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Abstract

We consider network-based decentralized optimization problems, where each node
in the network possesses a local function and the objective is to collectively attain a
consensus solution that minimizes the sum of all the local functions. A major chal-
lenge in decentralized optimization is the reliance on communication which remains
a considerable bottleneck in many applications. To address this challenge, we pro-
pose an adaptive randomized communication-efficient algorithmic framework that re-
duces the volume of communication by periodically tracking the disagreement error
and judiciously selecting the most influential and effective edges at each node for com-
munication. Within this framework, we present two algorithms: Adaptive Consensus
(AC) to solve the consensus problem and Adaptive Consensus based Gradient Track-
ing (AC-GT) to solve smooth strongly convex decentralized optimization problems. We
establish strong theoretical convergence guarantees for the proposed algorithms and
quantify their performance in terms of various algorithmic parameters under standard
assumptions. Finally, numerical experiments showcase the effectiveness of the frame-
work in significantly reducing the information exchange required to achieve a consensus
solution.

1 Introduction

The problem of network-based decentralized optimization can be formally stated as,

min
xi∈Rd

1

n

n∑
i=1

fi(xi)

s.t. xi = xj , ∀ i, j ∈ [n] := {1, 2, · · · , n},
(1)
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where fi(·) : Rd → R is a component of the objective function located at node i ∈ [n], and
xi ∈ Rd is a copy of the optimization variable at node i ∈ [n]. A closely related yet simplified
version of this problem, whose goal is to reach consensus among the nodes, i.e., xi = xj
for all i ∈ [n], without minimizing an objective function, is referred to as the consensus
problem [43]. Problems of these types arise in several applications including wireless sensor
networks [38, 46], power systems design [21, 31], parallel computing [8, 15], and robotics
[3, 11]. More recently, decentralized optimization has experienced renewed interest owing
to the abundance of decentralized data and privacy-preserving machine learning [23, 44],
where fi is a function of the data held by node i ∈ [n]. Several classes of decentralized
optimization algorithms have been proposed to solve (1), where the main components
consist of local computations at every node and information exchange (communication)
between nodes in order to achieve consensus [8]. The communication requirement in many
applications remains a major bottleneck in the performance of decentralized optimization
methods [27, 32, 34, 41, 42, 51].

In this work, we propose and develop a novel approach to reduce the communication
requirements in decentralized optimization without significantly impacting the convergence
properties of the underlying algorithm. The core principle of our approach involves judi-
ciously selecting a subset of the edges of the network (instead of all the edges) along which
communication is performed at each iteration, thereby reducing the communication efforts.
A key observation motivating this approach is that selectively pruning the edges of the net-
work has marginal impact on the spectral properties of the mixing matrix associated with
any graph topology. This matrix plays a crucial role in determining the rate of informa-
tion diffusion through the network [51], which subsequently affects the rate of achieving
consensus amongst nodes. In fact, for many network structures, the spectral properties
remain virtually unchanged even after selectively pruning up to 50-60% of the edges (see
Section 4.1), thus retaining a consensus rate akin to that of an unpruned network while
reducing the communication volume.

However, to fully leverage the potential of such pruning approaches, one requires in-
formation about the most influential edges, i.e., the edges that achieve consensus with
minimal communication cost, information that is typically unknown. For example, the
bridge edge that connects two fully connected components in a barbell graph [22, Figure 2]
has a significantly more influential role in the consensus process than other edges. There-
fore, it is beneficial to communicate along the bridge edge as compared to other edges.
Unfortunately, due to the decentralized nature of the network, nodes cannot a priori deter-
mine these influential edges. Moreover, the relative influence of different edges in achieving
consensus can vary significantly depending on the network state and structure, and the
application. To overcome this challenge, our work proposes a cyclic adaptive randomized
procedure that can be implemented in a decentralized manner to identify such edges and
reduce the communication costs. Specifically, we periodically track the disagreement error
along edges during the consensus process to estimate the relative importance of edges in
achieving consensus and maintain a network with only the most influential edges.
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1.1 Contributions

A concise summary of the contributions is as follows:

• We propose an adaptive communication-efficient algorithmic framework. Within this
framework, we introduce two new algorithms: Adaptive Consensus (AC) to solve the
consensus problem and Adaptive Consensus based Gradient Tracking (AC-GT) to solve
the decentralized optimization problem1. The novelty in our approach lies in the
ability to exploit the underlying structure of the network to reduce the volume of
communication. This is accomplished via an adaptive consensus scheme that selects
the most influential and effective edges for communication at each node based on the
graph topology. The proposed framework has broad applicability and can be integrated
with other existing decentralized optimization algorithms or adapted to other settings
including directed graphs, time-varying topologies, and asynchronous updates.

• We provide theoretical convergence guarantees for smooth strongly convex problems
for both AC and AC-GT, demonstrating that they retain the linear convergence proper-
ties of their base counterparts, i.e., methods that do not utilize the adaptive consensus
framework, while requiring reduced communication. The analysis utilizes the inhomo-
geneous matrix product theory to prove linear convergence by showing that the pruned
matrix products remain contractive. In contrast to prevalent analytical approaches in
decentralized optimization with time-varying graphs, the rate constant in our results is
obtained using the coefficient of ergodicity which effectively highlights the dependence
of the convergence rate on the network pruning procedure parameters.

• We illustrate the empirical performance of AC in solving the standard consensus prob-
lem and of AC-GT in solving linear regression and binary classification logistic regres-
sion problems. Our numerical results highlight that the proposed methods achieve
significant communication savings while maintaining solution quality, compared to
the contemporary state-of-the-art techniques.

1.2 Literature Review

The proposed idea of exploiting the relative significance of edges to improve algorithmic
efficiency is not exclusive to decentralized optimization and has been studied in other fields
that use graphical modeling on networks [17, 18, 30, 50]. In the context of traffic modeling,
a converse analogue falls under the category of “Braess’s paradox”, which suggests that
adding one or more roads to a road network can actually slow down the overall traffic
flow [17, 50]. Another example, although somewhat tangential, is found in neural networks
where the “lottery ticket hypothesis” states that within dense, feed-forward networks, there

1For better exposition of the consensus framework, the consensus and decentralized optimization prob-
lems are treated separately even though the former is a simplified version of the latter.
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are smaller pruned sub-networks that, when trained in isolation, can achieve test accuracy
comparable to the original network in a similar number of iterations [18, 30].

Within decentralized optimization, several recent works have proposed communication-
efficient algorithms that balance the communication and computation costs to achieve
overall efficiency [4–7, 10, 45, 57]. Our proposed approaches are complementary to and can
be integrated with these existing works. Furthermore, the proposed framework (adaptive
consensus) adds to the list of techniques that reduce the communication costs. One such
approach is gossip communication protocols where nodes selectively communicate with
neighbors asynchronously [9, 12, 53, 54]. It is worth noting that in gossip protocols a convex
optimization problem is often solved to optimize the spectral gap of the expected consensus
matrix [9]. Another class of approaches leverage quantized communication where only
quantized (reduced size) information is communicated to reduce the communication costs.
However, these techniques typically lack convergence guarantees to the solution [8, 48].
Moreover, quantization techniques can also be incorporated into our framework to further
reduce the communication overhead. We emphasize that our approach differs significantly
from the aforementioned approaches in several ways including the focus on enhancing
communication efficiency by adaptively modifying the graph structure in a decentralized
manner, and achieving convergence guarantees to the solution.

While several classes of algorithms have been proposed for solving decentralized op-
timization, gradient tracking methods have emerged as popular alternatives due to their
simplicity, optimal theoretical convergence properties and empirical performance [4, 13, 26,
33, 49, 56]. We incorporate the proposed communication-efficient technique into the gra-
dient tracking algorithmic framework with the goal of reducing the communication costs
while retaining optimal convergence guarantees. Furthermore, we note that the setting
of time-varying graphs, which also arises in our work, has been explored previously in
[1, 33, 35, 52], among others.

1.3 Organization

The paper is organized as follows. In the remainder of this section, we define the nota-
tion employed in the paper. In Section 2, we describe the network model, introduce the
Adaptive Consensus (AC) algorithm, and establish convergence guarantees under standard
assumptions. Building upon the adaptive consensus procedure and gradient tracking algo-
rithms, we propose the Adaptive Consensus based Gradient Tracking (AC-GT) algorithm
and study its convergence properties in Section 3. Section 4 presents numerical results
that illustrate the performance of the proposed algorithms. Finally, concluding remarks
are provided in Section 5.
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1.4 Notation

We use R to denote the set of real numbers and N to denote the set of all strictly positive
integers. The ℓ2-inner product between two vectors is denoted by ⟨·, ·⟩ and ⊗ denotes the
Kronecker product between two matrices. All norms, unless otherwise specified, can be
assumed to be ℓ2-norms of a vector or matrix depending on the argument. Let ⌊x⌋ (⌈x⌉)
denote the nearest integer less (greater) than or equal to x. We use a|b to denote integer
division between any two a, b ∈ N, i.e., a|b = ⌊a/b⌋. We use 1n := 1

n1n ⊗ Id ∈ Rnd×d,
where 1n ∈ Rn is the column vector of all ones and Id ∈ Rd×d is the d× d identity matrix.
For any matrix Q with eigenvalues −1 < λn ≤ · · · ≤ λ2 < λ1 = 1, the spectral gap is
defined as σ(Q) := 1−max{|λn|, |λ2|}. The set A \B consists of the elements of A which
are not elements of B. We use x∗ denotes the optimal solution of (1). We use the column
vector xi,k ∈ Rd to denote the value of the objective variable held by node i at iteration
k. The vector xk ∈ Rnd denotes the column-stacked version of xi,k and ∇f(xk) denotes the
column-stacked gradients, i.e.,

xk := [x1,k, · · · , xn,k] ∈ Rnd and ∇f(xk) :=
[
∇f1(x1,k), · · · ∇fn(xn,k)] ∈ Rnd,

where ∇fi : Rd → Rd is the gradient of the local function fi. The following quantities are
used in the presentation and analysis of the algorithms,

x̄k :=
1

n

n∑
i=1

xi,k ∈ Rd, x̄k = [x̄k, · · · , x̄k] ∈ Rnd, ∇f(x̄k) :=
1

n

n∑
i=1

∇fi(x̄k) ∈ Rd.

