a,b] is a BOSP algorithm that features the currently best theoretical output sensitive running time bound
known for this problem. As the name suggests, it proceeds similarly to Dijkstra’s algorithm [Dijkstra, 1959] for
the classical Shortest Path problem. It uses a priority queue in which paths are sorted in lexicographically (lex.)
nondecreasing order w.r.t. γ. While in Dijkstra’s algorithm the queue only needs to store the cheapest known s-v-path
for every node v ∈ V , BOSP algorithms prior to the BDA needed to be able to handle multiple s-v-paths. All explored
s-v-paths that are not dominated by and not cost-equivalent to already stored s-v-paths need to be stored; here, a path
p is said to dominate a path q if γi(p) ≤ γi(q) for i ∈ {1, 2} and one of the inequalities is strict. After an s-v-path
for some v ∈ V is extracted from the queue, it is stored in the list of optimal s-v-paths P ∗

sv and propagated along the
outgoing arcs of v to obtain new candidate s-w-paths, (v, w) ∈ δ+(v). In the biobjective optimization literature, and
also hereinafter, optimal solutions are called efficient. The BDA returns a minimum complete set of efficient paths. This
means that if for a non-dominated cost vector c there are multiple efficient s-t-paths p with γ(p) = c, the BDA returns
just one of these paths.

The main idea in the design of the BDA is that biobjective shortest paths adhere to a dynamic programming principle:
the efficient s-v-paths can be build out of the optimal s-u-paths for u ∈ δ−(v). Exploiting this principle, the BDA
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manages to store just the lex-smallest non-dominated s-v-path in its queue. When this path is extracted from the queue
and stored in the corresponding list P ∗

sv of efficient paths, it rebuilds the next candidate s-v-path looking at the efficient
s-u-paths in P ∗

su for (u, v) ∈ δ−(v). Thanks to this idea, we obtain the following running time and space consumption
bound:

Theorem 2. Let I = (D, s, t, γ) be a BOSP instance and set Nmax := maxv∈V |P ∗
sv| and N =

∑
v∈V |P ∗

sv|. The
BDA runs in O (N log n+Nmaxm) time and uses O (N + n+m) space.

For further details regarding the (One-to-One) BDA, we refer to the original publications [Sedeño Noda and Colebrook,
2019, Maristany de las Casas et al., 2021b]. A detailed discussion of the running time and space consumption bounds
for the BDA and other BOSP algorithms can be found in Maristany de las Casas et al. [2021a].

3.2 Second Simple Shortest Paths Using the BDA

We formulate the following main result in this section.

Theorem 3. Consider a shortest path problem I = (D, s, t, c), let p be a shortest s-t-path w.r.t. c and assume it has
ℓ arcs. A lexicographically smallest (w.r.t. γp) efficient s-t-path q with γp,2(q) < ℓ in the BOSP instance Ip

BOSP is a
second shortest simple s-t-path in D w.r.t. the original costs c.

Proof. We assume that Ip
BOSP is solved using the BDA. Every efficient path in this instance is a simple path or cost-

equivalent to a simple path since γp is a non-negative function. Additionally, efficient paths containing a loop are
neither made permanent nor further expanded by the BDA since the algorithm uses the reflexive ⪯D-operator. As
a consequence, every path q that is made permanent fulfills γp,2(q) ≤ ℓ and the only possibly extracted path with
γp,2(q) = ℓ is p with costs γp(p) = (c(p), ℓ).

Since p is a shortest s-t-path, any extracted s-t-path q ̸= p fulfills γp,1(q) ≥ γp,1(p). Thus, if q is made permanent
before p, it is lex-smaller than p and we must have γp,1(q) = γp,1(p) and γp,2(q) < γp,2(p). The second inequality
implies that q and p are distinct paths and we thus can stop the execution of the BDA and return q as a second shortest
simple s-t-path. In this case, p and q are cost-equivalent w.r.t. c.

Assume p is permanent already and q is the next s-t-path extracted from the BDA’s priority queue. We must have
γp,1(p) < γp,1(q) (see last paragraph). Recall that the BDA finds a minimum complete set of efficient paths for Ip

BOSP.
Moreover, as already noted, paths are extracted from the algorithm’s priority queue in lex. nondecreasing order. Thus,
since efficient paths are simple, we conclude that there cannot exist a simple s-t-path q′ with γp,1(p) ≤ γp,1(q

′) <
γp,1(q) that is not found by the BDA. Since the γp,1 costs are equivalent to the original c costs of the paths in D, we
obtain that q is a second shortest simple s-t-path.

The shortest path p is the only simple path in Ip
BOSP with γ2(p) = ℓ. Since we want to find an efficient s-t-path q with

γp,2(q) < ℓ, the BDA can stop after at most two s-t-paths are extracted from the priority queue: the path p that is
efficient iff γp,1(p) < γp,1(q) and q itself. Using this stopping criterion, we define the following modified version of
the BDA as our new 2-SSP algorithm.

Definition 5 (BDA2SSP). The BDA2SSP is a 2-SSP algorithm. It modifies the BDA as follows.

Input In addition to a BOSP instance, the input of the BDA2SSP contains a non-negative integer ℓ.

Stopping Condition The BDA2SSP stops whenever an efficient s-t-path q with γp,2(q) < ℓ is extracted from the
priority queue or when the priority queue is empty at the beginning of an iteration.