2 Adaptive Consensus

This section provides a description of the pruning protocol which serves as the basic building
block for the proposed consensus scheme referred to as the Adaptive Consensus algorithm
(Algorithm 2, ADAPTIVE CONSENSUS (AC)). We describe the network model we assume
in the paper, discuss the pruning protocol, and present the algorithm and its associated
convergence guarantees.

2.1 Network Model

The underlying network is assumed to be modeled by a undirected graph G = {V, E},
where V is the set of nodes and E is the set of edges. We use the matrix Q = [qij ]i∈[n],j∈[n]
to denote the mixing matrix. The mixing matrix has the following properties: the entry
qij > 0 (assumed to be equal to qji) if there is a link between any two nodes i, j ∈ V. We
use Ei to denote the set of all edges (i, j) such that j ∈ V is a neighbor of i ∈ V, i.e., the set
of all j ∈ V with j ̸= i for which qij > 0. Note that the neighbors of i for any i ∈ [n] is the
set of all j such that (i, j) ∈ Ei. Since we assume that the graph is undirected, (i, j) ∈ Ei
if and only if (j, i) ∈ Ej . We make the following assumption on the network.

Assumption 2.1 (Graph Connectivity). G = {V, E} is static and connected.
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2.2 Pruning Protocol

The main goal of the pruning protocol is to provide a systematic approach for selecting the
(subset of) edges within a graph along which to communicate in order to achieve consensus
with reduced communication efforts. To be more precise, given the reference graph G(V, E)
and a set of node estimates ai for all i ∈ [n], the pruning protocol generates a modified graph
G(V, Ē) by selectively removing edges from the reference graph. The edges to be pruned
are determined by a function of the node estimates. The function assigns a probability to
each edge in E based on its likelihood of being least effective and influential with respect
to achieving consensus. The pseudo-code for the pruning protocol is given in Algorithm 1.

Algorithm 1 PRUNING PROTOCOL(G(V, E), ai, (κ̄i, κ
¯i
), β).

Inputs: Graph G(V, E); Node estimates ai for all i ∈ [n]; Softmax parameter β ∈ [0,∞]; Thresholding
factors (κ̄i, κ

¯i) ∈ [0, 1]2 for all i ∈ [n].

1: Set Eprune
i := {} for all i ∈ [n].

2: for all i ∈ [n] in parallel do
3: Receive estimates aj from all neighbors j.
4: Compute a dissimilarity measure ∆(ai, aj) for all edges (i, j) ∈ Ei.
5: while |Eprune

i | ≤ ⌊κ̄i × |Ei|⌋ do
6: Draw a sample edge (i, j′) from Ei \ Eprune

i according to:

pi,j ∼ exp(−β∆(ai,aj))∑
(i,j′)∈Ei\E

prune
i

exp(−β∆(ai,aj′ ))
, ((i, j) ∈ Ei \ Eprune

i ).

7: Update set Eprune
i → Eprune

i ∪ (i, j′) for all i ∈ [n].
8: end while
9: end for

10: Set Ēi := Ei, for all i ∈ [n].
11: for all all i ∈ [n] do
12: Send requests to all neighbors j such that (i, j) ∈ Eprune

i to prune edge (j, i) ∈ Ej .
13: Receive request from all neighbors j′ such that (j′, i) ∈ Eprune

j′ to prune edge (i, j′) ∈ Ei.

14: for all (i, j′) such that (i, j′) ∈ Eprune
i do

15: Remove edge (i, j′) from Ēi.
16: end for
17: for all requests (i, j′) such that (i, j′) /∈ Eprune

i do
18: if |Ēi| > ⌈κ

¯i|Ei|⌉ then
19: Remove edge (i, j′) from Ēi.
20: end if
21: end for
22: end for

23: if Graph=‘Undirected’ then
24: for all (i, j) ∈ Ēi and (j, i) /∈ Ēj do
25: Update set Ēj → Ēj ∪ (j, i).
26: end for
27: end if

Output: G(V, Ē), where Ē := ∪n
i=1Ēi.
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Algorithm 1 has three free (user-defined) parameters (κ̄i, κ
¯i

and β). Broadly speaking,
κ̄i ∈ [0, 1] represents the fraction of edges to be pruned at node i ∈ [n] and κ

¯i
∈ [0, 1]

is a lower bound on the minimum number of edges retained at node i. The parameter
β ∈ [0,∞] determines the level of influence of the dissimilarity measure in assigning the
pruning probabilities. The role and significance of these parameters becomes evident by
examining the main steps of the protocol, which we discuss next.

Selecting Candidate Edges for Pruning To select the edges to be pruned, each node
i ∈ [n] constructs a set Eprune

i by iteratively drawing a sample edge from the set Ei \Eprune
i ,

⌊κ̄i × |Ei|⌋ times, where κ̄i represents the fraction of the total number of edges to be
removed at node i during pruning. The probability of selecting an edge (i, j) is determined
by the softmax of a dissimilarity measure (denoted by ∆(ai, aj)) between the estimates at
i and j. A possible candidate for ∆(ai, aj) is the ℓ1-norm difference between ai and aj ,
i.e., ∥ai − aj∥1. For large values of the parameter β (the argument of the softmax) edges
exhibiting small dissimilarity (small ∆(ai, aj)), where ai and aj are in similar, have an
increased likelihood of being pruned.

More formally, for the kth draw at node i ∈ [n], where 1 ≤ k ≤ ⌊κ̄i|Ei|⌋, the probability
distribution over the set of edges (i, j) ∈ Ei \ Eprune

i is given by

pi,j ∼ exp(−β∆(ai,aj))∑
(i,j′)∈Ei/E

prune
i

exp(−β∆(ai,aj′ ))
, for all (i, j) ∈ Ei \ Eprune

i ,

where β ∈ [0,∞] is the softmax parameter that controls the influence of the dissimilarity
measure. Note that β = ∞ represents the greedy case, where each node i ∈ [n] selects the
top ⌊κ̄i|Ei|⌋ edges with least dissimilarity measure. At the other extreme, β = 0 represents
the case of random pruning independent of the dissimilarity measure.

Pruning Mechanism To perform the actual pruning, each node i ∈ [n] sends a request
to neighboring nodes j, where (i, j) ∈ Eprune

i , to prune edge (j, i). At the same time,
node i ∈ [n] receives and catalogues the requests from all its neighboring nodes j′ with
(j′, i) ∈ Eprune

j′ to prune edges (i, j′). It is worth noting that the request for (i, j′) does

not necessarily require (i, j′) to be in Eprune
i . Initially, each node creates a copy Ēi of the

original set of edges Ei. The following steps are then performed in order by each node:

(i) For each (i, j′) such that (i, j′) ∈ Eprune
i , edge (i, j′) is removed from Ēi. This covers

the ideal case where both nodes i and j′ want to remove the edge (i, j′) and (j′, i) from
their respective edge sets Ei and Ej′ .

(ii) If (i, j′) /∈ Eprune
i , then the edge is pruned if |Ēi| > ⌈κ

¯i
|Ei|⌉. So, node i ∈ [n] prunes an

edge not included in Eprune
i only if the number of edges remaining in Ēi is greater than

a certain fraction κ
¯i

of |Ei|. An implicit assumption here is that κ
¯i

≤ 1 − κ̄i so that
⌈κ
¯i
|Ei|⌉ ≤ ⌈(1− κ̄i)|Ei|⌉. It should be noted that for the algorithm to be well-defined,

pruning requests of this type are processed in the order in which they are received.
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The output of Algorithm 1 is G(V, Ē), where Ē := ∪iĒi. An important point worth noting
here is that the resulting set Ēi for i ∈ [n] may contain edges (i, j) for which (j, i) /∈ Ēj .
To make the pruned graph undirected, there are two possible approaches; either node j
adds (j, i) to Ēj , or alternatively, node i removes (i, j) from Ēi. These approaches can be
implemented by performing one additional round of communication among the nodes with
negligible overhead.

2.3 Adaptive Consensus

Building upon the pruning protocol presented in the previous subsection, we introduce an
algorithm to solve the consensus problem [37, Section 1], which requires the convergence of
all the node estimates to the average of their initial estimates. The pseudo-code is provided
in Algorithm 2.

Algorithm 2 ADAPTIVE CONSENSUS (AC)

Inputs: Graph G(V, E); Cycle length τ ∈ N; Softmax parameter β ∈ [0,∞]; Thresholding factors
(κ̄i, κ

¯i) ∈ [0, 1]2 for all i ∈ [n]; Initial estimates xi,0 ∈ Rd for all i ∈ [n]; Total number of iterations
T ∈ N.
1: for k = 0, . . . , T do
2: for all i ∈ [n] in parallel do
3: if k ∈ I, then
4: Generate G(V, Ēk|τ ) ∼ PRUNING PROTOCOL(G(V, E), xi,k, (κ̄i, κ

¯i), β).
5: Get new weights q̄ij [k|τ ] ∼ GENERATE WEIGHTS (G(V, Ēk|τ )).
6: end if
7: Update estimate at node i according to: xi,k+1 =

∑n
j=1 q̄ij [k|τ ]xj,k.

8: end for
9: end for

Output: xi,T for all i ∈ [n].

We discuss the main steps of the algorithm and how to select the parameters κ̄i and κ
¯i
.

Algorithm 2 has a cyclic structure with cycle length τ ∈ N. The set of indices where the
pruning protocol is executed is denoted by I. For any k ∈ I, the iterations t ∈ [k, k + τ)
are said to constitute a consensus cycle.

Pruning Step At the start of the k|τ consensus cycle, the pruning protocol is executed to
obtain the pruned graph G(V, Ēk|τ ), where Ēk|τ := ∪iĒi,k|τ , using the current local estimates
xi,k for all i ∈ [n]. Subsequently, the mixing matrix, denoted by Qk|τ := [qij [k|τ ]]i∈[n],j∈[n],
of the pruned graph G(V, Ēk|τ ) is constructed in a decentralized manner. As an example,
we can consider the Metropolis-Hastings scheme [33], which generates the weights via the
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following prescribed rule:

qij [k|τ ] :=


1

(1+max{|Ēi,k|τ |,|Ēj,k|τ |})
if (i, j) ∈ Ēk|τ

1−
∑n

p=1 q̄ip[k|τ ] if i = j

0 otherwise,

(2)

where Ēi,k|τ denotes the (pruned) edge set at node i ∈ [n].

Pruned Graph based Averaging For all iterations t ∈ [k, k + τ) with k ∈ I, the
algorithm performs decentralized averaging using the pruned weights, q̄ij [k|τ ]. Subsequent
to this, the pruning step (Line 4, Algorithm 2) is performed again with the updated node
estimates.

Remark 2.1. We make the following remarks about Algorithm 2.

• It is worth noting that the ideal choice of values for κ̄i and κi can be problem-specific
and depends on the network structure. For instance, preserving connectivity might be
crucial in some cases, while in others, optimizing for low communication overhead may
take precedence. Broadly speaking, a higher value of κ̄i results in aggressive pruning
more suited to graphs with high edge density. Conversely, κi acts as a lower bound
on the edges to be retained post pruning, and a higher value of κi corresponds to a
more conservative pruning approach, which is beneficial if maintaining connectivity
is important. For β, lower values lead to increased randomness in edge selection,
resembling approaches such as the gossip protocol [9], while higher values promote a
more deterministic and greedy approach to edge selection.

• If directed edges are permitted in the output of the pruning protocol, the application
of the push-sum protocol [25] offers an alternative to simple distributed averaging that
alleviates the requirement for doubly stochastic mixing matrices.

2.4 Convergence Analysis

To provide convergence guarantees, we begin by writing the key step of AC (Line 7, Algo-
rithm 2) in matrix form by employing the stacked vector notation,

xk+1 = Qkxk, (3)

where Qk = Qk ⊗ Id = Qk|τ ⊗ Id ∈ Rnd×nd, where Qk|τ := [qij [k|τ ]]i∈[n],j∈[n] ∈ Rn×n

denotes the mixing matrix of the pruned graph G(V, Ēk|τ ) for the k|τ cycle. We use Q[r :

s] ∈ Rnd×nd to denote the product of s− r consecutive matrices indexed by {Qk}s−1
k=r, i.e.,
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Q[r : s] := Qs−1 × · · · ×Qr, with the convention that Q[s : s] := In ⊗ Id ∈ Rnd×nd. Using
the above notation, we can express x(k+1)τ for any k ≥ 0 in terms of x0 as follows

x(k+1)τ = Qτ
k|τxkτ = Q[kτ : (k + 1)τ ]xkτ

= Q[kτ : (k + 1)τ ]× · · · ×Q[0 : τ ]x0.
(4)

We establish convergence under the following assumption.

Assumption 2.2 (τ̄ -Connectivity). There exists a constant τ̄ ∈ N, such that for all k ∈
Iτ̄ := {τ̄ , τ̄ + τ, τ̄ + 2τ · · · } ⊂ I, the graph G(V, Ē(k|τ−τ̄+1)) ∪ · · · ∪ G(V, Ēk|τ ) is connected.

Remark 2.2. Assumption 2.2 plays a key role in the analysis. In words, it implies the
existence of a constant τ̄ , such that within τ̄ pruning cycles, the union of the resulting
undirected (directed) pruned graphs is connected (strongly connected). For the special case
where the pruned graph is connected for all cycles, τ̄ = 1. It is possible to guarantee this
assumption by imposing a consensus iteration with the reference graph every τ̄ iterations
of the algorithm for some finite τ̄ ∈ N. Additionally, it is worth noting that it suffices
to assume this property only for indices Iτ̄ rather than for all k ∈ N. Another important
point to note is that the assumption can be replaced by a stochastic version which takes into
account the utilization of softmax based sampling in the pruning protocol. Specifically, the
assumption of connectedness can either be assumed to hold almost surely or replaced by an
assumption that ensures a reduction in the consensus error in expectation (with respect to
Qk) over a period of τ̄ iterations.

To prove convergence of the algorithm, we need to establish convergence of the following
product sequence to the 1

n1n1
T
n rank-one matrix, i.e.,

k∏
j=0

Q[jτ : (j + 1)τ ] → 1
n1n1

T
n , as k → ∞.

To show this, we use the notion of coefficient of ergodicity [47], denoted by ρ(Q) for any
row-stochastic matrix Q, defined as,

ρ(Q) := 1−min
i1,i2

n∑
j=1

min (qi1j , qi2j) . (5)

Using the coefficient of ergodicity instead of directly bounding the spectral gap offers several
advantages, particularly in scenarios involving time-varying topologies. First, it allows us
to clearly characterize the influence of different graph parameters, such as maximum node
degree and diameter, on convergence. This characterization helps us establish an explicit
relationship between pruning and convergence. Second, it allows for extensions to directed
graphs (with push-sum protocols) where the condition of double stochasticity may not be
satisfied.
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There are two key properties of (5) that will be useful in establishing convergence. The
first property is that ρ(·) is sub-multiplicative, i.e., for any two matrices Q1, Q2,

ρ(Q1Q2) ≤ ρ(Q1)ρ(Q2). (6)

The second property is that it can serve as an upper bound on the dissimilarity between
the rows of matrix Q. More formally, we have (cf. [55, Lemma 2], [20, Lemma 4])

δ(Q) := max
j

max
i1,i2

|qi1j − qi2j | ≤ ρ(Q), (7)

for any matrix Q which is ergodic, i.e., it is row stochastic, aperiodic and irreducible (cf.
[55] or, [24, Chapter 8]).

Next, we state and prove the main theoretical result of this section.

Theorem 2.1. Suppose that: (i) Assumptions 2.1 and 2.2 hold, (ii) the matrices Qk :=
[qij [k]]i∈[n],j∈[n] are doubly stochastic for all k ≥ 0, (iii) qii[k] > 0 for all k ≥ 0 for at least
one i ∈ [n], and, (iv) if qij [k] > 0 for any (i, j) ∈ E and k ≥ 0, then qij [k] > q for some
strictly positive constant q > 0 independent of k and (i, j). Then, for any k ≥ 0,

∥xk − x̄k∥ ≤ n
3
2γ

⌊
k

τ̄dG

⌋
∥x0 − x̄0∥, (8)

where γ :=
(
1− qτ̄dG

)
< 1 with q < 1 and dG is the diameter of a graph G(V, E) defined as

dG := maxu,v∈V{dist(u, v)}, where dist(u, v) denotes the shortest path distance between any
two vertices u, v ∈ V.

Proof. We first establish the ergodicity of the product sequence Q[mτ̄ : (m+ 1)τ̄ ] for any
m ≥ 0 with τ̄ ∈ N as in Assumption 2.2. The stochasticity of Q[mτ̄ : (m + 1)τ̄ ] follows
from that the fact that the product of stochastic matrices is also stochastic. Furthermore,
a matrix is considered irreducible if its zero/non-zero structure corresponds to a connected
graph. By Assumption 2.2, the structure of Q[mτ̄ : (m + 1)τ̄ ] also exhibits this property
[19, Section 1-C]. Finally, an irreducible matrix is aperiodic if it has at least one self-loop
which is satisfied by Q[mτ̄ : (m + 1)τ̄ ] by condition (ii) in the theorem statement [19,
Section 1-C].

Next, we establish a useful upper bound on δ (Q[0 : k + 1]). To do this, we consider
the following decomposition of Q[0 : k + 1]

Q[0 : k + 1]

=Q[0 : k̄τ̄ ]× · · · ×Q[mk̄τ̄ : (m+ 1)k̄τ̄ ]× · · · ×Q[(K − 1)k̄τ̄ : Kk̄τ̄ ]︸ ︷︷ ︸
Q[0:Kk̄τ̄ ]

×Q[Kk̄τ̄ : k + 1]

where K := ⌊k/k̄τ̄⌋, k̄ ≥ 1 is a constant to be specified later. Let τ ′ := k̄τ̄ . We bound
δ (Q[0 : Kτ ′]) by individually bounding ρ (Q[mτ ′ : (m+ 1)τ ′]) in the above product. By
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(5), it follows that,

ρ
(
Q[mτ ′ : (m+ 1)τ ′]

)
= 1−min

i1,i2

∑
j

min
(
qi1j [mτ ′ : (m+ 1)τ ′], qi2j [mτ ′ : (m+ 1)τ ′]

)
, (9)

whereQ[mτ ′ : (m+1)τ ′] := [qij [mτ ′ : (m+1)τ ′]]i,j∈[n]. By (9), we note that ρ (Q[mτ ′ : (m+ 1)τ ′])
is guaranteed to satisfy ρ (Q[mτ ′ : (m+ 1)τ ′]) < 1, if for every pair of rows ii and i2, there
exists some j∗ such that qi1j∗ [mτ ′ : (m+ 1)τ ′], qi2j∗ [mτ ′ : (m+ 1)τ ′] > 0, i.e., if there is a
path from some j∗ to both i1 and i2. This, in turn, is always satisfied if for some k̄ > 0,
qij [mτ ′ : (m+ 1)τ ′] > 0 for every i, j ∈ [n], i.e., all the entries are strictly positive.