Output Instead of a minimum complete set of efficient s-t-paths, the new BDA2SSP returns the suffix qv→t of the first
efficient s-t-path q with γp,2(q) < ℓ that it finds. Here, v is the node after which p and q deviate for the first
time. If such a path q does not exist, the BDA2SSP returns a dummy path if such a path does not exist.

3.3 Asymptotic Running Time and Memory Consumption

The following is a general statement that holds for any biobjective optimization problem [cf. Jochen Gorski and Sudhoff,
2023].

Lemma 1. Let X be the set of feasible solutions of a biobjective optimization problem and f : X → R≥0 × N the
associated cost function. The cardinality of a minimum complete set of efficient solutions is bounded by the size of the
set {f2(x) | x ∈ X}.
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Proof. Assume for a value y2 ∈ {f2(x) | x ∈ X} there are two efficient solutions x, x′ in a minimum complete set.
If f1(x) ̸= f1(x

′), then the solution with the smaller f1 value (weakly) dominates the other. If f1(x) = f1(x
′), both

solutions are cost-equivalent and, by definition, no minimum complete set contains both.

Our setting in this section assumes a shortest s-t-path p with ℓ arcs to be given and we look for a second shortest
s-t-path in the same graph. In the first paragraph of the proof of Theorem 3 we derived that any efficient path q for the
instance Ip

BOSP fulfills γp,2(q) ≤ ℓ. Lemma 1 applied to Ip
BOSP implies that every minimum complete set of efficient

s-v-paths, v ∈ V , has cardinality at most ℓ.

For the set of efficient s-t-paths computed by the BDA2SSP we even now that it contains at most two paths at the end of
the algorithm. Sadly, we cannot mirror this fact in the running time bound for the BDA2SSP. As explained in Bökler
[2018] and Maristany de las Casas et al. [2023] for a One-to-One BOSP instance, a minimum complete set of efficient
s-t-paths can contain less paths than the number of efficient s-v-paths calculated for an intermediate node v. Thus, even
though it calculates at most two s-t-paths, the BDA2SSP may compute ℓ− 1 (not ℓ because s-t-paths are not propagated)
s-v-paths for an intermediate node v. Using the running time bound of the BDA described in Theorem 2, we obtain the
following result.

Theorem 4. The BDA2SSP solves a 2-SSP instance I := (D, s, t, c, 2) in time

O (nℓ log n+ ℓm) = O (ℓ(n log n+m)) ∈ O (n(n log n+m)) . (4)

Based on the memory consumption derived for the BDA in Theorem 2, we conclude this section stating the space
consumption bound of the BDA2SSP.

Theorem 5. The BDA2SSP uses

O (nℓ+ n+m) ∈ O
(
n2 + n+m

)
∈ O

(
n2 +m

)
(5)

memory.

Proof. The original version of the BDA uses O (N + n+m) space where N =
∑

v∈V Nv and Nv is the number of
efficient s-v-paths calculated by the algorithm. We have N ≤ nNmax with Nmax = maxv∈V Nv and in our BDA2SSP
scenario Nmax < ℓ as discussed already. The modifications defined in Definition 5 to the original BDA to obtain the
BDA2SSP do not have any further impact on the space consumption.

3.4 Properties of the Second Shortest Simple Path Problem

In this section we discuss three structural properties of the 2-SSP problem. They are helpful for the description of our
new k-SSP algorithm introduced in Section 4. Note that whenever we remove a path p from a given digraph D, we
write D \ p and we delete the nodes and the arcs of p from D.

The following easy statement is essential for the understanding of the remainder of the chapter. The proof follows
directly from Definition 3.

Lemma 2. Consider a 2-SSP instance and let P = (p1, p2) be a solution sequence with associated deviation tree TP .
Then, p1 is the parent path of p2.

Lemma 3. Consider a 2-SSP instance I := (D, s, t, c, 2) and let P = (p1, p2) be a solution sequence. Assume that
(v, w) is p2’s deviation arc which is well defined due to Lemma 2. The suffix path pw→t

2 is a shortest w-t-path in the
digraph D \ ps→v

2 .

Proof. We can write p2 = ps→v
1 ◦ (v, w) ◦ pw→t

2 . If a w-t-path qw→t with c(qw→t) < c(pw→t
2 ) exists in D \ ps→v

2 we
have c(p2) > c(ps→v

1 ◦ (v, w) ◦ qw→t) and p2 would not be a second shortest s-t-path in D.

As a consequence of the last lemma, we formulate the following result.

Corollary 1. A second simple shortest path is given by

p2 := argmin
{
c(q)

∣∣∣ q = ps→v
1 ◦ (v, w) ◦ qw→t,

qw→t shortest w-t-path in D \ ps→v
1 ,

(v, w) ∈ δ+(v) \ p1, v ∈ p1

}
.

(6)

7
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We observe that the solution p2 in (6) is contained in the solution set (1) of a Replacement Path (RP) instance. Thus,
in a worst case scenario, the BDA2SSP needs to do as much effort as an RP algorithm to find p2 in the set (1) of RP
solutions. This intuition is formally mirrored in Williams and Williams [2018, Theorem 1.1]. The result states that
while currently having the same complexity, a truly subcubic 2-SSP algorithm implies a truly subcubic RP algorithm.
I.e., it is unlikely to design an algorithm solving 2-SSP instances faster than RP instances in the worst case.