To find such a candidate k̄, we make the following observation: Q[mτ̄ : (m + 1)τ̄ ] is
ergodic, so there exists a path from i to j for every i, j ∈ [n]. Setting k̄ = dG in the
definition of τ ′, we have τ ′ = k̄τ̄ = dG τ̄ . It follows that for the matrix Q[mτ ′ : (m+ 1)τ ′],
qij [mτ ′ : (m+1)τ ′] > 0 for all i, j ∈ [n] since we can reach any node i from any other node
j in at most τ ′ = dG τ̄ steps.

For the remainder of the proof, let τ ′ = dG τ̄ . To lower bound qij [mτ ′ : (m + 1)τ ′] >
0, m ≥ 0, we note that by the definition of q and Assumption 2.2, it follows that qij [pτ̄ :
(p+1)τ̄ ] ≥ qτ̄ for any p ≥ 0 and any (i, j) ∈ Epτ̄ ∪· · ·∪E(p+1)τ̄−1. Since Q[mτ ′ : (m+1)τ ′] =
Q[mτ ′ : mτ ′ + τ̄ ] · · ·Q[mτ ′ + (dG − 1)τ̄ : mτ ′ + dG τ̄ ], for any i′, j′ ∈ [n],

qi′j′ [mτ ′ : (m+ 1)τ ′] ≥ qτ̄dG . (10)

By (9) and (10),

ρ
(
Q[mτ ′ : (m+ 1)τ ′]

)
≤ 1− qτ̄dG . (11)

Thus, it follows that,

δ(Q[(0 : Kτ̄ ]) ≤ ρ (Q[0 : Kτ̄ ])

≤ ρ(Q[0 : τ̄ ] · · ·Q[(K − 1)τ̄ : Kτ̄ ])

≤ ρ(Q[0 : τ̄ ])× · · · × ρ(Q[(K − 1)τ̄ : Kτ̄ ])

≤
(
1− qτ̄dG

)K
, (12)

where the first inequality follows by (7), the second inequality by the the sub-multiplicative
property of ρ(·) (6), and the final inequality follows by (11). By (3) and (4), it follows that,

xk = Qk−1xk−1

= Q[Kτ̄ + 1 : k]Q[(K − 1)τ̄ : Kτ̄ ]× · · · ×Q[0 : τ̄ ]x0

= Q[Kτ̄ + 1 : k]Q[0 : Kτ̄ ]x0. (13)

Multiplying both sides of (13) by 1n, by the the double stochasticity of Q[Kτ̄ +1 : k] and
Q[0 : Kτ̄ ], it follows that,

x̄k = x̄0 =
1
n1n1

k
nx0 =

1
n1n1

k
nQ[0 : Kτ̄ ]x0. (14)

12



Subtracting (14) from (13),

xk − x̄k = Q[Kτ̄ + 1 : k]Q[0 : Kτ̄ ]x0 − 1
n1n1

k
nQ[0 : Kτ̄ ]x0

= Q[Kτ̄ + 1 : k]
(
Q[0 : Kτ̄ ]− 1

n1n1
k
nQ[0 : Kτ̄ ]

)
(x0 − x̄0),

where the second equality holds due to Q[Kτ̄ +1 : k]1 = 1 and the fact that Ax̄0 = x̄0 for
any doubly stochastic matrix A. Taking norms of the above, it follows that,

∥xk − x̄k∥ ≤ ∥Q[Kτ̄ + 1 : k]∥
∥∥∥Q[0 : Kτ̄ ]− 1

n1n1
k
nQ[0 : Kτ̄ ]

∥∥∥ ∥x0 − x̄0∥

≤
√
n
∥∥∥Q[0 : Kτ̄ ]− 1

n1n1
k
nQ[0 : Kτ̄ ]

∥∥∥
1
∥x0 − x̄0∥1 (15)

where the first inequality is due to the Cauchy–Schwarz inequality and the second inequality
follows due to the facts that ∥A∥ ≤

√
n∥A∥1 for any A ∈ Rn×n and ∥Q[Kτ̄ + 1 : k]∥ ≤ 1.

We have by definition of the ℓ1-norm for matrices,

∥∥Q[0 : Kτ̄ ]− 1
n1n1

T
nQ[0 : Kτ̄ ]

∥∥
1
= max

1≤j≤n

n∑
i=1

∣∣∣∣∣qij [0 : Kτ̄ ]− 1
n

n∑
i′=1

qi′j [0 : Kτ̄ ]

∣∣∣∣∣
≤ max

1≤j≤n

n∑
i=1

1
n

n∑
i′=1

∣∣∣qij [0 : Kτ̄ ]− qi′j [0 : Kτ̄ ]
∣∣∣︸ ︷︷ ︸

≤δ(Q̄[0:Kτ̄ ])

≤ nδ(Q̄[0 : Kτ̄ ]) (16)

≤ n
(
1− qdG τ̄

)K
, (17)

where the last inequality follows by (12). Combining (17) and (15) with K = ⌊k/k̄τ̄⌋
completes the proof.

We note that the convergence rate in Theorem 2.1 is primarily dependent of the diam-
eter of the graph, dG , and the lower bound on the nonzero entries of the mixing matrix, q.
The form of the convergence rate factor γ confirms the empirical observation that compact
graphs with shorter diameters generally fare better with pruning since multiple information
pathways can potentially exist between two nodes. The dependence on q can be illustrated
by considering the Metropolis-Hastings scheme as described in (2). Let nGk|τ denote the
maximum node degree of graph G(V,Ek|τ ). If nmax := maxk∈I nGk|τ , denotes the maximum
node degree amongst all the pruned graphs (assumed to be connected) obtained during the
algorithm, then q = 1

1+nmax
. Since nmax can be smaller than the maximum node degree of

the underlying reference graph, q can potentially be larger for AC.

Remark 2.3. We make the following additional remarks about Theorem 2.1.
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• It should be noted that the convergence factor γ in (8) may be a conservative estimate
in general. Nevertheless, the analysis provided here remains applicable in a broad range
of scenarios, even when tighter estimates for specific cases may not hold. In particular,
the extension of Theorem 2.1 to a directed graph setting, where only column stochas-
ticity is satisfied (as in the push-sum protocol), can be derived relatively easily. This
is due to the fact that the definition of the coefficient of ergodicity and the associated
bounds, e.g., (7), do not necessitate a double-stochasticity assumption on the matrix
Qk.

• The assumptions on the matrix entries of Qk in Theorem 2.1 are typical in ergodic
matrix literature [24] and multi-agent coordination and optimization problems [34]. For
undirected graphs, the assumptions are satisfied if the weights are generated according
to (2).

• To understand (and quantify) the impact of pruning on distributed averaging within
a simplified context, let us consider a scenario where there is a total communication
budget of B bits, and each node utilizes D bits to transmit the quantized objective
variable to its neighboring nodes. The maximum number of iterations that can be
executed under these settings is given by T = B

2D|E| . Let σ(Q) denote the spectral

gap of the mixing matrix Q, assumed to be generated in accordance to (2). Under
Assumption 2.1, for xk generated via (3) with Qk = Q⊗ Id, ∀ k,

∥xT − x̄T ∥ ≤ (1− σ(Q))T ∥x0 − x̄0∥. (18)

If we consider the same scenario with a fraction κ < 1 of the edges pruned (where
the pruned mixing matrix is denoted by Qprune) and assume the pruned graph satisfies
Assumption 2.1, we have2,

∥xT prune − x̄T prune∥ ≤ (1− σ(Qprune))T
prune

∥x0 − x̄0∥. (19)

Since T prune = B
2(1−κ)D|E| =

T
1−κ > T , the upper bound for the consensus error with the

pruned network, where σ(Qprune) ≈ σ(Q), is potentially tighter since (1− σ(Qprune))T
prune

⪅
(1− σ(Q))T . In Section 4.1 (Figure 1(c)), we empirically observe that σ(Qprune) for
small to medium values of κ does not significantly deviate from σ(Q), suggesting that
there are instances for which the inequality is likely to hold.

3 Adaptive Consensus based Decentralized Optimization

In this section, we describe the proposed Adaptive Consensus based Gradient Tracking
algorithm (Algorithm 3, AC-GT) for decentralized optimization. The problem under con-

2To keep the presentation clear, we assume T, T prune ∈ N.
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sideration can be expressed as,

min
x∈Rnd

f(x) :=
1

n

n∑
i=1

fi(xi)

s.t. Qx = x,

(20)

where f : Rnd → R and Q := Q ⊗ Id ∈ Rnd×nd. Under Assumption 2.1, the constraint is
equivalent to the condition that xi = xj , for all i, j ∈ [n], and thus problems (20) and (1)
are equivalent. We make the following assumption with regards to the component functions
(fi).

Assumption 3.1 (Regularity and convexity of fi). Each fi is L-smooth and µ-strongly
convex.

The general idea of AC-GT is to leverage the adaptive consensus protocol of the previous
section and combine it with a gradient tracking algorithm [33] in a manner that preserves
the strong convergence guarantees of the latter while harnessing the communication savings
of the former. The pseudo-code for the algorithm is provided in Algorithm 3.

Algorithm 3 ADAPTIVE CONSENSUS BASED GRADIENT TRACKING (AC-GT)

Inputs: Graph G(V, E); Cycle Length τ ∈ N; Softmax parameter β ∈ [0,∞]; Thresholding factors (κ̄i, κ
¯i) ∈

[0, 1]2 for all i ∈ [n]; Step size α > 0; Initial iterates xi,0 ∈ Rd, yi,0 = ∇fi(xi,0) for all i ∈ [n]; Total number
of iterations T ∈ N.
1: for k = 0, . . . , T do
2: for all i ∈ [n] in parallel do
3: if k ∈ I, then
4: Generate G(V, Ēk|τ ) ∼ PRUNING PROTOCOL(G(V, E), xi,k, (κ̄i, κ

¯i), β).
5: Get new weights q̄ij [k|τ ] ∼ GENERATE WEIGHTS (G(V, Ēk|τ )).

6: Generate G(V, Êk|τ ) ∼ PRUNING PROTOCOL(G(V, E), yi,k, (κ̄i, κ
¯i), β).

7: Get new weights q̂ij [k|τ ] ∼ GENERATE WEIGHTS (G(V, Êk|τ )).
8: end if
9: Update estimate at node i according to: xi,k+1 =

∑n
j=1 q̄ij [k|τ ] (xj,k − αyj,k).

10: Update gradient estimate at node i according to: yi,k+1 =
∑n

j=1 q̂ij [k|τ ]yj,k + ∇fi(xi,k+1) −
∇fi(xi,k).

11: end for
12: end for

Output: xi,T for all i ∈ [n].

To provide intuition for the algorithm, we review the main steps of the gradient tracking
algorithm (GTA), as it serves as a foundational component of AC-GT. The main iterations
of the gradient tracking algorithm can be expressed as,

xi,k+1 =

n∑
j=1

qij (xj,k − αyj,k) , yi,k+1 =

n∑
j=1

qijyj,k +∇fi(xi,k+1)−∇fi(xi,k),
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where α > 0 is a constant referred to as the step size.
The underlying computational principles of AC-GT are similar to those of GTA. However,

the communication structure of AC-GT is based on AC. Similar to AC, AC-GT operates in a
cyclical manner. In the k|τ cycle, if k belongs to the set I, the pruning protocol is executed
twice. The first instance employs the x estimates to get the pruned graph (Qk) and the
associated mixing matrix, which are subsequently utilized to update the x estimate,

xk+1 = Qk (xk − αyk) , where Qk = Qk|τ , ∀k ∈ [(k|τ)τ, (k|τ + 1)τ) . (21)

The second instance of the protocol obtains a different pruned graph (Q̂k) using the y
estimates. The mixing matrix corresponding to this graph is then used to update the y
estimate as follows,

yk+1 = Q̂kyk +∇f(xk+1)−∇f(xk), where Q̂k = Q̂k|τ , ∀k ∈ [(k|τ)τ, (k|τ + 1)τ) .

(22)

The pruning protocol is executed twice because the dissimilarity between the y estimates
is expected to be different from the dissimilarity between the x estimates. AC-GT employs
a constant step size α > 0 which depends on both the properties of the function and the
structure of the pruned network as shown in the next subsection.

Remark 3.1. We make a couple of remarks about AC-GT (Algorithm 3).

• For τ = 1 and Qk = Q⊗ Id for all k ∈ N, where Q is the mixing matrix corresponding
to the reference graph, AC-GT reduces to a standard gradient tracking algorithm (GTA)
[33].

• The extension of AC-GT to a directed graph setting is feasible by leveraging the push-
pull gradient algorithm [39]. Similar to AC, the principles and theory of AC-GT for
the directed graph setting can be derived from the current framework, with appropriate
adjustments.

3.1 Convergence Analysis

We provide theoretical convergence guarantees for AC-GT. For simplicity, we assume that
Qk = Q̂k for all k ≥ 0 in (21) and (22) and note that one can derive the same results
verbatim for the case where Qk ̸= Q̂k, with additional notation required. We build up to
our main result through a series of technical lemmas which we state next. We begin by
proving a descent relation for the consensus error Ψk, defined as,

Ψk :=

[
xk − x̄k

α(yk − ȳk)

]
∈ R2nd. (23)
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Lemma 3.1. Suppose that the matrices Qk, for all k, are doubly stochastic and Q̂k = Qk.
For Ψk given in (23) and τ̂ ∈ N,

∥Ψk∥2 ≤ ρ′∥Ψk−τ̂∥2 + b

k−1∑
j=k−τ̂

∥Ψj∥2 + c

k−1∑
j=k−τ̂

(f(x̄j)− f(x∗)) , if k ≥ τ̂ , (24)

∥Ψk∥2 ≤ 5(1 + τ̂2)∥Ψ0∥2 + b

k−1∑
j=0

∥Ψj∥2 + c

k−1∑
j=0

(f(x̄j)− f(x∗)) , if 0 < k < τ̂ , (25)

where ρ′ := 2(1 + τ̂2)maxτ̂≤j≤t

∥∥Q[j − τ̂ : j]− 1
n1n1

T
n

∥∥2, b := 180α2L2(1 + τ̂2)τ̂ , and c :=
320nα4L3(1 + τ̂2)τ̂ .

Proof. We start by considering the expression xk−x̄k. By (21) and the double stochasticity
of Qk,

xk − x̄k =
(
Qk−1 − 1n1T

n
n

) (
xk−1 − x̄k−1 − α(yk−1 − ȳk−1)

)
. (26)

Using (22), a similar expression for yk − ȳk is given as,

yk − ȳk =
(
Qk−1 − 1n1T

n
n

) (
yk−1 − ȳk−1

)
−
(
In − 1n1T

n
n

)
(∇f(xk)−∇f(xk−1)), (27)

where In := In ⊗ Id ∈ Rnd×nd. The expressions in (26) and (27) can be compactly repre-
sented in matrix form as follows,

Ψk = Jk−1Ψk−1 + αEk−1

= J[k − τ̂ : k]Ψk−τ̂ + α
τ̂∑

j=1

J[k − j + 1 : k]Ek−j , (28)

where

Jk :=

Qk − 1n1T
n

n −
(
Qk − 1n1T

n
n

)
0 Qk − 1n1T

n
n

 ,Ek−1 :=

[
0(

In − 1n1T
n

n

)
(∇f(xk−1)−∇f(xk))

]
(29)

and J[k − j : k] := Jk−1 · · ·Jk−j , for any j ≤ τ̂ ≤ k. The matrix J[k − j : k] can be
expressed as,

J[k − j : k] =

Q[k − j : k]− 1n1T
n

n −j
(
Q[k − j : k]− 1n1T

n
n

)
0 Q[k − j : k]− 1n1T

n
n

 . (30)
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The above equation can be derived by a straightforward induction argument using the facts
that [

A1 −A1

0 A1

]
×

[
A2 −A2

0 A2

]
=

[
A1A2 −2A1A2

0 A1A2

]
,

and, for any two doubly stochastic matrices Q and Q′,(
Q− 1n1T

n
n

)(
Q′ − 1n1T

n
n

)
=
(
QQ′ − 1n1T

n
n

)
.

By (30), it follows that

∥J[k − j : k]∥2 ≤ (1 + j2)
∥∥Q[k − j : k]− 1

n1n1
T
n

∥∥2 , (31)

and, since
∥∥Q[k − j : k − 1]− n−11n1

T
n

∥∥2 ≤ 4,

∥J[k − j : k]∥2 ≤ 4(1 + j2) ≤ 4(1 + τ̂2), ∀ j < τ̂ . (32)

Taking the norm square of (28),

∥Ψk∥2 =

∥∥∥∥∥∥J[k − τ̂ : k]Ψk−τ̂ + α

τ̂∑
j=1

|J[k − j + 1 : k]Ek−j

∥∥∥∥∥∥
2

≤
(
1 + 1

4

)
∥J[k − τ̂ : k]Ψk−τ̂∥2 + 5α2

∥∥∥∥∥∥
τ̂∑

j=1

J[k − j + 1 : k]Ek−j

∥∥∥∥∥∥
2

≤ 5
4(1 + τ̂2)

∥∥Q[k − τ̂ : k]− 1
n1n1

T
n

∥∥2 ∥Ψk−τ̂∥2 + 20α2(1 + τ̂2)τ̂
τ̂∑

j=1

∥Ek−j∥2, (33)

where the first inequality is due to the fact that ∥a + b∥2 ≤ (1 + ξ)∥a∥2 + (1 + ξ−1)∥b∥2
for any constant ξ > 0, and the second inequality follows by (31) with j = τ̂ , (32), and

the fact that
∥∥∥∑τ̂

j=1 aj

∥∥∥2 ≤ τ̂
∑τ̂

j=1 ∥aj∥2. We next bound ∥Ep−1∥ for any p ≥ 1. By the

definition of Ek (29) with k = p,

∥Ep−1∥2 ≤
∥∥∥(In − 1n1T

n
n

)
(∇f(xp)−∇f(xp−1))

∥∥∥2 ≤ ∥∇f(xp)−∇f(xp−1))∥2 . (34)

The term on the right-hand-side of (34) can be bounded as follows

∥∇f(xp)−∇f(xp−1)∥2

≤L2∥xp − xp−1∥2

=L2∥(Qp−1 − In)(xp−1 − x̄p−1)− αQp−1yp−1)∥2

≤2L2∥(Qp−1 − In) (xp−1 − x̄p−1) ∥2 + 2α2L2∥yp−1∥2

≤8L2∥xp−1 − x̄p−1∥2 + 4α2L2∥yp−1 − ȳp−1∥2 + 4α2L2∥ȳp−1∥2, (35)
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where we have used Assumption 3.1 to get the first inequality, (21) with k = p−1 to substi-
tute for xp and the fact that (Qp−1−In)x̄p−1 = 0 to get the equality, and ∥Qp−1 − In∥ ≤ 2
to obtain the first term in the last inequality. By Assumption 3.1,

∥ȳp−1∥2 =n∥ȳp−1∥2

=n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,p−1)

∥∥∥∥∥
2

≤2n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,p−1)−
1

n

n∑
i=1

∇fi(x̄p−1)

∥∥∥∥∥
2

+ 2n

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x̄p−1)−
1

n

n∑
i=1

∇fi(x
∗)

∥∥∥∥∥
2

≤2L2∥xp−1 − x̄p−1∥2 + 4L
n∑

i=1

(fi(x̄p−1)− fi(x
∗)) . (36)

Combining (34), (35) and (36), and using the fact that α < 1/3L, it follows that for any
p ≥ 1,

∥Ep−1∥2 ≤∥∇f(xp)−∇f(xp−1)∥2

≤9L2
(
∥xp−1 − x̄p−1∥2 + α2∥yp−1 − ȳp−1∥2

)
(37)

+ 16α2L3
n∑

i=1

(fi(x̄p−1)− fi(x
∗)) .