However, for practical purposes the fact that the solution p2 from (6) is included in the set (1) unveils the strength of
the BDA2SSP as a 2-SSP algorithm: stopping after at most two paths reach the target node t reduces the number of
iterations in comparison to the need to solve O (n) One-to-One Shortest Path instances to calculate (1).

4 K-SPP Algorithm by Roditty and Zwick using the BDA

Roditty and Zwick [2012] discuss a black box algorithm for the k-SSP problem. It is a black box algorithm because the
authors do not specify how to solve the key subroutine in their algorithm: the computation of a second-shortest simple
path. Moreover, they do not implement their algorithm in the paper. In this section we fill the gap using the BDA2SSP.

The algorithm presented in [Roditty and Zwick, 2012] performs 2k computations of a second shortest simple path to
solve a k-SSP instance I := (D, s, t, c, k). It fills the solution sequence P iteratively. In our exposition we assume that
at any stage, the deviation tree TP associated with P exists implicitly. In particular, this allows us to use the notions
from Definition 3. We discuss this in detail in Remark 2. The pseudocode for our new algorithm is in Algorithm 1.

Remark 1 (Source nodes in IBOSP instances). Given an ℓth shortest path pℓ for some ℓ ∈ {1, . . . , k}, the corresponding
BOSP instance Ipℓ

BOSP is defined as in Definition 4 but the source node in Ipℓ

BOSP is not always the actual source node
s of our k-SSP instance. For Ipℓ

BOSP the source node is source(pℓ). Despite being important for the correctness of
Algorithm 1, this makes sense because in Definition 4 we assume a shortest path to be given. As discussed in the
previous section, the ℓth shortest path pℓ in the original graph D is not a shortest s-t-path but its suffix p

source(pℓ)→t
ℓ is

a shortest path in a modified version of D.

Algorithm 1: New algorithm for the k-SSP problem.
Input :k-SSP instance I := (D, s, t, c, k)
Output :Solution sequence P = (p1, . . . , pk) of distinct simple s-t-paths.

1 Priority queue of candidate s-t-paths C ← ∅;
2 p1 ← shortest s-t-path in D;
3 Solution sequence P ← (p1);
4 p2 ← BDA2SSP solution for Ip1BOSP;
5 (v, w)← Parent deviation arc of p2;
6 Add (v, w) to blocked(p1);
7 Insert p2 to C;
8 for ℓ ∈ {2, . . . , k} do
9 pℓ ← Extract path from C with min. costs;

10 Add pℓ to the solution sequence P ;
11 if ℓ == k then break;

12 qsource(pℓ)→t ← BDA2SSP solution for IpℓBOSP = (D̄, source(pℓ), t, γpℓ) with D̄ = D \ ps→dev(pℓ)
ℓ ;

13 if qsource(pℓ)→t ̸= NULL then
14 New s-t-path q ← p

s→source(pℓ)
ℓ ◦ qsource(pℓ)→t;

15 (v′, w′)← Parent deviation arc of q;
16 Add (v′, w′) to blocked(pℓ);
17 Insert q into C;

18 p← Parent path of pℓ;
19 qsource(p)→t ← BDA2SSP solution for IpBOSP = (D̄, source(p), t, γp) with D̄ = D\(ps→dev(p) ∪ blocked(p));
20 if qsource(p)→t ̸= NULL then
21 New s-t-path q ← ps→source(p) ◦ qsource(p)→t;
22 (v′, w′)← deviation arc of q;
23 Add (v′, w′) to blocked(p);
24 Insert q into C;
25 return P ;

8
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The global data structures of the algorithm are the solution sequence P and a priority queue C of s-t-paths sorted
according to the paths’ costs. Both structures are initially empty. In its initialization phase, the algorithm computes
a shortest s-t-path p1 in D w.r.t c and stores it in P as the first solution in the solution sequence (Line 2 and Line 3).
Additionally, a second shortest path p2 is computed applying the BDA2SSP to the Ip1

BOSP instance (Line 4). The obtained
path is inserted into C (Line 7). By Lemma 2 p1 is the parent path of p2. Every path in P has a list of blocked arcs
associated with it. For a path p, the list blocked(p) contains the deviation arcs from p’s children paths that are already
computed. When looking for further deviations from p, we delete the arcs in blocked(p) from the digraph to ensure
that the deviations leading to the already computed children paths of p are not computed again. Thus, since p2 is a child
path of p1, the p2’s deviation arc is added to blocked(p1) (Line 6).

After the initialization, the main loop of the algorithm with k − 1 iterations starts. Every iteration ℓ ∈ [2, k] starts with
the extraction of a minimal path from C (Line 9), which we call pℓ. pℓ is immediately added to P after its extraction
and it becomes part of the final solution sequence (Line 10).

First BDA2SSP calculation Let (v, w) = (dev(pℓ), source(pℓ)) be the deviation arc from pℓ as defined in Defini-
tion 3. Then, we build the instance Ipℓ

BOSP = (D̄, w, t, γpℓ
) with D̄ = D \ ps→v

ℓ . Recall that by Lemma 3, the suffix
pw→t
ℓ is a shortest w-t-path in D̄. Using the BDA2SSP, a second shortest w-t-path qw→t in D̄ w.r.t. γpℓ

is searched.
The result, if it exists, is a new suffix for the prefix ps→w

ℓ . Together, both subpaths build a new candidate s-t-path
q := ps→w

ℓ ◦ qw→t.

Postprocessing If q is successfully built, pℓ is its parent path (see Remark 2). Moreover, q’s deviation arc is added to
the list blocked(pℓ). Finally, q is added to C.

Second BDA2SSP calculation The second BDA2SSP query (Line 19) in every iteration looks for the next-cheapest
deviation from the parent path p of the extracted path pℓ. When building the corresponding 2-SSP instance Ip

BOSP, the
deviation arcs from p’s children paths must be deleted from the digraph D. Otherwise, the solution to Ip

BOSP would
be an already computed deviation. Apart from deleting the arcs in blocked(p) from D, we again delete p’s prefix
ps→dev(p) from p. This ensures that after the BDA2SSP computation, the concatenation of ps→source(p), where w is
the adjacent node to v in p, and the result qw→t is a simple path. If q is successfully built, the algorithm repeats the
postprocessing of the first BDA2SSP computation. This query search for the cheapest simple path alternative for pw→t

without considering the alternatives that have already been computed.

4.1 Correctness and Complexity

In this subsection we sketch the correctness proof and the complexity of Algorithm 1. The correctness of Algorithm 1
using a black box algorithm to solve the arising 2-SSP instances is discussed in Roditty and Zwick [2012].

In Algorithm 1 we use the parent-child relationship of paths introduced in Definition 3. Formally we would need a
proof to show that indeed the computed paths and our usage of this notion in the algorithm are in accordance with the
original definition. The following remark gives a strong intuition. The proof can then easily be concluded with an
induction step.

Remark 2. We know from Lemma 2 that p2’s parent path is p1. In the first iteration of Algorithm 1, we thus build a
source(p2)-t-path qsource(p2)→t in Line 12. It is used to build an s-t-path q := p

s→source(p2)
2 ◦ qsource(p2)→t. Since

by definition source(p2) ∈ p2 and source(p2) /∈ p1, q shares a prefix of maximum length with p2. Hence, p2 induced
the BOSP instance Ip2

BOSP that led to q’s computation and p2 is q’s parent path.

In the second BDA2SSP query in the first iteration, an s-t-path q is computed in Line 19. q already starts at s because
s = source(p1) and thus s is the source node in Ip1

BOSP (cf. Remark 1). In the corresponding digraph, the arcs in
blocked(p1) are deleted. At this stage, the list only contains p2’s deviation arc (v, w) = (dev(p2), source(p2)) that
was added to the list in Line 6. Hence, if qs→dev(q) coincides with p1 until a node dev(q) that comes after dev(p2)
along p1, q shares a prefix of maximum length with p1. Otherwise, if dev(q) does not come after dev(p2) along p1, q
shares a prefix of maximum length with p1 and p2. By definition, the parent path of q is then set to be the first of these
two paths in P , i.e., p1.

Recall that a child’s deviation node does not come before its parent’s deviation node as remarked already in Section 2.
Then, we repeat the arguments from the last paragraphs for any path extracted from C in Line 9 of Algorithm 1 to proof
that the notions from Definition 3 are correctly used in Algorithm 1.

The Algorithm 1 requires the deletion of prefixes from the digraph to ensure that it can generate distinct paths when
concatenating the suffixes build by the BDA2SSP with the corresponding prefix in the parent path (see Lemma 5).

9
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Moreover, deleting the prefixes in the graphs D̄ used by the BDA2SSP ensures that prefix nodes do not appear in the
paths obtained from the BDA2SSP.

Lemma 4. Let p be an s-t-path in the solution sequence P of Algorithm 1 with deviation node v and deviation arc
(v, w). Let qw→t be a second shortest path computed in Line 12 or in Line 19. The s-t-path q = ps→w ◦ qw→t is simple.

Proof. For the computation of qw→t, we delete the prefix ps→v from D to build D̄. Hence, both subpaths are node-
disjoint. As discussed already, the non-negativity of every γ ensures that the path output by the BDA2SSP is simple.
Hence, q does not contain a cycle.

The deletion of prefixes and blocked arcs in the graphs D̄ in Line 12 and in Line 19 ensures that every s-t-path found
in Line 14 or in Line 21 of Algorithm 1 is built and added to C only once. This is a property of the deviation tree that
partitions the set of s-t-paths in disjoint sets.

Lemma 5 (Roditty and Zwick [2012], Lemma 3.3.). Every s-t-path added to C is only added once.

The final correctness statement for Algorithm 1 is proven by induction and uses the correctness of the BDA2SSP and the
last two lemmas in this section.

Theorem 6 (Roditty and Zwick [2012], Lemma 3.4.). Algorithm 1 solves the k-SSP problem.

We end this section analyzing the running time bound and the memory consumption of Algorithm 1.