Using (37) with p = k − j + 1 to bound ∥Ek−j∥, 1 ≤ j ≤ τ̂ in (33), we get,

∥Ψk∥2 ≤2(1 + τ̂2)
∥∥Q[k − τ̂ : k]− 1

n1n1
T
n

∥∥2 ∥Ψk−τ̂∥2

+ 180α2L2(1 + τ̂2)τ̂
τ̂∑

j=1

∥Ψk−j∥2

+ 320nα4L3(1 + τ̂2)τ̂
τ̂∑

j=1

(f(x̄k−j)− f(x∗)) ,

which proves (24). To prove (25), we note that for k < τ̂ , we can write (28) as,

Ψk = Jk−1Ψk−1 + αEk−1 = J[0 : k]Ψ0 + α
k−1∑
j=0

J[k − j : k]Ej . (38)
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Taking the norm square of (38),

∥Ψk∥2 ≤
(
1 + 1

4

)
∥J[0 : k]Ψ0∥2 + 5α2

∥∥∥∥∥∥
k−1∑
j=0

J[k − j : k]Ej

∥∥∥∥∥∥
2

≤ 5(1 + τ̂2)∥Ψ0∥2 + 20α2(1 + τ̂2)τ̂
k−1∑
j=0

∥Ej∥2, (39)

where we have used ∥a+b∥2 ≤ (1+ξ)∥a∥2+(1+ξ−1)∥b∥2 for any constant ξ > 0 in the first
inequality and (32) to obtain the second inequality. The final result (25) can be derived
using (37) with p = j + 1 for 1 ≤ j ≤ k − 1 in (39).

Next, we state an auxiliary lemma whose proof can be found in [48, Lemma 4].

Lemma 3.2. Suppose the non-negative scalar sequences {at}t≥0 and {et}t≥0 satisfy the
following recursive relation for a fixed τ̂ ∈ N

at ≤ ρ′at−τ̂ +
b

τ̂

t−1∑
i=t−τ̂

ai + c
t−1∑

i=t−τ̂

ei + r, if t ≥ τ̂ , (40)

at ≤ ρ′′a0 +
b

τ̂

t−1∑
i=0

ai + c
t−1∑
i=0

ei + r, if t < τ̂ , (41)

where b, c, r , ρ′′ are non-negative constants, b ≤ ρ′/4 and ρ′ ∈ (0, 1/4). Then, for any
t ∈ N,

at ≤ 20ρ′′
(
1− 3ρ

4τ̂

)t
a0 + 60c

t−1∑
i=0

(
1− 3ρ

4τ̂

)t−i
ei +

26r

ρ
, (42)

where ρ := 1− 2ρ′.

We are ready to state and prove the main theorem.

Theorem 3.1. Suppose that: (i) Assumptions 2.1 and 3.1 hold, and, (ii) Qk are doubly
stochastic matrices and Q̂k = Qk for k ≥ 0. Let xi,k denote the iterates generated via the
recursions (21)-(22) and x̄k := n−1

∑n
i=1 xi,k. Then, for all k ≥ 0,

∥x̄k − x∗∥2

≤
(
1− αµ

4

)k (∥x̄0 − x∗∥2 + 1000L(1+τ̂2)

µn(1−αµ
4 )

(
∥x0 − x̄0∥2 + α2∥y0 − ȳ0∥2

)) (43)

where τ̂ ∈ N with ρ′ := 2(1 + τ̂2)maxτ̂≤t≤k

∥∥Q[t− τ̂ : t]− 1
n1n1

T
n

∥∥2 < 1/4 and

α < min
{
1,

√
ρ′

58Lτ̂2

}
. (44)
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Proof. By (21), the optimization error of the average iterates for any t ∈ N is

∥x̄t+1 − x∗∥2 = ∥x̄t − αȳt − x∗∥2

=

∥∥∥∥∥x̄t − α

n

n∑
i=1

∇fi(xi,t)− x∗

∥∥∥∥∥
2

= ∥x̄t − x∗∥2 − 2α

n

〈
n∑

i=1

∇fi(xi,t), x̄t − x∗

〉
+ α2

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,t)

∥∥∥∥∥
2

, (45)

where ȳt = n−1
∑n

i=1∇fi(xi,t). (This can be proven by an induction argument using (22).)
The second term in (45) can be bounded as,〈

n∑
i=1

∇fi(xi,t), x̄t − x∗

〉

=

〈
n∑

i=1

∇fi(xi,t), x̄t − xi,t

〉
+

〈
n∑

i=1

∇fi(xi,t), xi,t − x∗

〉

≥
n∑

i=1

[
fi(x̄t)− fi(xi,t)− L

2 ∥x̄t − xi,t∥2 + fi(xi,t)− fi(x
∗) + µ

2∥xi,t − x∗∥2
]

≥
n∑

i=1

[
fi(x̄t)− fi(x

∗)− L+µ
2 ∥x̄t − xi,t∥2 + µ

4 ∥x̄t − x∗∥2
]
, (46)

where Assumption 3.1 is used in the first inequality and the bound ∥x̄t − x∗∥2 ≤ 2∥x̄t −
xi,t∥2 + 2∥xi,t − x∗∥2 is used to derive the last inequality. The last term in (45) can be
bounded as,∥∥∥∥∥ 1n

n∑
i=1

∇fi(xi,t)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

∇fi(xi,t)−
1

n

n∑
i=1

∇fi(x̄t) +
1

n

n∑
i=1

∇fi(x̄t)−
1

n

n∑
i=1

∇fi(x
∗)

∥∥∥∥∥
2

≤2L2

n

n∑
i=1

∥xi,t − x̄t∥2 +
4L

n

n∑
i=1

(fi(x̄t)− fi(x
∗)), (47)

where in the second summation we have used the fact that ∥∇fi(x̄t) − ∇fi(x
∗)∥2 ≤

2L(fi(x̄t) − fi(x
∗)) by Assumption 3.1 [36, Theorem 2.1.5]. Using (46) and (47) in (45)
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along with α < 1/4L, it follows that,

∥x̄t+1 − x∗∥2 ≤
(
1− αµ

2

)
∥x̄t − x∗∥2 − α

n

(
n∑

i=1

fi(x̄t)− fi(x
∗)

)

+
(3L/2 + µ)α

n

n∑
i=1

∥x̄t − xi,t∥2

≤
(
1− αµ

2

)
∥x̄t − x∗∥2 − α

n

(
n∑

i=1

fi(x̄t)− fi(x
∗)

)
+ 5αL

2n ∥Ψt∥2, (48)

where the last inequality follows due to ∥x̄t − xt∥2 ≤ ∥Ψt∥2. Let rt := ∥x̄t − x∗∥2. Multi-
plying both sides of (48) by wt+1 = (1− αµ/4)−(t+1), it follows that,

wt+1rt+1 ≤ wtrt − wt+1α (f(x̄t)− f(x∗)) + wt+1
5αL
2n ∥Ψt∥2, (49)

where wt+1(1− αµ/2) ≤ wt.
Next, we express (24) (and (25)) in the form of (40) (and (41)) with at = ∥Ψt∥2, b =

180α2L2(1 + τ̂2)τ̂2, c = 320nα4L3(1 + τ̂2)τ̂ , et = f(x̄t)− f(x∗) and r = 0. By Lemma 3.2,
it follows that,

∥Ψt∥2 ≤ 100(1 + τ̂2)
(
1− 3ρ

4τ̂

)t
∥Ψ0∥2 + 19200nα4L3(1 + τ̂2)τ̂2

t−1∑
j=0

(
1− 3ρ

4τ̂

)t−j
ej . (50)

Note that the condition on the step size (44) ensures that b < ρ′/4. Multiplying both sides
of (50) by wt+1 := (1− αµ/4)−(t+1) and summing from t = 0 to k − 1

k−1∑
t=0

(
1− αµ

4

)−(t+1) ∥Ψt∥2

≤100(1 + τ̂2)∥Ψ0∥2
k−1∑
t=0

(
1− αµ

4

)−(t+1)
(
1− 3ρ

4τ̂

)t
+ 19200nα4L3(1 + τ̂2)τ̂2

k−1∑
t=0

(
1− αµ

4

)−(k+1)
t−1∑
j=0

(
1− 3ρ

4τ̂

)t−j
ej .