Theorem 7. Algorithm 1 solves a k-SSP instance I := (D, s, t, c, k) in time

O
(
kn

(
n log n+m

))
. (7)

Proof. The main loop of Algorithm 1 does k − 1 iterations. Except in the last iteration where it does not compute
new paths, it performs two BDA2SSP computations per iteration. Thus, it computes (2k − 4) ∈ O (k) new paths
using the BDA2SSP. Using the running time bound for the BDA2SSP derived in Theorem 4, we obtain the running
time bound (7) for Algorithm 1. Thereby we can neglect the effort for the concatenation of paths in Line 14 and in
Line 14 since they can be done in O(n) given that simple paths have at most (n− 1) arcs. Moreover, the priority queue
operations on C can also be neglected since the queue contains O(k) elements and we can assume input values of k s.t.
O (k log k) ⊂ O (km).

Theorem 8. Algorithm 1 uses O
(
kn+ n2 +m

)
memory.

Proof. By Theorem 5 we know that any BDA2SSP query in Line 12 or in Line 19 requires O
(
n2 +m

)
space. Algo-

rithm 1 does not run multiple BDA2SSP queries simultaneously. We store the paths in the solution sequence P , using
the deviation tree TP of P (cf Definition 3) that allows us to use the parent-child relationships between paths and the
notion of deviation arcs, deviation nodes, and source nodes. In TP every node v ∈ V can appear multiple times, one per
path in P . Since simple paths have at most n− 1 arcs, this results in O (kn) space.

4.2 Implementation details

The performance of Algorithm 1 in practice depends on the number of iterations required by the BDA2SSP queries.
Intuitively, we hope that the search deviates from and returns to the path input to the algorithm after only a few iterations.
On big graphs, finding k simple paths between the input nodes s and t is most often a local search since only a rather
small number of nodes needs to be explored. However, a BDA2SSP query that deviates from the input path but does not
return to it fast resembles a One-to-All BOSP algorithm. Thus, it performs a rather global search that requires a lot of
time.

The behavior defined above happens mainly when the target node t is not reachable from the source node source(p) of
a BDA2SSP query defined based on an s-t-path p. More precisely, there is always a source(p)-t-path in the considered
digraph, namely the subpath psource(p)→t but we are interested in a second shortest source(p)-t-path. However, if p’s
suffix is the only path, the BDA2SSP does not terminate until it empties its priority queue at the beginning of an iteration.
This behavior motivates the following pruning technique.
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Table 1: USA road networks used for experiments. For every graph, we define 200 s-t-pairs uniformly and at random.
Road Network Nodes Arcs

NY 264 346 733 846
BAY 321 270 800 172
COL 43 566 1 057 066
FLA 1 070 376 2 712 798
LKS 2 758 119 6 885 658
CTR 14 081 816 34 292 496

BDA2SSP Pruning Using the Paths’ Queue As soon as Algorithm 1 has at least k s-t-paths in P and in C, i.e., as
soon as |P |+ |C| ≥ k, we can possibly end BDA2SSP queries before t is reached or before the BDA2SSP heap becomes
empty. In this scenario, set cost c̄ := maxp∈C c(p). If the BDA2SSP extracts an s-v-path q for any v ∈ V with c(q) ≥ c̄,
the lexicographic ordering of the extracted paths during the BDA2SSP guarantees that no s-t-path p with costs c(p) < c̄
can be build using the suffix computed in that query. Hence, the BDA2SSP query can be aborted. Note that the condition
|P |+ |C| ≥ k is met after the k

2
th iteration at the earliest because in every iteration Algorithm 1 generates at most 2

new s-t-paths.

Pruning by Min Paths’ Queue Costs In graphs with multiple cost equivalent s-t-paths we may avoid some BDA2SSP
queries. Suppose c∗ is the minimum cost of paths stored in C at the beginning of an iteration, i.e. c∗ = minp∈C{c(p)}.
We denote the set of paths in C with costs c∗ by C∗ ⊆ C. If at the beginning of an iteration in Algorithm 1 we have
|P | + |C∗| ≥ k, we can terminate the algorithm after extracting the first k − |P | paths from the priority queue and
storing them in P . The avoided BDA2SSP queries would yield s-t-paths p with c(p) ≥ c∗ and thus would not destroy
the optimality of the output sequence P .

5 Experiments

We now return to Algorithm 1 and assess its practical performance by comparing it to the current state of the art: the
KM algorithm introduced in Kurz and Mutzel [2016].

5.1 Benchmark Setup

We benchmark Algorithm 1 on 100× 100 grid graphs and on road networks from parts of the USA. The choice of an
artificially generated set of graphs such as grid graphs and the well known USA road networks from [Demetrescu et al.,
2009] is common in the k-SSP literature.

Grid Graphs We consider a 100× 100 undirected grid graph and model it as a directed graph D with every edge
substituted by two directed arcs as usual. On the digraph D that has 10000 nodes and 39600 arcs, we define 10 different
scalar arc cost functions c. The arc costs are chosen uniformly and at random between 0 and 10. Each of these cost
functions, paired with the grid graph, builds a pair (D, c). For each of these pairs, we define 200 s-t-pairs, where s and
t are chosen uniformly at random from the set of nodes in D. Finally, for every tupel (D, s, t, c), we define a k-SSP
instance I := (D, s, t, c, k) using different values for k as shown in Table 4.

Road Networks We consider a subset of the USA road networks D included in Demetrescu et al. [2009]. The size
of the considered networks as well as their names are in Table 1. The cost for an arc in the graph corresponds to the
distance between its end nodes. We refer to the resulting arc cost function by c. For the s-t-pairs we draw 200 s-t-pairs
uniformly and at random from each graph’s nodes’ set. The final k-SSP instances are then defined using different values
for k for every tuple (D, s, t, c) as shown in Table 5.

Benchmark Algorithm We compare our implementation of Algorithm 1 that is available in [Maristany de las Casas,
2023] with the implementation of the KM algorithm [Kurz and Mutzel, 2016] kindly provided to us by the authors.
Both algorithms are implemented in C++ and use the same datastructures to store the graph. We explained the choice of
the KM algorithm for our benchmarks already in Section 1.1.

Environment We used a computer with an Intel(R) Xeon(R) Gold 6338 processor and assigned 30GB of RAM and
2h=7200s for each instance. Both algorithms are compiled using the g++ compiler and the -O3 compiler optimization
flag. Our code repository [Maristany de las Casas, 2023] includes the scripts used to run the KM algorithm (even though
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Table 2: Details on the report of geometric means in our tables in this section.
Columns Unit Accuracy

Time s Hundreds
Speedup = TKM/TNA \ Hundreds
Iterations amount Integer
Trees and BDA2SSP amount Integer

the code itself needs to be requested from the authors). This is relevant since the implementation includes some optional
arguments that highly impact its performance. Our chosen configuration resembles the performance of the best version
of the algorithm referenced in Kurz and Mutzel [2016].

5.2 Results

To mitigate the impact of outliers on the reported averages we always report geometric means in this section. In
Table 2 we specify the format of the columns used in the tables in this section. We used the publicly available files
results/evaluationGrids.ipynb and results/evaluationRoad.ipynb in [Maristany de las Casas, 2023] to
generate the tables and figures. The corresponding results folder also contains the detailed output lines for every
solved instance. Note that for every row in Table 4 and in Table 5 the evaluation scripts automatically generate scatter
plots like the ones in Figure 4 - Figure 7.

Speedups are calculated as the time needed by the KM algorithm divided by the time needed by Algorithm 1. Thus,
speedups greater than 1 indicate a faster running time for Algorithm 1. Instances that were not solved by any of the
two algorithms are not included in our reports. If an instance was solved by one of the algorithms only, we assume a
running time of T = 2h = 7200s for the other algorithm.

5.3 Grid Graphs

We summarize our results on grid graphs in Table 4. Table 3 explains the column names that are not self-explanatory.
For the chosen k-SSP instances on grids, we end up considering 2000 instances for every fixed value of k. As shown in
Table 4 up to k = 105, the KM algorithm and Algorithm 1 solved all instances. For k = 5× 105 the KM algorithm
fails to solve 49 instances and for k = 106 it does not solve 445 instances. All instances that are not solved by the
KM algorithm are due to the memory limit. In contrast, Algorithm 1 manages to solve all instances for every value of
k. Regarding the speedup, we observe that Algorithm 1 consistently outperfomrs the KM algorithm. Moreover, the
speedup increases as k increases. For k ≥ 5× 104 the speedup is close to or higher than an order of magnitude.

The reason for both the unsolved instances and the slower running times of the KM algorithm is that the algorithm
is forced to compute too many shortest path trees as shown in the column Trees in Table 4. In fact, for k ≥ 104 it
approximately needs to compute a tree for every 5th solution path. This is because the considered grid graph is originally
an undirected graph. After converting it to a directed graph by adding antiparallel arcs, it contains many cycles. The
KM algorithm initially computes a shortest path tree and it can build O (m) paths from that tree by switching tree arcs
and non-tree arcs. This procedure works as long as the switch does not cause the next s-t-path to be non-simple. Given
the great amount of antiparallel arcs in the considered grid graph, the KM algorithm cannot build many simple paths
from one shortest path tree.

The good performance of Algorithm 1 on grid graphs is due to the low number of iterations that it requires in every
BDA2SSP search. The column BDA2SSP in Table 4 reports how many out of at most 2k BDA2SSP queries are performed
on average. We see that due to the Pruning by Min Paths’ Queue Costs described in Section 4.2, Algorithm 1 can
skip around 20% of the BDA2SSP queries on average. Whenever the conducted queries find a new path, the average
number of iterations in every BDA2SSP query ranges from 20 to 28 as shown in the column Iterations ✓. This means
that the computed second simple shortest paths in Line 12 and in Line 19 are found fast. Moreover, in column BDA2SSP
✗ we report the number of BDA2SSP queries that do not find a suitable suffix to build a new s-t-path. There BDA2SSP
queries can fail either because t is not reachable or because the BDA2SSP Pruning using the Paths’ Queue explained
in Section 4.2 avoids the computation of the suffix. As reported in the column Iterations ✗, the stopping condition is
fulfilled after 16 to 17 BDA2SSP iterations hence avoiding the computation of unneeded and large sets of efficient paths.
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Table 3: Explanation of columns in Table 4, Table 5
Algorithm Column Name Explanation

KM Trees Shortest path trees computed on average.

Algorithm 1

BDA2SSP BDA2SSP queries on average. At most 2k − 4.
BDA2SSP ✗ Average number of BDA2SSP queries that did not reach t.
Iterations ✓ Avg. iterations in BDA2SSP queries that reached t.
Iterations ✗ Avg. iterations in BDA2SSP queries that did not reach t.