(51)

By (44), we have α ≤
√
ρ′

Lτ̂2
≤ 1

2Lτ̂2
≤ ρ

Lτ̂ ≤ 3ρ
2µτ̂ , where the second inequality is due to√

ρ′ ≤ 1/2, the third inequality follows by τ̂ ≥ 1 and ρ = 1 − 2ρ′ ≥ 1/2 for ρ′ < 1/4, and
the last inequality is due to the fact that µ < L. Thus, it follows that

αµ
2 ≤ 3ρ

4τ̂ =⇒ αµ
2 (1− αµ

8 ) ≤ 3ρ
4τ̂ =⇒ 1− 3ρ

4τ̂ ≤ (1− αµ
4 )2. (52)
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We use (52) to bound the two summations on the right-hand-side of (51) as follows

k−1∑
t=0

(
1− αµ

4

)−(t+1)
(
1− 3ρ

4τ̂

)t
≤

k−1∑
t=0

(
1− αµ

4

)t−1 ≤ 4w1
αµ , (53)

and

k−1∑
t=0

(
1− αµ

4

)−(t+1)
t−1∑
j=0

(
1− 3ρ

4τ̂

)t−j
ej

=
k−1∑
t=0

t−1∑
j=0

(
1− αµ

4

)−(t+1)+j+1
(
1− 3ρ

4τ̂

)t−j
wj+1ej

=
k−1∑
t=0

t−1∑
j=0

(
1−3ρ/4τ̂
1−αµ/4

)t−j
wj+1ej

≤
k−1∑
t=0

t−1∑
j=0

(
1− αµ

4

)t−j
wj+1ej

≤
k−1∑
t=0

(
1− αµ

4

)t k−1∑
t=0

wt+1et ≤ 4
αµ

k−1∑
t=0

wt+1et, (54)

where the second inequality is due to (52) and the relation
∑k−1

t=0

∑t−1
j=0 at−jbj ≤

∑k−1
t=0 at

∑k−1
t=0 bt

for any two non-negative scalar sequences at, bt, t ∈ N. By (53), (54) and (51), it follows
that,

k−1∑
t=0

wt+1∥Ψt∥2

≤400w1(1+τ̂2)
µα ∥Ψ0∥2 + 76800nα3L3(1+τ̂2)τ̂

µ

k−1∑
t=0

wt+1 (f(x̄t)− f(x∗)) .

(55)

Finally, summing (49) from t = 0 to k − 1, and dividing by wt, it follows that,

rk ≤ 1
wk

(
w0r0 +

1000w1(1+τ̂2)L
nµ ∥Ψ0∥2

+
(
192000α4L4(1+τ̂2)τ̂

µ − α
) k−1∑

t=0

wt+1 (f(x̄t)− f(x∗))

)
,

where we have used (55) to bound
∑

twt+1∥Ψt∥2. To prove (43), we note that w−1
k =

(1 − αµ)k by definition, and the last term in the above inequality is non-positive since
α3 ≤ 1

2×307200L3τ̂3
.
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Broadly, Theorem 3.1 establishes the decay of the optimization error for a gradient
tracking method with time inhomgeneous weight matrices. The convergence rate of the
algorithm remains linear even when using time-varying matrices, and the form of the
convergence factor remains remarkably consistent. However, it is worth mentioning that
this convergence factor can potentially be smaller due to the possibility of using smaller
step sizes, which depend on the value of τ̂ . In this context, the constant τ̂ determines the
effect of the network on the step size via (44). More precisely, τ̂ is a constant chosen to

ensure that (1 + τ̂2)
∥∥Q[k − τ̂ : k]− 1

n11
T
∥∥2 is less than one. This implies that for better

connected graphs, i.e., smaller
∥∥Q[k − τ̂ : k]− 1

n11
T
∥∥2, τ̂ can be smaller so that α can

be larger (cf. (44)). For time-inhomogeneous matrices satisfying Assumption 2.2, we can
establish precise upper bounds on the value of τ̂ using the coefficient of ergodicity (cf.
Corollary 3.1).

Remark 3.2. One can recover the optimal convergence rate of the GTA algorithm [33], up
to logarithmic factors, from Theorem 3.1. For GTA, we have Qk = Q ⊗ Id, for all k ≥ 0.

Then, for τ̂ < k, if τ̂ > O
(

1
σ(Q) log

1
σ(Q)

)
,

ρ′ = 2(1 + τ̂2)

∥∥∥∥Q[k − τ̂ : k]− 1

n
1n1

T
n

∥∥∥∥2 ≤ 2(1 + τ̂2)

k−1∏
j=k−τ̂

∥∥∥∥Q− 1

n
1n1

T
n

∥∥∥∥2
≤ 4τ̂2(1− σ(Q))2τ̂ < 1/4.

which implies α = Õ(σ
2(Q)
L ), where Õ(·) hides logarithmic factors. Thus, from Theorem

3.1 we have ∥x̄T − x∗∥2 ≤ ϵ, if T ≥ Õ
(

L
µσ2(Q)

log 1
ϵ

)
.

We have the following corollary to Theorem 3.1.

Corollary 3.1. Suppose that: (i) Assumptions 2.1, 2.2 and 3.1 hold, (ii) the matrices
Qk := [qij [k]]i∈[n],j∈[n] are doubly stochastic and Q̂k = Qk for all k ≥ 0, (iii) qii[k] > 0
for all k ≥ 0 for at least one i ∈ [n], and, (iv) if qij [k] > 0 for any (i, j) ∈ E and k ≥ 0,
then qij [k] > q for some strictly positive constant q > 0 independent of k and (i, j). Let
τη := ητ̄dG, where τ̄ is defined in Assumption 2.2 and η ∈ N satisfies

η ≥
⌈
max{ln 16n3τ̄2d2G ,16 ln 4/γ}

γ

⌉
(56)

where γ := qdG τ̄ . Then, if α = O
(

1
Lτ2η

)
, (43) is satisfied for x̄k generated via the recursions

(21)-(22).

Proof. To prove the corollary, we need to show that there exists a constant η ∈ N such that
for τη = ητ̄dG , we have ρ′ := 2(1 + τ2η )

∥∥Q[j − τη : j]− 1
n1n1

T
n

∥∥ < 1/4 for any τη ≤ j ≤ t
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to ensure the results of Theorem 3.1 hold with τ̂ = τη. It follows that

δ(Q[(j − τη : j]) ≤ ρ (Q[(j − τη : j])

≤ ρ(Q[j − ητ̄dG : j − (η − 1)τ̄ dG ]) · · · ρ(Q[(j − τ̄ dG : j]))

≤ (1− γ)η ,

where γ := qτ̄dG , and the first, second and third inequalities are due to (7), (6) and (11),
respectively. Following the same logic as in (16), it follows that,∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥
1
≤ nδ(Q[j − τη : j]) ≤ n (1− γ)η ≤ n exp(−γη). (57)

Consequently, this implies,

2(1 + τ2η )
∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥2 ≤ 2(1 + τ2η )n
∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥2
1

≤ 2n3(1 + η2τ̄2d2G) exp(−2γη)

≤ 4n3τ̄2d2G︸ ︷︷ ︸
:=A

η2 exp(−2γη), (58)

where the second inequality is due to (57) and the last inequality follows since ητ̄dG ≥ 1.
We next prove the following claim for any scalars η,A ≥ 1 and 0 < γ < 1:

η2 exp(−2γη) < 1
4A if η >

⌈
max

{
ln 4A,16 ln 4/γ

γ

}⌉
. (59)

To prove the claim, we note that the assumed inequality implies
(
1− ln η

γη

)
η > ln 4A

2γ . Let

η̃ ∈ R be such that 0 < ln η̃/γη̃ < 1/4. Then, for any η > η̃,

η ≥ 2 ln 4A
3γ . (60)

To prove the existence of a η̃ satisfying ln η̃/η̃ ≤ γ/4 := ϵ, we consider η̃ = 4 ln 1/ϵ
ϵ , ϵ < 1

4 .

For such a η̃, we have, ln η̃/η̃ = ϵ
ln 4

ϵ
+ln ln 1

ϵ
4 ln 1/ϵ < ϵ. Combining (60) with A = 4n3τ̄2d2G and

η ≥ η̃ = 16 ln
(
4/γ
)
/γ gives the lower bound on η in (59). Finally, by (59), (58) can be

bounded as, 2(1 + τ2η )
∥∥Q[j − τη : j]− 1

n1n1
T
n

∥∥2 ≤ Aη2 exp(−2γη) < 1
4 , which completes

the proof.

The exact convergence rate of AC-GT can be derived from Corollary 3.1. By (43),
the number of iterations required to reach ϵ-accuracy, denoted by T , is of the order of

O
(
Lτ2η
µ log 1

ϵ

)
since α = O

(
1

Lτ2η

)
. Using (56) to bound η in τη = ητ̄dG , it follows

T = O
(
Lη2τ̄2d2G

µ log 1
ϵ

)
= Õ

((
τ̄2d2G
γ2

)
L
µ log 1

ϵ

)
.
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where Õ(·) hides logarithmic factors. Compared to the iteration complexity of GTA (see
Remark 3.2) under the connected graph assumption, we note that the number of iterations

can potentially increase by a factor of Õ
(
τ̄2d2G
γ2

)
. This is expected given the weaker assump-

tions made, i.e., not requiring the graph to be connected at every iteration (Assumption
2.2). Despite the increased iteration complexity, one can potentially have savings in overall
communication volume for AC-GT (cf. Section 4.2) analogous to those for AC (cf. Remark
2.3).

4 Numerical Experiments

In this section, we illustrate the empirical performance of AC and AC-GT via two sets of
experiments. The first set of experiments demonstrates the benefits of AC compared to
the distributed averaging algorithm in achieving consensus and illustrates the effect of the
parameters of the pruning protocol on the performance of AC. The second set of experiments
show the merits of AC-GT compared to popular methods on a linear regression problem with
synthetic data [28], and a logistic regression problem with real datasets [29, 40] from the
UCI repository [2]. All methods are implemented in Python, with a dedicated CPU core
functioning as a node.