Table 4: Summarized results obtained from the k-SSP instances defined on grid graphs. The column BDA2SSP ✗ reports the number of BDA2SSP runs that did not
return a second shortest path. If Iterations ✗ is a small number, the non-existence of a relevant second shortest path could be proven fast (cf. Section 4.2).

k
KM Algorithm 1 SPEEDUP

Solved Trees Time Solved BDA2SSP BDA2SSP ✗ Iterations ✓ Iterations ✗ Time

1000 2000 97 0.05 2000 1604 245 28 17 0.01 3.68
5000 2000 778 0.25 2000 8182 1303 25 17 0.05 4.66

10000 2000 1847 0.53 2000 16387 2656 25 16 0.10 5.17
50000 2000 11207 4.82 2000 82481 13541 23 16 0.49 9.76

100000 2000 24011 9.95 2000 167223 28760 22 16 1.03 9.70
500000 1951 130124 65.29 2000 836001 142677 21 16 6.16 10.61

1000000 1555 220368 249.81 2000 1681693 291944 20 16 12.19 20.50
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5.4 Road Networks

In Table 5 we summarize the results obtained on the road networks. Again, Table 3 explains the column names that are
not self-explanatory. For every road network and every value of k Table 5 contains a row showing the average results
over the 200 possibly solved instances in that group.

Solvability The first noticeable difference between both algorithm is that even on the smallest NY network, the
KM algorithm fails to solve a considerable amount of instances when k ≥ 5× 104 (see also Figure 4). Interestingly,
also on the much bigger networks, k = 5× 104 constitutes a threshold beyond which the KM algorithm struggles to
solve multiple instances. Figure 5 shows an example. A look at the KM Time column unveils that the average running
times of the KM algorithm are way below the time limit T = 7200s. Indeed, the KM algorithm’s bottleneck regarding
solvability is, as on grid graphs, the memory limit of 30GB. On graphs smaller than LKS, Algorithm 1 manages to
solve ≥ 90% of the instances with k < 106. The percentage of solved instances with k ≥ 5× 105 on the LKS and the
CTR networks decreases rapidly. Again, time is not the problem. Whenever Algorithm 1 fails to solve an instance, its
because it hits the memory limit. At this point it is worth noting that instances with k ≥ 105 on road networks are novel
in the k-SSP literature for algorithms matching the running time bound derived in Theorem 7.

Running Times For k < 10 the KM algorithm is always faster than Algorithm 1. For every other value of k and
for every considered road network, Algorithm 1 is faster on average. We can observe clearly that for every graph, the
speedup grows as the value of k grows. The actual values for the speedup favor Algorithm 1 most clearly on the BAY
instances. On this graph, speedups of over an order of magnitude on average are reached for k = 5000 already. The
speedup correlates with the number of shortest path computations required by the KM algorithm. The BAY network
seems to be particularly hard in this regard. FLA and LKS are interesting networks. On many instances, there are often
k s-t-paths with the cost of a shortest path, regardless of the value of k. Additionally, the KM algorithm manages to
solve instances on this huge networks computing less than 51 and less than 10 shortest path trees in FLA and LKS,
respectively. For that reason, the speedup achieved by Algorithm 1 on this graphs is smaller. See Figure 6 for a visual
example. On such graphs, the main effort by the KM algorithm is checking if the computed paths are simple. Still, for
large values of k, Algorithm 1 outperforms the KM algorithm on these networks regarding solvability and speed (see
Figure 7). We can also observe in Table 5 that the pruning techniques discussed in Section 4.2 work well in practice.
The column BDA2SSP ✗ reports the average number of BDA2SSP queries that do not find a relevant second shortest
simple path. These searches, as explained in Section 4.2, could cause the BDA2SSP queries to compute minimum
complete sets of efficient paths for every reachable node. However, using our pruning techniques, we can see in the
column Iterations ✗ that the average number of iterations on these searches remains low. Often the required iterations
on average are even lower than the iterations needed in succesful BDA2SSP queries (see column Iterations ✓).

6 Conclusion

We use the black box k-Shortest Simple Path (k-SSP) algorithm by Roditty and Zwick [Roditty and Zwick, 2012] to
solve the problem. This algorithm solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem
as a subroutine. In their paper, the authors do not specify how to solve the subroutine efficiently. Since it is a scalar
optimization problem, solving it using biobjective path search sounds counter intuitive. However, in this paper we have
shown the 2-SSP can be solved as a biobjective problem using an appropriate biobjective arc cost function. By doing
so, we still adhere to the state of the art asymptotic running time bound for the problem. Moreover, we can avoid the
nodewise comparison of paths to determine if the computed (sub)paths during our biobjective search are simple; a
constant time dominance check suffices. Given a shortest path with ℓ nodes, other k-SSP algorithms need ℓ One-to-One
Shortest Path computations to find a second shortest path. Our biobjective approach considers these ℓ searches in one
biobjective path search and stops as soon as the required second shortest path is found. For these reasons we are able to
solve large scale k-SSP instances efficiently in practice. Our experiments support this claim.
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Figure 4: Results obtained from the 200 instances (if
solved) defined on NY networks with k = 105.
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Figure 5: Results obtained from the 200 instances (if
solved) defined on COL networks with k = 5× 105.
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Figure 6: Results obtained from the 200 instances defined
on FLA networks with k = 5000.
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Figure 7: Results obtained from the 200 instances (if
solved) defined on LKS networks with k = 106.
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Table 5: Results obtained from the k-SSP instances defined on road networks. If Iterations ✗ is a small number, the non-existence of a relevant second shortest path
could be proven fast (cf. Section 4.2).

k
KM Algorithm 1 SPEEDUP

Solved Trees Time Solved BDA2SSP BDA2SSP ✗ Iterations ✓ Iterations ✗ Time

NY

10 200 1 0.05 200 15 4 186 130 0.10 0.52
100 200 4 0.15 200 188 51 140 98 0.12 1.28

1000 200 20 1.13 200 1935 523 112 88 0.23 4.98
5000 200 109 4.48 200 9760 2677 100 82 0.68 6.57

10000 197 220 8.98 200 19552 5363 96 79 1.18 7.61
50000 182 987 47.34 200 97824 26736 88 76 5.20 9.11

100000 168 1643 113.67 198 196277 53170 84 69 9.73 11.68
500000 125 4405 867.08 198 980103 266634 78 66 48.72 17.80

1000000 91 4116 1975.73 196 1959033 532676 77 61 90.82 21.75

BAY

10 200 2 0.07 200 14 3 215 168 0.10 0.71
100 200 6 0.20 200 189 50 182 144 0.12 1.67

1000 200 67 2.00 200 1961 520 145 134 0.30 6.70
5000 198 439 11.17 200 9868 2650 128 123 0.96 11.63

10000 190 847 23.18 200 19758 5303 122 119 1.70 13.60
50000 151 3598 170.32 199 98883 26579 111 113 7.97 21.37

100000 127 5710 438.19 199 197836 53240 107 113 16.77 26.13
500000 61 12297 2528.40 190 991928 263977 104 81 77.39 32.67

1000000 40 15572 4113.70 189 1983487 526322 101 79 138.60 29.68

COL

10 200 1 0.09 200 11 3 128 152 0.13 0.69
100 200 3 0.22 200 141 46 109 133 0.15 1.41

1000 200 11 1.81 200 1557 420 79 123 0.33 5.45
5000 198 38 9.61 200 8300 2506 70 120 1.10 8.76

10000 193 62 16.38 200 16930 4763 70 120 2.09 7.83
50000 156 98 138.73 198 86874 25251 73 112 11.11 12.49

100000 140 117 337.81 195 174875 48851 73 97 23.33 14.48
500000 104 115 1433.21 192 883570 234159 69 92 106.66 13.44

1000000 92 124 2396.19 188 1802480 459770 72 86 202.93 11.81

CAL

10 200 1 0.46 200 11 4 258 281 0.58 0.79
100 200 2 0.83 200 141 45 257 203 0.63 1.32
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1000 200 5 4.20 200 1680 374 223 193 1.24 3.38
5000 197 16 19.48 200 9122 2374 214 186 4.43 4.39

10000 192 25 42.71 200 18463 4760 204 178 8.56 4.99
50000 166 61 317.06 197 95921 24492 185 145 47.17 6.72

100000 152 81 654.53 198 192603 49266 179 149 92.33 7.09
500000 93 208 2942.28 195 964115 246741 165 129 454.34 6.48

1000000 82 325 4287.38 178 1946894 500079 172 124 927.41 4.62

FLA

10 200 1 0.21 200 10 4 176 162 0.32 0.66
100 200 2 0.52 200 132 41 147 194 0.37 1.41

1000 200 5 3.46 200 1468 417 105 198 0.80 4.34
5000 194 14 17.44 200 7853 2448 78 181 2.63 6.64

10000 188 22 30.58 200 15763 4858 72 179 5.17 5.91
50000 168 51 184.12 193 80003 23883 67 113 24.91 7.39

100000 147 43 505.38 192 161864 47771 72 107 42.20 11.98
500000 114 38 2190.95 187 821343 229620 85 98 220.34 9.94

1000000 92 51 3413.61 174 1699749 464313 111 88 512.08 6.67

LKS

10 200 1 0.53 200 10 3 172 242 0.82 0.64
100 200 1 0.99 200 114 45 175 176 0.87 1.14

1000 200 2 5.25 200 1242 344 139 138 1.52 3.46
5000 198 3 26.58 200 6638 2102 130 167 4.71 5.65

10000 194 4 52.56 200 13596 4470 123 176 9.25 5.68
50000 182 4 317.58 199 69638 23313 102 144 49.39 6.43

100000 172 4 653.23 199 141236 47241 97 144 96.96 6.74
500000 122 5 2883.55 171 735793 231196 95 134 657.57 4.39

1000000 95 7 4692.76 138 1595516 437025 97 131 1465.32 3.20

CTR

10 200 1 4.39 200 9 4 200 285 5.42 0.81
100 200 1 8.63 200 105 43 194 204 5.70 1.51

1000 200 1 45.66 200 1086 288 159 153 9.42 4.85
5000 199 1 213.61 199 5585 1943 142 147 32.08 6.66

10000 198 1 431.95 199 11366 4135 129 150 69.49 6.22
50000 168 2 2135.44 199 59046 22443 107 162 433.13 4.93

100000 154 2 4034.49 198 119179 43441 109 151 916.97 4.40
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