4.1 Performance of AC

We first showcase the effectiveness of AC in achieving consensus, where the goal is for all
nodes to attain the average value of the initial estimates of the nodes [9, Section 1]. The
network topologies (graphs) are generated randomly using the Erdös-Rényi graph model
[16] and are represented as G(n, p), where n represents the number of nodes, and p ∈
{0.2, 0.4, 0.6, 0.8} denotes the probability with which each possible edge is independently
included in the pruned graph. The performance metric used is the average consensus error,
defined as 1

|E|
∑

(i,j)∈E ∥xi − xj∥, where E represents the set of all edges and xi ∈ Rd for all

i ∈ [n] with d = 10. The total communication volume is measured as the total number of
vectors exchanged amongst all the nodes in the network. The initial values {xi,0}i∈[n] at
each node are generated following a standard normal distribution.

Comparison to distributed averaging Figs. 1(a)-(b) compare the performance of
AC to distributed averaging [43]. The latter can be considered a specific case of AC with
κ̄ = 0 and τ = ∞. For the pruning protocol part of AC, we have set κ̄i = κ = 0.75
for all i ∈ [n] and choose κ

¯i
to ensure that |E i| ≥ 1, so that each node has at least one

neighbor. The softmax parameter is set to β = 1 and the cycle length is set to τ = 10. The
mixing matrix is generated using the Metropolis Hastings rule (cf. (2)). Fig. 1(a) shows
a significant reduction in the total communication volume required to reach a consensus
error of 10−10 as compared to distributed averaging across all graph topologies. Fig. 1(b)
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(a) (c) (e)

(b) (d) (f)
Figure 1: (a)-(b) Total communication volume/rounds required to achieve a consensus error of
10−10. (c) Variation of spectral gap with respect to pruning threshold, κ ∈ {0.1, 0.2, . . . , 0.9}.
(d)-(f) Total communication volume required to achieve a consensus error of 10−10 for different
κ ∈ {0.1, 0.2, . . . , 0.9}, τ ∈ {1, 101, 102} and β ∈ {0, 1, 101, 102}, respectively.
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demonstrates that the number of communication rounds for AC undergoes only a modest
increase as compared to distributed averaging.

Variation of pruning threshold (κ) In Fig. 1(c), we plot the average spectral gap of
the mixing matrices as a function of κ ∈ {0.1, 0.2, . . . , 0.9}. The average spectral gap is
defined as the average of the spectral gaps of all the weight matrices obtained throughout
the pruning cycles in a run of the algorithm. The plot reveals an important observation:
pruning up to 50-60% of the edges does not significantly affect the spectral properties of the
mixing matrix. Moreover, increasing the value of κ leads to a decrease in communication
volume across all graphs, see Fig. 1(d).

Variation of consensus cycle length (τ) Intuitively, one expects AC to perform better
with shorter cycles since more frequent pruning of the graph can potentially allow AC to
adapt more effectively to varying consensus errors. Fig. 1(e) confirms this intuition, where
we consider τ ∈ {1, 10, 100} with κ = 0.75. While a value of τ = 1 yields optimal perfor-
mance in terms of communication volume, it necessitates executing the pruning protocol
at every iteration.

Variation of softmax parameter (β) Fig. 1(f) plots the total communication volume
required to achieve a consensus error of 10−10 as a function of the softmax parameter
β ∈ {0, 1, 10, 100} with τ = 10 and κ = 0.75. The total communication volume is obtained
by averaging over 100 independent trials. Fig. 1(f) shows that higher values of β tend to
show a modest improvement in the performance.

4.2 Performance of AC-GT

This subsection considers the evaluation of the performance of AC-GT on linear and logistic
regression problems.

4.2.1 Linear Regression

We first consider a linear least-squares regression problem with synthetic data, formally
defined as,

min
x∈Rd

f(x) := 1
N

N∑
i=1

(aTi x− bi)
2,

where ai ∈ Rd denotes the ith feature vector and bi ∈ R denotes the corresponding label.
The data is generated using the technique proposed in [28] with N = 32000 and d = 10.
The network topologies considered are G(n, p), where n = 32 and p ∈ {0.2, 0.5, 0.8}. The
data is partitioned uniformly in a disjoint manner amongst the nodes. We tuned the step
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(a) G(32,0.8) (b) G(32,0.5) (c) G(32,0.2)

Figure 2: Performance of AC-GT on linear regression problems for three different graphs, (a)
G(32,0.8) (b) G(32,0.5) (c) G(32,0.2). Top: Optimality Error versus Total Communication Vol-
ume. Bottom: Average Consensus Error versus Total Communication Volume.

size parameter in AC-GT using a grid-search over the range α ∈ {10−4, 10−3, 10−2, 10−1, 100}
and present the results for the best step size. The softmax parameter is set to β = 1 and
the cycle length is set to τ = 10. The mixing matrix is generated using the Metropolis
Hastings rule (cf. (2)).

Fig. 2 illustrates the performance of AC-GT in terms of two metrics, optimality error,
defined as f(xavg)− f(x∗), where xavg =

1
n

∑n
i=1 xi, and average consensus error described

in Section 4.1, with respect to the total communication volume. The results suggest that,
in terms of optimality error, it is preferable to use a higher value of κ, the pruning thresh-
old. This observation is consistent across graph topologies. That said, there is a slight
degradation in the decay of the consensus error as κ increases. This degradation becomes
more noticeable in sparser topologies, as seen in Fig. 2(c).

4.2.2 Logistic Regression

We consider ℓ2-regularized logistic regression problems with real datasets of the form,

min
x∈Rd

f(x) := − 1
N

N∑
i=1

{
bi log σ(a

T
i x) + (1− bi) log

(
1− σ(aTi x)

)}
+ λ

2∥x∥
2

where {ai, bi}Ni=1 represent the training samples with label bi ∈ {0, 1}, λ > 0 is the regu-
larization parameter and σ(z) = 1

1+exp(−z) , ∀z ∈ R is the sigmoid function.
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(a) (b) (c)
Figure 3: Performance of AC-GT on logistic regression problems: (a) Optimality Error
versus Total Communication Volume (b) Consensus Error versus Total Communication
Volume (c) Optimality Error versus Total number of Gradient Evaluations. Top: Statlog
Dataset, G(16,0.5). Bottom: Mushroom Dataset, G(16,0.5).

We consider the Statlog [40] and the Mushroom [29] datasets from the UCI repository
[2]. The Statlog dataset consists of N = 690 samples and d = 14 features whereas the
Mushroom dataset consists of N = 8124 samples and d = 22 features. For these experi-
ments, we consider G(n, p) with n = 16 and p = 0.5. The data partition and the algorithm
parameters for AC-GT are set in the same manner as Section 4.2.1. The step size is tuned
using a grid-search over the range α ∈ {10−4, 10−3, 10−3, 10−1, 100} for all the algorithms.
The regularization parameter is set to λ = 10−4. The optimal solution x∗ is computed
using the L-BFGS algorithm from the SciPy library in Python and solving the problems
to high accuracy.

The performance of AC-GT is compared to EXTRA [49] a popular gradient tracking
algorithm (denoted by “Gradient Tracking” in the plots) and the random gossip algorithm
[9]3. In addition to the previous metrics, we also report the optimality error versus the
total number of gradient evaluations of f(·). From the optimality error plots shown in
Figs. 3(a) and (c), it is evident that AC-GT with a parameter value of κ = 0.9 exhibits
the best performance. While the optimality error of random gossip is comparable to AC-GT

with κ = 0.5 in terms of total communication volume, AC-GT outperforms the former
with respect to total gradient evaluations. As for the consensus error, there is no notable
difference in algorithm performance for the Statlog dataset. However, for the Mushroom

3To solve the semi-definite problem required for implementing the random gossip algorithm from [9], we
utilize the CVXPY library [14].
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dataset, random gossip and gradient tracking appear to exhibit inferior performance.

5 Conclusion

In this paper, we have developed an adaptive randomized algorithmic framework aimed at
enhancing the communication efficiency of decentralized algorithms. Based on this frame-
work, we have proposed the AC algorithm to solve the consensus problem and the AC-GT

algorithm to solve the decentralized optimization problem. The distinguishing feature of
the framework is the ability to reduce the volume of communication by making use of the
inherent network structure and local information. We have established theoretical conver-
gence guarantees and have analyzed the impact of various algorithmic parameters on the
performance of the algorithms. Numerical results on the consensus problem, and linear
and logisitc regression problems, demonstrate that proposed algorithms achieve significant
communication savings as compared to existing methodologies.

Finally, several interesting extensions of the proposed algorithmic framework can be
considered. From a communication perspective, one could consider directed graphs. Most
of the groundwork for this setting has already been laid out in this work and as mentioned
earlier, the theory can be extended to accommodate push-pull gradient methods [39], where
either row or column stochasticity is satisfied. Additionally, asynchronous updating within
each consensus cycle can also be incorporated to alleviate the constraints imposed by slower
(straggler) nodes. Other interesting directions include nonconvex problems, stochastic local
information and inexact communication.
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[35] Angelia Nedić, Alex Olshevsky, Asuman Ozdaglar, and John Tsitsiklis. On distributed aver-
aging algorithms and quantization effects, 2009.

[36] Yurii Nesterov. Introductory lectures on convex programming volume i: Basic course. Lecture
notes, 3(4):5, 1998.

[37] Alex Olshevsky and John N Tsitsiklis. Convergence speed in distributed consensus and aver-
aging. SIAM journal on control and optimization, 48(1):33–55, 2009.

[38] Joel B Predd, Sanjeev R Kulkarni, and H Vincent Poor. A collaborative training algorithm
for distributed learning. IEEE Transactions on Information Theory, 55(4):1856–1871, 2009.

[39] Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedić. Push–pull gradient methods for distributed
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